Aktuelle Events
Gefälschte Informationen: 5 Trends beim Betrug mit KI
Jede technologische Innovation führt unweigerlich auch zu neuen Betrugsmethoden, die Lücken in Regulierungen und Gesetzen ausnutzen. Folgende fünf Trends zeichnen sich bereits jetzt rund um die KI-Nutzung ab.
Künstliche Intelligenz (KI) und Large Language Models (LLM) sind in aller Munde – insbesondere ChatGPT sorgt täglich für Schlagzeilen und erhitzte Gemüter. Eines scheint dabei sicher: KI kann ungemein nützlich sein – vor allem im Kampf gegen Internet-Scammer und Finanzbetrug. Immer mehr Unternehmen vertrauen daher auf entsprechende Werkzeuge, um ihre KYC-Prozesse (Know Your Customer) zu digitalisieren und die Legitimität von Zugriffen zu überprüfen.
Mit KI-basierten Tools lassen sich beispielsweise Analyse und Verarbeitung von Benutzerdaten sowie Transaktionen automatisieren. Unternehmen können auf diese Weise ihr Onboarding verbessern und Engpässe im System vermeiden. Ebenso können Nutzer*innen mit Sanktionslisten abgeglichen werden, um Betrugsabsichten und verdächtige Aktivitäten in Echtzeit anzuzeigen.
Allerdings führt jede technologische Innovation unweigerlich auch zu neuen Betrugsmethoden, die Lücken in Regulierungen und Gesetzen ausnutzen. Das zeigen auch die jüngsten Entwicklungen im Bereich KI und LLM. Folgende fünf Trends zeichnen sich bereits jetzt ab:
1. Social Engineering wird einfacher und schneller
ChatGPT und ähnliche Tools haben die Produktivität erhöht – jedoch leider auch die von Cyber-Kriminellen. Diese betreiben immer häufiger Social Engineering mithilfe von KI-basierten Tools, um sich beispielsweise erfolgreich als reale Personen bei Romance Scams auszugeben. Auch bei Phishing-Angriffen erstellen sie verstärkt mithilfe von künstlicher Intelligenz gefälschte Dokumente wie Rechnungen, Verträge und Vermögensbilanzen – oftmals noch personalisierter und genauer als die Originale. Bisher enthielten solche gefälschten Dokumente zudem häufig Rechtschreib- oder Grammatikfehler und waren damit leichter als Betrug zu erkennen. Mithilfe von KI lassen sich solche Fehler jedoch leichter vermeiden und die Grenze zwischen echten und falschen Dokumenten verschwimmt immer mehr.
2. Cyberkriminalität erfordert kaum mehr technisches Know-how
Früher mussten Cyberkriminelle Software und Code verstehen, um glaubwürdige Dokumente oder Websites für ihre Betrugsversuche zu erstellen. Mithilfe der nutzerfreundlichen KI-basierten Tools können Cyberkriminelle auch mit wenig IT-Wissen und oft sogar ohne Programmierkenntnisse Malware, schädliche VBA-Skripte (Visual Basic for Appliances) und realistische Chatbots erstellen, um Opfer noch schneller und effektiver zu manipulieren.
3. Anspruchsvolle Dokumentenfälschung
Nicht nur LLM gehören zu den aktuellen KI-Trends. Auch Bilder, Stimmen und sogar ganze 3D-Modelle lassen sich glaubwürdig mit künstlicher Intelligenz erstellen. Damit sind Betrüger in der Lage, Pässe und andere offizielle Dokumente zu fälschen. Generative KI-Modelle vereinfachen Identitätsdiebstahl und den Zugriff auf sensible Dokumente sowie die darin enthaltenen biometrischen Informationen. Ohne strenge Security-Checks oder moderne Gesichtserkennungssoftware wird es also schwieriger für Unternehmen, Dokumente auf ihre Echtheit zu überprüfen.
4. Chatverlauf als Risiko für den Datenschutz
Eine der großen ChatGPT-Schlagzeilen kam im März 2023 als Italiens Datenschutzbehörde den Zugang zu ChatGPT im Land zwischenzeitlich gesperrt hatte. Grund war eine weitere Gefahr bei der Nutzung des Tools: Die Plattform enthielt einen Fehler, durch den der Chatverlauf und persönliche Daten für andere Benutzer sichtbar waren – Klarnamen, Adressen, Passwörter sowie alle Eingaben in das LLM waren betroffen. Diese Lücke im System öffnete Betrügern Tür und Tor, sich diese Daten zu eigen zu machen und sich als die betreffenden Personen auszugeben.
5. Manipulierte Informationen
Was ist wahr und was ist gefälscht? Das ist nicht nur in Bezug auf klassische Betrugsfälle immer schwieriger zu erkennen. Die Gefahr durch „Fake News“ wird voraussichtlich exponentiell zunehmen, während die manipulierten Inhalte immer authentischer klingen. Auch Datenbanken müssen in dieser Hinsicht sorgfältiger auf ihren Wahrheitsgehalt überprüft werden. Unternehmen sollten sich keinesfalls ausschließlich auf LLM verlassen, um beispielsweise ihre KYC-Prozesse und Geldwäsche-Checks durchzuführen. Unzählige Informationen – gerade in Bezug auf Sanktionslisten – lassen sich in den LLM manipulieren und führen so zu falschen Schlussfolgerungen.
Der Autor Lovro Persen ist Director Document & Fraud, IDnow
Diese Artikel könnten Sie auch interessieren:
Happy Homeoffice Club estartet
Gründerin Caterina Hirt startet ein digitales Netzwerk als kollaborative Kommunikationsplattform für selbständige Mütter im Homeoffice.
Mit dem Start des Happy Homeoffice Clubs entsteht ein neues digitales Angebot für selbständige Mütter – mit Liveformaten, Co-Working, einer innovativen Softwareplattform und vielen nützlichen Business-Hacks. Die Gründerin Caterina Hirt bringt damit ein strukturiertes, unterstützendes Netzwerk an den Start, das den oft isolierten Homeoffice-Alltag in einen Ort der Verbindung, Motivation und echten Weiterentwicklung verwandelt. „Ich habe selbst erlebt, wie herausfordernd es ist, Beruf, Familie und Selbstverwirklichung unter einen Hut zu bringen – vor allem im Homeoffice. Mit dem Happy Homeoffice Club möchte ich Frauen zeigen, dass sie nicht alleine sind“, so die Gründerin. Caterina Hirt ist Unternehmerin, Autorin, systemische Coachin und Mutter von zwei Kindern. Mit ihrem Agenturbackground und über zehn Jahren Erfahrung im Homeoffice weiß die Marketingspezialistin aus erster Hand, welche Chancen – aber auch welche Herausforderungen – dieser Arbeitsalltag birgt.
Kern der Zusammenarbeit ist eine kollaborative Kommunikationsplattform, über die die Mütter dauerhaft in einem echten Netzwerk verbunden sind. Dazu setzt das Angebot auf Livecalls, Community-Austausch, Expertenvorträge und snackable Businesstipps, die den Workflow im Homeoffice effizienter machen. Das Angebot richtet sich explizit an selbständige Frauen oder Mütter im Homeoffice. „Bei uns fühlt sich keine Teilnehmerin mehr allein. Hier treffen sich Frauen, die genau wissen, wie es ist, mit Laptop, Kaffee, Kind und manchmal ein bisschen Chaos zu jonglieren. Sie arbeiten, lachen, tauschen sich aus und motivieren sich gegenseitig. So modern, vernetzt und unterstützend, wie man es sich als Selbstständige immer gewünscht hat “, sagt Caterina Hirt.
Die zugrundeliegende Softwarelösung bietet eine hochmoderne Nutzeroberfläche, Chats, Calls in einer geschützten Umgebung sowie Daten- und Wissensaustausch an. So gibt es zum Beispiel den Monday Motivation Call mit allen Teilnehmerinnen oder eine interaktive Kaffeeküche, in der man sich einfach mal über alle Themen abseits des Business interaktiv austauschen kann. Die Plattform wird jeder Teilnehmerin zur Verfügung gestellt, die Nutzung ist in der monatlichen Mitgliedsgebühr von 49 Euro (Einführungspreis) enthalten. Interessentinnen können die Community inklusive aller Angebote zwei Wochen kostenlos testen.
KI und Selbstreflexion: Was macht KI mit dir?
Wie du innovative KI-Technologie und persönliche Entwicklung strategisch geschickt kombinierst, um dein Start-up nachhaltig zu skalieren.
Künstliche Intelligenz (KI) gilt als Wachstumsbooster. Doch wer dabei nur auf Technik setzt, lässt ein entscheidendes Potenzial ungenutzt – die eigene persönliche Entwicklung. Warum es gerade die Verbindung aus KI und Selbstreflexion ist, die Gründer*innen und Start-ups langfristig erfolgreich macht, liest du hier.
Gründen bedeutet, Entscheidungen unter Unsicherheit zu treffen
Wer ein Start-up aufbaut, bewegt sich im Spannungsfeld von Vision und Verantwortung. Geschäftsmodell, Finanzierung, Teamführung, Produktentwicklung – all das passiert meist parallel und unter enormem Zeitdruck. Technologie wird dabei oft als Hebel gesehen, um schneller und effizienter zu arbeiten. Und das stimmt: Tools, die auf KI basieren, können Prozesse automatisieren, Muster erkennen, Kund*innenbeziehungen vertiefen. Doch Technik allein garantiert keinen Erfolg. Entscheidend ist, wer sie wie einsetzt. Und hier kommt ein oft unterschätzter Faktor ins Spiel: der/die Gründer*in selbst mit den Mustern seiner/ihrer Persönlichkeit.
Jede einzelne Erfahrung, die die Marke rund um eine(n) Gründer*in prägt, kann niemals von einer KI erzeugt werden. Diese kann im zweiten Schritt sachlich analysieren, wie Erlebnisse für zukünftige Prozesse genutzt werden, die dazugehörigen Werte oder Ängste aber stecken in der Person selbst als Fundament.
Markenkern, Werte und Identität – das unsichtbare Fundament des Erfolgs
Jede Marke beginnt mit einer Geschichte, und diese umfasst den Menschen als Dreh- und Angelpunkt. Die Erfahrungen, Werte und Überzeugungen der Gründer*in formen den Kern eines Start-ups weit vor dem ersten Pitchdeck. Während KI dabei helfen kann, diese Identität greifbar zu machen, zu analysieren oder in die Kommunikation zu übersetzen, erzeugen kann sie diese nicht.
Gerade in der frühen Phase entscheidet nicht nur das Produkt über den Erfolg, sondern die Haltung dahinter: Wofür steht das Unternehmen? Welche Werte prägen die Entscheidungen? Welches Bedürfnis treibt den/die Gründer*in auch jenseits der KPIs an? Eine klare Positionierung entsteht nicht im Workshop, sondern im inneren Prozess. Es ist die Fähigkeit zur Selbstreflexion, die hier als Kompass dient:
- Was ist mir wirklich wichtig?
- Was darf sich nie ändern, selbst wenn wir skalieren?
- Was wäre ein Deal, den ich nie eingehen würde – egal wie lukrativ er erscheint?
Wer diesen Markenkern kennt, trifft strategische Entscheidungen konsistenter, kommuniziert authentischer und baut Vertrauen bei Investor*innen, Mitarbeitenden und Kund*innen auf. Und erst dann lohnt sich der Einsatz von KI wirklich, um diese klare Positionierung zum Beispiel zu verstärken, nicht aber zu ersetzen.
KI – mehr als nur Effizienzmaschine
KI hat längst ihren Platz in der Start-up-Welt gefunden. Vom Recruiting über Sales bis hin zum Customer Support. KI-gestützte Tools erleichtern die Arbeit und verschaffen jungen Unternehmen echte Wettbewerbsvorteile:
- Automatisierung: Mithilfe von KI lassen sich zeitintensive Prozesse wie Terminplanung, Rechnungsstellung oder E-Mail-Korrespondenz automatisieren. Das schafft Raum für strategische Aufgaben.
- Personalisierung: Wer seine Kund*innen wirklich verstehen will, profitiert von datenbasierten Insights. KI hilft dabei, Verhalten zu analysieren, Bedürfnisse vorherzusagen und Inhalte gezielt auszuspielen.
- Recruiting: Im „War for Talents“ zählt Geschwindigkeit, ergänzend aber unbedingt auch Qualität. KI-Tools unterstützen dabei, Bewerber*innen effizient zu sichten und unbewusste Bias zu reduzieren.
Richtig eingesetzt, ermöglicht KI mehr Fokus, schnellere Iterationen und datengestützte Entscheidungen. Aber genau hier beginnt auch das Problem: Technologie kann nur das verstärken, was ohnehin vorhanden ist oder eben (noch) nicht.
Selbstreflexion – der unterschätzte Erfolgsfaktor
Gründer*innen stehen täglich vor Entscheidungen mit Tragweite. Doch unter Druck, Unsicherheit und Wachstumsschmerz wird oft reaktiv gehandelt statt reflektiert geführt. Genau hier setzt Selbstreflexion an. Wer sich seiner Stärken, Muster und blinden Flecken bewusst ist, trifft bessere Entscheidungen – für sich, das Team und das Unternehmen. Selbstreflexion ist kein esoterisches Extra, sondern ein pragmatisches Führungsinstrument. Einige wirkungsvolle Methoden:
- Regelmäßige Selbstchecks: Was hat in dieser Woche funktioniert und warum? Was nicht? Was sagt das über meine Prioritäten aus?
- Feedback aktiv einholen: nicht nur von Mitgründer*innen oder Coaches, sondern auch vom Team. Nicht defensiv reagieren, sondern neugierig auf das Feedback sein.
- Mentoring und Coaching: Externe Sparringspartner*innen helfen, Perspektiven zu erweitern und Denkfehler zu entlarven.
- Reflexionstools nutzen: vom (digitalen) Journal bis zur strukturierten Entscheidungsanalyse gibt es einfache Hilfsmittel, die Klarheit schaffen.
Wer bereit ist, sich selbst zu hinterfragen, entwickelt nicht nur sich, sondern auch sein Start-up weiter. Denn Führung beginnt nicht mit der Verantwortung für andere, sondern mit der Verantwortung für sich selbst.
Die Synergie – wenn KI auf Selbstreflexion trifft
Die wirklich erfolgreichen Gründer*innen sind nicht entweder Tech-Expert*innen oder People-Leader*innen. Sie verbinden beides. Sie nutzen KI, um operative Exzellenz zu schaffen und reflektieren gleichzeitig, wie sie führen, entscheiden, kommunizieren. Diese Kombination erzeugt eine Form von unternehmerischer Klarheit, die sowohl innovativ als auch resilient ist.
KI kann Erkenntnisse liefern. Aber nur, wer sie richtig einordnet, profitiert davon. Selbstreflexion schafft den Raum, um mit Technologie sinnvoll umzugehen. Umgekehrt kann KI helfen, Reflexionsprozesse zu unterstützen, etwa durch gezielte Feedback-Auswertung oder datengestützte Teamanalysen.
Ein Beispiel aus der Praxis: Ein Start-up im HR-Tech-Bereich nutzt KI, um Kund*innenfeedback in Echtzeit zu analysieren. Gleichzeitig reflektieren die Gründer*innen wöchentlich im Führungsteam, welche Learnings daraus für Produkt und Kommunikation folgen und welche persönlichen Muster sie bei sich selbst erkennen. Diese Kombination aus technologischem Blick nach außen und menschlichem Blick nach innen führt dazu, dass das Unternehmen nicht nur schneller wächst, sondern dabei auch klar bleibt.
Skalierung braucht Klarheit in der Technik und im Kopf
Start-ups, die skalieren wollen, müssen effizient sein, gleichzeitig aber auch fokussiert, werteorientiert und anpassungsfähig. KI ist dabei ein mächtiges Werkzeug. Doch ohne die Fähigkeit zur Selbstreflexion bleibt sie oft bloß ein weiteres Tool im Tech-Stack.
Deshalb gilt: Die Kombination aus klugem KI-Einsatz und bewusster persönlicher Entwicklung ist kein Luxus, sondern unternehmerische Notwendigkeit. Wer beides ernst nimmt, schafft ein Unternehmen, das nicht nur wächst, sondern dabei auch „gesund“ bleibt.
Die Autorin Lea Baptista ist Geschäftsführerin der GG Consulting Agency und unterstützt Unternehmer*innen, Führungskräfte und Teams dabei, ihren Führungsstil klar zu definieren, Selbstreflexion als Werkzeug zu nutzen und authentisch erfolgreich zu sein.
Weckruf für (KI-)Start-ups
Zwischen Pflicht und Potenzial: Warum der EU AI Act kein Stolperstein, sondern ein strategischer Hebel ist und wie junge Unternehmen ihn frühzeitig für sich nutzen können.
Spätestens seit der Verabschiedung des AI Acts der Europäischen Union im Jahr 2024 ist klar: Der Einsatz künstlicher Intelligenz (KI) in Europa wird rechtlich geregelt – verbindlich, umfassend und risikobasiert. Für viele Unternehmen, vor allem im Start-up-Umfeld, bedeutet das erst einmal: neue Vorgaben, viel Bürokratie, hoher Aufwand. Doch dieser Eindruck greift zu kurz. Denn der AI Act ist weit mehr als ein Regelwerk zur Risikominimierung; er bietet jungen Unternehmen die Chance, Ethik, Effizienz und Rechtssicherheit von Anfang an in Einklang zu bringen. Wer ihn strategisch klug nutzt, kann sich nicht nur vor teuren Fehlern schützen, sondern auch produktiver, innovativer und vertrauenswürdiger aufstellen.
Ein Weckruf mit Wachstumspotenzial
Der AI Act ist die erste umfassende gesetzliche Regelung weltweit, die den Umgang mit KI verbindlich definiert. Ziel ist es, Vertrauen in KI-Technologien zu schaffen, Risiken wie Diskriminierung oder Manipulation zu minimieren und gleichzeitig die Innovationskraft Europas zu sichern. Je nach Risikoklasse, von minimal über hoch bis unvertretbar, gelten unterschiedliche Anforderungen an Transparenz, Sicherheit und Kontrolle. Was viele dabei übersehen: Der AI Act richtet sich nicht nur an Entwickler*innen, sondern auch an Anwender*innen. Schon wer KI zur automatisierten Lebenslaufanalyse, zur Lead-Bewertung im Vertrieb oder für interne Personalentscheidungen nutzt, kann als Betreiber*in haftbar sein – inklusive Dokumentations- und Prüfpflichten. Seit Februar 2025 gilt zudem eine allgemeine Schulungspflicht für KI-Nutzung, unabhängig von Branche oder Unternehmensgröße.
Start-ups: (Noch) nicht betroffen? Ein Trugschluss
Gerade junge Unternehmen neigen dazu, gesetzliche Regularien auf die lange Bank zu schieben – oft verständlich, wenn Zeit, Geld und personelle Ressourcen knapp sind. Doch genau hier liegt das Risiko: Laut einer Bitkom-Studie haben sich nur rund 3 Prozent der Unternehmen intensiv mit dem AI Act beschäftigt. 25 Prozent wissen gar nichts davon. Ein gefährlicher Blindflug, nicht nur wegen potenzieller Bußgelder von bis zu 35 Millionen Euro oder 7 Prozent des Jahresumsatzes, sondern weil damit auch Chancen verschenkt werden.
Dabei geht es beim AI Act nicht nur um Pflichterfüllung, sondern um Zukunftsfähigkeit. Wer KI nutzt, sei es für Marketing, Kund*innenservice oder Produktentwicklung, muss ihre Auswirkungen verstehen, Risiken identifizieren und Prozesse so gestalten, dass sie nachvollziehbar, fair und sicher bleiben. Für Start-ups, die langfristig skalieren und wachsen wollen, ist das kein Nice-to-have, sondern ein Muss.
Wissensdefizite als Wachstumsbremse
Aktuell setzen nur etwa 17 Prozent der kleinen und mittleren Unternehmen in Deutschland KI im Geschäftsalltag ein. Die Gründe: Über 70 Prozent nennen fehlendes Wissen, 58 Prozent Unsicherheit bei rechtlichen Fragen. Gerade bei Start-ups, deren Geschäftsmodell oft auf digitalen Lösungen basiert, ist diese Zurückhaltung alarmierend. Denn wer das Potenzial von KI nicht erkennt oder falsch einsetzt, verliert nicht nur Zeit, sondern auch Marktchancen. Dazu kommt noch die Sorge vor zukünftigen rechtlichen Einschränkungen, wie 82 Prozent der Anwender*innen generativer KI angeben, 73 Prozent verweisen auf die Datenschutzanforderungen als Hemmnis und 68 Prozent sehen Unsicherheiten durch rechtliche Unklarheiten.
Der Schlüssel liegt ganz klar in der Weiterbildung: Nur wer die Funktionsweise, Stärken und Grenzen von KI-Systemen versteht, kann sie verantwortungsvoll und effizient nutzen. Das beginnt schon bei der bloßen Auseinandersetzung mit dem AI Act: 69 Prozent der Unternehmen brauchen professionelle Hilfe dabei. Das betrifft nicht nur Entwickler*innen oder Tech-Teams, sondern auch Gründer*innen sowie Verantwortliche in Marketing, HR und Customer Support. Der AI Act kann dabei als Orientierung dienen: Er macht transparent, welche Prozesse es zu beachten gilt und wie sich Risiken frühzeitig erkennen und adressieren lassen.
KI im Marketing: Vom Tool zur Strategie
Beispiel: Im Marketing ist KI längst mehr als nur eine Helferin für Textgenerierung oder A/B-Testing. Sie analysiert Zielgruppen, erkennt Kaufmuster, generiert kreative Inhalte und liefert datenbasierte Insights in Echtzeit. Doch viele Marketingverantwortliche gehen mit KI noch zu leichtfertig um oder unterschätzen ihre strategische Wirkung. In modernen Marketingabteilungen dient KI als Beschleuniger, Effizienzmotor und kreativer Sparringspartner.
Doch um diesen Nutzen voll auszuschöpfen, braucht es klare Regeln, Datenqualität und nachvollziehbare Prozesse – genau das, was der AI Act einfordert. Was auf den ersten Blick wie ein regulatorisches Korsett wirkt, ist in Wahrheit ein Innovationstreiber: Wer frühzeitig in qualitätsgesicherte Datenprozesse, Modellvalidierung und Feedbackschleifen investiert, steigert nicht nur die Rechtssicherheit, sondern auch die Performance seiner Kampagnen.
Ethik als Wettbewerbsfaktor
Neben Effizienz und Legalität spielt auch Ethik eine zunehmend wichtige Rolle. Nutzer*innen und Kund*innen erwarten von Unternehmen, dass sie KI fair, transparent und verantwortungsvoll einsetzen. Diskriminierende Algorithmen, intransparente Entscheidungen oder Datenmissbrauch können nicht nur rechtliche Konsequenzen haben, sie beschädigen auch das Vertrauen in die Marke. Gerade Start-ups haben hier einen Vorteil: Sie können ethische Leitlinien von Anfang an mitdenken und in ihre Unternehmenskultur integrieren. Das schafft nicht nur Glaubwürdigkeit gegenüber Kund*innen, Investor*innen und Partner*innen – es spart auch spätere Reputationskosten. Studien zeigen: Unternehmen, die KI ethisch reflektiert einsetzen, erzielen höhere Zufriedenheitswerte bei Mitarbeitenden und Kundschaft, und sie sind resilienter gegenüber technologischen Risiken.
Von Anfang an strategisch denken
Für Gründer*innen und junge Unternehmen lautet die Empfehlung daher: Nicht warten, bis der AI Act zum Problem wird, sondern ihn frühzeitig als Chance nutzen, sich professionell aufzustellen. Das bedeutet konkret:
- Verantwortlichkeiten klären: Wer ist im Unternehmen für KI verantwortlich – technisch, ethisch, rechtlich?
- Transparente Prozesse etablieren: Wie werden Daten erhoben, verarbeitet und genutzt? Wer prüft Algorithmen auf Verzerrungen?
- Schulungen anbieten: Alle, die mit KI-Systemen arbeiten, sollten deren Funktionsweise und rechtliche Implikationen kennen.
- Ethikrichtlinien entwickeln: Wie kann das Unternehmen sicherstellen, dass KI fair, sicher und inklusiv eingesetzt wird?
- Technologische Standards einhalten: Wer dokumentiert und validiert die eingesetzten Systeme regelmäßig?
Kein Bremsklotz, sondern ein Beschleuniger
Der EU AI Act ist ein Weckruf für Start-ups, die KI nutzen oder dies künftig wollen. Er schafft Klarheit, wo zuvor Unsicherheit herrschte, und definiert Standards, an denen sich junge Unternehmen orientieren können. Wer das ignoriert, riskiert nicht nur Bußgelder, sondern auch seine Wettbewerbsfähigkeit. Wer ihn jedoch proaktiv angeht, positioniert sich als verantwortungsvolle(r) Innovator*in. Der Wandel hat längst be- gonnen. Jetzt ist die Zeit, ihn bewusst mitzugestalten.
Der Autor Bastian Sens ist Marketing-Experte und Gründer der Beratung & Academy Sensational GmbH
eleQtron: It's MAGIC
In nur fünf Jahren vom Laborgerät zum 24/7-betriebenen Quantencomputer: Wie das 2020 von Jan Leisse, Christof Wunderlich und Michael Johanning gegründete eleQtron mit seiner MAGIC-Technologie neue Wege ebnet.
Was ihr da macht, ist der Wahnsinn – und genau deswegen bin ich dabei.“ Mit diesen Worten beschreibt Jan Leisse, einer der Gründer von eleQtron, die Anfänge des Unternehmens. Das erste Treffen mit dem Physiker Christof Wunderlich war geprägt von einer Mischung aus Skepsis und Begeisterung. Der Wissenschaftler hatte an der Universität Siegen einen Quantencomputer gebaut – mitten in der deutschen Provinz und ohne das Millionenbudget, das Konzernen wie Google oder IBM zur Verfügung steht. Doch genau das reizte Leisse: „Hier wurde nicht einfach nachgemacht, was andere tun. Hier wurde Neuland betreten.“
Es war ein ungewöhnlicher Ort für eine bahnbrechende
Innovation in der Quantentechnologie. Siegen, eine Mittelstadt im Süden Nordrhein-Westfalens, ist nicht gerade als Hotspot für Hochtechnologie bekannt. Doch manchmal entstehen die Top-Innovationen fernab der etablierten Zentren; die Universität Siegen hatte über Jahre hinweg eine bemerkenswerte Expertise in der Quantenphysik aufgebaut, ohne große mediale Aufmerksamkeit.
Von der Universität ...
Im Jahr 2020, als das globale Interesse an Quantentechnologien exponentiell zunahm, erwuchs aus dieser mutigen Pionierarbeit das Start-up eleQtron – als Spin-off der Universität Siegen. Die Gründer – Jan Leisse, Christof Wunderlich und Michael Johanning – verbindet eine Vision: Quantencomputer für industrielle Anwendungen nutzbar zu machen.
Die Anfangsjahre waren geprägt von Experimentierfreude, Improvisation und dem festen Glauben an die eigene technologische Innovationskraft. Während Tech-Giganten wie IBM, Google und Amazon Milliarden Euro in ihre Quantenprogramme investierten und viele Start-ups auf bekannte Technologien setzten, wagte eleQtron den Schritt in eine völlig neue Richtung.
In den Laboren der Gründer entstand die sogenannte MAGIC-Technologie (Magnetic Gradient Induced Coupling), eine Methode, Qubits (das Quantencomputing-Äquivalent zum klassischen Bit in der Digitaltechnik) nicht wie bislang üblich mit Lasern, sondern mit Mikrowellen zu steuern.
... zum technologischen Durchbruch
Die MAGIC-Technologie basiert auf einem raffinierten Zusammenspiel physikalischer Prinzipien: Magnetische Gradienten (räumliche Veränderungen der Magnetfeldstärke) ermöglichen es als lokale Felder, einzelne Ionen in einer sogenannten Falle selektiv anzusprechen. Die technischen Vorteile sind beeindruckend: Die Fidelity (Genauigkeit) bei Operationen an einzelnen Qubits liegt bei etwa 99,95 Prozent, die Gate-Zeiten (Gate-Zeit steht für die Dauer, die ein Quanten-Gate benötigt, um eine Operation auf einem Qubit auszuführen) betragen nur wenige Mikrosekunden. Gleichzeitig ermöglicht die Technologie eine bessere Skalierbarkeit, da sich Mikrowellenfelder einfacher erzeugen und verteilen lassen als komplexe Lasersysteme. „Der Vorteil liegt nicht nur in der höheren Präzision, sondern auch in der deutlich geringeren Komplexität der Systeme“, erklärt Johanning. „Wir brauchen keine aufwändigen Optiken oder ultrastabile Umgebungen. Unsere Technologie funktioniert auch unter realen Bedingungen.“
Früh erkannten die drei Forscher das große Potenzial ihrer Technologie für praktische Anwendungen. „Durch das gezielte Ersetzen sensibler High-End-Komponenten – insbesondere Lasertechnologie – durch bewährte Mikrowellentechnik und Elektronik, vermeiden wir unnötige Komplexität, minimieren Aufwand und senken die Kosten“, fasst es Leisse zusammen.
Wachstumsschub und strategische Entwicklung
2022 gelang eleQtron ein entscheidender Schritt: Durch Earlybird und den Siegerlandfonds als Investoren sowie das vom BMBF geförderte Projekt „MAGIC App“ sicherte sich das Start-up eine Finanzierung in Höhe von 16 Millionen Euro. Diese Finanzierungsrunde war ein Wendepunkt für das Unternehmen und signalisierte das Vertrauen der Investor*innen in die MAGIC-Technologie.
„Mit diesem Kapitalschub konnten wir von einer reinen Forschungsorganisation zu einem echten Technologieunternehmen werden“, erklärt Leisse. Die Mittel flossen in den Ausbau der Produktionskapazitäten, die Vergrößerung des Teams und die Weiterentwicklung der Technologie-Roadmap. Auch die Mitwirkung von Infineon im Rahmen von MAGIC App war strategisch von Bedeutung: „Die Zusammenarbeit mit Infineon hat uns die Augen für die Realitäten des Industriemarkts geöffnet“, erklärt Leisse.
EU KI-Gesetz wird scharf gestellt
Diese Strafen für KI-Verstöße drohen ab dem 2. August 2025 – was Personalverantwortliche und Arbeitnehmende jetzt wissen und beachten müssen.
Das KI-Gesetz der Europäischen Union, die weltweit erste umfassende KI-Verordnung, erreicht am 2. August 2025 einen entscheidenden Meilenstein. Ab diesem Stichtag gelten für Unternehmen, Behörden und KI-Anbieter*innen in der EU zahlreiche zentrale Verpflichtungen, bei deren Nichteinhaltung Strafmaßnahmen eingeleitet und verhängt werden können. Was das für Unternehmen und ihre Mitarbeitenden bedeutet, erfährst du hier.
Der AI Act, der am 2. Februar dieses Jahres in Kraft getreten ist, schafft einen einheitlichen Rechtsrahmen für Künstliche Intelligenz (KI) in der EU. Zwar werden viele Regelungen erst 2026 wirksam, doch bereits am 2. August 2025 beginnt eine neue Phase, die sich auf drei Bereiche fokussiert:
- Strafmaßnahmen bei Nichteinhaltung
- Verpflichtungen für allgemeine General-Purpose-AI-Modelle (GPAI)
- Aufbau von Aufsicht und Governance auf nationaler und europäischer Ebene
Strafen bis zu 35 Millionen Euro
Seit dem 2. Februar dieses Jahres sind KI-Systeme mit unannehmbaren Risiken verboten. Ab dem 2. August 2025 können zusätzlich nun Geldbußen für Verstöße gegen bereits bestehende Verpflichtungen verhängt werden, die bis zu 35 Millionen Euro oder 7 Prozent ihres gesamten Jahresumsatzes betragen können. Unternehmen müssen dazu beispielsweise sicherstellen, dass ihre Mitarbeitenden über KI-Kenntnisse verfügen. Die Europäische Union erwartet von ihren Mitgliedstaaten, dass sie eigene wirksame, verhältnismäßige und abschreckende Strafmaßnahmen festlegen. Dabei sollen die besonderen Umstände von KMUs und Start-ups berücksichtigt werden, um deren wirtschaftliche Lebensfähigkeit nicht zu gefährden.
Neue Verpflichtungen für Anbieter*innen von GPAI-Modellen
GPAI-Modelle, die ab dem 2. August 2025 in der Europäischen Union vermarktet werden, unterliegen gesetzlichen Verpflichtungen. Das Europäische Amt für Künstliche Intelligenz hat dazu am 10. Juli 2025 die endgültige Fassung der Verhaltenskodizes veröffentlicht. Anbieter*innen solcher GPAI-Modelle müssen unter anderem technische Dokumentationen erstellen, Urheberrechte beachten und Transparenz über die verwendeten Trainingsdaten sicherstellen.
GPAI-Modelle sind KI-Systeme mit besonders breitem Einsatzspektrum und sind darauf ausgelegt, eine Vielzahl von Aufgaben zu erfüllen. Sie werden mit riesigen Datenmengen trainiert und sind entsprechend vielseitig einsetzbar. Das bekannteste Beispiel sind große Sprachmodelle (Large Language Models, LLM), etwa das generative Sprachmodell GPT-4o, das in ChatGPT integriert ist. Für GPAI-Modelle, die bereits vor dem 2. August 2025 in der Europäischen Union auf dem Markt waren, gilt eine Übergangsfirst bis zum 2. August 2027.
Aufsicht und Governance
Die KI-Verordnung schafft einen Rahmen mit Durchführungs- und Durchsetzungsbefugnissen auf zwei Ebenen.
Auf nationaler Ebene muss jeder EU-Mitgliedstaat bis zum 2. August 2025 mindestens eine Marktüberwachungsbehörde sowie eine notifizierende Behörde benennen. Erstere ist für die Überwachung von KI-Systemen zuständig, letztere für die Notifizierung unabhängiger Konformitätsbewertungsstellen. Die Mitgliedstaaten müssen bis dem Stichtag Informationen zu den nationalen Behörden und deren Kontaktdaten veröffentlichen.
Auf EU-Ebene koordinieren das Europäische Amt für KI und der Europäische KI-Ausschuss die Aufsicht. Zusätzlich werden ein Beratungsforum und ein wissenschaftlicher Ausschuss aus unabhängigen Experten eingerichtet.
Was bedeutet das für Personalabteilungen und Arbeitnehmende?
Das KI-Gesetz hat direkte Auswirkungen darauf, wie KI in den Bereichen Rekrutierung, Performance-Management, Personalanalyse und Mitarbeitenden-Monitoring eingesetzt wird. Personalverantwortliche müssen sicherstellen, dass KI-Tools in diesen Bereichen transparent, fair und konform sind.
- Fairness und Antidiskriminierung: KI-Systeme, die bei Einstellungs- oder Beförderungsentscheidungen eingesetzt werden, müssen nachvollziehbar und frei von Bias sein. Personalabteilungen sollten ihre Tools und Anbieter*innen regelmäßig überprüfen, um die Einhaltung der Vorschriften sicherzustellen.
- Vertrauen und Transparenz: Mitarbeitende erhalten einen besseren Einblick, wie KI-Systeme ihre Arbeit beeinflussen, zum Beispiel bei der Einsatzplanung, Leistungsbewertung oder bei der Arbeitssicherheit. Personalabteilung können Vertrauen schaffen, indem sie offen kommunizieren, wie KI eingesetzt wird und wie die Daten der Mitarbeitenden geschützt werden.
- Verantwortlichkeit von Drittanbieter*innen: Werden KI-Tools von Drittanbieter*innen genutzt, müssen Personalabteilungen sicherstellen, dass diese Anbieter*innen die Anforderungen an Transparenz und Dokumentation erfüllen. Verträge und Beschaffungsprozesse sollten entsprechend angepasst werden.
- Training und Change Management: Mit stärkeren Regulierungen von KI wird die Personalabteilung eine Schlüsselrolle bei der Schulung von Führungskräften und Mitarbeitenden übernehmen. Ziel ist es, einen verantwortungsvollen Umgang mit KI zu fördern und ethische Standards in der Unternehmenskultur zu verankern.
Fazit
Anbieter*innen von GPAI-Modellen, die bereits vor dem 2. August 2025 auf dem Markt waren, haben bis zum 2. August 2027 Zeit, die neuen Vorschriften vollständig umzusetzen. Weitere Verpflichtungen für KI-Systeme mit hohem Risiko werden 2026 und 2027 folgen. Dieser Meilenstein spiegelt das Bestreben der EU wider, Innovationen zu fördern und gleichzeitig sicherzustellen, dass KI sicher, transparent und mit den europäischen Werten im Einklang steht. Damit rückt die Personalabteilung in den Mittelpunkt einer verantwortungsvollen Einführung von KI am Arbeitsplatz.
Der Autor Tom Saeys ist Chief Operations Officer bei SD Worx, einem international tätigen Dienstleistungsunternehmen im HR-Bereich.
EU AI Act: Status quo
Recht für Gründer*innen: der EU AI Act. Wo stehen wir in Sachen Umsetzung? Was Gründer*innen und Start-ups jetzt wissen müssen.
Künstliche Intelligenz (KI) ist längst kein Zukunftsthema mehr, sondern prägt schon heute Geschäftsmodelle, Investitionsentscheidungen und die Arbeitswelt. Mit der europäischen KI-Verordnung (EU AI Act, im Folgenden AI Act) wurde im Frühjahr 2024 der weltweit erste umfassende Rechtsrahmen für den Einsatz von KI verabschiedet. Inzwischen sind die ersten Regelungen in Kraft getreten. Für Gründer*innen und Start-ups bedeutet das nicht nur zusätzliche Pflichten, sondern auch Chancen, sofern sie sich rechtzeitig vorbereiten.
Überblick: Der AI Act
Die Verordnung folgt einem risikobasierten Ansatz: Je höher das Risiko für Grundrechte oder Sicherheit, desto strenger die Anforderungen. Auf der untersten Stufe stehen KI-Systeme, die keinerlei Vorgaben erfüllen müssen, solange sie nicht in verbotene Anwendungsfälle fallen. An der Spitze der Regulierungspyramide befinden sich die sogenannten HochrisikoSysteme, also etwa Anwendungen in der medizinischen Diagnostik, in kritischer Infrastruktur oder bei biometrischen Verfahren. Viele Tools aus dem HR-Bereich fallen darunter.
Daneben bestehen besondere Pflichten für sogenannte Generative KI beziehungsweise General Purpose AI, eingeführt, also große Modelle, die viele Anwendungen treiben und „systemische Risiken“ entfalten können.
Wichtig ist zu wissen, dass die Vorgaben schrittweise gelten. Bereits seit dem 2. Februar 2025 sind bestimmte Praktiken ausdrücklich verboten – zum Beispiel das Social Scoring von Bürger*innen, die flächendeckende Emotionserkennung in Schulen oder am Arbeitsplatz sowie das unkontrollierte Sammeln biometrischer Daten. Wer damit noch experimentiert, bewegt sich schon jetzt im rechtswidrigen Raum.
Seit dem 2. August 2025 gelten außerdem die ersten Pflichten für Anbieter*innen von generativen Modellen. Sie müssen unter anderem Transparenzberichte veröffentlichen und Angaben zu den verwendeten Trainingsdaten machen. Für Modelle, die bereits vor Inkrafttreten am Markt waren, gibt es eine Übergangsfrist bis 2027. Für viele Unternehmen, die solche Modelle nutzen oder in Produkte einbetten, bedeutet das, genau hinzuschauen, welche Informationen von den Modellanbieter*innen zur Verfügung gestellt werden. Sonst können eigene Transparenzpflichten womöglich nicht erfüllt werden.
Noch weiter in der Zukunft liegen die Vorschriften für Hochrisiko-Systeme. Diese greifen ab 2. August 2026 und verlangen ein umfassendes Risikomanagement, eine strenge Qualität der Trainingsdaten, eine lückenlose Protokollierung und eine Konformitätsbewertung, bevor ein Produkt überhaupt in Verkehr gebracht werden darf. Für Hochrisiko-KI, die in ohnehin streng regulierten Produkten steckt, zum Beispiel in Medizinprodukten, gilt eine verlängerte Frist bis 2027.
Konformitätsbewertung heißt vor allem Risikobewertung, welche die Anbieter*innen oder Betreiber*innen selbst durchführen müssen. Eine solche „regulierte Selbstregulierung“ ist ein klassisches Merkmal einer solchen klassischen Produktregulierung und Marktüberwachung.
Was fehlt? Guidance und Governance
Noch herrscht allerdings an vielen Stellen Unsicherheit. Zwar hat die EU-Kommission schon erste Leitlinien veröffentlicht, etwa zur Definition von KI-Systemen oder zu den verbotenen Praktiken. Auch für Anbieter*innen generativer KI gibt es inzwischen ein detailliertes Dokumentationsmuster. Noch fehlen allerdings die angekündigten Handreichungen für die Einstufung und Risikobewertung von Hochrisiko-Systemen, die bis Februar 2026 folgen und praktische Beispiele enthalten sollen. Bis dahin bleibt nur, sich für die Bewertung an bestehenden internationalen Standards zu orientieren, zum Beispiel an den Normungsprojekten der Europäischen Komitees für Normung und für elektrotechnische Normung.
Auf Unionsebene entstehen parallel die neuen Governance-Strukturen. Das AI Office innerhalb der Kommission ist bereits aktiv und koordiniert die Umsetzung. Das AI Board, ein Gremium der Mitgliedstaaten, tagt regelmäßig und stimmt Vorgehensweisen ab. Ein wissenschaftliches Panel unabhängiger Expert*innen wurde im Frühjahr eingerichtet, und das Advisory Forum, das die Perspektive von Unternehmen und Zivilgesellschaft einbringen soll, befindet sich gerade in der Bewerbungsphase. Auch die geplante EU-Datenbank für Hochrisiko-Systeme existiert bisher nur auf dem Papier. Ab 2026 müssen Anbieter*innen ihre Systeme dort registrieren; die Plattform selbst wird jedoch gerade erst aufgebaut.
Und wo steht Deutschland?
Auch hierzulande hakt es noch etwas. Eigentlich hätten die Mitgliedstaaten bis 2. August 2025 ihre Marktüberwachungsbehörden benennen müssen. Ein Entwurf für das deutsche Umsetzungsgesetz sieht die Bundesnetzagentur als zentrale Aufsicht vor, doch die formale Benennung ist noch nicht erfolgt. Klar ist, dass die Bundesnetzagentur die Rolle der Notifizierungsbehörde übernimmt, also für die Anerkennung von Konformitätsbewertungsstellen zuständig ist. Zudem entsteht dort ein Kompetenzzentrum für KI, das die Arbeit von Bund und Ländern koordinieren soll.
Reallabore
Ein Bereich, der für KI-Entwickler*innen besonders interessant ist, sind KI-Reallabore, also sichere Testumgebungen, in denen neue Anwendungen unter Aufsicht erprobt und darauf geprüft werden können, ob sie den rechtlichen Rahmen einhalten. Bis zum Sommer 2026 müssen die Mitgliedstaaten mindestens ein solches Reallabor einrichten. Deutschland hat im Mai 2025 ein erstes Pilotprojekt in Hessen gestartet, gemeinsam mit der Bundesnetzagentur und der Bundesdatenschutzbeauftragten. Hier werden reale Unternehmensfälle durchgespielt, um Abläufe und Bedarfe besser zu verstehen. Solche Projekte können eine wertvolle Möglichkeit sein, mit den Aufsichtsbehörden auf Augenhöhe ins Gespräch zu kommen.
Reaktionen
Der AI Act wird zwar kritisch diskutiert, im Grundsatz aber breit akzeptiert. Gerichtliche Klagen direkt gegen die Verordnung gibt es bislang nicht. In der juristischen Literatur überwiegt die Zustimmung zur Zielrichtung. Kritisiert werden vor allem die Komplexität und die noch offenen Fragen bei der praktischen Umsetzung. Streitpunkte finden sich eher außerhalb der Verordnung bei der Frage, ob Trainingsdaten urheberrechtlich geschützt sind oder wie personenbezogene Daten für KI genutzt werden dürfen.
Die Industrie zeigt ein gemischtes Bild. Viele große Anbieter*innen – von Google über OpenAI bis Mistral – haben einen freiwilligen Verhaltenskodex unterzeichnet. Andere, wie etwa Meta, haben sich bewusst dagegen entschieden. Man muss sich also darauf einstellen, dass je nach Anbieter*in sehr unterschiedliche Informationen und Compliance-Nachweise verfügbar sind.
Andererseits wirkt der AI Act bereits am Markt. In öffentlichen Ausschreibungen tauchen Modellklauseln auf, die auf die KI-Verordnung Bezug nehmen. Investor*innen fragen verstärkt nach Compliance-Prozessen, und Unternehmen beginnen, interne Strukturen für Risikomanagement und Dokumentation aufzubauen.
Im Vergleich zu Europa gibt es in den USA bislang nur freiwillige Standards. Die dort bei der Entwicklung und Anwendung von KI (angeblich) vorherrschende größere Freiheit wird zwar viel gerühmt. Einzelne Bundesstaaten wie Colorado arbeiten allerdings an eigenen regulierenden Gesetzen, die ab 2026 greifen sollen. Vielleicht ist es also ein Vorteil, dass europäische Start-ups früh Erfahrungen in einem regulierten Markt sammeln können.
Fazit
Der AI Act entfaltet bereits jetzt Wirkung, auch wenn viele Details erst in den kommenden Monaten geklärt werden. Daher gilt es, nicht abzuwarten, sondern jetzt eine eigene Roadmap zu entwickeln. Wer früh Prozesse für Risikomanagement, Transparenz und Governance etabliert, wird nicht nur rechtlich auf der sicheren Seite sein, sondern auch Vertrauen bei Kund*innen und Investor*innen gewinnen.
Die EU hat ein klares Signal gesetzt: KI soll innovativ sein, aber auch sicher und vertrauenswürdig. Für Start-ups ist das eine Herausforderung – aber auch eine Chance, sich von Anfang an professionell aufzustellen und den Markt aktiv mitzugestalten.
Der Autor Dr. Daniel Michel, LL.M. ist als Rechtsanwalt im Bereich IT/IP/Technologie tätig und betreibt seit 2018 mit DATA LAW COUNSEL seine eigene Rechtsberatung im Raum München
Humanoide Roboter: Vision und Realität
Der Weltroboterverband IFR veröffentlicht sein Positionspapier zu Trends, Chancen und möglichen Grenzen rund um das Thema humanoide Roboter.
Menschenähnliche Roboter gelten als die nächste große Innovation in der Robotik: Der weltweit größte Markt für Industrieroboter, China, hat bereits konkrete Pläne für die Massenproduktion von Humanoiden festgelegt. Gleichzeitig kündigten Technologieunternehmen in den USA und Europa große Investitionsvorhaben in diesem Bereich an. Die Vision ist, Allzweckroboter zu entwickeln, die auf menschlicher Mechanik basieren. Einblicke in Trends, Chancen und mögliche Grenzen humanoider Roboter bietet das neue Positionspapier der International Federation of Robotics.
„Futuristisch anmutende humanoide Roboter, die in unserem Zuhause, in Unternehmen und in der Öffentlichkeit arbeiten, faszinieren die Menschen“, sagt Takayuki Ito, Präsident der International Federation of Robotics. „Da die Welt in der wir leben auf den menschlichen Körper zugeschnitten ist, liegt die Idee eines schnellen, universellen Helfers in der Produktion und bei Dienstleistungen auf der Hand. Ob und wann es aber zu einer massenhaften Nutzung von Humanoiden kommen wird, bleibt ungewiss. Nicht zu erwarten ist jedenfalls, dass Humanoide in Zukunft die derzeit auf dem Markt befindlichen Robotertypen ersetzen. Stattdessen werden sie bestehende Technologien ergänzen und erweitern.“
Einsatz von Humanoiden in den Regionen
In den Vereinigten Staaten arbeiten Tech-Unternehmen wie NVIDIA, Amazon und Tesla intensiv an KI- und Robotertechnologien. Neben der Finanzierung durch das Militär wird diese Entwicklung auch durch zahlreiche private Investitionen unterstützt. Das führt zu einer bedeutenden Start-up-Szene, die sich auf humanoide Roboter spezialisiert. Besonders groß ist das Interesse an Humanoiden in Branchen wie der Logistik und in der Fertigung. Dabei werden humanoide Roboter weniger als soziale Begleiter gesehen, sondern eher als Werkzeuge, die dabei helfen, Produktivität und Effizienz zu steigern. So liegt der Schwerpunkt verstärkt auf praktischen Anwendungen und weniger auf der Integration von Robotern in das tägliche soziale Leben.
In China nehmen die Humanoiden eine zentrale Stellung in der nationalen Robotik-Strategie ein. Die Regierung möchte in diesem Technologiebereich Kompetenz und globale Wettbewerbsfähigkeit unter Beweis stellen. Der Einsatzschwerpunkt liegt dabei im Dienstleistungssektor, beispielsweise für die Kundenbetreuung. Die Automatisierung von Produktionslinien in der Fertigung und der Einsatz von Humanoiden, um weniger von menschlichen Arbeitskräften abhängig zu sein, scheint nur auf zweiter Ebene wichtig zu sein. Kernelement der chinesischen Strategie ist der Aufbau einer skalierbaren Lieferkette für Schlüsselkomponenten.
Japan ist ein Pionier in der Entwicklung humanoider Roboter. Als frühes Beispiel wurde Hondas Asimo bereits im Oktober 2000 vorgestellt. Roboter werden in Japan eher als Gefährten, denn als bloße Werkzeuge gesehen. Humanoide Roboter wie Pepper und Palro sind demzufolge in erster Linie als Sozialroboter konzipiert und kommen in Bildungseinrichtungen, Geschäften und Altenpflegeeinrichtungen zum Einsatz. Diese Ausrichtung spiegelt die Nachfrage einer alternden Gesellschaft wider, mit der Japan konfrontiert ist. Ein wichtiger Schwerpunkt der Projekte liegt auf Robotern, die harmonisch mit Menschen zusammenleben können und als Teil der Gesellschaft akzeptiert sind. Führende Unternehmen wie Kawasaki entwickeln humanoide Roboter als eine Forschungsplattform.
In Europa wird auf die ethischen Implikationen von Robotik und KI besonderes viel Wert gelegt. Im Fokus stehen kollaborative Roboter, die im industriellen Umfeld mit Menschen zusammenarbeiten. Kernthemen sind die Verbesserung der Sicherheit und Effizienz und die Nachahmung menschlicher Fähigkeiten. Die Arbeitskraft von Menschen zu kompensieren, steht dagegen nicht im Fokus. Der Schwerpunkt liegt vielmehr auf einem menschenzentrierten Design und den sozialen und gesellschaftlichen Auswirkungen von Robotern. Die europäischen Unternehmen stehen dem Einsatz von Humanoiden generell eher zurückhaltend gegenüber, wenn es um die kurz- bis mittelfristigen Automatisierungsaufgaben im Fertigungs- und Dienstleistungssektor geht.
+++ Ein bahnbrechendes Robotik Start-up aus Deutschland ist NEURA-Robotics: Hier geht’s zu unserer Gründerstory von NEURA Robotics +++
Ausblick
Dank ihrer menschenähnlichen Geschicklichkeit und Anpassungsfähigkeit sind die Humanoiden prädestiniert, komplexe Aufgaben zu automatisieren, mit denen heutige Roboter durch herkömmliche Programmiermethoden Schwierigkeiten haben. Einen massenhaften Einsatz als universelle Haushaltshelfer dürfte es jedoch kurz- bis mittelfristig nicht geben.
Das POSITION PAPER Humanoid Robots - Vision and Reality von IFR gibt's hier zum freien Download
Kurz mal die Welt retten
Wie GreenTech-Start-ups aus dem DACH-Raum dazu beitragen, die Auswirkungen des Klimawandels zu mildern.
Ist es bereits zu spät, den Klimawandel aufzuhalten? Während diese Frage unablässig für hitzige Debatten sorgt, arbeiten Start-ups unermüdlich an Lösungen für die dringendsten Umweltprobleme. Die DACH-Region erlebt einen rasanten Anstieg von GreenTech-Start-ups, angetrieben durch technologische Innovationen und zunehmenden regulatorischen Druck. Dies zeigt u.a. das DACH GreenTech Software Mapping 2025 von Hi Inov und veranschaulicht, welche vielversprechenden Ansätze und Technologien die Zukunft des GreenTech-Ökosystems in Europa prägen.
Mapping der Herausforderungen und Lösungen
Das Mapping bietet einen umfassenden Überblick über die Softwarelösungen von GreenTech-Start-ups im DACH-Raum. Sie umfassen eine Vielzahl von Ansätzen, um den Anstieg der globalen Temperaturen einzudämmen und die damit einhergehenden wirtschaftlichen und gesellschaftlichen Herausforderungen zu bewältigen.
1. Messung und Optimierung des CO2-Fußabdrucks
Fortgeschrittene Techniken zur Datenerfassung und KI-gesteuerte Analysen helfen Organisationen, ihre Effizienz zu steigern und ihren CO₂-Fußabdruck zu reduzieren. Sie helfen Unternehmen, jährlich Emissionen von über 216.000 Tonnen CO₂-Äquivalenten zu vermeiden. Horizontale Plattformen bieten allgemeine Monitoring-Tools für branchenübergreifende Messdienste. Vertikale Lösungen wie die für die Immobilienbranche maßgeschneiderte ESG-Datenplattform Deepki integrieren branchenspezifische Anforderungen.
2. Beschleunigung der Energiewende
Softwarelösungen spielen eine entscheidende Rolle bei der Optimierung der Standortauswahl für die Produktion erneuerbarer Energien, der vorausschauenden Wartung von Infrastruktur und der Verbesserung der Energiespeicherung. Sie können die Schwankungen in der Stromeinspeisung erneuerbarer Energien mindern und somit die Abhängigkeit von fossilen Brennstoffen reduzieren. Das Stuttgarter Start-up metergrid ermöglicht es beispielsweise Mieter*innen in Mehrfamilienhäusern, umweltfreundlichen Solarstrom zu nutzen, der im selben Gebäude produziert wird (mehr dazu in der StartingUp 01/25).
3. Förderung der Kreislaufwirtschaft und Ressourcenoptimierung
Digitale Lösungen erleichtern die Schonung von natürlichen Ressourcen durch intelligentes Ressourcenmanagement, indem sie die Planung und Nutzung von Ressourcen verbessern. Durch den Einsatz von KI lassen sich viele Prozesse optimieren, darunter Recycling, Landwirtschaft und Wassermanagement. So reduziert das Berliner Start-up Freshflow Abfall, indem es die Nachbestellung von frischen Lebensmitteln mit Machine Learning automatisiert und optimiert. Darüber hinaus verbinden digitale Marktplätze Produzent*innen überschüssiger Ware mit potenziellen Abnehmer*innen, um Ressourcen effizierter zu nutzen.
4. Förderung von Nachhaltigkeitsinitiativen in Unternehmen
Unternehmen nutzen digitale Werkzeuge, um ihre Nachhaltigkeit über die regulatorischen Anforderungen hinaus zu verbessern. Zu den eingesetzten Lösungen zählen CO₂-Kreditbörsen, die es Organisationen ermöglichen, Emissionen durch strukturierte Märkte auszugleichen, und Mitarbeiterengagement-Plattformen, die die Teilnahme der Belegschaft an ESG-Initiativen fördern. Start-ups wie das Hamburger CarbonStack unterstützen Unternehmen bei der Erstellung von Nachhaltigkeitsberichten und dabei die relevanten Richtlinien einzuhalten.
Die Entwicklung von 2023 bis heute
Insgesamt zeigt das Mapping ein reiferes und strukturierteres GreenTech-Ökosystem, das Europas Position als Pionier in digitalen Klimaschutzlösungen stärkt. Die Entwicklung zwischen den Mappings aus den Jahren 2023 und 2025 verdeutlicht drei wichtige Trends:
1. Anstieg der Anzahl der angebotenen Softwarelösungen
Die steigende Nachfrage nach nachhaltigkeitsorientierten Innovationen in verschiedenen Branchen hat das Wachstum des GreenTech-Ökosystems beschleunigt und zu einem rasanten Anstieg der angebotenen Softwarelösungen geführt.
2. Regulatorisch getriebene Fortschritte
Aufgrund des zunehmenden regulatorischen Drucks wächst der Anteil der angebotenen Lösungen, die auf Compliance-Bedürfnisse wie CSRD, die Rückverfolgbarkeit von Produkten und transparente CO₂-Buchhaltung eingehen. Es werden zunehmend vertikalisierte Monitoring-Tools entwickelt, um spezialisierte Datensätze und branchenspezifische Algorithmen zu erstellen.
3. Einfluss von generativer KI
Der Einsatz von generativer KI nimmt zu. Neue Anwendungsfälle im Bereich Nachhaltigkeit umfassen verbesserte Datenanalyse, automatisierte Compliance-Berichterstattung, sowie die Echtzeit-Optimierung von CO₂-Fußabdrücken und Ressourcenmanagement.
Fazit: Ein florierendes Ökosystem mit starker europäischer Führung
Der Klimawandel stellt eine immense Herausforderung dar, deren Bewältigung innovative technologische Lösungen erfordert. Das GreenTech Mapping 2025 verdeutlicht die führende Rolle Europas bei der Entwicklung dieser Lösungen und zeigt ein reiferes GreenTech-Ökosystem mit großer Dynamik. Durch den Einsatz fortschrittlicher Datenanalysen, KI und Automatisierung sind Start-ups in der DACHRegion gut positioniert, um sowohl wirtschaftlichen als auch ökologischen Mehrwert zu schaffen. Sie werden Unternehmen und politischen Entscheidungsträger*innen dabei helfen, den Übergang zu einer nachhaltigeren Wirtschaft zu beschleunigen und die Folgen des Klimawandels einzudämmen.
Der Autor Dr. Wolfgang Krause leitet als Managing Partner das Deutschlandgeschäft des auf B2B-Digitallösungen spezialisierten VC-Fonds von Hi Inov.
„Österreich hat einen langen Atem – und das zahlt sich im Bereich Applied AI aus“
Als führende Standorte in Sachen Künstliche Intelligenz liegen die USA und Asien auf der Hand, doch auch in Österreich gibt es eine vielfältige AI-Landschaft. Welche Vorteile der Standort für künstliche Intelligenz mit sich bringt und welche Rolle dabei Applied AI spielt, weiß Clemens Wasner, Gründer von AI Austria und CEO der EnliteAI.
Clemens Wasner ist Gründer des österreichischen Verbandes für Künstliche Intelligenz, AI Austria und CEO des Wiener Venture Studios EnliteAI. Der studierte Informatiker arbeitete über ein Jahrzehnt in Asien, bevor er 2017 EnliteAI gründete.
Herr Wasner, Sie kennen die AI-Szene aus erster Hand. Wie gut ist Österreich im internationalen Vergleich aktuell aufgestellt, wenn es um Applied AI geht?
Gemessen an seiner Größe steht Österreich erstaunlich gut da. Unsere AI–Landscape verzeichnet mittlerweile über 450 Unternehmen, die aktiv mit KI arbeiten – nicht nur Start-ups, sondern auch klassische Industrieunternehmen, Dienstleister und der öffentliche Sektor. Gerade im Bereich der industriellen Anwendungen ist Österreich breit aufgestellt: Es gibt zahlreiche Corporates, die eigene Competence Center gegründet, Ausgründungen vorgenommen oder Lizenzmodelle für KI aufgebaut haben. Auch die Zahl der Inkubatoren und Corporate Venture Capitalisten ist beachtlich. Das Thema ist in der Realwirtschaft angekommen – und das nicht erst seit gestern. Bereits 2018 gab es hierzulande einen deutlichen Aufschwung. Im Bereich der Spitzenforschung sind wir ebenfalls stark: Mit drei sogenannten ELLIS-Hubs – European Laboratory for Learning and Intelligent Systems – gehören wir zur europäischen Spitze, gemessen an der Größe des Landes.
Sie sprechen beim Blick auf Österreich oftmals vom „AI-Standort mit langem Atem“. Was genau meinen Sie damit und was macht aus Ihrer Sicht einen exzellenten Standort für AI-Start-ups aus?
Der „lange Atem“ ist positiv gemeint und beschreibt das, was Österreich im Bereich Forschung & Entwicklung auszeichnet: kontinuierliche Investitionen, strategischer Weitblick und langfristige Förderstrukturen. Die Steiermark war lange OECD-Spitzenreiter bei F&E-Ausgaben, Wien verfügt über eine dichte Forschungslandschaft. Das sind keine kurzfristigen Hypes, sondern über Jahrzehnte gewachsene Strukturen. Österreich verfügt zudem über eine differenzierte Förderarchitektur, die alle TRL-Stufen abdeckt – von der Grundlagenforschung bis zur Markteintrittsunterstützung. Auch Clusterstrukturen spielen eine Rolle: In Life Sciences etwa gibt es in Wien und Graz funktionierende Ökosysteme, in denen zunehmend auch KI eine Rolle spielt. Diese Verankerung ermöglicht Planbarkeit, die gerade in technologieintensiven Bereichen entscheidend ist.
Zu den Schlüsselfaktoren einen erfolgreichen Standorts zählen Infrastruktur, Talent Pool und Anwendungsmöglichkeiten. Wo sehen Sie hier derzeit die größten Hebel – und auch die größten Defizite – in Österreich?
Ein klarer Vorteil liegt in der Verfügbarkeit von Talenten: Wien zieht seit Jahren hochqualifizierte Developer aus dem osteuropäischen Raum an. Der AI-Fachkräftemangel ist hier weniger ausgeprägt als in anderen europäischen Hauptstädten. Hinzu kommt: Österreich bildet mehr AI-Absolventen aus, als die Wirtschaft derzeit absorbieren kann. Das schafft einen Bewerbermarkt, der gerade für Start-ups günstig ist. Auch Standortfaktoren wie Lebensqualität und erschwingliche Mieten machen zum Beispiel die Hauptstadt Wien attraktiv. Als Besonderheit sehe ich zudem den aktiven Zugang der Stadt: Wien versteht sich als First Client für KI-Anwendungen, etwa in der Analyse von Geodaten, IoT oder der Digitalisierung von Baueinreichprozessen. Hier ist wesentlich mehr Offenheit für politische Vergabe zu finden als in anderen Ländern. Weniger stark ist Wien in der Spitzenforschung vertreten, hier liegt Linz mit der JKU vorn. Aber man kann als kleines Land nicht alles abdecken – und sollte dort Schwerpunkte setzen, wo bestehende Stärken ausbaubar sind.
Was war der Gründungsimpuls für EnliteAI und wie ist Ihr Venture Studio heute aufgestellt?
Ich kam 2016 nach zehn Jahren in Asien zurück nach Österreich. In China und Japan war KI allgegenwärtig, ein regelrechter Hype. Zurück in Europa herrschte Funkstille – das war ein Kulturschock. Ich wollte dem Thema hierzulande Schub geben: 2017 gründete ich den Verband AI Austria und kurz darauf EnliteAI. Unsere Erkenntnis aus früheren Projekten zeigte, dass viele Unternehmen gute Ideen, aber keine Ressourcen zur Umsetzung hatten. Daraus entstand das Venture Studio: Wir entwickeln Prototypen gemeinsam mit Unternehmen und gründen darauf spezialisierte Start-ups. Aktuell sind wir 20 Personen und verfolgen zwei Themen – Detekt, das sich auf den Bereich Mobile Mapping spezialisiert hat, und ein weiteres im Stromnetzmanagement. Mit EnliteAI möchten wir künftig weitere Projekte unterstützen und bereiten dafür eine Dual-Entity-Struktur mit einem eigenen Fonds vor. Ziel ist es, das Modell professionell zu skalieren und Investoren direkt in die Spin-outs zu bringen.
Rechenleistung zählen zu den Schlüsselressourcen in der AI. Was braucht es aus Ihrer Sicht, damit europäische Standorte hier nicht dauerhaft in Abhängigkeit geraten?
Realistisch betrachtet: Die Abhängigkeit besteht bereits. Die großen Hyperscaler sind US-dominiert, ebenso Chips, Kommunikationstools, Social Networks. Europa muss in die digitale Souveränität investieren. Erste Schritte wie AI Factories sind wichtig, aber nicht ausreichend. Wir brauchen europäische Cloud-Anbieter, Chipproduktion auf europäischem Boden und eine nachhaltige Energiepolitik. Frankreichs KI-Boom basiert auf Atomstrom – weil er langfristig planbar ist. Diese Planbarkeit fehlt in vielen europäischen Ländern derzeit. Ohne Strom gibt es keine KI. Auch das zeigen Stimmen von Sam Altman, Elon Musk und anderen. Hier ist ein strategischer Paradigmenwechsel notwendig.
Sie sprachen bereits die vielfältige Landschaft von kleinen und mittleren Unternehmen in Österreich an, die offen für KI sind. Wie gut funktioniert das Matching zwischen Start-ups und klassischen Industrieunternehmen?
Österreich macht hier sehr viel richtig. Es gibt ein breites Netz an Förderinstrumenten – von der Österreichischen Forschungsförderungsgesellschaft FFG über die Austria Wirtschaftsservice bis hin zu regionalen Wirtschaftskammern. Zudem bietet Österreich eine Forschungsförderungsprämie an, bei der 14 Prozent der F&E-Ausgaben quasi mit einem Blankoschein gefördert werden können. Zudem organisieren viele Institutionen aktiv Matchmaking-Events, etwa im Rahmen von PreSeed-, AI-Adoption- oder Innovationsprogrammen. Hinzu kommt der Industry-Startup-Marktplatz mit mehreren Tausend registrierten Unternehmen. Auch Pitchings werden gefördert. Das Ziel ist stets, AI nicht nur in der Theorie zu belassen, sondern in die Realwirtschaft zu bringen. Trotzdem: Viele Unternehmen wissen noch immer nichts davon. Hier braucht es also noch mehr Aufklärung.
Welcher KI-Standort – in Österreich und darüber hinaus – hat Sie zuletzt positiv überrascht?
In Österreich ist Linz für mich der Hotspot schlechthin – die Kombination aus Spitzenforschung und erfolgreichem Technologietransfer ist dort besonders gut gelungen. International beeindruckt mich Twente in den Niederlanden: kein großer Name, aber mit klarer Strategie. Sie haben das Spin-out-Modell von Oxford und Cambridge adaptiert und konsequent umgesetzt – mit IP-Offices, Gründungsberatung und Infrastruktur für Start-ups. Ein weiteres Vorbild ist Heilbronn mit den Campus Founders: Sie haben, unterstützt durch die Dieter Schwarz Stiftung, einen Ort für Unternehmertum und Innovationen geschaffen und könnten Vorbild für viele europäische Regionen werden. Viele Stiftungen schaffen Parks oder Schlösser, aber wesentlich gewinnbringender wäre die Förderung von Entrepreneurship wie es in Heilbronn passiert statt Museumsstiftung. Europa braucht diese neue Denkweise.
Clemens Wasner, vielen Dank für das Gespräch.
Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin
Was Unternehmen über KI-Agenten wissen müssen
Künstliche Intelligenz in Form autonomer Agenten gewinnt rasant an Bedeutung. Doch wie arbeiten diese KI-Agenten? Was ist bei der Umsetzung zu beachten? Hier gibt's die Antworten.
Die Idee, dass autonome Systeme eng mit Menschen zusammenarbeiten und sie gezielt unterstützen, ist keine Vision mehr, sondern Realität. Während bisher eine umfassende Problemlösungskompetenz im Hintergrund fehlte, bringen KI-Agenten genau diese Fähigkeit mit und übernehmen zunehmend vielfältige Aufgaben in der Arbeitswelt. Wir erklären, was Unternehmen über KI-Agenten wissen müssen.
Was sind KI-Agenten und auf welcher Technologie basieren sie?
KI-Agenten sind Softwaresysteme, die eigenständig Aufgaben ausführen, aus Erfahrungen lernen und dynamisch mit ihrer Umgebung interagieren. Ihr Ziel ist es, Aufgaben autonom zu lösen, ohne dass ein kontinuierliches menschliches Eingreifen notwendig ist. Im Unterschied zu herkömmlichen Automatisierungslösungen bewältigen KI-Agenten selbst komplexe Anforderungen, indem sie sich an neue Bedingungen anpassen. Auch werden sie im Gegensatz zu universellen LLMs in der Regel fein abgestimmt, um Relevanz und Datenschutz zu gewährleisten. Sinnvoll ist eine kontextbezogene Architektur, die kausale KI, Document AI und multimodale Logik kombiniert und damit optimal auf geschäftliche Anwendungsfälle zugeschnitten ist.
In welchen Bereichen der Arbeitswelt entfalten KI-Agenten ihr Potenzial?
KI-Agenten finden in nahezu allen Unternehmensbereichen Einsatzmöglichkeiten – von der Beantwortung einfacher Anfragen bis hin zur Steuerung komplexer Prozesse. Eingebettet in CRM-Plattformen analysieren sie riesige Datenmengen, die Unternehmen manuell nicht mehr auswerten können. Anstatt die Ergebnisse lediglich zu präsentieren oder Kontakte nach Prioritäten zu sortieren, qualifizieren KI-Agenten auch noch automatisch Leads, schlagen passende Angebote vor und beantworten Kundenanfragen. Oder anders formuliert: Während herkömmliche Tools in der Regel auf statischen Wenn-dann-Regeln basieren, führt die neue Generation hyperpersonalisierte Aktionen nahezu in Echtzeit aus. Diese Entwicklung entlastet Mitarbeiter von Routineaufgaben und gibt ihnen Raum, sich auf strategisch wichtige Aufgaben zu konzentrieren. Unternehmen wiederum können ohne großen Aufwand Tausende von Kunden individuell betreuen.
Werden KI-Agenten den Arbeitsmarkt verändern?
Diese Frage lässt sich nicht pauschal beantworten. Es entstehen durch den verstärkten Einsatz von KI-Lösungen neue Berufsfelder – insbesondere bei der Entwicklung, Integration und Wartung solcher Agentensysteme werden qualifizierte Fachkräfte benötigt. Gleichzeitig stellt sich die Herausforderung, bestehende Mitarbeitende gezielt im Umgang mit diesen Technologien weiterzubilden und deren digitale Kompetenzen auszubauen. Eines muss klar sein: Das Ziel von KI-Agenten ist es nicht, menschliche Arbeitskraft zu ersetzen, sondern deren Fähigkeiten zu erweitern. Mitarbeitende können sich somit stärker auf komplexe Kundeninteraktionen oder die Entwicklung innovativer Kampagnen konzentrieren, während ihnen die KI zur Hand geht.
Worauf müssen Unternehmen bei der Auswahl von KI-Agenten-Lösungen achten?
In erster Linie benötigen sie eine digital ausgereifte Umgebung mit einheitlichen Datenformaten, optimierten Prozessen und regelbasierten Automatisierungen, um den ROI steigern zu können. Anschließend müssen sie sicherstellen, dass ihre KI-Systeme den geltenden Datenschutzbestimmungen entsprechen und sensible Kund*innendaten optimal geschützt sind. Transparenz und Nachvollziehbarkeit der KI-Entscheidungen sind ebenfalls essenziell, um das Vertrauen von Kunden und Mitarbeitenden nicht zu gefährden. Auf technischer Seite ist eine interoperable Lösung notwendig, die sich so nahtlos wie möglich in die bestehende IT-Umgebung integrieren lässt. Zu den weiteren Aspekten zählen die Priorisierung der kontextuellen Abstimmung, da Agenten geschäftsspezifische Arbeitsabläufe und Datenformate verstehen müssen, sowie die Nutzung eines Federated-Model-Ansatzes statt einheitlicher LLM-Frameworks, um Effizienz, Erklärbarkeit und Kosten zu optimieren.
Wie binden Unternehmen ihre Mitarbeitenden am besten ein?
Zunächst einmal ist ein grundlegendes Change Management erforderlich. Die Mitarbeiterinnen und Mitarbeiter müssen verstehen, dass die KI ihnen nicht die Arbeit wegnimmt, sondern sie unterstützen soll. Sinnvoll ist auch ein Low-Code-Ansatz: Maßgeschneiderte KI-Applikationen und automatisierte Workflows steigern die Arbeitseffizienz in Abteilungen um ein Vielfaches – sogar Mini-Anwendungen, die lediglich einfache Aufgaben übernehmen. Jedoch können zentrale IT-Abteilungen, die mit Entwicklungsanfragen aus verschiedenen Abteilungen überhäuft werden, diese kaum bewältigen. Mit einer Low-Code-Application-Plattform (LCAP) können auch Mitarbeiter ohne Programmierkenntnisse einfache KI-Anwendungen selbst erstellen. Möglich machen das einfache Drag-and-Drop-Optionen und vorgebaute Module, die je nach Wunsch kombinierbar sind.
Fazit
KI-Agenten sind als kollaborative Partner zu verstehen, nicht als Ersatz für den Menschen. Künftig werden wir eine Multi-Agent Collaboration sehen. Hierbei übernehmen verschiedene KI-Agenten jeweils Spezialaufgaben und koordinieren sich untereinander, um selbst die komplexesten Herausforderungen effizient zu lösen.
Der Autor Sridhar Iyengar ist Managing Director von Zoho Europe.
ARX Robotics: Tech for Defense
Wie die ARX-Robotics-Gründer Maximilian Wied, Marc A. Wietfeld und Stefan Röbel Europas führendes DefTech-Start-up für unbemannte autonome Landsysteme gebaut haben.
Ein Start-up aus München denkt Europas Sicherheit neu – mit modularen Robotern, digitalen Aufklärungssystemen und einem iterativen Entwicklungsansatz, der hinsichtlich Flexibilität und Geschwindigkeit in der Branche neue Maßstäbe setzt. „Wir nutzen das transformative Potenzial von Robotik und KI, um die Leistungsfähigkeit der europäischen Landstreitkräfte zu stärken“, sagt Marc A. Wietfeld, Mitgründer und CEO von ARX Robotics in München. „Mit unserem Betriebssystem Mithra OS ermöglichen wir fernoperierbare, kettenbetriebene Landfahrzeuge sowie die Digitalisierung bestehender Flotten.“
Die Roboter entstehen auf einer einheitlichen technologischen Plattform mit flexiblem, modularem Aufbau. Sie lassen sich einfach anpassen und aufrüsten, was das Einsatzspektrum enorm erweitert. „Unsere Plattform ist wie das Schweizer Taschenmesser für Militäreinsätze“, so der Gründer. Neben der Hardware und dem KI-gestützten Betriebssystem liefert das Start-up auch Schnittstellen, um bestehende analoge Rüstungstechnologie und softwaregetriebene Systeme zu integrieren.
Drei Offiziere nehmen die Entwicklung selbst in die Hand
Gegründet wurde ARX Robotics von drei ehemaligen Bundeswehroffizieren. Marcs Weg begann mit einer Schlosserlehre, bevor er 2010 für den Wehrdienst eingezogen wurde. Damals konnte er kaum glauben, wie veraltet die Technologie der Truppe war. „Eine Playstation hatte bessere Software als viele Waffensysteme, und Drohnen aus dem Elektrofachmarkt waren leistungsfähiger als die im Kampfeinsatz.“ Während Marc in New York ein militärisches Programm absolvierte, lernte er Maximilian (Max) Wied kennen, der zu dieser Zeit an der Militärakademie West Point studierte. Beide hatten den Innovationsstau jahrelang erlebt und durch ihre Zeit in der Kampftruppe die Realität von Häuser-, Wald- und Grabenkämpfen hautnah kennengelernt.
In Robotik und Automatisierung sahen sie enormes ungenutztes Potenzial, um Soldat*innen zu schützen und Einsätze effizienter zu gestalten. „Am Anfang ging es uns gar nicht darum, Roboter zu bauen“, so Marc, „sondern darum, wie wir neue Technologie schneller in die Hand der Soldatinnen und Soldaten bekommen.“ Rund zwei Jahre arbeiteten sie am Konzept und an der Umsetzung. Die ersten Prototypen entstanden in Eigenregie, finanziert aus privaten Mitteln.
Stefan Röbel stieß dazu, als klar wurde, dass aus dem Projekt ein Unternehmen werden sollte. Neben dem militärischen Hintergrund bringt er Erfahrung im Aufbau und in der Skalierung von Start-ups mit. Zuvor war Stefan bereits bei Tech-Unternehmen an Bord, darunter Amazon, ASOS und Grover, wo er den Weg von der Series-A-Finanzierung bis zum Unicorn begleitete.
Als die Ersparnisse aufgebraucht waren, erhielt das Gründungsteam Unterstützung vom Innovation Hub der Bundeswehr und der Universität der Bundeswehr in München. Ende 2022 gründeten die drei schließlich ihr Unternehmen.
Die Brücke zur vernetzten Zukunft des Militärs
ARX Robotics füllt eine kritische Lücke in der militärischen Technologielandschaft, zwischen der analogen Vergangenheit und der softwaregesteuerten Zukunft. Viele bestehende Systeme wie etwa Panzer, Transportfahrzeuge und Helikopter operieren noch weitgehend analog und damit isoliert voneinander. Doch bewaffnete Konflikte werden heute vernetzt, KI-gestützt und mithilfe unbemannter Systeme entschieden. Die militärische Ausrüstung ist in vielen Ländern Europas noch nicht auf der Höhe der Zeit. „Mit unseren Lösungen bauen wir die Brücke zwischen den beiden Welten“, sagt Marc.
ARX Robotics überträgt die moderne technologische Architektur auf bestehende Militärfahrzeuge. Die analogen Bestandssysteme werden damit robotisiert, sodass sie mit modernen Drohnen und digitalen Einheiten zusammenarbeiten können – ein entscheidender Faktor für die Digitalisierung der Landstreitkräfte und Interoperabilität. „Früher war das Militär die Technologieschmiede der Gesellschaft, doch in den 1980er-Jahren hat die zivile Forschung die Streitkräfte überholt, auch bei den sicherheitsrelevanten Anwendungen“, so Marc.
Die etablierte Verteidigungsindustrie hat sich unterdessen auf immer komplexere und schwerfällige Großsysteme konzentriert. Bei einem größeren militärischen Entwicklungsprojekt ist in der Regel der gesamte militärische Apparat involviert, mit Planungs- und Beschaffungsämtern, langen Prozessen und seitenlangen Anforderungskatalogen. Erhält ein Ausrüster den Zuschlag, bekommt dieser Steuergelder, um einen Prototyp zu bauen „Die Entwicklung neuer Plattformen dauert dadurch oft ein Jahrzehnt, und die Produktion braucht weitere fünf Jahre“, sagt Marc. Schon bei der Indienststellung ist das Material zwangsläufig technologisch veraltet. ARX Robotics will den Prozess vom Kopf auf die Füße stellen. „Wir sind davon überzeugt, dass unsere Systeme den Soldatinnen und Soldaten im Einsatz sofort Mehrwert liefern“, so Marc. „Darum übertragen wir die neuen Technologien so schnell wie möglich ins Militär.“
Zurückhaltende Investor*innen und hohe Eintrittsbarrieren
Der Weg zur ersten externen Finanzierung war jedoch alles andere als einfach. „Kaum ein Risikokapitalgeber hat sich 2022 für DefenseTech und Hardware interessiert“, sagt Marc. Unter europäischen VCs dominierte das Dogma, dass nur Software skalierbar sei, idealerweise als SaaS-Modell. „Als Start-up mit einer physischen Technologie, noch dazu geführt von drei Soldaten ohne Gründungserfahrung, passten wir nicht ins Schema“, erinnert sich Marc.
Zudem war das Thema Verteidigung als Investment noch sehr negativ behaftet. VCs wollten nicht in Systeme investieren, die potenziell im Kampfeinsatz genutzt werden können. Sie sorgten sich um das öffentliche Bild und mögliche Bedenken institutioneller Geldgeber*innen. Mitte 2023 konnte ARX Robotics dann mit dem Risikokapitalgeber Project A Ventures als Lead Investor die Seed-Finanzierungsrunde schließen.
„Die anfänglich größte Hürde für uns war, nicht als Start-up, sondern als ernstzunehmender Anbieter wahrgenommen zu werden“, so Marc. Der Rüstungsmarkt ist stark konsolidiert und protektiv. Etablierte Player wie Rheinmetall, BAE Systems oder Krauss-Maffei Wegmann arbeiten seit Jahrzehnten fest mit ihren Kund*innen zusammen und bewegen sich in gewachsenen Strukturen. „Das Vertrauen der Streitkräfte zu gewinnen und die Beteiligung an einem großen Rüstungsprojekt zu erhalten, ist eine Schallmauer, die nur sehr wenige Start-ups durchbrechen“, sagt Marc.
Iterative Entwicklung und Tests im Feld
ARX Robotics punktet im Markt unter anderem mit dem radikal nutzer*innenzentrierten Entwicklungsansatz. Das Team setzt auf schnelle Iterationen mit voll funktionsfähigen Prototypen. Diese werden von Soldat*innen zeitnah getestet, häufig direkt in der Kampfzone. Das Feedback fließt sofort in die Weiterentwicklung ein, sodass in kürzester Zeit gebrauchsfertige Systeme entstehen. Der Fokus in der Entwicklung liegt stets auf der Software. „Das Betriebssystem ist der Kern unserer Lösungen, ob es am Ende einen Roboter oder einen Panzer steuert, ist zweitrangig“, sagt Marc.
Anders als der Wettbewerb setzt ARX Robotics auf offene Schnittstellen, modulare Komponenten und flexible Integration. Die großen Rüstungsfirmen mit ihren etablierten, geschützten Ökosystemen können dieses Modell nur schwer adaptieren. Stattdessen setzen sie auf Partnerschaften.
Mit Rheinmetall zum Beispiel arbeiten die Gründer derzeit an mehreren Projekten, und Daimler nutzt die ARX-Technologie, um die gesamte militärische Fahrzeugflotte zu digitalisieren. Um sicherzustellen, dass das Know-how und die Technologie in europäischer Hand bleiben, hat das Team frühzeitig den NATO Innovation Fund mit ins Boot geholt.
KI clever eingesetzt: Können deutsche Entwickler ihre App-Ideen mit Vibe Coding umsetzen?
Wie Vibe Coding, eine neue KI-gestützte Methode der App-Entwicklung, es heute deutlich einfacher macht, aus einer Idee ein funktionierendes digitales Produkt entstehen zu lassen.
Die Zeiten, in denen man für die Umsetzung einer App monatelang ein Entwicklerteam zusammenstellen, riesige Budgets planen und unzählige Meetings überstehen musste, scheinen langsam zu verblassen. Vibe Coding, eine neue KI-gestützte Methode der App-Entwicklung, macht es Gründern und kreativen Köpfen in Deutschland heute deutlich einfacher, aus einer Idee ein funktionierendes digitales Produkt entstehen zu lassen.
Was steckt hinter Vibe Coding?
Vibe Coding nutzt künstliche Intelligenz, um auf Basis einfacher Sprache Code zu erzeugen. Statt eine App Zeile für Zeile zu programmieren, beschreibt man, was sie können soll. Die KI wandelt diese Wünsche in Code um, der sich dann weiter anpassen und verfeinern lässt. Anders als bei klassischen No-Code-Plattformen entstehen keine bloßen Baukastenlösungen, sondern anpassbarer, individuell nutzbarer Code.
Im Unterschied zu Low-Code-Ansätzen braucht es keine aufwendige UI und keine grafische Umgebung, in der man mühsam Komponenten zusammensetzt. Stattdessen genügt es, der KI präzise zu erklären, welches Ergebnis angestrebt wird. Das spart nicht nur Zeit, sondern eröffnet auch Menschen ohne tiefgehendes Technikverständnis ganz neue Möglichkeiten.
Aktuell eignet sich dieser Ansatz besonders für die Entwicklung von Prototypen, Minimum Viable Products und überschaubaren Business-Apps. Wer dagegen komplexe Anwendungen mit tiefen Backend-Strukturen, Hochsicherheitsanforderungen oder extrem hoher Nutzerlast plant, stößt mit Vibe Coding derzeit noch an natürliche Grenzen. Doch für den ersten Schritt in die App-Welt ist dieses Werkzeug so vielversprechend wie kaum ein anderes.
Wie KI-basierte Entwicklung neue Möglichkeiten für Gründer eröffnet
In der Praxis bedeutet das: Was früher ein ganzes Entwicklerteam beschäftigt hätte, kann heute oft in wenigen Tagen oder sogar Stunden entstehen. Vibe Coding verkürzt die Entwicklungszeiten deutlich, die ersten funktionsfähigen Entwürfe stehen schneller zur Verfügung als je zuvor.
Nicht zu unterschätzen ist dabei auch die finanzielle Seite. Wo man früher fünfstellige Summen investieren musste, genügt heute oft ein Bruchteil davon, um einen ersten lauffähigen Prototypen zu testen. Damit wird der Einstieg in die App-Entwicklung auch für Gründer ohne Tech-Hintergrund realistischer. Kein Zwang mehr, einen CTO an Bord zu holen oder teure Agenturen zu engagieren.
Gerade in Deutschland, wo Gründungsteams häufig an fehlender Entwicklerkapazität scheitern, eröffnet diese Entwicklung eine völlig neue Dynamik. Wer eine gute Idee hat, kann sie dank Vibe Coding sehr viel leichter in die Realität umsetzen. Das fördert die Innovationskultur und macht Platz für mehr mutige Experimente.
Ein Beispiel, das hier besonders hervorsticht, ist die Founders Foundation in Ostwestfalen-Lippe. Mit gezielten Programmen und Workshops unterstützt sie Gründerinnen und Gründer dabei, KI-gestützte Methoden sinnvoll einzusetzen und so eigene digitale Produkte schneller auf die Straße zu bringen. Genau solche Impulse tragen dazu bei, dass sich der Trend immer stärker durchsetzt.
Welche deutschen Start-ups zeigen bereits, was mit KI und No-Code möglich ist?
Dass das alles keine Theorie mehr ist, sondern in deutschen Gründungszentren längst gelebt wird, zeigen einige aktuelle Beispiele sehr anschaulich. Leaping AI aus Berlin etwa entwickelt Voicebots, die im Kundenservice 70 Prozent aller Anfragen automatisiert beantworten. Eine Anwendung, die ohne moderne KI-Tools in dieser Geschwindigkeit und Qualität wohl kaum möglich wäre.
Auch qru aus Stuttgart beweist, was möglich ist. Mit ihren Videomarketing-Tools, die auf einem cleveren Mix aus Low-Code und KI basieren, können selbst kleinere Unternehmen ihre Marketingprozesse automatisieren und professionell gestalten, ohne dafür eine eigene IT-Abteilung zu benötigen.
Ein drittes Beispiel: Paul’s Job, ein Berliner Startup, das HR-Prozesse mit agentischer KI unterstützt. Recruiting und Personalverwaltung laufen dort in weiten Teilen automatisiert, was Gründern wie Personalabteilungen jede Menge Zeit und Nerven spart.
Diese und ähnliche Projekte zeigen deutlich, dass Vibe Coding und vergleichbare Methoden längst ihren Weg in die praktische Nutzung gefunden haben. Die Technologie entwickelt sich dabei so schnell weiter, dass immer mehr Gründer den Mut fassen, ihre App-Ideen mit solchen Ansätzen umzusetzen.
Warum die App-Entwicklung perspektivisch günstiger wird
Ein Blick auf die allgemeine Marktentwicklung macht schnell deutlich: App-Entwicklung wird in den kommenden Jahren noch günstiger und einfacher werden. Mit jedem Fortschritt der KI sinken die Kosten für die technische Umsetzung, gleichzeitig steigen die Möglichkeiten, individualisierte Lösungen zu entwickeln.
Das hat Folgen, insbesondere für kleinere und spezialisierte Anbieter. Wo früher nur große Unternehmen eigene Apps auf den Markt bringen konnten, öffnet sich der Zugang nun auch für kleinere Player. Gerade in Nischenmärkten entstehen so neue Chancen.
Ein besonders interessantes Feld ist aktuell der Gambling-Sektor. Lange Zeit galten die hohen Entwicklungskosten als Einstiegshürde für viele Anbieter. Inzwischen zeigt sich jedoch, dass speziell in diesem Bereich vermehrt Apps auf den Markt kommen, weil die technische Umsetzung dank KI-Tools deutlich günstiger geworden ist.
Aber nicht nur im Glücksspiel-Markt tut sich etwas. Health und Fitness, E-Learning, Content Creation sowie regionale Dienstleistungen profitieren in ähnlicher Weise von den neuen Möglichkeiten. Über Smartphones und Tablets gelangen viele dieser Lösungen direkt zu den Nutzern und ermöglichen eine viel engere Bindung als klassische Webanwendungen.
Wo klassische Entwicklerkompetenz weiterhin unverzichtbar bleibt
Natürlich hat auch Vibe Coding seine Grenzen. Gerade wenn es um anspruchsvolle Architektur, komplexe Backend-Systeme oder hochskalierbare Anwendungen geht, kommt man ohne erfahrene Entwickler nach wie vor nicht aus.
KI generiert Code auf Basis von Wahrscheinlichkeiten, was in der Praxis immer wieder zu fehlerhaften oder ineffizienten Strukturen führen kann. Qualitätssicherung, Testing und fundiertes Architekturwissen bleiben deshalb unerlässlich, sobald eine App mehr sein soll als ein einfaches MVP.
Auch bei Themen wie Performance, Sicherheit und Datenschutz kann KI derzeit noch nicht mithalten. Hier braucht es das Know-how klassischer Entwickler, um Anwendungen stabil und vertrauenswürdig zu machen.
Gerade für Anwendungen im Finanz- oder Gesundheitsbereich, wo hohe regulatorische Standards erfüllt werden müssen, bleibt der menschliche Faktor entscheidend. Vibe Coding ist ein fantastisches Werkzeug für den schnellen Einstieg und die Umsetzung erster Ideen, doch auf dem Weg zu einem ausgereiften Produkt wird klassisches Engineering weiterhin eine tragende Rolle spielen.
Vibe Coding bringt frischen Wind in die App-Entwicklung
Vibe Coding verändert die Art, wie in Deutschland Apps entstehen, in rasantem Tempo. Prototypen und erste marktfähige Tools lassen sich heute so schnell und günstig umsetzen wie nie zuvor. Für viele Gründer ohne Tech-Hintergrund eröffnen sich dadurch Möglichkeiten, die es vor wenigen Jahren schlicht nicht gab.
Die Beispiele aus der Startup-Szene zeigen eindrucksvoll, wie die neuen Werkzeuge bereits eingesetzt werden. Gleichzeitig bleibt klar: Für echte Skalierung, Sicherheit und Performance führt an klassischem Entwicklerwissen kein Weg vorbei.
Die Zukunft gehört wahrscheinlich zu einem hybriden Ansatz, bei dem KI als mächtiges Assistenzwerkzeug fungiert und Entwickler sich auf das konzentrieren, was KI noch nicht zuverlässig beherrscht. So entsteht Raum für mehr Innovation, mehr mutige Ideen und letztlich mehr spannende Apps. Und genau das dürfte der deutschen Tech-Szene mehr als guttun.
Wie digitale Unternehmen Alltagsprobleme systematisch lösen – Ein Blick auf Parkos
Parkos zeigt, wie ein digitales Unternehmen Herausforderungen beim Flughafenparken meistert.
Es gibt sie überall, diese kleinen alltäglichen Ärgernisse, die erst einmal banal erscheinen, im Alltag aber schnell zu echten Zeitfressern und Stressquellen werden können. Die Parkplatzsuche an Flughäfen gehört dazu – gerade in stark frequentierten Städten, wo jeder Parkplatz ein kostbares Gut ist. Genau hier setzt Parkos an, ein digitales Unternehmen mit Start-up-Wurzeln, das seit über einem Jahrzehnt den Markt für Parkplatzvermittlung revolutioniert. Parkos.de macht es möglich, entspannt einen Parkplatz zu buchen und so lästige Suchfahrten zu vermeiden.
Vom Alltagsproblem zur digitalen Lösung
Das Beispiel der Parkplatzsuche zeigt exemplarisch, wie digitale Unternehmen Alltagsprobleme systematisch angehen. Nicht immer ist es die große Innovation, die den Markt verändert, sondern die konsequente und nutzerzentrierte Verbesserung bestehender Prozesse. Die Gründer von Parkos erkannten früh, dass der Prozess des Parkplatzfindens in der Nähe von Flughäfen ineffizient und für Reisende oft belastend ist. Überfüllte Parkplätze, lange Fußwege oder teure Kurzzeitangebote waren die Regel.
Diese Herausforderungen boten die perfekte Ausgangslage für eine digitale Plattform, die Anbieter von Parkplätzen und Kunden unkompliziert zusammenbringt. Dabei geht es nicht nur um die reine Vermittlung, sondern um Transparenz, Vergleichbarkeit und Nutzerfreundlichkeit. Das ist der Kern der Plattformökonomie, die heute zahlreiche Branchen prägt – von der Mobilität über die Gastronomie bis hin zum Einzelhandel.
Parkos als Beispiel für Plattformökonomie
Plattformen funktionieren nach dem Prinzip, Angebot und Nachfrage in einem digitalen Marktplatz zu verknüpfen. Für Parkos bedeutet das: Parkplätze von verschiedensten Anbietern – private Parkflächen, Hotels, bewachte Parkhäuser – werden auf einer übersichtlichen Website zusammengeführt. Kunden können Preise, Entfernung zum Flughafen und Bewertungen vergleichen. Die Buchung erfolgt direkt online, oft mit flexiblen Stornierungsbedingungen.
Dieser transparente und einfache Zugang löst ein grundlegendes Problem: Wer kennt schon die besten Parkmöglichkeiten in Flughafennähe? Vorbei sind die Zeiten der langen Suchfahrten und Unsicherheiten. Eine entsprechende Plattform steigert nicht nur die Effizienz, sondern reduziert durch die bessere Planung auch den Stress für Reisende.
Interessant ist dabei auch, dass das Unternehmen selbst kein Parkplatzbetreiber ist. Das Unternehmen agiert als Vermittler – und zeigt damit, wie wichtig digitale Infrastruktur und Vertrauensbildung für moderne Geschäftsmodelle sind. Die Nutzerbewertungen auf der Plattform tragen dazu bei, das Angebot ständig zu verbessern.
Technologie als Enabler für bessere Nutzererfahrung
Ein weiterer wichtiger Baustein im Erfolg ist der gezielte Einsatz von Technologie. Eine übersichtliche Website, eine mobile App und einfache Bezahlmethoden sind heute Standard, doch wie diese Tools eingesetzt werden, macht den Unterschied. Die Plattform bietet nicht nur Such- und Buchungsmöglichkeiten, sondern auch Informationen zu Services wie Shuttle-Bussen, Öffnungszeiten und Sicherheitsstandards der Parkplätze.
Die Integration von Kundenbewertungen schafft eine soziale Kontrollinstanz, die Vertrauen aufbaut. So können Nutzer anhand von Erfahrungen anderer Reisender einschätzen, ob ein Parkplatz ihren Erwartungen entspricht. Dieses Feedback wird von Unternehmen genutzt, um Anbieter zu prüfen und kontinuierlich zu verbessern.
Nicht zuletzt erleichtern digitale Services auch die Reiseplanung insgesamt. Verbindliche Buchungen minimieren Überraschungen vor Ort und tragen dazu bei, den gesamten Ablauf stressfreier zu gestalten.
Digitales Angebot im Alltag – mehr als nur Bequemlichkeit
Das Beispiel Parkos zeigt, dass digitale Lösungen oft mehr leisten als reine Bequemlichkeit. Sie greifen in gesellschaftlich relevante Bereiche ein – hier etwa die Mobilität. Bessere Parkplatzplanung bedeutet weniger Suchverkehr, weniger Emissionen und damit einen Beitrag zur Entlastung urbaner Verkehrsräume.
Auch für Unternehmen eröffnen Plattformen wie Parkos neue Chancen. Kleine und mittelgroße Parkplatzanbieter können so ein größeres Publikum erreichen, ihre Auslastung verbessern und wirtschaftlicher arbeiten. Dies steht im Zeichen einer funktionierenden Sharing Economy, die Ressourcen besser nutzt.
Die Relevanz digitaler Vermittlungsplattformen
Digitale Vermittlungsplattformen sind längst mehr als reine Serviceangebote. Sie verändern zunehmend die Art, wie Menschen sich fortbewegen, arbeiten oder ihre Freizeit gestalten. Die Vermittlung von Parkplätzen am Flughafen ist ein kleines, aber anschauliches Beispiel dafür, wie digitale Geschäftsmodelle dazu beitragen können, den Alltag effizienter zu gestalten und Ressourcen besser zu nutzen.
Indem sie Buchung und Planung vereinfachen, tragen solche Plattformen dazu bei, dass unnötige Suchfahrten entfallen. Das hat nicht nur eine Zeitersparnis für den Einzelnen zur Folge, sondern auch einen spürbaren Effekt auf den Verkehr rund um stark frequentierte Orte. Weniger Staus bedeuten weniger Emissionen – ein relevanter Beitrag zum Klimaschutz, der auf den ersten Blick vielleicht unspektakulär wirkt, bei genauerem Hinsehen jedoch enorm.
Außerdem profitieren kleine Anbieter von Parkplätzen von der Reichweite solcher digitalen Marktplätze. Sie können ihre freien Kapazitäten besser auslasten und so wirtschaftlicher arbeiten. Damit entsteht eine Win-Win-Situation, die durch die Vernetzung und Digitalisierung erst möglich wird.
Praxisnahe Erkenntnisse für Gründer und Unternehmer
Für Unternehmer, die digitale Geschäftsmodelle entwickeln oder optimieren wollen, steckt in diesem Beispiel einiges an Praxiswissen. Erstens: Das genaue Erkennen eines echten Alltagsproblems ist entscheidend. Hier war es die Parkplatzsuche – eine scheinbar kleine Herausforderung mit großem Frustpotenzial.
Zweitens zeigt sich, wie wichtig eine konsequente Nutzerzentrierung ist. Transparente Preise, Vergleichbarkeit und unkomplizierte Buchungsprozesse schaffen Vertrauen. Gerade in Zeiten, in denen Konsumenten eine nahtlose User Experience erwarten, entscheidet die Qualität der digitalen Schnittstellen oft über Erfolg oder Misserfolg.
Drittens wird deutlich, wie wichtig Vertrauen im Plattformgeschäft ist. Nutzerbewertungen, transparente Kommunikation und klare Buchungsbedingungen helfen, Unsicherheiten abzubauen. Das gilt nicht nur für die Parkplatzvermittlung, sondern für alle digitalen Vermittler.
Viertens: Flexibilität und kontinuierliche Verbesserung sind ein Muss. Digitale Geschäftsmodelle müssen sich an wechselnde Anforderungen und neue technische Möglichkeiten anpassen, um relevant zu bleiben.
Wo liegen die Herausforderungen?
Trotz aller Vorteile stehen digitale Plattformen auch vor Herausforderungen. Zum Beispiel die Frage nach Datenschutz und Sicherheit der Kundendaten, die immer sensibler wahrgenommen wird. Auch die Balance zwischen Anbieterinteressen und Nutzerbedürfnissen ist oft ein Balanceakt.
Nicht zuletzt sind digitale Unternehmen auf stabile und schnelle Internetverbindungen angewiesen – was vor allem auf dem Land oder in entlegenen Gebieten nicht selbstverständlich ist. Gerade hier zeigt sich, dass digitale Innovationen nicht automatisch alle gesellschaftlichen Schieflagen beheben.
Fazit: Digitalisierung als Werkzeug für pragmatische Lösungen
Der Blick auf die Vermittlung von Parkplätzen an Flughäfen macht eines klar: Digitalisierung funktioniert dann am besten, wenn sie echte, greifbare Probleme löst. Es geht nicht um bloße Technik, sondern um den Mehrwert, den Unternehmen und Plattformen schaffen – für Nutzer, Anbieter und die Gesellschaft.
Ein erfolgreicher digitaler Vermittler zeichnet sich dadurch aus, dass er Transparenz, Vertrauen und Nutzerfreundlichkeit in den Mittelpunkt stellt. Die Kombination aus technischer Innovation und konsequenter Orientierung an den Bedürfnissen der Kunden bildet das Fundament für nachhaltiges Wachstum.
Für Gründer und Unternehmer ist die Botschaft: Kleine, präzise Lösungen können große Wirkung entfalten. Wer genau hinschaut und mit digitaler Intelligenz Alltagssituationen verbessert, schafft nicht nur Mehrwert, sondern auch ein tragfähiges Geschäftsmodell.
Circunomics startet eigenes Batterie-Testlabor
Die Circunomics-Gründer Felix Wagner und Jan Born haben sich das Ziel gesetzt, eine zirkuläre Batteriewirtschaft zu etablieren, indem sie einen digitalen Marktplatz für den Second-Life-Einsatz und das Recycling gebrauchter Batterien bieten. Mit der Einrichtung des eigenen Batterie-Testlabors setzt das Start-up mit Hauptsitz Mainz seine Expansion fort.
„Die Kreislaufwirtschaft ist in Zukunft von immer größerer Bedeutung. Dies ist für uns die große Chance, mit dem digitalen Marktplatz für gebrauchte Batterien, Module und Zellen eine herausragende Position einzunehmen“, sagt Felix Wagner, Co-Founder und CEO von Circunomics. „Im Jahr 2030 werden alleine im Automobilsektor zwischen 200 und 300 Millionen Elektrofahrzeuge auf den Straßen der Welt unterwegs sein. Das bedeutet, dass dann jedes Jahr etwa sechs Millionen gebrauchte Batterien als Rückläufer aus Altfahrzeugen auf den Markt kommen. Diese wiederzuverwenden oder gezielt zu recyclen ist eine Mega-Aufgabe, die gelöst werden muss. Schließlich haben wir alle ein Ziel: Weniger CO2 zu produzieren und weniger der wertvollen, seltenen Rohstoffe zu verbrauchen.“
Battery Lifecycle Management Solution
Die Ergebnisse KI-basierter Analysen von gebrauchten Batterien, die beispielsweise in elektrischen Fahrzeugen verwendet werden, mit selbst ermittelten Laborwerten aus einer Real-Life-Simulation abgleichen, trainieren und verifizieren: Das ist die Aufgabe des neuen Batterie-Testlabors, das vom Start-up Circunomics in Roßdorf bei Darmstadt eingerichtet wurde und jetzt seinen Betrieb vollumfänglich aufgenommen hat.
Die 2019 gegründete Circunomics GmbH ist damit in der Lage, eine Datenbasis für die selbst entwickelte Software aufzubauen, die wiederum genutzt wird, um den Gesundheitszustand (State of Health) einer gebrauchten Batterie während und nach einer Erstverwendung (First Life) sehr präzise zu ermitteln. Vielmehr aber kann detailliert simuliert und hochgerechnet werden, wie sich die gebrauchte Batterie bei einer Zweitverwendung (Second Life) zum Beispiel in einem stationären Speichersystem verhält. Zudem kann eine Empfehlung ausgesprochen werden, welche Batterien für das jeweilige Projekt am besten geeignet sind.
Mit der Einrichtung des Batterie-Testlabors setzt das Start-up mit Hauptsitz Mainz seine Expansion fort, die nach einer erfolgreich durchgeführten Series-A-Finanzierungsrunde möglich ist. Zu Jahresbeginn 2025 hatte Circunomics von Investor*innen über acht Millionen Euro erhalten.
Real-Life-Simulation im Testlabor
Im neuen Batterie-Testlabor in Roßdorf können je nach Bedarf und Programm verschiedene Zellen gleichzeitig in einer sicher abgeschirmten Prüfeinrichtung untergebracht und unterschiedlichsten Belastungen ausgesetzt werden. Es erfolgt eine umfangreiche Real-Life-Simulation täglicher Batterienutzungssituationen beispielsweise in einem Elektrofahrzeug: Schnell oder langsam aufeinander folgende Ladezyklen, unterschiedliche Ladestromstärken mit bis zu 300 Ampere Gleichstrom, verschiedene Degradierungszustände der Batterie und das Ganze – wenn notwendig – bei unterschiedlichen Temperaturen. Möglich ist eine Temperaturspanne von minus 20 bis plus 60 Grad Celsius. Die jeweiligen Tests der Zellen können über einen kurzen, mittleren oder längeren Zeitraum durchgeführt werden. Das können wenige Tage, Wochen und Monate, aber auch bis zu zwei Jahre sein.
„Bisher haben wir die Zellen von einem externen Dienstleister analysieren lassen. Diese Aufgaben nehmen wir jetzt selbst in die Hand, erhöhen damit unsere Effizienz, sind schneller mit dem Abgleich von Daten, wodurch wir in der Lage sind, unsere Simulationen und Hochrechnungen für eine Verwendung im Second Life noch genauer und zuverlässiger anbieten zu können“, erklärt Jan Born, Co-Founder und CTO von Circunomics. Und ergänzt: „Wir haben einerseits Millionen von Daten, die während des First Life einer Batterie gesammelt werden und die uns zur Verfügung gestellt werden. Auf dieser Basis haben wir bisher mit der KI-unterstützten Software am Computer analysiert, was die gebrauchte Batterie noch im Stande ist, im Second Life zu leisten, bevor sie dann endgültig dem Recycling zugeführt wird. Im neuen Labor und mit den eigenen Analysen sehen wir nun, wie sich eine Zelle im simulierten Batterieleben verhält und wir können die dabei ermittelten Ergebnisse, mit denen aus der Software abgleichen und verifizieren.“

