Wie Start-ups mit KI und Low-Code durchstarten können

Autor: Tim Herden
44 likes

Angesichts des Drucks der fortschreitenden Digitalisierung und des Fachkräftemangels bietet KI-gestütztes Coding vielversprechende Chancen, gerade auch für Start-ups.

Die Analysten von Gartner gehen davon aus, dass bis 2028 drei von vier Softwareentwicklern in Unternehmen KI-Assistenten beim Programmieren einsetzen werden. Das ist ein deutlicher Anstieg gegenüber Anfang 2023, als der Anteil noch unter zehn Prozent lag. Start-ups sind aufgrund ihrer Agilität und ihres Innovationsgeistes besonders gut aufgestellt, um KI-Tools zu nutzen und ihre Programmierprozesse grundlegend zu verändern. Angesichts des Drucks der fortschreitenden Digitalisierung und des Fachkräftemangels bietet KI-gestütztes Coding vielversprechende Chancen. Low-Code-Plattformen ermöglichen es Start-ups, dieses Potenzial effektiv zu nutzen.

KI und generative KI (GenAI) stellen eine Herausforderung für die traditionelle Softwareentwicklung dar. Daher haben die Diskussionen über ihre möglichen Auswirkungen in den letzten Jahren stark zugenommen. Eines ist jedoch klar: diese Technologie verspricht, die Softwareentwicklungsprozesse von Unternehmen deutlich effizienter zu gestalten.

Die rasante Entwicklung im Bereich der künstlichen Intelligenz bedeutet, dass beispielsweise bestimmte Aufgaben wie die Dokumentation von Quellcode für die Wartbarkeit und das Schreiben neuen Codes laut McKinsey nur noch halb so viel Zeit in Anspruch nehmen. Gartner prognostiziert, dass KI-gestütztes Programmieren die Produktivität menschlicher Entwickler in naher Zukunft um das Zehnfache steigern kann. Für Start-ups, die KI-unterstützte Programmierung einsetzen, bedeutet dies schnellere Entwicklungszyklen und weniger Zeitaufwand für die Wartung. Dies setzt jedoch einen durchdachten Coding-Ansatz voraus, der es Start-ups ermöglicht, in einem zunehmend komplexen Markt flexibel zu bleiben, ohne Kompromisse bei der Sicherheit einzugehen.

Die Macht von KI und generativer KI im Coding von morgen

Start-ups sollten die Einführung von KI-gestützter Programmierung sorgfältig abwägen und mit den richtigen Sicherheits-Tools kombinieren, um ihre Agilität zu erhalten und Innovationen voranzutreiben. KI, und insbesondere generative KI, kann Entwicklern dabei helfen, Code schneller und mit weniger Fehlern zu schreiben und zu verfeinern. Diese Technologien können wiederkehrende Aufgaben automatisieren, Code-Verbesserungen vorschlagen und sogar neue Code-Fragmente generieren. Dadurch wird der Zeit- und Arbeitsaufwand für die Softwareentwicklung erheblich reduziert.

Üblicherweise dauert die Entwicklung von Software von der Idee bis zum marktreifen Produkt im besten Fall Monate – im realistischen Szenario jedoch Jahre. Eine erfolgreiche Anwendung durchläuft dabei einen stringenten Planungs- und Entwurfsprozess, bevor mit der Programmierung, dem Testen und Debuggen begonnen werden kann. Auch nach der Bereitstellung ist eine kontinuierliche Wartung erforderlich, um sicherzustellen, dass die Software reibungslos läuft und Aktualisierungen und Leistung den wachsenden Anforderungen entsprechen. In der Realität sind für die meisten dieser Prozesse Tech-Experten zuständig, was zu Verzögerungen und Ineffizienz führt, da Nachfrage und die verfügbaren Ressourcen meist nicht im Gleichgewicht sind.

KI ersetzt keine Developer-Expertise

Bei jedem Update von ChatGPT werden Stimmen laut, die postulieren, dass diese Version die traditionelle Entwicklung abschafft und es jedem ermöglicht, ein Entwickler zu sein. In der Realität ist das Programmieren mit Hilfe von KI jedoch kein Ersatz für technische Expertise. Der Einsatz von KI in der Programmierung hat zwar ein enormes Potenzial, die Geschwindigkeit zu erhöhen, aber die sporadischen Ungenauigkeiten der KI-Halluzinationen erfordern technische Unterstützung, um die Qualität des Codes zu erhalten und Schwachstellen zu vermeiden. (Zur Info: Spricht man im Rahmen der KI von einer Halluzination, ist damit ein überzeugend aussehendes KI-generiertes Ergebnis in Text- oder Bildform gemeint, das nicht durch Trainingsdaten objektiv belegt werden kann und damit weitgehend erfunden ist.)
Denn öffentlich verfügbare KI-Modelle werden auf öffentlich zugänglichen Codebasen trainiert – und ein erheblicher Teil davon ist naturgemäß fehlerhaft. Mit anderen Worten: Die Qualität der Daten, mit denen die generativen Modelle gefüttert werden, und die daraus resultierenden Modelle selbst, sind alles andere als perfekt.

Low-Code und KI – ein starkes Duo für Gründer*innen

Um schnell innovativ zu sein und agil zu bleiben, müssen Unternehmen die Einführung von KI mit Lösungen kombinieren, die solide Leitlinien und Governance gewährleisten, um den resultierenden Code vor Schwachstellen und Fehlern zu schützen.

Neben der Frage der Einführung von KI in der Softwareentwicklung, führt der anhaltende Fachkräftemangel weiterhin dazu, dass IT-Teams die wachsenden Aufgaben in der immer komplexeren IT-Landschaft nicht bewältigen können. Das bedeutet, dass Unternehmen, neben dem Einsatz von KI zur Verbesserung der Programmiereffizienz, Wege finden müssen, um ihre Mitarbeitenden weiterzubilden und breitere Teams in die Ideenfindung und Entwicklung einzubeziehen.

In diesem Zusammenhang spielt die Low-Code-Technologie eine zentrale Rolle, weil sie nicht nur die Entwicklung sicherer und robuster Anwendungen gewährleistet, sondern auch wesentlich zur Demokratisierung der Softwareentwicklung beiträgt. Das bedeutet, dass in der Praxis Fachbereichs-übergreifende „Fusion Teams“ entstehend, die Teammitglieder ohne tiefes technisches Wissen in die Lage versetzen, während des gesamten Innovations- und Softwareentwicklungsprozesses mit den IT-Profis zusammenzuarbeiten. Aus der Entwicklungsperspektive trägt dies auch dazu bei, die Qualität der entwickelten Software zu erhöhen, da die künftigen Nutzer*innen von Anfang an einbezogen werden. Außerdem werden dadurch Silos innerhalb der traditionellen Softwareentwicklungsprozesse aufgebrochen und der Austausch von Wissen und Feedback erleichtert. Dies rationalisiert die Entwicklung und beseitigt personelle Engpässe. Ermöglicht wird dies durch die visuelle Natur von Low-Code: Prozess- und Anwendungsmodelle lassen sich durch Visualisierung leichter entwerfen und Designentscheidungen können zügig iteriert werden.

Enterprise-Low-Code-Plattformen mit eingebetteten KI-Funktionen können auch komplexe Entwicklungsaufgaben durch die Automatisierung von Routineprozessen, und die Generierung von Code-Vorschlägen rationalisieren. Darüber hinaus werden die Entwicklungszyklen durch ein schnelles Prototyping, Testen und Skalieren verbessert, was für den Erfolg von Start-ups unerlässlich ist.

Mit dem umsichtigen Einsatz von KI zum unternehmerischen Erfolg

Die Kombination aus Low-Code und KI hat somit viele Vorteile für Start-ups: komplexe manuelle Programmierung wird reduziert, die Kollaboration von gemischten Teams gefördert, indem nicht-technische Mitarbeitende befähigt werden sich einzubringen; das entlastet die IT-Abteilung und Unternehmen können schneller auf sich ändernde Anforderungen reagieren. Durch die Verringerung des Zeitaufwands können sich Mitarbeitende mehr auf ihre Kreativität und die strategische Planung konzentrieren, was sich positiv auf die Innovationsgeschwindigkeit und deren Umfang auswirkt. Mit der gewonnenen Agilität und verbesserten Effizienz können Start-ups mit größeren und reiferen Unternehmen konkurrieren, weil sie sich schnell an Marktveränderungen und Kund*innenbedürfnisse anpassen.

Die Verwendung von KI in der Programmierung ist entscheidend für Start-ups, um ihre Innovationen zu katalysieren. Sie müssen sich jedoch der Grenzen von KI bewusst sein und die KI-gestützte Programmierung unter Berücksichtigung von Governance und Sicherheit angehen. Gerade für Start-ups, die ein schnelles Wachstum anstreben, kann dieser ausgewogene Ansatz ein entscheidender Erfolgsfaktor sein.

Der Autor Tim Herden ist Director Solution Architecture DACH & Nordics bei bei Mendix. Das Siemens-Unternehmen ist die einzige Low-Code-Plattform, die für die gesamte Komplexität der Softwareentwicklung in Unternehmen ausgelegt ist.

Diese Artikel könnten Sie auch interessieren:

Gründer*in der Woche: Picturo – Local Photography, European Scale

Mit der Picturo Photography UG baut Jean Witt eine europaweite Plattform zur einfachen Suche nach lokalen Fotograf*innen auf. Ziel ist es, einen stark fragmentierten Markt zu bündeln, Fotograf*innen sichtbar zu machen und Nutzer*innen eine zentrale Anlaufstelle zu bieten. Mehr dazu im Interview mit dem Gründer.

Picturo klingt nach dem großen Bild. Beschreibe uns deine Idee in wenigen Sätzen – dein Elevator Pitch!

Picturo ist ein internationaler Marktplatz, der die Suche nach lokalen Fotograf*innen weltweit radikal vereinfacht. Statt unübersichtlicher Recherche auf Social Media oder Google bietet Picturo eine zentrale, standortbasierte Plattform. Nutzer*innen finden mit wenigen Klicks die passenden Fotograf*innen für jeden Anlass, während diese wiederum gezielt neue Kund*innen gewinnen. So professionalisiert Picturo einen stark fragmentierten Markt und macht die Suche nach Fotografie-Dienstleistungen so einfach wie die Buchung eines Hotels.

Es gibt bereits viele Plattformen für Fotograf*innen und Bilddatenbanken. Was war der konkrete Auslöser oder gar Pain Point, den du selbst erlebt hast, der dich dazu gebracht hat, Picturo zu gründen?

Der konkrete Auslöser war meine eigene Erfahrung als Reisender. Die Suche nach lokalen Fotografinnen lief fast immer über Direktnachrichten auf Social Media oder über einzelne Webseiten. Dabei musste man jedes Mal Preise, Verfügbarkeiten und Leistungen separat anfragen – oft ohne klare Antworten oder Vergleichsmöglichkeiten. Dieser Prozess ist zeitaufwendig, intransparent und für Nutzer*innen extrem umständlich. Gleichzeitig wurde deutlich, dass es für Fotograf*innen genauso ineffizient ist, jede Anfrage einzeln zu beantworten. Picturo ist aus genau diesem Pain Point entstanden: dem Wunsch nach einer zentralen, einfachen und transparenten Lösung für die Suche nach lokalen Profis.

Ihr sitzt in Esens, also im schönen Ostfriesland, habt aber den Anspruch, Fotograf*innen in „ganz Europa“ zu vernetzen. Wie baut man von einem eher ländlichen Standort aus eine so internationale Community auf?

Unser Standort in Ostfriesland ist für uns kein Nachteil, sondern Teil unserer Geschichte. Picturo ist von Anfang an als digitale Plattform konzipiert worden, bei der der Standort des Teams keine Rolle für die Reichweite spielt. Der Bedarf bei Fotograf*innen in ganz Europa ist so groß, dass Anfragen zur Teilnahme an unserer Plattform bereits heute organisch entstehen. Viele Fotograf*innen suchen gezielt nach Möglichkeiten, international sichtbar zu werden und neue Kund*innen zu erreichen. Durch klare Positionierung, einfache Nutzung und einen starken Fokus auf lokale Sichtbarkeit schaffen wir Vertrauen und Wachstum – unabhängig vom Standort. So bauen wir Schritt für Schritt eine internationale Community auf: digital, skalierbar und nachhaltig.

Euer Portfolio ist breiter als das der Konkurrenz. Wie genau funktioniert das Geschäftsmodell? Zahlt der/die Kund*in pro Bild oder ist es ein Abo-Modell?

Der Kern von Picturo liegt klar auf der Vermittlung und Sichtbarkeit von professionellen Fotografinnen. Unser Geschäftsmodell basiert auf abonnementbasierten Mitgliedschaften für die Fotografinnen. Für Kund*innen ist die Nutzung der Plattform vollständig kosten- und provisionsfrei; ebenso fallen keine Buchungsprovisionen an. Fotograf*innen zahlen eine monatliche Subscription für Sichtbarkeit, Reichweite und den Zugang zu qualifizierten Anfragen. Dieses Modell schafft Transparenz, vermeidet Reibung im Buchungsprozess und ist für beide Seiten fair und planbar.

Ihr bietet auch einen Guide zu lokalen Hotspots (Bars, Cafés) an. Ist das „nur“ ein Content-Marketing-Tool, um Traffic auf die Seite zu bekommen, oder plant ihr Kooperationen mit der Gastronomie als weitere Einnahmequelle?

Der Guide zu lokalen Hotspots ist aktuell in erster Linie als Mehrwert für Nutzer*innen gedacht und unterstützt den organischen Traffic sowie die Sichtbarkeit der Plattform. Gleichzeitig sehen wir darin großes strategisches Potenzial über reines Content-Marketing hinaus. Perspektivisch planen wir, diesen Bereich für Kooperationen mit lokalen Partnern wie Cafés, Bars oder Hotels zu öffnen.

Eine Plattform europaweit zu skalieren, kostet Geld und Ressourcen. Wie habt ihr euch bisher finanziert?

Aktuell ist Picturo vollständig eigenfinanziert und damit komplett gebootstrapped. Die Entwicklung der Plattform sowie der Markteintritt in erste Länder wurden aus eigenen Mitteln realisiert. Nun befinden wir uns an einem Punkt, an dem wir gezielt nach strategischen Partnern und Investor*innen suchen, um die nächste Skalierungsstufe zu erreichen. Ziel ist es, gemeinsam schneller zu wachsen und das internationale Potenzial von Picturo voll auszuschöpfen.

Wenn du auf die Zeit seit der Gründung der UG zurückblickst: Was war bisher der wichtigste Meilenstein, bei dem du wusstest: „Okay, das hier funktioniert wirklich“?

Der wichtigste Meilenstein war die Einführung des Abo-Modells. Trotz der Umstellung auf ein kostenpflichtiges Angebot lief das Onboarding ungebrochen weiter und neue Fotograf*innen traten der Plattform bei. In diesem Moment wurde klar, dass Picturo ein echtes Problem löst und einen echten Mehrwert bietet. Die Bereitschaft, für Sichtbarkeit und Reichweite zu bezahlen, hat bestätigt, dass der Bedarf im Markt vorhanden ist. Ab diesem Punkt war klar: Das Modell funktioniert.

Wo siehst du Picturo in drei Jahren?

In drei Jahren ist Picturo in vielen EU-Ländern aktiv und als internationaler Marktplatz für lokale Fotograf*innen etabliert. Gemeinsam mit starken Partnern ist die Plattform breit ausgerollt und für Nutzer*innen die erste Adresse bei der Fotografensuche.

Und last but not least: Welche Tipps würdest du anderen Gründer*innen geben, die gerade am Anfang stehen – vielleicht auch jenen, die nicht in den großen Hubs wie Berlin oder München sitzen?

Der wichtigste Tipp ist, sich konsequent an einem echten Problem zu orientieren und früh mit Nutzer*innen zu sprechen. Der Standort ist dabei zweitrangig – entscheidend sind Fokus, Umsetzungsstärke und Durchhaltevermögen. Gerade außerhalb großer Startup-Hubs kann man oft ruhiger, effizienter und näher am Markt arbeiten. Wichtig ist, früh zu testen, Feedback ernst zu nehmen und das Produkt Schritt für Schritt zu verbessern. Netzwerke, Partnerschaften und digitale Sichtbarkeit sind heute wichtiger als ein physischer Standort.

Hier geht’s zu Picturo

Das Interview führte StartingUp-Chefredakteur Hans Luthardt

Vom Check-in zur Patient*innenakte: Wie Travel-Pionier Salim Sahi mit HoloLogix.AI die Health-IT aufmischt

Vom Reisebuchungssystem zur Sicherheits-Uhr für Senior*innen: Serial Entrepreneur Salim Sahi greift mit HoloLogix.AI greift gleich zwei Milliardenmärkte an: Gesundheitswesen und Hotellerie. Doch wie viel Substanz steckt hinter der Vision?

Gründungslegenden klingen oft zu glatt für die Realität – wie Sahis Skateboard-Unfall, der in einer Notaufnahme zur Idee für sein neuestes Venture führte. Wer den Mann kennt, der in den 90ern mit „Traffics“ die Reisebranche digitalisierte, weiß jedoch: Er macht keine halben Sachen. Jetzt, im Februar 2026, steht er mit einer europäischen Aktiengesellschaft (SE) und einem enorm breiten Versprechen wieder auf dem Platz.

Wie Touristik-Know-how in die Klinik kommt

Der Sprung von der Touristik zur Service-Automatisierung im Gesundheitswesen wirkt wie ein harter Bruch. Doch unter der Haube geht es in beiden Welten um hochvolumige Transaktionen, Termin-Slots und Datenabgleich in Echtzeit. Wer Millionen Pauschalreisen fehlerfrei abwickelt, so die Wette von HoloLogix.AI, beherrscht auch das Termin-Management von Kliniken, Hotels und Restaurants.

Für CEO und Gründer Salim Sahi ist das Projekt dennoch ein „kompletter unternehmerischer Neuanfang“. Gegenüber StartingUp räumt er ein, von 25 Jahren Travel-Tech-Erfahrung zu profitieren, doch seine wahre Passion gelte der künstlichen Intelligenz. Das Herzstück bilde dabei die MIA Service KI: „Wir haben eine holistische KI-Plattform geschaffen, also ein Tool, das ganzheitlich agiert und eingesetzt werden kann.“ MIA verstehe Gespräche, erledige parallel Aufgaben und verbinde Systeme – „rund um die Uhr und branchenübergreifend“. Auch wenn der Fokus aktuell auf Gesundheitswesen und Hospitality liege, sei das System laut Sahi letztlich „nahezu überall einsetzbar, wo Kunden- oder Patientenkontakt herrscht.“

Der Angriff auf die Platzhirsche

Der Markt für Conversational AI ist 2026 kein blauer Ozean mehr. Etablierte Player wie Aaron.ai haben sich tief in die Health-Landschaft eingegraben, flankiert von Plattform-Giganten wie Doctolib. HoloLogix.AI reagiert mit aggressiven Preisen ab 99 Euro im Monat und einer massiven technologischen Breite.

Aber warum sollten Klinikverantwortliche das Risiko eines Wechsels eingehen? Salim Sahi sieht den „Killer-USP“ in der Architektur der Interaktion: „Unser Ansatz ist ein anderer: Statt starrer Skripte bieten wir echte Gesprächsintelligenz durch Conversational AI an.“ Das System sei eine KI, die im laufenden Gespräch aktiv Aufgaben erledige, was eine beispiellose Integrationstiefe erfordere. „Hier gehen wir ganz tief rein und verarbeiten Daten in Echtzeit“, so der CEO. Da Aufgaben direkt ausgeführt werden, optimiere sich das Zeitmanagement drastisch – konzipiert als Omnichannel-Ansatz über Telefon, Website, E-Mail, Wearables oder bald sogar über Robotik.

Die schmale Gratwanderung am Handgelenk

HoloLogix.AI belässt es nicht bei Software, sondern bringt mit der MIA Watch eigene Hardware ins Spiel. Die Smartwatch für Senior*innen soll Stürze erkennen und sofort einen aktiven Sprachdialog führen. Eine Gratwanderung: Reines Assistenz-System oder medizinisches Gerät mit komplexer Zertifizierungspflicht (MDR)?

Prof. Dr. Thomas Fuchs, Co-Founder und Aufsichtsrat für den Bereich Health Care, ordnet das rechtlich eindeutig ein: „MIA Protect ist ein Teil der holistischen KI-Plattform, die mit verschiedenen Health Watches wie z.B. auch der Apple Watch kompatibel ist. Sie ist ein Assistenz- und Companion-System.“ Die Hardware erkenne Stürze, ersetze aber „keine ärztliche Untersuchung oder medizinische Entscheidung“. Um Geschwindigkeit und Nutzer*innenfreundlichkeit zu wahren, bewege man sich „bewusst außerhalb der Medizinprodukt-Zertifizierung (MDR), ohne den Sicherheitsrahmen zu verlassen“.

Ein mehrstufiges Sicherheitsnetz aus Sensorik, KI-Algorithmen und menschlichem Service-Team federt Fehlinterpretationen ab. Haftungsfragen sind laut Fuchs über klare Nutzungsbedingungen geregelt. Für den Mediziner steht ohnehin der „Companion Aspekt“ im Vordergrund: Nach einem Sturz, wenn Patient*innen hilflos am Boden liegen, alarmiere MIA in einer Kaskade Notfallkontakte und beruhige das Unfallopfer, bis Hilfe eintrifft. „MIA Protect soll an diesem Punkt Sicherheit und damit Lebensqualität geben, vielleicht sogar die Möglichkeit schaffen für Senioren, länger selbstbestimmt in ihrem Zuhause zu leben“, resümiert Fuchs.

Pflegeheim und Luxushotel: (K)ein operativer Widerspruch?

Das vielleicht Spannendste an HoloLogix.AI ist das Personal: Salim Sahi hat sich politische und ethische Schwergewichte in den Aufsichtsrat geholt. Darunter Dr. Marcel Klinge, ehemaliger FDP-Bundestagsabgeordneter und Tourismus-Experte. Er muss Investor*innen den Spagat erklären, warum ein Start-up gleichzeitig Pflegeheime und Luxushotels digitalisieren will – was oft als Warnsignal für operative Verzettelung gilt.

Dr. Marcel Klinge sieht darin jedoch keinen Widerspruch, sondern die Stärke der technischen Basis: „Der gemeinsame Nenner liegt im Kern: Unsere holistische KI-Infrastruktur kann über das Telefon Gespräche führen, kann aber auch über die Website, Health Watches und Devices und direkt im Gespräch Aufgaben ausführen.“ Das Backend orchestriere lediglich Termin-Slots, Daten und Anfragen in Hochgeschwindigkeit. Dabei spiele es schlichtweg keine Rolle, „ob der Kunde Patient in einem Pflegeheim oder Gast in einem Luxushotel ist.“

Wenn die KI-Vision auf den deutschen Fax-Alltag trifft

Ein Blick auf die Website verrät große Visionen, doch diese müssen sich im harten Alltag deutscher IT-Infrastrukturen und oft veralteter Praxis-Server beweisen. Zudem ist die Frage des Datenschutzes elementar: Nutzt das Unternehmen US-amerikanische Sprachmodelle via API, oder hostet man eigene „Sovereign AI“ in Europa?

Für Prof. Dr. Thomas Fuchs sind Datenschutz und Systemintegration absolute Kernpunkte. Um digitale Souveränität zu wahren, setzt das Unternehmen auf einen hybriden Weg: „Wir orchestrieren auf die gängigen sowie auf eigene Modelle auf deutschen Servern, die in Europa bereits genutzt werden.“ Laut Fuchs verlässt man sich dabei nicht nur auf das Versprechen von Sicherheit, sondern arbeitet seit der ersten Stunde eng mit dem renommierten Fraunhofer-Institut zusammen und lässt die eigene Infrastruktur „regelmäßig durch deren Experten prüfen“. Das bloße Versprechen von Sicherheit reicht HoloLogix.AI dabei nicht.

Mehr als nur ein GPT-Wrapper?

HoloLogix.AI ist eine der vielleicht ambitioniertesten Gründungen des Jahres. Technologisch muss es beweisen, dass es mehr ist als ein „GPT-Wrapper“ mit Smartwatch. Aber die Kombination aus Sahis Exekutiv-Erfahrung, Klinges Netzwerk und Fuchs‘ ethischem Korrektiv macht es zu einem spannenden Herausforderer. Wenn die Uhr im Alltag für Sicherheit sorgt – und die KI den deutschen Datenschutz überlebt – könnte aus Berlin der nächste europäische Champion kommen.

Plato sichert sich 14,5 Mio. USD für das KI-Betriebssystem für den Großhandel

Plato entwickelt KI-native Software, die zentrale Workflows in den Bereichen Vertrieb, Angebotserstellung und ERP-Prozesse für Großhandelsunternehmen automatisiert.

Gegründet wurde Plato 2024 von Benedikt Nolte, Matthias Heinrich Morales und Oliver Birch. Die Plattform entstand ursprünglich aus Noltes familiengeführten Großhandelsunternehmen heraus, das mit veralteter Software und Fachkräftemangel zu kämpfen hatte. Dieser praxisnahe Ursprung prägt bis heute Platos industriegetriebenen Ansatz für KI-Transformation.

Das Unternehmen entwickelt KI-native Software, die zentrale Workflows in den Bereichen Vertrieb, Angebotserstellung und ERP-Prozesse für Großhandelsunternehmen automatisiert. Großhändler bewegen jeden fünften Dollar der globalen Produktionsleistung, sind jedoch bis heute massiv unterversorgt mit moderner Software. Platos Lösung stattet Vertriebsteams mit einem KI-Copiloten aus, steigert Profite und erhöht die Vertriebseffizienz via AI agents.

„Wir haben die Probleme aus erster Hand im Großhandel meiner Familie erlebt und Plato gemeinsam mit Experten entwickelt, um die Arbeitsweise der Branche neu zu denken. Wir bauen das KI-Betriebssystem für den Großhandel, beginnend mit einer intelligenten Automatisierungsplattform im Vertrieb. Mit dieser Finanzierung skalieren wir Plato, um die gesamte Branche zu transformieren und einen Tech-Champion für die Handelsökonomie aufzubauen – aus Deutschland, für die Welt“, sagt Benedikt Nolte, CEO von Plato.

Skalierung des KI-Betriebssystems für den Großhandel

Die Plattform erschließt verborgene ERP-Daten und automatisiert manuelle Aufgaben, sodass Vertriebsteams vom reaktiven ins proaktive Verkaufen kommen. Plato hat bereits mehrere der führenden Großhändler Europas mit sechsstelligen Vertragsvolumina gewonnen. Die 14,5 Mio.-USD-Finanzierung soll es Plato ermöglichen, sein vertikales Produktangebot auf Kundenservice und Einkauf auszuweiten und die internationale Expansion voranzutreiben.

„Besonders überzeugt hat uns an Plato die außergewöhnliche Qualität des Gründerteams. Das Team hat in diesem Bereich ein echtes „Right to winˮ und brennt für den Großhandel. Es vereint tiefgehende Branchenexpertise aus erster Hand mit starker technischer Umsetzung und dem Anspruch, ein branchenprägendes vertikales KI-Unternehmen aufzubauen. Großhändler suchen dringend nach branchenspezifischer KI-Software, um operative Herausforderungen zu lösen – und genau diese Lösung ist Plato“, sagt Andreas Helbig, Partner bei Atomico.

Die Erschöpfung kommt früher, als viele denken

Serie: Führen im Start-up, Teil 1: Warum Überforderung kein Spätphänomen von Konzernen ist, sondern in der Seed-Phase beginnt.

Gründer*innen kalkulieren Markt- und Finanzierungsrisiken mit bemerkenswerter Präzision. Wettbewerbsanalyse, Cashflow-Szenarien, Hiring-Roadmap, Skalierungsstrategie – alles wird modelliert, gerechnet, optimiert. Was kaum modelliert wird: die eigene psychische Dauerbelastung.

In Businessplänen steht fast alles. Nur selten eine realistische Betrachtung dessen, was permanente Unsicherheit mit der Urteilsfähigkeit eines Menschen macht. Genau hier liegt eine der unterschätztesten Variablen unternehmerischen Erfolgs.

Die verbreitete Annahme lautet: Erschöpfung ist ein Spätphänomen. Sie betrifft Manager*innen in gewachsenen Strukturen, nicht Gründer im Aufbau.

Die Praxis vieler Start-ups zeigt etwas anderes: Erschöpfung beginnt nicht im zehnten Jahr.
Sie beginnt im ersten.

Wenn Verantwortung keine Pause kennt

In jungen Unternehmen ist Verantwortung nicht verteilt. Sie ist verdichtet. Produktentwicklung, Finanzierungsgespräche, erste Mitarbeitende, rechtliche Fragen, Marketing, strategische Richtungsentscheidungen – vieles läuft über wenige Personen. Oft über eine einzige.

Dazu kommen finanzielle Unsicherheit, familiäre Erwartungen, sozialer Druck und das eigene Selbstbild als Unternehmer*in.

Diese Mischung erzeugt keinen punktuellen Stress. Sie erzeugt Daueranspannung. Das menschliche Stresssystem ist jedoch nicht für permanente Unsicherheit gebaut. Kurzfristig steigert Druck die Leistungsfähigkeit. Langfristig sinkt die Differenzierungsfähigkeit. Entscheidungen werden schneller. Aber nicht automatisch klarer.

Warum Gründer*innen selten über Erschöpfung sprechen

Kaum ein(e) Gründer*in würde im ersten oder zweiten Jahr offen von Überforderung sprechen. Die Szene lebt von Durchhalte-Narrativen. Belastbarkeit gilt als Kompetenzmerkmal. Genau hier entsteht ein blinder Fleck.

Erschöpfung kündigt sich selten dramatisch an. Sie verändert Nuancen:

  • Die Geduld mit dem Team wird dünner.
  • Delegation fällt schwerer.
  • Kritik fühlt sich schneller wie ein Angriff an.
  • Strategische Richtungen ändern sich, weil Druck reduziert werden muss – nicht, weil die Analyse es nahelegt.

Nach außen bleibt das Bild stabil. Intern verschiebt sich die Qualität der Führung.

Der unsichtbare Übergang zur Systemdynamik

Viele Start-ups berichten im dritten oder vierten Jahr von Spannungen im Kernteam. Konflikte häufen sich. Schlüsselpersonen gehen. Entscheidungen wirken inkonsistent.

In der Rückschau wird oft der Markt verantwortlich gemacht oder das schnelle Wachstum. Seltener wird gefragt, ob die Führung bereits in der Frühphase unter einer Belastung stand, die nie bewusst adressiert wurde.

Systeme lernen früh. Wenn Dauerüberlastung normalisiert wird, entsteht implizit eine Kultur, in der Tempo wichtiger ist als Reflexion und Verfügbarkeit wichtiger als Stabilität. Diese Muster werden nicht beschlossen. Sie entstehen im Alltag.

Der wirtschaftliche Zusammenhang

Erschöpfung ist kein individuelles Befindlichkeitsthema. Sie hat strukturelle Wirkung. Sinkt die Urteilskraft, steigt die Wahrscheinlichkeit strategischer Zickzackbewegungen. Fehlt Geduld, eskalieren Konflikte schneller. Fällt Delegation schwer, entstehen Wachstumsengpässe. Wirkt Führung instabil, sinkt Vertrauen. Das sind keine weichen Faktoren. Sie haben ökonomische Konsequenzen.

Analysen gescheiterter Start-ups zeigen seit Jahren, dass Teamkonflikte und interne Führungsprobleme zu den häufigsten Ursachen für das Scheitern zählen – häufig noch vor rein operativen Faktoren. Solche Dynamiken entstehen nicht plötzlich. Sie entwickeln sich unter Druck. Leise.

Ein Perspektivwechsel

Vielleicht beginnt professionelle Führung nicht mit dem ersten Führungskräfte-Workshop. Vielleicht beginnt sie in dem Moment, in dem sich Gründer*innen fragen, wie sie selbst unter Dauerunsicherheit funktionieren. Nicht um weicher zu werden, sondern um klarer zu bleiben.

Wer in der Frühphase nur das Wachstum managt, aber nicht die eigene Belastung reflektiert, baut ein Unternehmen auf einem instabilen Fundament. Erschöpfung ist kein Zeichen von Schwäche. Sie ist ein Frühindikator.

Und wer sie ignoriert, skaliert nicht nur das Geschäft, sondern auch die eigene Überlastung.

Die Autorin
Nicole Dildei ist Unternehmensberaterin, Interimsmanagerin und Coach mit Fokus auf Organisationsentwicklung und Strategieberatung, Integrations- und Interimsmanagement sowie Coach•sulting.

ChatGPT schreibt Texte. R3 Robotics zerlegt Batterien

Es gibt Probleme, die man mit Software lösen kann, und es gibt Probleme, für die man sich die Hände schmutzig machen muss – oder besser: Roboterhände nutzt. Antoine Welter und Dr. Xavier Kohll haben mit Circu Li-ion begonnen, um Batterien zu retten. Jetzt, unter dem neuen Namen R3 Robotics und mit 20 Millionen Euro frischem Kapital im Rücken, treten sie an, um den wohl größten Flaschenhals der kommenden Mobilitätswende zu beseitigen. Ihr Ansatz: Keine teuren Spezialmaschinen, sondern intelligente Standard-Roboter, die sehen, verstehen und sicher zupacken.

Wenn in den Vorstandsetagen der Automobilhersteller über die Zukunft gesprochen wird, geht es meist um Reichweiten und Software-Defined Vehicles. Doch am anderen Ende der Wertschöpfungskette braut sich ein Sturm zusammen. Millionen von Elektrofahrzeugen werden in den kommenden Jahren ihr Lebensende erreichen. Die derzeitige Realität in vielen Recyclinghöfen wirkt dagegen fast archaisch: Menschen, die mit Handwerkzeugen komplexe Systeme auseinanderschrauben. Das ist nicht nur teuer und schwer skalierbar, sondern bei Hochvolt-Systemen auch lebensgefährlich.

Genau hier setzen Antoine Welter und Xavier Kohll an. Die Nachricht, die das deutsch-luxemburgische Unternehmen Anfang Februar 2026 verkündete, ist mehr als nur eine Finanzierungsrunde. Die 20 Millionen Euro – aufgeteilt in 14 Millionen Euro Series-A-Kapital und 6 Millionen Euro öffentliche Fördergelder – heben die Gesamtfinanzierung des Unternehmens auf ein neues Level. Angeführt wird die Runde von HG Ventures und Suma Capital, unterstützt von Co-Investoren wie der Oetker Collection und dem EIC Fund.

Doch das Geld ist nur der Treibstoff für eine strategische Evolution. Aus Circu Li-ion wird R3 Robotics. Der neue Name ist Programm: Repair, Reuse, Recycle. Antoine Welter erklärt die Motivation hinter der Umbenennung pragmatisch: „Circu Li-ion hat beschrieben, wo wir angefangen haben. R3 Robotics beschreibt, was wir aufbauen: industrielle Robotik, die Demontage skalierbar, sicher und kosteneffizient macht.“

Wenn der Roboter Augen bekommt

Die größte Hürde im Recycling ist nicht die Chemie, sondern die Variabilität. Kein Batteriepack gleicht dem anderen, E-Motoren sind unterschiedlich verbaut, Schrauben sind korrodiert. Starre Fertigungsstraßen scheitern hier. R3 Robotics löst dies mit einer Plattform, die Computer Vision, künstliche Intelligenz und Robotik verschmilzt.

Das System fungiert dabei fast wie ein „ChatGPT für die physische Welt“: Anstatt Text zu generieren, plant die KI physische Handlungen. Sensoren scannen das Bauteil, die KI erkennt den Zustand und promptet den Roboterarm dynamisch durch den Demontageprozess. Der entscheidende Vorteil: Der Mensch wird aus der Gefahrenzone der Hochspannung genommen, während der Roboter Aufgaben erledigt, die für klassische Automatisierung zu komplex wären.

Angesprochen auf den Vergleich mit Generative AI und die Frage, wie die Roboter tatsächlich „sehen“ und „entscheiden“, bestätigt Welter die Parallele: „Der Vergleich mit Generative AI passt gut: Das Modell bekommt einen Input – keinen Text, sondern einen Scan des Bauteils – und generiert daraus eine Handlungssequenz.“ Es gehe darum zu erkennen, um welches Modell es sich handelt, wie der Zustand ist und wo die Verbindungspunkte liegen. „Das klingt simpel, ist es aber nicht – kein Pack ist identisch“, so Welter. Die eigentliche Herausforderung liege jedoch in der Entscheidung davor: „Welche Reihenfolge ist sicher? Ein falscher Griff an ein Hochvoltsystem kann tödlich sein. Unser System sieht, bewertet und entscheidet.“

Smart Hardware: Warum das Rad neu erfinden?

Ein Detail, das Investor*innen besonders aufhorchen lässt, ist die Kapitaleffizienz der Gründer. Wer an Industrie-Robotik denkt, denkt an teure Hardware-Entwicklung. R3 Robotics geht einen pragmatischen Weg: Ein Großteil der verwendeten Hardware wird „von der Stange“ gekauft.

Die Roboterarme sind Standardprodukte. Die Innovation – und damit das geistige Eigentum – steckt in den spezialisierten „End-Effektoren“ (den Roboterhänden), den Sensorsystemen und vor allem dem Software-Stack, der alles steuert. Das erlaubt eine Skalierung, die mit proprietärer Hardware kaum möglich wäre. Mitgründer Dr. Xavier Kohll betont, dass dies eine bewusste Entscheidung gegen „Over-Engineering“ war: „Der Roboterarm ist Standard und die Intelligenz sitzt in den Endeffektoren, der Sensorik und dem Software-Stack, der alles zusammenbringt. Das ist unser geistiges Eigentum, und genau das lässt sich skalieren.“

David gegen Goliath – oder Partner?

Während große Recycling-Konzerne oft noch auf den Schredder setzen und die manuelle Demontage an ihre Grenzen stößt, positioniert sich R3 Robotics in einer neuen Nische. Es geht nicht darum, die Chemie-Giganten zu ersetzen, sondern ihnen den Rohstoff so rein wie möglich zu liefern – als strategische Quelle für kritische Materialien. Doch der Markt schläft nicht: Weltweit entstehen Initiativen zur Automatisierung.

Trotz des aktuellen „Gegners“ – dem Menschen mit dem Schraubenzieher – und potenzieller Konkurrenz durch Tech-Start-ups oder Autohersteller, bleibt Welter gelassen. „Wir konkurrieren nicht mit den Chemie-Giganten, wir liefern ihnen den reinsten möglichen Stoffstrom“, stellt er klar. Gegenüber potenziellen Nachahmern sieht er einen entscheidenden Vorteil, den „Unfair Advantage“: die Kombination aus Flexibilität und industrieller Automatisierungstiefe. „Wir sind aktuell die einzige Plattform, die sowohl Variabilität managt als auch für kontinuierlichen Industriebetrieb ausgelegt ist.“

Deutschland als Labor, USA als Skalierungsmarkt

Die Wachstumsstrategie von R3 Robotics ruht auf zwei massiven Säulen: technologischer Tiefe in Europa und kommerzieller Breite in den USA.

Deutschland fungiert dabei als das technologische Rückgrat. Mit der Erweiterung der Anlage in Karlsruhe zur Lighthouse Facility demonstriert das Unternehmen industrielle Leistungsfähigkeit direkt vor der Haustür der großen Autobauer. Hier wird die Technologie gehärtet. Das zeigt sich auch im Leuchtturmprojekt ReDriveS, wo R3 Robotics Seite an Seite mit Giganten wie Schaeffler und VW an der Demontage von E-Achsen arbeitet.

Doch für das massive Volumen blickt das Team über den Atlantik. Der für 2026 geplante Markteintritt in den USA ist Kern der neuen Strategie. Die frischen 20 Millionen Euro sollen gezielt in den Aufbau strategischer Partnerschaften vor Ort fließen, um die Technologie dort auszurollen, wo Pragmatismus auf riesige „End-of-Life“-Volumina trifft. Für Welter ist dieser Doppelschlag essenziell: „Deutschland ist unser Beweisstand. Hier zeigen wir Schaeffler, VW und Co., dass unsere Technologie industriellen Maßstäben in Deutschland standhält.“ Die USA seien hingegen der wichtige Skalierungsmarkt, wo pragmatische Entscheider auf gigantische Volumina treffen. „Beides brauchen wir: die Glaubwürdigkeit aus Europa und das Volumen aus Amerika.“

Industrialisierung statt Romantik

Mit Peter Mohnen, dem ehemaligen CEO des Roboter-Riesen KUKA, holte sich das Start-up zudem einen Beirat, der wie kaum ein anderer weiß, was Industriestandard bedeutet. Er beschreibt den Ansatz von R3 als Beweis für die nötige Automatisierungsexpertise, um Variabilität und Sicherheit gleichzeitig zu managen.

Um diese Expertise weiter auszubauen, wächst das Team rasant. Die Belegschaft soll mit der neuen Finanzierung massiv aufgestockt werden, vor allem im Bereich Engineering und KI. R3 Robotics hat den Beweis erbracht, dass Kreislaufwirtschaft kein ökologisches Nischenprojekt sein muss, sondern ein harter industrieller Prozess ist, der sich rechnet.

Denn letztlich, so das Fazit von Antoine Welter, sei Automatisierung der einzige Weg, das Problem wirklich zu lösen – nicht allein aus ökologischen Gründen, sondern weil es wirtschaftlich Sinn ergibt. „Was wir aufbauen, ist am Ende ein harter industrieller Prozess: Er muss zuverlässig funktionieren und sich rechnen.“ Es gehe aber um mehr als ein Geschäftsmodell: „Europa braucht eine Antwort auf die Frage, woher seine kritischen Materialien in Zukunft kommen“, mahnt Welter abschließend. „Wenn Europa diesen Zugang sichern will, braucht es Unternehmen, die genau das industriell umsetzen können. Dafür bauen wir diese Infrastruktur, und mit dem neuen Kapital und Team haben wir jetzt die Mittel dazu.“

Customer-Support-ROI 2026: Warum Ticket-Automatisierung allein nicht ausreicht

Im Jahr 2026 stehen viele Führungskräfte vor einem echten Paradox: Die klassischen Kennzahlen im Customer Support erreichen Höchststände – und dennoch bleibt der Zusammenhang mit messbarem wirtschaftlichem Nutzen oft unklar.

Das Problem liegt nicht darin, dass gängige Automatisierungsansätze grundsätzlich nicht funktionieren. Vielmehr reicht es nicht aus, lediglich Tickets zu automatisieren, wenn Customer Support tatsächlich einen belastbaren ROI liefern soll. Der wahre Wert von Support liegt heute nicht mehr in der massenhaften Bearbeitung von Anfragen, sondern darin, Probleme frühzeitig zu verhindern, bevor sie sich zu messbaren wirtschaftlichen Verlusten entwickeln.

Warum sich Support-ROI 2026 schwerer belegen lässt

Moderne Support-Organisationen entwickeln sich zunehmend hin zu hybriden Modellen, in denen KI und menschliche Agents zusammenarbeiten. Eine Gartner-Umfrage zeigt: 95 % der Customer-Service-Verantwortlichen planen, auch künftig menschliche Agents parallel zu KI einzusetzen. Hybride Setups sind damit längst auf dem Weg zum Standard.

In der Praxis übernehmen KI-Systeme heute Routineanfragen, während Menschen komplexe oder kritische Fälle bearbeiten. Mit dieser veränderten Arbeitslogik verlieren klassische Kennzahlen wie Kosten pro Ticket, durchschnittliche Bearbeitungszeit oder Automatisierungsquote an Aussagekraft. In manchen Fällen verschleiern sie den tatsächlichen Wert von Support sogar.

Das führt dazu, dass Führungsteams häufig Folgendes beobachten:

  • steigende Automatisierungsquoten bei stagnierenden Einsparungen,
  • verbesserte CSAT-Werte ohne klaren finanziellen Effekt,
  • starke CX- und Effizienzkennzahlen, die sich dennoch nicht in unternehmerische Ergebnisse übersetzen lassen.

Support ist nicht weniger wertvoll geworden. Doch durch den Einsatz von KI sind die Erwartungen gestiegen – und lineares Denken in einzelnen Metriken reicht nicht mehr aus, um den tatsächlichen Beitrag von Support zu bewerten.

Wo sich Customer-Support-ROI tatsächlich zeigt

Der ROI von Customer Support zeigt sich nur selten als „direkt generierter Umsatz“. Stattdessen wird er sichtbar in vermiedenen Verlusten und reduzierten Risiken. Konkret äußert sich das in Veränderungen im Kundenverhalten, etwa durch:

  • weniger Rückerstattungen,
  • geringere Eskalationen,
  • einen Rückgang öffentlicher Beschwerden,
  • sinkendes Abwanderungsrisiko.
  • höheres Vertrauen an entscheidenden Punkten der Customer Journey

Diese Signale entstehen nicht über Nacht. Sie bauen sich über Zeit auf – und werden deshalb in Budgetdiskussionen häufig unterschätzt.

In einem unserer Kundenprojekte (Details aufgrund einer NDA anonymisiert) wurde der Customer Support über einen Zeitraum von zwölf Monaten vollständig neu aufgebaut. Ziel war nicht allein eine schnellere Reaktionszeit, sondern eine frühere und konsistentere Problemlösung entlang der gesamten Customer Journey. Die Ergebnisse waren eindeutig:

  • Rückerstattungsquote von 40 % auf 4 % gesenkt.
  • CSAT-Anstieg von 50 auf 95.
  • NPS-Steigerung von 32 auf 80.
  • Verbesserung der Trustpilot-Bewertung von 3,0 auf 4,7.
  • Erhöhung der Chargeback-Erfolgsquote von 5 % auf 90 % durch ein dediziertes Billing-Team im Support.

Keine dieser Kennzahlen für sich genommen „beweist“ ROI. In ihrer Gesamtheit zeigen sie jedoch, wie Support begann, Ergebnisse zu beeinflussen, die in klassischen CX-Dashboards kaum sichtbar sind: Rückerstattungen gingen zurück, weil Probleme frühzeitig gelöst wurden; öffentliche Bewertungen verbesserten sich, weil weniger Kunden an ihre Belastungsgrenze kamen; Loyalität wuchs, weil Support von Schadensbegrenzung zu echter Bedürfnislösung überging.

Darüber hinaus begann das Team, Kundenanfragen systematisch zu analysieren, um Muster und frühe Reibungspunkte zu identifizieren. Dadurch wurden Abweichungen zwischen angenommener Customer Journey und tatsächlichem Kundenerlebnis sichtbar. Für das Management entstand so eine deutlich belastbarere Grundlage für strategische Entscheidungen. Diese Erkenntnisse führten zu neuen Services, die sich am realen Kundenverhalten orientierten – und damit Wachstum und Umsatz beschleunigten.

So zeigt sich Support-ROI in der Praxis: nicht als einzelne Kennzahl, sondern als Zusammenspiel aus vermiedenen Verlusten, gestärktem Vertrauen und datenbasierten Entscheidungen.

Wie hybrider Support die Wirtschaftlichkeit verändert

Über Jahre hinweg galt Automatisierung als vermeintliche „Wunderlösung“ zur Kostensenkung. Die Logik war simpel: geringere Supportkosten führen automatisch zu höherem ROI. In der Realität ist der Zusammenhang komplexer. Niedrigere Kosten bedeuten nicht automatisch höhere Erträge – insbesondere dann nicht, wenn Automatisierung genau die Mechanismen entfernt, die Verluste verhindern.

Wird Support ausschließlich auf Effizienz optimiert, verschwinden ungelöste Probleme nicht. Sie verlagern sich: in Rückerstattungen, Chargebacks, Abwanderung und öffentliche Beschwerden. Einsparungen tauchen in einer Zeile der GuV auf, während sich der Schaden still im restlichen Unternehmen summiert. Hybrider Support kann diese Gleichung verändern – aber nur, wenn er bewusst gestaltet wird.
Wenn KI im Support richtig eingesetzt wird:

  • lassen sich bis zu 85 % der Anfragen automatisiert bearbeiten,
  • liegt der CSAT rund 15 % höher als in nicht-hybriden Setups,
  • führt KI echte Aktionen aus (Rückerstattungen, Kündigungen, Account-Änderungen) statt nur standardisierte Antworten zu versenden.

In abonnementbasierten Geschäftsmodellen beginnen wir beispielsweise stets mit einer Analyse eingehender Anfragen, um zu verstehen, welche Aktionen sich sicher vollständig automatisieren lassen. Rund 50 % der Kündigungsanfragen sind in der Regel unkompliziert und risikoarm – und damit gut für eine End-to-End-Automatisierung geeignet.

Die verbleibenden Fälle unterscheiden sich deutlich. Etwa ein Viertel der Kündigungsanfragen stammt von frustrierten oder emotional belasteten Kunden. Diese Interaktionen bergen das höchste Risiko für Abwanderung. In gut konzipierten hybriden Setups übernimmt Automatisierung hier die Rolle eines Co-Piloten: Sie kennzeichnet risikoreiche Fälle, eskaliert sie an menschliche Agents und liefert Kontext – während Tonfall, Urteilsvermögen und finale Entscheidungen bewusst beim Menschen bleiben.

Der wirtschaftliche Effekt entsteht dabei nicht durch den Ersatz von Menschen, sondern durch den gezielten Einsatz menschlicher Aufmerksamkeit genau in den Momenten, die Vertrauen und Loyalität tatsächlich entscheiden.

Warum hybrider ROI klassische Messlogik sprengt

In Projekten, in denen First-Level-KI sinnvoll eingeführt wird, sinken die Supportkosten innerhalb eines Jahres typischerweise um 15–25 %, abhängig vom Geschäftsmodell. Gleichzeitig verbessern sich häufig die Erlebniskennzahlen. Diese Kombination ist jedoch kein Selbstläufer – sie entsteht nur dann, wenn Automatisierung Probleme wirklich löst und nicht lediglich verlagert.

Der Haken: Hybrider Support macht ROI schwerer messbar. Klassische ROI-Modelle gehen davon aus, dass Wertschöpfung klar getrennt erfolgt. In Wirklichkeit entsteht der größte Effekt genau dort, wo KI und Menschen zusammenarbeiten: Probleme werden verhindert, Kundenbeziehungen stabilisiert und Loyalität geschützt.

Finanzteams sehen deshalb oft Verbesserungen, können sie aber in bestehenden Scorecards nicht abbilden. Während sich das operative Modell weiterentwickelt hat, ist die Logik der Messung stehen geblieben.

Was Führungskräfte tatsächlich messen sollten

2026 müssen Unternehmen von Aktivitätsmetriken zu Wirkungssignalen wechseln. Ein praxisnaher Ansatz besteht darin, Ergebnisse auf drei Ebenen zu verfolgen:

  1. Finanzielle Risiken und Leckagen: Rückerstattungsquoten, Chargeback-Erfolgsraten, Dispute-Volumen, wiederkehrende Zahlungsprobleme.
  2. Vertrauens- und Reibungssignale: öffentliche Bewertungen, Eskalationstrends, Wiederholungskontakte, Kundenstimmung.
  3. Bindungsindikatoren: Abwanderungsrisikosegmente, Kündigungsmuster und Retention-Ergebnisse (auch wenn die exakte Umsatzzuordnung später erfolgt).

Diese Signale machen Wert früher sichtbar als klassische Umsatzberichte. Sie zeigen, ob Support Verluste verhindert – und genau dort beginnt ROI in der Regel.

Wie sich Support-Budgets rechnen

Support-Budgets scheitern, wenn sie ausschließlich an Ticketvolumen und Headcount ausgerichtet sind. Ein gesünderer Ansatz beginnt mit einer anderen Frage: Wo kostet schlechter Support unser Unternehmen am meisten Geld?

Teams, die echten ROI aus Support erzielen, investieren typischerweise in drei Bereiche:

  1. Präventionsfähigkeit: Support übernimmt Zahlungs- und Abrechnungsthemen, steuert risikoreiche Fälle und etabliert Feedback-Loops zur Ursachenanalyse.
  2. Automatisierung mit Fokus auf Lösung: First-Level-KI erledigt risikoarme Aufgaben vollständig, statt Anfragen lediglich weiterzureichen.
  3. Menschliches Urteilsvermögen dort, wo es zählt: Menschen bearbeiten Hochrisiko-Kündigungen, Eskalationen, emotional sensible Fälle und betreuen besonders wertvolle Kunden.

In diesem Moment hört Support auf, ein Kostenpunkt zu sein, und wird zu einem strategischen Hebel, der Umsatz schützt, Risiken reduziert und mit dem Unternehmen skaliert.

Fazit

2026 entsteht der tatsächliche ROI von Customer Support vor allem dadurch, dass vermeidbare Probleme gar nicht erst zu Umsatzverlusten werden.

Automatisierung ist entscheidend – aber nur dann, wenn sie Probleme tatsächlich löst. Und menschliches Urteilsvermögen sollte gezielt dort eingesetzt werden, wo es Retention, Loyalität und Vertrauen wirklich beeinflusst.

Für Führungskräfte, die sich auf Ergebnisse statt auf Aktivitätskennzahlen konzentrieren, ist Support kein Cost Center mehr. Er ist das, was er schon heute sein sollte: ein Hebel zum Schutz von Umsatz, zur Reduktion von Risiken und zur Nutzung von Kundenverhalten als Grundlage für fundierte unternehmerische Entscheidungen.

Die Autorin Nataliia Onyshkevych ist CEO von EverHelp. Sie arbeitet mit wachsenden Unternehmen aus unterschiedlichen Branchen daran, Customer Support in KI-gestützten Umgebungen skalierbar und wirkungsvoll zu gestalten.

VESTIO: Wenn ein Solar-Entrepreneur auf einen Stil-Rebellen trifft

Die Geschichte der jungen FashionTech-App VESTIO ist zugleich die zweier Gründer, die sich in einem gemeinsamen Ziel treffen: Die Demokratisierung von gutem Stil durch algorithmische Logik.

Hinter der FashionTech-App VESTIO steht die im Jahr 2024 von Bastian Arend und Justus Hansen gegründete Opus Stilberater GmbH, die den Anspruch erhebt, professionelle Stilberatung erstmals digital, logisch und kostenlos zugänglich zu machen.

Der „Solar-Entrepreneur“ trifft den Stil-Rebell

Die persönlichen Hintergründe der Gründer bieten spannende Kontraste, die weit über ein übliches Business-Profil hinausgehen. Bastian Arend, Co-Founder und CEO, kam über die Energiewende zur Mode. Als Seriengründer baute er den Online-Solar-Anbieter Klarsolar auf und verkaufte ihn im Dezember 2023 erfolgreich an den Energiekonzern E.ON. Die Übernahme erfolgte in einer für die Solarbranche schwierigen Marktphase, was Bastian Arend als Krisen-erprobten Strategen auszeichnet.

VESTIO entwickelte er 2024 jedoch aus einem ganz persönlichen „Pain Point“ heraus: Während er internationale Millionen-Finanzierungsrunden leitete, bestand sein eigener Stil mangels Zeit lediglich aus Hoodie, Jeans und Sneakern. „Ich wollte nur jemanden, der für mich einkauft“, erinnert er sich an diese Phase. Seine Abneigung gegen zeitraubendes Shopping führte ihn schließlich zu Justus Hansen.

Justus Hansen, Co-Founder und Chief Styling Officer, bringt eine Biografie ein, in der Mode schon immer eine zentrale Rolle spielte. Sein Gespür für klassische Mode ist tief verwurzelt: Justus Hansen trug bereits im Kindergarten eine Fliege und provozierte später Lehrer, indem er im Sakko zum Unterricht erschien. Bevor er mit über 1,6 Millionen Follower*innen zu einem der bekanntesten Männerstilberater Deutschlands aufstieg, studierte er Jura und absolvierte Praktika im Bankensektor, unter anderem bei der Dresdner Bank.

Diese Erfahrungen schärften seinen Blick für die Anforderungen moderner „Business-Garderoben“. Als Arend ihn fragte, ob er für ihn einkaufen könne, antwortete Justus Hansen bestimmt: „Einfach irgendwas kaufen? Nein. Ich muss verstehen, wer du bist.“ Bastian Arend begriff Hansens modulare Styling-Methode sofort als logisches System und schlug vor: „Wir sollten deine Methode digitalisieren und kostenlos für jeden Mann zugänglich machen.“ Für Justus Hansen wurde damit ein „Lebenstraum“ wahr.

Das Konzept: „Weniger Teile, mehr Outfits“

Das Herzstück der App bildet ein algorithmisches Styling-System, das strikt dem Leitsatz „Weniger Teile. Mehr Outfits“ folgt. In nur drei Minuten erstellt ein Stilfinder-Fragebogen eine persönliche Grundgarderobe. Der digitale Kleiderschrank funktioniert dabei bewusst ohne das mühsame Hochladen von Fotos; das System kennt die wichtigsten Basics, erkennt Lücken und empfiehlt gezielt Ergänzungen. Justus Hansen betont dabei die Wichtigkeit der Basis: „Die wenigsten Männer besitzen eine echte Basisgarderobe. Und das ist die Grundlage, aus der ihre besten Outfits entstehen.“

Ziel ist es, automatisch kombinierbare Outfits für alle Anlässe zu generieren. Dabei verfolgen die Gründer eine klare ästhetische Linie: „Outfits müssen nicht kompliziert sein, um zu wirken. Sie brauchen lediglich eine klar erkennbare Linie“, so Hansen. Bastian Arend ergänzt: „Die besten Outfits für Männer sind nicht kompliziert, sondern harmonisch und durchdacht.“

Das Affiliate-Dilemma: Geschäftsmodell im kritischen Check

Wirtschaftlich operiert VESTIO über ein Affiliate-Modell. Die App ist für Nutzer kostenlos, während das Unternehmen Provisionen von Partner-Anbietern bei einem erfolgreichen Kauf erhält. Hier liegt für den kritischen Betrachter ein interessanter systemischer Interessenkonflikt: Das erklärte Ziel „Weniger Konsum – bessere Entscheidungen“ steht ökonomisch potenziell im Widerspruch zu einem Modell, das von Transaktionen lebt. Zudem stellt sich die Frage der langfristigen Nutzerbindung: Sobald ein Mann seine „perfekte Garderobe“ aufgebaut hat, sinkt der Bedarf für weitere Anschaffungen. Dass das Unternehmen dennoch auf Wachstum setzt, zeigt die Erhöhung des Stammkapitals auf knapp 30.000 Euro im September 2025. Langfristig plant VESTIO die Integration eines Marktplatzes, der Partnerprodukte und eigene Kollektionen vereint, um basierend auf Daten den größten Mehrwert zu liefern.

Marktpositionierung und technologischer Vorsprung

Im Vergleich zum Wettbewerb besetzt VESTIO eine spezifische Nische. Während Curated-Shopping-Anbieter (z.B. Outfittery) auf den Versand physischer Boxen setzen, bleibt VESTIO ein rein digitaler Guide, der dem Nutzer die volle Freiheit bei der Wahl des Händlers überlässt. Andere Styling-Apps verlangen oft zeitintensive Foto-Inventuren, während VESTIO auf logische Kombinationen setzt.

Das Risiko bleibt jedoch die Abhängigkeit von der Personal Brand Justus Hansens. Letztlich ist VESTIO der Versuch, Mode so effizient wie eine Prozessoptimierung zu gestalten – oder wie Bastian Arend es formuliert: „Viele Männer haben mehr Kleidung als Stil. Vestio ändert das.“ Mit dem Aufbau der App wolle man Männern „genau diese Arbeit abnehmen“, damit sie sich ultimativ „besser fühlen“ können.

Wachstum um jeden Preis ist vorbei

Im Juni geht die Hinterland of Things 2026 an den Start – mit klarem Fokus auf Umsetzung statt Debatte. Dominik Gross, Mitgründer und Geschäftsführer der Founders Foundation, spricht über den Schulterschluss von Mittelstand, Start-ups und Kapital, B2B-Tech-Trends sowie NRW als Hotspot für B2B-Gründungen.

Im Juni findet die nächste Hinterland of Things statt. Können Sie bereits von ersten Highlights berichten, auf die sich die Teilnehmer*innen freuen dürfen?

Die Hinterland of Things Conference 2026 steht unter dem Motto „and Action“, denn Deutschland hat kein Erkenntnisproblem – Deutschland hat ein Umsetzungsproblem. Das Motto steht für den gemeinsamen Nenner, wie Unternehmer die Industrie neu denken, Kapital zu Wachstum und Wissen zu Wertschöpfung machen, die nächste Generation von Gründern stärken und Politik wieder handlungsfähig wird: Wir wissen genug – wir müssen handeln. Ein zentrales Highlight ist der klare Schulterschluss zwischen Mittelstand, Start-ups und Kapital. Ein einzigartiger USP in der deutschen Konferenzlandschaft, muss man ehrlich sagen. Wir bringen nicht nur die Tech-Szene mit Gründern und Investoren zusammen, sondern eben auch die Inhaber, Familienmitglieder und Entscheider aus dem deutschen Mittelstand. Dieser Dreiklang ist einmalig. Darüber hinaus setzen wir wieder starke Akzente bei Kapitalthemen – von (Corporate) Venture Capital und Venture Clienting über Börsengänge bis hin zur Frage, wie Deutschland vom Land der Sparer zum Land der Builder wird. Auch der Transfer von Wissenschaft in markt- und investitionsfähige Unternehmen spielt für uns als Forschungsland eine zentrale Rolle. Kurz gesagt: weniger Debatte, mehr Entscheidung; weniger Diagnose, mehr Action.

Der Fokus liegt auf B2B-Tech-Start-ups. Welche B2B-Trends sehen Sie aktuell, welche Erwartungen haben Sie für die Branche dieses Jahr?

Wir sehen aktuell eine klare Verschiebung von Vision hin zu Verwertbarkeit. B2B-Tech-Start--ups müssen nicht mehr erklären, was sie technologisch können, sondern welches konkrete Problem sie für Unternehmen lösen. Effizienz, Produktivität und Kostensenkung stehen klar im Vordergrund. Zugleich ermöglicht Technologie Sprunginnovationen für die Industrie. Beispielsweise im Bereich Robotik: Humanoide Roboter auf zwei Beinen brauchen vielleicht noch etwas, aber überall dort, wo Roboter Prozesse, Abläufe und Arbeitsschritte automatisieren oder assistieren können, werden wir schon in wenigen Jahren neue Produkte und Geschäftsmodelle erleben. Und darüber hinaus gilt geradezu „natürlich“, dass sämtliche Geschäftsmodelle künstliche Intelligenz in ihrer DNA verankert haben werden. Unternehmen und Kapitalgeber investieren gezielter, erwarten schnelleren Impact und belastbare Business Cases. Wachstum um jeden Preis ist vorbei – gefragt sind robuste Geschäftsmodelle mit klarer Skalierungsperspektive. Für die Branche bedeutet das: weniger Hype, mehr Substanz. Start-ups, die echte industrielle Probleme adressieren und eng mit ihrer Kundschaft entwickeln, werden sich durchsetzen. Genau dort entsteht aktuell die spannendste Dynamik im B2B-Bereich.

NRW zählt zu den Start-up-Hotspot-Bundesländern in Deutschland, zeigte sich im aktuellen Startup Next Generation Report unter den Top-Plätzen. Was zeichnet NRW und speziell Bielefeld Ihrer Meinung nach als Start-up-Standort für B2B besonders aus?

NRW verbindet etwas, das für B2B-Start-ups entscheidend ist: industrielle Substanz und unternehmerische Nähe. Hier sitzen viele mittelständische Weltmarktführer, die offen für Kooperationen sind und Start-ups von Tag null an reale Anwendungsfälle bieten. Genau das brauchen B2B-Start-ups, um Produkte marktfähig zu entwickeln und schnell zu skalieren. Bielefeld steht exemplarisch dafür. Die Region ist geprägt von Industrie, Hidden Champions und kurzen Entscheidungswegen. Gleichzeitig gibt es ein wachsendes Start-up-Ökosystem, das eng mit Unternehmen, Hochschulen und Investoren vernetzt ist. Diese Kombination aus Praxisnähe, Kooperationsbereitschaft und einem klaren Fokus auf Umsetzung macht NRW – und Bielefeld im Besonderen – zu einem sehr starken Standort für B2B!

Inwiefern unterstützt die Founders Foundation neben der großen Konferenz B2B-Start-ups, was bieten Sie Jungunternehmen?

Die Konferenz ist nur ein sichtbarer Teil unserer Arbeit – quasi unser Leuchtturm, mit dem wir alle Augen auf die Region und ihr Potenzial lenken. Als Founders Foundation begleiten wir B2B-Start-ups entlang der gesamten frühen Wachstumsphase – von der ersten Idee bis zur Skalierung – und das als gemeinnützige Organisation, ohne Anteile zu nehmen. Unser Fokus liegt darauf, unternehmerische Fähigkeiten aufzubauen und Gründung als ernsthafte Karriereoption zu etablieren. Dafür bieten wir – je nach Reifegrad von Idee und Team – verschiedene Programme, ein über zehn Jahre gewachsenes Netzwerk aus den erfahrensten Serial Entrepreneurs der deutschen Start-up-Szene, etablierten Unternehmern und Industriepartnern sowie ein großes Investorennetzwerk. Hinzu kommen konkrete Anwendungsfälle aus dem Mittelstand. Für Start-ups ist das entscheidend, weil sie früh Feedback aus dem Markt bekommen und ihre Lösungen unter realen Bedingungen testen können. Unser Anspruch ist es, Gründer nicht nur zu inspirieren, sondern sie in die Umsetzung zu bringen. Genau da schließt sich der Kreis: and Action.

Dominik Gross, vielen Dank für das Gespräch

Dies ist ein Beitrag aus der StartingUp 01/26 – hier geht's zum E-Shop.

1,3 Mio. Euro Finanzierung für BauTech-Start-up conmeet

Das 2023 von Benedikt Kisner, Leandro Ananias und Lennart Eckerlein gegründete conmeet bietet eine All-in-One-Plattform für das Bau- und Handwerksgewerbe.

Nach Jahren der Entwicklung im „Stealth Mode“ meldet sich das Cloud-Software-Start-up conmeet mit einem Erfolg am Markt: Das 2023 gegründete Unternehmen hat seine Pre-Seed-Finanzierungsrunde über 1,3 Millionen Euro abgeschlossen. Das frische Kapital soll die Markteinführung der All-in-One-Plattform für das Bau- und Handwerksgewerbe beschleunigen. Als Lead-Investor tritt der VC-Fonds May Ventures auf.

Das im nordrhein-westfälischen Borken ansässige Unternehmen zielt mit seiner Lösung auf die Digitalisierung mittelständischer Bau- und Handwerksunternehmen ab. Kern des Geschäftsmodells ist eine cloud-native Plattform, die verschiedene Unternehmensbereiche wie CRM, ERP, Projektmanagement, Controlling und Banking in einer zentralen Anwendung bündelt. Ziel ist es, die in der Branche weit verbreitete Fragmentierung durch isolierte Softwarelösungen – den sogenannten „Flickenteppich“ – aufzulösen.

Erfahrene Gründer und erfolgreicher Track-Record

Hinter conmeet steht ein Trio mit komplementären Kompetenzen, das die Software in den vergangenen zwei Jahren im Verborgenen entwickelte, bevor im Sommer 2023 die formale Gründung der GmbH erfolgte und vor einigen Monaten die ersten Kunden angebunden wurden.

Der Einstieg von CEO Benedikt Kisner in den ConTech-Markt wird in der Szene dabei besonders aufmerksam verfolgt. Kisner lieferte mit dem Aufbau der netgo group eine der beachtlichsten Wachstumsstorys im deutschen IT-Mittelstand ab. Er führte das Unternehmen bis zum Exit an den Private-Equity-Investor Waterland – zum Zeitpunkt seines Ausstiegs verzeichnete die Gruppe über 1.300 Mitarbeitende und erwirtschaftete Umsätze im dreistelligen Millionenbereich. Komplettiert wird das Gründungsteam durch CTO Leandro Ananias und COO Lennart Eckerlein, der langjährige Führungserfahrung aus dem Handwerkssektor einbringt.

Marktanalyse: Angriff auf den App-Dschungel

Mit dem Marktstart tritt conmeet in ein dicht besiedeltes und umkämpftes Wettbewerbsfeld ein. Moderne Cloud-Herausforderer wie ToolTime, Plancraft oder HERO Software haben in den letzten Jahren bereits erfolgreich digitale Lösungen im Handwerk etabliert. Diese Anbieter punkten oft mit hoher Benutzerfreundlichkeit bei spezifischen Workflows wie Terminplanung oder Angebotserstellung und adressieren primär kleine bis mittlere Betriebe.

Die Differenzierungsstrategie von conmeet zielt jedoch auf eine Lücke im "Upper Mid-Market": Während viele Wettbewerber als Insellösungen fungieren, die über Schnittstellen verbunden werden müssen, positioniert sich das Start-up als integriertes Betriebssystem. Anstatt nur Büroprozesse zu digitalisieren, greift die Software tiefer in die Wertschöpfungskette ein – von der integrierten Banksteuerung bis zur Einbindung von Subunternehmern in Projekthierarchien.

Die Marktchancen stehen dabei gut, da der Leidensdruck in der Branche wächst: Der anhaltende Fachkräftemangel zwingt Bauunternehmen zur drastischen Effizienzsteigerung. Wer nicht mehr Personal findet, muss die Verwaltung automatisieren. Genau hier – in der komplexen Steuerung von Großprojekten und Firmenverbünden – will conmeet sich etablieren.

Starkes Eigeninvestment der Gründer

Eine Besonderheit der aktuellen Runde: Die drei Gründer beteiligen sich selbst mit einem substanziellen Betrag aus eigener Tasche an der Finanzierung. Als Lead-Investor tritt der Venture-Capital-Fonds May Ventures unter der Leitung von Managing Partner Maximilian Derpa auf. Derpa sieht in der Kombination aus technologischer Kompetenz und der durch Eckerlein eingebrachten Branchenerfahrung den ausschlaggebenden Faktor für das Investment: „Conmeet adressiert ein echtes Problem im Mittelstand mit einer technologisch fortschrittlichen Lösung“, so Dominik Lohle von May Ventures.

Ausblick: KI-Integration und Ökosystem

Mit den eingeworbenen 1,3 Millionen Euro plant das Start-up den Ausbau der Teams in Vertrieb, Marketing und Produktentwicklung. Mittelfristig verfolgt das Unternehmen ambitionierte Technologieziele: Geplant ist der Einsatz von KI-Agenten zur autonomen Steuerung von Geschäftsprozessen. Parallel soll die Plattform zu einem umfassenden Ökosystem für die Immobilienwirtschaft ausgebaut werden – von Architekten über Generalunternehmer bis hin zum Facility Management.

DFKI-Spin-off simmetry.ai sichert sich 330.000 Euro

Das 2024 von Kai von Szadkowski, Anton Elmiger und Prof. Dr. Stefan Stiene als Spin-off des Deutschen Forschungszentrums für Künstliche Intelligenz (DFKI) gegründete Start-up simmetry.ai ist auf die Generierung von hochwertigen, synthetischen Trainingsdaten für Künstliche Intelligenz und Machine Learning spezialisiert und hat sich dafür eine Förderung der Investitions- und Förderbank Niedersachsen (NBank) gesichert.

Die Mittel stammen aus dem Accelerator-Programm des High-Tech Incubator (HTI). Mit dem frischen Kapital plant simmetry.ai den Ausbau seiner Technologie zu einer skalierbaren Plattform, die es KI-Entwicklern ermöglichen soll, fotorealistische Trainingsdaten „on demand“ selbst zu generieren.

Standortvorteil im „AgTech-Silicon Valley“

Die Ansiedlung in Osnabrück und die Aufnahme in den High-Tech Incubator (HTI) sind strategische Entscheidungen. Die Region hat sich zu einem der bedeutendsten Cluster für Agrartechnik in Europa entwickelt. Für simmetry.ai bedeutet das direkte Nähe zur Zielgruppe: Das Start-up bedient bereits namhafte Kunden aus dem Bereich der Landmaschinen. Der HTI-Accelerator fungiert dabei als Katalysator, um die Deep-Tech-Lösung direkt mit der starken niedersächsischen Industrie zu vernetzen.

Vom Forschungsprojekt zur Plattform

Hinter der Technologie steht ein erfahrenes Gründungstrio: Kai von Szadkowski (CEO), Anton Elmiger (CTO) und Prof. Dr. Stefan Stiene. Als Spin-off des Deutschen Forschungszentrums für Künstliche Intelligenz (DFKI) blicken die Gründer auf jahrelange Erfahrung in der angewandten Forschung zurück.

Ihr zentrales Problem in vergangenen Projekten war selten der Algorithmus, sondern der Daten-Engpass: Über 80 Prozent des Aufwands bei der KI-Entwicklung fließen laut Unternehmensangaben derzeit allein in die Datenerfassung und -aufbereitung. Insbesondere für seltene Randfälle („Edge Cases“) ist das Sammeln echter Daten oft wirtschaftlich kaum darstellbar.

Der USP: Warum der Acker den Unterschied macht

Simmetry.ai tritt an, um diesen manuellen Aufwand durch synthetische, voll annotierte Daten zu ersetzen. Im Gegensatz zu Wettbewerbern, die sich oft auf strukturierte Umgebungen konzentrieren, wählten die Gründer bewusst einen anderen Einstieg: die Landwirtschaft.

„Wir haben mit der Landwirtschaft begonnen, weil dies sowohl ein hochwirksames als auch technisch anspruchsvolles Feld für KI ist“, erklärt Anton Elmiger. Die Wette der Gründer: Wer robuste KI-Modelle für die chaotischen Bedingungen eines Ackers trainieren kann, für den sind strukturierte Industrieumgebungen leichter zu bewältigen. Diese „AgTech-DNA“ dient dem Start-up nun als technologischer Hebel für die geplante Expansion in industrielle Anwendungen.

Plattform statt Dienstleistung

Ein weiteres Differenzierungsmerkmal ist das Geschäftsmodell. Während synthetische Daten oft noch als Dienstleistung erstellt werden, baut simmetry.ai eine Self-Service-Plattform. KI-Entwickler sollen nicht auf Datenlieferungen warten müssen, sondern fotorealistische Szenarien für Aufgaben wie semantische Segmentierung oder 3D-Posenschätzung eigenständig erstellen können.

Das Timing erscheint günstig: Analysten von Gartner prognostizieren, dass der Anteil synthetisch generierter Daten in KI-Projekten von 60 Prozent im Jahr 2024 auf bis zu 95 Prozent im Jahr 2030 steigen wird.

Key Facts: simmetry.ai

  • Gründung: 2024 (Spin-off des DFKI)
  • Standorte: Berlin / Osnabrück
  • Finanzierung: 330.000 € durch NBank (High-Tech Incubator Accelerator)
  • Fokus: Self-Service-Plattform für synthetische Trainingsdaten (Computer Vision)
  • Gründer: Kai von Szadkowski (CEO), Anton Elmiger (CTO), Prof. Dr. Stefan Stiene
  • Zielgruppen: Landwirtschaft (Fokus), Nahrungsmittelproduktion, Industrie

Vom Labor zur Großindustrie: MicroHarvest startet Bau einer 15.000-Tonnen-Anlage

Das 2021 von Katelijne Bekers, Jonathan Roberz und Dr. Luísa Cruz gegründete Hamburger BioTech MicroHarvest vollzieht den Schritt vom Labor in die industrielle Massenproduktion. Im Chemiepark Leuna entsteht eine kommerzielle Großanlage mit einer Jahreskapazität von 15.000 Tonnen.

Der Hamburger Proteinhersteller MicroHarvest verlässt den Pilotmaßstab und beginnt mit der industriellen Umsetzung seiner Fermentationstechnologie. Wie das Unternehmen am 12. Februar bekannt gab, fiel die Standortwahl für die erste kommerzielle Großanlage auf den Chemiepark Leuna in Sachsen-Anhalt.

Rapider Aufstieg: Von der Gründung zum Anlagenbau

Das Tempo, das MicroHarvest vorlegt, ist im Deep-Tech-Bereich ungewöhnlich hoch. Gegründet 2021 von Katelijne Bekers (CEO), Jonathan Roberz (COO) und Dr. Luísa Cruz (CTO) in Hamburg, gelang dem Gründer-Trio binnen weniger Jahre gelang der Sprung von der Verfahrensentwicklung zur Planung einer Großanlage, deren Produktionsstart bereits in rund zwei Jahren vorgesehen ist.

Technologie: Biomasse-Fermentation in Rekordzeit

Kern des Erfolgs ist ein proprietäres Verfahren der Biomasse-Fermentation. Anders als bei der Präzisionsfermentation werden hier die Mikroorganismen selbst zum Produkt: Bakterien vermehren sich exponentiell und werden zu sogenanntem Single Cell Protein (SCP) verarbeitet. Der technologische USP liegt in der Geschwindigkeit: Vom Rohstoff bis zum fertigen Protein vergehen laut MicroHarvest nur 24 Stunden. Das Verfahren gilt als eines der effizientesten weltweit und benötigt nur einen Bruchteil der Fläche und des Wassers konventioneller Proteinquellen.

Validierung durch Top-Investoren und Awards

Dass das Scale-up nun eine Investition im mittleren zweistelligen Millionenbereich stemmen kann, ist auch das Resultat einer soliden Finanzierungsstrategie. Bereits 2022 sicherte sich MicroHarvest in einer Series-A-Runde Kapital, angeführt von FoodTech-VCs wie Astanor Ventures und FoodLabs. Für den Bau in Leuna kommt nun ein Zuwendungsbescheid über knapp 5,5 Millionen Euro aus der Bundesförderung für Energie- und Ressourceneffizienz hinzu.

Standortentscheidung und Marktstrategie

In Leuna sollen rund 25 direkte Arbeitsplätze entstehen. Die Entscheidung für den Standort fiel nach der Prüfung von rund 40 Optionen in Europa. Ausschlaggebend waren die industrielle Infrastruktur und die Nähe zu regionalen Rohstoffen wie Melasse, die kurze Transportwege ermöglichen.

„Wir bauen kein Pilotprojekt, sondern eine Produktionsinfrastruktur für relevante Mengen. Leuna bietet dafür genau das richtige Umfeld: bestehende Industrie, verlässliche Utilities und ein regionales Agrar- und Verarbeitungsnetzwerk“, betont Co-Founder Jonathan Roberz.

Marktseitig ist der Boden bereitet: MicroHarvest zielt zunächst auf den B2B-Markt für Tiernahrung und Aquakultur und konnte bereits Produkteinführungen mit Partnern wie VEGDOG und THE PACK realisieren. Perspektivisch arbeitet das Unternehmen auch an Anwendungen für den Human-Food-Bereich.

Learnings für Gründer*innen

Der Case MicroHarvest zeigt exemplarisch, dass für Hardware-Start-ups die Standortwahl keine reine Immobilienthematik ist. Die Anbindung an bestehende Ökosysteme – hier die Stoffströme und Utilities eines etablierten Chemieparks – kann den entscheidenden Geschwindigkeitsvorteil beim Roll-out liefern. Zudem beweist die Finanzierungsstruktur, wie wichtig der intelligente Mix aus Venture Capital und staatlicher Förderung (hier für Capex) ist, um kapitalintensive Industrieprojekte zu realisieren.

Automatisierung vor Hiring, sonst wird Komplexität skaliert

Wer Wachstum vor allem mit Hiring beantwortet, verzichtet damit oft unbewusst auf einen der wichtigsten Hebel moderner Organisationen: Klarheit durch Prozesse und Automatisierung. Tipps und To-Dos.

Wachstum wird in Start-ups oft sehr eindimensional gedacht: mehr Nachfrage gleich mehr Menschen. Sobald Anfragen steigen, Deals reinkommen oder neue Märkte locken, folgt fast automatisch der nächste Hiring-Plan. Dabei wird häufig die Ursache mit Wirkung verwechselt. Nicht fehlende Kapazität bremst junge Unternehmen, sondern fehlende Struktur. Prozesse entstehen improvisiert, Verantwortung wird situativ verteilt, operative Arbeit frisst Fokus. Und irgendwann fühlt sich Wachstum nicht mehr nach Fortschritt, sondern nach Dauerstress an.

Gerade in der Start-up-Branche wird Wachstum zudem stark über sichtbare Kennzahlen bewertet. In Gesprächen mit Investor*innen lautet eine der ersten Fragen häufig nicht Gewinn oder EBITA, sondern: Wie viele Mitarbeitende seid ihr und wie viel Umsatz macht ihr? Die Anzahl der Mitarbeitenden wird damit fast zu einem Statussymbol. Hiring wird nicht nur zur operativen, sondern auch zur psychologischen Größe und ein Zeichen von Fortschritt. Diese Logik verstärkt den Reflex, früh zu skalieren, auch wenn die strukturellen Voraussetzungen dafür noch fehlen. Wer Wachstum vor allem mit Hiring beantwortet, verzichtet damit oft unbewusst auf einen der wichtigsten Hebel moderner Organisationen: Klarheit durch Prozesse und Automatisierung.

Warum Hiring allein selten skaliert

Mehr Menschen im Team wirken wie eine schnelle Lösung. In der Praxis zeigt sich jedoch häufig ein ähnliches Muster: Neue Kolleg*innen übernehmen Aufgaben, die eigentlich nur deshalb existieren, weil Abläufe unklar oder manuell gewachsen sind. Statt nachhaltiger Entlastung entsteht zusätzliche Koordination.

Typische Symptome sind:

  • operative Aufgaben blockieren strategische Arbeit,
  • Wissen verteilt sich auf einzelne Köpfe,
  • Entscheidungen hängen an Personen statt an klaren Abläufen,
  • Abstimmungen nehmen zu, ohne dass die Wertschöpfung im gleichen Maß wächst.

Das Problem ist nicht Hiring an sich, sondern die Reihenfolge. In vielen Fällen wird Hiring eingesetzt, um kurzfristig Druck rauszunehmen, obwohl das eigentliche Nadelöhr fehlende Klarheit ist. Wer einstellt, bevor Abläufe stabil sind, schafft zwar mehr Kapazität, skaliert aber auch Komplexität.

Prozesse als Voraussetzung für wirksames Wachstum

Prozesse werden in Start-ups häufig mit Bürokratie verwechselt. Tatsächlich sind sie das Gegenteil: Sie reduzieren Reibung. Gute Prozesse verlagern Entscheidungen vom Einzelfall ins System. Sie beantworten zwei zentrale Fragen zuverlässig: Was passiert als Nächstes – und wer ist verantwortlich?

Gerade kleine Teams profitieren davon besonders. Prozesse schaffen keine Starrheit, sondern Handlungsspielraum. Sie machen Arbeit vorhersehbar, Übergaben sauber und Entscheidungen reproduzierbar. Erst auf dieser Grundlage kann ein wachsendes Team seine Stärke wirklich entfalten.

Automatisierung im KI-Zeitalter: neue Möglichkeiten, neue Verantwortung

Mit KI hat sich die Eintrittshürde für Automatisierung massiv gesenkt. Viele Aufgaben, die früher manuell oder individuell erledigt wurden, lassen sich heute zuverlässig unterstützen oder teilweise abnehmen, vorausgesetzt, der zugrunde liegende Ablauf ist klar definiert. Entscheidend ist dabei nicht die Tool-Auswahl, sondern die Frage, was automatisiert wird. Automatisierung verstärkt bestehende Strukturen, gute wie schlechte. Wer unklare Abläufe automatisiert, skaliert keine Effizienz, sondern Chaos. Gleichzeitig gibt es zentrale Bereiche, die sich bewusst nicht oder nur sehr begrenzt automatisieren lassen und auch nicht sollten. Recruiting ist einer davon. Der Aufbau eines funktionierenden Teams lebt von persönlicher Einschätzung, Teamdynamik und kulturellem Fit. Ähnliches gilt für Sales: Vertrauensaufbau, Verhandlung und das persönliche Gespräch bleiben essenziell. Automatisierung ist hier unterstützend, aber kein Ersatz. Besonders geeignet sind Tätigkeiten, die häufig auftreten, wenig kreativen Spielraum haben und auf wiederkehrenden Informationen basieren.

Bereiche, die sich heute besonders gut automatisieren lassen

Lead- und Anfragequalifizierung
Unstrukturierte Anfragen lassen sich mithilfe von KI zusammenfassen, bewerten und priorisieren. Statt jede Anfrage manuell zu prüfen, entstehen klare Kriterien, die relevante von irrelevanten Leads trennen und Follow-ups vorbereiten.

Angebots- und Abrechnungsprozesse
Angebote, Verträge und Rechnungen folgen in vielen Startups ähnlichen Mustern. Automatisierte Vorlagen, angebundene Datenquellen und definierte Freigaben sparen Zeit, reduzieren Fehler und schaffen Transparenz.

Onboarding von Kund:innen und Mitarbeitenden
Onboarding ist kein Einzelfall, sondern ein wiederkehrender Prozess. Checklisten, automatische Aufgaben und zentrale Informationspunkte sorgen für Verlässlichkeit. KI kann helfen, Informationen zu strukturieren und kontextbezogen bereitzustellen.

Support und interne Anfragen

Ein Großteil von Fragen wiederholt sich. Wissensbasen in Kombination mit KI-gestützter Suche und Antwortvorschlägen entlasten Teams und machen sichtbar, wo Standards fehlen.

Projektmanagement und Übergaben
Klare Projekt-Templates, automatisierte Status-Updates und definierte Trigger reduzieren Abstimmungsaufwand. KI kann dabei unterstützen, Risiken früh zu erkennen oder nächste Schritte vorzuschlagen.

Was Start-ups daraus lernen können

Automatisierung ersetzt keine Entscheidungen, sie macht sie skalierbar. Voraussetzung dafür ist Klarheit über Abläufe, Verantwortlichkeiten und Prioritäten. Wer versucht, Chaos zu automatisieren, verstärkt es lediglich.

Hilfreiche Leitfragen sind:

  • Welche Aufgaben wiederholen sich regelmäßig?
  • Wo entstehen manuelle Engpässe?
  • Welche Tätigkeiten binden qualifizierte Menschen ohne echten Mehrwert?

Die Antworten darauf liefern meist schnell die größten Hebel.

Der KI-Wendepunkt: Systeme und Personal

Nachhaltiges Wachstum entsteht dort, wo Start-ups Systeme aufbauen und diese bewusst mit ihrem Team verzahnen. Nicht, weil Systeme Menschen ersetzen, sondern weil sie Menschen von struktureller Überforderung entlasten. Automatisierung schafft dabei nicht nur Effizienz, sondern Entscheidungsqualität: Wenn Daten sauber fließen, Übergaben klar sind und Standards greifen, werden Prioritäten weniger Bauchgefühl und stärker reproduzierbar.

Der gezielte Einsatz von KI-Tools verschiebt diesen Wendepunkt zusätzlich. Sie können Routinearbeiten abfangen, Informationen aus unstrukturierten Inputs verdichten und Entscheidungen vorbereiten – etwa durch Lead-Vorqualifizierung, Support-Clustering oder zusammengefasste Status-Updates. KI wirkt dabei nicht als Ersatz für Klarheit, sondern als Verstärker funktionierender Prozesse.

Hiring bleibt auch weiterhin essentiell. Seine Wirkung entfaltet es jedoch erst dann vollständig, wenn Prozesse klar sind und Automatisierung sowie KI gezielt unterstützen. So entsteht Wachstum, das nicht nur schneller, sondern auch gesünder ist.

Der Autor Markus Hetzenegger ist Gründer & CEO von NYBA Media. 2018 gegründet, zählt NYBA heute zu den führenden Marketing-Unternehmen im Live-Entertainment.

INLEAP Photonics sichert sich Millionenfinanzierung für Drohnenabwehr

Das 2023 als Spin-off aus dem Laser Zentrum Hannover e.V. (LZH) ausgegründete DeepTech-Start-up INLEAP Photonics transferiert industrielle Hochleistungstechnologie in den Verteidigungssektor.

Der Markt für DefenseTech wächst, getrieben durch die veränderte geopolitische Sicherheitslage und die Zunahme asymmetrischer Bedrohungen durch Drohnen. In genau dieses Segment stößt nun INLEAP Photonics vor. Das 2023 gegründete Hannoveraner Unternehmen gab heute bekannt, seine Pre-Seed-Finanzierungsrunde bereits im Sommer 2025 abgeschlossen zu haben und nun offiziell aus der Stealth-Phase hervorzutreten.

Angeführt wurde die Runde vom High-Tech Gründerfonds (HTGF). Zudem beteiligten sich Ventis Capital sowie private Investoren. Über die genaue Höhe der Finanzierung wurde Stillschweigen bewahrt.

Ingenieurs-Duo setzt auf Dual-Use-Strategie

Hinter der Technologie stehen zwei promovierte Ingenieure, die den klassischen Weg vom Forschungslabor in das Unternehmertum beschreiten: Dr.-Ing. Marius Lammers (CEO) und Dr.-Ing. Felix Wellmann (CTO). Beide gründeten INLEAP Photonics als Spin-off aus dem Laser Zentrum Hannover e.V. (LZH), einer der führenden Adressen für angewandte Laserforschung in Europa.

Die Gründer verbinden dabei tiefgreifende wissenschaftliche Expertise mit industriellem Pragmatismus. Während Lammers die strategische Ausrichtung im komplexen Defense-Markt verantwortet, treibt Wellmann die technische Weiterentwicklung der Laserstrahlführung voran. Ihr Ansatz ist ein Lehrbuchbeispiel für „Dual-Use“: Die Kerntechnologie wurde ursprünglich nicht als Waffe konzipiert, sondern um industrielle Hochgeschwindigkeitsprozesse wie die Batteriezellenproduktion oder Additive Fertigung zu optimieren.

Millisekunden statt Minuten

Diese industrielle DNA nutzen Lammers und Wellmann nun für einen Pivot in den Sicherheitssektor. Unter dem Namen FASTLIGHT® SHIELD entwickelt das Start-up ein mobiles Abwehrsystem, das Drohnen durch gezielte Energieeinbringung neutralisieren soll. Das zentrale Versprechen der Gründer: Die Präzision und Geschwindigkeit, die in der Industrie für Fertigungsprozesse notwendig ist, verschafft in der Drohnenabwehr den entscheidenden Zeitvorteil.

„Die aktuelle Sicherheitslage erlaubt keine langsamen Lösungen“, erklärt Marius Lammers den Schritt. „Wir begegnen der asymmetrischen Drohnenbedrohung mit technologischer Überlegenheit.“ Felix Wellmann ergänzt, dass der Prototyp bereits bewiesen habe, agile Ziele in Millisekunden abwehren zu können – eine Leistung, die auf der langjährigen Forschung des Duos zur Laserstrahllenkung basiert.

Kapital für die Einsatzreife

Das frische Kapital fließt laut Unternehmensangaben primär in die Skalierung dieses Prototypen hin zu einem robusten Gesamtsystem. Ziel ist die Validierung in realen Einsatzszenarien sowie die Integration in bestehende Sicherheitsarchitekturen von staatlichen Akteuren und Betreibern kritischer Infrastrukturen.

Für den Lead-Investor HTGF ist das Team und die Technologie ein strategisches Asset. Dr. Koen Geurts, Senior Investment Manager beim HTGF, betont: „Lasereffektoren für Drohnen- und Luftabwehr gehören zu den klar wachsenden Technologiefeldern, die nur wenige Unternehmen beherrschen.“ Die Ambition sei es, mit INLEAP einen globalen Player aus Deutschland heraus aufzubauen.

DIONYS: Schluss mit Event-Chaos

Events und Offsites erleben ein massives Comeback. Doch hinter den Kulissen vieler Locations herrscht oft noch analoges Chaos. Das Münchner Start-up DIONYS will genau das ändern: Schluss mit dem E-Mail-Pingpong, hin zu echten Buchungen.

Die steigende Nachfrage nach Firmen-Events und privaten Feiern stellt die Hospitality-Branche vor administrative Herausforderungen. Während Hotelzimmer und Tischreservierungen weitgehend digitalisiert sind, erfolgt die Bearbeitung von Gruppenanfragen und Event-Konfigurationen in vielen Betrieben noch manuell. Das 2025 gegründete Software-Start-up DIONYS tritt an, um diesen Prozess durch Standardisierung zu beschleunigen.

Konfigurator statt E-Mail-Pingpong

Das Kernprodukt des Unternehmens ist eine Softwarelösung, die den Angebotsprozess für Veranstaltungen digitalisiert. Anstatt individuelle Angebote manuell zu tippen, sollen Kunden ihre Events – von Menüs bis zu Getränkepaketen – über eine Online-Oberfläche selbst konfigurieren können.

CEO Folke Mehrtens beschreibt den aktuellen Zustand der Branche als paradox: „Es ist absurd: Gerade dort, wo Events den meisten Umsatz bringen, fehlt oft jede Struktur. Solange Events wie Sonderfälle behandelt werden, bleiben sie ein operativer Schmerz.“

Die Software von DIONYS zielt darauf ab, diesen „Schmerz“ zu lindern, indem sie Events von der manuellen Ausnahme zum standardisierten Produkt wandelt – buchbar und transparent wie im E-Commerce.

Technik trifft auf operative Erfahrung

Technisch steht das Unternehmen vor der Hürde, die individuellen Parameter von Gastronomiebetrieben – etwa spezifische Stornoregeln oder variable Menüfolgen – in einen Algorithmus zu überführen. CTO Gregor Matte betont, dass die Herausforderung weniger in der reinen Buchung, sondern in der Abbildung der operativen Vielfalt liege.

Um die Praxistauglichkeit sicherzustellen, setzt das Gründungsteam auf Mitstreiter mit Branchenhintergrund. Neben Mehrtens (Strategie) und Matte (Technik) sind unter anderem Ekkehard Bay (ehemals Manager im Mandarin Oriental) sowie Daniel Simon (ehemals OpenTable) an Bord.

Wettbewerb und der Faktor „Mensch“

DIONYS positioniert sich in einem dichten Marktumfeld zwischen etablierten Back-Office-Lösungen wie Bankettprofi und modernen Reservierungssystemen wie aleno. Die Münchner suchen ihre Nische bei individuellen Event-Locations und Restaurants, die sich von reinen Tagungshotels abgrenzen.

Die in der Branche verbreitete Sorge, dass durch die Digitalisierung die persönliche Note leide, versucht Head of Hospitality Ekkehard Bay zu entkräften: „Wenn Standardfragen digital geklärt sind, bleibt im echten Gespräch mehr Zeit für das, was wirklich zählt: besondere Wünsche und echte Aufmerksamkeit.“

Erste Marktdaten und Ausblick

Seit dem Start im Herbst 2025 wurden nach Angaben des Unternehmens Anfragen mit einem Volumen von rund 400.000 Euro über das System abgewickelt. Zu den ersten Nutzern zählen bekannte Münchner Betriebe wie Kustermann und die Bar Valentin. Das Erlösmodell basiert auf einer Kombination aus monatlicher Softwaregebühr und umsatzabhängigen Komponenten.

Für die nächste Wachstumsphase strebt DIONYS die Akquise von 100 „Pionier-Betrieben“ in der DACH-Region an. Ob sich der Ansatz als neuer Industriestandard durchsetzen kann, wird davon abhängen, ob die Software die komplexen Anforderungen einer breiten Masse an unterschiedlichen Betrieben tatsächlich ohne manuelles Nachsteuern abbilden kann. Daniel Simon gibt sich zuversichtlich: „In drei Jahren wird Event-Management nicht mehr improvisiert, sondern datenbasiert gesteuert.“