Aktuelle Events
Was gehört in eine KI-Policy?
Recht für Gründer*innen: Über den verantwortungsvollen Umgang mit KI.
Künstliche Intelligenz (KI) ist längst Teil unseres Alltags und hält in Unternehmen auch zunehmend Einzug. Ob beim Erstellen von Texten, in der Datenanalyse oder bei der Automatisierung von Routineaufgaben – KI ist ein starkes Werkzeug, das Unternehmen viele Vorteile bieten kann. Doch mit diesen Vorteilen kommen auch Verantwortung und Risiken, die eine klare und durchdachte KI-Policy erfordern.
Diese Einleitung zu einem Artikel über KI-Policies ist KI-generiert. Es ist so schön bequem und schnell gemacht: eines der gängigen LLM-Systeme online aufrufen, beispielsweise ChatGPT, und binnen Sekunden ist der Artikel fertig.
Ihr kennt das im Privaten, vor allem aber auch im Arbeitsumfeld. KI-Tools sind aus der Arbeitswelt nicht mehr wegzudenken. Die Nutzung von KI – insbesondere für berufliche Aufgaben – birgt jedoch Risiken. Manche KI neigt, falsch trainiert, zu diskriminierenden Entscheidungen, was z.B. im HR-Bereich gefährlich ist. Unbedacht erstellte Prompts können den Schutz von Geschäftsgeheimnissen aufs Spiel setzen. Die Datenschutzgrundsätze sind wie immer einzuhalten.
Generative KI schert sich, wenn wir als Nutzer*innen nicht darauf Acht geben, nicht um die Urheberrechte derer, deren Werke wir – ob bewusst oder unbewusst – verwenden oder verletzen. Zudem ist seit August 2024 die KI-Verordnung in der EU in Kraft und stellt an Unternehmen, die KI-Systeme und -Modelle entwickeln, anbieten oder betreiben, umfangreiche Anforderungen. Auch die mit KI einhergehenden Risiken sind nicht außer Acht zu lassen.
Seid ihr als Gründer*innen oder in sonst verantwortlicher Position in einem Unternehmen mit mehreren Mitarbeiter*innen tätig, müsst ihr euch Gedanken darüber machen, wie solche Risiken zu fassen und zu begrenzen sind. Tut ihr das nicht, drohen aus diversen Rechtsgrundlagen z.B. Schadensersatzforderungen, Bußgelder oder der Verlust an Assets – Dinge, die allerspätestens bei der nächsten Finanzierungsrunde negativ bewertet werden. In Bezug auf eure Belegschaft müsst ihr also Awareness für diese Themen schaffen und konkrete Vorgaben machen.
Denn eines ist klar: KI wird in eurem Unternehmen genutzt werden, ob mit oder ohne euer Wissen. Und bevor die Mitarbeiter*innen auf privaten Geräten sensible berufliche Aufgaben nicht reglementiert mittels ChatGPT & Co. lösen, beschreibt lieber beizeiten Dos and Don’ts, um sicherstellen, dass KI verantwortungsvoll, sicher und rechtskonform im Unternehmen eingesetzt wird.
Dazu dient eine die Belegschaft informierende und verpflichtende KI-Policy. Im Folgenden findest du einen Überblick darüber, welche Aspekte in eine solche Policy gehören.
1. Richtlinien für den Einsatz generativer KI am Arbeitsplatz
Generative KI-Modelle wie ChatGPT, DALL-E und andere erstellen Inhalte nach Maßgabe der Eingaben der Nutzenden. Bei diesen Prompts und bei der Verwendung der generierten Ergebnisse ist auf Folgendes zu achten:
- Schutz sensibler Daten: Die Eingabe vertraulicher Informationen in KI-Modelle stellt ein erhebliches Risiko dar, da generative KI-Systeme auf großen Datenmengen trainiert sind und Informationen potenziell unkontrolliert verarbeiten und speichern. Die KI-Policy sollte explizit verbieten, sensible oder vertrauliche Informationen in generative KI-Systeme einzugeben, insbesondere, wenn diese extern betrieben werden. Die Policy sollte beschreiben wie mit sensiblen Daten umzugehen ist und welche Daten für die Verarbeitung durch KI-Systeme ungeeignet sind.
- Einhaltung des Datenschutzes: Die KI-Policy sollte klarstellen, dass der Einsatz generativer KI-Tools den Anforderungen der Datenschutzgesetze (DSGVO, BDSG) entsprechen muss. Dazu gehören Vorgaben, wie personenbezogene Daten rechtssicher zu handhaben sind und welche dieser Daten überhaupt für den Einsatz von KI-Modellen geeignet sind. Zudem bedarf es Vorgaben zur Anonymisierung und Pseudonymisierung der Daten, daneben Transparenzvorgaben, um betroffene Personen über die Nutzung ihrer Daten zu informieren. Personenbezogene Daten in öffentlichen KI-Systemen einzusetzen, sollte möglichst untersagt werden.
- Umgang mit geistigem Eigentum: Die Nutzung generativer KI-Modelle kann zu Problemen führen, wenn die KI auf geschütztem Material trainiert wurde, von dem/der Nutzenden urheberrechtlich geschützte Werke in den Prompt einbezogen werden oder die KI Werke erstellt, die bestehende Urheber- oder sonstige Schutzrechte verletzen. Die KI-Policy sollte ein Verbot der Verwendung von Werken enthalten, an denen nicht die für die Bearbeitung erforderlichen Rechte bestehen. Und sie kann Regelungen zur Überprüfung und Genehmigung von KI-erstellten Inhalten festlegen, etwa durch eine Rechtsabteilung oder eine speziell dafür zuständige Stelle.
- Transparenz und Kennzeichnung: Die KI-Policy sollte festlegen, dass Inhalte, die mithilfe von generativer KI erstellt wurden, transparent gekennzeichnet werden. Dies trägt dazu bei, Missverständnisse zu vermeiden und sicherzustellen, dass die Herkunft von Texten und Bildern klar erkennbar ist. Diese Kennzeichnungspflicht sollte insbesondere dann gelten, wenn KI-generierte Inhalte veröffentlicht werden, aber auch im internen Gebrauch.
- Positivliste erlaubter KI-Systeme: Um die Mitarbeiter*innen mit der Anwendung dieser Vorgaben auf einzelne am Markt angebotene KI-Systeme nicht allein zu lassen, kann eine KI-Policy auch eine Auflistung der vom Unternehmen freigegebenen Systeme enthalten. Voraussetzung ist dafür natürlich, dass diese Systeme vorab entsprechend fachlich geprüft wurden. Das kann schwierig sein, weil sich Anbieter*innen meist nicht in die Karten schauen lassen.
2. Richtlinien für die Entwicklung und Implementierung von KI
Auch wenn ihr in eurem Unternehmen KI-Systeme entwickeln oder implementieren wollt, sind ethische, rechtliche und technische Anforderungen in einer KI-Policy zu adressieren.
- Fairness, Transparenz und Nichtdiskriminierung: KI-Systeme können, wenn sie auf verzerrten Datensätzen trainiert werden, Diskriminierung oder Vorurteile reproduzieren. Eine KI-Policy sollte deshalb klare ethische Richtlinien festlegen, die sicherstellen, dass die entwickelten Modelle fair, transparent und frei von Diskriminierung sind. Ein mögliches Vorgehen ist, regelmäßige Audits und Bias-Tests durchzuführen und in der Policy verpflichtend vorzusehen, um Verzerrungen frühzeitig zu erkennen und zu beheben.
- Datenschutz und Datensicherheit: Der verantwortungsvolle Umgang mit Nutzer*innendaten ist eine der wichtigsten Anforderungen in der KI-Entwicklung. Die KI-Policy sollte festlegen, dass bei der Verarbeitung personenbezogener Daten durch die KI strenge Schutzanforderungen, am besten strenge Begrenzungen, gelten. Rein automatisierte Entscheidungen sind schon laut DSGVO verboten. Es sollten nur die für die jeweilige Anwendung notwendigen Daten erhoben und verarbeitet werden, und diese Daten sollten weitestgehend anonymisiert oder pseudonymisiert werden. Regelungen für den Zugang zu diesen Daten sowie Maßnahmen zur Datensicherheit (wie Verschlüsselung und Zugriffskontrollen) sollten ebenfalls Bestandteil der Policy sein.
- Überprüfung auf Halluzinationen und Fehlinterpretationen: Generative KI-Modelle neigen dazu, Informationen zu „halluzinieren“, also falsche oder ungenaue Inhalte zu erstellen. In der KI-Policy sollte festgelegt sein, dass entwickelte KI-Modelle regelmäßig auf ihre Genauigkeit und Zuverlässigkeit überprüft werden. Dies kann durch vorgeschriebene Tests und Simulationen geschehen, bei denen die KI in verschiedenen Szenarien eingesetzt und auf ihre Fähigkeit, korrekte Ergebnisse zu liefern, geprüft wird. Es sollten auch definiert werden, wie Fehler erkannt und behoben werden können.
- Erklärbarkeit und Nutzer*infreundlichkeit: Komplexe KI-Modelle sind oft schwer verständlich und wirken wie eine Black Box, deren Entscheidungen für Außenstehende kaum nachvollziehbar sind. Die KI-Policy sollte daher sicherstellen, dass die KI so gestaltet ist, dass ihre Funktionsweise für Nutzer*innen transparent und nachvollziehbar ist. Dies ist insbesondere dort wichtig, wo KI-Entscheidungen schwerwiegende Auswirkungen haben können. Ihr solltet sicherstellen, dass für Nutzer*innen eine verständliche Erläuterung darüber bereitgestellt wird, wie und warum die KI zu einem bestimmten Ergebnis gelangt ist. Das ist Voraussetzung für Kontrolle und rechtskonformen Betrieb der KI.
- Gesetzeskonformität gemäß KI-Verordnung: Nicht zuletzt hat die Europäische Union die KI-Verordnung in Kraft gesetzt, die strenge Anforderungen an die Entwicklung und Nutzung von KI stellt. Die KI-Verordnung dient der Produktsicherheit und verlangt zunächst eine Risikoeinschätzung für die KI-Systeme. Die Maßgaben für eine solche Einschätzung sollten in der Policy angerissen und No-Gos für die Entwicklung von Funktionalitäten, die zu den laut KI-Verordnung verbotenen KI-Anwendungen gehören, ausgesprochen werden. Für sogenannte Hochrisiko-KI-Systeme gelten besondere Anforderungen, die bei einer Entwicklung mitgedacht werden müssen, wofür eine KI-Policy zumindest sensibilisieren sollte. Die im Einzelfall geforderte Überprüfung und Einstufung des jeweiligen Systems oder Modells kann eine Policy nicht leisten. Die initialen und regelmäßigen Überprüfungen sowie Risikobewertungen sollte sie aber fordern.
- Regelmäßige Überwachung und Wartung der KI-Modelle: KI-Modelle entwickeln sich weiter und benötigen regelmäßige Überwachung und Wartung, um die Leistung zu optimieren und mögliche Fehler zu minimieren. Die KI-Policy sollte eine solche sich wiederholende Maintenance festlegen, etwa die schon erwähnten regelmäßigen Aktualisierungen, Fehlerbehebungen und Performance-Überprüfungen, damit die KI-Systeme immer den aktuellen Standards und Anforderungen entsprechen.
3. Übergreifende Ziele und Vorgaben einer KI-Policy
Eine KI-Policy sollte nicht nur detaillierte Vorgaben zur Nutzung und Entwicklung von KI enthalten, sondern auch allgemeine Leitlinien und Prinzipien für den Einsatz von KI im Unternehmen, um ein Bewusstsein für die Potenziale und Risiken der Technologie zu schaffen.
- Regelmäßige Überprüfung und Anpassung: Da sich KI-Technologien und gesetzliche Anforderungen stetig weiterentwickeln, sollte auch die KI-Policy regelmäßig überprüft und aktualisiert werden. Dies hilft sicherzustellen, dass das Unternehmen stets auf dem neuesten Stand ist und seine KI-Systeme konform mit den aktuellen gesetzlichen, ethischen und technischen Standards sind. Es ist empfehlenswert, regelmäßige Audits durchzuführen und die Policy an neue Entwicklungen in der KI-Forschung und Gesetzgebung sowie an die Marktanforderungen anzupassen.
- Unternehmenskultur in Bezug auf KI: Eine KI-Policy sollte dazu dienen, den transparenten und offenen Umgang mit KI in allen Unternehmensbereichen und damit die Akzeptanz für KI-Systeme sowohl innerhalb des Unternehmens als auch bei Kund*innen und Partner*innen zu fördern. Dazu gehört auch, dass das Unternehmen offenlegt, in welchen Bereichen KI eingesetzt wird und welche Entscheidungen die Technologie beeinflusst. Letztendlich ist die KI-Policy ein Instrument zur Förderung einer verantwortungsvollen und ethischen Unternehmenskultur in Bezug auf KI. Das schützt letztlich auch die Integrität und die Werte des Unternehmens.
- Schulungen und Sensibilisierungsmaßnahmen: Um einen solchen kompetenten und verantwortungsvollen Umgang mit KI zu erreichen, sind regelmäßige Schulungen und Sensibilisierungsmaßnahmen für die Mitarbeiter*innen zu den hier genannten Aspekten vorzusehen.
Fazit
Dieser Artikel kann nur einen groben Überblick und Rahmen geben. Die konkreten Inhalte einer auf eure Belange und Nutzungsformen passenden Policy müsst ihr in Anschauung der Spezifika der eingesetzten oder zu entwickelnden KI-Systeme erarbeiten. Das kann auch schlecht an KI delegiert werden: Der Rest des eingangs erwähnten KI-generierten Artikels war nicht wirklich brauchbar, ebenso die testweise mit KI erstellten Policies. Dafür braucht es professionelle Unterstützung.
Der Autor Dr. Daniel Michel, LL.M. ist seit 2004 als Rechtsanwalt im Bereich IT/IP/Technologie tätig. Nach Stationen in spezialisierten und Großkanzleien betreibt er seit 2018 seine eigene Rechtsberatung im Raum München, www.datalawcounsel.com
Der Ultimate Demo Day 2025 – Europas größter Demo Day
Am 11. Dezember schlägt das Herz der europäischen Start-up-Szene in München. Der Ultimate Demo Day 2025 bringt Gründer*innen, Investor*innen, Unternehmen und Innovator*innen für einen Tag voller Pitches, Inspiration und wertvoller Kontakte zusammen. Das erwartet dich vor Ort.
Der größte Demo Day Europas
Mehr als 60 Start-ups, Weltklasse-Speaker*innen und unzählige Möglichkeiten, deine(n) perfekte(n) Business-Partner*in zu finden, warten auf dich beim Ultimate Demo Day 2025 im Munich Urban Colab.
Das erwartet dich auf der Bühne:
● Helmut Schönenberger, Mitgründer und CEO der UnternehmerTUM, eröffnet den Tag.
● Jan Goetz, CEO & Co-Founder von IQM Quantum Computers, im Impulsvortrag und Interview mit Stefan Drüssler.
● Ariane Hingst, ehemalige Profi-Fußballspielerin, Trainerin und Speakerin, mit ihrem Vortrag über Performance, Resilienz und Impact.
Anya Braithwait, Project Manager bei der DLD Conference, wird als erfahrene Moderatorin durch den Tag führen.
Im Fokus: cleveres Matching, effektives Networking
Beim Ultimate Demo Day 2025 dreht sich allerdings nicht alles um das exklusive Bühnenprogramm. Der Ultimate Demo Day ist ein Event, das auf Verbindung ausgelegt ist: cleveres Matching, effektives Networking und die einmalige Chance, die Menschen kennenzulernen, die deine Innovationsreise auf die nächste Stufe heben können. Wer weiß: Dein nächstes Portfolio-Start-up, dein(e) nächste(r) Investor*in oder Projektpartner*in könnte hier auf dich warten.
Prof. Dr. Helmut Schönenberger: „Der Ultimate Demo Day zeigt eindrucksvoll, welche Innovationskraft in unserem Ökosystem steckt. Wenn Start-ups, Investorinnen und Investoren sowie Industriepartner an einem Ort zusammenkommen, entstehen Lösungen, die unsere Zukunft maßgeblich gestalten.“
Auf einen Blick: Das erwartet dich beim Ultimate Demo Day 2025 am 11. Dezember 2025 im Munich Urban Colab:
● Inspirierende Keynotes, die neue Perspektiven eröffnen.
● Cleveres Matchmaking & Networking mit Investor*innen, Unternehmen und Partner*innen.
● Über 60 Start-up-Live-Pitches – mutige Visionen und Top-Innovationen, die man nicht verpassen möchte.
Hier erfährst du mehr über den Ultimate Demo Day 2025, den größten Demo Day Europas – inkl. Tickets und Ablauf des Events.
Der Ultimate Demo Day 2025 wird von UnternehmerTUM, UnternehmerTUM Funding for Innovators, TUM Venture Labs, UVC Partners, XPLORE, XPRENEURS, dem UnternehmerTUM Investor Network, dem Munich Urban Colab, der EIT Urban Mobility Initiative, der Boston Consulting Group, SAP und MakerSpace unterstützt.
Code für die künstliche Intelligenz: technische Optimierung für die Ära der KI-Suche
Code für die KI: So optimierst du deine Website technisch mit strukturierten Daten und Protokollen für die besten generativen Suchergebnisse.
Die Regeln der Online-Sichtbarkeit werden neu geschrieben. Es geht nicht mehr nur darum, von einem herkömmlichen Algorithmus indiziert zu werden. Stattdessen müssen Websites so aufbereitet werden, dass sie von künstlicher Intelligenz (KI) und großen Sprachmodellen (LLMs) fehlerfrei interpretiert und verarbeitet werden können.
KI erstellt ihre Antworten, indem sie Inhalte blitzschnell liest, deren Bedeutung versteht und die wichtigsten Fakten daraus extrahiert. Wenn der technische Unterbau einer Website unsauber ist, kann die KI die Informationen entweder nicht zuverlässig finden oder sie falsch interpretieren.
Das bedeutet, die technische Seite der Website – der Code – wird zum Fundament für eine gute Platzierung in den generativen Suchergebnissen. Wer hier Nachholbedarf hat, riskiert, als vertrauenswürdige Quelle für die KI unsichtbar zu werden.
Dieser Artikel beleuchtet die entscheidenden technischen Anpassungen, die notwendig sind, um deine Website optimal für die neue Ära der KI-Suche vorzubereiten.
Kontrolle und Zugang: Die Regeln für Sprachmodelle
Der erste technische Schritt zur Optimierung für KI-Ergebnisse ist die Steuerung des Zugriffs durch die großen Sprachmodelle (LLMs). Traditionell wird der Zugang durch die robots.txt Datei geregelt, die festlegt, welche Bereiche der Website von herkömmlichen Suchmaschinen-Crawlern besucht werden dürfen.
Mit dem Aufkommen verschiedener, spezialisierter KI-Crawler (die nicht immer identisch mit dem Googlebot oder Bingbot sind) entsteht jedoch die Notwendigkeit, diesen neuen Akteuren eigene Regeln zu geben. Es geht darum, Transparenz darüber zu schaffen, welche Daten zur Generierung von Antworten verwendet werden dürfen und welche nicht.
Neue Protokolle für neue Crawler
Experten diskutieren und entwickeln neue Protokolle, um diese Unterscheidung zu ermöglichen. Ein viel diskutierter Ansatz ist die Einführung von Protokollen, die spezifisch den Umgang mit generativer KI regeln. Dies könnte die Einführung von Protokollen wie einer llms.txt Datei beinhalten. Solche spezifischen Dateien könnten festlegen, ob ein KI-Modell Inhalte zur Schulung oder zur generativen Beantwortung von Nutzeranfragen nutzen darf.
Diese Kontrollmechanismen sind entscheidend. Sie geben den Website-Betreibern die Autorität darüber zurück, wie ihre Inhalte in der KI-Ära verwendet werden. Wer hier klare Regeln setzt, schafft die technische Grundlage für eine kontrollierte und damit vertrauenswürdige Sichtbarkeit in den KI-Ergebnissen.
Strukturierte Daten als universelle KI-Sprache
Nach der Regelung des Zugangs durch Protokolle ist die Strukturierung der Inhalte der wichtigste technische Schritt. Suchmaschinen nutzen strukturierte Daten schon lange, um Rich Snippets in den klassischen Ergebnissen anzuzeigen. Für die KI sind diese Daten jedoch absolut essenziell.
Strukturierte Daten, die auf dem Vokabular von Schema.org basieren, sind im Grunde eine Übersetzungshilfe im Code, die dem Sprachmodell den Kontext des Inhalts direkt mitteilt. Sie sind die "Sprache", die die KI am schnellsten und präzisesten versteht.
Die Bedeutung für die Generierung
Wenn ein Nutzer eine Frage stellt, sucht die KI nicht nur nach Stichwörtern, sondern nach definierten Informationstypen. Mit strukturierten Daten liefert man der KI diese Informationen als fertige, fehlerfreie Bausteine.
- Fehlerfreie Extraktion: Die KI muss keine Textpassagen interpretieren, um beispielsweise ein Rezept, die Bewertung eines Produkts oder einen FAQ-Abschnitt zu identifizieren. Die korrekte Auszeichnung macht die Daten sofort nutzbar.
- Vertrauensbildung: Fehlerhafte oder inkonsistente strukturierte Daten führen zu einer falschen Interpretation und können bewirken, dass die KI deine Seite als unzuverlässig einstuft.
Die Implementierung muss fehlerfrei sein und sollte alle relevanten Inhaltstypen der Website abdecken. Nur eine saubere Schema-Implementierung garantiert, dass deine Fakten korrekt in die generativen Antworten der KI einfließen.
Ladezeit und Interaktivität als Vertrauenssignal
Die Geschwindigkeit und die Nutzbarkeit einer Website sind in der Ära der KI-Suche nicht mehr nur ein Komfortfaktor, sondern ein entscheidendes technisches Vertrauenssignal. Wenn deine Seite langsam lädt oder schlecht bedienbar ist, wird das von der KI als Indikator für mangelnde Qualität und niedrige Autorität gewertet.
Die Basis dafür sind die sogenannten Core Web Vitals (CWVs). Diese Messwerte, die sich auf das Nutzererlebnis konzentrieren, sind feste Ranking-Faktoren und haben direkten Einfluss darauf, ob eine KI deine Seite als zitierwürdig einstuft:
- LCP (Largest Contentful Paint): Misst die Zeit, bis der größte sichtbare Inhalt geladen ist.
- FID/INP (First Input Delay / Interaction to Next Paint): Misst die Zeit bis zur ersten Interaktion und die allgemeine Reaktionsfähigkeit der Seite.
- CLS (Cumulative Layout Shift): Misst die visuelle Stabilität.
Mobile Performance ist der Schlüssel
Da ein Großteil der Online-Aktivität über mobile Geräte stattfindet, legt die KI höchsten Wert auf die Optimierung der Mobilversion. Eine schlechte mobile Performance kann das gesamte Ranking negativ beeinflussen.
Die technische Anpassung muss daher darauf abzielen, die CWVs zu perfektionieren. Dies beinhaltet die Optimierung von Bildern, das Bereinigen unnötiger Code-Lasten und das Priorisieren wichtiger Ressourcen. Eine schnell ladende und reaktionsfreudige Website signalisiert nicht nur dem Nutzer, sondern auch der KI, dass die Quelle professionell und damit vertrauenswürdig ist.
Redundanz vermeiden: kanonische Klarheit
Eines der größten technischen Probleme für KI-Modelle ist die Verwirrung durch doppelte Inhalte (Duplikate). Wenn die gleiche Information unter verschiedenen URLs verfügbar ist, weiß die KI nicht, welche die Originalquelle darstellt. Dies zersplittert deine Autorität.
Der technische Schlüssel zur Lösung ist der Canonical Tag (<link rel="canonical" ...>). Dieser Tag im Code muss auf jeder Seite korrekt auf die bevorzugte, indexierbare URL zeigen. Durch die Vermeidung von Duplikaten und die korrekte Nutzung dieses Tags stellst du technisch sicher, dass die KI deine Inhalte als eindeutig und autoritär wahrnimmt und dich als zuverlässigen Faktenlieferanten zitiert.
Schlussworte
Die Zukunft der Online-Sichtbarkeit wird durch künstliche Intelligenz neu definiert. Der Erfolg hängt von einer technisch sauberen Vorbereitung ab.
Die wichtigsten Schritte in der Generative Engine Optimization (GEO) sind:
1. Zugangskontrolle durch Protokolle wie die diskutierte llms.txt Datei.
2. Die Nutzung von strukturierten Daten als unverzichtbare KI-Sprache.
3. Die Perfektionierung der Core Web Vitals als Vertrauenssignal.
4. Die Vermeidung von Duplikaten durch kanonische Klarheit.
Investiere in diese technische Qualität, um Autorität und Sichtbarkeit in der Ära der KI-generierten Antworten zu sichern.
eleQtron: It's MAGIC
In nur fünf Jahren vom Laborgerät zum 24/7-betriebenen Quantencomputer: Wie das 2020 von Jan Leisse, Christof Wunderlich und Michael Johanning gegründete eleQtron mit seiner MAGIC-Technologie neue Wege ebnet.
Was ihr da macht, ist der Wahnsinn – und genau deswegen bin ich dabei.“ Mit diesen Worten beschreibt Jan Leisse, einer der Gründer von eleQtron, die Anfänge des Unternehmens. Das erste Treffen mit dem Physiker Christof Wunderlich war geprägt von einer Mischung aus Skepsis und Begeisterung. Der Wissenschaftler hatte an der Universität Siegen einen Quantencomputer gebaut – mitten in der deutschen Provinz und ohne das Millionenbudget, das Konzernen wie Google oder IBM zur Verfügung steht. Doch genau das reizte Leisse: „Hier wurde nicht einfach nachgemacht, was andere tun. Hier wurde Neuland betreten.“
Es war ein ungewöhnlicher Ort für eine bahnbrechende
Innovation in der Quantentechnologie. Siegen, eine Mittelstadt im Süden Nordrhein-Westfalens, ist nicht gerade als Hotspot für Hochtechnologie bekannt. Doch manchmal entstehen die Top-Innovationen fernab der etablierten Zentren; die Universität Siegen hatte über Jahre hinweg eine bemerkenswerte Expertise in der Quantenphysik aufgebaut, ohne große mediale Aufmerksamkeit.
Von der Universität ...
Im Jahr 2020, als das globale Interesse an Quantentechnologien exponentiell zunahm, erwuchs aus dieser mutigen Pionierarbeit das Start-up eleQtron – als Spin-off der Universität Siegen. Die Gründer – Jan Leisse, Christof Wunderlich und Michael Johanning – verbindet eine Vision: Quantencomputer für industrielle Anwendungen nutzbar zu machen.
Die Anfangsjahre waren geprägt von Experimentierfreude, Improvisation und dem festen Glauben an die eigene technologische Innovationskraft. Während Tech-Giganten wie IBM, Google und Amazon Milliarden Euro in ihre Quantenprogramme investierten und viele Start-ups auf bekannte Technologien setzten, wagte eleQtron den Schritt in eine völlig neue Richtung.
In den Laboren der Gründer entstand die sogenannte MAGIC-Technologie (Magnetic Gradient Induced Coupling), eine Methode, Qubits (das Quantencomputing-Äquivalent zum klassischen Bit in der Digitaltechnik) nicht wie bislang üblich mit Lasern, sondern mit Mikrowellen zu steuern.
... zum technologischen Durchbruch
Die MAGIC-Technologie basiert auf einem raffinierten Zusammenspiel physikalischer Prinzipien: Magnetische Gradienten (räumliche Veränderungen der Magnetfeldstärke) ermöglichen es als lokale Felder, einzelne Ionen in einer sogenannten Falle selektiv anzusprechen. Die technischen Vorteile sind beeindruckend: Die Fidelity (Genauigkeit) bei Operationen an einzelnen Qubits liegt bei etwa 99,95 Prozent, die Gate-Zeiten (Gate-Zeit steht für die Dauer, die ein Quanten-Gate benötigt, um eine Operation auf einem Qubit auszuführen) betragen nur wenige Mikrosekunden. Gleichzeitig ermöglicht die Technologie eine bessere Skalierbarkeit, da sich Mikrowellenfelder einfacher erzeugen und verteilen lassen als komplexe Lasersysteme. „Der Vorteil liegt nicht nur in der höheren Präzision, sondern auch in der deutlich geringeren Komplexität der Systeme“, erklärt Johanning. „Wir brauchen keine aufwändigen Optiken oder ultrastabile Umgebungen. Unsere Technologie funktioniert auch unter realen Bedingungen.“
Früh erkannten die drei Forscher das große Potenzial ihrer Technologie für praktische Anwendungen. „Durch das gezielte Ersetzen sensibler High-End-Komponenten – insbesondere Lasertechnologie – durch bewährte Mikrowellentechnik und Elektronik, vermeiden wir unnötige Komplexität, minimieren Aufwand und senken die Kosten“, fasst es Leisse zusammen.
Wachstumsschub und strategische Entwicklung
2022 gelang eleQtron ein entscheidender Schritt: Durch Earlybird und den Siegerlandfonds als Investoren sowie das vom BMBF geförderte Projekt „MAGIC App“ sicherte sich das Start-up eine Finanzierung in Höhe von 16 Millionen Euro. Diese Finanzierungsrunde war ein Wendepunkt für das Unternehmen und signalisierte das Vertrauen der Investor*innen in die MAGIC-Technologie.
„Mit diesem Kapitalschub konnten wir von einer reinen Forschungsorganisation zu einem echten Technologieunternehmen werden“, erklärt Leisse. Die Mittel flossen in den Ausbau der Produktionskapazitäten, die Vergrößerung des Teams und die Weiterentwicklung der Technologie-Roadmap. Auch die Mitwirkung von Infineon im Rahmen von MAGIC App war strategisch von Bedeutung: „Die Zusammenarbeit mit Infineon hat uns die Augen für die Realitäten des Industriemarkts geöffnet“, erklärt Leisse.
Indirekter Einkauf: Versteckter Kostenfresser oder unentdeckter Goldschatz?
Im Interview sprechen wir mit Bettina Fischer, Gründerin von Hivebuy, über die Chancen und Risiken des indirekten Einkaufs und darüber, wie Unternehmen mit der richtigen Software Kosten senken und Prozesse optimieren können.
In vielen Unternehmen wird der indirekte Einkauf häufig unterschätzt – dabei liegen hier oft erhebliche Einsparpotenziale verborgen. Durch die wachsende Digitalisierung und die zunehmende Verfügbarkeit von B2B eCommerce-Plattformen bestellen Mitarbeitende Waren und Dienstleistungen immer häufiger außerhalb klassischer Einkaufsprozesse. Diese Entwicklung bringt einerseits Flexibilität und Effizienz, stellt Unternehmen aber auch vor neue Herausforderungen: Wie lassen sich Ausgaben kontrollieren und Transparenz über die gesamte Einkaufskette sicherstellen?
Die beste Einkaufssoftware für den Mittelstand adressiert genau diese Herausforderungen. Hivebuy hat sich als moderne, benutzerfreundliche Lösung etabliert, die den indirekten Einkaufsprozess von der Bestellung bis zur Rechnungsprüfung digitalisiert und automatisiert. Die Software integriert sich nahtlos in bestehende ERP-, Buchhaltungs- und Kommunikationstools wie SAP, Microsoft Dynamics, Teams oder Slack – und das ohne aufwändige technische Implementierung.
Gegründet von erfahrenen Einkaufs- und Finanzexpert*innen aus Frustration über bisherige Lösungen, verfolgt Hivebuy die Mission, versteckte Kosten sichtbar zu machen, Budgets in Echtzeit zu kontrollieren und Einkaufsprozesse effizienter zu gestalten. Mit höchsten Sicherheitsstandards, inklusive ISO/IEC 27001-Zertifizierung und DSGVO-konformer Datenhaltung in Deutschland, schafft Hivebuy Transparenz und Vertrauen entlang der gesamten Einkaufskette.
Im Interview sprechen wir mit Bettina Fischer, Gründerin von Hivebuy, über die Chancen und Risiken des indirekten Einkaufs und darüber, wie Unternehmen mit der richtigen Software Kosten senken und Prozesse optimieren können.
StartingUp: Frau Fischer, viele Unternehmen sehen im indirekten Einkauf eher einen Kostenfaktor, der schwer zu kontrollieren ist. Was macht den indirekten Einkauf aus Ihrer Sicht zu einem versteckten Kostenfresser?
Bettina Fischer: Die große Herausforderung im indirekten Einkauf liegt darin, dass die einkaufenden Personen über das gesamte Unternehmen verteilt sind – anders als im direkten Einkauf, wo spezialisierte Einkaufsabteilungen tätig sind. Das bedeutet: Jede*r Mitarbeitende, der oder die einmal etwas bestellt, wird zum Einkäufer oder zur Einkäuferin – oft ohne die notwendige Erfahrung in Einkaufsprozessen.
Dadurch entstehen typische Muster: Es wird bei bekannten Lieferanten bestellt – oft aus dem privaten Umfeld, wie etwa Amazon Business – ohne Preisvergleiche, ohne Berücksichtigung von Lieferzeiten oder bereits verhandelten Konditionen. Das führt schnell zu ineffizienten und teuren Entscheidungen.
Hinzu kommt, dass im indirekten Einkauf eine hohe Produktvielfalt auf eine extrem heterogene Lieferantenlandschaft trifft. Das erschwert es, durch Bündelung bessere Konditionen zu erzielen. Es fehlt die klare, strategische Beziehung zu bestimmten Lieferanten – und genau dort entstehen die versteckten Kosten.
StartingUp: Wie hilft Hivebuy Mittelständlern konkret dabei, diese versteckten Kosten aufzudecken und zu reduzieren?
Bettina Fischer: Hivebuy verfolgt einen ganzheitlichen Ansatz, um die Herausforderungen des indirekten Einkaufs zu lösen. Zum einen ermöglichen wir es Mitarbeitenden, direkt über integrierte Lieferanten zu bestellen. Das bedeutet: Die Bestellungen erfolgen zentral über Hivebuy – ohne Umwege über externe Plattformen oder individuelle Beschaffungswege. Die Bestellübermittlung ist automatisiert und erfolgt effizient über unser System.
Darüber hinaus bietet Hivebuy einen integrierten Preisvergleich für B2B-Webshops. So wird sichergestellt, dass stets der beste Preis und die optimalen Lieferzeiten berücksichtigt werden – ein entscheidender Hebel zur Kostensenkung.
Ein weiterer zentraler Punkt ist die Budgetkontrolle: Sobald eine Bestellanforderung erstellt wird, sehen Budgetverantwortliche sofort die Auswirkungen auf ihr Budget – in Echtzeit. Dadurch lassen sich Entscheidungen schnell, fundiert und transparent treffen.
Auch die Freigabeprozesse sind flexibel und konfigurierbar: Mitarbeitenden wird Freiheit für alltägliche Bestellungen gegeben, während bei kritischen oder kostenintensiven Vorgängen automatische Eskalationen und Genehmigungen greifen.
Nicht zuletzt ermöglicht Hivebuy dem Einkauf, sein Wissen an die Organisation weiterzugeben. Vorverhandelte Verträge, Katalogartikel oder bevorzugte Lieferanten sind direkt im System sichtbar – wie ein digitaler Einkaufsberater im Hintergrund. So treffen selbst unerfahrene Nutzer bessere Entscheidungen – ganz im Sinne von Kostenkontrolle und Prozesssicherheit.
StartingUp: Ihre Software ist bekannt für ihre Nutzerfreundlichkeit. Wie schaffen Sie es, auch nicht-einkaufserfahrene Mitarbeitende einzubinden?
Bettina Fischer: Benutzerfreundlichkeit steht bei Hivebuy an oberster Stelle. Wann immer wir eine neue Funktion entwickeln, testen wir diese gemeinsam mit unseren Nutzerinnen und Nutzern – direkt aus der Praxis. Unser Ziel ist es, dass Hivebuy genauso intuitiv bedienbar ist wie eine Online-Überweisung: Jeder soll auf Anhieb verstehen, was zu tun ist.
Mit Funktionen wie unserem B2B-Preisvergleich und dem sogenannten Guided Buying führen wir Mitarbeitende gezielt durch den Einkaufsprozess – Schritt für Schritt, ganz ohne Schulungsaufwand. So wird selbst komplexes Einkaufswissen einfach zugänglich gemacht.
Für Freigabeverantwortliche haben wir zusätzlich eine besonders komfortable Lösung geschaffen: Freigaben können direkt über Messenger-Apps wie Microsoft Teams erteilt werden – ohne sich ins System einloggen zu müssen. Die relevanten Informationen kommen automatisch dorthin, wo man ohnehin schon arbeitet – aufs Handy oder den Desktop. Das senkt die Einstiegshürden enorm und sorgt für eine breite Akzeptanz im gesamten Unternehmen.
StartingUp: Welche Rolle spielen Transparenz und Echtzeit-Reporting in der Budgetkontrolle?
Bettina Fischer: Wir sind überzeugt: Budgetkontrolle funktioniert nur in Echtzeit. Es bringt wenig, wenn Budgetübersichten nur monatlich, quartalsweise oder gar halbjährlich zur Verfügung stehen. Entscheidungen im Einkauf werden täglich getroffen – also muss auch die Budgettransparenz jederzeit aktuell sein.
Deshalb haben wir bei der Entwicklung von Hivebuy besonderen Fokus auf eine unmittelbare Budgeteinsicht gelegt. Sobald eine Bestellung angefragt wird, sieht der oder die Budgetverantwortliche sofort, wie sich diese auf das verfügbare Budget auswirkt. Diese Echtzeit-Transparenz ist ein zentrales Element unserer Software.
Gleichzeitig möchten wir Mitarbeitende befähigen, innerhalb ihrer Befugnisse selbstständig Entscheidungen zu treffen. Nicht jede Anfrage muss durch mehrere Instanzen laufen. Vielmehr setzen wir auf smarte, automatisierte Prozesse – kombiniert mit dem Vertrauen in die Souveränität der Nutzer. Das spart nicht nur Zeit, sondern steigert auch die Effizienz und Zufriedenheit im Unternehmen.
StartingUp: Die Einführung neuer Software bedeutet oft hohen Aufwand. Wie gestaltet sich die Implementierung von Hivebuy?
Bettina Fischer: Ich habe selbst über viele Jahre ERP- und Einkaufssoftwareprojekte geleitet – und ehrlich gesagt: Es war jedes Mal ein enormer Aufwand. Genau diese Erfahrungen haben mich dazu motiviert, Hivebuy so zu entwickeln, dass Implementierung eben nicht zur Belastung wird.
Unsere Lösung ist bewusst so aufgebaut, dass sie schnell, unkompliziert und ohne großen IT-Aufwand eingeführt werden kann. Neue Unternehmen können innerhalb kürzester Zeit starten – oft sogar innerhalb eines Tages mit einem eigenen Testsystem.
Die Einführung begleiten wir durch leicht verständliche Videotutorials und Onboarding-Materialien. Darüber hinaus gibt es persönliche Sessions, in denen die Nutzer befähigt werden, das System selbstständig für ihr Unternehmen zu konfigurieren. Schnittstellen zu ERP-Systemen wie SAP, Microsoft Dynamics oder DATEV richten wir in der Regel innerhalb weniger Stunden bis Tage ein.
Wenn beide Seiten fokussiert an das Projekt herangehen, können wir bei Unternehmen mit mehreren tausend Mitarbeitenden innerhalb von acht Wochen vollständig live gehen – inklusive Integration, Schulung und Rollout.
StartingUp: Wie unterstützt Hivebuy IT-Teams und technische Entscheider bei der Integration?
Bettina Fischer: Unsere größte Stärke in der Zusammenarbeit mit IT-Teams ist unsere Schnelligkeit. Bereits im ersten Kick-Off mit der IT tauschen wir alle relevanten technischen Dokumentationen aus, klären die Rahmenbedingungen und ermöglichen in kürzester Zeit die Integration in ein Testsystem. Wir verzichten bewusst auf langwierige Business-Blueprint-Phasen und setzen stattdessen auf eine praxisnahe, direkte Umsetzung.
Hivebuy verfolgt eine klare Integration-First-Strategie. Das bedeutet: Unsere Lösung ist von Grund auf so konzipiert, dass sie sich schnell und flexibel in bestehende ERP-Systeme und IT-Landschaften integrieren lässt. Für alle gängigen Systeme – ob SAP, Microsoft Dynamics, DATEV oder NetSuite – stellen wir vollständige Schnittstellen-Dokumentationen zur Verfügung.
Mein Mitgründer Stefan Kiehne bringt aus seiner Zeit bei PwC tiefes technisches Know-how mit und hat zahlreiche ERP-Implementierungen verantwortet. Dieses Wissen fließt direkt in unsere Projekte ein. Inzwischen haben wir Hivebuy in so viele verschiedene Systeme integriert, dass kaum noch Überraschungen aufkommen. Für IT-Verantwortliche bedeutet das: minimale Unsicherheiten, schnelle Umsetzung und maximale Kompatibilität.
StartingUp: Wie sieht die Zukunft des indirekten Einkaufs aus? Welche Trends beobachten Sie?
Bettina Fischer: Ich sehe im indirekten Einkauf ganz klar einen Wandel hin zu intelligenter Automatisierung und echter Transparenz. Schon heute beobachten wir den Trend in Richtung „Agent AI“ – also digitale Einkaufsassistenten, die Nutzer durch Prozesse begleiten und Entscheidungen mit datenbasierten Empfehlungen unterstützen. Das wird sich in den nächsten Jahren deutlich verstärken.
Was mich persönlich schon lange wundert: Im B2C-Bereich haben wir mit Plattformen wie Idealo längst Preis- und Konditionsvergleiche. Im B2B gibt es das kaum. Deshalb war es uns wichtig, mit Hivebuy eine Lösung zu schaffen, die genau das möglich macht – inklusive der hinterlegten, unternehmensspezifischen Konditionen. Das ist ein echter Gamechanger.
In Zukunft wird der indirekte Einkauf zunehmend automatisiert ablaufen – von der Bedarfserkennung bis hin zur Bestellung. Vergleichbar mit einem intelligenten Kühlschrank, der automatisch Milch nachbestellt, wird auch im Unternehmen vieles automatisch geschehen: Bedarfe erkennen, Angebote vergleichen, Bestellungen auslösen – ganz ohne manuelles Zutun.
Strategische Beschaffung wird dabei zur Grundlage. Das Ziel ist nicht, jede Bestellung individuell zu behandeln, sondern Prozesse zu standardisieren, auf Unternehmensziele auszurichten und individuelle Bedarfe intelligent einzubinden.
Und auch die Rückseite des Einkaufs wird sich stark verändern: Rechnungsprüfung, Buchung und Zahlungsfreigabe werden zunehmend automatisiert ablaufen. In einer idealen Zukunft brauchen wir keine manuelle Rechnungserfassung mehr – weil alles systemgestützt, regelbasiert und transparent funktioniert.
StartingUp: Vielen Dank für das Gespräch, Frau Fischer. Ihre Einblicke verdeutlichen, wie entscheidend es für Unternehmen ist, den indirekten Einkauf transparent und effizient zu gestalten. Mit Lösungen wie Hivebuy können Mittelständler versteckte Kosten sichtbar machen und ihre Beschaffungsprozesse nachhaltig optimieren. Wir wünschen Ihnen weiterhin viel Erfolg bei Ihrer Mission, Einkaufsteams bestmöglich zu unterstützen.
EU AI Act: Status quo
Recht für Gründer*innen: der EU AI Act. Wo stehen wir in Sachen Umsetzung? Was Gründer*innen und Start-ups jetzt wissen müssen.
Künstliche Intelligenz (KI) ist längst kein Zukunftsthema mehr, sondern prägt schon heute Geschäftsmodelle, Investitionsentscheidungen und die Arbeitswelt. Mit der europäischen KI-Verordnung (EU AI Act, im Folgenden AI Act) wurde im Frühjahr 2024 der weltweit erste umfassende Rechtsrahmen für den Einsatz von KI verabschiedet. Inzwischen sind die ersten Regelungen in Kraft getreten. Für Gründer*innen und Start-ups bedeutet das nicht nur zusätzliche Pflichten, sondern auch Chancen, sofern sie sich rechtzeitig vorbereiten.
Überblick: Der AI Act
Die Verordnung folgt einem risikobasierten Ansatz: Je höher das Risiko für Grundrechte oder Sicherheit, desto strenger die Anforderungen. Auf der untersten Stufe stehen KI-Systeme, die keinerlei Vorgaben erfüllen müssen, solange sie nicht in verbotene Anwendungsfälle fallen. An der Spitze der Regulierungspyramide befinden sich die sogenannten HochrisikoSysteme, also etwa Anwendungen in der medizinischen Diagnostik, in kritischer Infrastruktur oder bei biometrischen Verfahren. Viele Tools aus dem HR-Bereich fallen darunter.
Daneben bestehen besondere Pflichten für sogenannte Generative KI beziehungsweise General Purpose AI, eingeführt, also große Modelle, die viele Anwendungen treiben und „systemische Risiken“ entfalten können.
Wichtig ist zu wissen, dass die Vorgaben schrittweise gelten. Bereits seit dem 2. Februar 2025 sind bestimmte Praktiken ausdrücklich verboten – zum Beispiel das Social Scoring von Bürger*innen, die flächendeckende Emotionserkennung in Schulen oder am Arbeitsplatz sowie das unkontrollierte Sammeln biometrischer Daten. Wer damit noch experimentiert, bewegt sich schon jetzt im rechtswidrigen Raum.
Seit dem 2. August 2025 gelten außerdem die ersten Pflichten für Anbieter*innen von generativen Modellen. Sie müssen unter anderem Transparenzberichte veröffentlichen und Angaben zu den verwendeten Trainingsdaten machen. Für Modelle, die bereits vor Inkrafttreten am Markt waren, gibt es eine Übergangsfrist bis 2027. Für viele Unternehmen, die solche Modelle nutzen oder in Produkte einbetten, bedeutet das, genau hinzuschauen, welche Informationen von den Modellanbieter*innen zur Verfügung gestellt werden. Sonst können eigene Transparenzpflichten womöglich nicht erfüllt werden.
Noch weiter in der Zukunft liegen die Vorschriften für Hochrisiko-Systeme. Diese greifen ab 2. August 2026 und verlangen ein umfassendes Risikomanagement, eine strenge Qualität der Trainingsdaten, eine lückenlose Protokollierung und eine Konformitätsbewertung, bevor ein Produkt überhaupt in Verkehr gebracht werden darf. Für Hochrisiko-KI, die in ohnehin streng regulierten Produkten steckt, zum Beispiel in Medizinprodukten, gilt eine verlängerte Frist bis 2027.
Konformitätsbewertung heißt vor allem Risikobewertung, welche die Anbieter*innen oder Betreiber*innen selbst durchführen müssen. Eine solche „regulierte Selbstregulierung“ ist ein klassisches Merkmal einer solchen klassischen Produktregulierung und Marktüberwachung.
Was fehlt? Guidance und Governance
Noch herrscht allerdings an vielen Stellen Unsicherheit. Zwar hat die EU-Kommission schon erste Leitlinien veröffentlicht, etwa zur Definition von KI-Systemen oder zu den verbotenen Praktiken. Auch für Anbieter*innen generativer KI gibt es inzwischen ein detailliertes Dokumentationsmuster. Noch fehlen allerdings die angekündigten Handreichungen für die Einstufung und Risikobewertung von Hochrisiko-Systemen, die bis Februar 2026 folgen und praktische Beispiele enthalten sollen. Bis dahin bleibt nur, sich für die Bewertung an bestehenden internationalen Standards zu orientieren, zum Beispiel an den Normungsprojekten der Europäischen Komitees für Normung und für elektrotechnische Normung.
Auf Unionsebene entstehen parallel die neuen Governance-Strukturen. Das AI Office innerhalb der Kommission ist bereits aktiv und koordiniert die Umsetzung. Das AI Board, ein Gremium der Mitgliedstaaten, tagt regelmäßig und stimmt Vorgehensweisen ab. Ein wissenschaftliches Panel unabhängiger Expert*innen wurde im Frühjahr eingerichtet, und das Advisory Forum, das die Perspektive von Unternehmen und Zivilgesellschaft einbringen soll, befindet sich gerade in der Bewerbungsphase. Auch die geplante EU-Datenbank für Hochrisiko-Systeme existiert bisher nur auf dem Papier. Ab 2026 müssen Anbieter*innen ihre Systeme dort registrieren; die Plattform selbst wird jedoch gerade erst aufgebaut.
Und wo steht Deutschland?
Auch hierzulande hakt es noch etwas. Eigentlich hätten die Mitgliedstaaten bis 2. August 2025 ihre Marktüberwachungsbehörden benennen müssen. Ein Entwurf für das deutsche Umsetzungsgesetz sieht die Bundesnetzagentur als zentrale Aufsicht vor, doch die formale Benennung ist noch nicht erfolgt. Klar ist, dass die Bundesnetzagentur die Rolle der Notifizierungsbehörde übernimmt, also für die Anerkennung von Konformitätsbewertungsstellen zuständig ist. Zudem entsteht dort ein Kompetenzzentrum für KI, das die Arbeit von Bund und Ländern koordinieren soll.
Reallabore
Ein Bereich, der für KI-Entwickler*innen besonders interessant ist, sind KI-Reallabore, also sichere Testumgebungen, in denen neue Anwendungen unter Aufsicht erprobt und darauf geprüft werden können, ob sie den rechtlichen Rahmen einhalten. Bis zum Sommer 2026 müssen die Mitgliedstaaten mindestens ein solches Reallabor einrichten. Deutschland hat im Mai 2025 ein erstes Pilotprojekt in Hessen gestartet, gemeinsam mit der Bundesnetzagentur und der Bundesdatenschutzbeauftragten. Hier werden reale Unternehmensfälle durchgespielt, um Abläufe und Bedarfe besser zu verstehen. Solche Projekte können eine wertvolle Möglichkeit sein, mit den Aufsichtsbehörden auf Augenhöhe ins Gespräch zu kommen.
Reaktionen
Der AI Act wird zwar kritisch diskutiert, im Grundsatz aber breit akzeptiert. Gerichtliche Klagen direkt gegen die Verordnung gibt es bislang nicht. In der juristischen Literatur überwiegt die Zustimmung zur Zielrichtung. Kritisiert werden vor allem die Komplexität und die noch offenen Fragen bei der praktischen Umsetzung. Streitpunkte finden sich eher außerhalb der Verordnung bei der Frage, ob Trainingsdaten urheberrechtlich geschützt sind oder wie personenbezogene Daten für KI genutzt werden dürfen.
Die Industrie zeigt ein gemischtes Bild. Viele große Anbieter*innen – von Google über OpenAI bis Mistral – haben einen freiwilligen Verhaltenskodex unterzeichnet. Andere, wie etwa Meta, haben sich bewusst dagegen entschieden. Man muss sich also darauf einstellen, dass je nach Anbieter*in sehr unterschiedliche Informationen und Compliance-Nachweise verfügbar sind.
Andererseits wirkt der AI Act bereits am Markt. In öffentlichen Ausschreibungen tauchen Modellklauseln auf, die auf die KI-Verordnung Bezug nehmen. Investor*innen fragen verstärkt nach Compliance-Prozessen, und Unternehmen beginnen, interne Strukturen für Risikomanagement und Dokumentation aufzubauen.
Im Vergleich zu Europa gibt es in den USA bislang nur freiwillige Standards. Die dort bei der Entwicklung und Anwendung von KI (angeblich) vorherrschende größere Freiheit wird zwar viel gerühmt. Einzelne Bundesstaaten wie Colorado arbeiten allerdings an eigenen regulierenden Gesetzen, die ab 2026 greifen sollen. Vielleicht ist es also ein Vorteil, dass europäische Start-ups früh Erfahrungen in einem regulierten Markt sammeln können.
Fazit
Der AI Act entfaltet bereits jetzt Wirkung, auch wenn viele Details erst in den kommenden Monaten geklärt werden. Daher gilt es, nicht abzuwarten, sondern jetzt eine eigene Roadmap zu entwickeln. Wer früh Prozesse für Risikomanagement, Transparenz und Governance etabliert, wird nicht nur rechtlich auf der sicheren Seite sein, sondern auch Vertrauen bei Kund*innen und Investor*innen gewinnen.
Die EU hat ein klares Signal gesetzt: KI soll innovativ sein, aber auch sicher und vertrauenswürdig. Für Start-ups ist das eine Herausforderung – aber auch eine Chance, sich von Anfang an professionell aufzustellen und den Markt aktiv mitzugestalten.
Der Autor Dr. Daniel Michel, LL.M. ist als Rechtsanwalt im Bereich IT/IP/Technologie tätig und betreibt seit 2018 mit DATA LAW COUNSEL seine eigene Rechtsberatung im Raum München
Warum KI bei Förderanträgen versagt
Fünf Gründe, warum Unternehmen auf menschliche Intelligenz setzen sollten.
Ob steuerliche Forschungszulage, Investitionsförderung oder EU-Programme. Künstliche Intelligenz (KI) wie ChatGPT liefert in Sekundenschnelle eine Vielzahl möglicher Förderprogramme. Doch zwischen der reinen Information und der tatsächlichen Erschließung von Fördermitteln liegt ein erheblicher Unterschied. Hier gilt es, Unternehmen zu sensibilisieren.
Fördermittel sind heute ein strategischer Bestandteil moderner Unternehmensfinanzierung. Es reicht daher nicht, die Programme zu kennen. Entscheidend ist, sie rechtssicher, vollständig und förderlogisch aufeinander abgestimmt umzusetzen, um die vollen Förderpotenziale zu heben. Genau hier beginnt die Arbeit von Fördermittelexpert*innen.
Fünf Gründe, warum KI-Tools nicht als Fördermittelberater funktionieren
1. KI erkennt die wahren Förderpotenziale nicht
ChatGPT kann erklären, was ein Förderprogramm leistet. Doch welche Kosten eines konkreten Vorhabens tatsächlich und wie hoch förderfähig sind, lässt sich so nicht beurteilen. Gerade bei komplexen Programmen wie der steuerlichen Forschungszulage sind Erfahrung, Struktur und rechtssichere Abgrenzung entscheidend. Eine gute Fördermittelberatung prüft jedes Vorhaben systematisch: von der Förderfähigkeit nach dem Forschungszulagengesetz (FZulG), AGVO oder De-minimis-Verordnung bis hin zur klaren Trennung förderfähiger und nicht förderfähiger Aufwände.
2. KI kann keine Förderstrategien entwickeln
Eine Liste von Förderprogrammen ersetzt keine Strategie. KI kann nur Optionen nennen, aber keine Strategien zur Umsetzung im Unternehmen entwickeln. Eine gute Fördermittelberatung integriert die Forschungszulage sinnvoll in laufende Projekte und strukturiert Innovations- sowie Investitionsprozesse auf Bundes-, Landes- und EU-Ebene. So entstehen nicht nur Optionen, sondern belastbare, wirtschaftlich wirksame Lösungen.
3. KI kann nicht mit Menschen kommunizieren
Ein Antrag ist mehr als ein Formular. Er muss Anforderungen erfüllen und überzeugen. KI liefert Textbausteine, aber führt keine Gespräche und reagiert nicht auf Rückfragen mit der notwendigen Erfahrung in der Verwaltungspraxis der verschiedenen Förderprogramme. Eine gute Fördermittelberatung übernimmt die gesamte Kommunikation mit Förderstellen, koordiniert mit Bescheinigungsstellen und entwickelt formal korrekte und überzeugende Argumentationen.
4. KI endet beim Prompt – Fördermittelberatung bei der erfolgreichen Projektprüfung
Nach dem Antrag geht die Arbeit oft erst richtig los. Rückfragen, Prüfungen, Nachweise. KI kann Unternehmen dabei nicht unterstützen und keine Verantwortung übernehmen. Eine gute Fördermittelberatung hingegen begleitet die Kund*innen durch den gesamten Förderzyklus mit sauberer Dokumentation, revisionssicherer Aufbereitung und Unterstützung bei Audits und Außenprüfungen.
5. KI zeigt nur den Dschungel – Förderexperten finden den Schatz
Datenbanken geben einen Überblick, aber keine Richtung. Eine gute Fördermittelberatung bewertet alle denkbar möglichen Förderprogramme im konkreten Unternehmenskontext und entwickelt daraus konkrete Maßnahmen, um das Maximum an Fördermöglichkeiten für die Kund*innen rauszuholen. Eine gute Fördermittelberatung schafft so echte wirtschaftliche Vorteile statt der bloßen Auflistung von Fördermöglichkeiten.
Der Autor Efe Duran Sarikaya ist CEO der Fördermittelberatung EPSA Deutschland.
Die Rolle von natürlichem Licht in modernen Architekturkonzepten
Natürliches Licht gilt als einer der zentralen Bausteine zeitgemäßer Baugestaltung. Wie moderne Gebäudeplanungen Licht gezielt als formgebendes Element einsetzt.
Architekten und Bauherren setzen zunehmend auf großflächige Fensterfronten, Dachverglasungen oder offene Raumkonzepte, um Innenräume mit ausreichend Helligkeit zu versorgen. Dabei spielt nicht nur die ästhetische Komponente eine Rolle: Tageslicht wird auch mit einem gesunden Lebensumfeld, größerem Wohlbefinden und einer verbesserten Leistungsfähigkeit in Verbindung gebracht. Diese Erkenntnis hat dazu geführt, dass moderne Gebäudeplanungen das Licht gezielt als formgebendes Element einsetzen. Insbesondere in urbanen Gebieten ist der kluge Umgang mit Sonnenlicht eine anspruchsvolle, aber lohnende Aufgabe.
Das wachsende Bewusstsein für Lichtqualität
In jüngster Zeit interessieren sich immer mehr Fachleute für die Optimierung von Gebäudehüllen und deren lichttechnische Eigenschaften. Passende Lösungen entstehen unter anderem durch hochwertige Tageslichtsysteme, die sowohl in ökologischer als auch ökonomischer Hinsicht von Vorteil sind. Dabei wird den Bewohnern oder Nutzern eine angenehme, gleichmäßige Belichtung geboten, ohne dass sie von übermäßigem Wärmeeintrag oder blendendem Sonnenlicht beeinträchtigt werden. Neben der visuellen Wirkung zählt hier auch die thermische Performance: Ein strukturiertes Vorgehen bei der Auswahl von Filtern, Glasarten und Verschattungslösungen begünstigt ein stimmiges Raumklima, das einen hohen Wohn- und Arbeitskomfort generiert.
Architektonische Vielfalt dank Tageslicht
Die Integration von Fenstern, Oberlichtern und transparenten Fassadenelementen ermöglicht eine außergewöhnliche Flexibilität in der Raumgestaltung. Spezialisierte Fachleute beschäftigen sich mit Tageslichtarchitektur, um neue Wege zu eröffnen, Lichtstreuung und -lenkung auf innovative Art zu realisieren. Nicht zuletzt profitieren junge Unternehmen davon, wenn sie derartige Belichtungsaspekte geschickt einsetzen und im Rahmen ihres Marketing-Konzepts die Attraktivität ihrer Räumlichkeiten sichtbar hervorheben. Hohe Räume, diverse Lichtquellen und die gezielte Einbindung von Fassadenelementen geben Bauherren die Möglichkeit, sich an die Bedürfnisse der Nutzerinnen und Nutzer anzupassen und ein stimmiges, einladendes Gesamtbild zu erschaffen.
Energieeffizienz und Gesundheit
Wer auf eine durchdachte Tageslichtplanung setzt, profitiert von einer gewinnbringenden Symbiose aus ökologischem und ökonomischem Mehrwert. Die angemessene Einbindung von Sonnenstrahlen reduziert künstliche Beleuchtung und kann durch sinnvolle Bauphysik -Konzepte auch den Heiz- und Kühlaufwand minimieren. Gleichzeitig enden die Vorzüge nicht bei nachhaltig niedrigen Energiekosten: Studien legen nahe, dass natürliches Licht das Wohlbefinden fördert und geistige Prozesse positiv beeinflussen kann. Indem Räume gleichmäßig und blendfrei ausgeleuchtet werden, profitieren Angestellte oder Bewohner von einer entspannten Atmosphäre, die Stress mindert und Konzentration steigert. Darüber hinaus wirkt ein gutes Lichtkonzept stimmungsvoll und angenehm, was sich auf Motivation und Produktivität auswirken kann.
Materialauswahl und technologische Innovationen
Moderne Bauprojekte setzen häufig auf spezifische Gläser, Membranen und Metallkonstruktionen, um diffuses, aber dennoch ausreichendes Sonnenlicht zu gewinnen. Eine ausgeglichene Balance zwischen Wärmeschutz und Belichtungsintensität bedeutet für Investoren und Planer zugleich höhere Miet- oder Verkaufschancen. Wer in die Praxis blickt, stellt fest, dass sich die Materialinnovation stetig weiterentwickelt: Von mehrschichtigen Isoliergläsern bis hin zu smarten Beschichtungen ist das Angebot überaus reichhaltig. Diese Vielfalt erlaubt Bauherren, ein maßgeschneidertes Konzept zu wählen, das exakte Vorstellungen hinsichtlich Energieeffizienz, Komfort und Design berücksichtigt. Dabei ist die umfassende Beratung durch Spezialisten wesentlich, um jedes Detail zu perfektionieren.
Planungsaspekte für moderne Gebäude
Bei modernen Bauvorhaben lässt sich beobachten, dass Architektinnen und Architekten natürliche Lichtquellen bereits frühzeitig in die Entwürfe einbeziehen. Die Lichtführung, das Zusammenspiel von Ausrichtung und Verschattung sowie die räumlichen Proportionen sind nur einige Faktoren, die für das Gesamtergebnis entscheidend sind. Auch städtebauliche Gegebenheiten wie benachbarte Gebäude oder der vorhandene Baumbestand spielen eine Rolle. Darüber hinaus sind bauordnungsrechtliche Vorschriften zu berücksichtigen, damit der Lichteinfall technisch und rechtlich harmonisch umgesetzt wird. Ein kompetentes Team aus Statikern, Bauphysikern und Designern gleicht diese Parameter untereinander ab.
Gestalterische Freiheit durch Tageslichtlösungen
Da Sonnenlicht eine natürliche Dynamik besitzt, verändert es sich abhängig von Tages- und Jahreszeit. Dieses Wechselspiel bietet Raum für gestalterische Experimente – etwa durch transparente Innenwände, gläserne Verbindungselemente oder spezielle Deckenaufbauten. Somit werden Lichtakzente geschaffen, die verschiedene Bereiche eines Raums hervorheben und ihm eine lebendige, wandelbare Gestalt verleihen. Ob industriell anmutende Lofts oder repräsentative Büroräume mit hellen Gemeinschaftsflächen: Die Anpassungsfähigkeit naturlichter Planungen erlaubt es, Konzepte zu entwickeln, die so einzigartig sind wie ihre Nutzer selbst. Gleichzeitig können Farben, Oberflächenstrukturen und Möblierung die Lichtwirkung verstärken oder abschwächen.
Inspirierende Beispiele aus der Gegenwart
Rund um den Globus existieren Bauwerke, deren Ausstrahlung wesentlich auf der klugen Verwendung von Tageslicht beruht. Museumsbauten, deren Ausstellungsräume großflächig mit Oberlichtern ausgestattet sind, erzeugen eine fast sakrale Atmosphäre. Ebenso gibt es Wohnbaufassaden, die durch neuartige Verglasungstechniken sowohl stilvoll als auch energieeffizient wirken. In vielen Ländern nimmt die öffentliche Hand aktiv Einfluss und fördert Projekte, die eine nachhaltige Lichtgestaltung ermöglichen. Auf diese Weise entsteht eine vielgestaltige Palette architektonischer Ausdrucksformen, bei denen ästhetische und gesundheitliche Bedürfnisse gleichermaßen berücksichtigt werden.
Ausblick auf künftige Entwicklungen
Künftige Baukonzepte werden das Zusammenspiel von Umweltschutz, Nutzungsflexibilität und gesundheitsfördernder Tageslichtgestaltung weiter ausbauen. Forschung und Praxis streben an, energieeffiziente Systeme mit noch intelligenteren Steuerungen zu verknüpfen und so den Lichteinfall in Echtzeit zu regulieren. Überdies ist zu erwarten, dass sich die Verbindung von wetterabhängigen Sensoren, automatisierter Beschattung und innovativen Materialien weiter professionalisiert – was Gebäude für die Bewohnerinnen und Bewohner noch attraktiver macht. So bleibt die Rolle des natürlichen Lichts auch in der kommenden Generation der Architektur ein beständiger Motor für Kreativität, Wohlbefinden und Effizienz.
„Österreich hat einen langen Atem – und das zahlt sich im Bereich Applied AI aus“
Als führende Standorte in Sachen Künstliche Intelligenz liegen die USA und Asien auf der Hand, doch auch in Österreich gibt es eine vielfältige AI-Landschaft. Welche Vorteile der Standort für künstliche Intelligenz mit sich bringt und welche Rolle dabei Applied AI spielt, weiß Clemens Wasner, Gründer von AI Austria und CEO der EnliteAI.
Clemens Wasner ist Gründer des österreichischen Verbandes für Künstliche Intelligenz, AI Austria und CEO des Wiener Venture Studios EnliteAI. Der studierte Informatiker arbeitete über ein Jahrzehnt in Asien, bevor er 2017 EnliteAI gründete.
Herr Wasner, Sie kennen die AI-Szene aus erster Hand. Wie gut ist Österreich im internationalen Vergleich aktuell aufgestellt, wenn es um Applied AI geht?
Gemessen an seiner Größe steht Österreich erstaunlich gut da. Unsere AI–Landscape verzeichnet mittlerweile über 450 Unternehmen, die aktiv mit KI arbeiten – nicht nur Start-ups, sondern auch klassische Industrieunternehmen, Dienstleister und der öffentliche Sektor. Gerade im Bereich der industriellen Anwendungen ist Österreich breit aufgestellt: Es gibt zahlreiche Corporates, die eigene Competence Center gegründet, Ausgründungen vorgenommen oder Lizenzmodelle für KI aufgebaut haben. Auch die Zahl der Inkubatoren und Corporate Venture Capitalisten ist beachtlich. Das Thema ist in der Realwirtschaft angekommen – und das nicht erst seit gestern. Bereits 2018 gab es hierzulande einen deutlichen Aufschwung. Im Bereich der Spitzenforschung sind wir ebenfalls stark: Mit drei sogenannten ELLIS-Hubs – European Laboratory for Learning and Intelligent Systems – gehören wir zur europäischen Spitze, gemessen an der Größe des Landes.
Sie sprechen beim Blick auf Österreich oftmals vom „AI-Standort mit langem Atem“. Was genau meinen Sie damit und was macht aus Ihrer Sicht einen exzellenten Standort für AI-Start-ups aus?
Der „lange Atem“ ist positiv gemeint und beschreibt das, was Österreich im Bereich Forschung & Entwicklung auszeichnet: kontinuierliche Investitionen, strategischer Weitblick und langfristige Förderstrukturen. Die Steiermark war lange OECD-Spitzenreiter bei F&E-Ausgaben, Wien verfügt über eine dichte Forschungslandschaft. Das sind keine kurzfristigen Hypes, sondern über Jahrzehnte gewachsene Strukturen. Österreich verfügt zudem über eine differenzierte Förderarchitektur, die alle TRL-Stufen abdeckt – von der Grundlagenforschung bis zur Markteintrittsunterstützung. Auch Clusterstrukturen spielen eine Rolle: In Life Sciences etwa gibt es in Wien und Graz funktionierende Ökosysteme, in denen zunehmend auch KI eine Rolle spielt. Diese Verankerung ermöglicht Planbarkeit, die gerade in technologieintensiven Bereichen entscheidend ist.
Zu den Schlüsselfaktoren einen erfolgreichen Standorts zählen Infrastruktur, Talent Pool und Anwendungsmöglichkeiten. Wo sehen Sie hier derzeit die größten Hebel – und auch die größten Defizite – in Österreich?
Ein klarer Vorteil liegt in der Verfügbarkeit von Talenten: Wien zieht seit Jahren hochqualifizierte Developer aus dem osteuropäischen Raum an. Der AI-Fachkräftemangel ist hier weniger ausgeprägt als in anderen europäischen Hauptstädten. Hinzu kommt: Österreich bildet mehr AI-Absolventen aus, als die Wirtschaft derzeit absorbieren kann. Das schafft einen Bewerbermarkt, der gerade für Start-ups günstig ist. Auch Standortfaktoren wie Lebensqualität und erschwingliche Mieten machen zum Beispiel die Hauptstadt Wien attraktiv. Als Besonderheit sehe ich zudem den aktiven Zugang der Stadt: Wien versteht sich als First Client für KI-Anwendungen, etwa in der Analyse von Geodaten, IoT oder der Digitalisierung von Baueinreichprozessen. Hier ist wesentlich mehr Offenheit für politische Vergabe zu finden als in anderen Ländern. Weniger stark ist Wien in der Spitzenforschung vertreten, hier liegt Linz mit der JKU vorn. Aber man kann als kleines Land nicht alles abdecken – und sollte dort Schwerpunkte setzen, wo bestehende Stärken ausbaubar sind.
Was war der Gründungsimpuls für EnliteAI und wie ist Ihr Venture Studio heute aufgestellt?
Ich kam 2016 nach zehn Jahren in Asien zurück nach Österreich. In China und Japan war KI allgegenwärtig, ein regelrechter Hype. Zurück in Europa herrschte Funkstille – das war ein Kulturschock. Ich wollte dem Thema hierzulande Schub geben: 2017 gründete ich den Verband AI Austria und kurz darauf EnliteAI. Unsere Erkenntnis aus früheren Projekten zeigte, dass viele Unternehmen gute Ideen, aber keine Ressourcen zur Umsetzung hatten. Daraus entstand das Venture Studio: Wir entwickeln Prototypen gemeinsam mit Unternehmen und gründen darauf spezialisierte Start-ups. Aktuell sind wir 20 Personen und verfolgen zwei Themen – Detekt, das sich auf den Bereich Mobile Mapping spezialisiert hat, und ein weiteres im Stromnetzmanagement. Mit EnliteAI möchten wir künftig weitere Projekte unterstützen und bereiten dafür eine Dual-Entity-Struktur mit einem eigenen Fonds vor. Ziel ist es, das Modell professionell zu skalieren und Investoren direkt in die Spin-outs zu bringen.
Rechenleistung zählen zu den Schlüsselressourcen in der AI. Was braucht es aus Ihrer Sicht, damit europäische Standorte hier nicht dauerhaft in Abhängigkeit geraten?
Realistisch betrachtet: Die Abhängigkeit besteht bereits. Die großen Hyperscaler sind US-dominiert, ebenso Chips, Kommunikationstools, Social Networks. Europa muss in die digitale Souveränität investieren. Erste Schritte wie AI Factories sind wichtig, aber nicht ausreichend. Wir brauchen europäische Cloud-Anbieter, Chipproduktion auf europäischem Boden und eine nachhaltige Energiepolitik. Frankreichs KI-Boom basiert auf Atomstrom – weil er langfristig planbar ist. Diese Planbarkeit fehlt in vielen europäischen Ländern derzeit. Ohne Strom gibt es keine KI. Auch das zeigen Stimmen von Sam Altman, Elon Musk und anderen. Hier ist ein strategischer Paradigmenwechsel notwendig.
Sie sprachen bereits die vielfältige Landschaft von kleinen und mittleren Unternehmen in Österreich an, die offen für KI sind. Wie gut funktioniert das Matching zwischen Start-ups und klassischen Industrieunternehmen?
Österreich macht hier sehr viel richtig. Es gibt ein breites Netz an Förderinstrumenten – von der Österreichischen Forschungsförderungsgesellschaft FFG über die Austria Wirtschaftsservice bis hin zu regionalen Wirtschaftskammern. Zudem bietet Österreich eine Forschungsförderungsprämie an, bei der 14 Prozent der F&E-Ausgaben quasi mit einem Blankoschein gefördert werden können. Zudem organisieren viele Institutionen aktiv Matchmaking-Events, etwa im Rahmen von PreSeed-, AI-Adoption- oder Innovationsprogrammen. Hinzu kommt der Industry-Startup-Marktplatz mit mehreren Tausend registrierten Unternehmen. Auch Pitchings werden gefördert. Das Ziel ist stets, AI nicht nur in der Theorie zu belassen, sondern in die Realwirtschaft zu bringen. Trotzdem: Viele Unternehmen wissen noch immer nichts davon. Hier braucht es also noch mehr Aufklärung.
Welcher KI-Standort – in Österreich und darüber hinaus – hat Sie zuletzt positiv überrascht?
In Österreich ist Linz für mich der Hotspot schlechthin – die Kombination aus Spitzenforschung und erfolgreichem Technologietransfer ist dort besonders gut gelungen. International beeindruckt mich Twente in den Niederlanden: kein großer Name, aber mit klarer Strategie. Sie haben das Spin-out-Modell von Oxford und Cambridge adaptiert und konsequent umgesetzt – mit IP-Offices, Gründungsberatung und Infrastruktur für Start-ups. Ein weiteres Vorbild ist Heilbronn mit den Campus Founders: Sie haben, unterstützt durch die Dieter Schwarz Stiftung, einen Ort für Unternehmertum und Innovationen geschaffen und könnten Vorbild für viele europäische Regionen werden. Viele Stiftungen schaffen Parks oder Schlösser, aber wesentlich gewinnbringender wäre die Förderung von Entrepreneurship wie es in Heilbronn passiert statt Museumsstiftung. Europa braucht diese neue Denkweise.
Clemens Wasner, vielen Dank für das Gespräch.
Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin
Was Unternehmen über KI-Agenten wissen müssen
Künstliche Intelligenz in Form autonomer Agenten gewinnt rasant an Bedeutung. Doch wie arbeiten diese KI-Agenten? Was ist bei der Umsetzung zu beachten? Hier gibt's die Antworten.
Die Idee, dass autonome Systeme eng mit Menschen zusammenarbeiten und sie gezielt unterstützen, ist keine Vision mehr, sondern Realität. Während bisher eine umfassende Problemlösungskompetenz im Hintergrund fehlte, bringen KI-Agenten genau diese Fähigkeit mit und übernehmen zunehmend vielfältige Aufgaben in der Arbeitswelt. Wir erklären, was Unternehmen über KI-Agenten wissen müssen.
Was sind KI-Agenten und auf welcher Technologie basieren sie?
KI-Agenten sind Softwaresysteme, die eigenständig Aufgaben ausführen, aus Erfahrungen lernen und dynamisch mit ihrer Umgebung interagieren. Ihr Ziel ist es, Aufgaben autonom zu lösen, ohne dass ein kontinuierliches menschliches Eingreifen notwendig ist. Im Unterschied zu herkömmlichen Automatisierungslösungen bewältigen KI-Agenten selbst komplexe Anforderungen, indem sie sich an neue Bedingungen anpassen. Auch werden sie im Gegensatz zu universellen LLMs in der Regel fein abgestimmt, um Relevanz und Datenschutz zu gewährleisten. Sinnvoll ist eine kontextbezogene Architektur, die kausale KI, Document AI und multimodale Logik kombiniert und damit optimal auf geschäftliche Anwendungsfälle zugeschnitten ist.
In welchen Bereichen der Arbeitswelt entfalten KI-Agenten ihr Potenzial?
KI-Agenten finden in nahezu allen Unternehmensbereichen Einsatzmöglichkeiten – von der Beantwortung einfacher Anfragen bis hin zur Steuerung komplexer Prozesse. Eingebettet in CRM-Plattformen analysieren sie riesige Datenmengen, die Unternehmen manuell nicht mehr auswerten können. Anstatt die Ergebnisse lediglich zu präsentieren oder Kontakte nach Prioritäten zu sortieren, qualifizieren KI-Agenten auch noch automatisch Leads, schlagen passende Angebote vor und beantworten Kundenanfragen. Oder anders formuliert: Während herkömmliche Tools in der Regel auf statischen Wenn-dann-Regeln basieren, führt die neue Generation hyperpersonalisierte Aktionen nahezu in Echtzeit aus. Diese Entwicklung entlastet Mitarbeiter von Routineaufgaben und gibt ihnen Raum, sich auf strategisch wichtige Aufgaben zu konzentrieren. Unternehmen wiederum können ohne großen Aufwand Tausende von Kunden individuell betreuen.
Werden KI-Agenten den Arbeitsmarkt verändern?
Diese Frage lässt sich nicht pauschal beantworten. Es entstehen durch den verstärkten Einsatz von KI-Lösungen neue Berufsfelder – insbesondere bei der Entwicklung, Integration und Wartung solcher Agentensysteme werden qualifizierte Fachkräfte benötigt. Gleichzeitig stellt sich die Herausforderung, bestehende Mitarbeitende gezielt im Umgang mit diesen Technologien weiterzubilden und deren digitale Kompetenzen auszubauen. Eines muss klar sein: Das Ziel von KI-Agenten ist es nicht, menschliche Arbeitskraft zu ersetzen, sondern deren Fähigkeiten zu erweitern. Mitarbeitende können sich somit stärker auf komplexe Kundeninteraktionen oder die Entwicklung innovativer Kampagnen konzentrieren, während ihnen die KI zur Hand geht.
Worauf müssen Unternehmen bei der Auswahl von KI-Agenten-Lösungen achten?
In erster Linie benötigen sie eine digital ausgereifte Umgebung mit einheitlichen Datenformaten, optimierten Prozessen und regelbasierten Automatisierungen, um den ROI steigern zu können. Anschließend müssen sie sicherstellen, dass ihre KI-Systeme den geltenden Datenschutzbestimmungen entsprechen und sensible Kund*innendaten optimal geschützt sind. Transparenz und Nachvollziehbarkeit der KI-Entscheidungen sind ebenfalls essenziell, um das Vertrauen von Kunden und Mitarbeitenden nicht zu gefährden. Auf technischer Seite ist eine interoperable Lösung notwendig, die sich so nahtlos wie möglich in die bestehende IT-Umgebung integrieren lässt. Zu den weiteren Aspekten zählen die Priorisierung der kontextuellen Abstimmung, da Agenten geschäftsspezifische Arbeitsabläufe und Datenformate verstehen müssen, sowie die Nutzung eines Federated-Model-Ansatzes statt einheitlicher LLM-Frameworks, um Effizienz, Erklärbarkeit und Kosten zu optimieren.
Wie binden Unternehmen ihre Mitarbeitenden am besten ein?
Zunächst einmal ist ein grundlegendes Change Management erforderlich. Die Mitarbeiterinnen und Mitarbeiter müssen verstehen, dass die KI ihnen nicht die Arbeit wegnimmt, sondern sie unterstützen soll. Sinnvoll ist auch ein Low-Code-Ansatz: Maßgeschneiderte KI-Applikationen und automatisierte Workflows steigern die Arbeitseffizienz in Abteilungen um ein Vielfaches – sogar Mini-Anwendungen, die lediglich einfache Aufgaben übernehmen. Jedoch können zentrale IT-Abteilungen, die mit Entwicklungsanfragen aus verschiedenen Abteilungen überhäuft werden, diese kaum bewältigen. Mit einer Low-Code-Application-Plattform (LCAP) können auch Mitarbeiter ohne Programmierkenntnisse einfache KI-Anwendungen selbst erstellen. Möglich machen das einfache Drag-and-Drop-Optionen und vorgebaute Module, die je nach Wunsch kombinierbar sind.
Fazit
KI-Agenten sind als kollaborative Partner zu verstehen, nicht als Ersatz für den Menschen. Künftig werden wir eine Multi-Agent Collaboration sehen. Hierbei übernehmen verschiedene KI-Agenten jeweils Spezialaufgaben und koordinieren sich untereinander, um selbst die komplexesten Herausforderungen effizient zu lösen.
Der Autor Sridhar Iyengar ist Managing Director von Zoho Europe.
DefenseTech-Report 2025
Noch vor wenigen Jahren galt Rüstungs-IT bei vielen Investor*innen als Tabu, ähnlich wie „Sündenbranchen“ à la Glückspiel und Pornografie; dieser Stigma-Effekt ist nun einer neuen Dringlichkeit, die ukrainische Verteidigung zu unterstützen, gewichen. Wie DefTech-Start-ups Sicherheit und Verteidigung durch Innovationskraft, Agilität und Flexibilität revolutionieren.
Der russische Überfall auf die Ukraine im Februar 2022 markierte einen Wendepunkt für die deutsche Verteidigungspolitik. Der Bundeskanzler rief die „Zeitenwende“ aus – einen Kurswechsel, der u.a. ein Sondervermögen von 100 Mrd. Euro für die Bundeswehr einschloss. Seither rücken technologische Innovationen für die Verteidigung verstärkt in den Fokus. DefenseTech-Start-ups (auch DefTechs genannt) – also junge Technologieunternehmen mit rein militärischen oder Dual-Use-Anwendungen (zivil und militärisch) – erleben seitdem einen Aufschwung. Die USA haben deutlich signalisiert, dass ihre Bereitschaft, als Arsenal der Demokratie unbegrenzt westliche Verteidigung zu finanzieren, nachlässt. Europa, Deutschland im Besonderen, muss also eigene Innovationskraft mobilisieren, um wirksam abschrecken zu können.
Start-ups im Gefechtsfeld der Zukunft: Lehren aus dem Ukraine-Krieg
Der russische Angriffskrieg offenbart, welche Technologien und Akteur*innen auf dem Gefechtsfeld der Zukunft dominieren werden. Auffällig ist, wie ein verteidigungsnahes Innovationsökosystem aus Tech-Start-ups und Dual-Use-Technologien in der Ukraine binnen kurzer Zeit Lösungen hervorbrachte, die Russlands konventionelle Überlegenheit teilweise neutralisierten.
Die ukrainischen Streitkräfte setzen neue Taktiken und Waffensysteme zudem mit einer Agilität ein, die westliche Armeen – mit ihren oft jahrelangen Beschaffungszyklen – nicht erreichen.
Im Ukraine-Krieg haben sich vor allem Drohnen als Gamechanger erwiesen. First-Person-View-(FPV)-Drohnen fungieren gleichsam als „Infanterie“ der Drohnenkriegsführung – sie sind zu einer tragenden Säule von Kiews Kriegsanstrengungen geworden und verursachen Schätzungen zufolge bis zu 80 Prozent der russischen Verluste auf dem Gefechtsfeld.
Ukrainische Herstellende – vielfach kleine Firmen – produzieren aktuell rund 200.000 FPV-Drohnen pro Monat und ersetzen zunehmend importierte Bauteile durch eigene Entwicklungen. Solche billigen Mini-Drohnen können aber Panzer oder Radaranlagen im Wert von Millionen zerstören – ein eklatantes Kosten-Nutzen-Missverhältnis zu Ungunsten klassischer Wehrtechnik. Daneben prägen Loitering Munitions (umherschweifende „Kamikaze-Drohnen“) den Konflikt.
Überhaupt redefiniert die Ukraine den Drohneneinsatz: Wie Forbes berichtete, wurde entlang der Front ein rund 25 km breiter „Kill-Zone“-Streifen eingerichtet, patrouilliert von Schwärmen kleiner Drohnen, der feindliche Truppenansammlungen nahezu unmöglich macht – die NATO erwägt bereits eine ähnliche „Drone Wall“ zum Schutz ihrer Ostflanke. Die Allgegenwart von Drohnen rief freilich elektronische Gegenmaßnahmen auf den Plan: Beide Seiten überziehen sich mit immer neuen Electronic-Warfare-Taktiken, vom Stören und Spoofen von GPS- und Funkverbindungen bis hin zu improvisierten physischen Schutzgittern („cope cages“) an Fahrzeugen. Im Gegenzug werden jetzt verstärkt per Glasfaser ferngelenkte Drohnen entwickelt, die gegen Funk-Jamming immun sind. Auch im Cyber-Raum tobt der Schlagabtausch, der jedoch trotz einzelner schwerer Angriffe offenbar bislang keine strategisch entscheidenden Wirkungen erzielte.
Den größten Wert haben Cyber-Operationen daher bislang für Aufklärung und Störung gegnerischer Kommunikation. Insgesamt gilt dieser Krieg auch als erster großer Konflikt, in dem kommerzielle Technik so umfassend militärisch genutzt wird, dass Beobachtende bereits vom ersten „kommerziellen Raumfahrtkrieg“ sprechen. Private Satelliten liefern der Ukraine rund um die Uhr Geodaten und Aufklärung, während tausende Starlink-Terminals ein robustes Kommunikationsnetz auf dem Gefechtsfeld sicherstellen. Ebenso werden zivil verfügbare Drohnen, handelsübliche 3D-Drucker und KI-Software in militärische Anwendungen überführt. Mit erschwinglichen Geräten und Software lässt sich realisieren, was früher teuren Spezialkräften vorbehalten war. Die Kehrseite ist, dass die Trennung zwischen zivilem und militärischem Bereich zunehmend verschwimmt, was ethische und sicherheitspolitische Fragen aufwirft.
Die Rolle von Start-ups
Viele dieser Innovationen wurden nicht von Rüstungsriesen ersonnen, sondern von kleinen, agilen Akteur*innen. In der Ukraine stützt man sich auf eine lebhafte Tech-Start-up-Szene und eine flexible Rüstungsindustrie, um Russlands zahlenmäßige Vorteile auszugleichen. Die Iterationsgeschwindigkeit ist beeindruckend: Die Entwicklungszyklen für neue Lösungen sind von Jahren auf Monate, Wochen oder gar Tage geschrumpft. Agile Start-ups und Entwickler*innen-Teams an der Front reagieren in Echtzeit auf Bedrohungen. Sie fügen ständig neue Gegenmaßnahmen und Verbesserungen hinzu, um der Gegenseite immer einen Schritt voraus zu sein.
Dieser direkte Innovationsloop vom Gefechtsfeld in die Werkstatt und zurück beschleunigt den Fortschritt enorm. So schießen etwa ukrainische Drohnen-Workshops buchstäblich in Kellern und umfunktionierten Supermärkten aus dem Boden, um Produktion und Entwicklung selbst unter Beschuss aufrechtzuerhalten. Start-ups bringen eine Kultur der schnellen Iteration ein, die klassische Rüstungsbetriebe so nicht kennen. Das Ergebnis: 500-US-Dollar-Drohnen werden im Feld per Trial-and-Error optimiert und können anschließend einen 5-Mio.-US-Dollar-Panzer ausschalten.
Gründungs-Boom im Verteidigungssektor
Auch außerhalb der Ukraine hat der Krieg einen Gründungs-Boom ausgelöst. Wagniskapital fließt so stark wie nie in europäische Verteidigungs- und Sicherheits-Technologie: 2024 wurden in diesem Sektor 5,2 Mrd. US-Dollar investiert – ein Allzeithoch. Noch vor wenigen Jahren galt Rüstungs-IT bei vielen Investor*innen als Tabu, ähnlich wie „Sündenbranchen“ à la Glückspiel und Pornografie; dieser Stigma-Effekt ist nun einer neuen Dringlichkeit, die ukrainische Verteidigung zu unterstützen, gewichen. Einige staatlich unterstützte VC-Fonds in Europa, wie z.B. SmartCap aus Estland, fördern mittlerweile explizit Rüstungsinvestments. Zwar ist die europäische VC-Branche aufgrund vertraglicher Bindungen insgesamt noch zögerlich, doch die Zurückhaltung wirkt 2025 überholt. Schließlich zeigt der Ukraine-Krieg, dass technologische Innovation das Kriegsgeschehen entscheidend beeinflusst – eine Wahrheit, die in den vergangenen Friedensdekaden in Vergessenheit geriet.
Auch in Deutschland entsteht ein dynamisches Ökosystem, das viele Technologiefelder abdeckt. Die wichtigsten sind künstliche Intelligenz und autonome Systeme, Quantentechnologien, Human Enhancement, Hyperschalltechnologien, neuartige Materialien und Fertigungsverfahren, Raumfahrttechnologien, Advanced Manufacturing sowie resiliente Energiesysteme. Die Bitkom befragte kürzlich 44 deutsche DefTech- und Dual-Use-Start-ups, aber die Dunkelziffer dürfte höher liegen, da inzwischen viele DeepTech-Start-ups mit dem Verteidigungsmarkt liebäugeln.
So hat das Digital Hub Security & Defense BASED während der letzten Münchner Sicherheitskonferenz 80 DefTech-Start-ups auf dem „Sicherheitsfrühstück“ einer fast ebenso großen Zahl an Investor*innen vorgestellt. BASED hat sich auf die Fahnen geschrieben, DefTech-Start-ups „investment ready“ zu machen. Und viele Gründer*innen und Talente entscheiden sich angesichts der Bedrohungslage auch „mission driven“ für die Verteidigung, um einen Beitrag zum Schutz unserer Demokratie zu leisten.
Ein Beispiel für ein erfolgreiches europäisches VerteidigungsStart-ups ist neben ARX Robotics (mehr dazu liest du hier in der Coverstory unserer Magazin-Ausgabe 02/25) oder Quantum Systems aus München auch das Unicorn Helsing, das den HX-2-Drohnenjäger entwickelte und Produktionskapazitäten in Deutschland aufbaut, um monatlich vierstellige Stückzahlen zu liefern. Solche Newcomer zeigen, wie Innovationskraft, Tempo und Skalierung im Ernstfall aussehen können – und dass Start-ups mit unkonventionellen Ansätzen binnen kurzer Zeit Fähigkeiten bereitstellen könnten, für deren Entwicklung traditionelle Rüstungsprogramme in der Vergangenheit Jahrzehnte gebraucht haben. Nicht zuletzt hat der Krieg die Produktionslogik verändert: Entscheidend ist nicht mehr, ein Waffensystem mit allen erdenklichen Sonderwünschen als „Goldrandlösung“ zu perfektionieren, sondern es schnell und robust in großen Stückzahlen bereitzustellen. Auch deutsche Rüstungsfirmen wie Hensoldt sprechen von einem Paradigmenwechsel: weg von der früheren „Boutique“-Fertigung hin zur Massenproduktion. Geschwindigkeit schlägt Sonderanfertigung: Statt monatelanger Feintuning-Schleifen gilt nun, was an der Front sofort wirkt.
Lehren für den Westen und Deutschland
Was bedeuten diese Erfahrungen für die Bundeswehr und ihre Partner*innen? Zunächst, dass Beschaffungsbürokratien und veraltete Prozesse zum Sicherheitsrisiko werden. In der Ukraine hat sich der traditionell träge Militärapparat unter existenziellem Druck rasant gewandelt. Westliche Länder müssen diese Lektionen proaktiv aufgreifen. Im Schnitt dauern Rüstungsprojekte in Deutschland sechs bis sieben Jahre – eine so lange Durststrecke überlebt kein Start-up in der schnelllebigen Tech-Welt. In der Vergangenheit haben sich talentierte Gründer*innen und Investor*innen daher lukrativeren Branchen zugewandt, statt jahrelang auf einen Durchbruch im Verteidigungssektor zu hoffen. Wollen staatliche Stellen die Innovationskraft der Start-up-Welt nutzen, müssen sie nun zu verlässlichen und schnelleren Kund*innen werden. Dazu gehört, Vergabeverfahren radikal zu verschlanken, mehr Wettbewerb und Transparenz zu schaffen und nicht-traditionelle Anbieter*innen aktiv einzubinden.
Die Politik hat dies erkannt: In Berlin hat sich die neue Koalition vorgenommen, die langsamen Beschaffungsabläufe grundlegend zu reformieren. Eine Analyse des Wirtschaftsministeriums (BMWK) identifizierte bereits 2023 Bremsklötze: übermäßige parlamentarische Einmischung bei jedem Auftrag über 25 Mio. Euro, komplizierte Regulierung sowie zu enge Grenzen bei der Forschungsförderung. Diese Hürden führen dazu, dass Innovationen im „Tal des Todes“ versickern – dem Übergang von Prototypen in die Serienbeschaffung. Durch bürokratische Verzögerungen verliert neue Technik dort kritische Zeit und Schwung, bisweilen verschwindet sie ganz. Um das zu verhindern, muss es strukturelle Änderungen geben: von der Verstetigung von Innovationsbudgets über beschleunigte Genehmigungswege bis hin zur besseren Verzahnung von zivilen Talenten mit militärischen Bedarfsträger*innen. Kurz: Die Streitkräfte dürfen nicht länger in Friedensroutine verharren.
Zugleich müssen Produktionskapazitäten hochgefahren werden. Der Krieg lehrt, dass eine industriell-logistische Mobilmachung nötig ist, um im Ernstfall genug Material bereitstellen zu können – seien es Munition, Drohnen oder Ersatzteile. Dafür braucht es auch neue Geschäftsmodelle und modulare „Factories“ in Europa, die bei Bedarf binnen kürzester Zeit die Ausstoßzahlen hochskalieren können. Auch Abhängigkeiten von langen und störanfälligen Lieferketten im Bereich der Rohstoffe und Komponenten müssen reduziert werden.
Generell sollten westliche Regierungen verstärkt Kapital in junge Verteidigungsfirmen lenken – etwa durch Wagniskapitalfonds oder Innovationsprogramme – und verhindern, dass große Rüstungskonzerne vielversprechende Neulinge bloß aufkaufen, um deren Technologien vom Markt zu nehmen. Die Innovationsökosysteme rund um Verteidigung müssen sorgfältig kultiviert werden, damit die aktuelle Aufbruchsstimmung nicht abrupt endet. Dazu gehört auch ein Mentalitätswandel bei Investor*innen: Die Jahrzehnte währende Scheu vor Wehrtechnik-Investments ist nicht mehr zeitgemäß – letztlich hängt die Sicherheit Europas von unserer technologischen Stärke ab.
Fazit
Der Ukraine-Krieg führt vor Augen, wie künftig Kriege entschieden werden: durch Geschwindigkeit und Innovationskraft. Günstige, flexibel einsetzbare Technologien – oft entwickelt von neuen Akteur*innen – können hochgerüstete Gegner*innen ins Wanken bringen. Start-ups avancieren hierbei zum strategischen Faktor. Sie liefern Agilität, frische Ideen und die Fähigkeit, sich im Kriegsverlauf iterativ anzupassen.
Die Autorin Prof. Dr. Rafaela Kraus ist Professorin für Unternehmens- und Personalführung soeir ehem. Vizepräsidentin der Universität der Bundeswehr München und hat dort u.a. das Entrepreneurship-Center founders@unibw ins Leben gerufen. Als Defense-Innovation-Expertin ist sie Initiatorin von BASED, dem Münchner Digital Hub Security & Defense
Digitaler Vorreiter: Wie Bootsschule1 die Sportboot-Ausbildung umkrempelt
Bootsschule1 überzeugt mit SmartLearn™-Plattform, All‑Inclusive‑Paketen, hoher Qualität und bundesweiter Praxis – digital, transparent und risikofrei.
Der Weg zum Sportbootführerschein galt lange als bürokratisch, zeitraubend und unflexibel – geprägt von Präsenzunterricht, Papierbergen und Prüfungsstress. Wer beruflich eingespannt ist oder außerhalb von Metropolregionen lebt, sah sich oft mit logistischen Hürden konfrontiert. Genau an diesem Punkt setzt Bootsschule1 an – und definiert die Ausbildung auf dem Wasser neu. Nicht mit leeren Marketingversprechen, sondern mit einem durchdachten Gesamtkonzept, das sich konsequent an den Bedürfnissen moderner Lerner orientiert.
Was einst nach trockener Theorie und starren Kurszeiten roch, verwandelt sich hier in ein digitales Lernsystem, das in punkto Nutzerfreundlichkeit und Didaktik Maßstäbe setzt. Im Zentrum steht eine selbst entwickelte Lernplattform, die Inhalte in kurzen, präzise aufbereiteten Videolektionen vermittelt – ergänzt durch realistische Prüfungssimulationen und ein umfassendes All-Inclusive-Paket, das vom Navigationsbesteck bis zur persönlichen Betreuung reicht. Transparente Preise, flexible Praxisstandorte und eine Geld-zurück-Garantie zeigen: Hier geht es nicht um den schnellen Schein, sondern um nachhaltige Qualität.
Dieser Artikel beleuchtet, wie Bootsschule1 mit technischer Präzision, durchdachten Services und didaktischer Klarheit nicht nur mit alten Konventionen bricht, sondern ein neues Kapitel in der Ausbildung für Wassersportbegeisterte aufschlägt – nah am Alltag, weit entfernt vom Schulbank-Gefühl.
Moderne Lernplattform mit smarten Tools
Die digitale Bootsschule von Bootsschule1 übernimmt in Deutschland eine Vorreiterrolle, wenn es um eine moderne Bootsführerschein-Ausbildung geht. Die selbst entwickelte SmartLearn™‑Lernplattform bildet das Herzstück dieses Konzepts. Sie bietet über 50 Videolektionen in hochwertiger 4K-Qualität und einen Multiple‑Choice‑Fragentrainer, die den gesamten Stoff für Sportbootführerscheine strukturiert abdecken. Die Videos dauern meist zwischen drei und fünf Minuten – ideal, um Inhalte gezielt und ohne Zeitdruck zu konsumieren: Sei es unterwegs beim Pendeln, in der Mittagspause oder abends auf dem heimischen Sofa. Dieses modulare Format erlaubt es, einzelne Themen effizient zu wiederholen oder gezielt Vertiefungen abzurufen.
Doch Bootsschule1 bietet weit mehr als reine Videospots: Ein interaktiver Prüfungssimulator integriert alle 15 offiziellen Prüfungsbögen. Nutzer*innen können die komplette Prüfungssituation durchspielen, inklusive Originalfragen und zeitlicher Vorgabe – so entsteht ein realistisches Trainingserlebnis. Dieser praxisnahe Ansatz führt weg vom bloßen Auswendiglernen hin zu gezielter Vorbereitung, mit hoher Trefferquote bei der echten Prüfung. Durch regelmäßiges Simulations-Training werden Schwachstellen sichtbar und lassen sich gezielt bearbeiten – ein entscheidender Vorteil gegenüber herkömmlichen Kursformaten.
All‑Inclusive‑Angebot statt versteckter Kosten
Ein echtes Alleinstellungsmerkmal ist das All‑Inclusive‑Versprechen. In einer einzigen Kursbuchung sind enthalten: Lernplattform, hochwertige Lernvideos, Kursmaterialien wie Kurs‑ und Anlegedreieck, Zirkel sowie Tampen und Klampe, dazu die praktische Ausbildung inklusive einer kostenfreien 1:1‑Betreuung. Ergänzt wird das Ganze durch ein freiwilliges Exkurs‑Paket mit über 25 zusätzlichen Lektionen mit einem Gegenwert von 119 €, das Kunden gratis erhalten.
Der Preis erscheint dabei vergleichsweise günstig: Ein Kombiangebot für SBF See & Binnen kostet gerade mal 445 € statt ursprünglich 495 € – inklusive Exkurs‑Paket. Durch Aktionen mit Rabattcodes lässt sich die Summe weiter reduzieren – ohne unerwartete Zusatzkosten. Transparenz ist hier Programm.
Risikofrei dank Geld‑zurück‑Garantie
Bootsschule1 gibt Anfängern besonderen Rückhalt: Innerhalb von 14 Tagen nach Buchung kann man bei Nichtgefallen rückabwickeln – sofern bislang keine Praxisstunde gebucht und maximal 60 % der Kursinhalte absolviert wurden. Darüber hinaus gibt es eine Garantie für den Prüfungserfolg: Wer den Theorie‑Teil bestanden, aber in der Praxisprüfung durchfällt, erhält anteilig die Kursgebühr zurück. Das reduziert das finanzielle Risiko und lässt den Kurs zu einer sicheren Investition werden.
Flexible praktische Ausbildung in ganz Deutschland
Ein weiterer wichtiger Aspekt, in dem Bootsschule1 überzeugt, ist der bundesweite Zugang zur praktischen Ausbildung. Mehr als 100 Prüfzentren und zahlreiche Praxispartner ermöglichen es, Theorie online zu lernen und die Bootsfahrstunden lokal zu absolvieren. Unter anderem gibt es Angebote in großen Städten wie Berlin, Hamburg oder entlang des Rheins (z.B. Bonn, Koblenz, Köln).
Praktische Einheiten dauern meist 60 Minuten und reichen oft aus, um die Fahrpraxis für die Prüfung zu erlangen. Zudem übernimmt die Plattform die Terminbuchung, Organisation und Anmeldung bei der Prüfung – der gesamte Papierkram liegt in digitaler Hand, was Zeit und Aufwand spart.
Umfangreiche Kursvarianten für jeden Bedarf
Bootsschule1 deckt sämtliche Sportbootführerscheine ab: getrennte Kurse für SBF See, SBF Binnen sowie Kombikurse See & Binnen. Darüber hinaus werden spezielle Qualifikationen angeboten, etwa das Bodenseeschifferpatent, der SRC- und UBI-Funkschein sowie Fachkundenachweise (FKN/SKN).
- Das Bodenseeschifferpatent ist als Ergänzung zum SBF günstig kombinierbar (145 € Theorie oder Kombipreis von € 590).
- Der SRC‑Funkschein wird mit gleicher SmartLearn™‑Plattform vorbereitet – inklusive Online‑Training und praktischer Prüfung in einem Prüfungszentrum (127,88 € Prüfungsgebühr).
Wer nur den Funkschein machen möchte, erhält dafür bis zu 365 Tage Zugriff auf Lernmaterial und Praxisaufgaben.
Qualitativ hochwertiger Unterricht
Bootsschule1 legt klar Wert auf hohe Produktionsqualität: Einzelne Videolektionen entstehen aus bis zu 200 Stunden Rohmaterial, das anschließend mehr als 100 Stunden postproduziert und mit 3D‑Animationen sowie CGI‑Effekten angereichert wird. Das Ergebnis ist eine visuell ansprechende und fachlich präzise Darstellung, die man in vielen herkömmlichen Kursen vergeblich sucht. Ergänzt wird das durch profunde Fahrsessions per Videochat und persönliche Unterstützungsangebote.
Medizinischer Beleg und gesundheitliche Voraussetzungen
Vor Prüfungsanmeldung ist ein ärztliches Attest nötig. Dieses umfasst Sehtest (DIN 58220, Sehschärfe ≥ 0,8), Farbunterscheidung und Hörtest. Brillenträger schaffen den Führerschein problemlos – die Vermerkpflicht auf der Fahrerlaubnis ist im Einklang mit Vorschriften. Empfehlenswert ist es, frühzeitig die optionalen Testangebote bei Optikern zu nutzen, um die ärztliche Bescheinigung vorzubereiten.
Prüfung mit digitaler Unterstützung
Bootsschule1 nimmt Interessierten den bürokratischen Aufwand ab: Prüfterminbuchung, Anmeldeunterlagen und Zertifikatrecherche übernimmt das Team. Nach Bestehen der Prüfung erreicht man den Führerschein binnen zwei Wochen bequem per Post. Wer beim ersten Mal nicht besteht, kann Theorie und Praxis beliebig oft wiederholen – zusätzliche Kosten entstehen nur durch behördliche Prüfungsgebühren.
Fazit
Bootsschule1 präsentiert ein Konzept, bei dem Technik und didaktischer Anspruch eng miteinander verbunden sind: Die Lernplattform mit qualitativ hochwertigen Videos, Prüfungssimulationen und smartem Fragebetrieb bildet das Rückgrat der Ausbildung. Zeitgleich liefern All‑Inclusive‑Pakete inklusive 1:1‑Betreuung, bundesweite Praxis sowie Garantien echte Mehrwerte.
In einer Zeit, in der Flexibilität und Qualität gefragt sind, liefert Bootsschule1 eine Antwort auf praktische Herausforderungen. Es ist kein theoretisches Referenzmodell, sondern ein funktionierendes System, das vielen den Zugang zum Wassersport erleichtert – und dabei ganz klar zeigt, wie moderne Bildung in der Praxis aussehen kann. Somit liefert der Anbieter im Sportbootbereich das, was bei Autofahrschulen schon länger Realität ist.
EU AI Act: Bürokratisch, unpraktisch, schlecht
Ein Kommentar von Dominik Mohilo, Redakteur und IT-Experte bei der auf High-Tech spezialisierten Münchner PR- und Kommunikationsagentur PR-COM.
Die Luft auf dem hohen moralischen Ross, auf dem Deutschland vorreitet und Europa folgt, wird dünner und dünner. Ja, der EU AI Act ist eine Errungenschaft. Und ja, ethische Grundsätze sollten wir keinesfalls missachten, wenn es darum geht, künstliche Intelligenz zu entwickeln, zu betreiben und zu verwenden. Fair enough. Doch darf’s vielleicht trotzdem ein bisschen weniger Bürokratie sein, liebe EU? Artikel 5 des KI-Regelwerks der EU besagt beispielsweise, dass die folgende KI-Praktik verboten ist: „Das Inverkehrbringen, die Inbetriebnahme oder die Verwendung eines KI-Systems, das unterschwellige Techniken, die sich dem Bewusstsein einer Person entziehen, oder absichtlich manipulative oder täuschende Techniken einsetzt, mit dem Ziel oder der Wirkung, das Verhalten einer Person oder einer Personengruppe dadurch wesentlich zu beeinflussen, dass ihre Fähigkeit, eine sachkundige Entscheidung zu treffen, spürbar beeinträchtigt wird, wodurch sie veranlasst wird, eine Entscheidung zu treffen, die sie andernfalls nicht getroffen hätte, und zwar in einer Weise, die dieser Person, einer anderen Person oder einer Personengruppe einen erheblichen Schaden zufügt oder mit hinreichender Wahrscheinlichkeit zufügen wird.“ (Kapitel II, Artikel 5, 1a)
Sperrig und überregulatorisch
Verstanden worum es geht? Ich auch nicht. Ähnlich sperrig und überregulatorisch ist der Abschnitt über sogenannte Hochrisiko-KI-Systeme formuliert. Gemeint sind damit jene KI-Anwendungen, die etwa im Gesundheitswesen, in der Bildung oder kritischen Infrastrukturen eingesetzt werden sollen – also genau den Bereichen, wo sie dringend benötigte Verbesserungen und Entlastungen für die in diesen Bereichen arbeitenden Menschen mit sich bringen könnten. Was genau mit Hochrisiko gemeint ist, ist allerdings wieder nicht glasklar definiert: was hat denn nun „erheblichen Einfluss auf Grundrechte“? Diese Unsicherheit im Hinblick auf die rechtliche Grundlage ist oft Grund genug für potenzielle Investoren, sich nach anderen Gelegenheiten umzusehen. Wer will schon exorbitante Kosten für juristische Verfahren locker machen und Zertifizierungen noch und nöcher erwerben, nur um am Ende dann möglicherweise doch gegen geltende Gesetze zu verstoßen? Eben.
Start-ups sind von Hürden überproportional heftig betroffen
Gerade kleine und mittelständische Unternehmen (KMU) sowie Start-ups sind von diesen Hürden überproportional heftig betroffen, sodass viele gute und wegweisende Ideen nicht oder zumindest nicht hier in der EU auf den Weg gebracht werden. Wirtschaftlich ist das fatal – das auch noch in diesen schwierigen Zeiten. In diesen Zeiten wäre es eigentlich wichtig, die Wirtschaft voranzutreiben, insbesondere in zukunftsweisenden Bereichen wie dem KI-Markt. Eine gute Möglichkeit wäre, die Technologie hierzulande staatlich zu subventionieren, wie das in den USA und in China bereits in großem Stil passiert. Stattdessen werfen wir uns selbst Stöcke in die Speichen unserer Räder – unter anderem mit Regulierung und ethischen Grundsätzen, sondern insbesondere durch schwammige Gesetzestexte und Undurchsichtigkeit von Compliance-Vorschriften.
Zusammenfassend ist festzustellen, dass die alte Forderung „rebellischer“ (mancher würde sagen: „vernünftiger“) Politiker, Bürokratie abzubauen, selten so eine hohe Relevanz wie aktuell hatte. Europa geht es wirtschaftlich schlecht, gleichzeitig verlassen High-Tech-Unternehmen scharenweise unsere Breitengerade, da das Regulierungskorsett so eng geschnürt ist, dass Innovation keine Luft mehr zum Atmen hat. Es gilt also, Maßnahmen zu ergreifen, um wettbewerbsfähig zu werden.
Was könnte die EU nun machen, da das Regulations-Kind in den Brunnen gefallen ist?
Zunächst einmal wäre es hilfreich, aus unserem Elfenbeinturm herauszukommen. Ethik ist wichtig, aber kein Altar, auf dem wir unsere Wirtschaft opfern sollten. Haben wir das verinnerlicht, braucht der EU AI Act eine Überarbeitung die Unklarheiten auflöst und die Hürden (gerade für Start-ups und KMU) verringert. Sinnvoll wäre zudem, wenn die EU KI-Sandboxes zur Prüfung von innovativen Technologien bereitstellen würde, in denen Unternehmen ihre Entwicklungen testen können, ohne gegen Gesetze zu verstoßen. Zudem muss die EU-Gelder und Mittel zur Verfügung stellen, Zertifizierungsverfahren deutlich zu beschleunigen. Auch eine Zentralisierung dieser Verfahren würde Sinn ergeben. Die entsprechende ISO-Norm (ISO/IEC 42001) gibt es bereits, was fehlt sind offizielle Tools, um die Konformität der eigenen Anwendung zu checken.
Ziel muss es sein, Europa als attraktives Umfeld für den Einsatz und die Entwicklung von KI-Anwendungen zu positionieren. KI wird in den kommenden Jahren über wirtschaftlichen Erfolg nicht nur von Unternehmen, sondern von Staaten avancieren. Wenn wir nicht die gleichen Katastrophen wie aus der Schwerindustrie und der Automobilbranche erleben, sondern wieder vorne mitspielen wollen, dürfen wir uns nicht selbst behindern. Das Gebot der Stunde ist also Bürokratieabbau und Mut zu moderaterer Ethik – so werden wir vielleicht irgendwann doch wieder Exportweltmeister.
Circunomics startet eigenes Batterie-Testlabor
Die Circunomics-Gründer Felix Wagner und Jan Born haben sich das Ziel gesetzt, eine zirkuläre Batteriewirtschaft zu etablieren, indem sie einen digitalen Marktplatz für den Second-Life-Einsatz und das Recycling gebrauchter Batterien bieten. Mit der Einrichtung des eigenen Batterie-Testlabors setzt das Start-up mit Hauptsitz Mainz seine Expansion fort.
„Die Kreislaufwirtschaft ist in Zukunft von immer größerer Bedeutung. Dies ist für uns die große Chance, mit dem digitalen Marktplatz für gebrauchte Batterien, Module und Zellen eine herausragende Position einzunehmen“, sagt Felix Wagner, Co-Founder und CEO von Circunomics. „Im Jahr 2030 werden alleine im Automobilsektor zwischen 200 und 300 Millionen Elektrofahrzeuge auf den Straßen der Welt unterwegs sein. Das bedeutet, dass dann jedes Jahr etwa sechs Millionen gebrauchte Batterien als Rückläufer aus Altfahrzeugen auf den Markt kommen. Diese wiederzuverwenden oder gezielt zu recyclen ist eine Mega-Aufgabe, die gelöst werden muss. Schließlich haben wir alle ein Ziel: Weniger CO2 zu produzieren und weniger der wertvollen, seltenen Rohstoffe zu verbrauchen.“
Battery Lifecycle Management Solution
Die Ergebnisse KI-basierter Analysen von gebrauchten Batterien, die beispielsweise in elektrischen Fahrzeugen verwendet werden, mit selbst ermittelten Laborwerten aus einer Real-Life-Simulation abgleichen, trainieren und verifizieren: Das ist die Aufgabe des neuen Batterie-Testlabors, das vom Start-up Circunomics in Roßdorf bei Darmstadt eingerichtet wurde und jetzt seinen Betrieb vollumfänglich aufgenommen hat.
Die 2019 gegründete Circunomics GmbH ist damit in der Lage, eine Datenbasis für die selbst entwickelte Software aufzubauen, die wiederum genutzt wird, um den Gesundheitszustand (State of Health) einer gebrauchten Batterie während und nach einer Erstverwendung (First Life) sehr präzise zu ermitteln. Vielmehr aber kann detailliert simuliert und hochgerechnet werden, wie sich die gebrauchte Batterie bei einer Zweitverwendung (Second Life) zum Beispiel in einem stationären Speichersystem verhält. Zudem kann eine Empfehlung ausgesprochen werden, welche Batterien für das jeweilige Projekt am besten geeignet sind.
Mit der Einrichtung des Batterie-Testlabors setzt das Start-up mit Hauptsitz Mainz seine Expansion fort, die nach einer erfolgreich durchgeführten Series-A-Finanzierungsrunde möglich ist. Zu Jahresbeginn 2025 hatte Circunomics von Investor*innen über acht Millionen Euro erhalten.
Real-Life-Simulation im Testlabor
Im neuen Batterie-Testlabor in Roßdorf können je nach Bedarf und Programm verschiedene Zellen gleichzeitig in einer sicher abgeschirmten Prüfeinrichtung untergebracht und unterschiedlichsten Belastungen ausgesetzt werden. Es erfolgt eine umfangreiche Real-Life-Simulation täglicher Batterienutzungssituationen beispielsweise in einem Elektrofahrzeug: Schnell oder langsam aufeinander folgende Ladezyklen, unterschiedliche Ladestromstärken mit bis zu 300 Ampere Gleichstrom, verschiedene Degradierungszustände der Batterie und das Ganze – wenn notwendig – bei unterschiedlichen Temperaturen. Möglich ist eine Temperaturspanne von minus 20 bis plus 60 Grad Celsius. Die jeweiligen Tests der Zellen können über einen kurzen, mittleren oder längeren Zeitraum durchgeführt werden. Das können wenige Tage, Wochen und Monate, aber auch bis zu zwei Jahre sein.
„Bisher haben wir die Zellen von einem externen Dienstleister analysieren lassen. Diese Aufgaben nehmen wir jetzt selbst in die Hand, erhöhen damit unsere Effizienz, sind schneller mit dem Abgleich von Daten, wodurch wir in der Lage sind, unsere Simulationen und Hochrechnungen für eine Verwendung im Second Life noch genauer und zuverlässiger anbieten zu können“, erklärt Jan Born, Co-Founder und CTO von Circunomics. Und ergänzt: „Wir haben einerseits Millionen von Daten, die während des First Life einer Batterie gesammelt werden und die uns zur Verfügung gestellt werden. Auf dieser Basis haben wir bisher mit der KI-unterstützten Software am Computer analysiert, was die gebrauchte Batterie noch im Stande ist, im Second Life zu leisten, bevor sie dann endgültig dem Recycling zugeführt wird. Im neuen Labor und mit den eigenen Analysen sehen wir nun, wie sich eine Zelle im simulierten Batterieleben verhält und wir können die dabei ermittelten Ergebnisse, mit denen aus der Software abgleichen und verifizieren.“
KI-Übergangsphase: Fluch und Segen
Zwischen Wundermaschine und Blackbox – Warum wir gerade in einer KI-Übergangsphase leben und was das generell für das Marketing bedeutet.
Künstliche Intelligenz (KI) verändert gerade in rasantem Tempo unsere Welt. Sie automatisiert Prozesse, entlastet Teams, liefert Analysen in Echtzeit und ermöglicht einen bisher nicht gekannten Grad an Personalisierung. Wer heute im Marketing arbeitet, kommt an KI nicht mehr vorbei – sei es beim Texten von Werbebotschaften, beim Targeting, in der Bildgenerierung oder der Erfolgsmessung.
KI verspricht Effizienz, Präzision und neue kreative Möglichkeiten. Doch die Euphorie wird zunehmend begleitet von einer neuen, ernüchternden Erfahrung: Künstliche Intelligenz kann auch Nutzererlebnisse verschlechtern, Prozesse intransparent machen – oder gar ganze Geschäftsmodelle gefährden. Der technologische Fortschritt ist zweifellos da, doch gesellschaftlich, wirtschaftlich und kulturell befinden wir uns noch mitten in einer Übergangsphase. Und das birgt Risiken – nicht nur für Plattformen, sondern auch für Unternehmen, die sie nutzen.
Beispiel Pinterest: Wenn der Algorithmus plötzlich entscheidet
Ein aktuelles Beispiel liefert Pinterest: Die visuelle Such- und Inspirationsplattform setzt verstärkt auf KI, um Inhalte effizient zu kategorisieren, Hassrede zu erkennen, urheberrechtlich geschützte Werke zu markieren oder Spam zu unterbinden. Was auf dem Papier sinnvoll und zukunftsgerichtet klingt – ein moderner „Content Safety Stack“ mit automatisierter Moderation –, hat in der Praxis zahlreiche Creator*innen und Unternehmen auf dem falschen Fuß erwischt.
Accounts wurden gelöscht, Pins blockiert oder ganze Seiten unsichtbar gemacht – oft ohne erkennbare Begründung. Was ist passiert? Die KI-Modelle bei Pinterest wurden darauf trainiert, problematische Inhalte automatisiert zu erkennen und Plattformregeln durchzusetzen. Doch wie in vielen KI-Systemen liegt der Teufel im Detail: Die Modelle sind noch nicht präzise genug, um zwischen legitimen und grenzwertigen Inhalten zuverlässig zu unterscheiden – vor allem in einem visuellen Umfeld wie Pinterest. Besonders problematisch wird es, wenn Nutzer*innen keine Möglichkeit haben, die Entscheidungen nachzuvollziehen oder effektiv dagegen vorzugehen.
Für Unternehmen, die Pinterest als Marketingplattform nutzen, ist das ein unkalkulierbares Risiko. Wer auf Sichtbarkeit und Reichweite angewiesen ist, kann es sich kaum leisten, dass automatisierte Systeme ohne Vorwarnung Inhalte sperren. Der Vertrauensschaden ist enorm.
Im Spannungsfeld der KI-Nutzung
Dieser Fall steht exemplarisch für ein zentrales Spannungsfeld der KI-Nutzung: Auf der einen Seite die große Hoffnung auf Automatisierung, Kostenersparnis und Kontrolle – auf der anderen Seite die Realität einer noch nicht vollständig ausgereiften Technologie, die häufig wie eine Blackbox agiert. Für Nutzer*innen bedeutet das: weniger Transparenz, weniger Kontrolle, mehr Frustration. Ähnliche Phänomene beobachten wir auch bei großen Social-Media-Plattformen wie Meta oder TikTok. Auch hier sorgen KI-basierte Moderationssysteme regelmäßig für Unmut – sei es durch falsch erkannte Verstöße, Einschränkungen der Reichweite oder Verzögerungen im Kundenservice, der durch automatisierte Antworten ersetzt wurde. Dabei geht es nicht um generelle Ablehnung von KI – sondern um die Art und Weise, wie sie implementiert und kommuniziert wird.
Gute KI ist unsichtbar – weil sie funktioniert
Das Marketing der Zukunft soll nicht nur effizient, sondern muss auch verantwortungsvoll sein. Es wird davon abhängen, wie gut Unternehmen die Balance finden zwischen Automatisierung und menschlicher Kontrolle. Zwischen der Verlockung, Prozesse zu beschleunigen, und der Notwendigkeit, Vertrauen zu erhalten. Gute KI ist unsichtbar – weil sie funktioniert. Sie analysiert, aber entscheidet nicht alleine. Zukunftsfähiges Marketing ist also geprägt von einer Kombination aus technologischer Intelligenz und menschlicher Relevanz. KI, Automatisierung und Datenanalyse ermöglichen eine bisher unerreichte Präzision: Zielgruppen werden individueller angesprochen, Inhalte in Echtzeit ausgespielt und Customer Journeys automatisiert optimiert. Personalisierung ist dabei kein Zusatz mehr, sondern Standard.
Gleichzeitig verändern sich die Erwartungen der Konsument*innen: Sie wollen authentische Marken, klare Haltung, Datenschutz und echte Mehrwerte – keine leeren Werbeversprechen. Deshalb wird Marketing künftig nicht nur effizient, sondern auch ethisch und wertebasiert sein müssen. Vertrauen wird zur zentralen Währung. Auch deshalb ist das Marketing der Zukunft vor allem Inhouse zu verorten. Agenturen befinden sich auf dem absteigenden Ast – sie sind teuer und liefern nicht die Ergebnisse, die Unternehmen und Marken wirklich benötigen. Zu dieser Entwicklung gehört auch, dass Inhouse-Marketing-Verantwortliche umfassend geschult werden müssen, damit sich der Einsatz von KI maximal einfach gestaltet und gleichzeitig äußerst produktiv ist.
KI ist weder Fluch noch Segen – sie ist ein mächtiges Werkzeug, das mit Bedacht eingesetzt werden muss. Wer KI einfach laufen lässt, riskiert Vertrauensverluste. Wer sie aber erklärt, einbettet und begleitet, kann gewinnen – an Effizienz, Qualität und Glaubwürdigkeit. Das Marketing der Zukunft ist nicht einfach KI-gesteuert. Es ist menschenzentriert – mit KI als starkem, aber verantwortungsbewusstem Assistenten.
Der Autor Bastian Sens gründete Sensational Marketing im Jahr 2010 – zunächst als klassische Onlinemarketing-Agentur. Im Laufe der Jahre kristallisierte sich jedoch ein alternativer Weg heraus, sodass sich das Unternehmen zu einer Onlinemarketing-Academy wandelte.

