Was gehört in eine KI-Policy?

Autor: Dr. Daniel Michel
44 likes

Recht für Gründer*innen: Über den verantwortungsvollen Umgang mit KI.

Künstliche Intelligenz (KI) ist längst Teil unseres Alltags und hält in Unternehmen auch zunehmend Einzug. Ob beim Erstellen von Texten, in der Datenanalyse oder bei der Automatisierung von Routine­aufgaben – KI ist ein starkes Werkzeug, das Unternehmen viele Vorteile bieten kann. Doch mit diesen Vorteilen kommen auch Verantwortung und Risiken, die eine klare und durchdachte KI-Policy erfordern.

Diese Einleitung zu einem Artikel über KI-Policies ist KI-generiert. Es ist so schön bequem und schnell gemacht: eines der gängigen LLM-Systeme online aufrufen, beispielsweise ChatGPT, und binnen Sekunden ist der Artikel fertig.

Ihr kennt das im Privaten, vor allem aber auch im Arbeitsumfeld. KI-Tools sind aus der Arbeitswelt nicht mehr wegzudenken. Die Nutzung von KI – insbesondere für berufliche Aufgaben – birgt jedoch Risiken. Manche KI neigt, falsch trainiert, zu diskriminierenden Entscheidungen, was z.B. im HR-Bereich gefährlich ist. Unbedacht erstellte Prompts können den Schutz von Geschäftsgeheimnissen aufs Spiel setzen. Die Datenschutzgrundsätze sind wie immer einzuhalten.

Generative KI schert sich, wenn wir als Nutzer*innen nicht da­rauf Acht geben, nicht um die Urheberrechte derer, deren Werke wir – ob bewusst oder unbewusst – verwenden oder verletzen. Zudem ist seit August 2024 die KI-Verordnung in der EU in Kraft und stellt an Unternehmen, die KI-Systeme und -Modelle entwickeln, anbieten oder betreiben, umfangreiche Anforderungen. Auch die mit KI einhergehenden Risiken sind nicht außer Acht zu lassen.

Seid ihr als Gründer*innen oder in sonst verantwortlicher Position in einem Unternehmen mit mehreren Mitarbeiter*innen tätig, müsst ihr euch Gedanken darüber machen, wie solche Risiken zu fassen und zu begrenzen sind. Tut ihr das nicht, drohen aus diversen Rechtsgrundlagen z.B. Schadensersatzforderungen, Bußgelder oder der Verlust an Assets – Dinge, die allerspätestens bei der nächsten Finanzierungsrunde negativ bewertet werden. In Bezug auf eure Belegschaft müsst ihr also Awareness für diese Themen schaffen und konkrete Vorgaben machen.

Denn eines ist klar: KI wird in eurem Unternehmen genutzt werden, ob mit oder ohne euer Wissen. Und bevor die Mitarbeiter*innen auf privaten Geräten sensible berufliche Aufgaben nicht reglementiert mittels ChatGPT & Co. lösen, beschreibt lieber beizeiten Dos and Don’ts, um sicherstellen, dass KI verantwortungsvoll, sicher und rechtskonform im Unternehmen eingesetzt wird.

Dazu dient eine die Belegschaft informierende und verpflichtende KI-Policy. Im Folgenden findest du einen Überblick darüber, welche Aspekte in eine solche Policy gehören.

1. Richtlinien für den Einsatz generativer KI am Arbeitsplatz

Generative KI-Modelle wie ChatGPT, DALL-E und andere erstellen Inhalte nach Maßgabe der Eingaben der Nutzenden. Bei diesen Prompts und bei der Verwendung der generierten Ergebnisse ist auf Folgendes zu achten:

  • Schutz sensibler Daten: Die Eingabe vertraulicher Informationen in KI-Modelle stellt ein erhebliches Risiko dar, da generative KI-Systeme auf großen Datenmengen trainiert sind und Informationen potenziell unkontrolliert verarbeiten und speichern. Die KI-Policy sollte explizit verbieten, sensible oder vertrauliche Informationen in generative KI-Systeme einzugeben, insbesondere, wenn diese extern betrieben werden. Die Policy sollte beschreiben wie mit sensiblen Daten umzugehen ist und welche Daten für die Verarbeitung durch KI-Systeme ungeeignet sind.
  • Einhaltung des Datenschutzes: Die KI-Policy sollte klarstellen, dass der Einsatz generativer KI-Tools den Anforderungen der Datenschutzgesetze (DSGVO, BDSG) entsprechen muss. Dazu gehören Vorgaben, wie personenbezogene Daten rechtssicher zu handhaben sind und welche dieser Daten überhaupt für den Einsatz von KI-Modellen geeignet sind. Zudem bedarf es Vorgaben zur Anonymisierung und Pseudonymisierung der Daten, daneben Transparenzvorgaben, um betroffene Personen über die Nutzung ihrer Daten zu informieren. Personenbezogene Daten in öffentlichen KI-Systemen einzusetzen, sollte möglichst untersagt werden.
  • Umgang mit geistigem Eigentum: Die Nutzung generativer KI-Modelle kann zu Problemen führen, wenn die KI auf geschütztem Material trainiert wurde, von dem/der Nutzenden urheberrechtlich geschützte Werke in den Prompt einbezogen werden oder die KI Werke erstellt, die bestehende Urheber- oder sonstige Schutzrechte verletzen. Die KI-Policy sollte ein Verbot der Verwendung von Werken enthalten, an denen nicht die für die Bearbeitung erforderlichen Rechte bestehen. Und sie kann Regelungen zur Überprüfung und Genehmigung von KI-erstellten Inhalten festlegen, etwa durch eine Rechtsabteilung oder eine speziell dafür zuständige Stelle.
  • Transparenz und Kennzeichnung: Die KI-Policy sollte festlegen, dass Inhalte, die mithilfe von generativer KI erstellt wurden, transparent gekennzeichnet werden. Dies trägt dazu bei, Missverständnisse zu vermeiden und sicherzustellen, dass die Herkunft von Texten und Bildern klar erkennbar ist. Diese Kennzeichnungspflicht sollte insbesondere dann gelten, wenn KI-generierte Inhalte veröffentlicht werden, aber auch im internen Gebrauch.
  • Positivliste erlaubter KI-Systeme: Um die Mitarbeiter*innen mit der Anwendung dieser Vorgaben auf einzelne am Markt angebotene KI-Systeme nicht allein zu lassen, kann eine KI-Policy auch eine Auflistung der vom Unternehmen freigegebenen Systeme enthalten. Voraussetzung ist dafür natürlich, dass diese Systeme vorab entsprechend fachlich geprüft wurden. Das kann schwierig sein, weil sich Anbieter*innen meist nicht in die Karten schauen lassen.


2. Richtlinien für die Entwicklung und Implementierung von KI

Auch wenn ihr in eurem Unternehmen KI-Systeme entwickeln oder implementieren wollt, sind ethische, rechtliche und technische Anforderungen in einer KI-Policy zu adressieren.

  • Fairness, Transparenz und Nichtdiskriminierung: KI-Systeme können, wenn sie auf verzerrten Datensätzen trainiert werden, Diskriminierung oder Vorurteile reproduzieren. Eine KI-Policy sollte deshalb klare ethische Richtlinien fest­legen, die sicherstellen, dass die entwickelten Modelle fair, transparent und frei von Diskriminierung sind. Ein mögliches Vorgehen ist, regelmäßige Audits und Bias-Tests durchzuführen und in der Policy verpflichtend vorzusehen, um Verzerrungen frühzeitig zu erkennen und zu beheben.
  • Datenschutz und Datensicherheit: Der verantwortungsvolle Umgang mit Nutzer*innendaten ist eine der wichtigsten Anforderungen in der KI-Entwicklung. Die KI-Policy sollte festlegen, dass bei der Verarbeitung personenbezogener Daten durch die KI strenge Schutzanforderungen, am besten strenge Begrenzungen, gelten. Rein automatisierte Entscheidungen sind schon laut DSGVO verboten. Es sollten nur die für die jeweilige Anwendung notwendigen Daten erhoben und verarbeitet werden, und diese Daten sollten weitestgehend anonymisiert oder pseudonymisiert werden. Regelungen für den Zugang zu diesen Daten sowie Maßnahmen zur Datensicherheit (wie Verschlüsselung und Zugriffskontrollen) sollten ebenfalls Bestandteil der Policy sein.
  • Überprüfung auf Halluzinationen und Fehlinterpretationen: Generative KI-Modelle neigen dazu, Informationen zu „halluzinieren“, also falsche oder ungenaue Inhalte zu erstellen. In der KI-Policy sollte festgelegt sein, dass entwickelte KI-Modelle regelmäßig auf ihre Genauigkeit und Zuverlässigkeit überprüft werden. Dies kann durch vorgeschriebene Tests und Simulationen geschehen, bei denen die KI in verschiedenen Szenarien eingesetzt und auf ihre Fähigkeit, korrekte Ergebnisse zu liefern, geprüft wird. Es sollten auch definiert werden, wie Fehler erkannt und behoben werden können.
  • Erklärbarkeit und Nutzer*infreundlichkeit: Komplexe KI-Modelle sind oft schwer verständlich und wirken wie eine Black Box, deren Entscheidungen für Außenstehende kaum nachvollziehbar sind. Die KI-Policy sollte daher sicherstellen, dass die KI so gestaltet ist, dass ihre Funktionsweise für Nutzer*innen transparent und nachvollziehbar ist. Dies ist insbesondere dort wichtig, wo KI-Entscheidungen schwerwiegende Auswirkungen haben können. Ihr solltet sicherstellen, dass für Nutzer*innen eine verständliche Erläuterung darüber bereitgestellt wird, wie und warum die KI zu einem bestimmten Ergebnis gelangt ist. Das ist Voraussetzung für Kontrolle und rechtskonformen Betrieb der KI.
  • Gesetzeskonformität gemäß KI-Verordnung: Nicht zuletzt hat die Europäische Union die KI-Verordnung in Kraft gesetzt, die strenge Anforderungen an die Entwicklung und Nutzung von KI stellt. Die KI-Verordnung dient der Produktsicherheit und verlangt zunächst eine Risikoeinschätzung für die KI-Systeme. Die Maßgaben für eine solche Einschätzung sollten in der Policy angerissen und No-Gos für die Entwicklung von Funktionalitäten, die zu den laut KI-Verordnung verbotenen KI-Anwendungen gehören, ausgesprochen werden. Für sogenannte Hochrisiko-­KI-Systeme gelten besondere Anforderungen, die bei einer Entwicklung mitgedacht werden müssen, wofür eine KI-Policy zumindest sensibilisieren sollte. Die im Einzelfall geforderte Überprüfung und Einstufung des jeweiligen Systems oder Modells kann eine Policy nicht leisten. Die initialen und regelmäßigen Überprüfungen sowie Risikobewertungen sollte sie aber fordern.
  • Regelmäßige Überwachung und Wartung der KI-Modelle: KI-Modelle entwickeln sich weiter und benötigen regelmäßige Überwachung und Wartung, um die Leistung zu optimieren und mögliche Fehler zu minimieren. Die KI-Policy sollte eine solche sich wiederholende Maintenance festlegen, etwa die schon erwähnten regelmäßigen Aktualisierungen, Fehler­behebungen und Performance-Überprüfungen, damit die KI-Systeme immer den aktuellen Standards und Anforderungen entsprechen.


3. Übergreifende Ziele und Vorgaben einer KI-Policy

Eine KI-Policy sollte nicht nur detaillierte Vorgaben zur Nutzung und Entwicklung von KI enthalten, sondern auch allgemeine Leitlinien und Prinzipien für den Einsatz von KI im Unternehmen, um ein Bewusstsein für die Potenziale und Risiken der Technologie zu schaffen.

  • Regelmäßige Überprüfung und Anpassung: Da sich KI-Technologien und gesetzliche Anforderungen stetig weiterentwickeln, sollte auch die KI-Policy regelmäßig überprüft und aktualisiert werden. Dies hilft sicherzustellen, dass das Unternehmen stets auf dem neuesten Stand ist und seine KI-Systeme konform mit den aktuellen gesetzlichen, ethischen und technischen Standards sind. Es ist empfehlenswert, regelmäßige Audits durchzuführen und die Policy an neue Entwicklungen in der KI-Forschung und Gesetzgebung sowie an die Marktanforderungen anzupassen.
  • Unternehmenskultur in Bezug auf KI: Eine KI-Policy sollte dazu dienen, den transparenten und offenen Umgang mit KI in allen Unternehmensbereichen und damit die Akzeptanz für KI-Systeme sowohl innerhalb des Unternehmens als auch bei Kund*innen und Partner*innen zu fördern. Dazu gehört auch, dass das Unternehmen offenlegt, in welchen Bereichen KI eingesetzt wird und welche Entscheidungen die Technologie beeinflusst. Letztendlich ist die KI-Policy ein Ins­trument zur Förderung einer verantwortungsvollen und ethischen Unternehmenskultur in Bezug auf KI. Das schützt letztlich auch die Integrität und die Werte des Unternehmens.
  • Schulungen und Sensibilisierungsmaßnahmen: Um einen solchen kompetenten und verantwortungsvollen Umgang mit KI zu erreichen, sind regelmäßige Schulungen und Sensibilisierungsmaßnahmen für die Mitarbeiter*innen zu den hier genannten Aspekten vorzusehen.

Fazit

Dieser Artikel kann nur einen groben Überblick und Rahmen geben. Die konkreten Inhalte einer auf eure Belange und Nutzungsformen passenden Policy müsst ihr in Anschauung der Spezifika der eingesetzten oder zu entwickelnden KI-Systeme erarbeiten. Das kann auch schlecht an KI delegiert werden: Der Rest des eingangs erwähnten KI-generierten Artikels war nicht wirklich brauchbar, ebenso die testweise mit KI erstellten Policies. Dafür braucht es professionelle Unterstützung.

Der Autor Dr. Daniel Michel, LL.M. ist seit 2004 als Rechtsanwalt im Bereich IT/IP/Technologie tätig. Nach Stationen in spezialisierten und Großkanzleien betreibt er seit 2018 seine eigene Rechtsberatung im Raum München, www.datalawcounsel.com

Jakob Koenen: Mit 18 zum LegalTech-Start-up-Gründer

Die Sovereign AI Betriebs GmbH – 2025 von Jakob Koenen und seinem Vater Prof. Dr. Andreas Koenen mit Sitz in Berlin gegründet – entwickelt spezialisierte KI-Plattformen für die juristische Praxis.

Ein Technologie-begeisterter Abiturient, der schon mit 15 Jahren Jura-Vorlesungen besucht, gründet ein LegalTech-Start-up. Partnerschaftlich an seiner Seite agiert sein Vater, ein renommierter Professor für Baurecht. Das ist das Fundament der Sovereign AI Betriebs GmbH, die in Berlin antritt, das Rechtswissen ganzer Berufs-Generationen in eine juristisch kuratierte KI zu überführen. Herzstück des Unternehmens ist Sovereign Legal AI. Die Plattform bereitet juristische Fragen systematisch, verständlich und nachvollziehbar auf.

„Wir wollen das Recht aus der Blackbox holen“, sagt Jakob Koenen, Gründer und Geschäftsführer der Sovereign AI Betriebs GmbH. „Unsere KI soll kein Ersatz für Anwältinnen und Anwälte sein, sondern ein intelligentes Werkzeug, das Wissen strukturiert, Orientierung gibt und den Zugang zum Recht demokratisiert.“

Rechtspraxis-Know-how, digitalisiert für den Alltag

Die Idee zu Sovereign Legal AI entstand in einem Generationenprojekt. Prof. Dr. Andreas Koenen, Kanzleiinhaber, Fachanwalt und Herausgeber zahlreicher Werke zum Bau- und Architektenrecht, hat über Jahrzehnte beobachtet, wie Rechtswissen in der Praxis verloren geht, weil es zu spät, zu komplex oder zu exklusiv vermittelt wird.

„Das Recht wird beim Bauen oft erst dann herangezogen, wenn es knallt“, sagt Koenen. „Juristinnen und Juristen gelten als Ausputzer, nicht als Geburtshelfer. Sovereign Legal AI will das ändern. "Wir liefern Projektbeteiligten vom Architekten, Planer bis zum Bauherrn einen Kompass, der schon vor Konflikten Orientierung bietet; mit juristisch fundierter Systematik, aber barrierefrei zugänglich“, so Koenen weiter.

Die Wissensbasis der Sovereign Legal AI umfasst unter anderem kommentierte Urteile, systematisch aufbereitete Rechtsinformationen sowie Fachbeiträge von Anwältinnen und Anwälten zu typischen Praxisproblemen. Alle Inhalte sind mit Originalquellen aus Gesetz, Rechtsprechung und Literatur belegt, was den entscheidenden Unterschied zu generativen „Blackbox-Systemen“ markiert.

Neue Plattform für juristische Teilhabe

Sovereign Legal AI entstand in Zusammenarbeit mit den Anwältinnen und Anwälten der Kanzlei Koenen Bauanwälte. Die künstliche Intelligenz (KI) wurde entlang echter Fallarbeit trainiert und in einer Beta-Phase getestet. Dabei versteht sich die KI als Community-Projekt: Nutzende geben Feedback, benennen Lücken und tragen so zur Weiterentwicklung bei. Auf diese Weise wächst die KI mit der Praxis. Im Wissens-Ökosystem von Sovereign befinden sich auch die Austausch-Plattform Sovereign Community und der stationäre Sovereign Store in Münster. Beide sind Teil derselben Markenfamilie und werden von der Sovereign GmbH betrieben. Partner-, Lizenz- und Servicemodelle finanzieren das Projekt. „Wir schaffen eine KI-Plattform, die juristisches Wissen lebendig hält“, so Jakob Koenen. „Das ist Unternehmensnachfolge im besten Sinne. Das Wissen einer Generation wird nicht vererbt, sondern transformiert.“

Junger Gründer mit Tech-DNA

Dass Jakob Koenen früh Verantwortung übernimmt, überrascht kaum. Mit 11 wollte er bereits eine Web-Agentur gründen, erschuf in diesem Zuge den Digitalauftritt eines Handwerksunternehmens. Mit 15 hat er mit Unterstützung seiner Eltern beantragt, frühzeitig als geschäftsfähig erklärt zu werden und gründete nach der Bewilligung sein erstes Unternehmen. Heute ist er Gründer, App-Entwickler und Geschäftsführer des Berliner LegalTech-Unternehmens. Er arbeitet mit einem Netzwerk aus externen Entwicklerinnen und Entwicklern sowie Fachleuten an der technischen Weiterentwicklung von Sovereign Legal AI. Aktuell suchen er und sein Vater als Herausgeber der Inhalte nach Co-Autor*innen und Partner*innen, die weitere juristische Rechtsbereiche wie Energierecht oder IT-Recht innerhalb der KI für sich erschließen.

Vorsicht vor diesen KI-Versuchungen

Allzu großes Vertrauen in GenAI ist fahrlässig, dennoch prüfen nur rund ein Viertel der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit. Das sind die größten Gefahren und effektivsten Gegenmaßnahmen.

Die Leistung und die Zuverlässigkeit von KI-Assistenten nehmen gefühlt weiter zu. Doch wer in den letzten Wochen intensives Prompting bei ChatGPT, Perplexity und Co. betrieben und die Ergebnisse eingehend analysiert hat, fühlte sich in diesem Gefühl nicht bestätigt. Im Gegenteil: Die Qualität der generierten Antworten lässt neuerdings öfter zu wünschen übrig. Auf YouTube gibt es zahlreiche Videos zu diesem Phänomen, das sich offenbar auch die Herstellenden nicht so ganz erklären können, aber auch klassische Medien berichten darüber. In Anbetracht der Tatsache, wie abhängig sich viele Menschen im Berufsleben schon heute von GenAI-Tools gemacht haben, ist dieser Trend erschreckend und ernüchternd. Ein blindes Vertrauen in die digitalen Helfer aus der Familie generativer KI birgt zudem großes Schadenspotenzial, etwa dann, wenn sich Ärzt*innen bei der Diagnose auf sie stützen oder Entwickler*innen von der KI vorgeschlagene Frameworks ohne Sicherheitscheck implementieren.

Völliges Vertrauen in GenAI ist also, zurückhaltend formuliert, mindestens gewagt. Die Situation ist ernst und erfordert von GenAI-Anbietenden ein Mindestmaß an Qualitätssicherung – offenbar kein einfaches Unterfangen. Bis dahin ist es wichtig, eigene Maßnahmen zu ergreifen, um nicht in die Falle der folgenden vier Qualitätskiller zu geraten.

1. Halluzinationen

KI-Assistenten wie ChatGPT und Co. wurde die Aufgabe erteilt, Antworten zu liefern – koste es, was es wolle. Wenn die Wissensbibliothek nicht ausreicht, um komplexe Sachverhalte zu beantworten, fängt generative KI an, sich etwas auszudenken. Die von solchen Halluzinationen ausgehende Gefahr ist bekannt. Umso bedrückender ist die Tatsache, dass laut einer aktuellen Studie nur rund ein Viertel (27 %) der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit prüfen. Das sind zwar immerhin sieben Prozentpunkte mehr als bei gewöhnlichen Inhalten aus dem Internet, wie eine Studie des PR-COM Re­search Lab belegt, aber noch immer viel zu wenige.

Gegenmaßnahmen: Wer GenAI nutzt, sollte ausnahmslos alle von ihr produzierten Inhalte überprüfen. Dazu sollten User*innen insbesondere die von der KI verwendeten Primärquellen checken oder – wenn möglich – Expert*innen zur Prüfung der Korrektheit der Antworten zurate ziehen.

2. Bias

Die Anbieter*innen aktueller KI-Assistenten haben sehr viel Arbeit in ihre Produkte gesteckt, um den Bias, also die Voreingenommenheit ihrer Modelle auszumerzen und sie zur Vorurteilsfreiheit zu erziehen.

Verlassen sollten sich User*innen auf die moralische und ethische Unantastbarkeit ihrer Modelle dennoch nicht. Zwar ist es unwahrscheinlich, dass Produkte großer Hersteller*innen noch rassistische, sexistische oder sonstige ethisch fragwürdige Ansichten vertreten, aber komplett ausgeschlossen ist es eben nicht. Noch relativ hoch ist die Gefahr zudem bei der Nutzung von kostenlosen GenAI-Assistenten oder Nischen-Tools.

Gegenmaßnahmen: Auch im Zusammenhang mit Bias gilt es, die Ergebnisse einer KI-Befragung immer genauestens zu checken und mit geltenden Gesetzen und den vorherrschenden Wertevorstellungen unserer Gesellschaft abzugleichen. Wer dubiose KI-Tools meidet, kann sich zudem viel Ärger ersparen.

3. Content-Kannibalisierung

Immer mehr KI-generierter Content flutet das Internet – die logische Folge der zunehmenden Nutzung von GenAI-Assistenten. Leider trainieren KI-Entwickler*innen ihre Chatbots und deren zugrunde liegende Sprachmodelle unter anderem mit genau diesen Inhalten. Und schlimmer noch: Der exponentiell steigende KI-Inhalt ist darüber hinaus auch der Wissensschatz, auf den die KI für ihre Antworten zurückgreift. Dadurch entsteht ein Teufelskreis aus KI, die sich irgendwann nur noch mit von ihr selbst generierten Inhalten trainiert und auch nur noch von ihr produzierten Content als Basiswissen verwendet. Der Mensch wird aus dieser Gleichung immer weiter herausgekürzt. Die Qualität der Ergebnisse von Anfragen an die KI wird somit zunehmend abnehmen. Hinzu kommt, dass alle User*­innen irgendwann die gleichen Ergebnisse abrufen, nutzen und veröffentlichen.

Gegenmaßnahmen: Es ergibt Sinn, hin und wieder auch ohne KI zu agieren und Content zu produzieren, der frei von KI-generierten Inhalten ist und das Qualitätsmerkmal „Made in a human brain“ trägt.

4. Wissensoligopol

Der KI-Markt ist derzeit auf einige wenige Big Player geschrumpft, die sich die enormen Rechenressourcen und Entwicklungskosten für generative KI leisten können. Dadurch entsteht zunehmend ein Wissensoligopol, in dem die großen Anbieter*innen wie OpenAI, Google, Microsoft und DeepSeek zukünftig die Art und Weise bestimmen, welche Informationen überhaupt noch zugänglich sind. Schon jetzt gehen Suchanfragen auf den traditionellen Suchmaschinen deutlich zurück, die Ergebnisse zwar nach Algorithmen ranken, aber selten Treffer komplett ausblenden. Viel restriktiver agieren GenAI-Tools, deren implementierte Filter die freiheitliche Verbreitung von Wissen einzuschränken drohen: Was nicht mit den politischen und moralischen Ideen der Hersteller übereinstimmt, wird automatisch unterdrückt. Das erinnert ein wenig an das Wahrheitsministerium aus Orwells „1984“.

Gegenmaßnahmen: Es ist wichtig, dass Unternehmen und offizielle Stellen auch unabhängige Projekte fördern und deren Nutzer*innen- sowie Supporter*innen-Basis wächst. Gleichzeitig sollten User*innen es dringend verinnerlichen, dass KI- Assistenten nicht der Wahrheit letzter Schluss sind. Das Nutzen möglichst vieler Quellen, um das eigene Wissen aufzubauen, ist immer besser als ein vermeintlicher „Single Point of Truth“.

Fazit

Wir sind noch lange nicht so weit, dass ein blindes Vertrauen in generative KI zu rechtfertigen ist. Es ist zwar logisch, dass wir eine vermeintlich arbeitserleichternde Technologie erst einmal ungern hinterfragen – doch dieser Bequemlichkeit wohnt, je nach Einsatzzweck, ein erhebliches Schadenspotenzial inne. Zum jetzigen Zeitpunkt lautet also die Maxime, restlos jede von GenAI generierte Antwort genauestens auf den Prüfstand zu stellen.

Der Autor Alain Blaes ist CEO der Münchner Kommunikationsagentur PR-COM (mit Fokus auf High-tech- und IT-Industrie im B2B-Umfeld).

Report: Quantencomputing

Wir sind Zeug*innen einer Transformation, die nicht nur die Tech-Branche nachhaltig beeinflussen wird: Quantencomputing und die dazugehörigen Start-ups haben das Potenzial, die Art und Weise, wie wir Daten verarbeiten und Probleme lösen, grundlegend zu verändern.

Quantencomputing (QC) ist ein hochinnovatives Feld der Informatik und Physik, das die Prinzipien der Quantenmechanik nutzt, um Datenverarbeitung und -analyse auf eine Weise zu leisten, die mit klassischen Computern nicht möglich ist. Während klassische Computer Informationen in Form von Bits verarbeiten, die entweder den Wert 0 oder 1 annehmen können, verwenden Quantencomputer Quantenbits oder Qubits. Diese Qubits können sich in einem Zustand der Überlagerung befinden, was bedeutet, dass sie gleichzeitig 0 und 1 darstellen können. Dies ermöglicht es Quantencomputern, komplexe Berechnungen viel schneller durchzuführen als ihre klassischen Pendants.

Herausforderungen

Trotz des enormen Potenzials stehen Forschende und Unternehmen vor vielen Herausforderungen. Eine der größten Hürden ist die sog. Dekohärenz, ein Phänomen, bei dem die Quanteninformation durch Wechselwirkungen mit der Umgebung verloren geht. Um stabile und fehlerfreie Quantenberechnungen durchzuführen, müssen Qubits in einem kontrollierten Zustand gehalten werden, was technisch äußerst anspruchsvoll ist.

Eine weitere Herausforderung ist die Skalierbarkeit. Während einige Prototypen von Quantencomputern bereits existieren, stellt der Bau von Systemen mit einer ausreichenden Anzahl von Qubits, um praktische Probleme zu lösen, eine erhebliche technische Herausforderung dar.

Trends

In den letzten Jahren ist ein zunehmender Fokus auf hybride Ansätze zu verzeichnen, bei denen Quantencomputer in Kombination mit klassischen Computern eingesetzt werden, um spezifische Probleme zu lösen. Diese hybriden Systeme nutzen die Stärken beider Technologien und bieten eine praktikable Lösung für viele aktuelle Herausforderungen.

Zudem ist eine wachsende Zusammenarbeit zwischen akademischen Institutionen, großen Tech-Unternehmen und Start-ups zu beobachten. Diese Partnerschaften sind entscheidend, um Wissen und Ressourcen zu bündeln und die Entwicklung von QC-Technologien voranzutreiben. Unternehmen wie IBM, Google oder Microsoft investieren erheblich in Quantenforschung und -entwicklung und bieten Plattformen für Entwickler*innen und Forschenden an, um ihre eigenen Quantenalgorithmen zu testen.

Ein weiterer Trend ist die zunehmende Verfügbarkeit von QC-Diensten über die Cloud. Unternehmen und Forschende können nun auf Quantencomputer zugreifen, ohne in teure Hardware investieren zu müssen. Dies senkt die Eintritts­barrieren und ermöglicht es einer breiteren Palette von Nutzenden, die Möglichkeiten des QCs zu erkunden.

Die Rolle von Start-ups

Start-ups spielen hierbei mit neuen Ideen und Ansätzen eine entscheidende Rolle als Innovatoren und konzentrieren sich zumeist auf spezifische Anwendungen des QCs, sei es in der Materialwissenschaft, der Medikamentenentwicklung, der Lieferkettenlogistik oder der Optimierung komplexer Systeme u.a. in der Finanzwelt.

Die 2024 im Auftrag des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK) veröffentlichte Studie „Quantencomputing – Markt, Zugang, Perspektiven“ zeigt: Die Zahl der Start-ups zur Entwicklung von Anwendungssoftware stieg in den letzten Jahren stetig, wobei hardwarespezifische Systemsoftware vorrangig von den Hardwareentwickler*innen selbst bereitgestellt wird. Entfielen im Zeitraum von 2002 bis 2018 weltweit noch rund 58 Prozent der kumulierten Gründungen auf Software- oder Service-zentrierte Start-ups und 42 Prozent auf Hardware- bzw. Komponenten-fokussierte Start-ups, waren es im Zeitraum 2018 bis 2022 rund 74 Prozent mit Fokus auf Software und Services sowie 26 Prozent mit Fokus auf Hardware und Komponenten.

Von weltweit über 150 Start-ups fokussiert sich dabei etwa ein Drittel auf die Entwicklung von Systemsoftware und zwei Drittel auf die Entwicklung von Anwendungssoftware. Deutschland belegt dabei mit knapp 20 Start-ups im Jahr 2023 Platz drei im internationalen Vergleich, hinter den USA und Kanada. Damit hat sich Deutschland als ein Hotspot für QC-Start-ups etabliert.

Deutsche QC-Start-ups mischen ganz vorne mit

Deutsche QC-Start-ups sind oft noch in der Entwicklungsphase, die Gründer*innen kommen meist aus Forschung und Wissenschaft, und ihre Geschäftsmodelle konzentrieren sich auf die Entwicklung und den Verkauf von Hardware, Mikroskopen oder Cloud-basierten QC-Diensten.

Als weltweit erstem Unternehmen ist es dem 2018 gegründeten Start-up kiutra, einem Spin-off der Technischen Universität München, gelungen, eine dauerhafte magnetische Kühlung für Temperaturen nahe des absoluten Nullpunkts zu entwickeln. Statt auf Quantencomputer oder QC-Software, setzen die Gründer Alexander Regnat, Jan Spallek, Tomek Schulz und Christian Pfleiderer auf vollautomatische, äußerst wartungsarme und gut skalierbare Kühlungslösungen, die den Betrieb von Quantentechnologien im industriellen Maßstab ermöglichen.

Eva Helmeth: Mutig neue Wege gehen

Eva Helmeth (44) ist die Gründerin und CEO von MON COURAGE – einer Naturkosmetikmarke, die Hautpflege für unterwegs neu denkt. Die Anthropologin und Heilpflanzenexpertin lebt als moderne Nomadin und reist um die Welt, um die besten pflanzlichen Wirkstoffe zu finden. Im Juni 2025 pitchte Eva in der TV-Show „Die Höhle der Löwen“ (DHDL). Mehr dazu im Interview.

Eva, was hat dich dazu bewogen, in der VOX-Gründer*innen-Show „Die Höhle der Löwen“ mitzumachen?

In meinem Freundeskreis hörte ich seit 2020: „Du musst deine Hautpflege-Sticks unbedingt bei DHDL vorstellen.“ Ich wollte mir damit aber Zeit lassen. So ein Format kann ein gewaltiger Katalysator sein. Es kann dich nach vorne katapultieren – oder dich überrollen, wenn du noch nicht bereit bist. Ich wusste, wenn ich diesen Schritt gehe, dann zum richtigen Zeitpunkt.

Wie hast du diesen für dich richtigen Zeitpunkt definiert?

Ich habe drei Jahre lang bewusst gewartet. Für mich war entscheidend, dass MON COURAGE kein reines Ideenprojekt mehr war, sondern auf eigenen Beinen steht. Ich wollte Erfahrungswerte mitbringen – in der Produktion, im Vertrieb, im Feedback der Kundinnen und Kunden. Der richtige Zeitpunkt hieß für mich konkret, getestete Produkte, etablierte Marketingkanäle und eine solide Lieferkette vorweisen zu können. Als all das stand, war klar: Jetzt oder nie – denn jetzt sind wir stabil genug, um eine Welle wie DHDL reiten zu können.

Wie war zu diesem Zeitpunkt deine Haltung zu DHDL?

Ich habe die Sendung vorher ehrlich gesagt nie geschaut. Es kursierten Geschichten von Durchbrüchen bis hin zu absoluten Pleiten. Ich habe es als Chance gesehen, meine Geschichte zu erzählen und damit einen Investor oder eine Investorin zu überzeugen der bzw. die wirklich zu MON COURAGE passt. Mir war klar, dass es im Fernsehen in erster Linie um Unterhaltung geht. Als Nomadin, die ihr Kosmetikunternehmen aufbaut während sie weltweit nach Rohstoffen sucht, habe ich genügend Geschichten auf Lager. Das hat mir geholfen, ganz ohne Erwartungsdruck in die Aufzeichnung zu gehen.

Was waren für dich die wichtigsten Learnings aus dem Bewerbungsprozess?

Ich war gerade auf den Philippinen auf der Suche nach passenden Kokosölproduzenten, als ich das erste Gespräch mit der Produktionsfirma führte. Nachdem ich bisher nur Ölraffinerien gefunden hatte, die teils schimmliges Kokosfleisch verarbeiteten, war ich kurz davor, die Suche abzubrechen. Doch plötzlich tat sich eine neue Fährte auf. Ich erzählte von dieser Odyssee – und sie waren begeistert.

Ich habe dabei vor allem eines gelernt: Menschen lieben echte Geschichten. Und die besten Geschichten entstehen nicht am Schreibtisch, sondern da draußen – bei echten Begegnungen, im echten Leben

Wie hast du dann die TV-Show bzw. Aufzeichnung erlebt?

Als die Zusage kam, war ich in einem kleinen Dorf in Sri Lanka. „Eva, du bist genommen. Hast du nächsten Mittwoch Zeit?“ Drei Tage später landete ich in Deutschland – und hatte so gut wie keine Zeit zur Vorbereitung. Aber vielleicht war genau das mein Glück: Mein Pitch war dadurch pur, lebendig, ungefiltert. Ich hatte richtig Lust auf den Dreh. Die Interviews back­stage waren ein schöner Auftakt, die Aufregung hinter dem Tor unvergesslich. Als ich dann vor den Löwen stand, war ich fokussiert und klar. Sie waren wirklich sehr höflich und interessiert, kein Gebrüll, kein Zerfleischen – vielleicht doch eher Stubentiger?

Einige „Löwen“ haben deinen Lebensstil als Nomadin infrage gestellt. Wie lässt sich denn ein wachsendes Unternehmen führen, wenn du selbst in der Welt unterwegs bist?

Ich verstehe den Reflex – klassische Unternehmensführung sieht anders aus. Aber MON COURAGE ist kein klassisches Unternehmen. Unser ganzes Konzept basiert auf echter Verbindung: zu den Menschen, die unsere Rohstoffe anbauen, und zu den Kundinnen und Kunden, die unsere Produkte nutzen. Gerade weil ich unterwegs bin, lerne ich die Menschen kennen, die hinter unseren Zutaten stehen. Ich sehe, unter welchen Bedingungen produziert wird, kann direkt und fair einkaufen, neue Ideen entwickeln und Innovationen früh­zeitig aufspüren.

Remote zu arbeiten heißt nicht, abwesend zu sein. Im Gegenteil: Ich bin im täglichen Austausch mit meinem Team, wir arbeiten digital und gleichzeitig sehr eng zusammen. Mein Lebensstil erfordert klare Kommunikation, Vertrauen und Teamkolleginnen, die diese Freiheit schätzen. Aber genau das ist ja MON COURAGE: mutig neue Wege gehen.

EU KI-Gesetz wird scharf gestellt

Diese Strafen für KI-Verstöße drohen ab dem 2. August 2025 – was Personalverantwortliche und Arbeitnehmende jetzt wissen und beachten müssen.

Das KI-Gesetz der Europäischen Union, die weltweit erste umfassende KI-Verordnung, erreicht am 2. August 2025 einen entscheidenden Meilenstein. Ab diesem Stichtag gelten für Unternehmen, Behörden und KI-Anbieter*innen in der EU zahlreiche zentrale Verpflichtungen, bei deren Nichteinhaltung Strafmaßnahmen eingeleitet und verhängt werden können. Was das für Unternehmen und ihre Mitarbeitenden bedeutet, erfährst du hier.

Der AI Act, der am 2. Februar dieses Jahres in Kraft getreten ist, schafft einen einheitlichen Rechtsrahmen für Künstliche Intelligenz (KI) in der EU. Zwar werden viele Regelungen erst 2026 wirksam, doch bereits am 2. August 2025 beginnt eine neue Phase, die sich auf drei Bereiche fokussiert:

  • Strafmaßnahmen bei Nichteinhaltung
  • Verpflichtungen für allgemeine General-Purpose-AI-Modelle (GPAI)
  • Aufbau von Aufsicht und Governance auf nationaler und europäischer Ebene

Strafen bis zu 35 Millionen Euro

Seit dem 2. Februar dieses Jahres sind KI-Systeme mit unannehmbaren Risiken verboten. Ab dem 2. August 2025 können zusätzlich nun Geldbußen für Verstöße gegen bereits bestehende Verpflichtungen verhängt werden, die bis zu 35 Millionen Euro oder 7 Prozent ihres gesamten Jahresumsatzes betragen können. Unternehmen müssen dazu beispielsweise sicherstellen, dass ihre Mitarbeitenden über KI-Kenntnisse verfügen. Die Europäische Union erwartet von ihren Mitgliedstaaten, dass sie eigene wirksame, verhältnismäßige und abschreckende Strafmaßnahmen festlegen. Dabei sollen die besonderen Umstände von KMUs und Start-ups berücksichtigt werden, um deren wirtschaftliche Lebensfähigkeit nicht zu gefährden.

Neue Verpflichtungen für Anbieter*innen von GPAI-Modellen

GPAI-Modelle, die ab dem 2. August 2025 in der Europäischen Union vermarktet werden, unterliegen gesetzlichen Verpflichtungen. Das Europäische Amt für Künstliche Intelligenz hat dazu am 10. Juli 2025 die endgültige Fassung der Verhaltenskodizes veröffentlicht. Anbieter*innen solcher GPAI-Modelle müssen unter anderem technische Dokumentationen erstellen, Urheberrechte beachten und Transparenz über die verwendeten Trainingsdaten sicherstellen.

GPAI-Modelle sind KI-Systeme mit besonders breitem Einsatzspektrum und sind darauf ausgelegt, eine Vielzahl von Aufgaben zu erfüllen. Sie werden mit riesigen Datenmengen trainiert und sind entsprechend vielseitig einsetzbar. Das bekannteste Beispiel sind große Sprachmodelle (Large Language Models, LLM), etwa das generative Sprachmodell GPT-4o, das in ChatGPT integriert ist. Für GPAI-Modelle, die bereits vor dem 2. August 2025 in der Europäischen Union auf dem Markt waren, gilt eine Übergangsfirst bis zum 2. August 2027.

Aufsicht und Governance

Die KI-Verordnung schafft einen Rahmen mit Durchführungs- und Durchsetzungsbefugnissen auf zwei Ebenen.

Auf nationaler Ebene muss jeder EU-Mitgliedstaat bis zum 2. August 2025 mindestens eine Marktüberwachungsbehörde sowie eine notifizierende Behörde benennen. Erstere ist für die Überwachung von KI-Systemen zuständig, letztere für die Notifizierung unabhängiger Konformitätsbewertungsstellen. Die Mitgliedstaaten müssen bis dem Stichtag Informationen zu den nationalen Behörden und deren Kontaktdaten veröffentlichen.

Auf EU-Ebene koordinieren das Europäische Amt für KI und der Europäische KI-Ausschuss die Aufsicht. Zusätzlich werden ein Beratungsforum und ein wissenschaftlicher Ausschuss aus unabhängigen Experten eingerichtet.

Was bedeutet das für Personalabteilungen und Arbeitnehmende?

Das KI-Gesetz hat direkte Auswirkungen darauf, wie KI in den Bereichen Rekrutierung, Performance-Management, Personalanalyse und Mitarbeitenden-Monitoring eingesetzt wird. Personalverantwortliche müssen sicherstellen, dass KI-Tools in diesen Bereichen transparent, fair und konform sind.

  • Fairness und Antidiskriminierung: KI-Systeme, die bei Einstellungs- oder Beförderungsentscheidungen eingesetzt werden, müssen nachvollziehbar und frei von Bias sein. Personalabteilungen sollten ihre Tools und Anbieter*innen regelmäßig überprüfen, um die Einhaltung der Vorschriften sicherzustellen.
  • Vertrauen und Transparenz: Mitarbeitende erhalten einen besseren Einblick, wie KI-Systeme ihre Arbeit beeinflussen, zum Beispiel bei der Einsatzplanung, Leistungsbewertung oder bei der Arbeitssicherheit. Personalabteilung können Vertrauen schaffen, indem sie offen kommunizieren, wie KI eingesetzt wird und wie die Daten der Mitarbeitenden geschützt werden.
  • Verantwortlichkeit von Drittanbieter*innen: Werden KI-Tools von Drittanbieter*innen genutzt, müssen Personalabteilungen sicherstellen, dass diese Anbieter*innen die Anforderungen an Transparenz und Dokumentation erfüllen. Verträge und Beschaffungsprozesse sollten entsprechend angepasst werden.
  • Training und Change Management: Mit stärkeren Regulierungen von KI wird die Personalabteilung eine Schlüsselrolle bei der Schulung von Führungskräften und Mitarbeitenden übernehmen. Ziel ist es, einen verantwortungsvollen Umgang mit KI zu fördern und ethische Standards in der Unternehmenskultur zu verankern.

Fazit

Anbieter*innen von GPAI-Modellen, die bereits vor dem 2. August 2025 auf dem Markt waren, haben bis zum 2. August 2027 Zeit, die neuen Vorschriften vollständig umzusetzen. Weitere Verpflichtungen für KI-Systeme mit hohem Risiko werden 2026 und 2027 folgen. Dieser Meilenstein spiegelt das Bestreben der EU wider, Innovationen zu fördern und gleichzeitig sicherzustellen, dass KI sicher, transparent und mit den europäischen Werten im Einklang steht. Damit rückt die Personalabteilung in den Mittelpunkt einer verantwortungsvollen Einführung von KI am Arbeitsplatz.

Der Autor Tom Saeys ist Chief Operations Officer bei SD Worx, einem international tätigen Dienstleistungsunternehmen im HR-Bereich.

Humanoide Roboter: Vision und Realität

Der Weltroboterverband IFR veröffentlicht sein Positionspapier zu Trends, Chancen und möglichen Grenzen rund um das Thema humanoide Roboter.

Menschenähnliche Roboter gelten als die nächste große Innovation in der Robotik: Der weltweit größte Markt für Industrieroboter, China, hat bereits konkrete Pläne für die Massenproduktion von Humanoiden festgelegt. Gleichzeitig kündigten Technologieunternehmen in den USA und Europa große Investitionsvorhaben in diesem Bereich an. Die Vision ist, Allzweckroboter zu entwickeln, die auf menschlicher Mechanik basieren. Einblicke in Trends, Chancen und mögliche Grenzen humanoider Roboter bietet das neue Positionspapier der International Federation of Robotics.

„Futuristisch anmutende humanoide Roboter, die in unserem Zuhause, in Unternehmen und in der Öffentlichkeit arbeiten, faszinieren die Menschen“, sagt Takayuki Ito, Präsident der International Federation of Robotics. „Da die Welt in der wir leben auf den menschlichen Körper zugeschnitten ist, liegt die Idee eines schnellen, universellen Helfers in der Produktion und bei Dienstleistungen auf der Hand. Ob und wann es aber zu einer massenhaften Nutzung von Humanoiden kommen wird, bleibt ungewiss. Nicht zu erwarten ist jedenfalls, dass Humanoide in Zukunft die derzeit auf dem Markt befindlichen Robotertypen ersetzen. Stattdessen werden sie bestehende Technologien ergänzen und erweitern.“

Einsatz von Humanoiden in den Regionen

In den Vereinigten Staaten arbeiten Tech-Unternehmen wie NVIDIA, Amazon und Tesla intensiv an KI- und Robotertechnologien. Neben der Finanzierung durch das Militär wird diese Entwicklung auch durch zahlreiche private Investitionen unterstützt. Das führt zu einer bedeutenden Start-up-Szene, die sich auf humanoide Roboter spezialisiert. Besonders groß ist das Interesse an Humanoiden in Branchen wie der Logistik und in der Fertigung. Dabei werden humanoide Roboter weniger als soziale Begleiter gesehen, sondern eher als Werkzeuge, die dabei helfen, Produktivität und Effizienz zu steigern. So liegt der Schwerpunkt verstärkt auf praktischen Anwendungen und weniger auf der Integration von Robotern in das tägliche soziale Leben.

In China nehmen die Humanoiden eine zentrale Stellung in der nationalen Robotik-Strategie ein. Die Regierung möchte in diesem Technologiebereich Kompetenz und globale Wettbewerbsfähigkeit unter Beweis stellen. Der Einsatzschwerpunkt liegt dabei im Dienstleistungssektor, beispielsweise für die Kundenbetreuung. Die Automatisierung von Produktionslinien in der Fertigung und der Einsatz von Humanoiden, um weniger von menschlichen Arbeitskräften abhängig zu sein, scheint nur auf zweiter Ebene wichtig zu sein. Kernelement der chinesischen Strategie ist der Aufbau einer skalierbaren Lieferkette für Schlüsselkomponenten.

Japan ist ein Pionier in der Entwicklung humanoider Roboter. Als frühes Beispiel wurde Hondas Asimo bereits im Oktober 2000 vorgestellt. Roboter werden in Japan eher als Gefährten, denn als bloße Werkzeuge gesehen. Humanoide Roboter wie Pepper und Palro sind demzufolge in erster Linie als Sozialroboter konzipiert und kommen in Bildungseinrichtungen, Geschäften und Altenpflegeeinrichtungen zum Einsatz. Diese Ausrichtung spiegelt die Nachfrage einer alternden Gesellschaft wider, mit der Japan konfrontiert ist. Ein wichtiger Schwerpunkt der Projekte liegt auf Robotern, die harmonisch mit Menschen zusammenleben können und als Teil der Gesellschaft akzeptiert sind. Führende Unternehmen wie Kawasaki entwickeln humanoide Roboter als eine Forschungsplattform.

In Europa wird auf die ethischen Implikationen von Robotik und KI besonderes viel Wert gelegt. Im Fokus stehen kollaborative Roboter, die im industriellen Umfeld mit Menschen zusammenarbeiten. Kernthemen sind die Verbesserung der Sicherheit und Effizienz und die Nachahmung menschlicher Fähigkeiten. Die Arbeitskraft von Menschen zu kompensieren, steht dagegen nicht im Fokus. Der Schwerpunkt liegt vielmehr auf einem menschenzentrierten Design und den sozialen und gesellschaftlichen Auswirkungen von Robotern. Die europäischen Unternehmen stehen dem Einsatz von Humanoiden generell eher zurückhaltend gegenüber, wenn es um die kurz- bis mittelfristigen Automatisierungsaufgaben im Fertigungs- und Dienstleistungssektor geht.

+++ Ein bahnbrechendes Robotik Start-up aus Deutschland ist NEURA-Robotics: Hier geht’s zu unserer Gründerstory von NEURA Robotics +++

Ausblick

Dank ihrer menschenähnlichen Geschicklichkeit und Anpassungsfähigkeit sind die Humanoiden prädestiniert, komplexe Aufgaben zu automatisieren, mit denen heutige Roboter durch herkömmliche Programmiermethoden Schwierigkeiten haben. Einen massenhaften Einsatz als universelle Haushaltshelfer dürfte es jedoch kurz- bis mittelfristig nicht geben.

Das POSITION PAPER Humanoid Robots - Vision and Reality von IFR gibt's hier zum freien Download

Warum KI bei Förderanträgen versagt

Fünf Gründe, warum Unternehmen auf menschliche Intelligenz setzen sollten.

Ob steuerliche Forschungszulage, Investitionsförderung oder EU-Programme. Künstliche Intelligenz (KI) wie ChatGPT liefert in Sekundenschnelle eine Vielzahl möglicher Förderprogramme. Doch zwischen der reinen Information und der tatsächlichen Erschließung von Fördermitteln liegt ein erheblicher Unterschied. Hier gilt es, Unternehmen zu sensibilisieren.

Fördermittel sind heute ein strategischer Bestandteil moderner Unternehmensfinanzierung. Es reicht daher nicht, die Programme zu kennen. Entscheidend ist, sie rechtssicher, vollständig und förderlogisch aufeinander abgestimmt umzusetzen, um die vollen Förderpotenziale zu heben. Genau hier beginnt die Arbeit von Fördermittelexpert*innen.

Fünf Gründe, warum KI-Tools nicht als Fördermittelberater funktionieren

1. KI erkennt die wahren Förderpotenziale nicht

ChatGPT kann erklären, was ein Förderprogramm leistet. Doch welche Kosten eines konkreten Vorhabens tatsächlich und wie hoch förderfähig sind, lässt sich so nicht beurteilen. Gerade bei komplexen Programmen wie der steuerlichen Forschungszulage sind Erfahrung, Struktur und rechtssichere Abgrenzung entscheidend. Eine gute Fördermittelberatung prüft jedes Vorhaben systematisch: von der Förderfähigkeit nach dem Forschungszulagengesetz (FZulG), AGVO oder De-minimis-Verordnung bis hin zur klaren Trennung förderfähiger und nicht förderfähiger Aufwände.

2. KI kann keine Förderstrategien entwickeln

Eine Liste von Förderprogrammen ersetzt keine Strategie. KI kann nur Optionen nennen, aber keine Strategien zur Umsetzung im Unternehmen entwickeln. Eine gute Fördermittelberatung integriert die Forschungszulage sinnvoll in laufende Projekte und strukturiert Innovations- sowie Investitionsprozesse auf Bundes-, Landes- und EU-Ebene. So entstehen nicht nur Optionen, sondern belastbare, wirtschaftlich wirksame Lösungen.

3. KI kann nicht mit Menschen kommunizieren

Ein Antrag ist mehr als ein Formular. Er muss Anforderungen erfüllen und überzeugen. KI liefert Textbausteine, aber führt keine Gespräche und reagiert nicht auf Rückfragen mit der notwendigen Erfahrung in der Verwaltungspraxis der verschiedenen Förderprogramme. Eine gute Fördermittelberatung übernimmt die gesamte Kommunikation mit Förderstellen, koordiniert mit Bescheinigungsstellen und entwickelt formal korrekte und überzeugende Argumentationen.

4. KI endet beim Prompt – Fördermittelberatung bei der erfolgreichen Projektprüfung

Nach dem Antrag geht die Arbeit oft erst richtig los. Rückfragen, Prüfungen, Nachweise. KI kann Unternehmen dabei nicht unterstützen und keine Verantwortung übernehmen. Eine gute Fördermittelberatung hingegen begleitet die Kund*innen durch den gesamten Förderzyklus mit sauberer Dokumentation, revisionssicherer Aufbereitung und Unterstützung bei Audits und Außenprüfungen.

5. KI zeigt nur den Dschungel – Förderexperten finden den Schatz

Datenbanken geben einen Überblick, aber keine Richtung. Eine gute Fördermittelberatung bewertet alle denkbar möglichen Förderprogramme im konkreten Unternehmenskontext und entwickelt daraus konkrete Maßnahmen, um das Maximum an Fördermöglichkeiten für die Kund*innen rauszuholen. Eine gute Fördermittelberatung schafft so echte wirtschaftliche Vorteile statt der bloßen Auflistung von Fördermöglichkeiten.

Der Autor Efe Duran Sarikaya ist CEO der Fördermittelberatung EPSA Deutschland.

Food-Innovation-Report

Wie Food-Start-up-Gründer*innen im herausfordernden Lebensmittelmarkt erfolgreich durchstarten und worauf Investor*innen besonders achten.

Food-Start-ups haben in den vergangenen Jahren einen bemerkenswerten Aufschwung erlebt. Der zunehmende Wunsch nach nachhaltiger, gesunder und funktionaler Ernährung, das wachsende Bewusstsein für Klima- und Umweltschutz sowie der Trend zur Individualisierung der Ernährung haben eine neue Gründungswelle ausgelöst. Dennoch: Der Markteintritt im deutschen Lebensmittelmarkt zählt zu den anspruchsvollsten Herausforderungen, denen sich Gründer*innen stellen können. Wer als Start-up nicht durch außergewöhnliche Innovation oder gezielte Nischenstrategie punktet, hat kaum eine Chance, hier gelistet zu werden.

Ohne klare Zielgruppenfokussierung, glaubwürdiges Produktversprechen und professionelle Umsetzung funktionieren auch gute Ideen nicht – wie es u.a. die Frosta-Tochter elbdeli (trotz starker Marke keine Resonanz) und Bonaverde (Kaffeemaschine mit Röstfunktion, die trotz Kickstarter-Erfolg) scheiterte zeigen.

Da dieser Markt so groß ist, ist er auch stark reguliert, hochkonkurrenzfähig und von mächtigen Einzelhandelsstruk­turen dominiert. Zu den größten Hürden zählen die komplexe Regulatorik, Logistik und Produktion, Finanzierung sowie die Konsument*innenakzeptanz.

Laut dem Deutschen Startup Monitor nennen 43 Prozent aller Start-ups die Finanzierung als größte Hürde. Kapitalbedarf entsteht früh – für Verpackungen, Lebensmittelsicherheit, Produktion, Mindestabnahmemengen und Vertrieb.

Ein typisches Seed-Investment liegt zwischen 250.000 und 1,5 Millionen Euro. In späteren Phasen steigen institutionelle VCs mit Ticketgrößen von bis zu fünf Millionen Euro ein. Erfolgreiche Exits wie der Verkauf von yfood an Nestlé (2023) zeigen: Der Markt ist in Bewegung, aber selektiv.

Functional Food als Innovationsmotor – aber nicht der einzige

Functional Food ist längst mehr als ein Trend: Es ist ein wachsendes Segment mit wissenschaftlicher Fundierung. Produkte wie funktionale Riegel, Drinks oder Functional Coffee verbinden Geschmack mit gesundheitlichem Mehrwert. Besonders gefragt sind derzeit Inhaltsstoffe wie Adaptogene, Pro- und Präbiotika, pflanzliche Proteine und weitere Mikronährstoffe.

Zugleich gewinnen auch alternative Proteinquellen (Pilze, Algen, Fermentation), klimapositive Lebensmittel und Zero-­Waste-Konzepte an Bedeutung. Konsument*innen wollen Ernährung, die nachhaltig und leistungsfördernd ist.

Worauf Investor*innen achten – und was sie abschreckt

Aus Sicht eines/einer Investor*in zählen nicht nur Produkt­idee und Branding. Entscheidender ist:

  • Ist das Team umsetzungsstark, resilient, multidisziplinär?
  • Gibt es Traktion (z.B. Verkaufszahlen, Feedback, D2C-Erfolge)?
  • Wie realistisch ist der Finanzplan? Sind Margen und Logistik durchdacht?
  • Ist das Produkt skalierbar – auch international?

Abschreckend wirken hingegen: überschätzte Umsatzpro­gnosen, fehlende Markteinblicke, instabile Lieferketten oder reine Marketingblasen ohne echte Substanz.

Es ist unschwer zu erkennen: Wer im Food-Bereich gründen will, braucht mehr als eine gute Idee. Der deutsche Markt ist selektiv, komplex und durch hohe Einstiegshürden geprägt. Gleichzeitig ist er enorm spannend für alle, die bereit sind, langfristig zu denken, regulatorisch sauber zu arbeiten und echten Mehrwert zu schaffen.

Food-Start-ups, die ihre Zielgruppe kennen, finanziell solide aufgestellt sind und wissenschaftlich fundierte Produkte entwickeln, haben reale Chancen auf Marktdurchdringung – besonders, wenn sie es schaffen, Handelspartner*innen und Konsument*innen gleichermaßen zu überzeugen.

Investor*innen sind bereit, in solche Konzepte zu investieren, aber sie erwarten mehr als Visionen: Sie erwarten belastbare, integrierte Geschäftsmodelle mit echtem Impact.

Internationaler Vergleich: Was Food-Start-ups in den USA anders machen

Die USA gelten als Vorreiter für Food-Innovation. Der Markt ist schneller, risikofreudiger und deutlich kapitalintensiver. Allein im Jahr 2023 flossen in den USA rund 30 Milliarden US-Dollar Wagniskapital in FoodTech und AgriFood-Start-ups – ein Vielfaches im Vergleich zu Deutschland. Start-ups wie Beyond Meat, Impossible Foods oder Perfect Day konnten in kurzer Zeit hunderte Millionen Dollar einsammeln, skalieren und international expandieren. Die wesentlichen Unterschiede zur deutschen Szene sind:

  • Zugang zu Kapital: Amerikanische Gründer*innen profitieren von einer ausgeprägten Investor*innenlandschaft mit spezialisierten VCs, Family Offices und Corporate Funds. In Deutschland dominiert oft konservative Zurückhaltung.
  • Marktzugang: Der US-Markt ist dezentraler organisiert. Start-ups können regional Fuß fassen und wachsen, ohne gleich auf landesweite Listungen angewiesen zu sein.
  • Regulatorik: Die U.S. Food and Drug Administration (FDA) ist in vielen Bereichen offener gegenüber neuen Inhaltsstoffen und Health Claims – das ermöglicht schnellere Markteinführungen.
  • Kultur & Narrative: Amerikanische Konsument*innen sind innovationsfreudiger. Sie schätzen Storytelling, Vision und Purpose deutlich mehr als europäische Kund*innen.

Das bedeutet nicht, dass der US-Markt einfacher ist. Er ist aber zugänglicher für disruptive Ideen, insbesondere wenn sie skalierbar und investor*innentauglich aufgesetzt sind.

Operative Herausforderungen: vom Prototyp zur Produktion

Die operative Skalierung ist einer der größten Stolpersteine für Food-Start-ups. Eine Rezeptur im Labormaßstab oder im Handwerk zu entwickeln, ist vergleichsweise einfach. Sie jedoch für den industriellen Maßstab zu adaptieren, bringt komplexe Fragestellungen mit sich:

  • Wo finde ich einen Co-Packer mit Kapazitäten für Kleinserien?
  • Wie skaliert mein Produkt ohne Qualitätsverlust?
  • Wie optimiere ich Haltbarkeit ohne künstliche Zusätze?
  • Welche Verpackung schützt das Produkt, erfüllt die Nachhaltigkeitsansprüche und passt zu den Preisvorgaben des Handels?

In Deutschland ist die Infrastruktur für Food-Start-ups im Vergleich zu den USA oder den Niederlanden unterentwickelt. Während es in den USA Inkubatoren mit angeschlossenen Produktionsstätten (z.B. The Hatchery in Chicago oder Pilotworks in New York) gibt, fehlt es hierzulande oft an bezahl­baren, flexiblen Produktionslösungen.

Gerade nachhaltige Verpackungen stellen viele Gründer*­innen vor Probleme: Biologisch abbaubare Alternativen sind teuer, nicht immer kompatibel mit Logistikprozessen und oft nicht lagerstabil genug. Ein Spagat, der Investitionen und viel Know-how erfordert.

Erfolgsfaktor Vertrieb: Wie Produkte wirklich in den Handel kommen

Viele unterschätzen den Aufwand, der hinter einem erfolgreichen Listungsgespräch steht. Händler*innen erwarten nicht nur ein gutes Produkt – sie wollen einen Business Case:

  • Wie hoch ist die Spanne für den Handel?
  • Wie ist die Wiederkaufsquote?
  • Wie sieht das Launch-Marketing aus?
  • Gibt es POS-Materialien oder begleitende Werbekampagnen?

Ein Listungsgespräch ist kein Pitch – es ist ein Verhandlungstermin auf Basis knallharter Zahlen. Ohne überzeugende Umsatzplanung, Distributionserfahrung und schnelle Liefer­- fähigkeit hat ein Start-up kaum Chancen auf eine langfristige Platzierung im Regal. Viele Gründer*innen lernen das schmerzhaft erst nach dem Launch.

Zukunftstechnologien im Food-Bereich

Die Food-Branche steht am Beginn einer technologischen Revolution. Neue Verfahren wie Präzisionsfermentation, Zellkultivierung, 3D-Food-Printing oder molekulare Funktionalisierung eröffnen völlig neue Produktkategorien. Beispiele sind:

  • Perfect Day (USA) stellt Milchprotein via Mikroorganismen her – völlig ohne Kuh.
  • Formo (Deutschland) produziert Käseproteine durch Fermentation.
  • Revo Foods (Österreich) bringt 3D-gedruckten Fisch auf pflanzlicher Basis in die Gastronomie und Handel.

Diese Technologien sind kapitalintensiv, regulatorisch komplex, aber langfristig zukunftsweisend. Wer heute die Brücke zwischen Wissenschaft, Verbraucher*innenbedürfnis und industrieller Machbarkeit schlägt, wird zu den Innova­tionsführer*innen von morgen zählen.

Neben dem klassischen Lebensmitteleinzelhandel gewinnen alternative Vertriebskanäle zunehmend an Bedeutung. Insbesondere spezialisierte Bio- und Reformhäuser wie Alnatura, Denns oder basic bieten innovativen Start-ups einen niedrigschwelligen Einstieg, da sie auf trendaffine Sortimente, nachhaltige Werte und kleinere Produzent*innen setzen. Hier zählen Authentizität, Zertifizierungen und persönliche Beziehungen mehr als reine Umsatzversprechen.

Auch der Onlinehandel wächst rasant: Der Anteil von E-Commerce im deutschen Lebensmitteleinzelhandel liegt zwar erst bei etwa drei bis vier Prozent, doch Plattformen wie Amazon Fresh, Picnic, Knuspr oder Getir bieten zunehmend Raum für neue Marken. Gerade Quick-Commerce-Anbietende ermöglichen kurzfristige Testmärkte und agile Vertriebspiloten in urbanen Zielgruppen.

Der Blick in die USA zeigt, was in Europa bevorsteht: Dort erzielt TikTok bereits über seinen eigenen TikTok Shop mehr als 20 Milliarden US-Dollar Umsatz – Tendenz stark steigend. Immer mehr Food-Start-ups nutzen die Plattform direkt als Verkaufs- und Marketingkanal. Es ist nur eine Frage der Zeit, bis ähnliche Social-Commerce-Strukturen auch in Europa an Relevanz gewinnen – sei es über TikTok, Instagram oder neue, native D2C-Plattformen.

Weitere Trendfelder, die aktuell in den Fokus rücken, sind unter anderem:

  • Regeneratives Essen: Lebensmittel, die nicht nur neutral, sondern positiv auf Umwelt und Biodiversität wirken. Beispiele: Produkte mit Zutaten aus regenerativer Landwirtschaft oder CO-bindende Algen.
  • Blutzuckerfreundliche Ernährung: Start-ups wie Levels (USA) oder NEOH (Österreich) zeigen, wie personalisierte Ernährung über Glukose-Monitoring neue Märkte erschließen kann.
  • „Food as Medicine“: Produkte, die gezielt auf chronische Beschwerden oder Prävention ausgelegt sind – beispielsweise bei Menstruationsbeschwerden, Wechseljahren oder Verdauungsstörungen.
  • Zero-Waste-Produkte: Verwertung von Nebenströmen (z.B. aus Brauereien oder Obstpressen) zur Herstellung von Lebensmitteln mit Nachhaltigkeitsanspruch.
  • Biohacking-Produkte: hochfunktionale Lebensmittel für kognitive Leistung, Schlaf, Erholung oder hormonelle Balance wie zum Beispiel der Marke Moments – by Biogena.

Die Zukunft von Food liegt in der Synthese aus Wissenschaft, Individualisierung und Nachhaltigkeit. Start-ups, die diese Megatrends frühzeitig besetzen, positionieren sich als Pioniere für eine neue Esskultur. Besonders wichtig in der Investor*innenansprache sind:

  • Fundierte Zahlenkenntnis: Gründer*innen sollten Unit Economics, Break-Even-Szenarien und Roherträge detailliert erklären können. Vage Aussagen über Marktpotenzial reichen nicht – es braucht belastbare Szenarien.
  • Proof of Concept: Idealerweise liegt bereits ein MVP (Minimum Viable Product) mit echter Kund*innenvalidierung vor. Pilotprojekte mit Handelspartner*innen oder Online-­Abverkäufe liefern harte Daten.
  • Storytelling mit Substanz: Purpose ist gut – aber er muss betriebswirtschaftlich verankert sein. Was motiviert das Team? Wo liegt der USP? Wie stark ist der Wettbewerb?
  • Team-Komplementarität: Ein starkes Gründer*innen-Team vereint Produkt- und Marktwissen, betriebswirtschaft­liches Denken und Leadership-Kompetenz.
  • Exit-Szenario: Investor*innen wollen eine Perspektive: Wird es ein strategischer Verkauf, ein Buy- & Build-Modell oder ein langfristiger Wachstums-Case?

Wer Investor*innen mit klarer Struktur, realistischen Annahmen und ehrlicher Kommunikation begegnet, hat bessere Chancen auf Kapital – inbesondere in einem Markt, der aktuell selektiver denn je agiert. Genau hier liegt die Kernkompetenz von Food-Start-up-Helfer*innen wie der Alimentastic Food Innovation GmbH, die nicht nur in innovative Unternehmen investiert, sondern ihnen aktiv dabei hilft, die oben genannte operative Komplexität zu überwinden und den Time to Market signifikant zu verkürzen – von der Produktidee bis hin zur Umsetzung im Handel.

Fazit

Der deutsche Food-Start-up-Markt ist herausfordernd, aber voller Chancen. Wer heute erfolgreich gründen will, braucht nicht nur eine starke Produktidee, sondern ein tiefes Verständnis für Produktion, Vertrieb, Kapitalstruktur und Markenaufbau. Functional Food, nachhaltige Innovationen und technologiegetriebene Konzepte bieten enorme Wachstumsmöglichkeiten – vorausgesetzt, sie werden professionell umgesetzt und skalierbar gedacht.

Der Autor Laurenz Hoffmann ist CEO & Shareholder der Alimentastic Food Innovation GmbH und bringt langjährige Erfahrung aus dem Lebensmitteleinzelhandel mit.

“Digitalisierung ist kein Nice-to-have mehr, sondern strukturelle Voraussetzung für Wettbewerbsfähigkeit”

„Made in Steel. Built on Data.“ Mit diesem Leitsatz positioniert sich die EMR Dynamics GmbH als strategische Antwort auf die zunehmende Komplexität globaler Lieferketten – und auf die wachsenden Anforderungen an Geschwindigkeit, Transparenz und Resilienz in industriellen Wertschöpfungsnetzwerken.

Unter der Leitung von Emrullah Görsoy geht EMR Dynamics aus einem Berliner Familienunternehmen hervor, das seit 2005 als verlässlicher Partner für mechanische Komponenten in Europa etabliert ist. Nun markiert das Unternehmen den nächsten Entwicklungssprung der Unternehmensgeschichte: von der Fertigung zur Plattform.

Fragen dazu an Emrullah Görsoy, Managing Director at EMR:

Seit mehr als 20 Jahren seid ihr mit EMR am Markt. Man könnte sagen, ihr macht vieles richtig – Wie lautet euer Erfolgsrezept?

Unser Erfolgsrezept liegt in der konsequenten Weiterentwicklung. Wir haben uns nie auf bestehenden Strukturen ausgeruht, sondern das Unternehmen immer wieder neu gedacht – operativ, strategisch und technologisch. Besonders in Zeiten des Wandels war unser pragmatischer Unternehmergeist entscheidend. Dabei kombinieren wir mittelständische Robustheit mit einer agilen Denkweise – anpassungsfähig, resilient und wachstumsorientiert.

Zeitnah startet ihr mit eurer Neugründung EMR Dynamics am Markt. Was steckt dahinter?

EMR Dynamics ist unsere Antwort auf ein fragmentiertes Marktumfeld und wachsende Anforderungen an Geschwindigkeit, Transparenz und Resilienz in industriellen Lieferketten. Wir verbinden vertikal integrierte Fertigungskompetenz mit einer digitalen Prozessarchitektur – eine B2B-Plattform für die intelligente Steuerung und Vermittlung industrieller Produktions- und Beschaffungsprozesse. Das Ziel: maximale Skalierbarkeit, reduzierte Time-to-Market und durchgängige Prozesssicherheit für unsere Kunden.

Damit schlagen wir die Brücke zwischen Mittelstand und digitaler Ökonomie – resilient, effizient und kundennah. Wir wollen EMR Dynamics als Plattformmarke im industriellen Mittelstand etablieren – mit eigener Fertigung, digitalem Backbone und strategischer Nähe zum Kunden.

An wen richtet sich euer Angebot?

Unsere Zielgruppen sind OEMs, Tier-1-Zulieferer und Systempartner aus hoch regulierten und qualitätskritischen Industrien – etwa Rail, Aerospace, Defense oder Industrial Tech. Wir liefern nicht nur Komponenten, sondern vernetzen Prozesse, sichern Supply Chains ab und schaffen Plattformlösungen für beschleunigte Wertschöpfung – alles aus einer Hand.

Wie unterscheidet sich euer Angebot von klassischen Fertigungsdienstleistern?

Wir sind kein reiner Teilelieferant. Wir verstehen uns als Lösungsanbieter entlang der industriellen Wertschöpfung – von Co-Engineering und Prototyping über skalierbare Serienfertigung bis hin zur integrierten Lieferkette. Durch die Plattformlogik können wir unsere Prozesse mit denen unserer Kunden synchronisieren und so Time-to-Market und Lieferperformance signifikant verbessern – gerade für komplexe und hochqualifizierte Baugruppen.

Seit mehreren Jahren bist du Geschäftsführer des Unternehmens EMR Industrial. Wie fühlt es sich an, als Young Professional bereits in einer solchen verantwortungsvollen Rolle zu sein?

Herausfordernd, aber erfüllend. Ich hatte das Privileg, früh Verantwortung zu übernehmen – besonders während der Transformation von EMR in der Pandemie. Die Krise 2020 hat uns gezwungen, unser gesamtes Geschäftsmodell zu pivotieren. Diese Erfahrung hat mich geprägt: Strategisch zu denken, unternehmerisch zu handeln und nie den Kontakt zur operativen Realität zu verlieren.

Welche Bedeutung hat die Digitalisierung aus deiner Sicht für den Mittelstand und was können sich Mittelständler von Start-ups abschauen?

Digitalisierung ist kein Nice-to-have mehr, sondern strukturelle Voraussetzung für Wettbewerbsfähigkeit. Der Mittelstand kann von Start-ups besonders eines lernen: den Mut, Prozesse radikal neu zu denken – und den Fokus auf Geschwindigkeit, Automatisierung und User Experience.

Emrullah Görsoy, Danke für die Insights

DefenseTech-Report 2025

Noch vor wenigen Jahren galt Rüstungs-IT bei vielen Investor*innen als Tabu, ähnlich wie „Sündenbranchen“ à la Glückspiel und Pornografie; dieser Stigma-Effekt ist nun einer neuen Dringlichkeit, die ukrainische Verteidigung zu unterstützen, gewichen. Wie DefTech-Start-ups Sicherheit und Verteidigung durch Innovationskraft, Agilität und Flexibilität revolutionieren.

Der russische Überfall auf die Ukraine im Februar 2022 markierte einen Wendepunkt für die deutsche Verteidigungspolitik. Der Bundeskanzler rief die „Zeitenwende“ aus – einen Kurswechsel, der u.a. ein Sondervermögen von 100 Mrd. Euro für die Bundeswehr einschloss. Seither rücken technologische Innovationen für die Verteidigung verstärkt in den Fokus. DefenseTech-Start-ups (auch DefTechs genannt) – also junge Technologieunternehmen mit rein militärischen oder Dual-Use-Anwendungen (zivil und militärisch) – erleben seitdem einen Aufschwung. Die USA haben deutlich signalisiert, dass ihre Bereitschaft, als Arsenal der Demokratie unbegrenzt westliche Verteidigung zu finanzieren, nachlässt. Europa, Deutschland im Besonderen, muss also eigene Innovationskraft mobilisieren, um wirksam abschrecken zu können.

Start-ups im Gefechtsfeld der Zukunft: Lehren aus dem Ukraine-Krieg

Der russische Angriffskrieg offenbart, welche Technologien und Akteur*innen auf dem Gefechtsfeld der Zukunft dominieren werden. Auffällig ist, wie ein verteidigungsnahes Innovationsökosystem aus Tech-Start-ups und Dual-Use-Technologien in der Ukraine binnen kurzer Zeit Lösungen hervorbrachte, die Russlands konventionelle Überlegenheit teilweise neutralisierten.

Die ukrainischen Streitkräfte setzen neue Taktiken und Waffensysteme zudem mit einer Agilität ein, die westliche Armeen – mit ihren oft jahrelangen Beschaffungszyklen – nicht erreichen.

Im Ukraine-Krieg haben sich vor allem Drohnen als Gamechanger erwiesen. First-Person-View-(FPV)-Drohnen fungieren gleichsam als „Infanterie“ der Drohnenkriegsführung – sie sind zu einer tragenden Säule von Kiews Kriegsanstrengungen geworden und verursachen Schätzungen zufolge bis zu 80 Prozent der russischen Verluste auf dem Gefechtsfeld.

Ukrainische Herstellende – vielfach kleine Firmen – produzieren aktuell rund 200.000 FPV-Drohnen pro Monat und ersetzen zunehmend importierte Bauteile durch eigene Entwicklungen. Solche billigen Mini-Drohnen können aber Panzer oder Radaranlagen im Wert von Millionen zerstören – ein eklatantes Kosten-Nutzen-Missverhältnis zu Ungunsten klassischer Wehrtechnik. Daneben prägen Loitering Munitions (umherschweifende „Kamikaze-Drohnen“) den Konflikt.

Überhaupt redefiniert die Ukraine den Drohneneinsatz: Wie Forbes berichtete, wurde entlang der Front ein rund 25 km breiter „Kill-Zone“-Streifen eingerichtet, patrouilliert von Schwärmen kleiner Drohnen, der feindliche Truppenansammlungen nahezu unmöglich macht – die NATO erwägt bereits eine ähnliche „Drone Wall“ zum Schutz ihrer Ostflanke. Die Allgegenwart von Drohnen rief freilich elektronische Gegenmaßnahmen auf den Plan: Beide Seiten überziehen sich mit immer neuen Electronic-Warfare-Taktiken, vom Stören und Spoofen von GPS- und Funkverbindungen bis hin zu improvisierten physischen Schutzgittern („cope cages“) an Fahrzeugen. Im Gegenzug werden jetzt verstärkt per Glasfaser ferngelenkte Drohnen entwickelt, die gegen Funk-Jamming immun sind. Auch im Cyber-Raum tobt der Schlagabtausch, der jedoch trotz einzelner schwerer Angriffe offenbar bislang keine strategisch entscheidenden Wirkungen erzielte.

Den größten Wert haben Cyber-Operationen daher bislang für Aufklärung und Störung gegnerischer Kommunikation. Insgesamt gilt dieser Krieg auch als erster großer Konflikt, in dem kommerzielle Technik so umfassend militärisch genutzt wird, dass Beobachtende bereits vom ersten „kommerziellen Raumfahrtkrieg“ sprechen. Private Satelliten liefern der Ukraine rund um die Uhr Geodaten und Aufklärung, während tausende Starlink-Terminals ein robustes Kommunikationsnetz auf dem Gefechtsfeld sicherstellen. Ebenso werden zivil verfügbare Drohnen, handelsübliche 3D-Drucker und KI-Software in militärische Anwendungen überführt. Mit erschwinglichen Geräten und Software lässt sich realisieren, was früher teuren Spezialkräften vorbehalten war. Die Kehrseite ist, dass die Trennung zwischen zivilem und militärischem Bereich zunehmend verschwimmt, was ethische und sicherheitspolitische Fragen aufwirft.

Die Rolle von Start-ups

Viele dieser Innovationen wurden nicht von Rüstungsriesen ersonnen, sondern von kleinen, agilen Akteur*innen. In der Ukraine stützt man sich auf eine lebhafte Tech-Start-up-Szene und eine flexible Rüstungsindustrie, um Russlands zahlenmäßige Vorteile auszugleichen. Die Iterationsgeschwindigkeit ist beeindruckend: Die Entwicklungszyklen für neue Lösungen sind von Jahren auf Monate, Wochen oder gar Tage geschrumpft. Agile Start-ups und Entwickler*innen-Teams an der Front reagieren in Echtzeit auf Bedrohungen. Sie fügen ständig neue Gegenmaßnahmen und Verbesserungen hinzu, um der Gegenseite immer einen Schritt voraus zu sein.

Dieser direkte Innovationsloop vom Gefechtsfeld in die Werkstatt und zurück beschleunigt den Fortschritt enorm. So schießen etwa ukrainische Drohnen-Workshops buchstäblich in Kellern und umfunktionierten Supermärkten aus dem Boden, um Produktion und Entwicklung selbst unter Beschuss aufrechtzuerhalten. Start-ups bringen eine Kultur der schnellen Iteration ein, die klassische Rüstungsbetriebe so nicht kennen. Das Ergebnis: 500-US-Dollar-Drohnen werden im Feld per Trial-and-Error optimiert und können anschließend einen 5-Mio.-US-Dollar-Panzer ausschalten.

Gründungs-Boom im Verteidigungssektor

Auch außerhalb der Ukraine hat der Krieg einen Gründungs-Boom ausgelöst. Wagniskapital fließt so stark wie nie in europäische Verteidigungs- und Sicherheits-Technologie: 2024 wurden in diesem Sektor 5,2 Mrd. US-Dollar investiert – ein Allzeithoch. Noch vor wenigen Jahren galt Rüstungs-IT bei vielen Investor*innen als Tabu, ähnlich wie „Sündenbranchen“ à la Glückspiel und Pornografie; dieser Stigma-Effekt ist nun einer neuen Dringlichkeit, die ukrainische Verteidigung zu unterstützen, gewichen. Einige staatlich unterstützte VC-Fonds in Europa, wie z.B. SmartCap aus Estland, fördern mittlerweile explizit Rüstungsinvestments. Zwar ist die europäische VC-Branche aufgrund vertraglicher Bindungen insgesamt noch zögerlich, doch die Zurückhaltung wirkt 2025 überholt. Schließlich zeigt der Ukraine-Krieg, dass technologische Innovation das Kriegsgeschehen entscheidend beeinflusst – eine Wahrheit, die in den vergangenen Friedensdekaden in Vergessenheit geriet.

Auch in Deutschland entsteht ein dynamisches Ökosystem, das viele Technologiefelder abdeckt. Die wichtigsten sind künstliche Intelligenz und autonome Systeme, Quantentechnologien, Human Enhancement, Hyperschalltechnologien, neuartige Materialien und Fertigungsverfahren, Raumfahrttechnologien, Advanced Manufacturing sowie resiliente Energiesysteme. Die Bitkom befragte kürzlich 44 deutsche DefTech- und Dual-Use-Start-ups, aber die Dunkelziffer dürfte höher liegen, da inzwischen viele DeepTech-Start-ups mit dem Verteidigungsmarkt liebäugeln.

So hat das Digital Hub Security & Defense BASED während der letzten Münchner Sicherheitskonferenz 80 DefTech-Start-ups auf dem „Sicherheitsfrühstück“ einer fast ebenso großen Zahl an Investor*innen vorgestellt. BASED hat sich auf die Fahnen geschrieben, DefTech-Start-ups „investment ready“ zu machen. Und viele Gründer*innen und Talente entscheiden sich angesichts der Bedrohungslage auch „mission driven“ für die Verteidigung, um einen Beitrag zum Schutz unserer Demokratie zu leisten.

Ein Beispiel für ein erfolgreiches europäisches Verteidigungs­Start-ups ist neben ARX Robotics (mehr dazu liest du hier in der Coverstory unserer Magazin-Ausgabe 02/25) oder Quantum Systems aus München auch das Unicorn Helsing, das den HX-2-Drohnenjäger entwickelte und Produktionskapazitäten in Deutschland aufbaut, um monatlich vierstellige Stückzahlen zu liefern. Solche Newcomer zeigen, wie Innovationskraft, Tempo und Skalierung im Ernstfall aussehen können – und dass Start-ups mit unkonventionellen Ansätzen binnen kurzer Zeit Fähigkeiten bereitstellen könnten, für deren Entwicklung traditionelle Rüstungsprogramme in der Vergangenheit Jahrzehnte gebraucht haben. Nicht zuletzt hat der Krieg die Produktionslogik verändert: Entscheidend ist nicht mehr, ein Waffensystem mit allen erdenklichen Sonderwünschen als „Goldrandlösung“ zu perfektionieren, sondern es schnell und robust in großen Stückzahlen bereitzustellen. Auch deutsche Rüstungsfirmen wie Hensoldt sprechen von einem Paradigmenwechsel: weg von der früheren „Boutique“-Fertigung hin zur Massenproduktion. Geschwindigkeit schlägt Sonderanfer­tigung: Statt monatelanger Feintuning-Schleifen gilt nun, was an der Front sofort wirkt.

Lehren für den Westen und Deutschland

Was bedeuten diese Erfahrungen für die Bundeswehr und ihre Partner*innen? Zunächst, dass Beschaffungsbürokratien und veraltete Prozesse zum Sicherheitsrisiko werden. In der Ukraine hat sich der traditionell träge Militärapparat unter existenziellem Druck rasant gewandelt. Westliche Länder müssen diese Lektionen proaktiv aufgreifen. Im Schnitt dauern Rüstungsprojekte in Deutschland sechs bis sieben Jahre – eine so lange Durststrecke überlebt kein Start-up in der schnelllebigen Tech-Welt. In der Vergangenheit haben sich talentierte Gründer*innen und Investor*innen daher lukrativeren Branchen zugewandt, statt jahrelang auf einen Durchbruch im Verteidigungssektor zu hoffen. Wollen staatliche Stellen die Innovationskraft der Start-up-Welt nutzen, müssen sie nun zu verlässlichen und schnelleren Kund*innen werden. Dazu gehört, Vergabeverfahren radikal zu verschlanken, mehr Wettbewerb und Transparenz zu schaffen und nicht-traditionelle Anbieter*innen aktiv einzubinden.

Die Politik hat dies erkannt: In Berlin hat sich die neue Koalition vorgenommen, die langsamen Beschaffungsabläufe grundlegend zu reformieren. Eine Analyse des Wirtschaftsministeriums (BMWK) identifizierte bereits 2023 Bremsklötze: übermäßige parlamentarische Einmischung bei jedem Auftrag über 25 Mio. Euro, komplizierte Regulierung sowie zu enge Grenzen bei der Forschungsförderung. Diese Hürden führen dazu, dass Innovationen im „Tal des Todes“ versickern – dem Übergang von Prototypen in die Serienbeschaffung. Durch bürokratische Verzögerungen verliert neue Technik dort kritische Zeit und Schwung, bisweilen verschwindet sie ganz. Um das zu verhindern, muss es strukturelle Änderungen geben: von der Verstetigung von Innovationsbudgets über beschleunigte Genehmigungswege bis hin zur besseren Verzahnung von zivilen Talenten mit militärischen Bedarfsträger*innen. Kurz: Die Streitkräfte dürfen nicht länger in Friedensroutine verharren.

Zugleich müssen Produktionskapazitäten hochgefahren werden. Der Krieg lehrt, dass eine industriell-logistische Mobilmachung nötig ist, um im Ernstfall genug Material bereitstellen zu können – seien es Munition, Drohnen oder Ersatz­teile. Dafür braucht es auch neue Geschäftsmodelle und modulare „Factories“ in Europa, die bei Bedarf binnen kürzester Zeit die Ausstoßzahlen hochskalieren können. Auch Abhängigkeiten von langen und störanfälligen Lieferketten im Bereich der Rohstoffe und Komponenten müssen reduziert werden.

Generell sollten westliche Regierungen verstärkt Kapital in junge Verteidigungsfirmen lenken – etwa durch Wagniskapitalfonds oder Innovationsprogramme – und verhindern, dass große Rüstungskonzerne vielversprechende Neulinge bloß aufkaufen, um deren Technologien vom Markt zu nehmen. Die Innovationsökosysteme rund um Verteidigung müssen sorgfältig kultiviert werden, damit die aktuelle Aufbruchsstimmung nicht abrupt endet. Dazu gehört auch ein Mentalitätswandel bei Investor*innen: Die Jahrzehnte währende Scheu vor Wehrtechnik-Investments ist nicht mehr zeitgemäß – letztlich hängt die Sicherheit Europas von unserer technologischen Stärke ab.

Fazit

Der Ukraine-Krieg führt vor Augen, wie künftig Kriege entschieden werden: durch Geschwindigkeit und Innovationskraft. Günstige, flexibel einsetzbare Technologien – oft entwickelt von neuen Akteur*innen – können hochgerüstete Gegner*innen ins Wanken bringen. Start-ups avancieren hierbei zum strategischen Faktor. Sie liefern Agilität, frische Ideen und die Fähigkeit, sich im Kriegsverlauf iterativ anzupassen.

Die Autorin Prof. Dr. Rafaela Kraus ist Professorin für Unternehmens- und Personalführung soeir ehem. Vizepräsidentin der Universität der Bundeswehr München und hat dort u.a. das Entrepreneurship-Center founders@unibw ins Leben gerufen. Als Defense-Innovation-Expertin ist sie Initiatorin von BASED, dem Münchner Digital Hub Security & Defense

KI clever eingesetzt: Können deutsche Entwickler ihre App-Ideen mit Vibe Coding umsetzen?

Wie Vibe Coding, eine neue KI-gestützte Methode der App-Entwicklung, es heute deutlich einfacher macht, aus einer Idee ein funktionierendes digitales Produkt entstehen zu lassen.

Die Zeiten, in denen man für die Umsetzung einer App monatelang ein Entwicklerteam zusammenstellen, riesige Budgets planen und unzählige Meetings überstehen musste, scheinen langsam zu verblassen. Vibe Coding, eine neue KI-gestützte Methode der App-Entwicklung, macht es Gründern und kreativen Köpfen in Deutschland heute deutlich einfacher, aus einer Idee ein funktionierendes digitales Produkt entstehen zu lassen.

Was steckt hinter Vibe Coding?

Vibe Coding nutzt künstliche Intelligenz, um auf Basis einfacher Sprache Code zu erzeugen. Statt eine App Zeile für Zeile zu programmieren, beschreibt man, was sie können soll. Die KI wandelt diese Wünsche in Code um, der sich dann weiter anpassen und verfeinern lässt. Anders als bei klassischen No-Code-Plattformen entstehen keine bloßen Baukastenlösungen, sondern anpassbarer, individuell nutzbarer Code.

Im Unterschied zu Low-Code-Ansätzen braucht es keine aufwendige UI und keine grafische Umgebung, in der man mühsam Komponenten zusammensetzt. Stattdessen genügt es, der KI präzise zu erklären, welches Ergebnis angestrebt wird. Das spart nicht nur Zeit, sondern eröffnet auch Menschen ohne tiefgehendes Technikverständnis ganz neue Möglichkeiten.

Aktuell eignet sich dieser Ansatz besonders für die Entwicklung von Prototypen, Minimum Viable Products und überschaubaren Business-Apps. Wer dagegen komplexe Anwendungen mit tiefen Backend-Strukturen, Hochsicherheitsanforderungen oder extrem hoher Nutzerlast plant, stößt mit Vibe Coding derzeit noch an natürliche Grenzen. Doch für den ersten Schritt in die App-Welt ist dieses Werkzeug so vielversprechend wie kaum ein anderes.

Wie KI-basierte Entwicklung neue Möglichkeiten für Gründer eröffnet

In der Praxis bedeutet das: Was früher ein ganzes Entwicklerteam beschäftigt hätte, kann heute oft in wenigen Tagen oder sogar Stunden entstehen. Vibe Coding verkürzt die Entwicklungszeiten deutlich, die ersten funktionsfähigen Entwürfe stehen schneller zur Verfügung als je zuvor.

Nicht zu unterschätzen ist dabei auch die finanzielle Seite. Wo man früher fünfstellige Summen investieren musste, genügt heute oft ein Bruchteil davon, um einen ersten lauffähigen Prototypen zu testen. Damit wird der Einstieg in die App-Entwicklung auch für Gründer ohne Tech-Hintergrund realistischer. Kein Zwang mehr, einen CTO an Bord zu holen oder teure Agenturen zu engagieren.

Gerade in Deutschland, wo Gründungsteams häufig an fehlender Entwicklerkapazität scheitern, eröffnet diese Entwicklung eine völlig neue Dynamik. Wer eine gute Idee hat, kann sie dank Vibe Coding sehr viel leichter in die Realität umsetzen. Das fördert die Innovationskultur und macht Platz für mehr mutige Experimente.

Ein Beispiel, das hier besonders hervorsticht, ist die Founders Foundation in Ostwestfalen-Lippe. Mit gezielten Programmen und Workshops unterstützt sie Gründerinnen und Gründer dabei, KI-gestützte Methoden sinnvoll einzusetzen und so eigene digitale Produkte schneller auf die Straße zu bringen. Genau solche Impulse tragen dazu bei, dass sich der Trend immer stärker durchsetzt.

Welche deutschen Start-ups zeigen bereits, was mit KI und No-Code möglich ist?

Dass das alles keine Theorie mehr ist, sondern in deutschen Gründungszentren längst gelebt wird, zeigen einige aktuelle Beispiele sehr anschaulich. Leaping AI aus Berlin etwa entwickelt Voicebots, die im Kundenservice 70 Prozent aller Anfragen automatisiert beantworten. Eine Anwendung, die ohne moderne KI-Tools in dieser Geschwindigkeit und Qualität wohl kaum möglich wäre.

Auch qru aus Stuttgart beweist, was möglich ist. Mit ihren Videomarketing-Tools, die auf einem cleveren Mix aus Low-Code und KI basieren, können selbst kleinere Unternehmen ihre Marketingprozesse automatisieren und professionell gestalten, ohne dafür eine eigene IT-Abteilung zu benötigen.

Ein drittes Beispiel: Paul’s Job, ein Berliner Startup, das HR-Prozesse mit agentischer KI unterstützt. Recruiting und Personalverwaltung laufen dort in weiten Teilen automatisiert, was Gründern wie Personalabteilungen jede Menge Zeit und Nerven spart.

Diese und ähnliche Projekte zeigen deutlich, dass Vibe Coding und vergleichbare Methoden längst ihren Weg in die praktische Nutzung gefunden haben. Die Technologie entwickelt sich dabei so schnell weiter, dass immer mehr Gründer den Mut fassen, ihre App-Ideen mit solchen Ansätzen umzusetzen.

Warum die App-Entwicklung perspektivisch günstiger wird

Ein Blick auf die allgemeine Marktentwicklung macht schnell deutlich: App-Entwicklung wird in den kommenden Jahren noch günstiger und einfacher werden. Mit jedem Fortschritt der KI sinken die Kosten für die technische Umsetzung, gleichzeitig steigen die Möglichkeiten, individualisierte Lösungen zu entwickeln.

Das hat Folgen, insbesondere für kleinere und spezialisierte Anbieter. Wo früher nur große Unternehmen eigene Apps auf den Markt bringen konnten, öffnet sich der Zugang nun auch für kleinere Player. Gerade in Nischenmärkten entstehen so neue Chancen.

Ein besonders interessantes Feld ist aktuell der Gambling-Sektor. Lange Zeit galten die hohen Entwicklungskosten als Einstiegshürde für viele Anbieter. Inzwischen zeigt sich jedoch, dass speziell in diesem Bereich vermehrt Apps auf den Markt kommen, weil die technische Umsetzung dank KI-Tools deutlich günstiger geworden ist.

Aber nicht nur im Glücksspiel-Markt tut sich etwas. Health und Fitness, E-Learning, Content Creation sowie regionale Dienstleistungen profitieren in ähnlicher Weise von den neuen Möglichkeiten. Über Smartphones und Tablets gelangen viele dieser Lösungen direkt zu den Nutzern und ermöglichen eine viel engere Bindung als klassische Webanwendungen.

Wo klassische Entwicklerkompetenz weiterhin unverzichtbar bleibt

Natürlich hat auch Vibe Coding seine Grenzen. Gerade wenn es um anspruchsvolle Architektur, komplexe Backend-Systeme oder hochskalierbare Anwendungen geht, kommt man ohne erfahrene Entwickler nach wie vor nicht aus.

KI generiert Code auf Basis von Wahrscheinlichkeiten, was in der Praxis immer wieder zu fehlerhaften oder ineffizienten Strukturen führen kann. Qualitätssicherung, Testing und fundiertes Architekturwissen bleiben deshalb unerlässlich, sobald eine App mehr sein soll als ein einfaches MVP.

Auch bei Themen wie Performance, Sicherheit und Datenschutz kann KI derzeit noch nicht mithalten. Hier braucht es das Know-how klassischer Entwickler, um Anwendungen stabil und vertrauenswürdig zu machen.

Gerade für Anwendungen im Finanz- oder Gesundheitsbereich, wo hohe regulatorische Standards erfüllt werden müssen, bleibt der menschliche Faktor entscheidend. Vibe Coding ist ein fantastisches Werkzeug für den schnellen Einstieg und die Umsetzung erster Ideen, doch auf dem Weg zu einem ausgereiften Produkt wird klassisches Engineering weiterhin eine tragende Rolle spielen.

Vibe Coding bringt frischen Wind in die App-Entwicklung

Vibe Coding verändert die Art, wie in Deutschland Apps entstehen, in rasantem Tempo. Prototypen und erste marktfähige Tools lassen sich heute so schnell und günstig umsetzen wie nie zuvor. Für viele Gründer ohne Tech-Hintergrund eröffnen sich dadurch Möglichkeiten, die es vor wenigen Jahren schlicht nicht gab.

Die Beispiele aus der Startup-Szene zeigen eindrucksvoll, wie die neuen Werkzeuge bereits eingesetzt werden. Gleichzeitig bleibt klar: Für echte Skalierung, Sicherheit und Performance führt an klassischem Entwicklerwissen kein Weg vorbei.

Die Zukunft gehört wahrscheinlich zu einem hybriden Ansatz, bei dem KI als mächtiges Assistenzwerkzeug fungiert und Entwickler sich auf das konzentrieren, was KI noch nicht zuverlässig beherrscht. So entsteht Raum für mehr Innovation, mehr mutige Ideen und letztlich mehr spannende Apps. Und genau das dürfte der deutschen Tech-Szene mehr als guttun.

EU AI Act: Bürokratisch, unpraktisch, schlecht

Ein Kommentar von Dominik Mohilo, Redakteur und IT-Experte bei der auf High-Tech spezialisierten Münchner PR- und Kommunikationsagentur PR-COM.

Die Luft auf dem hohen moralischen Ross, auf dem Deutschland vorreitet und Europa folgt, wird dünner und dünner. Ja, der EU AI Act ist eine Errungenschaft. Und ja, ethische Grundsätze sollten wir keinesfalls missachten, wenn es darum geht, künstliche Intelligenz zu entwickeln, zu betreiben und zu verwenden. Fair enough. Doch darf’s vielleicht trotzdem ein bisschen weniger Bürokratie sein, liebe EU? Artikel 5 des KI-Regelwerks der EU besagt beispielsweise, dass die folgende KI-Praktik verboten ist: „Das Inverkehrbringen, die Inbetriebnahme oder die Verwendung eines KI-Systems, das unterschwellige Techniken, die sich dem Bewusstsein einer Person entziehen, oder absichtlich manipulative oder täuschende Techniken einsetzt, mit dem Ziel oder der Wirkung, das Verhalten einer Person oder einer Personengruppe dadurch wesentlich zu beeinflussen, dass ihre Fähigkeit, eine sachkundige Entscheidung zu treffen, spürbar beeinträchtigt wird, wodurch sie veranlasst wird, eine Entscheidung zu treffen, die sie andernfalls nicht getroffen hätte, und zwar in einer Weise, die dieser Person, einer anderen Person oder einer Personengruppe einen erheblichen Schaden zufügt oder mit hinreichender Wahrscheinlichkeit zufügen wird.“ (Kapitel II, Artikel 5, 1a)

Sperrig und überregulatorisch

Verstanden worum es geht? Ich auch nicht. Ähnlich sperrig und überregulatorisch ist der Abschnitt über sogenannte Hochrisiko-KI-Systeme formuliert. Gemeint sind damit jene KI-Anwendungen, die etwa im Gesundheitswesen, in der Bildung oder kritischen Infrastrukturen eingesetzt werden sollen – also genau den Bereichen, wo sie dringend benötigte Verbesserungen und Entlastungen für die in diesen Bereichen arbeitenden Menschen mit sich bringen könnten. Was genau mit Hochrisiko gemeint ist, ist allerdings wieder nicht glasklar definiert: was hat denn nun „erheblichen Einfluss auf Grundrechte“? Diese Unsicherheit im Hinblick auf die rechtliche Grundlage ist oft Grund genug für potenzielle Investoren, sich nach anderen Gelegenheiten umzusehen. Wer will schon exorbitante Kosten für juristische Verfahren locker machen und Zertifizierungen noch und nöcher erwerben, nur um am Ende dann möglicherweise doch gegen geltende Gesetze zu verstoßen? Eben.

Start-ups sind von Hürden überproportional heftig betroffen

Gerade kleine und mittelständische Unternehmen (KMU) sowie Start-ups sind von diesen Hürden überproportional heftig betroffen, sodass viele gute und wegweisende Ideen nicht oder zumindest nicht hier in der EU auf den Weg gebracht werden. Wirtschaftlich ist das fatal – das auch noch in diesen schwierigen Zeiten. In diesen Zeiten wäre es eigentlich wichtig, die Wirtschaft voranzutreiben, insbesondere in zukunftsweisenden Bereichen wie dem KI-Markt. Eine gute Möglichkeit wäre, die Technologie hierzulande staatlich zu subventionieren, wie das in den USA und in China bereits in großem Stil passiert. Stattdessen werfen wir uns selbst Stöcke in die Speichen unserer Räder – unter anderem mit Regulierung und ethischen Grundsätzen, sondern insbesondere durch schwammige Gesetzestexte und Undurchsichtigkeit von Compliance-Vorschriften.

Zusammenfassend ist festzustellen, dass die alte Forderung „rebellischer“ (mancher würde sagen: „vernünftiger“) Politiker, Bürokratie abzubauen, selten so eine hohe Relevanz wie aktuell hatte. Europa geht es wirtschaftlich schlecht, gleichzeitig verlassen High-Tech-Unternehmen scharenweise unsere Breitengerade, da das Regulierungskorsett so eng geschnürt ist, dass Innovation keine Luft mehr zum Atmen hat. Es gilt also, Maßnahmen zu ergreifen, um wettbewerbsfähig zu werden.

Was könnte die EU nun machen, da das Regulations-Kind in den Brunnen gefallen ist?

Zunächst einmal wäre es hilfreich, aus unserem Elfenbeinturm herauszukommen. Ethik ist wichtig, aber kein Altar, auf dem wir unsere Wirtschaft opfern sollten. Haben wir das verinnerlicht, braucht der EU AI Act eine Überarbeitung die Unklarheiten auflöst und die Hürden (gerade für Start-ups und KMU) verringert. Sinnvoll wäre zudem, wenn die EU KI-Sandboxes zur Prüfung von innovativen Technologien bereitstellen würde, in denen Unternehmen ihre Entwicklungen testen können, ohne gegen Gesetze zu verstoßen. Zudem muss die EU-Gelder und Mittel zur Verfügung stellen, Zertifizierungsverfahren deutlich zu beschleunigen. Auch eine Zentralisierung dieser Verfahren würde Sinn ergeben. Die entsprechende ISO-Norm (ISO/IEC 42001) gibt es bereits, was fehlt sind offizielle Tools, um die Konformität der eigenen Anwendung zu checken.

Ziel muss es sein, Europa als attraktives Umfeld für den Einsatz und die Entwicklung von KI-Anwendungen zu positionieren. KI wird in den kommenden Jahren über wirtschaftlichen Erfolg nicht nur von Unternehmen, sondern von Staaten avancieren. Wenn wir nicht die gleichen Katastrophen wie aus der Schwerindustrie und der Automobilbranche erleben, sondern wieder vorne mitspielen wollen, dürfen wir uns nicht selbst behindern. Das Gebot der Stunde ist also Bürokratieabbau und Mut zu moderaterer Ethik – so werden wir vielleicht irgendwann doch wieder Exportweltmeister.

Podcast: Die Peter Thiel Story

Tipp der Redaktion: Ab 28. Mai 2025 in der Deutschlandfunk App verfügbar – der sechsteilige Podcast „Die Peter Thiel Story“.

Peter Thiel ist mit PayPal und Facebook reich geworden und hat die Gedankenwelt des Silicon Valleys wie kaum ein zweiter geprägt. Der Tech-Milliardär ist ein Architekt des neuen rechten Amerikas, ist Strippenzieher und bestens vernetzt im radikalkonservativen und -libertären Amerika.

Mit dem sechsteiligen Podcast „Die Peter Thiel Story“ beleuchtet der Deutschlandfunk jetzt die Hintergründe des geheimnisvollen Investors, der trotz seines enormen Einflusses vielen kaum bekannt ist.

Host und Autor Fritz Espenlaub zeichnet nach, wie ein in Deutschland geborener Philosophiestudent im Silicon Valley aufstieg. Er zeigt das intellektuelle Fundament – geprägt von Carl Schmitt, René Girard und Ayn Rand – sowie das Netzwerk, das heute Schlüsselpositionen in Wirtschaft und Politik besetzt.

Die Serie dokumentiert dabei auch Thiels Visionen: Die Errichtung schwimmender libertärer Städte, die Entwicklung fortschrittlicher Überwachungstechnologie und seine Suche nach dem ewigen Leben.

Die Peter Thiel Story“ bietet Einblicke in das Leben des Mannes, der ewig leben und alles verändern will.

Die Peter Thiel Story

Sechsteilige Erzählserie jeweils ca. 30 Minuten

ab 28. Mai 2025 in der Deutschlandfunk App