Was gehört in eine KI-Policy?

Autor: Dr. Daniel Michel
44 likes

Recht für Gründer*innen: Über den verantwortungsvollen Umgang mit KI.

Künstliche Intelligenz (KI) ist längst Teil unseres Alltags und hält in Unternehmen auch zunehmend Einzug. Ob beim Erstellen von Texten, in der Datenanalyse oder bei der Automatisierung von Routine­aufgaben – KI ist ein starkes Werkzeug, das Unternehmen viele Vorteile bieten kann. Doch mit diesen Vorteilen kommen auch Verantwortung und Risiken, die eine klare und durchdachte KI-Policy erfordern.

Diese Einleitung zu einem Artikel über KI-Policies ist KI-generiert. Es ist so schön bequem und schnell gemacht: eines der gängigen LLM-Systeme online aufrufen, beispielsweise ChatGPT, und binnen Sekunden ist der Artikel fertig.

Ihr kennt das im Privaten, vor allem aber auch im Arbeitsumfeld. KI-Tools sind aus der Arbeitswelt nicht mehr wegzudenken. Die Nutzung von KI – insbesondere für berufliche Aufgaben – birgt jedoch Risiken. Manche KI neigt, falsch trainiert, zu diskriminierenden Entscheidungen, was z.B. im HR-Bereich gefährlich ist. Unbedacht erstellte Prompts können den Schutz von Geschäftsgeheimnissen aufs Spiel setzen. Die Datenschutzgrundsätze sind wie immer einzuhalten.

Generative KI schert sich, wenn wir als Nutzer*innen nicht da­rauf Acht geben, nicht um die Urheberrechte derer, deren Werke wir – ob bewusst oder unbewusst – verwenden oder verletzen. Zudem ist seit August 2024 die KI-Verordnung in der EU in Kraft und stellt an Unternehmen, die KI-Systeme und -Modelle entwickeln, anbieten oder betreiben, umfangreiche Anforderungen. Auch die mit KI einhergehenden Risiken sind nicht außer Acht zu lassen.

Seid ihr als Gründer*innen oder in sonst verantwortlicher Position in einem Unternehmen mit mehreren Mitarbeiter*innen tätig, müsst ihr euch Gedanken darüber machen, wie solche Risiken zu fassen und zu begrenzen sind. Tut ihr das nicht, drohen aus diversen Rechtsgrundlagen z.B. Schadensersatzforderungen, Bußgelder oder der Verlust an Assets – Dinge, die allerspätestens bei der nächsten Finanzierungsrunde negativ bewertet werden. In Bezug auf eure Belegschaft müsst ihr also Awareness für diese Themen schaffen und konkrete Vorgaben machen.

Denn eines ist klar: KI wird in eurem Unternehmen genutzt werden, ob mit oder ohne euer Wissen. Und bevor die Mitarbeiter*innen auf privaten Geräten sensible berufliche Aufgaben nicht reglementiert mittels ChatGPT & Co. lösen, beschreibt lieber beizeiten Dos and Don’ts, um sicherstellen, dass KI verantwortungsvoll, sicher und rechtskonform im Unternehmen eingesetzt wird.

Dazu dient eine die Belegschaft informierende und verpflichtende KI-Policy. Im Folgenden findest du einen Überblick darüber, welche Aspekte in eine solche Policy gehören.

1. Richtlinien für den Einsatz generativer KI am Arbeitsplatz

Generative KI-Modelle wie ChatGPT, DALL-E und andere erstellen Inhalte nach Maßgabe der Eingaben der Nutzenden. Bei diesen Prompts und bei der Verwendung der generierten Ergebnisse ist auf Folgendes zu achten:

  • Schutz sensibler Daten: Die Eingabe vertraulicher Informationen in KI-Modelle stellt ein erhebliches Risiko dar, da generative KI-Systeme auf großen Datenmengen trainiert sind und Informationen potenziell unkontrolliert verarbeiten und speichern. Die KI-Policy sollte explizit verbieten, sensible oder vertrauliche Informationen in generative KI-Systeme einzugeben, insbesondere, wenn diese extern betrieben werden. Die Policy sollte beschreiben wie mit sensiblen Daten umzugehen ist und welche Daten für die Verarbeitung durch KI-Systeme ungeeignet sind.
  • Einhaltung des Datenschutzes: Die KI-Policy sollte klarstellen, dass der Einsatz generativer KI-Tools den Anforderungen der Datenschutzgesetze (DSGVO, BDSG) entsprechen muss. Dazu gehören Vorgaben, wie personenbezogene Daten rechtssicher zu handhaben sind und welche dieser Daten überhaupt für den Einsatz von KI-Modellen geeignet sind. Zudem bedarf es Vorgaben zur Anonymisierung und Pseudonymisierung der Daten, daneben Transparenzvorgaben, um betroffene Personen über die Nutzung ihrer Daten zu informieren. Personenbezogene Daten in öffentlichen KI-Systemen einzusetzen, sollte möglichst untersagt werden.
  • Umgang mit geistigem Eigentum: Die Nutzung generativer KI-Modelle kann zu Problemen führen, wenn die KI auf geschütztem Material trainiert wurde, von dem/der Nutzenden urheberrechtlich geschützte Werke in den Prompt einbezogen werden oder die KI Werke erstellt, die bestehende Urheber- oder sonstige Schutzrechte verletzen. Die KI-Policy sollte ein Verbot der Verwendung von Werken enthalten, an denen nicht die für die Bearbeitung erforderlichen Rechte bestehen. Und sie kann Regelungen zur Überprüfung und Genehmigung von KI-erstellten Inhalten festlegen, etwa durch eine Rechtsabteilung oder eine speziell dafür zuständige Stelle.
  • Transparenz und Kennzeichnung: Die KI-Policy sollte festlegen, dass Inhalte, die mithilfe von generativer KI erstellt wurden, transparent gekennzeichnet werden. Dies trägt dazu bei, Missverständnisse zu vermeiden und sicherzustellen, dass die Herkunft von Texten und Bildern klar erkennbar ist. Diese Kennzeichnungspflicht sollte insbesondere dann gelten, wenn KI-generierte Inhalte veröffentlicht werden, aber auch im internen Gebrauch.
  • Positivliste erlaubter KI-Systeme: Um die Mitarbeiter*innen mit der Anwendung dieser Vorgaben auf einzelne am Markt angebotene KI-Systeme nicht allein zu lassen, kann eine KI-Policy auch eine Auflistung der vom Unternehmen freigegebenen Systeme enthalten. Voraussetzung ist dafür natürlich, dass diese Systeme vorab entsprechend fachlich geprüft wurden. Das kann schwierig sein, weil sich Anbieter*innen meist nicht in die Karten schauen lassen.


2. Richtlinien für die Entwicklung und Implementierung von KI

Auch wenn ihr in eurem Unternehmen KI-Systeme entwickeln oder implementieren wollt, sind ethische, rechtliche und technische Anforderungen in einer KI-Policy zu adressieren.

  • Fairness, Transparenz und Nichtdiskriminierung: KI-Systeme können, wenn sie auf verzerrten Datensätzen trainiert werden, Diskriminierung oder Vorurteile reproduzieren. Eine KI-Policy sollte deshalb klare ethische Richtlinien fest­legen, die sicherstellen, dass die entwickelten Modelle fair, transparent und frei von Diskriminierung sind. Ein mögliches Vorgehen ist, regelmäßige Audits und Bias-Tests durchzuführen und in der Policy verpflichtend vorzusehen, um Verzerrungen frühzeitig zu erkennen und zu beheben.
  • Datenschutz und Datensicherheit: Der verantwortungsvolle Umgang mit Nutzer*innendaten ist eine der wichtigsten Anforderungen in der KI-Entwicklung. Die KI-Policy sollte festlegen, dass bei der Verarbeitung personenbezogener Daten durch die KI strenge Schutzanforderungen, am besten strenge Begrenzungen, gelten. Rein automatisierte Entscheidungen sind schon laut DSGVO verboten. Es sollten nur die für die jeweilige Anwendung notwendigen Daten erhoben und verarbeitet werden, und diese Daten sollten weitestgehend anonymisiert oder pseudonymisiert werden. Regelungen für den Zugang zu diesen Daten sowie Maßnahmen zur Datensicherheit (wie Verschlüsselung und Zugriffskontrollen) sollten ebenfalls Bestandteil der Policy sein.
  • Überprüfung auf Halluzinationen und Fehlinterpretationen: Generative KI-Modelle neigen dazu, Informationen zu „halluzinieren“, also falsche oder ungenaue Inhalte zu erstellen. In der KI-Policy sollte festgelegt sein, dass entwickelte KI-Modelle regelmäßig auf ihre Genauigkeit und Zuverlässigkeit überprüft werden. Dies kann durch vorgeschriebene Tests und Simulationen geschehen, bei denen die KI in verschiedenen Szenarien eingesetzt und auf ihre Fähigkeit, korrekte Ergebnisse zu liefern, geprüft wird. Es sollten auch definiert werden, wie Fehler erkannt und behoben werden können.
  • Erklärbarkeit und Nutzer*infreundlichkeit: Komplexe KI-Modelle sind oft schwer verständlich und wirken wie eine Black Box, deren Entscheidungen für Außenstehende kaum nachvollziehbar sind. Die KI-Policy sollte daher sicherstellen, dass die KI so gestaltet ist, dass ihre Funktionsweise für Nutzer*innen transparent und nachvollziehbar ist. Dies ist insbesondere dort wichtig, wo KI-Entscheidungen schwerwiegende Auswirkungen haben können. Ihr solltet sicherstellen, dass für Nutzer*innen eine verständliche Erläuterung darüber bereitgestellt wird, wie und warum die KI zu einem bestimmten Ergebnis gelangt ist. Das ist Voraussetzung für Kontrolle und rechtskonformen Betrieb der KI.
  • Gesetzeskonformität gemäß KI-Verordnung: Nicht zuletzt hat die Europäische Union die KI-Verordnung in Kraft gesetzt, die strenge Anforderungen an die Entwicklung und Nutzung von KI stellt. Die KI-Verordnung dient der Produktsicherheit und verlangt zunächst eine Risikoeinschätzung für die KI-Systeme. Die Maßgaben für eine solche Einschätzung sollten in der Policy angerissen und No-Gos für die Entwicklung von Funktionalitäten, die zu den laut KI-Verordnung verbotenen KI-Anwendungen gehören, ausgesprochen werden. Für sogenannte Hochrisiko-­KI-Systeme gelten besondere Anforderungen, die bei einer Entwicklung mitgedacht werden müssen, wofür eine KI-Policy zumindest sensibilisieren sollte. Die im Einzelfall geforderte Überprüfung und Einstufung des jeweiligen Systems oder Modells kann eine Policy nicht leisten. Die initialen und regelmäßigen Überprüfungen sowie Risikobewertungen sollte sie aber fordern.
  • Regelmäßige Überwachung und Wartung der KI-Modelle: KI-Modelle entwickeln sich weiter und benötigen regelmäßige Überwachung und Wartung, um die Leistung zu optimieren und mögliche Fehler zu minimieren. Die KI-Policy sollte eine solche sich wiederholende Maintenance festlegen, etwa die schon erwähnten regelmäßigen Aktualisierungen, Fehler­behebungen und Performance-Überprüfungen, damit die KI-Systeme immer den aktuellen Standards und Anforderungen entsprechen.


3. Übergreifende Ziele und Vorgaben einer KI-Policy

Eine KI-Policy sollte nicht nur detaillierte Vorgaben zur Nutzung und Entwicklung von KI enthalten, sondern auch allgemeine Leitlinien und Prinzipien für den Einsatz von KI im Unternehmen, um ein Bewusstsein für die Potenziale und Risiken der Technologie zu schaffen.

  • Regelmäßige Überprüfung und Anpassung: Da sich KI-Technologien und gesetzliche Anforderungen stetig weiterentwickeln, sollte auch die KI-Policy regelmäßig überprüft und aktualisiert werden. Dies hilft sicherzustellen, dass das Unternehmen stets auf dem neuesten Stand ist und seine KI-Systeme konform mit den aktuellen gesetzlichen, ethischen und technischen Standards sind. Es ist empfehlenswert, regelmäßige Audits durchzuführen und die Policy an neue Entwicklungen in der KI-Forschung und Gesetzgebung sowie an die Marktanforderungen anzupassen.
  • Unternehmenskultur in Bezug auf KI: Eine KI-Policy sollte dazu dienen, den transparenten und offenen Umgang mit KI in allen Unternehmensbereichen und damit die Akzeptanz für KI-Systeme sowohl innerhalb des Unternehmens als auch bei Kund*innen und Partner*innen zu fördern. Dazu gehört auch, dass das Unternehmen offenlegt, in welchen Bereichen KI eingesetzt wird und welche Entscheidungen die Technologie beeinflusst. Letztendlich ist die KI-Policy ein Ins­trument zur Förderung einer verantwortungsvollen und ethischen Unternehmenskultur in Bezug auf KI. Das schützt letztlich auch die Integrität und die Werte des Unternehmens.
  • Schulungen und Sensibilisierungsmaßnahmen: Um einen solchen kompetenten und verantwortungsvollen Umgang mit KI zu erreichen, sind regelmäßige Schulungen und Sensibilisierungsmaßnahmen für die Mitarbeiter*innen zu den hier genannten Aspekten vorzusehen.

Fazit

Dieser Artikel kann nur einen groben Überblick und Rahmen geben. Die konkreten Inhalte einer auf eure Belange und Nutzungsformen passenden Policy müsst ihr in Anschauung der Spezifika der eingesetzten oder zu entwickelnden KI-Systeme erarbeiten. Das kann auch schlecht an KI delegiert werden: Der Rest des eingangs erwähnten KI-generierten Artikels war nicht wirklich brauchbar, ebenso die testweise mit KI erstellten Policies. Dafür braucht es professionelle Unterstützung.

Der Autor Dr. Daniel Michel, LL.M. ist seit 2004 als Rechtsanwalt im Bereich IT/IP/Technologie tätig. Nach Stationen in spezialisierten und Großkanzleien betreibt er seit 2018 seine eigene Rechtsberatung im Raum München, www.datalawcounsel.com

Schneller aus dem Labor

Wie Gründer*innen aus dem universitären Umfeld der Transfer von Wissen aus der akademischen Welt in die Privatwirtschaft noch besser gelingt, erörtern wir im Interview mit Dr. Philipp Baaske, Mitgründer von NanoTemper Technologies, Business Angel und seit Oktober 2025 Vizepräsident für Entrepreneurship an der Ludwig-Maximilians-Universität München (LMU).

NanoTemper, einer der Weltmarktführer für biophysikalische Messinstrumente, wurde 2008 als Spin-off der LMU gegründet. Was hatte dich damals dazu bewogen, vom Forscher zum Gründer zu werden?

Für mich war es sehr persönlich. Meine Mutter wurde mit Brustkrebs diagnostiziert, und das Medikament, das ihr das Leben gerettet hat, wurde dank Biotechnologie entwickelt. Mir wurde klar, dass Wissenschaft nur dann wirklich mächtig ist, wenn sie den Patienten erreicht. Dieser Gedanke hat mich nie mehr losgelassen.

Im Labor habe ich die Neugier, die Präzision, das Entdecken geliebt. Aber ich sah auch die Lücke: brillante Ideen blieben oft in Publikationen stecken, weit weg vom Alltag der Menschen. Ich wollte nicht bei der Entdeckung stehen bleiben. Ich wollte helfen, Entdeckungen in Produkte zu verwandeln, die jeder nutzen kann.

Diese Überzeugung wurde durch meine Herkunft noch verstärkt. Ich bin in einem kleinen bayerischen Dorf aufgewachsen, in einer Familie von Handwerkern. Meine Eltern haben mir beigebracht, dass Arbeit praktisch sein muss, dass sie den Menschen dienen sollte. Die Wissenschaft faszinierte mich, aber ich spürte eine Unruhe: Wie viel mächtiger kann unser Wissen werden, wenn wir es vom Labor auf den Alltag der Menschen übertragen?

Also habe ich zusammen mit meinem Mitgründer Stefan Duhr den Sprung gewagt. Zwei junge Wissenschaftler in einem Labor im Keller, die die ersten Prototypen von Hand bauten. Wir hatten kein Risikokapital, keine Roadmap, nur Entschlossenheit und den Glauben, dass das, was wir erschaffen, etwas verändern könnte. Uns trieb die gleiche Hartnäckigkeit an, die ich in der Werkstatt meiner Eltern gesehen hatte: Wenn etwas nicht funktionierte, reparierte man es, bis es funktionierte.

Wenn ich jetzt zurückblicke, war es nicht der Businessplan oder die Marktanalyse, die den Ausschlag gaben. Es war der Glaube, dass Forschung nicht im Labor enden, sondern die Brücke zur Gesellschaft schlagen sollte. Und für mich wurde Unternehmertum der Weg, diese Brücke zu bauen.

Was waren die größten Hürden auf diesem Weg?

Die größten Hürden waren nicht technischer, sondern menschlicher Natur. Als Wissenschaftler waren wir darauf trainiert, uns tief in die Experimente zu vertiefen, aber wir wussten nicht, wie man mit Kunden spricht, Verträge aushandelt oder Teams leitet. Das musste ich alles von Grund auf neu lernen.

In den Anfangsjahren haben wir Prototypen verkauft, bevor das Produkt überhaupt fertig war. Das hat uns gezwungen, schnell zu handeln, aber es hat uns auch Demut gelehrt: Kunden erwarten Zuverlässigkeit und nicht nur clevere Ideen. Später, als das Wachstum unsere Finanzen überstieg, mussten wir schwierige Entscheidungen treffen. Einmal musste ich Kollegen entlassen, um das Unternehmen zu retten. Das war einer der schwierigsten Momente meines Lebens, aber es hat mir gezeigt, dass Führung nicht darin besteht, Schmerzen zu vermeiden, sondern Verantwortung zu übernehmen.

Natürlich gab es unzählige kleinere Hürden: Menschen davon zu überzeugen, einem jungen Unternehmen zu vertrauen, die Gehaltsabrechnung zu erledigen, Instrumente von Hand zu reparieren. Aber diese Hindernisse wurden zu unserer Lehrzeit.

Wie können wir den Wissens- und Technologietransfer verbessern und gleichzeitig einen echten gesellschaftlichen Mehrwert schaffen?

Über Fördermittel wird viel gesprochen, was gut ist, denn wir müssen sie verbessern. Aber ich glaube, wir sollten über die Fördermittel hinausdenken. Der Fokus muss auf dem Impact liegen, nicht nur auf der Förderung. In den Life Sciences bedeutet das vor allem eines: Innovationen schneller zu den Patienten und den behandelnden Ärzten zu bringen.

Wir haben exzellente Forschung und Wissenschaftler von Weltrang. Die Frage ist, wie schnell ihre Entdeckungen den Weg vom Labor in die medizinische Praxis finden. Entscheidend sind stärkere Partnerschaften zwischen Universitäten, Krankenhäusern und praktizierenden Ärzten. Wenn Forscher, Kliniker und Ärzte früh zusammenarbeiten, wird der Weg von der Entdeckung zum Patienten kürzer und effektiver.

Ein weiterer wichtiger Aspekt ist, Wissenschaftler dazu zu ermutigen, den Schritt in die Selbständigkeit zu wagen. Viele zögern, weil sie glauben, dass ihnen die unternehmerischen Fähigkeiten fehlen. Was sie jedoch wirklich brauchen, ist eine unterstützende Umgebung: Mentoren, Vorbilder und die Möglichkeit, ihre Ideen auszuprobieren.

Schließlich geht es beim Wissenstransfer nicht darum, Patente von einem Büro in ein anderes zu verlagern. Es geht darum, wissenschaftliche Erkenntnisse in etwas umzusetzen, das das Leben der Menschen berührt und Ärzten hilft, ihre Patienten besser zu behandeln.

Die Skalierung von Forschungsergebnissen in der Privatwirtschaft funktioniert in Deutschland und Europa anders als in den USA. Was können wir aus den USA lernen und was sollten wir anders machen?

Ich bewundere den Mut des US-Ökosystems, in dem Gründer oft von großen Zielen träumen, schnell agieren und frühzeitig Investoren finden. Diese Energie schafft Dynamik und hat viele bahnbrechende Unternehmen hervorgebracht.

Europa hat seine eigenen Stärken. Wir sind bekannt für Qualität, Präzision und Vertrauen. Kunden schätzen, dass wir Dinge bauen, die lange halten. Unsere Herausforderung besteht darin, diese Stärken mit mehr Geschwindigkeit und Mut zu kombinieren. Wir haben die Chance, ein anderes Modell als das US-amerikanische zu entwickeln: verantwortungsvolles Wachstum, profitable Unternehmen und nachhaltige Wirkung, die über Jahrzehnte anhält, und nicht nur Finanzierungszyklen.

Kurz gesagt: Wir können uns von den USA die Zuversicht abschauen, aber wir sollten uns unserer europäischen DNA treu bleiben: geduldig, diszipliniert und langfristig orientiert.

Seit Oktober 2025 bist du Vizepräsident für Entrepreneurship an LMU. Wie willst du dort die Bereiche Entrepreneurship und Technologietransfer voranbringen?

Die LMU ist eine der weltweit führenden Universitäten mit 54.000 Studierenden und 18 Fakultäten. Sie vereint Exzellenz in allen Bereichen und Forschungsgebieten wie Medizin, Physik, KI, Recht, Wirtschaftswissenschaften und Geisteswissenschaften. Meine Aufgabe ist es, dafür zu sorgen, dass diese Vielfalt in die Gesellschaft getragen wird. In Form von Unternehmen, Wissen und Menschen, die ihre Fähigkeiten einsetzen. Und das muss schnell geschehen.

Eine natürliche Stärke der LMU liegt in DeepTech, in den Life Sciences, insbesondere in der Biotechnologie, und in aufkommenden Bereichen wie künstliche Intelligenz und Quanten-Technologien. In diesen Bereichen gibt es bereits bahnbrechende Forschung, und der Einfluss auf Patienten, Industrie und Gesellschaft kann enorm sein. Mein Fokus liegt darauf, diese Bereiche zu stärken und die Wege von der Forschung zur Anwendung zu beschleunigen und zu vereinfachen.

Das bedeutet, dass wir Studierenden und Forschern Zugang zu Büros und Laboren, Inkubationsprogrammen, Finanzierungsmöglichkeiten und starke Partnerschaften mit relevanten Akteuren in München und darüber hinaus bieten, dass wir ein Umfeld schaffen, in dem sie frühzeitig und in der Nähe der Kunden mutige Ideen testen können. In dem sie aus Fehlern und Erfolgen lernen können, von erfahrenen Gründern Ratschläge erhalten und Unternehmertum als attraktive Option sehen.

Vor allem aber möchte ich, dass die Zahl der Start-ups, die von der LMU ausgründen, deutlich ansteigt. Sind Lehre, Forschung und Unternehmertum auf Weltniveau und stärken sich gegenseitig, wird die LMU noch mehr zu einem Ort, an dem Ideen wirklich Wirkung entfalten. Nicht nur in München, sondern weit darüber hinaus.

Vor Kurzem ist dein Buch „The Honorable Entrepreneur“ erschienen. Welche Tipps daraus willst du Gründer*innen mit auf den Weg geben?

Diese sieben Prinzipien haben mich in den letzten 20 Jahren von einer kleinen Labor-WG in einem Keller zu einem globalen Unternehmen geführt:

  • Vertrauen aufbauen oder gar nichts aufbauen: Vertrauen ist die Grundlage für die Zusammenarbeit mit Mitgründern, Mitarbeitern, Investoren und Kunden. Ohne Vertrauen kann kein Unternehmen bestehen.
  • Menschen an erste Stelle setzen – immer: Erfolg wird von Teams und nicht von Einzelkämpfern geschaffen. Wenn du dich um deine Mitarbeiter kümmerst, werden sie die Mission mit dir durchziehen.
  • Innovieren für den Impact: Baue keine Technologie nur für dich selbst. Frage dich: Verbessert das das Leben – für Patienten, Kunden, die Gesellschaft?
  • Schnell und klug skalieren: Wachstum ist wichtig, aber Wachstum ohne Disziplin kann ein Unternehmen zerstören. Fokussiertes, profitables Skalieren schafft Resilienz.
  • Ein profitables, nachhaltiges Unternehmen aufbauen: Profitabilität ist kein Nachgedanke, sondern das, was dir Freiheit und Unabhängigkeit gibt.
  • Die Vision umsetzen: Viele Gründer verlieren sich in glänzenden Ablenkungen. Bleib fokussiert. Setze um, was am wichtigsten ist.
  • Gib etwas zurück: Teile deine Erfahrung, unterstütze andere und trage zum Ökosystem bei. Wahre Erfolge sind diejenigen, die überleben, wenn man selbst nicht mehr da ist.

Meine Botschaft ist einfach: Man kann im Geschäftsleben erfolgreich sein, ohne dabei seine Seele zu verkaufen. Rentabilität und Prinzipien sind keine Gegensätze, sondern gehören zusammen.

Philipp, Danke für deine Insights

Hinweis: Dieses Interview wurde ursprünglich auf Englisch geführt und ins Deutsche übersetzt.

KI-Modelle erfolgreich im Unternehmen einführen

Worauf es bei der Implementierung von KI wirklich ankommt.

Künstliche Intelligenz (KI) gewinnt in Unternehmen zunehmend an Bedeutung. Sie kann Prozesse beschleunigen, große Datenmengen sinnvoll nutzbar machen und Entscheidungen unterstützen. Doch in der Praxis zeigt sich: Moderne Technologie allein führt noch nicht zum Erfolg. Entscheidend ist ein strukturiertes Vorgehen, bei dem Ziele klar definiert, Daten sorgfältig vorbereitet und organisatorische Rahmenbedingungen von Beginn an berücksichtigt werden. „Viele KI-Initiativen scheitern daran, dass am Anfang die Orientierung fehlt“, sagt Benedikt Weber, Geschäftsführer der applord GmbH. „Struktur schafft Entscheidungsfähigkeit – noch bevor über konkrete KI-Modelle gesprochen wird.“

Organisatorischer Wandel und Einbindung der Mitarbeitenden

Der Einsatz von KI verändert Arbeitsabläufe, Verantwortlichkeiten und Entscheidungswege. Mitarbeitende arbeiten verstärkt mit automatisierten Systemen zusammen, Aufgaben verschieben sich, Rollen entwickeln sich weiter. Wird dieser Wandel nicht aktiv begleitet, entstehen Unsicherheiten oder Ablehnung gegenüber neuen Technologien. Erfolgreiche Unternehmen setzen deshalb auf transparente Kommunikation und frühzeitige Einbindung der Mitarbeitenden. Sie erklären, warum KI eingesetzt wird, welche Aufgaben sie übernimmt und wo menschliche Expertise weiterhin unverzichtbar bleibt. Fehlt dieses gemeinsame Verständnis, werden neue Systeme häufig nur eingeschränkt genutzt. „KI-Projekte scheitern selten an der Technologie“, betont Weber. „Viel häufiger fehlt ein klares Bild davon, welchen konkreten Nutzen KI für Mitarbeitende und Organisation wirklich bringt.“

Auswahl der passenden KI-Lösung

Das Angebot an KI-Lösungen wächst rasant. Für Unternehmen besteht die Herausforderung darin, nicht der technischen Vielfalt zu folgen, sondern eine Lösung zu wählen, die zum eigenen Geschäftsprozess passt. Der Ausgangspunkt sollte immer ein klar definierter Anwendungsfall sein: Welche Aufgabe soll KI konkret unterstützen oder verbessern? Neben den Funktionen spielen auch Fragen der Nachvollziehbarkeit, Integration in bestehende Systeme und regulatorische Anforderungen eine Rolle. Werden diese Aspekte zu spät berücksichtigt, entstehen Lösungen, die technisch leistungsfähig sind, im Alltag aber keinen Mehrwert liefern. „Viele Unternehmen wählen KI nach dem Funktionsumfang aus und stellen später fest, dass sie nicht zum eigenen Prozess passt“, erklärt Weber. „Erfolgreich ist KI dann, wenn sie Abläufe sinnvoll ergänzt und verständliche Ergebnisse liefert.“

Datenqualität als Grundlage für verlässliche Ergebnisse

KI-Modelle sind vollständig von der Qualität ihrer Daten abhängig. In vielen Unternehmen existieren relevante Informationen zwar, sie sind jedoch über verschiedene Systeme verteilt, unterschiedlich gepflegt oder historisch gewachsen. Diese Ausgangslage erschwert nicht nur den Einsatz von KI, sondern kann zu fehlerhaften oder schwer nachvollziehbaren Ergebnissen führen. Datenmanagement ist daher keine einmalige Vorarbeit, sondern eine kontinuierliche Aufgabe. Dazu gehören klare Zuständigkeiten, regelmäßige Prüfungen und eine strukturierte Aufbereitung der Daten. „Der Aufwand für Datenqualität wird häufig unterschätzt“, sagt Weber. „Ohne geprüfte und konsistente Daten lassen sich keine stabilen und verlässlichen KI-Ergebnisse erzielen – unabhängig davon, wie gut das Modell ist.“

Schrittweise Einführung statt großer Umbruch

Statt KI sofort unternehmensweit einzusetzen, empfiehlt sich ein schrittweises Vorgehen. Unternehmen können so mit klar abgegrenzten Anwendungsfällen beginnen, Lösungen im Alltag testen und die Ergebnisse anhand messbarer Kriterien, wie Benutzerfreundlichkeit oder verständlicher Anleitungen, bewerten. So lassen sich Risiken reduzieren und Erkenntnisse gezielt nutzen. Pilotprojekte liefern nicht nur technische Erkenntnisse, sondern zeigen auch, wie gut KI im Arbeitsalltag akzeptiert wird. Auf dieser Basis lässt sich entscheiden, welche Lösungen ausgebaut werden sollten. „Unternehmen, die mit überschaubaren Anwendungsfällen starten, treffen langfristig fundiertere Entscheidungen“, so Weber. „Praxiserfahrungen sind dabei deutlich wertvoller als theoretische Annahmen.“

19 Start-up-Geschenkideen für Xmas

Die Teilnehmer*innen des Hessischen Gründerpreises haben pfiffige, nutzwertige und stylische Produkte im Angebot, die bestens unter den Weihnachtsbaum passen.

Socken oder ein Buch? Gutschein oder Bargeld? Für viele Menschen ist die Weihnachtszeit auch stressig, denn sie müssen Geschenke für ihre Liebsten finden – und nicht immer nur für die. Für ein wenig Inspiration präsentieren wir geschenktaugliche Produkte und Dienstleistungen von jungen Unternehmen. Sie alle haben sich 2025 beim Hessischen Gründerpreis beworben, manche von ihnen sind ins Halbfinale gekommen, wurden als Preisträger*innen oder Sieger*innen ausgezeichnet.

19 Start-up-Inspirationen für Weihnachten

Häkelsets für Anfänger mit Video-Anleitungen hat Willy Wolle entworfen. Perfekt für gemütliche Nachmittage auf dem Sofa www.willywolle.com

Kurse rund um den Obstbaumschnitt und Erlebnisse auf der Streuobstwiese ermöglicht www.obstbaumglück.de

Musikgarten, Babymassage und Yoga für Kinder, liebevolle Kurse bietet www.mainglueckskind.de

An Weihnachten kommt gerne mal ein festlicher Hirsch- oder Rehbraten auf den Tisch. Das Fleisch dafür gibt es bei www.wildvonotto.de

Monatliche, von Montessori inspirierte Themenboxen mit liebevoll gestalteten Lern- und Bastelaktivitäten für Kinder von 3 bis 6 Jahren www.foxbox.kids

Ätherische Öle, Raumdüfte und Basisöle in Bio-Qualität liefert www.advanced-essentials.com

Sprechende Wanduhr erinnert Kinder automatisch per Sprachausgabe an Aufgaben und Termine und fördert Selbstständigkeit auf spielerische Weise www.routime.de

Tassen und andere 3D-gedruckte Keramik in herausragendem Design von www.additivum.de

Innovative Mundziehöle, basierend auf Phyto-Science und ayurvedischer Medizin, stellt www.maemaecare.com her

Professionelle Haarkosmetik mit hoher Hautverträglichkeit, produziert in Deutschland, von www.rndetail.com

www.schmunzelgeist.de ist eine Schokoladenmanufaktur, die außer leckeren Pralinen und Schokoladen auch Workshops und Tastings im Programm hat

Bio-Tees, ayurvedische Tees und Gewürze sowie Workshops und Tastings gibt es bei www.oktopus-tee.de

Weihnachten und der Winter sind die klassische Backsaison. Bio-Backmischungen ohne Industriezucker gibt es bei www.hasenzaehnchen.de

Komplette Nähprojekte in einer Box – das ideale Geschenk für kreative Köpfe von www.ankes-naehbox.de

Tagesplaner, Notizblöcke, Schreibtischunterlagen, Wochenplaner für Schüler, Studentinnen, und alle, die im Büro arbeiten: www.lemonplan.de

Maßgeschneiderte BHs, bei denen nichts mehr zwickt, zu erschwinglichen Preisen gibt es bei www.cupped.de

Brettspiel oder per App zocken? Off- und online verbindet www.playnconnect.de

Neon ist das neue Schwarz – auch bei Hundebekleidung www.lumiies.com

Handgefertigte Netztaschen & Lifestyle-Produkte gibt es bei www.netzeallerart.shop

KI-Agenten als Transformationstreiber 2026

Eine aktuelle DeepL-Studie zeigt: 69 % der globalen Führungskräfte erwarten für 2026 tiefgreifende Veränderungen durch KI-Agenten; KI-Sprachtechnologie wird zur unverzichtbaren Infrastruktur.

Eine neue Studie von DeepL, einem globalen Unternehmen für KIProdukte und Forschung, zeigt: 2026 wird für viele Organisationen den Übergang vom Experimentieren mit KI hin zu agentischer Automatisierung markieren. So erwartet die Mehrheit der weltweit befragten Führungskräfte (69 %), dass agentenbasierte KI ihre Geschäftsabläufe im kommenden Jahr deutlich verändern wird.

Die Studie wurde im September 2025 von Censuswide im Auftrag von DeepL durchgeführt. Befragt wurden 5.000 Führungskräfte in Deutschland, Frankreich, den USA, Großbritannien und Japan. Die Ergebnisse deuten darauf hin, dass Unternehmen verstärkt planen, autonome KI-Agenten im großen Umfang einzusetzen – etwa zur Unterstützung von Wissensarbeit, zur Ezienzsteigerung oder zur Anpassung organisatorischer Strukturen. Damit zeichnet sich die bedeutendste operative Veränderung in der Wirtschaft seit der Einführung der Cloud an.

„KI-Agenten sind längst nicht mehr experimentell, sie sind unumgänglich.“ sagt Jarek Kutylowski, CEO und Gründer von DeepL. „Die nächste Phase besteht darin, sie tiefgreifend in unsere Arbeitsweisen zu integrieren. In 2026 werden KI-Agenten das mühsame Umschalten zwischen verschiedenen Kontexten und repetitive Aufgaben übernehmen, sodass sich Menschen auf das konzentrieren können, was Unternehmen tatsächlich voranbringt.“

KI-Agenten werden zum nächsten Disruptor für Unternehmen

Nach ersten Pilot- und Anwendungsfällen rücken KI-Agenten zunehmend in den produktiven Einsatz:

  • Fast die Hälfte der globalen Führungskräfte (44 %) erwartet für 2026 einen tiefgreifenden Wandel durch agentische KI; ein Viertel (25 %) sieht diesen Wandel bereits heute. Nur 7 % glauben, dass KI-Agenten ihre Betriebsabläufe nicht verändern werden, was die hohe Geschwindigkeit der Implementierungen unterstreicht.
  • Als die drei wichtigsten Voraussetzungen für den sinnvollen und vertrauenswürdigen Einsatz von KI-Agenten nennen die Befragten nachweisbare Ezienz- und ROI-Eekte (22 %), Anpassungsfähigkeit der Belegschaft (18 %) und zunehmende organisatorische Bereitschaft (18 %).
  • Als wesentliche Herausforderungen bei der Einführung von KI-Agenten nennen die Befragten Kosten (16 %), Bereitschaft der Belegschaft (13 %) und Reife der Technologie (12 %).

KI als zentraler Wachstumstreiber für globale Unternehmen

Über Agenten hinaus gilt KI insgesamt als wichtigster Motor für das Wirtschaftswachstum in 2026:

  • Über zwei Drittel (67 %) der Befragten geben an, dass sich der ROI ihrer KI-Initiativen in diesem Jahr erhöht hat; mehr als die Hälfte (52 %) erwartet, dass KI im kommenden Jahr mehr zum Unternehmenswachstum beitragen wird als jede andere Technologie.
  • Wenn es um messbare Verbesserungen durch KI geht, liegt Deutschland (78 %) zusammen mit Großbritannien (80 %) an der Spitze, gefolgt von den USA (71 %) und Frankreich (70 %). Japan verzeichnet mit 35 % deutlich niedrigere Werte, was auf langsamere Implementierungen und Bereitschaften hindeutet.
  • Über die Hälfte der globalen Führungskräfte (51 %) rechnet damit, dass KI im kommenden Jahr mehr neue Rollen schat als ersetzt. 52 % geben an, dass KI-Kenntnisse für die meisten Neueinstellungen vorausgesetzt werden.

KI-Sprachtechnologie entwickelt sich vom Werkzeug zur zentralen Infrastruktur

Die Studie zeigt zudem, wie KI-Sprachtechnologie zur entscheidenden Komponente der Unternehmensinfrastruktur wird:

  • Fast zwei Drittel der globalen Unternehmen (64 %) planen 2026 steigende Investitionen in KI-Sprachtechnologie – angeführt von Großbritannien (76 %) und Deutschland (74 %), gefolgt von den USA (67 %) und Frankreich (65 %) werden mehrsprachige Kommunikation und Inhalte zu zentralen Faktoren für globales Wachstum. Im Gegensatz dazu bleibt Japan (38 %) vergleichsweise konservativ, was auf eine langsamere Dynamik hindeutet, gleichzeitig aber das wachsende Interesse von mehr als einem Drittel der Führungskräfte widerspiegelt.

In diesem Zusammenhang wird Echtzeit-Sprachübersetzung 2026 unverzichtbar:

  • Über die Hälfte der globalen Führungskräfte (54 %) sieht Echtzeit-Sprachübersetzung im kommenden Jahr als unverzichtbar an – derzeit sind es ein Drittel (32 %).
  • Großbritannien (48 %) und Frankreich (33 %) sind Vorreiter bei der Nutzung von Tools für die Echtzeit-Sprachübersetzung; Japan liegt derzeit nur bei 11 %.
  • Die Nachfrage wird angetrieben von technologischen Fortschritten in der Echtzeit-Sprachübersetzung (46 %), Kundenerwartungen (40 %) und marktübergreifender Expansion (38 %).

Die Erkenntnisse der Studie liefern wichtige Einblicke in die Zukunft der KI und zeigen, wie diese Veränderungen Branchen umgestalten, Kundenerwartungen neu definieren und sich auf das Wettbewerbsumfeld auswirken.

Happy Homeoffice Club gestartet

Gründerin Caterina Hirt startet ein digitales Netzwerk als kollaborative Kommunikationsplattform für selbständige Mütter im Homeoffice.

Mit dem Start des Happy Homeoffice Clubs entsteht ein neues digitales Angebot für selbständige Mütter – mit Liveformaten, Co-Working, einer innovativen Softwareplattform und vielen nützlichen Business-Hacks. Die Gründerin Caterina Hirt bringt damit ein strukturiertes, unterstützendes Netzwerk an den Start, das den oft isolierten Homeoffice-Alltag in einen Ort der Verbindung, Motivation und echten Weiterentwicklung verwandelt. „Ich habe selbst erlebt, wie herausfordernd es ist, Beruf, Familie und Selbstverwirklichung unter einen Hut zu bringen – vor allem im Homeoffice. Mit dem Happy Homeoffice Club möchte ich Frauen zeigen, dass sie nicht alleine sind“, so die Gründerin. Caterina Hirt ist Unternehmerin, Autorin, systemische Coachin und Mutter von zwei Kindern. Mit ihrem Agenturbackground und über zehn Jahren Erfahrung im Homeoffice weiß die Marketingspezialistin aus erster Hand, welche Chancen – aber auch welche Herausforderungen – dieser Arbeitsalltag birgt.

Kern der Zusammenarbeit ist eine kollaborative Kommunikationsplattform, über die die Mütter dauerhaft in einem echten Netzwerk verbunden sind. Dazu setzt das Angebot auf Livecalls, Community-Austausch, Expertenvorträge und snackable Businesstipps, die den Workflow im Homeoffice effizienter machen. Das Angebot richtet sich explizit an selbständige Frauen oder Mütter im Homeoffice. „Bei uns fühlt sich keine Teilnehmerin mehr allein. Hier treffen sich Frauen, die genau wissen, wie es ist, mit Laptop, Kaffee, Kind und manchmal ein bisschen Chaos zu jonglieren. Sie arbeiten, lachen, tauschen sich aus und motivieren sich gegenseitig. So modern, vernetzt und unterstützend, wie man es sich als Selbstständige immer gewünscht hat “, sagt Caterina Hirt.

Die zugrundeliegende Softwarelösung bietet eine hochmoderne Nutzeroberfläche, Chats, Calls in einer geschützten Umgebung sowie Daten- und Wissensaustausch an. So gibt es zum Beispiel den Monday Motivation Call mit allen Teilnehmerinnen oder eine interaktive Kaffeeküche, in der man sich einfach mal über alle Themen abseits des Business interaktiv austauschen kann. Die Plattform wird jeder Teilnehmerin zur Verfügung gestellt, die Nutzung ist in der monatlichen Mitgliedsgebühr von 49 Euro (Einführungspreis) enthalten. Interessentinnen können die Community inklusive aller Angebote zwei Wochen kostenlos testen.

KI und Selbstreflexion: Was macht KI mit dir?

Wie du innovative KI-Technologie und persönliche Entwicklung strategisch geschickt kombinierst, um dein Start-up nachhaltig zu skalieren.

Künstliche Intelligenz (KI) gilt als Wachstumsbooster. Doch wer dabei nur auf Technik setzt, lässt ein entscheidendes Potenzial ungenutzt – die eigene persönliche Entwicklung. Warum es gerade die Verbindung aus KI und Selbstreflexion ist, die Gründer*innen und Start-ups langfristig erfolgreich macht, liest du hier.

Gründen bedeutet, Entscheidungen unter Unsicherheit zu treffen

Wer ein Start-up aufbaut, bewegt sich im Spannungsfeld von Vision und Verantwortung. Geschäftsmodell, Finanzierung, Teamführung, Produktentwicklung – all das passiert meist parallel und unter enormem Zeitdruck. Technologie wird dabei oft als Hebel gesehen, um schneller und effizienter zu arbeiten. Und das stimmt: Tools, die auf KI basieren, können Prozesse automatisieren, Muster erkennen, Kund*innenbeziehungen vertiefen. Doch Technik allein garantiert keinen Erfolg. Entscheidend ist, wer sie wie einsetzt. Und hier kommt ein oft unterschätzter Faktor ins Spiel: der/die Gründer*in selbst mit den Mustern seiner/ihrer Persönlichkeit.

Jede einzelne Erfahrung, die die Marke rund um eine(n) Gründer*in prägt, kann niemals von einer KI erzeugt werden. Diese kann im zweiten Schritt sachlich analysieren, wie Erlebnisse für zukünftige Prozesse genutzt werden, die dazugehörigen Werte oder Ängste aber stecken in der Person selbst als Fundament.

Markenkern, Werte und Identität – das unsichtbare Fundament des Erfolgs

Jede Marke beginnt mit einer Geschichte, und diese umfasst den Menschen als Dreh- und Angelpunkt. Die Erfahrungen, Werte und Überzeugungen der Gründer*in formen den Kern eines Start-ups weit vor dem ersten Pitchdeck. Während KI dabei helfen kann, diese Identität greifbar zu machen, zu analysieren oder in die Kommunikation zu übersetzen, erzeugen kann sie diese nicht.

Gerade in der frühen Phase entscheidet nicht nur das Produkt über den Erfolg, sondern die Haltung dahinter: Wofür steht das Unternehmen? Welche Werte prägen die Entscheidungen? Welches Bedürfnis treibt den/die Gründer*in auch jenseits der KPIs an? Eine klare Positionierung entsteht nicht im Workshop, sondern im inneren Prozess. Es ist die Fähigkeit zur Selbstreflexion, die hier als Kompass dient:

  • Was ist mir wirklich wichtig?
  • Was darf sich nie ändern, selbst wenn wir skalieren?
  • Was wäre ein Deal, den ich nie eingehen würde – egal wie lukrativ er erscheint?

Wer diesen Markenkern kennt, trifft strategische Entscheidungen konsistenter, kommuniziert authentischer und baut Vertrauen bei Investor*innen, Mitarbeitenden und Kund*innen auf. Und erst dann lohnt sich der Einsatz von KI wirklich, um diese klare Positionierung zum Beispiel zu verstärken, nicht aber zu ersetzen.

KI – mehr als nur Effizienzmaschine

KI hat längst ihren Platz in der Start-up-Welt gefunden. Vom Recruiting über Sales bis hin zum Customer Support. KI-gestützte Tools erleichtern die Arbeit und verschaffen jungen Unternehmen echte Wettbewerbsvorteile:

  • Automatisierung: Mithilfe von KI lassen sich zeitintensive Prozesse wie Terminplanung, Rechnungsstellung oder E-Mail-Korrespondenz automatisieren. Das schafft Raum für strategische Aufgaben.
  • Personalisierung: Wer seine Kund*innen wirklich verstehen will, profitiert von datenbasierten Insights. KI hilft dabei, Verhalten zu analysieren, Bedürfnisse vorherzu­sagen und Inhalte gezielt auszuspielen.
  • Recruiting: Im „War for Talents“ zählt Geschwindigkeit, ergänzend aber unbedingt auch Qualität. KI-Tools unterstützen dabei, Bewerber*innen effizient zu sichten und unbewusste Bias zu reduzieren.

Richtig eingesetzt, ermöglicht KI mehr Fokus, schnellere Iterationen und datengestützte Entscheidungen. Aber genau hier beginnt auch das Problem: Technologie kann nur das verstärken, was ohnehin vorhanden ist oder eben (noch) nicht.

Selbstreflexion – der unterschätzte Erfolgsfaktor

Gründer*innen stehen täglich vor Entscheidungen mit Tragweite. Doch unter Druck, Unsicherheit und Wachstumsschmerz wird oft reaktiv gehandelt statt reflektiert geführt. Genau hier setzt Selbstreflexion an. Wer sich seiner Stärken, Muster und blinden Flecken bewusst ist, trifft bessere Entscheidungen – für sich, das Team und das Unternehmen. Selbstre­flexion ist kein esoterisches Extra, sondern ein pragmatisches Führungsinstrument. Einige wirkungsvolle Methoden:

  • Regelmäßige Selbstchecks: Was hat in dieser Woche funk­tioniert und warum? Was nicht? Was sagt das über meine Prioritäten aus?
  • Feedback aktiv einholen: nicht nur von Mitgründer*innen oder Coaches, sondern auch vom Team. Nicht defensiv reagieren, sondern neugierig auf das Feedback sein.
  • Mentoring und Coaching: Externe Sparringspartner*innen helfen, Perspektiven zu erweitern und Denkfehler zu entlarven.
  • Reflexionstools nutzen: vom (digitalen) Journal bis zur strukturierten Entscheidungsanalyse gibt es einfache Hilfsmittel, die Klarheit schaffen.

Wer bereit ist, sich selbst zu hinterfragen, entwickelt nicht nur sich, sondern auch sein Start-up weiter. Denn Führung beginnt nicht mit der Verantwortung für andere, sondern mit der Verantwortung für sich selbst.

Die Synergie – wenn KI auf Selbstreflexion trifft

Die wirklich erfolgreichen Gründer*innen sind nicht ent­weder Tech-Expert*innen oder People-Leader*innen. Sie verbinden beides. Sie nutzen KI, um operative Exzellenz zu schaffen und reflektieren gleichzeitig, wie sie führen, entscheiden, kommunizieren. Diese Kombination erzeugt eine Form von unternehmerischer Klarheit, die sowohl innovativ als auch resilient ist.

KI kann Erkenntnisse liefern. Aber nur, wer sie richtig einordnet, profitiert davon. Selbstreflexion schafft den Raum, um mit Technologie sinnvoll umzugehen. Umgekehrt kann KI helfen, Reflexionsprozesse zu unterstützen, etwa durch gezielte Feedback-Auswertung oder datengestützte Teamanalysen.

Ein Beispiel aus der Praxis: Ein Start-up im HR-Tech-Bereich nutzt KI, um Kund*innenfeedback in Echtzeit zu analysieren. Gleichzeitig reflektieren die Gründer*innen wöchentlich im Führungsteam, welche Learnings daraus für Produkt und Kommunikation folgen und welche persönlichen Muster sie bei sich selbst erkennen. Diese Kombination aus technolo­gischem Blick nach außen und menschlichem Blick nach innen führt dazu, dass das Unternehmen nicht nur schneller wächst, sondern dabei auch klar bleibt.

Skalierung braucht Klarheit in der Technik und im Kopf

Start-ups, die skalieren wollen, müssen effizient sein, gleichzeitig aber auch fokussiert, werteorientiert und anpassungsfähig. KI ist dabei ein mächtiges Werkzeug. Doch ohne die Fähigkeit zur Selbstreflexion bleibt sie oft bloß ein weiteres Tool im Tech-Stack.

Deshalb gilt: Die Kombination aus klugem KI-Einsatz und bewusster persönlicher Entwicklung ist kein Luxus, sondern unternehmerische Notwendigkeit. Wer beides ernst nimmt, schafft ein Unternehmen, das nicht nur wächst, sondern dabei auch „gesund“ bleibt.

Die Autorin Lea Baptista ist Geschäftsführerin der GG Consulting Agency und unterstützt Unternehmer*innen, Führungskräfte und Teams dabei, ihren Führungsstil klar zu definieren, Selbstreflexion als Werkzeug zu nutzen und authentisch erfolgreich zu sein.

Weckruf für (KI-)Start-ups

Zwischen Pflicht und Potenzial: Warum der EU AI Act kein Stolperstein, sondern ein strategischer Hebel ist und wie junge Unternehmen ihn frühzeitig für sich nutzen können.

Spätestens seit der Verabschiedung des AI Acts der Europäischen Union im Jahr 2024 ist klar: Der Einsatz künstlicher Intelligenz (KI) in Europa wird rechtlich geregelt – verbindlich, umfassend und risikobasiert. Für viele Unternehmen, vor allem im Start-up-Umfeld, bedeutet das erst einmal: neue Vorgaben, viel Bürokratie, hoher Aufwand. Doch dieser Eindruck greift zu kurz. Denn der AI Act ist weit mehr als ein Regelwerk zur Risikominimierung; er bietet jungen Unternehmen die Chance, Ethik, Effizienz und Rechtssicherheit von Anfang an in Einklang zu bringen. Wer ihn strategisch klug nutzt, kann sich nicht nur vor teuren Fehlern schützen, sondern auch produktiver, innovativer und vertrauenswürdiger aufstellen.

Ein Weckruf mit Wachstumspotenzial

Der AI Act ist die erste umfassende gesetzliche Regelung weltweit, die den Umgang mit KI verbindlich definiert. Ziel ist es, Vertrauen in KI-Technologien zu schaffen, Risiken wie Diskriminierung oder Manipulation zu minimieren und gleichzeitig die Innovationskraft Europas zu sichern. Je nach Risikoklasse, von minimal über hoch bis unvertretbar, gelten unterschied­liche Anforderungen an Transparenz, Sicherheit und Kontrolle. Was viele dabei übersehen: Der AI Act richtet sich nicht nur an Entwickler*innen, sondern auch an Anwender*innen. Schon wer KI zur automatisierten Lebenslaufanalyse, zur Lead-Bewertung im Vertrieb oder für interne Personalentscheidungen nutzt, kann als Betreiber*in haftbar sein – inklusive Dokumentations- und Prüfpflichten. Seit Februar 2025 gilt zudem eine allgemeine Schulungspflicht für KI-Nutzung, unabhängig von Branche oder Unternehmensgröße.

Start-ups: (Noch) nicht betroffen? Ein Trugschluss

Gerade junge Unternehmen neigen dazu, gesetzliche Regularien auf die lange Bank zu schieben – oft verständlich, wenn Zeit, Geld und personelle Ressourcen knapp sind. Doch genau hier liegt das Risiko: Laut einer Bitkom-Studie haben sich nur rund 3 Prozent der Unternehmen intensiv mit dem AI Act beschäftigt. 25 Prozent wissen gar nichts davon. Ein gefähr­licher Blindflug, nicht nur wegen potenzieller Bußgelder von bis zu 35 Millionen Euro oder 7 Prozent des Jahresumsatzes, sondern weil damit auch Chancen verschenkt werden.

Dabei geht es beim AI Act nicht nur um Pflichterfüllung, sondern um Zukunftsfähigkeit. Wer KI nutzt, sei es für Marketing, Kund*innenservice oder Produktentwicklung, muss ihre Auswirkungen verstehen, Risiken identifizieren und Prozesse so gestalten, dass sie nachvollziehbar, fair und sicher bleiben. Für Start-ups, die langfristig skalieren und wachsen wollen, ist das kein Nice-to-have, sondern ein Muss.

Wissensdefizite als Wachstumsbremse

Aktuell setzen nur etwa 17 Prozent der kleinen und mittleren Unternehmen in Deutschland KI im Geschäftsalltag ein. Die Gründe: Über 70 Prozent nennen fehlendes Wissen, 58 Prozent Unsicherheit bei rechtlichen Fragen. Gerade bei Start-ups, deren Geschäftsmodell oft auf digitalen Lösungen basiert, ist diese Zurückhaltung alarmierend. Denn wer das Potenzial von KI nicht erkennt oder falsch einsetzt, verliert nicht nur Zeit, sondern auch Marktchancen. Dazu kommt noch die Sorge vor zukünftigen rechtlichen Einschränkungen, wie 82 Prozent der Anwender*innen generativer KI angeben, 73 Prozent verweisen auf die Datenschutzanforderungen als Hemmnis und 68 Prozent sehen Unsicherheiten durch rechtliche Unklarheiten.

Der Schlüssel liegt ganz klar in der Weiterbildung: Nur wer die Funktionsweise, Stärken und Grenzen von KI-Systemen versteht, kann sie verantwortungsvoll und effizient nutzen. Das beginnt schon bei der bloßen Auseinandersetzung mit dem AI Act: 69 Prozent der Unternehmen brauchen professionelle Hilfe dabei. Das betrifft nicht nur Entwickler*innen oder Tech-Teams, sondern auch Gründer*innen sowie Verantwortliche in Marketing, HR und Customer Support. Der AI Act kann dabei als Orientierung dienen: Er macht transparent, welche Prozesse es zu beachten gilt und wie sich Risiken frühzeitig erkennen und adressieren lassen.

KI im Marketing: Vom Tool zur Strategie

Beispiel: Im Marketing ist KI längst mehr als nur eine Helferin für Textgenerierung oder A/B-Testing. Sie analysiert Zielgruppen, erkennt Kaufmuster, generiert kreative Inhalte und liefert datenbasierte Insights in Echtzeit. Doch viele Marketingverantwortliche gehen mit KI noch zu leichtfertig um oder unterschätzen ihre strategische Wirkung. In modernen Marketingabteilungen dient KI als Beschleuniger, Effizienzmotor und kreativer Sparringspartner.

Doch um diesen Nutzen voll auszuschöpfen, braucht es klare Regeln, Datenqualität und nachvollziehbare Prozesse – genau das, was der AI Act einfordert. Was auf den ersten Blick wie ein regulatorisches Korsett wirkt, ist in Wahrheit ein Innova­tionstreiber: Wer frühzeitig in qualitätsgesicherte Datenprozesse, Modellvalidierung und Feedbackschleifen investiert, steigert nicht nur die Rechtssicherheit, sondern auch die Performance seiner Kampagnen.

Ethik als Wettbewerbsfaktor

Neben Effizienz und Legalität spielt auch Ethik eine zunehmend wichtige Rolle. Nutzer*innen und Kund*innen erwarten von Unternehmen, dass sie KI fair, transparent und verantwortungsvoll einsetzen. Diskriminierende Algorithmen, intransparente Entscheidungen oder Datenmissbrauch können nicht nur rechtliche Konsequenzen haben, sie beschädigen auch das Vertrauen in die Marke. Gerade Start-ups haben hier einen Vorteil: Sie können ethische Leitlinien von Anfang an mitdenken und in ihre Unternehmenskultur integrieren. Das schafft nicht nur Glaubwürdigkeit gegenüber Kund*innen, Investor*innen und Partner*innen – es spart auch spätere Reputationskosten. Studien zeigen: Unternehmen, die KI ethisch reflektiert einsetzen, erzielen höhere Zufriedenheitswerte bei Mitarbeitenden und Kundschaft, und sie sind resilienter gegenüber technologischen Risiken.

Von Anfang an strategisch denken

Für Gründer*innen und junge Unternehmen lautet die Empfehlung daher: Nicht warten, bis der AI Act zum Problem wird, sondern ihn frühzeitig als Chance nutzen, sich professionell aufzustellen. Das bedeutet konkret:

  • Verantwortlichkeiten klären: Wer ist im Unternehmen für KI verantwortlich – technisch, ethisch, rechtlich?
  • Transparente Prozesse etablieren: Wie werden Daten erhoben, verarbeitet und genutzt? Wer prüft Algorithmen auf Verzerrungen?
  • Schulungen anbieten: Alle, die mit KI-Systemen arbeiten, sollten deren Funktionsweise und rechtliche Implikationen kennen.
  • Ethikrichtlinien entwickeln: Wie kann das Unternehmen sicherstellen, dass KI fair, sicher und inklusiv eingesetzt wird?
  • Technologische Standards einhalten: Wer dokumentiert und validiert die eingesetzten Systeme regelmäßig?

Kein Bremsklotz, sondern ein Beschleuniger

Der EU AI Act ist ein Weckruf für Start-ups, die KI nutzen oder dies künftig wollen. Er schafft Klarheit, wo zuvor Unsicherheit herrschte, und definiert Standards, an denen sich junge Unternehmen orientieren können. Wer das ignoriert, riskiert nicht nur Bußgelder, sondern auch seine Wettbewerbsfähigkeit. Wer ihn jedoch proaktiv angeht, positioniert sich als verantwortungsvolle(r) Innovator*in. Der Wandel hat längst be­- gonnen. Jetzt ist die Zeit, ihn bewusst mitzugestalten.

Der Autor Bastian Sens ist Marketing-Experte und Gründer der Beratung & Academy Sensational GmbH

eleQtron: It's MAGIC

In nur fünf Jahren vom Laborgerät zum 24/7-betriebenen Quantencomputer: Wie das 2020 von Jan Leisse, Christof Wunderlich und Michael Johanning gegründete eleQtron mit seiner MAGIC-Technologie neue Wege ebnet.

Was ihr da macht, ist der Wahnsinn – und genau deswegen bin ich dabei.“ Mit diesen Worten beschreibt Jan Leisse, einer der Gründer von eleQtron, die Anfänge des Unternehmens. Das erste Treffen mit dem Physiker Christof Wunderlich war geprägt von einer Mischung aus Skepsis und Begeisterung. Der Wissenschaftler hatte an der Universität Siegen einen Quantencomputer gebaut – mitten in der deutschen Provinz und ohne das Millionenbudget, das Konzernen wie Google oder IBM zur Verfügung steht. Doch genau das reizte Leisse: „Hier wurde nicht einfach nachgemacht, was andere tun. Hier wurde Neuland betreten.“

Es war ein ungewöhnlicher Ort für eine bahnbrechende

Innovation in der Quantentechnologie. Siegen, eine Mittelstadt im Süden Nordrhein-Westfalens, ist nicht gerade als Hotspot für Hochtechnologie bekannt. Doch manchmal entstehen die Top-Innovationen fernab der etablierten Zentren; die Universität Siegen hatte über Jahre hinweg eine bemerkenswerte Expertise in der Quantenphysik aufgebaut, ohne große mediale Aufmerksamkeit.

Von der Universität ...

Im Jahr 2020, als das globale Interesse an Quantentechnolo­gien exponentiell zunahm, erwuchs aus dieser mutigen Pionierarbeit das Start-up eleQtron – als Spin-off der Universität Siegen. Die Gründer – Jan Leisse, Christof Wunderlich und Michael Johanning – verbindet eine Vision: Quantencomputer für industrielle Anwendungen nutzbar zu machen.

Die Anfangsjahre waren geprägt von Experimentierfreude, Improvisation und dem festen Glauben an die eigene technologische Innovationskraft. Während Tech-Giganten wie IBM, Google und Amazon Milliarden Euro in ihre Quanten­programme investierten und viele Start-ups auf bekannte Technologien setzten, wagte eleQtron den Schritt in eine völlig neue Richtung.

In den Laboren der Gründer entstand die sogenannte MAGIC-Technologie (Magnetic Gradient Induced Coupling), eine Methode, Qubits (das Quantencomputing-Äquivalent zum klassischen Bit in der Digitaltechnik) nicht wie bislang üblich mit Lasern, sondern mit Mikrowellen zu steuern.

... zum technologischen Durchbruch

Die MAGIC-Technologie basiert auf einem raffinierten Zusammenspiel physikalischer Prinzipien: Magnetische Gradienten (räumliche Veränderungen der Magnetfeldstärke) ermöglichen es als lokale Felder, einzelne Ionen in einer so­genannten Falle selektiv anzusprechen. Die technischen Vorteile sind beeindruckend: Die Fidelity (Genauigkeit) bei Operationen an einzelnen Qubits liegt bei etwa 99,95 Prozent, die Gate-Zeiten (Gate-Zeit steht für die Dauer, die ein Quanten-Gate benötigt, um eine Operation auf einem Qubit auszuführen) betragen nur wenige Mikrosekunden. Gleichzeitig ermöglicht die Technologie eine bessere Skalierbarkeit, da sich Mikro­wellenfelder einfacher erzeugen und verteilen lassen als komplexe Lasersysteme. „Der Vorteil liegt nicht nur in der höheren Präzision, sondern auch in der deutlich geringeren Komplexität der Systeme“, erklärt Johanning. „Wir brauchen keine aufwändigen Optiken oder ultrastabile Umgebungen. Unsere Technologie funktioniert auch unter realen Bedingungen.“

Früh erkannten die drei Forscher das große Potenzial ihrer Technologie für praktische Anwendungen. „Durch das gezielte Ersetzen sensibler High-End-Komponenten – insbesondere Lasertechnologie – durch bewährte Mikrowellentechnik und Elektronik, vermeiden wir unnötige Komplexität, minimieren Aufwand und senken die Kosten“, fasst es Leisse zusammen.

Wachstumsschub und strategische Entwicklung

2022 gelang eleQtron ein entscheidender Schritt: Durch Earlybird und den Siegerlandfonds als Investoren sowie das vom BMBF geförderte Projekt „MAGIC App“ sicherte sich das Start-up eine Finanzierung in Höhe von 16 Millionen Euro. Diese Finanzierungsrunde war ein Wendepunkt für das Unternehmen und signalisierte das Vertrauen der Investor*innen in die MAGIC-Technologie.

„Mit diesem Kapitalschub konnten wir von einer reinen Forschungsorganisation zu einem echten Technologieunternehmen werden“, erklärt Leisse. Die Mittel flossen in den Ausbau der Produktionskapazitäten, die Vergrößerung des Teams und die Weiterentwicklung der Technologie-Roadmap. Auch die Mitwirkung von Infineon im Rahmen von MAGIC App war strategisch von Bedeutung: „Die Zusammenarbeit mit Infineon hat uns die Augen für die Realitäten des Industriemarkts geöffnet“, erklärt Leisse.

Indirekter Einkauf: Versteckter Kostenfresser oder unentdeckter Goldschatz?

Im Interview sprechen wir mit Bettina Fischer, Gründerin von Hivebuy, über die Chancen und Risiken des indirekten Einkaufs und darüber, wie Unternehmen mit der richtigen Software Kosten senken und Prozesse optimieren können.

In vielen Unternehmen wird der indirekte Einkauf häufig unterschätzt – dabei liegen hier oft erhebliche Einsparpotenziale verborgen. Durch die wachsende Digitalisierung und die zunehmende Verfügbarkeit von B2B eCommerce-Plattformen bestellen Mitarbeitende Waren und Dienstleistungen immer häufiger außerhalb klassischer Einkaufsprozesse. Diese Entwicklung bringt einerseits Flexibilität und Effizienz, stellt Unternehmen aber auch vor neue Herausforderungen: Wie lassen sich Ausgaben kontrollieren und Transparenz über die gesamte Einkaufskette sicherstellen?

Die beste Einkaufssoftware für den Mittelstand adressiert genau diese Herausforderungen. Hivebuy hat sich als moderne, benutzerfreundliche Lösung etabliert, die den indirekten Einkaufsprozess von der Bestellung bis zur Rechnungsprüfung digitalisiert und automatisiert. Die Software integriert sich nahtlos in bestehende ERP-, Buchhaltungs- und Kommunikationstools wie SAP, Microsoft Dynamics, Teams oder Slack – und das ohne aufwändige technische Implementierung.

Gegründet von erfahrenen Einkaufs- und Finanzexpert*innen aus Frustration über bisherige Lösungen, verfolgt Hivebuy die Mission, versteckte Kosten sichtbar zu machen, Budgets in Echtzeit zu kontrollieren und Einkaufsprozesse effizienter zu gestalten. Mit höchsten Sicherheitsstandards, inklusive ISO/IEC 27001-Zertifizierung und DSGVO-konformer Datenhaltung in Deutschland, schafft Hivebuy Transparenz und Vertrauen entlang der gesamten Einkaufskette.

Im Interview sprechen wir mit Bettina Fischer, Gründerin von Hivebuy, über die Chancen und Risiken des indirekten Einkaufs und darüber, wie Unternehmen mit der richtigen Software Kosten senken und Prozesse optimieren können.

StartingUp: Frau Fischer, viele Unternehmen sehen im indirekten Einkauf eher einen Kostenfaktor, der schwer zu kontrollieren ist. Was macht den indirekten Einkauf aus Ihrer Sicht zu einem versteckten Kostenfresser?

Bettina Fischer: Die große Herausforderung im indirekten Einkauf liegt darin, dass die einkaufenden Personen über das gesamte Unternehmen verteilt sind – anders als im direkten Einkauf, wo spezialisierte Einkaufsabteilungen tätig sind. Das bedeutet: Jede*r Mitarbeitende, der oder die einmal etwas bestellt, wird zum Einkäufer oder zur Einkäuferin – oft ohne die notwendige Erfahrung in Einkaufsprozessen.

Dadurch entstehen typische Muster: Es wird bei bekannten Lieferanten bestellt – oft aus dem privaten Umfeld, wie etwa Amazon Business – ohne Preisvergleiche, ohne Berücksichtigung von Lieferzeiten oder bereits verhandelten Konditionen. Das führt schnell zu ineffizienten und teuren Entscheidungen.

Hinzu kommt, dass im indirekten Einkauf eine hohe Produktvielfalt auf eine extrem heterogene Lieferantenlandschaft trifft. Das erschwert es, durch Bündelung bessere Konditionen zu erzielen. Es fehlt die klare, strategische Beziehung zu bestimmten Lieferanten – und genau dort entstehen die versteckten Kosten.

StartingUp: Wie hilft Hivebuy Mittelständlern konkret dabei, diese versteckten Kosten aufzudecken und zu reduzieren?

Bettina Fischer: Hivebuy verfolgt einen ganzheitlichen Ansatz, um die Herausforderungen des indirekten Einkaufs zu lösen. Zum einen ermöglichen wir es Mitarbeitenden, direkt über integrierte Lieferanten zu bestellen. Das bedeutet: Die Bestellungen erfolgen zentral über Hivebuy – ohne Umwege über externe Plattformen oder individuelle Beschaffungswege. Die Bestellübermittlung ist automatisiert und erfolgt effizient über unser System.

Darüber hinaus bietet Hivebuy einen integrierten Preisvergleich für B2B-Webshops. So wird sichergestellt, dass stets der beste Preis und die optimalen Lieferzeiten berücksichtigt werden – ein entscheidender Hebel zur Kostensenkung.

Ein weiterer zentraler Punkt ist die Budgetkontrolle: Sobald eine Bestellanforderung erstellt wird, sehen Budgetverantwortliche sofort die Auswirkungen auf ihr Budget – in Echtzeit. Dadurch lassen sich Entscheidungen schnell, fundiert und transparent treffen.

Auch die Freigabeprozesse sind flexibel und konfigurierbar: Mitarbeitenden wird Freiheit für alltägliche Bestellungen gegeben, während bei kritischen oder kostenintensiven Vorgängen automatische Eskalationen und Genehmigungen greifen.

Nicht zuletzt ermöglicht Hivebuy dem Einkauf, sein Wissen an die Organisation weiterzugeben. Vorverhandelte Verträge, Katalogartikel oder bevorzugte Lieferanten sind direkt im System sichtbar – wie ein digitaler Einkaufsberater im Hintergrund. So treffen selbst unerfahrene Nutzer bessere Entscheidungen – ganz im Sinne von Kostenkontrolle und Prozesssicherheit.

StartingUp: Ihre Software ist bekannt für ihre Nutzerfreundlichkeit. Wie schaffen Sie es, auch nicht-einkaufserfahrene Mitarbeitende einzubinden?

Bettina Fischer: Benutzerfreundlichkeit steht bei Hivebuy an oberster Stelle. Wann immer wir eine neue Funktion entwickeln, testen wir diese gemeinsam mit unseren Nutzerinnen und Nutzern – direkt aus der Praxis. Unser Ziel ist es, dass Hivebuy genauso intuitiv bedienbar ist wie eine Online-Überweisung: Jeder soll auf Anhieb verstehen, was zu tun ist.

Mit Funktionen wie unserem B2B-Preisvergleich und dem sogenannten Guided Buying führen wir Mitarbeitende gezielt durch den Einkaufsprozess – Schritt für Schritt, ganz ohne Schulungsaufwand. So wird selbst komplexes Einkaufswissen einfach zugänglich gemacht.

Für Freigabeverantwortliche haben wir zusätzlich eine besonders komfortable Lösung geschaffen: Freigaben können direkt über Messenger-Apps wie Microsoft Teams erteilt werden – ohne sich ins System einloggen zu müssen. Die relevanten Informationen kommen automatisch dorthin, wo man ohnehin schon arbeitet – aufs Handy oder den Desktop. Das senkt die Einstiegshürden enorm und sorgt für eine breite Akzeptanz im gesamten Unternehmen.

StartingUp: Welche Rolle spielen Transparenz und Echtzeit-Reporting in der Budgetkontrolle?

Bettina Fischer: Wir sind überzeugt: Budgetkontrolle funktioniert nur in Echtzeit. Es bringt wenig, wenn Budgetübersichten nur monatlich, quartalsweise oder gar halbjährlich zur Verfügung stehen. Entscheidungen im Einkauf werden täglich getroffen – also muss auch die Budgettransparenz jederzeit aktuell sein.

Deshalb haben wir bei der Entwicklung von Hivebuy besonderen Fokus auf eine unmittelbare Budgeteinsicht gelegt. Sobald eine Bestellung angefragt wird, sieht der oder die Budgetverantwortliche sofort, wie sich diese auf das verfügbare Budget auswirkt. Diese Echtzeit-Transparenz ist ein zentrales Element unserer Software.

Gleichzeitig möchten wir Mitarbeitende befähigen, innerhalb ihrer Befugnisse selbstständig Entscheidungen zu treffen. Nicht jede Anfrage muss durch mehrere Instanzen laufen. Vielmehr setzen wir auf smarte, automatisierte Prozesse – kombiniert mit dem Vertrauen in die Souveränität der Nutzer. Das spart nicht nur Zeit, sondern steigert auch die Effizienz und Zufriedenheit im Unternehmen.

StartingUp: Die Einführung neuer Software bedeutet oft hohen Aufwand. Wie gestaltet sich die Implementierung von Hivebuy?

Bettina Fischer: Ich habe selbst über viele Jahre ERP- und Einkaufssoftwareprojekte geleitet – und ehrlich gesagt: Es war jedes Mal ein enormer Aufwand. Genau diese Erfahrungen haben mich dazu motiviert, Hivebuy so zu entwickeln, dass Implementierung eben nicht zur Belastung wird.

Unsere Lösung ist bewusst so aufgebaut, dass sie schnell, unkompliziert und ohne großen IT-Aufwand eingeführt werden kann. Neue Unternehmen können innerhalb kürzester Zeit starten – oft sogar innerhalb eines Tages mit einem eigenen Testsystem.

Die Einführung begleiten wir durch leicht verständliche Videotutorials und Onboarding-Materialien. Darüber hinaus gibt es persönliche Sessions, in denen die Nutzer befähigt werden, das System selbstständig für ihr Unternehmen zu konfigurieren. Schnittstellen zu ERP-Systemen wie SAP, Microsoft Dynamics oder DATEV richten wir in der Regel innerhalb weniger Stunden bis Tage ein.

Wenn beide Seiten fokussiert an das Projekt herangehen, können wir bei Unternehmen mit mehreren tausend Mitarbeitenden innerhalb von acht Wochen vollständig live gehen – inklusive Integration, Schulung und Rollout.

StartingUp: Wie unterstützt Hivebuy IT-Teams und technische Entscheider bei der Integration?

Bettina Fischer: Unsere größte Stärke in der Zusammenarbeit mit IT-Teams ist unsere Schnelligkeit. Bereits im ersten Kick-Off mit der IT tauschen wir alle relevanten technischen Dokumentationen aus, klären die Rahmenbedingungen und ermöglichen in kürzester Zeit die Integration in ein Testsystem. Wir verzichten bewusst auf langwierige Business-Blueprint-Phasen und setzen stattdessen auf eine praxisnahe, direkte Umsetzung.

Hivebuy verfolgt eine klare Integration-First-Strategie. Das bedeutet: Unsere Lösung ist von Grund auf so konzipiert, dass sie sich schnell und flexibel in bestehende ERP-Systeme und IT-Landschaften integrieren lässt. Für alle gängigen Systeme – ob SAP, Microsoft Dynamics, DATEV oder NetSuite – stellen wir vollständige Schnittstellen-Dokumentationen zur Verfügung.

Mein Mitgründer Stefan Kiehne bringt aus seiner Zeit bei PwC tiefes technisches Know-how mit und hat zahlreiche ERP-Implementierungen verantwortet. Dieses Wissen fließt direkt in unsere Projekte ein. Inzwischen haben wir Hivebuy in so viele verschiedene Systeme integriert, dass kaum noch Überraschungen aufkommen. Für IT-Verantwortliche bedeutet das: minimale Unsicherheiten, schnelle Umsetzung und maximale Kompatibilität.

StartingUp: Wie sieht die Zukunft des indirekten Einkaufs aus? Welche Trends beobachten Sie?

Bettina Fischer: Ich sehe im indirekten Einkauf ganz klar einen Wandel hin zu intelligenter Automatisierung und echter Transparenz. Schon heute beobachten wir den Trend in Richtung „Agent AI“ – also digitale Einkaufsassistenten, die Nutzer durch Prozesse begleiten und Entscheidungen mit datenbasierten Empfehlungen unterstützen. Das wird sich in den nächsten Jahren deutlich verstärken.

Was mich persönlich schon lange wundert: Im B2C-Bereich haben wir mit Plattformen wie Idealo längst Preis- und Konditionsvergleiche. Im B2B gibt es das kaum. Deshalb war es uns wichtig, mit Hivebuy eine Lösung zu schaffen, die genau das möglich macht – inklusive der hinterlegten, unternehmensspezifischen Konditionen. Das ist ein echter Gamechanger.

In Zukunft wird der indirekte Einkauf zunehmend automatisiert ablaufen – von der Bedarfserkennung bis hin zur Bestellung. Vergleichbar mit einem intelligenten Kühlschrank, der automatisch Milch nachbestellt, wird auch im Unternehmen vieles automatisch geschehen: Bedarfe erkennen, Angebote vergleichen, Bestellungen auslösen – ganz ohne manuelles Zutun.

Strategische Beschaffung wird dabei zur Grundlage. Das Ziel ist nicht, jede Bestellung individuell zu behandeln, sondern Prozesse zu standardisieren, auf Unternehmensziele auszurichten und individuelle Bedarfe intelligent einzubinden.

Und auch die Rückseite des Einkaufs wird sich stark verändern: Rechnungsprüfung, Buchung und Zahlungsfreigabe werden zunehmend automatisiert ablaufen. In einer idealen Zukunft brauchen wir keine manuelle Rechnungserfassung mehr – weil alles systemgestützt, regelbasiert und transparent funktioniert.

StartingUp: Vielen Dank für das Gespräch, Frau Fischer. Ihre Einblicke verdeutlichen, wie entscheidend es für Unternehmen ist, den indirekten Einkauf transparent und effizient zu gestalten. Mit Lösungen wie Hivebuy können Mittelständler versteckte Kosten sichtbar machen und ihre Beschaffungsprozesse nachhaltig optimieren. Wir wünschen Ihnen weiterhin viel Erfolg bei Ihrer Mission, Einkaufsteams bestmöglich zu unterstützen.

EU KI-Gesetz wird scharf gestellt

Diese Strafen für KI-Verstöße drohen ab dem 2. August 2025 – was Personalverantwortliche und Arbeitnehmende jetzt wissen und beachten müssen.

Das KI-Gesetz der Europäischen Union, die weltweit erste umfassende KI-Verordnung, erreicht am 2. August 2025 einen entscheidenden Meilenstein. Ab diesem Stichtag gelten für Unternehmen, Behörden und KI-Anbieter*innen in der EU zahlreiche zentrale Verpflichtungen, bei deren Nichteinhaltung Strafmaßnahmen eingeleitet und verhängt werden können. Was das für Unternehmen und ihre Mitarbeitenden bedeutet, erfährst du hier.

Der AI Act, der am 2. Februar dieses Jahres in Kraft getreten ist, schafft einen einheitlichen Rechtsrahmen für Künstliche Intelligenz (KI) in der EU. Zwar werden viele Regelungen erst 2026 wirksam, doch bereits am 2. August 2025 beginnt eine neue Phase, die sich auf drei Bereiche fokussiert:

  • Strafmaßnahmen bei Nichteinhaltung
  • Verpflichtungen für allgemeine General-Purpose-AI-Modelle (GPAI)
  • Aufbau von Aufsicht und Governance auf nationaler und europäischer Ebene

Strafen bis zu 35 Millionen Euro

Seit dem 2. Februar dieses Jahres sind KI-Systeme mit unannehmbaren Risiken verboten. Ab dem 2. August 2025 können zusätzlich nun Geldbußen für Verstöße gegen bereits bestehende Verpflichtungen verhängt werden, die bis zu 35 Millionen Euro oder 7 Prozent ihres gesamten Jahresumsatzes betragen können. Unternehmen müssen dazu beispielsweise sicherstellen, dass ihre Mitarbeitenden über KI-Kenntnisse verfügen. Die Europäische Union erwartet von ihren Mitgliedstaaten, dass sie eigene wirksame, verhältnismäßige und abschreckende Strafmaßnahmen festlegen. Dabei sollen die besonderen Umstände von KMUs und Start-ups berücksichtigt werden, um deren wirtschaftliche Lebensfähigkeit nicht zu gefährden.

Neue Verpflichtungen für Anbieter*innen von GPAI-Modellen

GPAI-Modelle, die ab dem 2. August 2025 in der Europäischen Union vermarktet werden, unterliegen gesetzlichen Verpflichtungen. Das Europäische Amt für Künstliche Intelligenz hat dazu am 10. Juli 2025 die endgültige Fassung der Verhaltenskodizes veröffentlicht. Anbieter*innen solcher GPAI-Modelle müssen unter anderem technische Dokumentationen erstellen, Urheberrechte beachten und Transparenz über die verwendeten Trainingsdaten sicherstellen.

GPAI-Modelle sind KI-Systeme mit besonders breitem Einsatzspektrum und sind darauf ausgelegt, eine Vielzahl von Aufgaben zu erfüllen. Sie werden mit riesigen Datenmengen trainiert und sind entsprechend vielseitig einsetzbar. Das bekannteste Beispiel sind große Sprachmodelle (Large Language Models, LLM), etwa das generative Sprachmodell GPT-4o, das in ChatGPT integriert ist. Für GPAI-Modelle, die bereits vor dem 2. August 2025 in der Europäischen Union auf dem Markt waren, gilt eine Übergangsfirst bis zum 2. August 2027.

Aufsicht und Governance

Die KI-Verordnung schafft einen Rahmen mit Durchführungs- und Durchsetzungsbefugnissen auf zwei Ebenen.

Auf nationaler Ebene muss jeder EU-Mitgliedstaat bis zum 2. August 2025 mindestens eine Marktüberwachungsbehörde sowie eine notifizierende Behörde benennen. Erstere ist für die Überwachung von KI-Systemen zuständig, letztere für die Notifizierung unabhängiger Konformitätsbewertungsstellen. Die Mitgliedstaaten müssen bis dem Stichtag Informationen zu den nationalen Behörden und deren Kontaktdaten veröffentlichen.

Auf EU-Ebene koordinieren das Europäische Amt für KI und der Europäische KI-Ausschuss die Aufsicht. Zusätzlich werden ein Beratungsforum und ein wissenschaftlicher Ausschuss aus unabhängigen Experten eingerichtet.

Was bedeutet das für Personalabteilungen und Arbeitnehmende?

Das KI-Gesetz hat direkte Auswirkungen darauf, wie KI in den Bereichen Rekrutierung, Performance-Management, Personalanalyse und Mitarbeitenden-Monitoring eingesetzt wird. Personalverantwortliche müssen sicherstellen, dass KI-Tools in diesen Bereichen transparent, fair und konform sind.

  • Fairness und Antidiskriminierung: KI-Systeme, die bei Einstellungs- oder Beförderungsentscheidungen eingesetzt werden, müssen nachvollziehbar und frei von Bias sein. Personalabteilungen sollten ihre Tools und Anbieter*innen regelmäßig überprüfen, um die Einhaltung der Vorschriften sicherzustellen.
  • Vertrauen und Transparenz: Mitarbeitende erhalten einen besseren Einblick, wie KI-Systeme ihre Arbeit beeinflussen, zum Beispiel bei der Einsatzplanung, Leistungsbewertung oder bei der Arbeitssicherheit. Personalabteilung können Vertrauen schaffen, indem sie offen kommunizieren, wie KI eingesetzt wird und wie die Daten der Mitarbeitenden geschützt werden.
  • Verantwortlichkeit von Drittanbieter*innen: Werden KI-Tools von Drittanbieter*innen genutzt, müssen Personalabteilungen sicherstellen, dass diese Anbieter*innen die Anforderungen an Transparenz und Dokumentation erfüllen. Verträge und Beschaffungsprozesse sollten entsprechend angepasst werden.
  • Training und Change Management: Mit stärkeren Regulierungen von KI wird die Personalabteilung eine Schlüsselrolle bei der Schulung von Führungskräften und Mitarbeitenden übernehmen. Ziel ist es, einen verantwortungsvollen Umgang mit KI zu fördern und ethische Standards in der Unternehmenskultur zu verankern.

Fazit

Anbieter*innen von GPAI-Modellen, die bereits vor dem 2. August 2025 auf dem Markt waren, haben bis zum 2. August 2027 Zeit, die neuen Vorschriften vollständig umzusetzen. Weitere Verpflichtungen für KI-Systeme mit hohem Risiko werden 2026 und 2027 folgen. Dieser Meilenstein spiegelt das Bestreben der EU wider, Innovationen zu fördern und gleichzeitig sicherzustellen, dass KI sicher, transparent und mit den europäischen Werten im Einklang steht. Damit rückt die Personalabteilung in den Mittelpunkt einer verantwortungsvollen Einführung von KI am Arbeitsplatz.

Der Autor Tom Saeys ist Chief Operations Officer bei SD Worx, einem international tätigen Dienstleistungsunternehmen im HR-Bereich.

Luxusuhren: Darum ist es sinnvoll, Preise zu vergleichen

Entdecken Sie, warum sich der Preisvergleich bei Luxusuhren lohnt. Sparen Sie beim Online-Kauf.

Preisvergleiche bei Luxusuhren lohnen sich durch erhebliche Preisdifferenzen zwischen verschiedenen Händlern, die mehrere hundert bis tausend Euro betragen können. Diese Unterschiede entstehen hauptsächlich durch verschiedene Kostenberechnungen und unterschiedliche Margenstrategien der Anbieter. Während manche Händler auf Premium-Service setzen, bieten andere günstigere Preise durch schlankere Betriebsstrukturen. Besonders bei begehrten Modellen von Rolex, Patek Philippe oder Audemars Piguet variieren die Preise stark zwischen den Anbietern. Ein gründlicher Preisvergleich kann daher zu beträchtlichen Einsparungen von bis zu 30 Prozent führen. Gleichzeitig hilft er dabei, den tatsächlichen Marktwert einer Luxusuhr präzise zu ermitteln. Die Investition in eine hochwertige Armbanduhr rechtfertigt den Aufwand für einen detaillierten Vergleich verschiedener Anbieter vollständig. Die folgenden Abschnitte zeigen, worauf man achten sollte.

Zwischen den einzelnen Händlern existieren teilweise deutliche Preisunterschiede

Konkrete Beispiele verdeutlichen das Sparpotenzial beim Uhrenkauf: Spezialisierte Händler bieten permanent Armbanduhren mit Rabatten von mehreren tausend Euro unter dem Neupreis an. Diese deutlichen Preisvorteile entstehen durch unterschiedliche Beschaffungswege, Lagerbestände und Verkaufsstrategien der Anbieter. Plattformen wie Watchy24.de ermöglichen es, diese Preisunterschiede transparent zu vergleichen und das beste Angebot zu identifizieren. Während Boutiquen oft Listenpreise verlangen, können autorisierte Händler erhebliche Rabatte gewähren. Online-Händler profitieren von geringeren Betriebskosten und geben diese Kostenvorteile häufig an Kunden weiter.

Besonders bei limitierten Editionen oder seltenen aktuellen Modellen können die Preisunterschiede zwischen verschiedenen Anbietern deutlich ausfallen und eine sorgfältige Recherche rechtfertigen.

Internationale Preisunterschiede und Währungseffekte: Worauf sollte man achten?

Länderspezifische Preisdifferenzen bei Luxusuhren ergeben sich aus verschiedenen wirtschaftlichen Faktoren. Währungsschwankungen beeinflussen die Preisgestaltung deutlich, besonders bei hochwertigen Herstellern aus der Schweiz, die – ebenso wie viele Start-Ups – verstärkt darauf achten, ein hohes Maß an Markenschutz zu gewährleisten. Die unterschiedlichen Mehrwertsteuersätze zwischen den Ländern wirken sich direkt auf die Listenpreise aus. So liegt die Mehrwertsteuer in Deutschland bei 19 Prozent, während sie in der Schweiz und in einigen anderen Ländern deutlich niedriger ist.

Außereuropäische Märkte wie Hongkong oder Singapur bieten teilweise deutlich günstigere Preise, wobei Import- und Zollbestimmungen unbedingt zu beachten sind. Ein internationaler Preisvergleich kann erhebliche Kostenvorteile offenbaren, setzt jedoch Kenntnisse über Garantie- und Servicebedingungen voraus.

Lohnt es sich, auf dem Gebrauchtmarkt Ausschau zu halten?

Der Gebrauchtmarkt für Luxusuhren bietet Einsparpotenziale von bis zu 30 Prozent bei meist stabiler Wertentwicklung. Hochwertige Marken behalten auch als gebrauchte Modelle eine hohe Werterhaltungsrate von durchschnittlich 70 bis 80 Prozent. Plattformen für den Second-Hand-Handel verfügen über umfangreiche Bestände mit detaillierten Zustandsbeschreibungen.

Gebrauchte Luxusuhren werden häufig professionell aufbereitet und einer Qualitätsprüfung durch Fachbetriebe unterzogen. Die Wertstabilität macht den Gebrauchtmarkt zu einer attraktiven Investitionsmöglichkeit für Sammler. Seltene oder nicht mehr produzierte Modelle können sogar an Wert gewinnen. Die transparente Preisgestaltung ermöglicht fundierte Vergleiche und realistische Einschätzungen bei deutlich geringeren Anschaffungskosten.

Expertise als wichtiger Faktor für den Kauf einer Luxusuhr

So gut wie jeder hat individuelle Vorstellungen davon, was er sich gönnen möchte. Manche träumen davon, als digitaler Nomade die Welt zu sehen, andere möchten sich irgendwann eine Luxusuhr leisten können.

Daher ist es wichtig, sich zunächst über die eigenen Ansprüche klar zu werden. Falls die Wahl auf die Luxusuhr fällt, gilt: Die Authentizitätsprüfung bildet die Grundlage für sichere Transaktionen im Luxusuhrenmarkt und beeinflusst maßgeblich die Preisgestaltung. Erfahrene Fachhändler verfügen über spezialisierte Prüfverfahren wie Seriennummern-Checks, Analyse von Werkscodes und Materialuntersuchungen.

Zertifikate, Originalverpackungen und Servicedokumente erhöhen die Glaubwürdigkeit und den Wert einer Uhr erheblich. Experten bewerten den Zustand des Uhrwerks, die Originalität der Komponenten sowie die historische Bedeutung. Die Zusammenarbeit mit erfahrenen Uhrmachern minimiert Risiken beim Kauf hochwertiger Zeitmesser.

Seriöse Händler bieten Echtheitsgarantien und übernehmen die Haftung für die Authentizität ihrer Angebote.

Ein Ausblick auf die (mögliche) langfristige Wertentwicklung

Ein fundierter Preisvergleich bei Luxusuhren zahlt sich oft langfristig über einen Zeitraum von fünf bis zehn Jahren durch bessere Investitionsentscheidungen aus. Die Analyse großer Mengen weltweiter Angebote ermöglicht realistische Markteinschätzungen und das Erkennen von Trends bei renommierten Marken. Erfolgreiche Sammler berücksichtigen sowohl aktuelle Preise als auch die historische Wertentwicklung ihrer Wunschmodelle.

Die Nutzung professioneller Vergleichsplattformen und eine regelmäßige Marktbeobachtung helfen, Risiken zu minimieren und das Preis-Leistungs-Verhältnis zu maximieren. Internationale Preisunterschiede sowie der Gebrauchtmarkt bieten zusätzliche Einsparpotenziale für informierte Käufer. Langfristig profitieren Sammler von fundiertem Markt-Know-how bei zukünftigen Käufen und Verkäufen ihrer Luxusuhren-Kollektion.

Warum KI bei Förderanträgen versagt

Fünf Gründe, warum Unternehmen auf menschliche Intelligenz setzen sollten.

Ob steuerliche Forschungszulage, Investitionsförderung oder EU-Programme. Künstliche Intelligenz (KI) wie ChatGPT liefert in Sekundenschnelle eine Vielzahl möglicher Förderprogramme. Doch zwischen der reinen Information und der tatsächlichen Erschließung von Fördermitteln liegt ein erheblicher Unterschied. Hier gilt es, Unternehmen zu sensibilisieren.

Fördermittel sind heute ein strategischer Bestandteil moderner Unternehmensfinanzierung. Es reicht daher nicht, die Programme zu kennen. Entscheidend ist, sie rechtssicher, vollständig und förderlogisch aufeinander abgestimmt umzusetzen, um die vollen Förderpotenziale zu heben. Genau hier beginnt die Arbeit von Fördermittelexpert*innen.

Fünf Gründe, warum KI-Tools nicht als Fördermittelberater funktionieren

1. KI erkennt die wahren Förderpotenziale nicht

ChatGPT kann erklären, was ein Förderprogramm leistet. Doch welche Kosten eines konkreten Vorhabens tatsächlich und wie hoch förderfähig sind, lässt sich so nicht beurteilen. Gerade bei komplexen Programmen wie der steuerlichen Forschungszulage sind Erfahrung, Struktur und rechtssichere Abgrenzung entscheidend. Eine gute Fördermittelberatung prüft jedes Vorhaben systematisch: von der Förderfähigkeit nach dem Forschungszulagengesetz (FZulG), AGVO oder De-minimis-Verordnung bis hin zur klaren Trennung förderfähiger und nicht förderfähiger Aufwände.

2. KI kann keine Förderstrategien entwickeln

Eine Liste von Förderprogrammen ersetzt keine Strategie. KI kann nur Optionen nennen, aber keine Strategien zur Umsetzung im Unternehmen entwickeln. Eine gute Fördermittelberatung integriert die Forschungszulage sinnvoll in laufende Projekte und strukturiert Innovations- sowie Investitionsprozesse auf Bundes-, Landes- und EU-Ebene. So entstehen nicht nur Optionen, sondern belastbare, wirtschaftlich wirksame Lösungen.

3. KI kann nicht mit Menschen kommunizieren

Ein Antrag ist mehr als ein Formular. Er muss Anforderungen erfüllen und überzeugen. KI liefert Textbausteine, aber führt keine Gespräche und reagiert nicht auf Rückfragen mit der notwendigen Erfahrung in der Verwaltungspraxis der verschiedenen Förderprogramme. Eine gute Fördermittelberatung übernimmt die gesamte Kommunikation mit Förderstellen, koordiniert mit Bescheinigungsstellen und entwickelt formal korrekte und überzeugende Argumentationen.

4. KI endet beim Prompt – Fördermittelberatung bei der erfolgreichen Projektprüfung

Nach dem Antrag geht die Arbeit oft erst richtig los. Rückfragen, Prüfungen, Nachweise. KI kann Unternehmen dabei nicht unterstützen und keine Verantwortung übernehmen. Eine gute Fördermittelberatung hingegen begleitet die Kund*innen durch den gesamten Förderzyklus mit sauberer Dokumentation, revisionssicherer Aufbereitung und Unterstützung bei Audits und Außenprüfungen.

5. KI zeigt nur den Dschungel – Förderexperten finden den Schatz

Datenbanken geben einen Überblick, aber keine Richtung. Eine gute Fördermittelberatung bewertet alle denkbar möglichen Förderprogramme im konkreten Unternehmenskontext und entwickelt daraus konkrete Maßnahmen, um das Maximum an Fördermöglichkeiten für die Kund*innen rauszuholen. Eine gute Fördermittelberatung schafft so echte wirtschaftliche Vorteile statt der bloßen Auflistung von Fördermöglichkeiten.

Der Autor Efe Duran Sarikaya ist CEO der Fördermittelberatung EPSA Deutschland.

„Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing“

Mit planqc verfolgt Dr. Alexander Glätzle die Mission, hochskalierbare Quantencomputer für wirtschaftliche Anwendungen zu bauen. Warum das Unternehmen dabei auf Standorte wie München und Innsbruck setzt und welche Rolle Österreichs Talentpool spielt, verrät er im Interview.

Dr. Alexander Glätzle ist Quantenphysiker und Mitgründer von planqc. Er studierte und promovierte an der Universität Innsbruck, forschte an renommierten Instituten wie Oxford, Harvard sowie in Singapur und war als Unternehmensberater tätig. 2022 gründete er planqc als Ausgründung aus dem Max-Planck-Institut in München.

Herr Dr. Glätzle, wie entstand die Unternehmensidee und welche Meilensteine haben Sie mit planqc bisher erreicht?

Die Idee zu planqc ist bereits während meines Studiums an der Universität Innsbruck entstanden. Dort habe ich intensiv im Bereich Quantentechnologie geforscht und das enorme Potenzial erkannt, aus diesen Erkenntnissen ein Start-up zu gründen. Bis zur Gründung hat es allerdings noch einige Jahre gedauert – nicht zuletzt, weil die technologische Entwicklung im Labor ebenfalls voranschreiten musste. 2022 sind wir dann als Ausgründung aus dem Max-Planck-Institut offiziell gestartet. Zu den wichtigsten Meilensteinen zählen zwei große öffentlich geförderte Projekte: Für das Deutsche Zentrum für Luft- und Raumfahrt bauen wir einen Quantencomputer mit einem Volumen von 30 Mio. EUR, ein weiteres Projekt mit dem Leibniz-Rechenzentrum umfasst 20 Mio. EUR, beide mit Abschluss bis Ende 2026 bzw. 2027. Dann werden an diesen beiden Standorten voll funktionsfähige Quantencomputer von planqc installiert sein.

Sie haben bereits Venture Capital mit an Bord. Wer zählt zu Ihren Investoren?

Gestartet sind wir 2022 mit einer Seed-Runde, an der unter anderem UVC Partners, Speedinvest und Apex Ventures beteiligt waren – also bereits starke Partner auch aus Österreich. Diese Basis konnten wir in der Series-A im letzten Jahr weiter ausbauen. Die CATRON Holding, ein Wiener Family Office, ist als Lead-Investor eingestiegen. Dazu kamen weitere Partner wie der DeepTech & Climate Fonds sowie Bayern Kapital. Besonders erfreulich ist, dass auch unsere Bestandsinvestoren erneut signifikant investiert haben. Damit verfügen wir über eine starke, rein mitteleuropäische, deutsch-österreichische Investorenbasis – was in unserem Sektor tatsächlich selten ist.

Ihr Headquarter befindet sich in der Nähe von München. Was hat Sie dazu bewegt, zusätzlich einen Standort in Innsbruck zu eröffnen?

Ursprünglich haben wir planqc in München gegründet – als Ausgründung aus dem Max-Planck-Institut. Doch bereits innerhalb eines Jahres haben wir ein zweites Büro in Innsbruck eröffnet. Der Grund liegt auf der Hand: Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing. Mit renommierten Instituten wie dem Institut für Quantenoptik und Quanteninformation (IQOQI) und Persönlichkeiten wie Peter Zoller und Rainer Blatt gibt es dort eine kritische Masse an international anerkannten Wissenschaftlern. Zudem ist es in der Praxis oft schwierig, hochqualifizierte Talente aus der Region nach München zu bringen. Deshalb haben wir entschieden, ihnen vor Ort ein attraktives Arbeitsumfeld zu bieten – mit einem eigenen Standort in Innsbruck.

Welche Vorteile bietet der Standort Österreich speziell für Unternehmen im Bereich Quantencomputing?

Österreich hat eine lange und starke Tradition in der Quantenphysik. Universitäten wie Innsbruck und Wien, das IQOQI und eine ganze Generation exzellenter Wissenschaftler prägen diese Landschaft. Viele bahnbrechende theoretische und experimentelle Arbeiten wurden hier in den vergangenen Jahren geleistet. Gerade für junge Start-ups bietet das Land enorme Vorteile: Der Talentpool ist außergewöhnlich – mit hervorragend ausgebildeten, dynamischen Fachkräften. Darüber hinaus ist die Nähe zu sogenannten „Industry First Movern“ gegeben, was den Standort besonders spannend macht. Und nicht zuletzt hat Österreich eine historische Verbindung zur Physik – Namen wie Schrödinger, Pauli oder Hess stehen sinnbildlich für diese wissenschaftliche Tiefe.

Welche Unterstützung erhielten Sie bei der Ansiedlung durch die Austrian Business Agency?

Die Austrian Business Agency sowie die Standortagentur Tirol haben uns außerordentlich engagiert unterstützt – sei es bei der Suche nach Büroflächen, bei der Eröffnung des ersten Bankkontos oder in bürokratischen Fragen. Sie standen uns nicht nur beratend zur Seite, sondern haben uns tatkräftig geholfen, Hürden aus dem Weg zu räumen. Genau so stelle ich mir die Zusammenarbeit mit einer lokalen Agentur vor: nah dran, lösungsorientiert und mit exzellentem Netzwerk. Wir hatten wirklich großes Glück mit der Unterstützung vor Ort.

Sie selbst sind in Österreich geboren, haben in Innsbruck promoviert und weltweit Forschungsaufenthalte absolviert – bevor Sie als Unternehmensberater und Gründer nach München gingen. Mit welchen Qualitäten punktet Österreich allgemein, auch als Arbeits- und Wohnort?

Ich habe viele Jahre im Ausland gelebt und gearbeitet – in Oxford, Singapur und Deutschland. Was Innsbruck und Tirol für mich besonders macht, ist die Kombination aus wissenschaftlicher Exzellenz und hoher Lebensqualität. Die Stadt liegt inmitten der Alpen, bietet eine hervorragende Infrastruktur und ein ausgewogenes Verhältnis zwischen Studierenden und Einwohnern. Das schafft ein inspirierendes Umfeld – zum Leben, Forschen und Arbeiten gleichermaßen.

Dr. Alexander Glätzle, vielen Dank für das Gespräch.

Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin