„Die Magie von KI ist, dass sie ständig lernt“ – Expertin-Interview mit Kathy Baxter

Autor: Stefan von Gagern
44 likes

Kathy Baxter ist die KI-Expertin beim CRM- und Marketing-Softwarehersteller Salesforce und kämpft für den ethischen Einsatz der Technologie. Unser Autor Stefan von Gagern hatte Gelegenheit für ein Interview mit Baxter auf der Dreamforce in San Francisco.

Kathy Baxter, Principal Architect, Ethical AI Practice bei Salesforce, stammt aus der Psychologie, brachte aber über 20 Jahre Erfahrung von großen Tech-Unternehmen mit zu Salesforce – unter anderem aus der UX (User Experience)-Forschung bei Silicon Valley Schwergewichten wie Oracle, Ebay, Google. Als Salesforce vor Jahren eine „AI-First“-Company wurde, startete Baxter mit der Entwicklung von Chatbots. Heute setzt sie sich intern vor allem für die Einhaltung „ethischer KI“ ein – für diese Aufgabe wurde bei Salesforce sogar ein eigener, neuer Job in der Zentrale in San Francisco geschaffen.

Zunächst ganz allgemein gefragt: Welches Potenzial bringt KI ins Marketing?

Personalisierung ist wirklich das große Ding. Man will Empfehlungen erreichen, die dich ansprechen. Traditionell läuft das immer noch oft mit Demografie. Du bist eine Frau, also empfehlen wir Makeup. Männer sehen diese Anzeigen nicht. In den letzten Jahren haben wir aber gelernt, das Gender ein Spektrum hat. Jemand männliches kann sich ebenfalls für Makeup interessieren. Genauso gibt es Frauen, die keine Kleider mögen. Also müssen wir uns auf Interessen und Verhalten konzentrieren.

Viele Marken tun sich mit Personalisierung immer noch schwer. Könnte ein Grund dafür sein, dass sich Kund*innenverhalten und die Umstände ständig und stark verändern?

Sich auf Demografie verlassen reicht einfach nicht mehr. Die Magie von KI ist, dass sie ständig lernt. Generation Z bringt eine neue Komplexität in das Gender-Thema, identifiziert sich aber stark damit. Die Pandemie hat das Kundenverhalten komplett auf den Kopf gestellt. KI kann damit umgehen und Probleme verhindert – zum Beispiel, dass Retailer ohne Ware oder mit viel zu viel Ware dastehen.

Mit dem Ende der Cookies kommen neue Fragen auf. Wie schaffen wir es Vertrauen aufzubauen? Wenn die Third-Party Daten weg sind, kommt das, was wir „Zero-Party Daten“ nennen. Wie können wir dich dazu bringen, dass du mir verrätst, was mich interessiert. Wir wollen dieses Vertrauen aufbauen, indem wir transparent sind. Der Kunde muss den Wert sehen, was er davon hat, wenn er diese Infos mit uns teilt – und wissen, was wir über ihn schon wissen. KI kann zudem Rückschlüsse ziehen wie „wenn dir dies gefällt, kannst du auch das gebrauchen.“ Händler stehen vor Problemen wie Engpässe in der Lieferkette – hier können solche Empfehlungen eine riesige Hilfe bedeuten.

Aus dem Vertrauensverhältnis ergibt sich auch eine Verpflichtung für Brands abzuliefern, oder nicht?

Nicht nur daraus – auch aus Regulierungen. In Kalifornien gibt es Vorgaben wie die zum Beispiel Daten, die von Kindern stammen, verarbeitet werden dürfen. Es gibt Verpflichtungen für Transparenz, wie ein KI-Modell arbeitet – und warum es etwas empfiehlt. Selbst wenn sich eine Marke nicht so sehr um Vertrauen kümmert – die Privatsphäre-Vorgaben werden sie dazu zwingen.

Jede(r) Softwarehersteller*in bewirbt inzwischen seine/ihre eigene KI-Technologie. IBM mit Watson, Adobe mit Sensei. Was macht Salesforce mit seiner KI-Engine Einstein besser als die anderen?

Wir bieten „No-Code“ und „Low-Code“-Lösungen für eine CRM-spezifische KI. Wir bieten auch eine General-Purpose-Entwicklungsumgebung, für KI-Anwendungen aller Art. Aber gebrauchsfertige Lösungen für Chatbots, die Sales und Kundenservice verstehen, die wissen wer der nächste Lead sein könnte oder die Verkaufsabbrüche verhindern können, sind sehr hilfreich, um Kundenbeziehungen an den Start und zum Laufen zu bekommen. In unserer Marketing Cloud haben wir einen Subject Line Generator, der verschiedene Tonalitäten versteht. Er kann FOMO (Fear of Missing out – die Red.) oder einen freundlichen Ton in der E-Mail-Betreffzeile anschlagen.

Dennoch können die Kunden mit „Einstein Builder“ unsere Technologien nutzen, um ihr eigenes KI-Modell auf dieser Basis zu entwickeln. Mit der Partnerschaft von AWS (Amazon Web Service) findet eine Demokratisierung von KI statt – nach dem Motto „Bring your AI“. So können Kunden die Daten aus einer Customer Data Plattform mit unserer Lösung zusammenbringen.

Ein Fokus der Salesforce-Keynote 2022 waren Echtzeit-Daten – ein großer Game-Changer in Sachen Personalisierung?

Daten sind oft statisch, fragmentiert, veraltet, ungenau – und dann auch noch schwer oder gar nicht zugänglich. Echtzeit mit unserer Lösung Genie ändert das komplett. Damit bekommen wir die alle und die genauesten Daten – die exakte Prognosen ermöglichen. Am Anfang von Covid sahen wir „schwarzen Schwäne“. Die ganzen Datenmodelle brachen zusammen, weil sie nicht mehr funktionierten. Das zeigt, was Echtzeitdaten bewirken können – und wie wichtig Echtzeit wirklich ist.

Viele Unternehmen tun sich schwer dabei ihre Entscheidungen auf Basis von Daten, statt mit dem Bauchgefühl der jahrelangen Business-Erfahrung zu fällen. Was könnte dabei helfen, Daten als Entscheidungshilfe mehr zu akzeptieren?

Wir wissen, wie wichtig Transparenz und Erklärungen sind. Das macht Einstein. Unsere Software zeigt warum eine Empfehlung gegeben wird. Es ist so besser nachvollziehbar, warum ein bestimmter Kunde der nächste Lead sein wird. Das liefert Wertschöpfung im Geschäft, schafft Return on Investment und etabliert im Unternehmen Daten als Entscheidungshilfe.

Es gibt viele Horrorszenarien rund um KI. In Deutschland und Europa gibt es viele Skeptiker*innen, die anmerken, dass künstliche Intelligenz ein Jobkiller sein wird oder gar die Weltherrschaft übernehmen wird. Kann Salesforce mit seinem „Ehtical AI“-Ansatz diese Ängste nehmen? Könnte zum Beispiel AI meinen Job als Content Marketer und Copywriter übernehmen?

Das große Dilemma ist diese KI generierte Kunst, die gerade im Netz kursiert. Dall-e oder andere Bildgeneratoren erzeugen Bilder mit Copyrights, die sie sich selbst als System geben. Die künstliche Intelligenz wurde aber mit Bildern von echten Künstlern trainiert, die nichts für ihren Input bekommen. Das ist etwas, was wir als Gesellschaft oder Staat verhindern müssen. Wir sorgen mit unserem „Ethical AI“- Richtlinien dafür, dass Rechte – zum Beispiel das Grundrecht sich mit seiner Arbeit den Lebensunterhalt zu verdienen – respektiert und eingehalten werden.

Die Terminator-Szenarien, in denen die KI alles übernimmt und uns in Büroklammern verwandelt – diese sind Jahrzehnte weit weg in der Zukunft. Wir müssen uns aber auf die Schäden konzentrieren, die KI heute anrichten kann, wenn zum Beispiel Kunst kostenlos generiert wird und den Künstlern ihre Arbeit wegnimmt.

Schlimm ist auch wenn Gesichtserkennung falsche Vorhersagen macht und die Polizei deswegen die falschen Personen festnimmt. Oder wenn die KI unfairerweise bestimmten Personen den Zugang zu Jobs verhindert. Diese Dinge müssen heute angegangen werden. Aus diesem Grund ist zum Beispiel Gesichtserkennung in unserer KI mit ihren strengen Richtlinen nicht erlaubt.

Diese Artikel könnten Sie auch interessieren:

KI und Selbstreflexion: Was macht KI mit dir?

Wie du innovative KI-Technologie und persönliche Entwicklung strategisch geschickt kombinierst, um dein Start-up nachhaltig zu skalieren.

Künstliche Intelligenz (KI) gilt als Wachstumsbooster. Doch wer dabei nur auf Technik setzt, lässt ein entscheidendes Potenzial ungenutzt – die eigene persönliche Entwicklung. Warum es gerade die Verbindung aus KI und Selbstreflexion ist, die Gründer*innen und Start-ups langfristig erfolgreich macht, liest du hier.

Gründen bedeutet, Entscheidungen unter Unsicherheit zu treffen

Wer ein Start-up aufbaut, bewegt sich im Spannungsfeld von Vision und Verantwortung. Geschäftsmodell, Finanzierung, Teamführung, Produktentwicklung – all das passiert meist parallel und unter enormem Zeitdruck. Technologie wird dabei oft als Hebel gesehen, um schneller und effizienter zu arbeiten. Und das stimmt: Tools, die auf KI basieren, können Prozesse automatisieren, Muster erkennen, Kund*innenbeziehungen vertiefen. Doch Technik allein garantiert keinen Erfolg. Entscheidend ist, wer sie wie einsetzt. Und hier kommt ein oft unterschätzter Faktor ins Spiel: der/die Gründer*in selbst mit den Mustern seiner/ihrer Persönlichkeit.

Jede einzelne Erfahrung, die die Marke rund um eine(n) Gründer*in prägt, kann niemals von einer KI erzeugt werden. Diese kann im zweiten Schritt sachlich analysieren, wie Erlebnisse für zukünftige Prozesse genutzt werden, die dazugehörigen Werte oder Ängste aber stecken in der Person selbst als Fundament.

Markenkern, Werte und Identität – das unsichtbare Fundament des Erfolgs

Jede Marke beginnt mit einer Geschichte, und diese umfasst den Menschen als Dreh- und Angelpunkt. Die Erfahrungen, Werte und Überzeugungen der Gründer*in formen den Kern eines Start-ups weit vor dem ersten Pitchdeck. Während KI dabei helfen kann, diese Identität greifbar zu machen, zu analysieren oder in die Kommunikation zu übersetzen, erzeugen kann sie diese nicht.

Gerade in der frühen Phase entscheidet nicht nur das Produkt über den Erfolg, sondern die Haltung dahinter: Wofür steht das Unternehmen? Welche Werte prägen die Entscheidungen? Welches Bedürfnis treibt den/die Gründer*in auch jenseits der KPIs an? Eine klare Positionierung entsteht nicht im Workshop, sondern im inneren Prozess. Es ist die Fähigkeit zur Selbstreflexion, die hier als Kompass dient:

  • Was ist mir wirklich wichtig?
  • Was darf sich nie ändern, selbst wenn wir skalieren?
  • Was wäre ein Deal, den ich nie eingehen würde – egal wie lukrativ er erscheint?

Wer diesen Markenkern kennt, trifft strategische Entscheidungen konsistenter, kommuniziert authentischer und baut Vertrauen bei Investor*innen, Mitarbeitenden und Kund*innen auf. Und erst dann lohnt sich der Einsatz von KI wirklich, um diese klare Positionierung zum Beispiel zu verstärken, nicht aber zu ersetzen.

KI – mehr als nur Effizienzmaschine

KI hat längst ihren Platz in der Start-up-Welt gefunden. Vom Recruiting über Sales bis hin zum Customer Support. KI-gestützte Tools erleichtern die Arbeit und verschaffen jungen Unternehmen echte Wettbewerbsvorteile:

  • Automatisierung: Mithilfe von KI lassen sich zeitintensive Prozesse wie Terminplanung, Rechnungsstellung oder E-Mail-Korrespondenz automatisieren. Das schafft Raum für strategische Aufgaben.
  • Personalisierung: Wer seine Kund*innen wirklich verstehen will, profitiert von datenbasierten Insights. KI hilft dabei, Verhalten zu analysieren, Bedürfnisse vorherzu­sagen und Inhalte gezielt auszuspielen.
  • Recruiting: Im „War for Talents“ zählt Geschwindigkeit, ergänzend aber unbedingt auch Qualität. KI-Tools unterstützen dabei, Bewerber*innen effizient zu sichten und unbewusste Bias zu reduzieren.

Richtig eingesetzt, ermöglicht KI mehr Fokus, schnellere Iterationen und datengestützte Entscheidungen. Aber genau hier beginnt auch das Problem: Technologie kann nur das verstärken, was ohnehin vorhanden ist oder eben (noch) nicht.

Selbstreflexion – der unterschätzte Erfolgsfaktor

Gründer*innen stehen täglich vor Entscheidungen mit Tragweite. Doch unter Druck, Unsicherheit und Wachstumsschmerz wird oft reaktiv gehandelt statt reflektiert geführt. Genau hier setzt Selbstreflexion an. Wer sich seiner Stärken, Muster und blinden Flecken bewusst ist, trifft bessere Entscheidungen – für sich, das Team und das Unternehmen. Selbstre­flexion ist kein esoterisches Extra, sondern ein pragmatisches Führungsinstrument. Einige wirkungsvolle Methoden:

  • Regelmäßige Selbstchecks: Was hat in dieser Woche funk­tioniert und warum? Was nicht? Was sagt das über meine Prioritäten aus?
  • Feedback aktiv einholen: nicht nur von Mitgründer*innen oder Coaches, sondern auch vom Team. Nicht defensiv reagieren, sondern neugierig auf das Feedback sein.
  • Mentoring und Coaching: Externe Sparringspartner*innen helfen, Perspektiven zu erweitern und Denkfehler zu entlarven.
  • Reflexionstools nutzen: vom (digitalen) Journal bis zur strukturierten Entscheidungsanalyse gibt es einfache Hilfsmittel, die Klarheit schaffen.

Wer bereit ist, sich selbst zu hinterfragen, entwickelt nicht nur sich, sondern auch sein Start-up weiter. Denn Führung beginnt nicht mit der Verantwortung für andere, sondern mit der Verantwortung für sich selbst.

Die Synergie – wenn KI auf Selbstreflexion trifft

Die wirklich erfolgreichen Gründer*innen sind nicht ent­weder Tech-Expert*innen oder People-Leader*innen. Sie verbinden beides. Sie nutzen KI, um operative Exzellenz zu schaffen und reflektieren gleichzeitig, wie sie führen, entscheiden, kommunizieren. Diese Kombination erzeugt eine Form von unternehmerischer Klarheit, die sowohl innovativ als auch resilient ist.

KI kann Erkenntnisse liefern. Aber nur, wer sie richtig einordnet, profitiert davon. Selbstreflexion schafft den Raum, um mit Technologie sinnvoll umzugehen. Umgekehrt kann KI helfen, Reflexionsprozesse zu unterstützen, etwa durch gezielte Feedback-Auswertung oder datengestützte Teamanalysen.

Ein Beispiel aus der Praxis: Ein Start-up im HR-Tech-Bereich nutzt KI, um Kund*innenfeedback in Echtzeit zu analysieren. Gleichzeitig reflektieren die Gründer*innen wöchentlich im Führungsteam, welche Learnings daraus für Produkt und Kommunikation folgen und welche persönlichen Muster sie bei sich selbst erkennen. Diese Kombination aus technolo­gischem Blick nach außen und menschlichem Blick nach innen führt dazu, dass das Unternehmen nicht nur schneller wächst, sondern dabei auch klar bleibt.

Skalierung braucht Klarheit in der Technik und im Kopf

Start-ups, die skalieren wollen, müssen effizient sein, gleichzeitig aber auch fokussiert, werteorientiert und anpassungsfähig. KI ist dabei ein mächtiges Werkzeug. Doch ohne die Fähigkeit zur Selbstreflexion bleibt sie oft bloß ein weiteres Tool im Tech-Stack.

Deshalb gilt: Die Kombination aus klugem KI-Einsatz und bewusster persönlicher Entwicklung ist kein Luxus, sondern unternehmerische Notwendigkeit. Wer beides ernst nimmt, schafft ein Unternehmen, das nicht nur wächst, sondern dabei auch „gesund“ bleibt.

Die Autorin Lea Baptista ist Geschäftsführerin der GG Consulting Agency und unterstützt Unternehmer*innen, Führungskräfte und Teams dabei, ihren Führungsstil klar zu definieren, Selbstreflexion als Werkzeug zu nutzen und authentisch erfolgreich zu sein.

Report: Quantencomputing

Wir sind Zeug*innen einer Transformation, die nicht nur die Tech-Branche nachhaltig beeinflussen wird: Quantencomputing und die dazugehörigen Start-ups haben das Potenzial, die Art und Weise, wie wir Daten verarbeiten und Probleme lösen, grundlegend zu verändern.

Quantencomputing (QC) ist ein hochinnovatives Feld der Informatik und Physik, das die Prinzipien der Quantenmechanik nutzt, um Datenverarbeitung und -analyse auf eine Weise zu leisten, die mit klassischen Computern nicht möglich ist. Während klassische Computer Informationen in Form von Bits verarbeiten, die entweder den Wert 0 oder 1 annehmen können, verwenden Quantencomputer Quantenbits oder Qubits. Diese Qubits können sich in einem Zustand der Überlagerung befinden, was bedeutet, dass sie gleichzeitig 0 und 1 darstellen können. Dies ermöglicht es Quantencomputern, komplexe Berechnungen viel schneller durchzuführen als ihre klassischen Pendants.

Herausforderungen

Trotz des enormen Potenzials stehen Forschende und Unternehmen vor vielen Herausforderungen. Eine der größten Hürden ist die sog. Dekohärenz, ein Phänomen, bei dem die Quanteninformation durch Wechselwirkungen mit der Umgebung verloren geht. Um stabile und fehlerfreie Quantenberechnungen durchzuführen, müssen Qubits in einem kontrollierten Zustand gehalten werden, was technisch äußerst anspruchsvoll ist.

Eine weitere Herausforderung ist die Skalierbarkeit. Während einige Prototypen von Quantencomputern bereits existieren, stellt der Bau von Systemen mit einer ausreichenden Anzahl von Qubits, um praktische Probleme zu lösen, eine erhebliche technische Herausforderung dar.

Trends

In den letzten Jahren ist ein zunehmender Fokus auf hybride Ansätze zu verzeichnen, bei denen Quantencomputer in Kombination mit klassischen Computern eingesetzt werden, um spezifische Probleme zu lösen. Diese hybriden Systeme nutzen die Stärken beider Technologien und bieten eine praktikable Lösung für viele aktuelle Herausforderungen.

Zudem ist eine wachsende Zusammenarbeit zwischen akademischen Institutionen, großen Tech-Unternehmen und Start-ups zu beobachten. Diese Partnerschaften sind entscheidend, um Wissen und Ressourcen zu bündeln und die Entwicklung von QC-Technologien voranzutreiben. Unternehmen wie IBM, Google oder Microsoft investieren erheblich in Quantenforschung und -entwicklung und bieten Plattformen für Entwickler*innen und Forschenden an, um ihre eigenen Quantenalgorithmen zu testen.

Ein weiterer Trend ist die zunehmende Verfügbarkeit von QC-Diensten über die Cloud. Unternehmen und Forschende können nun auf Quantencomputer zugreifen, ohne in teure Hardware investieren zu müssen. Dies senkt die Eintritts­barrieren und ermöglicht es einer breiteren Palette von Nutzenden, die Möglichkeiten des QCs zu erkunden.

Die Rolle von Start-ups

Start-ups spielen hierbei mit neuen Ideen und Ansätzen eine entscheidende Rolle als Innovatoren und konzentrieren sich zumeist auf spezifische Anwendungen des QCs, sei es in der Materialwissenschaft, der Medikamentenentwicklung, der Lieferkettenlogistik oder der Optimierung komplexer Systeme u.a. in der Finanzwelt.

Die 2024 im Auftrag des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK) veröffentlichte Studie „Quantencomputing – Markt, Zugang, Perspektiven“ zeigt: Die Zahl der Start-ups zur Entwicklung von Anwendungssoftware stieg in den letzten Jahren stetig, wobei hardwarespezifische Systemsoftware vorrangig von den Hardwareentwickler*innen selbst bereitgestellt wird. Entfielen im Zeitraum von 2002 bis 2018 weltweit noch rund 58 Prozent der kumulierten Gründungen auf Software- oder Service-zentrierte Start-ups und 42 Prozent auf Hardware- bzw. Komponenten-fokussierte Start-ups, waren es im Zeitraum 2018 bis 2022 rund 74 Prozent mit Fokus auf Software und Services sowie 26 Prozent mit Fokus auf Hardware und Komponenten.

Von weltweit über 150 Start-ups fokussiert sich dabei etwa ein Drittel auf die Entwicklung von Systemsoftware und zwei Drittel auf die Entwicklung von Anwendungssoftware. Deutschland belegt dabei mit knapp 20 Start-ups im Jahr 2023 Platz drei im internationalen Vergleich, hinter den USA und Kanada. Damit hat sich Deutschland als ein Hotspot für QC-Start-ups etabliert.

Deutsche QC-Start-ups mischen ganz vorne mit

Deutsche QC-Start-ups sind oft noch in der Entwicklungsphase, die Gründer*innen kommen meist aus Forschung und Wissenschaft, und ihre Geschäftsmodelle konzentrieren sich auf die Entwicklung und den Verkauf von Hardware, Mikroskopen oder Cloud-basierten QC-Diensten.

Als weltweit erstem Unternehmen ist es dem 2018 gegründeten Start-up kiutra, einem Spin-off der Technischen Universität München, gelungen, eine dauerhafte magnetische Kühlung für Temperaturen nahe des absoluten Nullpunkts zu entwickeln. Statt auf Quantencomputer oder QC-Software, setzen die Gründer Alexander Regnat, Jan Spallek, Tomek Schulz und Christian Pfleiderer auf vollautomatische, äußerst wartungsarme und gut skalierbare Kühlungslösungen, die den Betrieb von Quantentechnologien im industriellen Maßstab ermöglichen.

Eva Helmeth: Mutig neue Wege gehen

Eva Helmeth (44) ist die Gründerin und CEO von MON COURAGE – einer Naturkosmetikmarke, die Hautpflege für unterwegs neu denkt. Die Anthropologin und Heilpflanzenexpertin lebt als moderne Nomadin und reist um die Welt, um die besten pflanzlichen Wirkstoffe zu finden. Im Juni 2025 pitchte Eva in der TV-Show „Die Höhle der Löwen“ (DHDL). Mehr dazu im Interview.

Eva, was hat dich dazu bewogen, in der VOX-Gründer*innen-Show „Die Höhle der Löwen“ mitzumachen?

In meinem Freundeskreis hörte ich seit 2020: „Du musst deine Hautpflege-Sticks unbedingt bei DHDL vorstellen.“ Ich wollte mir damit aber Zeit lassen. So ein Format kann ein gewaltiger Katalysator sein. Es kann dich nach vorne katapultieren – oder dich überrollen, wenn du noch nicht bereit bist. Ich wusste, wenn ich diesen Schritt gehe, dann zum richtigen Zeitpunkt.

Wie hast du diesen für dich richtigen Zeitpunkt definiert?

Ich habe drei Jahre lang bewusst gewartet. Für mich war entscheidend, dass MON COURAGE kein reines Ideenprojekt mehr war, sondern auf eigenen Beinen steht. Ich wollte Erfahrungswerte mitbringen – in der Produktion, im Vertrieb, im Feedback der Kundinnen und Kunden. Der richtige Zeitpunkt hieß für mich konkret, getestete Produkte, etablierte Marketingkanäle und eine solide Lieferkette vorweisen zu können. Als all das stand, war klar: Jetzt oder nie – denn jetzt sind wir stabil genug, um eine Welle wie DHDL reiten zu können.

Wie war zu diesem Zeitpunkt deine Haltung zu DHDL?

Ich habe die Sendung vorher ehrlich gesagt nie geschaut. Es kursierten Geschichten von Durchbrüchen bis hin zu absoluten Pleiten. Ich habe es als Chance gesehen, meine Geschichte zu erzählen und damit einen Investor oder eine Investorin zu überzeugen der bzw. die wirklich zu MON COURAGE passt. Mir war klar, dass es im Fernsehen in erster Linie um Unterhaltung geht. Als Nomadin, die ihr Kosmetikunternehmen aufbaut während sie weltweit nach Rohstoffen sucht, habe ich genügend Geschichten auf Lager. Das hat mir geholfen, ganz ohne Erwartungsdruck in die Aufzeichnung zu gehen.

Was waren für dich die wichtigsten Learnings aus dem Bewerbungsprozess?

Ich war gerade auf den Philippinen auf der Suche nach passenden Kokosölproduzenten, als ich das erste Gespräch mit der Produktionsfirma führte. Nachdem ich bisher nur Ölraffinerien gefunden hatte, die teils schimmliges Kokosfleisch verarbeiteten, war ich kurz davor, die Suche abzubrechen. Doch plötzlich tat sich eine neue Fährte auf. Ich erzählte von dieser Odyssee – und sie waren begeistert.

Ich habe dabei vor allem eines gelernt: Menschen lieben echte Geschichten. Und die besten Geschichten entstehen nicht am Schreibtisch, sondern da draußen – bei echten Begegnungen, im echten Leben

Wie hast du dann die TV-Show bzw. Aufzeichnung erlebt?

Als die Zusage kam, war ich in einem kleinen Dorf in Sri Lanka. „Eva, du bist genommen. Hast du nächsten Mittwoch Zeit?“ Drei Tage später landete ich in Deutschland – und hatte so gut wie keine Zeit zur Vorbereitung. Aber vielleicht war genau das mein Glück: Mein Pitch war dadurch pur, lebendig, ungefiltert. Ich hatte richtig Lust auf den Dreh. Die Interviews back­stage waren ein schöner Auftakt, die Aufregung hinter dem Tor unvergesslich. Als ich dann vor den Löwen stand, war ich fokussiert und klar. Sie waren wirklich sehr höflich und interessiert, kein Gebrüll, kein Zerfleischen – vielleicht doch eher Stubentiger?

Einige „Löwen“ haben deinen Lebensstil als Nomadin infrage gestellt. Wie lässt sich denn ein wachsendes Unternehmen führen, wenn du selbst in der Welt unterwegs bist?

Ich verstehe den Reflex – klassische Unternehmensführung sieht anders aus. Aber MON COURAGE ist kein klassisches Unternehmen. Unser ganzes Konzept basiert auf echter Verbindung: zu den Menschen, die unsere Rohstoffe anbauen, und zu den Kundinnen und Kunden, die unsere Produkte nutzen. Gerade weil ich unterwegs bin, lerne ich die Menschen kennen, die hinter unseren Zutaten stehen. Ich sehe, unter welchen Bedingungen produziert wird, kann direkt und fair einkaufen, neue Ideen entwickeln und Innovationen früh­zeitig aufspüren.

Remote zu arbeiten heißt nicht, abwesend zu sein. Im Gegenteil: Ich bin im täglichen Austausch mit meinem Team, wir arbeiten digital und gleichzeitig sehr eng zusammen. Mein Lebensstil erfordert klare Kommunikation, Vertrauen und Teamkolleginnen, die diese Freiheit schätzen. Aber genau das ist ja MON COURAGE: mutig neue Wege gehen.

EU AI Act: Status quo

Recht für Gründer*innen: der EU AI Act. Wo stehen wir in Sachen Umsetzung? Was Gründer*innen und Start-ups jetzt wissen müssen.

Künstliche Intelligenz (KI) ist längst kein Zukunftsthema mehr, sondern prägt schon heute Geschäftsmodelle, Investitionsentscheidungen und die Arbeitswelt. Mit der europäischen KI-Verordnung (EU AI Act, im Folgenden AI Act) wurde im Frühjahr 2024 der weltweit erste umfassende Rechtsrahmen für den Einsatz von KI verabschiedet. Inzwischen sind die ersten Regelungen in Kraft getreten. Für Gründer*innen und Start-ups bedeutet das nicht nur zusätzliche Pflichten, sondern auch Chancen, sofern sie sich rechtzeitig vorbereiten.

Überblick: Der AI Act

Die Verordnung folgt einem risikobasierten Ansatz: Je höher das Risiko für Grundrechte oder Sicherheit, desto strenger die Anforderungen. Auf der untersten Stufe stehen KI-Systeme, die keinerlei Vorgaben erfüllen müssen, solange sie nicht in verbotene Anwendungsfälle fallen. An der Spitze der Regulierungspyramide befinden sich die sogenannten Hochrisiko­Systeme, also etwa Anwendungen in der medizinischen Diagnostik, in kritischer Infrastruktur oder bei biometrischen Verfahren. Viele Tools aus dem HR-Bereich fallen darunter.

Daneben bestehen besondere Pflichten für sogenannte Generative KI beziehungsweise General Purpose AI, eingeführt, also große Modelle, die viele Anwendungen treiben und „systemische Risiken“ entfalten können.

Wichtig ist zu wissen, dass die Vorgaben schrittweise gelten. Bereits seit dem 2. Februar 2025 sind bestimmte Praktiken ausdrücklich verboten – zum Beispiel das Social Scoring von Bürger*innen, die flächendeckende Emotionserkennung in Schulen oder am Arbeitsplatz sowie das unkontrollierte Sammeln biometrischer Daten. Wer damit noch experimentiert, bewegt sich schon jetzt im rechtswidrigen Raum.

Seit dem 2. August 2025 gelten außerdem die ersten Pflichten für Anbieter*innen von generativen Modellen. Sie müssen unter anderem Transparenzberichte veröffentlichen und Angaben zu den verwendeten Trainingsdaten machen. Für Modelle, die bereits vor Inkrafttreten am Markt waren, gibt es eine Übergangsfrist bis 2027. Für viele Unternehmen, die solche Modelle nutzen oder in Produkte einbetten, bedeutet das, genau hinzuschauen, welche Informationen von den Modellanbieter*innen zur Verfügung gestellt werden. Sonst können eigene Transparenzpflichten womöglich nicht erfüllt werden.

Noch weiter in der Zukunft liegen die Vorschriften für Hochrisiko-Systeme. Diese greifen ab 2. August 2026 und verlangen ein umfassendes Risikomanagement, eine strenge Qualität der Trainingsdaten, eine lückenlose Protokollierung und eine Konformitätsbewertung, bevor ein Produkt überhaupt in Verkehr gebracht werden darf. Für Hochrisiko-KI, die in ohnehin streng regulierten Produkten steckt, zum Beispiel in Medizinprodukten, gilt eine verlängerte Frist bis 2027.

Konformitätsbewertung heißt vor allem Risikobewertung, welche die Anbieter*innen oder Betreiber*innen selbst durchführen müssen. Eine solche „regulierte Selbstregulierung“ ist ein klassisches Merkmal einer solchen klassischen Produkt­regulierung und Marktüberwachung.

Was fehlt? Guidance und Governance

Noch herrscht allerdings an vielen Stellen Unsicherheit. Zwar hat die EU-Kommission schon erste Leitlinien veröffentlicht, etwa zur Definition von KI-Systemen oder zu den verbotenen Praktiken. Auch für Anbieter*innen generativer KI gibt es inzwischen ein detailliertes Dokumentationsmuster. Noch fehlen allerdings die angekündigten Handreichungen für die Einstufung und Risikobewertung von Hochrisiko-Systemen, die bis Februar 2026 folgen und praktische Beispiele enthalten sollen. Bis dahin bleibt nur, sich für die Bewertung an bestehenden internationalen Standards zu orientieren, zum Beispiel an den Normungsprojekten der Europäischen Komitees für Normung und für elektrotechnische Normung.

Auf Unionsebene entstehen parallel die neuen Governance-Strukturen. Das AI Office innerhalb der Kommission ist bereits aktiv und koordiniert die Umsetzung. Das AI Board, ein Gremium der Mitgliedstaaten, tagt regelmäßig und stimmt Vorgehensweisen ab. Ein wissenschaftliches Panel unabhängiger Expert*innen wurde im Frühjahr eingerichtet, und das Advisory Forum, das die Perspektive von Unternehmen und Zivilgesellschaft einbringen soll, befindet sich gerade in der Bewerbungsphase. Auch die geplante EU-Datenbank für Hochrisiko-Systeme existiert bisher nur auf dem Papier. Ab 2026 müssen Anbieter*innen ihre Systeme dort registrieren; die Plattform selbst wird jedoch gerade erst aufgebaut.

Und wo steht Deutschland?

Auch hierzulande hakt es noch etwas. Eigentlich hätten die Mitgliedstaaten bis 2. August 2025 ihre Marktüberwachungsbehörden benennen müssen. Ein Entwurf für das deutsche Umsetzungsgesetz sieht die Bundesnetzagentur als zentrale Aufsicht vor, doch die formale Benennung ist noch nicht erfolgt. Klar ist, dass die Bundesnetzagentur die Rolle der Notifizierungsbehörde übernimmt, also für die Anerkennung von Konformitätsbewertungsstellen zuständig ist. Zudem entsteht dort ein Kompetenzzentrum für KI, das die Arbeit von Bund und Ländern koordinieren soll.

Reallabore

Ein Bereich, der für KI-Entwickler*innen besonders interessant ist, sind KI-Reallabore, also sichere Testumgebungen, in denen neue Anwendungen unter Aufsicht erprobt und darauf geprüft werden können, ob sie den rechtlichen Rahmen einhalten. Bis zum Sommer 2026 müssen die Mitgliedstaaten mindestens ein solches Reallabor einrichten. Deutschland hat im Mai 2025 ein erstes Pilotprojekt in Hessen gestartet, gemeinsam mit der Bundesnetzagentur und der Bundesdatenschutzbeauftragten. Hier werden reale Unternehmensfälle durchgespielt, um Abläufe und Bedarfe besser zu verstehen. Solche Projekte können eine wertvolle Möglichkeit sein, mit den Aufsichtsbehörden auf Augenhöhe ins Gespräch zu kommen.

Reaktionen

Der AI Act wird zwar kritisch diskutiert, im Grundsatz aber breit akzeptiert. Gerichtliche Klagen direkt gegen die Verordnung gibt es bislang nicht. In der juristischen Literatur überwiegt die Zustimmung zur Zielrichtung. Kritisiert werden vor allem die Komplexität und die noch offenen Fragen bei der praktischen Umsetzung. Streitpunkte finden sich eher außerhalb der Verordnung bei der Frage, ob Trainingsdaten urheberrechtlich geschützt sind oder wie personenbezogene Daten für KI genutzt werden dürfen.

Die Industrie zeigt ein gemischtes Bild. Viele große Anbieter*innen – von Google über OpenAI bis Mistral – haben einen freiwilligen Verhaltenskodex unterzeichnet. Andere, wie etwa Meta, haben sich bewusst dagegen entschieden. Man muss sich also darauf einstellen, dass je nach Anbieter*in sehr unterschied­liche Informationen und Compliance-Nachweise verfügbar sind.

Andererseits wirkt der AI Act bereits am Markt. In öffentlichen Ausschreibungen tauchen Modellklauseln auf, die auf die KI-Verordnung Bezug nehmen. Investor*innen fragen verstärkt nach Compliance-Prozessen, und Unternehmen beginnen, interne Strukturen für Risikomanagement und Dokumentation aufzubauen.

Im Vergleich zu Europa gibt es in den USA bislang nur freiwillige Standards. Die dort bei der Entwicklung und Anwendung von KI (angeblich) vorherrschende größere Freiheit wird zwar viel gerühmt. Einzelne Bundesstaaten wie Colorado arbeiten allerdings an eigenen regulierenden Gesetzen, die ab 2026 greifen sollen. Vielleicht ist es also ein Vorteil, dass europäische Start-ups früh Erfahrungen in einem regulierten Markt sammeln können.

Fazit

Der AI Act entfaltet bereits jetzt Wirkung, auch wenn viele Details erst in den kommenden Monaten geklärt werden. Daher gilt es, nicht abzuwarten, sondern jetzt eine eigene Roadmap zu entwickeln. Wer früh Prozesse für Risikomanagement, Transparenz und Governance etabliert, wird nicht nur rechtlich auf der sicheren Seite sein, sondern auch Vertrauen bei Kund*innen und Investor*innen gewinnen.

Die EU hat ein klares Signal gesetzt: KI soll innovativ sein, aber auch sicher und vertrauenswürdig. Für Start-ups ist das eine Her­ausforderung – aber auch eine Chance, sich von Anfang an professionell aufzustellen und den Markt aktiv mitzugestalten.

Der Autor Dr. Daniel Michel, LL.M. ist als Rechtsanwalt im Bereich IT/IP/Technologie tätig und betreibt seit 2018 mit DATA LAW COUNSEL seine eigene Rechtsberatung im Raum München

Careertune: Vergleichsplattform für Weiterbildungsangebote gestartet

Das 2025 von Felix Hüsgen und Finn Prietzel in Mannheim gegründete Start-up Careertune hat eine Vergleichsplattform für staatlich geförderte Weiterbildungen gestartet. Ziel ist es, Arbeitssuchenden den Zugang zu passenden Kursen zu erleichtern – und so den Weg in zukunftssichere Jobs zu ebnen.

Erst vor wenigen Tagen ging durch die Medien: Die Zahl der Arbeitslosen in Deutschland ist zum ersten Mal seit 2015 wieder auf über 3 Millionen gestiegen. Gleichzeitig verändert sich der Arbeitsmarkt rasant: Automatisierung und künstliche Intelligenz lassen traditionelle Tätigkeiten verschwinden, während neue Berufsbilder wie etwa „Prompt Engineer“ entstehen.

Allein 2024 nutzten über 200.000 Menschen einen Bildungsgutschein der Bundesagentur für Arbeit, um sich für neue Jobs zu qualifizieren. Doch bisher mussten Arbeitssuchende geeignete Kurse mühsam selbst recherchieren – Erfahrungsberichte sind oft unübersichtlich, Bewertungen fehlen, und die Vielzahl an Bildungsträgern erschwert die Entscheidung.

Careertune: Mit wenigen Klicks zum passenden Kurs

Genau hier setzt Careertune an: Nutzer*innen geben ihre Interessen, Vorerfahrungen, den gewünschten Zeitrahmen und Standort an. Ein Algorithmus schlägt daraufhin passende, geförderte Weiterbildungen vor. Anbietende und Kurse können anschließend transparent nach Inhalten, Dauer, Lernform (Präsenz oder Online) sowie Bewertungen verglichen werden.

Zum Start sind bereits über 20 Bildungsträger mit mehr als 500 Kursen auf der Plattform vertreten – von IT-Weiterbildungen über kaufmännische Angebote bis hin zu Pflege- und Handwerksqualifikationen.

„Bislang mussten Arbeitslose stundenlang Kurse recherchieren – wir wollen, dass sie mit wenigen Klicks den passenden Weg in ihre berufliche Zukunft finden“, erklärt Mitgründer Felix Hüsgen.

Die Plattform ist für Nutzer*innen kostenlos. Careertune vermittelt lediglich die Kursanfragen an die Bildungsträger.

Mehr Transparenz in der Weiterbildung schaffen

Careertune wurde im April 2025 von Felix Hüsgen und Finn Prietzel in Mannheim gegründet. Nach ersten Erfahrungen als Gründer und App-Entwickler entwickelten die beiden ihre Idee gemeinsam mit Arbeitslosen und Bildungsträgern.

„Wir brennen für das, was wir beruflich machen“, sagt Finn Prietzel. „Genau das wünschen wir uns auch für unsere Nutzer: eine Weiterbildung, die wirklich passt – und die Chance auf einen Job, für den sie selbst brennen.“

Neben Arbeitslosen sollen auch Mitarbeitende von Jobcentern und Arbeitsagenturen profitieren: Die Plattform soll sie bei der zeitaufwändigen Beratung entlasten. Langfristig plant das Start-up, zusätzlich die Vermittlung in passende Jobs aufzubauen.

Humanoide Roboter: Vision und Realität

Der Weltroboterverband IFR veröffentlicht sein Positionspapier zu Trends, Chancen und möglichen Grenzen rund um das Thema humanoide Roboter.

Menschenähnliche Roboter gelten als die nächste große Innovation in der Robotik: Der weltweit größte Markt für Industrieroboter, China, hat bereits konkrete Pläne für die Massenproduktion von Humanoiden festgelegt. Gleichzeitig kündigten Technologieunternehmen in den USA und Europa große Investitionsvorhaben in diesem Bereich an. Die Vision ist, Allzweckroboter zu entwickeln, die auf menschlicher Mechanik basieren. Einblicke in Trends, Chancen und mögliche Grenzen humanoider Roboter bietet das neue Positionspapier der International Federation of Robotics.

„Futuristisch anmutende humanoide Roboter, die in unserem Zuhause, in Unternehmen und in der Öffentlichkeit arbeiten, faszinieren die Menschen“, sagt Takayuki Ito, Präsident der International Federation of Robotics. „Da die Welt in der wir leben auf den menschlichen Körper zugeschnitten ist, liegt die Idee eines schnellen, universellen Helfers in der Produktion und bei Dienstleistungen auf der Hand. Ob und wann es aber zu einer massenhaften Nutzung von Humanoiden kommen wird, bleibt ungewiss. Nicht zu erwarten ist jedenfalls, dass Humanoide in Zukunft die derzeit auf dem Markt befindlichen Robotertypen ersetzen. Stattdessen werden sie bestehende Technologien ergänzen und erweitern.“

Einsatz von Humanoiden in den Regionen

In den Vereinigten Staaten arbeiten Tech-Unternehmen wie NVIDIA, Amazon und Tesla intensiv an KI- und Robotertechnologien. Neben der Finanzierung durch das Militär wird diese Entwicklung auch durch zahlreiche private Investitionen unterstützt. Das führt zu einer bedeutenden Start-up-Szene, die sich auf humanoide Roboter spezialisiert. Besonders groß ist das Interesse an Humanoiden in Branchen wie der Logistik und in der Fertigung. Dabei werden humanoide Roboter weniger als soziale Begleiter gesehen, sondern eher als Werkzeuge, die dabei helfen, Produktivität und Effizienz zu steigern. So liegt der Schwerpunkt verstärkt auf praktischen Anwendungen und weniger auf der Integration von Robotern in das tägliche soziale Leben.

In China nehmen die Humanoiden eine zentrale Stellung in der nationalen Robotik-Strategie ein. Die Regierung möchte in diesem Technologiebereich Kompetenz und globale Wettbewerbsfähigkeit unter Beweis stellen. Der Einsatzschwerpunkt liegt dabei im Dienstleistungssektor, beispielsweise für die Kundenbetreuung. Die Automatisierung von Produktionslinien in der Fertigung und der Einsatz von Humanoiden, um weniger von menschlichen Arbeitskräften abhängig zu sein, scheint nur auf zweiter Ebene wichtig zu sein. Kernelement der chinesischen Strategie ist der Aufbau einer skalierbaren Lieferkette für Schlüsselkomponenten.

Japan ist ein Pionier in der Entwicklung humanoider Roboter. Als frühes Beispiel wurde Hondas Asimo bereits im Oktober 2000 vorgestellt. Roboter werden in Japan eher als Gefährten, denn als bloße Werkzeuge gesehen. Humanoide Roboter wie Pepper und Palro sind demzufolge in erster Linie als Sozialroboter konzipiert und kommen in Bildungseinrichtungen, Geschäften und Altenpflegeeinrichtungen zum Einsatz. Diese Ausrichtung spiegelt die Nachfrage einer alternden Gesellschaft wider, mit der Japan konfrontiert ist. Ein wichtiger Schwerpunkt der Projekte liegt auf Robotern, die harmonisch mit Menschen zusammenleben können und als Teil der Gesellschaft akzeptiert sind. Führende Unternehmen wie Kawasaki entwickeln humanoide Roboter als eine Forschungsplattform.

In Europa wird auf die ethischen Implikationen von Robotik und KI besonderes viel Wert gelegt. Im Fokus stehen kollaborative Roboter, die im industriellen Umfeld mit Menschen zusammenarbeiten. Kernthemen sind die Verbesserung der Sicherheit und Effizienz und die Nachahmung menschlicher Fähigkeiten. Die Arbeitskraft von Menschen zu kompensieren, steht dagegen nicht im Fokus. Der Schwerpunkt liegt vielmehr auf einem menschenzentrierten Design und den sozialen und gesellschaftlichen Auswirkungen von Robotern. Die europäischen Unternehmen stehen dem Einsatz von Humanoiden generell eher zurückhaltend gegenüber, wenn es um die kurz- bis mittelfristigen Automatisierungsaufgaben im Fertigungs- und Dienstleistungssektor geht.

+++ Ein bahnbrechendes Robotik Start-up aus Deutschland ist NEURA-Robotics: Hier geht’s zu unserer Gründerstory von NEURA Robotics +++

Ausblick

Dank ihrer menschenähnlichen Geschicklichkeit und Anpassungsfähigkeit sind die Humanoiden prädestiniert, komplexe Aufgaben zu automatisieren, mit denen heutige Roboter durch herkömmliche Programmiermethoden Schwierigkeiten haben. Einen massenhaften Einsatz als universelle Haushaltshelfer dürfte es jedoch kurz- bis mittelfristig nicht geben.

Das POSITION PAPER Humanoid Robots - Vision and Reality von IFR gibt's hier zum freien Download

Food-Innovation-Report

Wie Food-Start-up-Gründer*innen im herausfordernden Lebensmittelmarkt erfolgreich durchstarten und worauf Investor*innen besonders achten.

Food-Start-ups haben in den vergangenen Jahren einen bemerkenswerten Aufschwung erlebt. Der zunehmende Wunsch nach nachhaltiger, gesunder und funktionaler Ernährung, das wachsende Bewusstsein für Klima- und Umweltschutz sowie der Trend zur Individualisierung der Ernährung haben eine neue Gründungswelle ausgelöst. Dennoch: Der Markteintritt im deutschen Lebensmittelmarkt zählt zu den anspruchsvollsten Herausforderungen, denen sich Gründer*innen stellen können. Wer als Start-up nicht durch außergewöhnliche Innovation oder gezielte Nischenstrategie punktet, hat kaum eine Chance, hier gelistet zu werden.

Ohne klare Zielgruppenfokussierung, glaubwürdiges Produktversprechen und professionelle Umsetzung funktionieren auch gute Ideen nicht – wie es u.a. die Frosta-Tochter elbdeli (trotz starker Marke keine Resonanz) und Bonaverde (Kaffeemaschine mit Röstfunktion, die trotz Kickstarter-Erfolg) scheiterte zeigen.

Da dieser Markt so groß ist, ist er auch stark reguliert, hochkonkurrenzfähig und von mächtigen Einzelhandelsstruk­turen dominiert. Zu den größten Hürden zählen die komplexe Regulatorik, Logistik und Produktion, Finanzierung sowie die Konsument*innenakzeptanz.

Laut dem Deutschen Startup Monitor nennen 43 Prozent aller Start-ups die Finanzierung als größte Hürde. Kapitalbedarf entsteht früh – für Verpackungen, Lebensmittelsicherheit, Produktion, Mindestabnahmemengen und Vertrieb.

Ein typisches Seed-Investment liegt zwischen 250.000 und 1,5 Millionen Euro. In späteren Phasen steigen institutionelle VCs mit Ticketgrößen von bis zu fünf Millionen Euro ein. Erfolgreiche Exits wie der Verkauf von yfood an Nestlé (2023) zeigen: Der Markt ist in Bewegung, aber selektiv.

Functional Food als Innovationsmotor – aber nicht der einzige

Functional Food ist längst mehr als ein Trend: Es ist ein wachsendes Segment mit wissenschaftlicher Fundierung. Produkte wie funktionale Riegel, Drinks oder Functional Coffee verbinden Geschmack mit gesundheitlichem Mehrwert. Besonders gefragt sind derzeit Inhaltsstoffe wie Adaptogene, Pro- und Präbiotika, pflanzliche Proteine und weitere Mikronährstoffe.

Zugleich gewinnen auch alternative Proteinquellen (Pilze, Algen, Fermentation), klimapositive Lebensmittel und Zero-­Waste-Konzepte an Bedeutung. Konsument*innen wollen Ernährung, die nachhaltig und leistungsfördernd ist.

Worauf Investor*innen achten – und was sie abschreckt

Aus Sicht eines/einer Investor*in zählen nicht nur Produkt­idee und Branding. Entscheidender ist:

  • Ist das Team umsetzungsstark, resilient, multidisziplinär?
  • Gibt es Traktion (z.B. Verkaufszahlen, Feedback, D2C-Erfolge)?
  • Wie realistisch ist der Finanzplan? Sind Margen und Logistik durchdacht?
  • Ist das Produkt skalierbar – auch international?

Abschreckend wirken hingegen: überschätzte Umsatzpro­gnosen, fehlende Markteinblicke, instabile Lieferketten oder reine Marketingblasen ohne echte Substanz.

Es ist unschwer zu erkennen: Wer im Food-Bereich gründen will, braucht mehr als eine gute Idee. Der deutsche Markt ist selektiv, komplex und durch hohe Einstiegshürden geprägt. Gleichzeitig ist er enorm spannend für alle, die bereit sind, langfristig zu denken, regulatorisch sauber zu arbeiten und echten Mehrwert zu schaffen.

Food-Start-ups, die ihre Zielgruppe kennen, finanziell solide aufgestellt sind und wissenschaftlich fundierte Produkte entwickeln, haben reale Chancen auf Marktdurchdringung – besonders, wenn sie es schaffen, Handelspartner*innen und Konsument*innen gleichermaßen zu überzeugen.

Investor*innen sind bereit, in solche Konzepte zu investieren, aber sie erwarten mehr als Visionen: Sie erwarten belastbare, integrierte Geschäftsmodelle mit echtem Impact.

Internationaler Vergleich: Was Food-Start-ups in den USA anders machen

Die USA gelten als Vorreiter für Food-Innovation. Der Markt ist schneller, risikofreudiger und deutlich kapitalintensiver. Allein im Jahr 2023 flossen in den USA rund 30 Milliarden US-Dollar Wagniskapital in FoodTech und AgriFood-Start-ups – ein Vielfaches im Vergleich zu Deutschland. Start-ups wie Beyond Meat, Impossible Foods oder Perfect Day konnten in kurzer Zeit hunderte Millionen Dollar einsammeln, skalieren und international expandieren. Die wesentlichen Unterschiede zur deutschen Szene sind:

  • Zugang zu Kapital: Amerikanische Gründer*innen profitieren von einer ausgeprägten Investor*innenlandschaft mit spezialisierten VCs, Family Offices und Corporate Funds. In Deutschland dominiert oft konservative Zurückhaltung.
  • Marktzugang: Der US-Markt ist dezentraler organisiert. Start-ups können regional Fuß fassen und wachsen, ohne gleich auf landesweite Listungen angewiesen zu sein.
  • Regulatorik: Die U.S. Food and Drug Administration (FDA) ist in vielen Bereichen offener gegenüber neuen Inhaltsstoffen und Health Claims – das ermöglicht schnellere Markteinführungen.
  • Kultur & Narrative: Amerikanische Konsument*innen sind innovationsfreudiger. Sie schätzen Storytelling, Vision und Purpose deutlich mehr als europäische Kund*innen.

Das bedeutet nicht, dass der US-Markt einfacher ist. Er ist aber zugänglicher für disruptive Ideen, insbesondere wenn sie skalierbar und investor*innentauglich aufgesetzt sind.

Operative Herausforderungen: vom Prototyp zur Produktion

Die operative Skalierung ist einer der größten Stolpersteine für Food-Start-ups. Eine Rezeptur im Labormaßstab oder im Handwerk zu entwickeln, ist vergleichsweise einfach. Sie jedoch für den industriellen Maßstab zu adaptieren, bringt komplexe Fragestellungen mit sich:

  • Wo finde ich einen Co-Packer mit Kapazitäten für Kleinserien?
  • Wie skaliert mein Produkt ohne Qualitätsverlust?
  • Wie optimiere ich Haltbarkeit ohne künstliche Zusätze?
  • Welche Verpackung schützt das Produkt, erfüllt die Nachhaltigkeitsansprüche und passt zu den Preisvorgaben des Handels?

In Deutschland ist die Infrastruktur für Food-Start-ups im Vergleich zu den USA oder den Niederlanden unterentwickelt. Während es in den USA Inkubatoren mit angeschlossenen Produktionsstätten (z.B. The Hatchery in Chicago oder Pilotworks in New York) gibt, fehlt es hierzulande oft an bezahl­baren, flexiblen Produktionslösungen.

Gerade nachhaltige Verpackungen stellen viele Gründer*­innen vor Probleme: Biologisch abbaubare Alternativen sind teuer, nicht immer kompatibel mit Logistikprozessen und oft nicht lagerstabil genug. Ein Spagat, der Investitionen und viel Know-how erfordert.

Erfolgsfaktor Vertrieb: Wie Produkte wirklich in den Handel kommen

Viele unterschätzen den Aufwand, der hinter einem erfolgreichen Listungsgespräch steht. Händler*innen erwarten nicht nur ein gutes Produkt – sie wollen einen Business Case:

  • Wie hoch ist die Spanne für den Handel?
  • Wie ist die Wiederkaufsquote?
  • Wie sieht das Launch-Marketing aus?
  • Gibt es POS-Materialien oder begleitende Werbekampagnen?

Ein Listungsgespräch ist kein Pitch – es ist ein Verhandlungstermin auf Basis knallharter Zahlen. Ohne überzeugende Umsatzplanung, Distributionserfahrung und schnelle Liefer­- fähigkeit hat ein Start-up kaum Chancen auf eine langfristige Platzierung im Regal. Viele Gründer*innen lernen das schmerzhaft erst nach dem Launch.

Zukunftstechnologien im Food-Bereich

Die Food-Branche steht am Beginn einer technologischen Revolution. Neue Verfahren wie Präzisionsfermentation, Zellkultivierung, 3D-Food-Printing oder molekulare Funktionalisierung eröffnen völlig neue Produktkategorien. Beispiele sind:

  • Perfect Day (USA) stellt Milchprotein via Mikroorganismen her – völlig ohne Kuh.
  • Formo (Deutschland) produziert Käseproteine durch Fermentation.
  • Revo Foods (Österreich) bringt 3D-gedruckten Fisch auf pflanzlicher Basis in die Gastronomie und Handel.

Diese Technologien sind kapitalintensiv, regulatorisch komplex, aber langfristig zukunftsweisend. Wer heute die Brücke zwischen Wissenschaft, Verbraucher*innenbedürfnis und industrieller Machbarkeit schlägt, wird zu den Innova­tionsführer*innen von morgen zählen.

Neben dem klassischen Lebensmitteleinzelhandel gewinnen alternative Vertriebskanäle zunehmend an Bedeutung. Insbesondere spezialisierte Bio- und Reformhäuser wie Alnatura, Denns oder basic bieten innovativen Start-ups einen niedrigschwelligen Einstieg, da sie auf trendaffine Sortimente, nachhaltige Werte und kleinere Produzent*innen setzen. Hier zählen Authentizität, Zertifizierungen und persönliche Beziehungen mehr als reine Umsatzversprechen.

Auch der Onlinehandel wächst rasant: Der Anteil von E-Commerce im deutschen Lebensmitteleinzelhandel liegt zwar erst bei etwa drei bis vier Prozent, doch Plattformen wie Amazon Fresh, Picnic, Knuspr oder Getir bieten zunehmend Raum für neue Marken. Gerade Quick-Commerce-Anbietende ermöglichen kurzfristige Testmärkte und agile Vertriebspiloten in urbanen Zielgruppen.

Der Blick in die USA zeigt, was in Europa bevorsteht: Dort erzielt TikTok bereits über seinen eigenen TikTok Shop mehr als 20 Milliarden US-Dollar Umsatz – Tendenz stark steigend. Immer mehr Food-Start-ups nutzen die Plattform direkt als Verkaufs- und Marketingkanal. Es ist nur eine Frage der Zeit, bis ähnliche Social-Commerce-Strukturen auch in Europa an Relevanz gewinnen – sei es über TikTok, Instagram oder neue, native D2C-Plattformen.

Weitere Trendfelder, die aktuell in den Fokus rücken, sind unter anderem:

  • Regeneratives Essen: Lebensmittel, die nicht nur neutral, sondern positiv auf Umwelt und Biodiversität wirken. Beispiele: Produkte mit Zutaten aus regenerativer Landwirtschaft oder CO-bindende Algen.
  • Blutzuckerfreundliche Ernährung: Start-ups wie Levels (USA) oder NEOH (Österreich) zeigen, wie personalisierte Ernährung über Glukose-Monitoring neue Märkte erschließen kann.
  • „Food as Medicine“: Produkte, die gezielt auf chronische Beschwerden oder Prävention ausgelegt sind – beispielsweise bei Menstruationsbeschwerden, Wechseljahren oder Verdauungsstörungen.
  • Zero-Waste-Produkte: Verwertung von Nebenströmen (z.B. aus Brauereien oder Obstpressen) zur Herstellung von Lebensmitteln mit Nachhaltigkeitsanspruch.
  • Biohacking-Produkte: hochfunktionale Lebensmittel für kognitive Leistung, Schlaf, Erholung oder hormonelle Balance wie zum Beispiel der Marke Moments – by Biogena.

Die Zukunft von Food liegt in der Synthese aus Wissenschaft, Individualisierung und Nachhaltigkeit. Start-ups, die diese Megatrends frühzeitig besetzen, positionieren sich als Pioniere für eine neue Esskultur. Besonders wichtig in der Investor*innenansprache sind:

  • Fundierte Zahlenkenntnis: Gründer*innen sollten Unit Economics, Break-Even-Szenarien und Roherträge detailliert erklären können. Vage Aussagen über Marktpotenzial reichen nicht – es braucht belastbare Szenarien.
  • Proof of Concept: Idealerweise liegt bereits ein MVP (Minimum Viable Product) mit echter Kund*innenvalidierung vor. Pilotprojekte mit Handelspartner*innen oder Online-­Abverkäufe liefern harte Daten.
  • Storytelling mit Substanz: Purpose ist gut – aber er muss betriebswirtschaftlich verankert sein. Was motiviert das Team? Wo liegt der USP? Wie stark ist der Wettbewerb?
  • Team-Komplementarität: Ein starkes Gründer*innen-Team vereint Produkt- und Marktwissen, betriebswirtschaft­liches Denken und Leadership-Kompetenz.
  • Exit-Szenario: Investor*innen wollen eine Perspektive: Wird es ein strategischer Verkauf, ein Buy- & Build-Modell oder ein langfristiger Wachstums-Case?

Wer Investor*innen mit klarer Struktur, realistischen Annahmen und ehrlicher Kommunikation begegnet, hat bessere Chancen auf Kapital – inbesondere in einem Markt, der aktuell selektiver denn je agiert. Genau hier liegt die Kernkompetenz von Food-Start-up-Helfer*innen wie der Alimentastic Food Innovation GmbH, die nicht nur in innovative Unternehmen investiert, sondern ihnen aktiv dabei hilft, die oben genannte operative Komplexität zu überwinden und den Time to Market signifikant zu verkürzen – von der Produktidee bis hin zur Umsetzung im Handel.

Fazit

Der deutsche Food-Start-up-Markt ist herausfordernd, aber voller Chancen. Wer heute erfolgreich gründen will, braucht nicht nur eine starke Produktidee, sondern ein tiefes Verständnis für Produktion, Vertrieb, Kapitalstruktur und Markenaufbau. Functional Food, nachhaltige Innovationen und technologiegetriebene Konzepte bieten enorme Wachstumsmöglichkeiten – vorausgesetzt, sie werden professionell umgesetzt und skalierbar gedacht.

Der Autor Laurenz Hoffmann ist CEO & Shareholder der Alimentastic Food Innovation GmbH und bringt langjährige Erfahrung aus dem Lebensmitteleinzelhandel mit.

„Österreich hat einen langen Atem – und das zahlt sich im Bereich Applied AI aus“

Als führende Standorte in Sachen Künstliche Intelligenz liegen die USA und Asien auf der Hand, doch auch in Österreich gibt es eine vielfältige AI-Landschaft. Welche Vorteile der Standort für künstliche Intelligenz mit sich bringt und welche Rolle dabei Applied AI spielt, weiß Clemens Wasner, Gründer von AI Austria und CEO der EnliteAI.

Clemens Wasner ist Gründer des österreichischen Verbandes für Künstliche Intelligenz, AI Austria und CEO des Wiener Venture Studios EnliteAI. Der studierte Informatiker arbeitete über ein Jahrzehnt in Asien, bevor er 2017 EnliteAI gründete.

Herr Wasner, Sie kennen die AI-Szene aus erster Hand. Wie gut ist Österreich im internationalen Vergleich aktuell aufgestellt, wenn es um Applied AI geht?

Gemessen an seiner Größe steht Österreich erstaunlich gut da. Unsere AI–Landscape verzeichnet mittlerweile über 450 Unternehmen, die aktiv mit KI arbeiten – nicht nur Start-ups, sondern auch klassische Industrieunternehmen, Dienstleister und der öffentliche Sektor. Gerade im Bereich der industriellen Anwendungen ist Österreich breit aufgestellt: Es gibt zahlreiche Corporates, die eigene Competence Center gegründet, Ausgründungen vorgenommen oder Lizenzmodelle für KI aufgebaut haben. Auch die Zahl der Inkubatoren und Corporate Venture Capitalisten ist beachtlich. Das Thema ist in der Realwirtschaft angekommen – und das nicht erst seit gestern. Bereits 2018 gab es hierzulande einen deutlichen Aufschwung. Im Bereich der Spitzenforschung sind wir ebenfalls stark: Mit drei sogenannten ELLIS-Hubs –  European Laboratory for Learning and Intelligent Systems – gehören wir zur europäischen Spitze, gemessen an der Größe des Landes.

Sie sprechen beim Blick auf Österreich oftmals vom „AI-Standort mit langem Atem“. Was genau meinen Sie damit und was macht aus Ihrer Sicht einen exzellenten Standort für AI-Start-ups aus?

Der „lange Atem“ ist positiv gemeint und beschreibt das, was Österreich im Bereich Forschung & Entwicklung auszeichnet: kontinuierliche Investitionen, strategischer Weitblick und langfristige Förderstrukturen. Die Steiermark war lange OECD-Spitzenreiter bei F&E-Ausgaben, Wien verfügt über eine dichte Forschungslandschaft. Das sind keine kurzfristigen Hypes, sondern über Jahrzehnte gewachsene Strukturen. Österreich verfügt zudem über eine differenzierte Förderarchitektur, die alle TRL-Stufen abdeckt – von der Grundlagenforschung bis zur Markteintrittsunterstützung. Auch Clusterstrukturen spielen eine Rolle: In Life Sciences etwa gibt es in Wien und Graz funktionierende Ökosysteme, in denen zunehmend auch KI eine Rolle spielt. Diese Verankerung ermöglicht Planbarkeit, die gerade in technologieintensiven Bereichen entscheidend ist.

Zu den Schlüsselfaktoren einen erfolgreichen Standorts zählen Infrastruktur, Talent Pool und Anwendungsmöglichkeiten. Wo sehen Sie hier derzeit die größten Hebel – und auch die größten Defizite – in Österreich?

Ein klarer Vorteil liegt in der Verfügbarkeit von Talenten: Wien zieht seit Jahren hochqualifizierte Developer aus dem osteuropäischen Raum an. Der AI-Fachkräftemangel ist hier weniger ausgeprägt als in anderen europäischen Hauptstädten. Hinzu kommt: Österreich bildet mehr AI-Absolventen aus, als die Wirtschaft derzeit absorbieren kann. Das schafft einen Bewerbermarkt, der gerade für Start-ups günstig ist. Auch Standortfaktoren wie Lebensqualität und erschwingliche Mieten machen zum Beispiel die Hauptstadt Wien attraktiv. Als Besonderheit sehe ich zudem den aktiven Zugang der Stadt: Wien versteht sich als First Client für KI-Anwendungen, etwa in der Analyse von Geodaten, IoT oder der Digitalisierung von Baueinreichprozessen. Hier ist wesentlich mehr Offenheit für politische Vergabe zu finden als in anderen Ländern. Weniger stark ist Wien in der Spitzenforschung vertreten, hier liegt Linz mit der JKU vorn. Aber man kann als kleines Land nicht alles abdecken – und sollte dort Schwerpunkte setzen, wo bestehende Stärken ausbaubar sind.

Was war der Gründungsimpuls für EnliteAI und wie ist Ihr Venture Studio heute aufgestellt?

Ich kam 2016 nach zehn Jahren in Asien zurück nach Österreich. In China und Japan war KI allgegenwärtig, ein regelrechter Hype. Zurück in Europa herrschte Funkstille – das war ein Kulturschock. Ich wollte dem Thema hierzulande Schub geben: 2017 gründete ich den Verband AI Austria und kurz darauf EnliteAI. Unsere Erkenntnis aus früheren Projekten zeigte, dass viele Unternehmen gute Ideen, aber keine Ressourcen zur Umsetzung hatten. Daraus entstand das Venture Studio: Wir entwickeln Prototypen gemeinsam mit Unternehmen und gründen darauf spezialisierte Start-ups. Aktuell sind wir 20 Personen und verfolgen zwei Themen – Detekt, das sich auf den Bereich Mobile Mapping spezialisiert hat, und ein weiteres im Stromnetzmanagement. Mit EnliteAI möchten wir künftig weitere Projekte unterstützen und bereiten dafür eine Dual-Entity-Struktur mit einem eigenen Fonds vor. Ziel ist es, das Modell professionell zu skalieren und Investoren direkt in die Spin-outs zu bringen.

Rechenleistung zählen zu den Schlüsselressourcen in der AI. Was braucht es aus Ihrer Sicht, damit europäische Standorte hier nicht dauerhaft in Abhängigkeit geraten?

Realistisch betrachtet: Die Abhängigkeit besteht bereits. Die großen Hyperscaler sind US-dominiert, ebenso Chips, Kommunikationstools, Social Networks. Europa muss in die digitale Souveränität investieren. Erste Schritte wie AI Factories sind wichtig, aber nicht ausreichend. Wir brauchen europäische Cloud-Anbieter, Chipproduktion auf europäischem Boden und eine nachhaltige Energiepolitik. Frankreichs KI-Boom basiert auf Atomstrom – weil er langfristig planbar ist. Diese Planbarkeit fehlt in vielen europäischen Ländern derzeit. Ohne Strom gibt es keine KI. Auch das zeigen Stimmen von Sam Altman, Elon Musk und anderen. Hier ist ein strategischer Paradigmenwechsel notwendig.

Sie sprachen bereits die vielfältige Landschaft von kleinen und mittleren Unternehmen in Österreich an, die offen für KI sind. Wie gut funktioniert das Matching zwischen Start-ups und klassischen Industrieunternehmen?

Österreich macht hier sehr viel richtig. Es gibt ein breites Netz an Förderinstrumenten – von der Österreichischen Forschungsförderungsgesellschaft FFG über die Austria Wirtschaftsservice bis hin zu regionalen Wirtschaftskammern. Zudem bietet Österreich eine Forschungsförderungsprämie an, bei der 14 Prozent der F&E-Ausgaben quasi mit einem Blankoschein gefördert werden können. Zudem organisieren viele Institutionen aktiv Matchmaking-Events, etwa im Rahmen von PreSeed-, AI-Adoption- oder Innovationsprogrammen. Hinzu kommt der Industry-Startup-Marktplatz mit mehreren Tausend registrierten Unternehmen. Auch Pitchings werden gefördert. Das Ziel ist stets, AI nicht nur in der Theorie zu belassen, sondern in die Realwirtschaft zu bringen. Trotzdem: Viele Unternehmen wissen noch immer nichts davon. Hier braucht es also noch mehr Aufklärung.

Welcher KI-Standort – in Österreich und darüber hinaus – hat Sie zuletzt positiv überrascht?

In Österreich ist Linz für mich der Hotspot schlechthin – die Kombination aus Spitzenforschung und erfolgreichem Technologietransfer ist dort besonders gut gelungen. International beeindruckt mich Twente in den Niederlanden: kein großer Name, aber mit klarer Strategie. Sie haben das Spin-out-Modell von Oxford und Cambridge adaptiert und konsequent umgesetzt – mit IP-Offices, Gründungsberatung und Infrastruktur für Start-ups. Ein weiteres Vorbild ist Heilbronn mit den Campus Founders: Sie haben, unterstützt durch die Dieter Schwarz Stiftung, einen Ort für Unternehmertum und Innovationen geschaffen und könnten Vorbild für viele europäische Regionen werden. Viele Stiftungen schaffen Parks oder Schlösser, aber wesentlich gewinnbringender wäre die Förderung von Entrepreneurship wie es in Heilbronn passiert statt Museumsstiftung. Europa braucht diese neue Denkweise.

Clemens Wasner, vielen Dank für das Gespräch.

Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin

“Digitalisierung ist kein Nice-to-have mehr, sondern strukturelle Voraussetzung für Wettbewerbsfähigkeit”

„Made in Steel. Built on Data.“ Mit diesem Leitsatz positioniert sich die EMR Dynamics GmbH als strategische Antwort auf die zunehmende Komplexität globaler Lieferketten – und auf die wachsenden Anforderungen an Geschwindigkeit, Transparenz und Resilienz in industriellen Wertschöpfungsnetzwerken.

Unter der Leitung von Emrullah Görsoy geht EMR Dynamics aus einem Berliner Familienunternehmen hervor, das seit 2005 als verlässlicher Partner für mechanische Komponenten in Europa etabliert ist. Nun markiert das Unternehmen den nächsten Entwicklungssprung der Unternehmensgeschichte: von der Fertigung zur Plattform.

Fragen dazu an Emrullah Görsoy, Managing Director at EMR:

Seit mehr als 20 Jahren seid ihr mit EMR am Markt. Man könnte sagen, ihr macht vieles richtig – Wie lautet euer Erfolgsrezept?

Unser Erfolgsrezept liegt in der konsequenten Weiterentwicklung. Wir haben uns nie auf bestehenden Strukturen ausgeruht, sondern das Unternehmen immer wieder neu gedacht – operativ, strategisch und technologisch. Besonders in Zeiten des Wandels war unser pragmatischer Unternehmergeist entscheidend. Dabei kombinieren wir mittelständische Robustheit mit einer agilen Denkweise – anpassungsfähig, resilient und wachstumsorientiert.

Zeitnah startet ihr mit eurer Neugründung EMR Dynamics am Markt. Was steckt dahinter?

EMR Dynamics ist unsere Antwort auf ein fragmentiertes Marktumfeld und wachsende Anforderungen an Geschwindigkeit, Transparenz und Resilienz in industriellen Lieferketten. Wir verbinden vertikal integrierte Fertigungskompetenz mit einer digitalen Prozessarchitektur – eine B2B-Plattform für die intelligente Steuerung und Vermittlung industrieller Produktions- und Beschaffungsprozesse. Das Ziel: maximale Skalierbarkeit, reduzierte Time-to-Market und durchgängige Prozesssicherheit für unsere Kunden.

Damit schlagen wir die Brücke zwischen Mittelstand und digitaler Ökonomie – resilient, effizient und kundennah. Wir wollen EMR Dynamics als Plattformmarke im industriellen Mittelstand etablieren – mit eigener Fertigung, digitalem Backbone und strategischer Nähe zum Kunden.

An wen richtet sich euer Angebot?

Unsere Zielgruppen sind OEMs, Tier-1-Zulieferer und Systempartner aus hoch regulierten und qualitätskritischen Industrien – etwa Rail, Aerospace, Defense oder Industrial Tech. Wir liefern nicht nur Komponenten, sondern vernetzen Prozesse, sichern Supply Chains ab und schaffen Plattformlösungen für beschleunigte Wertschöpfung – alles aus einer Hand.

Wie unterscheidet sich euer Angebot von klassischen Fertigungsdienstleistern?

Wir sind kein reiner Teilelieferant. Wir verstehen uns als Lösungsanbieter entlang der industriellen Wertschöpfung – von Co-Engineering und Prototyping über skalierbare Serienfertigung bis hin zur integrierten Lieferkette. Durch die Plattformlogik können wir unsere Prozesse mit denen unserer Kunden synchronisieren und so Time-to-Market und Lieferperformance signifikant verbessern – gerade für komplexe und hochqualifizierte Baugruppen.

Seit mehreren Jahren bist du Geschäftsführer des Unternehmens EMR Industrial. Wie fühlt es sich an, als Young Professional bereits in einer solchen verantwortungsvollen Rolle zu sein?

Herausfordernd, aber erfüllend. Ich hatte das Privileg, früh Verantwortung zu übernehmen – besonders während der Transformation von EMR in der Pandemie. Die Krise 2020 hat uns gezwungen, unser gesamtes Geschäftsmodell zu pivotieren. Diese Erfahrung hat mich geprägt: Strategisch zu denken, unternehmerisch zu handeln und nie den Kontakt zur operativen Realität zu verlieren.

Welche Bedeutung hat die Digitalisierung aus deiner Sicht für den Mittelstand und was können sich Mittelständler von Start-ups abschauen?

Digitalisierung ist kein Nice-to-have mehr, sondern strukturelle Voraussetzung für Wettbewerbsfähigkeit. Der Mittelstand kann von Start-ups besonders eines lernen: den Mut, Prozesse radikal neu zu denken – und den Fokus auf Geschwindigkeit, Automatisierung und User Experience.

Emrullah Görsoy, Danke für die Insights

5 Tipps für GPT-Sichtbarkeit im Netz

Warum klassisches SEO allein nicht mehr ausreicht und wie Unternehmen für die KI-Antworten der GPT-Modelle sichtbar werden.

Die Spielregeln der digitalen Sichtbarkeit werden gerade neu geschrieben – und die Unternehmen müssen sich neu aufstellen. Denn während viele Unternehmen ihre Strategien noch immer ausschließlich auf Google-Rankings und SEO-Kriterien ausrichten, verlagert sich die digitale Aufmerksamkeit längst in Richtung KI: Sprachmodelle wie ChatGPT, Claude oder Gemini ersetzen zunehmend die klassische Suche. Sie liefern keine Trefferlisten mehr, sondern direkte, aufbereitete Antworten – oft mit konkreten Empfehlungen und Verlinkungen. Für Marken, Produkte und Unternehmen wird es damit entscheidend, in diesen zusammengefassten Antworten stattzufinden. Das Stichwort hierfür ist technisches SEO für KI-Rankings.

Suchmaschinen waren gestern das führende Element in der Sortierung von Wissen im Netz und vor allem das Google-Ranking war entscheidend für die Sichtbarkeit von Informationen und Seiten. In Zukunft entscheiden dagegen Sprachmodelle darüber, welche Inhalte gesehen, zitiert und empfohlen werden. Und wer in diesen Systemen nicht genannt wird, verliert den direkten Draht zur Zielgruppe.

Diesen Paradigmenwechsel vom Google-Ranking zur Antwortlogik hat die SMAWAX, die auf Strategieberatung spezialisierte Agentur der Smarketer Group, erstmals systematisch im Rahmen eines Whitepapers analysiert (s. Link am Ende des Beitrags). Die Expert*innen erklären dabei detailliert, wie GPT-Modelle Inhalte auswählen – und welche Inhalte von den Systemen überhaupt referenziert werden dürfen. Die zentrale Erkenntnis: Suchmaschinenoptimierung nach alten Regeln greift zu kurz, ist aber weiterhin die Sichtbarkeitsgrundlage. Denn Sprachmodelle wie ChatGPT denken nicht in Keywords und Rankings, sondern in semantischen Relevanzräumen, Entitätenbeziehungen und struktureller Klarheit.

Inhalte müssen modular und semantisch präzise sein – doch das reicht nicht

Es geht nicht mehr um Top-Rankings – es geht darum, die richtige Antwort zu sein. Wir müssen SEO neu denken – als Schnittstelle zwischen Struktur, Relevanz und maschinellem Verstehen. Inhalte müssen dazu maschinenlesbar, modular aufgebaut und semantisch präzise sein. Nur dann haben Unternehmen eine Chance, in den Empfehlungslogiken von Claude, GPT & Co. aufzutauchen.

Besonders überraschend ist dabei aber, dass viele Unternehmen in GPT-Antworten zwar durchaus latent präsent, aber nicht sichtbar sind. Der Grund hierfür sind unscharfe Entitäten, fehlende „About“-Seiten, keine Verankerung in externen Quellen wie Wikidata, Trustpilot oder LinkedIn. Die Folgen wirken sich negativ auf die Marken aus und sorgen für Fehlinformationen: KI-Modelle verwechseln Marken, halluzinieren Funktionen oder verschweigen relevante Angebote. Halluzinationen sind in Wahrheit ein strategischer Hinweis auf Unsichtbarkeit. Wenn GPT ein Produkt falsch beschreibt oder dich mit einem Mitbewerber verwechselt, zeigt das: Deine Inhalte sind zwar irgendwo im Modell – aber nicht stabil genug verankert, um korrekt genannt zu werden.

Fünf konkrete Hebel für bessere GPT-Sichtbarkeit

Diese praxisnahe Handlungsempfehlungen können Unternehmen sofort umsetzen können – unabhängig davon, ob sie im B2B- oder B2C-Bereich aktiv sind.

1. Entitäten definieren: Jede Marke braucht heute eine kanonische „About“-Seite, ergänzt um ein Wikidata-Profil, semantische Markups und gleiche Namensverwendungen auf Plattformen wie LinkedIn oder Handelsregister.

2. Aktualität signalisieren: GPT-Modelle bevorzugen Inhalte mit klaren Update-Daten (z.B. dateModified). Ohne erkennbaren Pflegezustand gelten Inhalte als veraltet – und werden ausgefiltert.

3. Bing wird zum Gateway: Weil GPT seine Websuche auf Bing stützt, ist dessen Indexierung entscheidend. Wer dort nicht sauber auffindbar ist, existiert in GPT-Antworten nicht.

4. Content chunkbar machen: Inhalte sollten nicht mehr aus langen Fließtexten bestehen, sondern in modularen Blöcken mit H2-Strukturen, Listen und Zwischenfazits aufgebaut sein.

5. Externe Signale einbinden: Erwähnungen auf Trustpilot, Reddit oder in der Fachpresse stärken die semantische Autorität – und erhöhen die Chance, von Sprachmodellen zitiert zu werden.

Fazit

Die neue Sichtbarkeit entsteht durch das, was das Modell nicht selbst erzeugen kann – sie entsteht also nicht über Rankings, sondern über Relevanzräume. Wer auf Standard-Content setzt, wird paraphrasiert oder übergangen. Wer dagegen einzigartigen, strukturierten und technisch klaren Content liefert, wird empfohlen.

Zum Weiterlesen: Das Whitepaper steht zum kostenlosen Download bereit unter www.smawax.com/whitepaper-ki-sichtbarkeit

EU AI Act: Bürokratisch, unpraktisch, schlecht

Ein Kommentar von Dominik Mohilo, Redakteur und IT-Experte bei der auf High-Tech spezialisierten Münchner PR- und Kommunikationsagentur PR-COM.

Die Luft auf dem hohen moralischen Ross, auf dem Deutschland vorreitet und Europa folgt, wird dünner und dünner. Ja, der EU AI Act ist eine Errungenschaft. Und ja, ethische Grundsätze sollten wir keinesfalls missachten, wenn es darum geht, künstliche Intelligenz zu entwickeln, zu betreiben und zu verwenden. Fair enough. Doch darf’s vielleicht trotzdem ein bisschen weniger Bürokratie sein, liebe EU? Artikel 5 des KI-Regelwerks der EU besagt beispielsweise, dass die folgende KI-Praktik verboten ist: „Das Inverkehrbringen, die Inbetriebnahme oder die Verwendung eines KI-Systems, das unterschwellige Techniken, die sich dem Bewusstsein einer Person entziehen, oder absichtlich manipulative oder täuschende Techniken einsetzt, mit dem Ziel oder der Wirkung, das Verhalten einer Person oder einer Personengruppe dadurch wesentlich zu beeinflussen, dass ihre Fähigkeit, eine sachkundige Entscheidung zu treffen, spürbar beeinträchtigt wird, wodurch sie veranlasst wird, eine Entscheidung zu treffen, die sie andernfalls nicht getroffen hätte, und zwar in einer Weise, die dieser Person, einer anderen Person oder einer Personengruppe einen erheblichen Schaden zufügt oder mit hinreichender Wahrscheinlichkeit zufügen wird.“ (Kapitel II, Artikel 5, 1a)

Sperrig und überregulatorisch

Verstanden worum es geht? Ich auch nicht. Ähnlich sperrig und überregulatorisch ist der Abschnitt über sogenannte Hochrisiko-KI-Systeme formuliert. Gemeint sind damit jene KI-Anwendungen, die etwa im Gesundheitswesen, in der Bildung oder kritischen Infrastrukturen eingesetzt werden sollen – also genau den Bereichen, wo sie dringend benötigte Verbesserungen und Entlastungen für die in diesen Bereichen arbeitenden Menschen mit sich bringen könnten. Was genau mit Hochrisiko gemeint ist, ist allerdings wieder nicht glasklar definiert: was hat denn nun „erheblichen Einfluss auf Grundrechte“? Diese Unsicherheit im Hinblick auf die rechtliche Grundlage ist oft Grund genug für potenzielle Investoren, sich nach anderen Gelegenheiten umzusehen. Wer will schon exorbitante Kosten für juristische Verfahren locker machen und Zertifizierungen noch und nöcher erwerben, nur um am Ende dann möglicherweise doch gegen geltende Gesetze zu verstoßen? Eben.

Start-ups sind von Hürden überproportional heftig betroffen

Gerade kleine und mittelständische Unternehmen (KMU) sowie Start-ups sind von diesen Hürden überproportional heftig betroffen, sodass viele gute und wegweisende Ideen nicht oder zumindest nicht hier in der EU auf den Weg gebracht werden. Wirtschaftlich ist das fatal – das auch noch in diesen schwierigen Zeiten. In diesen Zeiten wäre es eigentlich wichtig, die Wirtschaft voranzutreiben, insbesondere in zukunftsweisenden Bereichen wie dem KI-Markt. Eine gute Möglichkeit wäre, die Technologie hierzulande staatlich zu subventionieren, wie das in den USA und in China bereits in großem Stil passiert. Stattdessen werfen wir uns selbst Stöcke in die Speichen unserer Räder – unter anderem mit Regulierung und ethischen Grundsätzen, sondern insbesondere durch schwammige Gesetzestexte und Undurchsichtigkeit von Compliance-Vorschriften.

Zusammenfassend ist festzustellen, dass die alte Forderung „rebellischer“ (mancher würde sagen: „vernünftiger“) Politiker, Bürokratie abzubauen, selten so eine hohe Relevanz wie aktuell hatte. Europa geht es wirtschaftlich schlecht, gleichzeitig verlassen High-Tech-Unternehmen scharenweise unsere Breitengerade, da das Regulierungskorsett so eng geschnürt ist, dass Innovation keine Luft mehr zum Atmen hat. Es gilt also, Maßnahmen zu ergreifen, um wettbewerbsfähig zu werden.

Was könnte die EU nun machen, da das Regulations-Kind in den Brunnen gefallen ist?

Zunächst einmal wäre es hilfreich, aus unserem Elfenbeinturm herauszukommen. Ethik ist wichtig, aber kein Altar, auf dem wir unsere Wirtschaft opfern sollten. Haben wir das verinnerlicht, braucht der EU AI Act eine Überarbeitung die Unklarheiten auflöst und die Hürden (gerade für Start-ups und KMU) verringert. Sinnvoll wäre zudem, wenn die EU KI-Sandboxes zur Prüfung von innovativen Technologien bereitstellen würde, in denen Unternehmen ihre Entwicklungen testen können, ohne gegen Gesetze zu verstoßen. Zudem muss die EU-Gelder und Mittel zur Verfügung stellen, Zertifizierungsverfahren deutlich zu beschleunigen. Auch eine Zentralisierung dieser Verfahren würde Sinn ergeben. Die entsprechende ISO-Norm (ISO/IEC 42001) gibt es bereits, was fehlt sind offizielle Tools, um die Konformität der eigenen Anwendung zu checken.

Ziel muss es sein, Europa als attraktives Umfeld für den Einsatz und die Entwicklung von KI-Anwendungen zu positionieren. KI wird in den kommenden Jahren über wirtschaftlichen Erfolg nicht nur von Unternehmen, sondern von Staaten avancieren. Wenn wir nicht die gleichen Katastrophen wie aus der Schwerindustrie und der Automobilbranche erleben, sondern wieder vorne mitspielen wollen, dürfen wir uns nicht selbst behindern. Das Gebot der Stunde ist also Bürokratieabbau und Mut zu moderaterer Ethik – so werden wir vielleicht irgendwann doch wieder Exportweltmeister.

Wie digitale Unternehmen Alltagsprobleme systematisch lösen – Ein Blick auf Parkos

Parkos zeigt, wie ein digitales Unternehmen Herausforderungen beim Flughafenparken meistert.

Es gibt sie überall, diese kleinen alltäglichen Ärgernisse, die erst einmal banal erscheinen, im Alltag aber schnell zu echten Zeitfressern und Stressquellen werden können. Die Parkplatzsuche an Flughäfen gehört dazu – gerade in stark frequentierten Städten, wo jeder Parkplatz ein kostbares Gut ist. Genau hier setzt Parkos an, ein digitales Unternehmen mit Start-up-Wurzeln, das seit über einem Jahrzehnt den Markt für Parkplatzvermittlung revolutioniert. Parkos.de macht es möglich, entspannt einen Parkplatz zu buchen und so lästige Suchfahrten zu vermeiden.

Vom Alltagsproblem zur digitalen Lösung

Das Beispiel der Parkplatzsuche zeigt exemplarisch, wie digitale Unternehmen Alltagsprobleme systematisch angehen. Nicht immer ist es die große Innovation, die den Markt verändert, sondern die konsequente und nutzerzentrierte Verbesserung bestehender Prozesse. Die Gründer von Parkos erkannten früh, dass der Prozess des Parkplatzfindens in der Nähe von Flughäfen ineffizient und für Reisende oft belastend ist. Überfüllte Parkplätze, lange Fußwege oder teure Kurzzeitangebote waren die Regel.

Diese Herausforderungen boten die perfekte Ausgangslage für eine digitale Plattform, die Anbieter von Parkplätzen und Kunden unkompliziert zusammenbringt. Dabei geht es nicht nur um die reine Vermittlung, sondern um Transparenz, Vergleichbarkeit und Nutzerfreundlichkeit. Das ist der Kern der Plattformökonomie, die heute zahlreiche Branchen prägt – von der Mobilität über die Gastronomie bis hin zum Einzelhandel.

Parkos als Beispiel für Plattformökonomie

Plattformen funktionieren nach dem Prinzip, Angebot und Nachfrage in einem digitalen Marktplatz zu verknüpfen. Für Parkos bedeutet das: Parkplätze von verschiedensten Anbietern – private Parkflächen, Hotels, bewachte Parkhäuser – werden auf einer übersichtlichen Website zusammengeführt. Kunden können Preise, Entfernung zum Flughafen und Bewertungen vergleichen. Die Buchung erfolgt direkt online, oft mit flexiblen Stornierungsbedingungen.

Dieser transparente und einfache Zugang löst ein grundlegendes Problem: Wer kennt schon die besten Parkmöglichkeiten in Flughafennähe? Vorbei sind die Zeiten der langen Suchfahrten und Unsicherheiten. Eine entsprechende Plattform steigert nicht nur die Effizienz, sondern reduziert durch die bessere Planung auch den Stress für Reisende.

Interessant ist dabei auch, dass das Unternehmen selbst kein Parkplatzbetreiber ist. Das Unternehmen agiert als Vermittler – und zeigt damit, wie wichtig digitale Infrastruktur und Vertrauensbildung für moderne Geschäftsmodelle sind. Die Nutzerbewertungen auf der Plattform tragen dazu bei, das Angebot ständig zu verbessern.

Technologie als Enabler für bessere Nutzererfahrung

Ein weiterer wichtiger Baustein im Erfolg ist der gezielte Einsatz von Technologie. Eine übersichtliche Website, eine mobile App und einfache Bezahlmethoden sind heute Standard, doch wie diese Tools eingesetzt werden, macht den Unterschied. Die Plattform bietet nicht nur Such- und Buchungsmöglichkeiten, sondern auch Informationen zu Services wie Shuttle-Bussen, Öffnungszeiten und Sicherheitsstandards der Parkplätze.

Die Integration von Kundenbewertungen schafft eine soziale Kontrollinstanz, die Vertrauen aufbaut. So können Nutzer anhand von Erfahrungen anderer Reisender einschätzen, ob ein Parkplatz ihren Erwartungen entspricht. Dieses Feedback wird von Unternehmen genutzt, um Anbieter zu prüfen und kontinuierlich zu verbessern.

Nicht zuletzt erleichtern digitale Services auch die Reiseplanung insgesamt. Verbindliche Buchungen minimieren Überraschungen vor Ort und tragen dazu bei, den gesamten Ablauf stressfreier zu gestalten.

Digitales Angebot im Alltag – mehr als nur Bequemlichkeit

Das Beispiel Parkos zeigt, dass digitale Lösungen oft mehr leisten als reine Bequemlichkeit. Sie greifen in gesellschaftlich relevante Bereiche ein – hier etwa die Mobilität. Bessere Parkplatzplanung bedeutet weniger Suchverkehr, weniger Emissionen und damit einen Beitrag zur Entlastung urbaner Verkehrsräume.

Auch für Unternehmen eröffnen Plattformen wie Parkos neue Chancen. Kleine und mittelgroße Parkplatzanbieter können so ein größeres Publikum erreichen, ihre Auslastung verbessern und wirtschaftlicher arbeiten. Dies steht im Zeichen einer funktionierenden Sharing Economy, die Ressourcen besser nutzt.

Die Relevanz digitaler Vermittlungsplattformen

Digitale Vermittlungsplattformen sind längst mehr als reine Serviceangebote. Sie verändern zunehmend die Art, wie Menschen sich fortbewegen, arbeiten oder ihre Freizeit gestalten. Die Vermittlung von Parkplätzen am Flughafen ist ein kleines, aber anschauliches Beispiel dafür, wie digitale Geschäftsmodelle dazu beitragen können, den Alltag effizienter zu gestalten und Ressourcen besser zu nutzen.

Indem sie Buchung und Planung vereinfachen, tragen solche Plattformen dazu bei, dass unnötige Suchfahrten entfallen. Das hat nicht nur eine Zeitersparnis für den Einzelnen zur Folge, sondern auch einen spürbaren Effekt auf den Verkehr rund um stark frequentierte Orte. Weniger Staus bedeuten weniger Emissionen – ein relevanter Beitrag zum Klimaschutz, der auf den ersten Blick vielleicht unspektakulär wirkt, bei genauerem Hinsehen jedoch enorm.

Außerdem profitieren kleine Anbieter von Parkplätzen von der Reichweite solcher digitalen Marktplätze. Sie können ihre freien Kapazitäten besser auslasten und so wirtschaftlicher arbeiten. Damit entsteht eine Win-Win-Situation, die durch die Vernetzung und Digitalisierung erst möglich wird.

Praxisnahe Erkenntnisse für Gründer und Unternehmer

Für Unternehmer, die digitale Geschäftsmodelle entwickeln oder optimieren wollen, steckt in diesem Beispiel einiges an Praxiswissen. Erstens: Das genaue Erkennen eines echten Alltagsproblems ist entscheidend. Hier war es die Parkplatzsuche – eine scheinbar kleine Herausforderung mit großem Frustpotenzial.

Zweitens zeigt sich, wie wichtig eine konsequente Nutzerzentrierung ist. Transparente Preise, Vergleichbarkeit und unkomplizierte Buchungsprozesse schaffen Vertrauen. Gerade in Zeiten, in denen Konsumenten eine nahtlose User Experience erwarten, entscheidet die Qualität der digitalen Schnittstellen oft über Erfolg oder Misserfolg.

Drittens wird deutlich, wie wichtig Vertrauen im Plattformgeschäft ist. Nutzerbewertungen, transparente Kommunikation und klare Buchungsbedingungen helfen, Unsicherheiten abzubauen. Das gilt nicht nur für die Parkplatzvermittlung, sondern für alle digitalen Vermittler.

Viertens: Flexibilität und kontinuierliche Verbesserung sind ein Muss. Digitale Geschäftsmodelle müssen sich an wechselnde Anforderungen und neue technische Möglichkeiten anpassen, um relevant zu bleiben.

Wo liegen die Herausforderungen?

Trotz aller Vorteile stehen digitale Plattformen auch vor Herausforderungen. Zum Beispiel die Frage nach Datenschutz und Sicherheit der Kundendaten, die immer sensibler wahrgenommen wird. Auch die Balance zwischen Anbieterinteressen und Nutzerbedürfnissen ist oft ein Balanceakt.

Nicht zuletzt sind digitale Unternehmen auf stabile und schnelle Internetverbindungen angewiesen – was vor allem auf dem Land oder in entlegenen Gebieten nicht selbstverständlich ist. Gerade hier zeigt sich, dass digitale Innovationen nicht automatisch alle gesellschaftlichen Schieflagen beheben.

Fazit: Digitalisierung als Werkzeug für pragmatische Lösungen

Der Blick auf die Vermittlung von Parkplätzen an Flughäfen macht eines klar: Digitalisierung funktioniert dann am besten, wenn sie echte, greifbare Probleme löst. Es geht nicht um bloße Technik, sondern um den Mehrwert, den Unternehmen und Plattformen schaffen – für Nutzer, Anbieter und die Gesellschaft.

Ein erfolgreicher digitaler Vermittler zeichnet sich dadurch aus, dass er Transparenz, Vertrauen und Nutzerfreundlichkeit in den Mittelpunkt stellt. Die Kombination aus technischer Innovation und konsequenter Orientierung an den Bedürfnissen der Kunden bildet das Fundament für nachhaltiges Wachstum.

Für Gründer und Unternehmer ist die Botschaft: Kleine, präzise Lösungen können große Wirkung entfalten. Wer genau hinschaut und mit digitaler Intelligenz Alltagssituationen verbessert, schafft nicht nur Mehrwert, sondern auch ein tragfähiges Geschäftsmodell.

KI-Übergangsphase: Fluch und Segen

Zwischen Wundermaschine und Blackbox – Warum wir gerade in einer KI-Übergangsphase leben und was das generell für das Marketing bedeutet.

Künstliche Intelligenz (KI) verändert gerade in rasantem Tempo unsere Welt. Sie automatisiert Prozesse, entlastet Teams, liefert Analysen in Echtzeit und ermöglicht einen bisher nicht gekannten Grad an Personalisierung. Wer heute im Marketing arbeitet, kommt an KI nicht mehr vorbei – sei es beim Texten von Werbebotschaften, beim Targeting, in der Bildgenerierung oder der Erfolgsmessung.

KI verspricht Effizienz, Präzision und neue kreative Möglichkeiten. Doch die Euphorie wird zunehmend begleitet von einer neuen, ernüchternden Erfahrung: Künstliche Intelligenz kann auch Nutzererlebnisse verschlechtern, Prozesse intransparent machen – oder gar ganze Geschäftsmodelle gefährden. Der technologische Fortschritt ist zweifellos da, doch gesellschaftlich, wirtschaftlich und kulturell befinden wir uns noch mitten in einer Übergangsphase. Und das birgt Risiken – nicht nur für Plattformen, sondern auch für Unternehmen, die sie nutzen.

Beispiel Pinterest: Wenn der Algorithmus plötzlich entscheidet

Ein aktuelles Beispiel liefert Pinterest: Die visuelle Such- und Inspirationsplattform setzt verstärkt auf KI, um Inhalte effizient zu kategorisieren, Hassrede zu erkennen, urheberrechtlich geschützte Werke zu markieren oder Spam zu unterbinden. Was auf dem Papier sinnvoll und zukunftsgerichtet klingt – ein moderner „Content Safety Stack“ mit automatisierter Moderation –, hat in der Praxis zahlreiche Creator*innen und Unternehmen auf dem falschen Fuß erwischt.

Accounts wurden gelöscht, Pins blockiert oder ganze Seiten unsichtbar gemacht – oft ohne erkennbare Begründung. Was ist passiert? Die KI-Modelle bei Pinterest wurden darauf trainiert, problematische Inhalte automatisiert zu erkennen und Plattformregeln durchzusetzen. Doch wie in vielen KI-Systemen liegt der Teufel im Detail: Die Modelle sind noch nicht präzise genug, um zwischen legitimen und grenzwertigen Inhalten zuverlässig zu unterscheiden – vor allem in einem visuellen Umfeld wie Pinterest. Besonders problematisch wird es, wenn Nutzer*innen keine Möglichkeit haben, die Entscheidungen nachzuvollziehen oder effektiv dagegen vorzugehen.

Für Unternehmen, die Pinterest als Marketingplattform nutzen, ist das ein unkalkulierbares Risiko. Wer auf Sichtbarkeit und Reichweite angewiesen ist, kann es sich kaum leisten, dass automatisierte Systeme ohne Vorwarnung Inhalte sperren. Der Vertrauensschaden ist enorm.

Im Spannungsfeld der KI-Nutzung

Dieser Fall steht exemplarisch für ein zentrales Spannungsfeld der KI-Nutzung: Auf der einen Seite die große Hoffnung auf Automatisierung, Kostenersparnis und Kontrolle – auf der anderen Seite die Realität einer noch nicht vollständig ausgereiften Technologie, die häufig wie eine Blackbox agiert. Für Nutzer*innen bedeutet das: weniger Transparenz, weniger Kontrolle, mehr Frustration. Ähnliche Phänomene beobachten wir auch bei großen Social-Media-Plattformen wie Meta oder TikTok. Auch hier sorgen KI-basierte Moderationssysteme regelmäßig für Unmut – sei es durch falsch erkannte Verstöße, Einschränkungen der Reichweite oder Verzögerungen im Kundenservice, der durch automatisierte Antworten ersetzt wurde. Dabei geht es nicht um generelle Ablehnung von KI – sondern um die Art und Weise, wie sie implementiert und kommuniziert wird.

Gute KI ist unsichtbar – weil sie funktioniert

Das Marketing der Zukunft soll nicht nur effizient, sondern muss auch verantwortungsvoll sein. Es wird davon abhängen, wie gut Unternehmen die Balance finden zwischen Automatisierung und menschlicher Kontrolle. Zwischen der Verlockung, Prozesse zu beschleunigen, und der Notwendigkeit, Vertrauen zu erhalten. Gute KI ist unsichtbar – weil sie funktioniert. Sie analysiert, aber entscheidet nicht alleine. Zukunftsfähiges Marketing ist also geprägt von einer Kombination aus technologischer Intelligenz und menschlicher Relevanz. KI, Automatisierung und Datenanalyse ermöglichen eine bisher unerreichte Präzision: Zielgruppen werden individueller angesprochen, Inhalte in Echtzeit ausgespielt und Customer Journeys automatisiert optimiert. Personalisierung ist dabei kein Zusatz mehr, sondern Standard.

Gleichzeitig verändern sich die Erwartungen der Konsument*innen: Sie wollen authentische Marken, klare Haltung, Datenschutz und echte Mehrwerte – keine leeren Werbeversprechen. Deshalb wird Marketing künftig nicht nur effizient, sondern auch ethisch und wertebasiert sein müssen. Vertrauen wird zur zentralen Währung. Auch deshalb ist das Marketing der Zukunft vor allem Inhouse zu verorten. Agenturen befinden sich auf dem absteigenden Ast – sie sind teuer und liefern nicht die Ergebnisse, die Unternehmen und Marken wirklich benötigen. Zu dieser Entwicklung gehört auch, dass Inhouse-Marketing-Verantwortliche umfassend geschult werden müssen, damit sich der Einsatz von KI maximal einfach gestaltet und gleichzeitig äußerst produktiv ist.

KI ist weder Fluch noch Segen – sie ist ein mächtiges Werkzeug, das mit Bedacht eingesetzt werden muss. Wer KI einfach laufen lässt, riskiert Vertrauensverluste. Wer sie aber erklärt, einbettet und begleitet, kann gewinnen – an Effizienz, Qualität und Glaubwürdigkeit. Das Marketing der Zukunft ist nicht einfach KI-gesteuert. Es ist menschenzentriert – mit KI als starkem, aber verantwortungsbewusstem Assistenten.

Der Autor Bastian Sens gründete Sensational Marketing im Jahr 2010 – zunächst als klassische Onlinemarketing-Agentur. Im Laufe der Jahre kristallisierte sich jedoch ein alternativer Weg heraus, sodass sich das Unternehmen zu einer Onlinemarketing-Academy wandelte.

Solarstrom für Gründer*innen: Wie Balkonkraftwerke die Energiezukunft dezentralisieren

Balkonkraftwerke boomen – und bieten Start-ups und Selbständigen eine einfache Lösung für mehr Energieunabhängigkeit.

Steigende Energiepreise, wachsende Klimasorgen und der Wunsch nach Unabhängigkeit verändern die Art, wie wir Strom erzeugen und nutzen. In Deutschland gewinnt dabei eine Lösung besonders an Fahrt: das Balkonkraftwerk. Diese kompakten Mini-Photovoltaikanlagen machen es möglich, auch ohne eigenes Dach und mit wenig Aufwand selbst Strom zu produzieren – ideal für Mietwohnungen, urbane Start-ups oder das Homeoffice.

Was früher vor allem ein Nischenthema war, wird jetzt zur massentauglichen Option – nicht nur für Privathaushalte, sondern auch für junge Unternehmen, Freelancer*innen und digital arbeitende Selbständige.

Was ist ein Balkonkraftwerk?

Ein Balkonkraftwerk ist eine kleine Photovoltaik-Anlage, die auf dem Balkon, an der Fassade oder auf der Terrasse montiert wird. Sie besteht in der Regel aus ein bis zwei Solarmodulen und einem Wechselrichter, der den erzeugten Strom direkt ins Hausnetz einspeist – über eine herkömmliche Steckdose.

Der Clou: Die Anlagen sind steckerfertig, benötigen keine baulichen Veränderungen und lassen sich einfach anmelden. So können auch Mieter*innen oder Menschen ohne Zugang zum Hausdach Teil der Energiewende werden – unabhängig und mit geringem Investitionsaufwand.

Wie kann beispielsweise das EcoFlow Balkonkraftwerk für eine nachhaltige Energiezukunft dabei unterstützen, möglichst effizient, nutzerfreundlich und flexibel Strom zu erzeugen? Solche Systeme kombinieren moderne Solartechnik mit smarter Steuerung und lassen sich auch ohne Vorkenntnisse schnell in Betrieb nehmen – ideal für urbane Haushalte und mobile Arbeitswelten.

Warum Balkonkraftwerke besonders für Gründer*innen spannend sind

Gerade Start-ups und Solo-Selbständige arbeiten häufig flexibel – mal im Homeoffice, mal im Co-Working-Space. Energie ist dabei ein nicht zu unterschätzender Kostenfaktor. Gleichzeitig erwarten Kund*innen und Investor*innen zunehmend ein klares Nachhaltigkeitsprofil.

Ein eigenes Balkonkraftwerk kann hier gleich mehrfach punkten:

  • Kosten senken: Der selbst erzeugte Strom reduziert die Stromrechnung messbar.
  • Kalkulierbarkeit schaffen: Energiekosten werden planbarer – ein Vorteil in der Gründungsphase.
  • Nachhaltigkeit leben: Umweltfreundliches Wirtschaften wird sichtbar – auch im Pitch oder auf Social Media.
  • Flexibel bleiben: Viele Systeme lassen sich bei einem Umzug einfach mitnehmen oder erweitern.

Kurz gesagt: Wer klein anfängt, kann dennoch groß denken – auch in Sachen Energie.

Rechtlicher Rahmen: Was gilt in Deutschland?

Deutschland hat in den letzten Jahren die Nutzung von Balkonkraftwerken deutlich vereinfacht. Seit 2024 dürfen Anlagen mit bis zu 800 Watt Ausgangsleistung unkompliziert beim Netzbetreiber registriert werden – Genehmigungen oder Installationspflichten entfallen in vielen Fällen.

Wichtig ist, dass die Geräte den gängigen Sicherheits- und Qualitätsnormen entsprechen (z B. VDE-zertifiziert sind) und fachgerecht installiert werden. Auch Förderprogramme oder lokale Zuschüsse machen den Einstieg zunehmend attraktiver – gerade für junge Haushalte oder Gründer*innen mit begrenztem Budget.

Prognosen gehen davon aus, dass bis Ende 2025 über eine Million solcher Anlagen in Deutschland in Betrieb sein werden.

Smart, vernetzt und mobil

Moderne Balkonkraftwerke – wie die von EcoFlow – bieten mehr als reine Stromproduktion. Über Apps lässt sich in Echtzeit verfolgen, wie viel Energie erzeugt und verbraucht wird. Die Kombination mit Batteriespeichern oder mobilen Powerstations macht die Systeme noch flexibler – ideal für ortsunabhängiges Arbeiten, Workshops oder Eventeinsätze.

Gerade für technologieaffine Start-ups ist das ein großer Vorteil: Wer Daten und Verbrauch jederzeit im Blick hat, kann Prozesse optimieren, Stromfresser identifizieren oder gezielt Lastspitzen ausgleichen.

Nachhaltigkeit trifft Unternehmertum

Der Einstieg in die eigene Stromproduktion ist nicht nur ökologisch sinnvoll – er zeigt Haltung. Wer heute gründet, tut das oft mit dem Anspruch, Ressourcen zu schonen, Verantwortung zu übernehmen und langfristig zu denken. Ein Balkonkraftwerk ist dabei ein sichtbares Statement – gegenüber Team, Kund*innen und Partner*innen.

Zugleich bietet es einen Einstieg in ein größeres Thema: dezentrale Energieversorgung. In Zukunft könnten sich daraus Peer-to-Peer-Netzwerke, flexible Stromtarife oder gemeinschaftlich genutzte Speicherlösungen entwickeln. Wer heute startet, ist morgen Teil dieser Entwicklung.

Die Digitalisierung verändert unser Leben – und wie wir arbeiten. Die Energiewende verändert, wie wir leben. Balkonkraftwerke verbinden beides: Sie bringen Technologie, Nachhaltigkeit und Unabhängigkeit zusammen – ganz ohne großen Aufwand.

Denn wer selbst produziert, bleibt flexibel. Und wer Energie smart nutzt, hat mehr Spielraum für das, was wirklich zählt: Ideen, Wachstum und Wirkung.