Sketchnoting statt Powerpoint

Autor: Siegfried (Sigi) Bütefisch
44 likes

Beim Graphic Recording stellt Sketchnoting eine echte Alternative zu allzu oft gesehenen Strategiebilder dar, sofern es nicht zum schnöden Kreativwashing-Tool verkommt.

Den Begriff Greenwashing kennt inzwischen jede(r). Laut Definition werden bei dieser „Weiße-Weste“-Kommunikation Techniken der Öffentlichkeitsarbeit, der Rhetorik und der Manipulation benutzt, um einem Unternehmen, seinen Produkten und Aktivitäten einen grünen Anstrich zu geben.

Genauso, wie „Green“ zu sein, wollen viele Unternehmen heute betont agil, kreativ und innovativ wirken. Das verspricht Modernität, Attraktivität und zieht besonders job- und sinnsuchende junge Mitarbeiter*innen an. Das ist prinzipiell lobens- und erstrebenswert, sofern es keine Mogelpackung bzw. reines „Kreativwashing“ ist. Denn innovative Kreativität ist in Unternehmen zweifelsohne ein wettbewerbsentscheidender Punkt – aber nur, wenn diese Haltung gelebt wird und nicht nur ein Marketinghype ist.

Visualisierungen sind der emotionale Türöffner für den Intellekt

Vor diesem Hintergrund verwundert es nicht, dass in Veranstaltungen immer häufiger Visionen, Ideen oder Strategien in gesketchten Visualisierungen festgehalten werden. Beim sogenannten Sketchnoten bereitet man Inhalte visuell auf und fügt Elemente wie beispielsweise kleine Zeichnungen, Rahmen, Pfeile oder Letterings hinzu. Am Ende erhält man quasi Notizen mit Mehrwert.

Der Mehrwert dieser Art des visuellen Storytellings liegt darin, dass es mehr berührt als trockene Zahlen, Daten und Fakten. Visualisierungen sind der emotionale Türöffner für den Intellekt. Deshalb werden diese inspirierenden, gesketchten Bilder gern angeschaut, bewundert und geteilt. Der Aufmerksamkeitsfaktor ist größer als bei üblichen PowerPoint Slides. Visualisierungen sind nicht nur ein Hingucker bei Veranstaltungen, sondern werden zudem als attraktive Abbildungen in Dokumentationen oder für die Social-Media-Auftritte genutzt.

Worauf es beim Sketchen wirklich ankommt

Künstlerische Qualität vs. gehaltvoller Inhalt

Die künstlerisch-ästhetische Qualität von Visualisierungen ist über die letzten Jahre immer professioneller geworden. Kein Wunder, denn inzwischen haben immer mehr professionelle Illustrator*innen und Graphiker*innen diesen Markt zum Geldverdienen entdeckt. Doch hohes künstlerisches Niveau ist eigentlich nicht das, worauf es beim Sketchen geht. Sketches sind sichtbar gemachte Gedanken, sind clevere, merk-würdige Zusammenfassungen. Also kommt es auf die Qualität der Gedanken an. Auf die Fähigkeit, das Gehörte zu verstehen, zu interpretieren und intelligent auf den Punkt zu bringen.

Je mehr Fachkenntnis der/die Visualisierer*in zum jeweiligen Thema einbringen kann, je wacher sein/ihr Geist ist, desto gehaltvoller wird die Visualisierung werden. Und hier liegen das Problem und die Kritik: Diese Fachkenntnis, bringt ein(e) hervorragende(r) Kreative(r) nicht per se mit.

So könnte das Wandbild von sketchenden Ingenieur*innen oder Personalverantwortlichen weitaus mehr Substanz haben als jenes von begnadeten Profi-Zeichner*innen. Deshalb ist beim Graphic Recording, bei dem das Gesagte in Echtzeit grafisch festgehalten wird, der hübsche Augenschein nicht das einzige Kriterium – genauso wenig, wie das glänzende Geschenkpapier mit Goldschleife oder eine glänzend polierte Karosserie. Es kommt darauf an, was mit dem Geschenkpapier eingewickelt worden ist bzw. unter der Haube steckt.

Visuelle Kommunikationskultur statt bewundernde Konsumhaltung

Warum haben nicht mehr Unternehmen den Mut, die Teilnehmenden eines Events selbst an den Stift zu bringen, statt das übliche Event-Graphic-Recording zu praktizierten? Denn das gelingt mithilfe einer kurzen Anleitung durchaus! So werden aus rein Betrachtenden skizzierende Akteur*innen. Noch besser wäre es, Sketches nicht nur bei einem Event zu nutzen, sondern täglich am Arbeitsplatz.

Unternehmen, die diesen Schritt wagen, erleben, dass die vielen kleinen Sketches im Geschäftsalltag von der Wirkung her durchaus mit den eindrucksvollen Wandbildern der Zeichen-Profis mithalten können – hinsichtlich der Wirkung auf Menschen, um bessere Ergebnisse zu erzielen. Denn gerade die Visualisierungen der Mitarbeiter*innen und Führungskräfte helfen, Gedanken zu entwickeln und zu teilen. Das Beuys’sche „Jeder ist Künstler“ wird so zum „Jede(r) ist Sketchnoter*in“. Dann wird das eindrucksvolle professionelle Wandbild ein Teil der visuellen Kommunikationskultur des Unternehmens – und eine noch viel wertvollere Inspiration.

Vom Kreativwashing zur echten Kreativität

Kreativität ist stets ein Weg von unten nach oben. Sie wird nicht von oben eingekauft, sondern die Teams und Mitarbeitenden müssen entsprechend gefördert werden. Fördern heißt hierbei oftmals, einfach nur zuzulassen, dass nicht nur Power­Point-Folien nach strengem CI erlaubt sind bzw. reine Text­notizen Teil der Kommunikationskultur sein dürfen. Denn gerade die Kommunikationsform Sketchnoten bringt eine weitere Dimension in den Austausch. Wie schon erwähnt: Das rein Sachliche wird mittels Sketchen emotional oder durch eine Metapher verpackt. Das ist zielführend. Denn was berührt, kann besser gären. Auch das Trainieren der sogenannten doppelten Kodierung einer Botschaft durch Bild und Notiz (SketchNote) hilft beim Merken und Verstehen – dem/der Sketchenden genauso wie seinen/ihren Ansprechpartner*innen.

Ein zu hoher Anspruch hemmt – fang einfach an

Das gilt nicht nur, wenn es um Visualisierungen geht. Zu exzellenten Ergebnissen schaut man bewundernd auf. In dieser Das-kann-ich-nie-Haltung vergleicht man allzu schnell seine Anfänger*in-Ergebnisse mit jenen der Profis. Man vergleicht allzu leicht die Optik und nicht die Substanz einer Visualisierung. Nehmen wir den Vergleich vom Anfang nochmals auf: Der glänzende Lack ist nicht gleichbedeutend mit der Qualität unter der Haube. Wenn man vorankommen möchte, hilft die Motorisierung. Das Blech der Visualisierung ist die reine Optik, die Gewandtheit der Zeichenkünste – die Motorisierung ist die Struktur, der bedeutungsstarke Inhalt und das gelungene Storytelling. Und alles lässt sich auch mit krakeligen ein­fachen Skizzen ausdrücken.

Gewandtheit im Skizzieren ist vor allem Übung

Dass Visulisierungs-Profis in ihre Fähigkeit schier unzählige Stunden investiert haben, weiß man zwar, wird aber im Vergleichsfrust oft vergessen. Das Gute am Visualisieren bzw. dem Erlernen von Sketchnoting ist aber, dass es um Sprachenlernen geht und nicht darum, Künstler*in zu werden. Darüber hinaus ist Visualisieren eine einfache Sprache, die du als Kind schon einmal perfekt konntest – bis dir vielleicht im Kunstunterricht die Noten den Spaß verdorben haben, dich mit Zeichnungen und Bildern auszudrücken.

Die Grundlagen, Gedanken visuell zu Papier zu bringen, kannst du in wenigen Stunden lernen. Du wirst schon nach wenig Übung erleben, wie nützlich deine Skizzen sind – nicht nur in der Geschäftskommunikation. Fange das Visualisieren ganz einfach an, mit wenigen visuellen Worten. Und trau dich von Anfang an, diese Sprache zu sprechen. Du wirst schnell merken, dass dich dieser Elementarwortschatz täglich weiterbringt. Und übe weiter, fürs Visualisieren gibt es täglich Gelegenheit. Durch das Learning by Doing kannst du dich bald fließend visuell ausdrücken. Und auch hier ist es wie bei einer Fremdsprache: Manches fehlende Wort oder witzige Umschreibungen für fehlende Worte sowie ein Akzent wirken besonders sympathisch.

Der Vergleich mit dem Sprachenlernen hilft dir auch dabei, das Visualisieren effektiver zu erlernen. Es gilt: Gezielte Übungen und Impulse zusätzlich zur täglichen Sprachpraxis bringen dich schneller zum Ziel. Lass dich deshalb von einer guten Anleitung oder durch einen Workshop motivieren und ins­pirieren. Und wenn es um das Inspirieren geht, taugen die Visualisierungen der Profis. Aber versuche, das demotivierende Vergleichen zu unterlasen.

Noch ein letzter Gedanke zur Motivation

Du kennst es vielleicht vom Musikhören oder Sporttreiben: Oft sind es gerade die Nicht-Profis, die sich besonders aufs Training freuen und mehr Spaß beim Spiel haben. So geht es auch fast allen, die beginnen, den Stift immer öfter in die Hand zu nehmen. Dazu kommen die Quick Wins von Anfang an. Es gilt: Was hilft, wird beibehalten. Was also spricht gegen eine kreativ-visuelle Kommunikationskultur in deinem Unternehmen, statt schnödem Kreativwashing?

Tipp zum Weiterarbeiten: Das Sachbuch des Autors dieses Beitrags – Sigi Bütefisch: Clever visualisieren, ISBN: 978-3-86980-707-2, BusinessVillage 2023, ca. 240 Seiten, 24,95 Euro

Diese Artikel könnten Sie auch interessieren:

Agentic AI als Erfolgsgrundlage für Start-ups

KI befeuert den aktuellen Gründungsboom, doch für eine erfolgreiche Skalierung braucht es mehr. Warum Agentic AI auf Basis einer soliden Datenarchitektur zum entscheidenden Erfolgsfaktor für Start-ups wird.

Das Jahr startete für Start-ups mit einer Rekordmeldung: In Deutschland wurden im vergangenen Jahr fast ein Drittel mehr Gründungen verzeichnet. In absoluten Zahlen wurden 2025 insgesamt 3.568 neue Firmen geschaffen – ein neuer Höchststand, wie der Start-up-Verband im Januar verkündete. Dies ist auch der künstlichen Intelligenz (KI) zu verdanken, wie sich beim genauen Hinschauen herausstellt. 853 dieser neuen Unternehmen kommen aus dem Bereich Software. Doch nicht nur sie verwenden KI; bei einer Umfrage gab ein Drittel aller Gründer und Gründerinnen an, dass sie mit KI arbeiten. Dementsprechend sehen die Sprecher des Verbands in der Technologie auch die treibende Kraft hinter dem Start-up-Rekord.

Wirft man einen Blick über den Tellerrand hinaus, so lässt sich feststellen, dass die Start-up-Szene in Europa insgesamt floriert. Der „State of European Tech 2025“-Report im Auftrag von Atomico und anderen schätzt, dass im letzten Jahr Investitionen in Höhe von 44 Milliarden US-Dollar (umgerechnet ca. 38 Mrd. EUR) in diesen Sektor geflossen sind. Geldgeber erwarten inzwischen, dass Start-ups mit KI und Deep Tech arbeiten, so der Report. Demnach flossen auch 36 Prozent der europäischen Start-up-Investitionen in genau diese beiden Felder.

Das Gründungsumfeld könnte also kaum besser sein. Doch ein Rekord an Start-ups und steigende Investitionssummen bedeuten nicht zwangsläufig auch eine einfache Skalierung der Geschäftsmodelle. Viele – zu viele – Start-ups scheitern nach erfolgreichen ersten Jahren an der Weiterentwicklung ihres Geschäfts. Neben einer Reihe üblicher Herausforderungen stehen vor allem Bürokratie, Fragen zur Datenhoheit und ein Betrieb über Landesgrenzen und Wirtschaftszonen hinweg im Vordergrund. Start-ups müssen nachweisen, dass ihre Nutzung von KI auf soliden, regulierten Datenfundamenten basiert und den Compliance-Vorgaben entspricht.

Hier kommt Agentic AI ins Spiel. Die Einbettung von KI-Agenten in den Kern der Betriebsabläufe ist die Antwort auf viele dieser Herausforderungen und wird für das Wachstum im Jahr 2026 von entscheidender Bedeutung sein.

Solide Datenbasis vor KI-Einsatz

Start-ups, die dies erreichen wollen, sollten sich darauf konzentrieren, ihre KI-Nutzung auf einer soliden Datenbasis aufzubauen, deren Fundament eine einheitliche Datenarchitektur ist. Sie tun sich deutlich leichter damit, die dafür nötigen Architekturentscheidungen zu treffen, als etablierte Unternehmen mit entsprechender Legacy-IT. Gründer und Gründerinnen sollten daher von Beginn an darüber nachdenken, wie sie eine starke Datenarchitektur aufsetzen, Silos abbauen und KI als Herzstück ihrer Prozesse einbetten.

Diese Grundlage hilft bei der Einführung von KI-Agenten, damit deren Output auch die Erwartungen erfüllt: Geschäftsprozesse effizienter zu strukturieren und zu optimieren sowie die Entscheidungsfindung zu beschleunigen. Start-ups, die dies umsetzen, werden sich gegen ihre Konkurrenten durchsetzen und letztlich erfolgreich sein.

KI-Agenten als Innovationsbeschleuniger

Indem Start-ups KI-Agenten von Beginn an in den Kern ihrer Geschäftsabläufe integrieren, skalieren sie schneller als mit dem Einsatz von nur einem reinen Large Language Model (LLM). Der Grund dafür liegt in der Standardisierung der Daten, die für KI-Agenten notwendig ist. Auf dieser Grundlage können die Agenten ihre einzigartigen, autonomen Fähigkeiten ausspielen, da sie mit unternehmenseigenen Daten trainiert werden. Vor allem bei Start-ups können Potenziale schnell gehoben werden: Wenn Agenten für bestimmte Aufgaben entwickelt werden, können sie diese auch lösen – egal wie komplex und fachspezifisch sie sein mögen. Stimmt die Datenbasis, lassen sich auch mehrere Agenten miteinander verknüpfen, um sogar noch komplexere Herausforderungen zu bewältigen.

Ein Beispiel dafür ist die mögliche Kooperation zwischen einem Kundensupport-Agenten und einem Prognose-Agenten. Wenn ein Kunde einen Support-Fall auslöst, kann der andere Agent sogleich die Kosten berechnen, was die Kundenzufriedenheit durch eine schnellere Reaktion steigern kann. Für die Skalierung von Start-ups ist ein enges Zusammenspiel der Abteilungen wichtig, um die Geschäftsbeziehungen zu zufriedenen Kunden weiter ausbauen zu können. Der Einsatz von KI-Agenten kann, gepaart mit dem menschlichen Element, begrenzte personelle Ressourcen ausgleichen und eine bessere Serviceleistung ermöglichen, was für ein schnelles Wachstum unabdingbar ist.

Doch nicht nur der Kundenkontakt lässt sich automatisieren, sondern auch eine ganze Reihe von Routinevorgängen in der internen Verwaltung der Firmen selbst. Dies ermöglicht nicht nur dem Management, sondern auch den Investoren, schnell einen fundierten Überblick über Liquidität, Umsatz, Einnahmen und Gewinn zu erhalten. Die Erkenntnisse in Echtzeit führen zu schnellen und datenbasierten Entscheidungen, was für junge Unternehmen Gold wert ist und es ihnen ermöglicht, flexibel zu bleiben.

Die Datenbasis muss stimmen

Für Start-ups sind Probleme beim Datenzugriff ein kritisches Risiko für den Geschäftserfolg. Eine einheitliche, moderne Datenarchitektur ermöglicht die Demokratisierung des Datenzugriffs und löst Datensilos auf. Der Vorteil liegt auf der Hand: Schneller Datenzugriff schafft Transparenz gegenüber Kunden und Aufsichtsbehörden. Darüber hinaus erhöht dies auch das Vertrauen der Mitarbeitenden und schafft ein Gefühl des Zusammenhalts.

Governance ist auch bei der Verwendung von KI-Agenten von entscheidender Bedeutung. Der Druck zur Einhaltung von Vorschriften sollte daher als Vorteil betrachtet werden.

Der Dreiklang aus Datenherkunft, Versionierung und automatisierter Auswertung der Ergebnisse hilft jungen Unternehmen dabei, Governance auf einem soliden Fundament aufzubauen. Die Teams erhalten direkte Transparenz darüber, wie sich die KI-Agenten verhalten, auf welchen Daten sie basieren und wie sie ihre Ergebnisse im Laufe der Zeit verändern. Laufende Bewertungen tragen dazu bei, dass KI-Agenten präziser werden, um genau jene hochwertigen Ergebnisse zu liefern, die Start-ups für die Skalierung ihrer Geschäftsmodelle benötigen. Dies ist besonders wichtig, wenn proprietäre KI-Modelle entwickelt und von der Testphase in die Produktion überführt werden, wobei gesetzliche Vorschriften wie die DSGVO oder der EU AI Act zwingend einzuhalten sind.

Parloa, ein deutsches Start-up-Unternehmen mit einer Bewertung von drei Milliarden US-Dollar, ist ein hervorragendes Beispiel dafür, wie dieser Ansatz in der Praxis aussehen kann: Das Unternehmen hat KI-Agenten zum Kern seines Kundenservice gemacht und gleichzeitig eine einheitliche, kontrollierte Datenbasis aufgebaut, die vollständig mit der DSGVO und dem EU AI Act konform ist. Seine Plattform folgt den Prinzipien des „Privacy by Design“, sodass sensible Kundendaten ohne Kontrollverlust verwendet werden können. Durch die Verwaltung des gesamten Lebenszyklus von KI-Agenten macht Parloa Governance zu etwas Greifbarem und gibt den Teams Klarheit darüber, welche Daten verwendet wurden, wie sich die Agenten verhalten haben und wie sich die Ergebnisse im Laufe der Zeit entwickelt haben. Diese Kombination aus moderner Architektur und starker Governance ermöglicht es den Kunden von Parloa, Zugang zu hochwertigen Daten zu erhalten und die Transparenz für Regulierungsbehörden sowie Endnutzer zu erhöhen – und dennoch KI-gesteuerte Kundeninteraktionen in Umgebungen zu skalieren, in denen Fehler oder Missbrauch inakzeptabel sind.

Fazit

KI-Agenten bieten europäischen Start-ups eine einmalige Gelegenheit, schnell zu wachsen und gleichzeitig Investoren anzuziehen, die bekanntermaßen ihr Geld bevorzugt in Unternehmen investieren, die Wert auf Datenverwaltung, Genauigkeit, Qualität und die Schaffung von echtem Mehrwert durch Technologie legen. Es ist jedoch ein Fehler, sich ohne sorgfältige Überlegungen auf die Einführung von Agenten zu stürzen. Start-ups, die KI-Agenten einsetzen, ohne zuvor eine einheitliche Datenbasis aufzubauen und eine solide Verwaltung sowie Bewertung sicherzustellen, riskieren, mehr Komplexität als Mehrwert zu schaffen. Letztlich werden jene Gründer und Gründerinnen erfolgreich sein, die ihre Geschäftsmodelle branchen- und länderübergreifend skalieren können – hierbei spielt der Einsatz von KI-Agenten bereits jetzt eine entscheidende Rolle.

Der Autor Nico Gaviola ist VP Digital Natives & Emerging Enterprise bei Databricks EMEA.

Plato sichert sich 14,5 Mio. USD für das KI-Betriebssystem für den Großhandel

Plato entwickelt KI-native Software, die zentrale Workflows in den Bereichen Vertrieb, Angebotserstellung und ERP-Prozesse für Großhandelsunternehmen automatisiert.

Gegründet wurde Plato 2024 von Benedikt Nolte, Matthias Heinrich Morales und Oliver Birch. Die Plattform entstand ursprünglich aus Noltes familiengeführten Großhandelsunternehmen heraus, das mit veralteter Software und Fachkräftemangel zu kämpfen hatte. Dieser praxisnahe Ursprung prägt bis heute Platos industriegetriebenen Ansatz für KI-Transformation.

Das Unternehmen entwickelt KI-native Software, die zentrale Workflows in den Bereichen Vertrieb, Angebotserstellung und ERP-Prozesse für Großhandelsunternehmen automatisiert. Großhändler bewegen jeden fünften Dollar der globalen Produktionsleistung, sind jedoch bis heute massiv unterversorgt mit moderner Software. Platos Lösung stattet Vertriebsteams mit einem KI-Copiloten aus, steigert Profite und erhöht die Vertriebseffizienz via AI agents.

„Wir haben die Probleme aus erster Hand im Großhandel meiner Familie erlebt und Plato gemeinsam mit Experten entwickelt, um die Arbeitsweise der Branche neu zu denken. Wir bauen das KI-Betriebssystem für den Großhandel, beginnend mit einer intelligenten Automatisierungsplattform im Vertrieb. Mit dieser Finanzierung skalieren wir Plato, um die gesamte Branche zu transformieren und einen Tech-Champion für die Handelsökonomie aufzubauen – aus Deutschland, für die Welt“, sagt Benedikt Nolte, CEO von Plato.

Skalierung des KI-Betriebssystems für den Großhandel

Die Plattform erschließt verborgene ERP-Daten und automatisiert manuelle Aufgaben, sodass Vertriebsteams vom reaktiven ins proaktive Verkaufen kommen. Plato hat bereits mehrere der führenden Großhändler Europas mit sechsstelligen Vertragsvolumina gewonnen. Die 14,5 Mio.-USD-Finanzierung soll es Plato ermöglichen, sein vertikales Produktangebot auf Kundenservice und Einkauf auszuweiten und die internationale Expansion voranzutreiben.

„Besonders überzeugt hat uns an Plato die außergewöhnliche Qualität des Gründerteams. Das Team hat in diesem Bereich ein echtes „Right to winˮ und brennt für den Großhandel. Es vereint tiefgehende Branchenexpertise aus erster Hand mit starker technischer Umsetzung und dem Anspruch, ein branchenprägendes vertikales KI-Unternehmen aufzubauen. Großhändler suchen dringend nach branchenspezifischer KI-Software, um operative Herausforderungen zu lösen – und genau diese Lösung ist Plato“, sagt Andreas Helbig, Partner bei Atomico.

ewigbyte: Datenspeicher für die Ewigkeit?

Wie das 2025 von Dr. Steffen Klewitz, Dr. Ina von Haeften und Phil Wittwer gegründete Münchner DeepTech-Start-up Microsoft und die Tape-Industrie herausfordert und sich für seine Mission 1,6 Millionen Euro Pre-Seed-Kapital sichert.

Daten werden oft als das „Öl des 21. Jahrhunderts“ bezeichnet, doch ihre Lagerung gleicht technologisch oft noch dem Stand der 1950er Jahre. Während Künstliche Intelligenz und IoT-Anwendungen den weltweiten Datenhunger exponentiell in die Höhe treiben, werden Informationen physisch meist noch auf Magnetbändern (LTO) oder Festplatten archiviert. Diese Medien sind energiehungrig, müssen alle paar Jahre aufwändig migriert werden und sind anfällig für physikalische Zerfallsprozesse.

In diesen Markt für sogenannte Cold Data – also Daten, die archiviert, aber selten abgerufen werden – stößt nun das Münchner DeepTech-Start-up ewigbyte. Das Unternehmen, das erst im Jahr 2025 gegründet wurde, gab heute den Abschluss einer Finanzierungsrunde bekannt, die den Übergang in die industrielle Entwicklung ermöglichen soll. Angeführt wird das Konsortium von Vanagon Ventures und Bayern Kapital, ergänzt durch Business Angels aus dem BayStartUP-Netzwerk. Doch der Weg zum Markterfolg ist kein Selbstläufer, denn das Startup betritt ein Feld, auf dem sich bereits globale Giganten und etablierte Industriestandards tummeln.

Der Markt: Ein schlafender Riese erwacht

Der Zeitpunkt für den Vorstoß scheint indes gut gewählt. Branchenanalysten schätzen den globalen Markt für Archivdaten („Cold Storage“) auf ein Volumen von rund 160 bis 180 Milliarden Euro, mit Prognosen, die bis Mitte der 2030er Jahre auf über 450 Milliarden Euro ansteigen. Getrieben wird dies nicht nur durch KI-Trainingsdaten, sondern auch durch verschärfte Compliance-Regeln und den massiven Anstieg unstrukturierter Daten. Die derzeit dominierende Magnetband-Technologie stößt jedoch zunehmend an physikalische Dichtegrenzen und zwingt Rechenzentren zu kostspieligen Migrationszyklen alle fünf bis sieben Jahre, um Datenverlust durch Entmagnetisierung („Bit Rot“) zu verhindern.

Lasergravur statt magnetischer Ladung: So funktioniert es

Der Ansatz von ewigbyte bricht radikal mit diesem Paradigma. Statt Daten magnetisch oder elektronisch zu speichern, nutzt das Startup Femtosekunden-Laser, um Informationen mittels ultrakurzer Lichtpulse direkt in Quarzglas einzuschreiben.

Das Verfahren ähnelt mikroskopisch kleinen QR-Codes, die dreidimensional in das Material „graviert“ werden (Voxel). Das zentrale Versprechen: Einmal geschrieben, benötigen die Daten keinerlei Energie mehr zur Erhaltung. Das Glas ist resistent gegen Hitze, Wasser, elektromagnetische Impulse (EMP) und Cyberangriffe, da die Daten physisch fixiert sind (WORM-Speicher: Write Once, Read Many). Laut ewigbyte ermöglicht dies eine dauerhafte Archivierung über Jahrhunderte ohne die sonst üblichen laufenden Kosten für Klimatisierung und Migration.

Vom Hardware-Verkauf zum „Storage-as-a-Service“

Interessant für Gründer ist der strategische Schwenk im Geschäftsmodell, den ewigbyte vollzieht. Anstatt teure und wartungsintensive Lasermaschinen an Kunden zu verkaufen (CAPEX-Modell), positioniert sich das Start-up als Anbieter von „Storage-as-a-Service“. Kunden mieten Speicherkapazität, ewigbyte übernimmt das komplexe Handling der Laser. Dies senkt die Einstiegshürde für Pilotkunden massiv, erfordert aber vom Start-up hohe Vorab-Investitionen in die eigene Infrastruktur – ein klassisches „DeepTech“-Wagnis, das nur mit geduldigem Kapital funktioniert.

David gegen Goliath: Das Rennen um das Glas

Mit der Technologie ist ewigbyte allerdings nicht allein auf weiter Flur. Das Start-up begibt sich in direkten Wettbewerb mit einem der größten Technologiekonzerne der Welt: Microsoft forscht unter dem Namen „Project Silica“ seit Jahren an exakt dieser Technologie, um seine eigene Azure-Cloud-Infrastruktur unabhängiger von Magnetbändern zu machen. Auch lokal gibt es Konkurrenz: Das ebenfalls in München und den USA ansässige Unternehmen Cerabyte verfolgt einen ähnlichen Ansatz mit keramisch beschichtetem Glas, setzt dabei aber stärker auf kassettierte Hardware-Verkäufe.

Ewigbyte muss sich in diesem „Haifischbecken“ also klug positionieren. Mit dem frischen Kapital von 1,6 Millionen Euro will das Gründungsteam um CEO Dr. Steffen Klewitz, Technologiechef Phil Wittwer und Operations-Chefin Dr. Ina von Haeften nun den Schritt von der Forschung in die industrielle Anwendung vollziehen. Geplant ist die Entwicklung eines Prototyps, der als Basis für erste Pilotprojekte ab 2026 dienen soll. Ein entscheidender Vertrauensbeweis ist dabei der kürzlich erhaltene Validierungsauftrag der Bundesagentur für Sprunginnovationen (SPRIND). Dieses Mandat gilt in der DeepTech-Szene als Ritterschlag, da SPRIND gezielt Technologien fördert, die das Potenzial haben, Märkte disruptiv zu verändern, für klassische VCs aber oft noch zu risikoreich sind.

Die technologischen Nadelöhre

Trotz der Euphorie über die Finanzierung und das SPRIND-Siegel bleiben die technischen und ökonomischen Hürden hoch. Die Achillesferse optischer Speichermedien war historisch immer die Schreibgeschwindigkeit (Throughput). Während ein Magnetband Daten in rasender Geschwindigkeit aufspult, muss ein Laser beim Glas-Speicher physische Punkte brennen. Um im Zeitalter von Petabytes konkurrenzfähig zu sein, muss ewigbyte eine massive Parallelisierung des Schreibvorgangs erreichen – das Start-up spricht hier von „über einer Million Datenpunkten pro Puls“.

Ein weiterer Knackpunkt sind die Kosten pro Terabyte. Magnetbänder sind in der Anschaffung spottbillig. Glas als Rohstoff ist zwar günstig, doch die komplexe Lasertechnik treibt die Initialkosten. ewigbyte muss beweisen, dass die Gesamtkostenrechnung (Total Cost of Ownership) über 10 oder 20 Jahre hinweg günstiger ausfällt, weil Strom- und Migrationskosten entfallen. Zudem entsteht für Kunden ein neues Risiko: Da die Daten nur mit speziellen optischen Geräten lesbar sind, begeben sie sich in eine Abhängigkeit vom Technologieanbieter (Vendor Lock-in).

Digitale Souveränität als Verkaufsargument

Hier kommt der strategische Aspekt der „Digitalen Souveränität“ ins Spiel, den auch die Investoren betonen. Da ein Großteil europäischer Daten derzeit auf US-amerikanischer Cloud-Infrastruktur liegt oder von Hardware aus Fernost abhängt, könnte eine physische, langlebige Speicherlösung „Made in Germany“ für Behörden, Banken und kritische Infrastrukturen ein entscheidendes Argument sein. Sandro Stark von Vanagon Ventures sieht im Ausbau der Speicherinfrastruktur den „Schlüssel für alles, was davor liegt: KI, Energie, Rechenleistung“.

Ob ewigbyte tatsächlich zu einem Unternehmen von „generationeller Bedeutung“ wird, wie es die Investoren hoffen, wird sich zeigen, wenn der angekündigte industrielle Prototyp die geschützten Laborbedingungen verlässt. Der Bedarf an einer Alternative zum Magnetband ist unbestritten da – das Rennen darum, wer den Standard für das Glas-Zeitalter setzt, ist hiermit eröffnet.

Seed-Runde: Leipziger HRTech clarait erhält über 1,5 Mio. Euro

Das 2023 von Johannes Bellmann, Miriam Amin und Thilo Haase gegründete Start-up clarait digitalisiert einen der letzten analogen Bereiche im Unternehmen: die Zusammenarbeit zwischen Betriebsräten und HR.

Die clarait GmbH hat den Abschluss einer Seed-Finanzierungsrunde bekanntgegeben und sichert sich Kapital in Höhe von über 1,5 Millionen Euro. Lead-Investor der Runde ist der TGFS Technologiegründerfonds Sachsen, der einen siebenstelligen Betrag investiert. Als Co-Investor beteiligt sich der HR Angels Club, ein europaweites Netzwerk aus erfahrenen HR-Führungskräften und Investoren.

Marktlücke: Der „White Spot“ zwischen HR- und Legal-Tech

Während klassische HR-Prozesse wie Payroll oder Recruiting längst digitalisiert sind, gilt der Bereich der „Labour Relations“ (betriebliche Mitbestimmung) als einer der letzten kaum erschlossenen Märkte. In vielen Unternehmen dominiert hier noch der „Status Quo“ – ein Vorgehen, das angesichts strenger Compliance-Vorgaben und der DSGVO zunehmend riskant wird.

Clarait positioniert sich hier mit zwei verknüpften SaaS-Lösungen:

  • BRbase unterstützt Betriebsräte bei der strukturierten Organisation von Sitzungen, Beschlüssen und Mitbestimmungsprozessen.
  • HRflows liefert der Arbeitgeberseite juristisch geprüfte Workflows für mitbestimmungspflichtige Maßnahmen.

Wettbewerb & USP: Brückenbauer statt Insellösung

Im Wettbewerbsumfeld grenzt sich das Leipziger Start-up deutlich ab. Während etablierte Anbieter oft reine Insellösungen anbieten, verfolgt clarait einen Plattform-Ansatz. Ziel ist es, den Medienbruch zwischen Personalabteilung und Gremium zu beenden und beide Seiten auf einer Infrastruktur zu verbinden.

Das Start-up adressiert damit einen wachsenden Markt, der durch steigende regulatorische Anforderungen und den Trend zu revisionssicheren Workflows getrieben wird. Zu den Kunden zählen bereits DAX-40- und Fortune-500-Unternehmen.

Der „Perfect Fit“: Praxis trifft Prozesslogik

Ein wesentlicher Faktor für das Investment dürfte die Komposition des Gründerteams sein, das die nötige Neutralität für dieses politisch sensible Thema mitbringt:

  • Johannes Bellmann (CEO) vereint die Perspektiven beider Verhandlungspartner und versteht das Geschäftsmodell sowie den Markt der betrieblichen Mitbestimmung tiefgehend.
  • Thilo Haase (CPO) verantwortet die inhaltliche Ausgestaltung der Plattform.
  • Miriam Amin (CTO) vervollständigt das Trio als technische Mitgründerin.

„Smart Money“ und KI-Pläne

Neben dem Kapital des TGFS bringt vor allem der Einstieg des HR Angels Club strategisches Gewicht. Das Netzwerk gilt als „Smart Money“ der HR-Tech-Szene und bietet Zugang zu Entscheidern in Personal- und Organisationsfunktionen. Sören Schuster, Geschäftsführer des TGFS, sieht in der Gremienverwaltung einen „bislang nur unzureichend digitalisierten Bereich“ und bescheinigt dem Team das Potenzial zum Qualitätsführer.

Das frische Kapital soll primär in den Ausbau der Vertriebsorganisation sowie die Weiterentwicklung der Software fließen. Geplant sind unter anderem die Integration von KI-gestützten Assistenzfunktionen sowie die Vorbereitung der Internationalisierung, die zunächst im deutschsprachigen Raum erfolgen soll.

Customer-Support-ROI 2026: Warum Ticket-Automatisierung allein nicht ausreicht

Im Jahr 2026 stehen viele Führungskräfte vor einem echten Paradox: Die klassischen Kennzahlen im Customer Support erreichen Höchststände – und dennoch bleibt der Zusammenhang mit messbarem wirtschaftlichem Nutzen oft unklar.

Das Problem liegt nicht darin, dass gängige Automatisierungsansätze grundsätzlich nicht funktionieren. Vielmehr reicht es nicht aus, lediglich Tickets zu automatisieren, wenn Customer Support tatsächlich einen belastbaren ROI liefern soll. Der wahre Wert von Support liegt heute nicht mehr in der massenhaften Bearbeitung von Anfragen, sondern darin, Probleme frühzeitig zu verhindern, bevor sie sich zu messbaren wirtschaftlichen Verlusten entwickeln.

Warum sich Support-ROI 2026 schwerer belegen lässt

Moderne Support-Organisationen entwickeln sich zunehmend hin zu hybriden Modellen, in denen KI und menschliche Agents zusammenarbeiten. Eine Gartner-Umfrage zeigt: 95 % der Customer-Service-Verantwortlichen planen, auch künftig menschliche Agents parallel zu KI einzusetzen. Hybride Setups sind damit längst auf dem Weg zum Standard.

In der Praxis übernehmen KI-Systeme heute Routineanfragen, während Menschen komplexe oder kritische Fälle bearbeiten. Mit dieser veränderten Arbeitslogik verlieren klassische Kennzahlen wie Kosten pro Ticket, durchschnittliche Bearbeitungszeit oder Automatisierungsquote an Aussagekraft. In manchen Fällen verschleiern sie den tatsächlichen Wert von Support sogar.

Das führt dazu, dass Führungsteams häufig Folgendes beobachten:

  • steigende Automatisierungsquoten bei stagnierenden Einsparungen,
  • verbesserte CSAT-Werte ohne klaren finanziellen Effekt,
  • starke CX- und Effizienzkennzahlen, die sich dennoch nicht in unternehmerische Ergebnisse übersetzen lassen.

Support ist nicht weniger wertvoll geworden. Doch durch den Einsatz von KI sind die Erwartungen gestiegen – und lineares Denken in einzelnen Metriken reicht nicht mehr aus, um den tatsächlichen Beitrag von Support zu bewerten.

Wo sich Customer-Support-ROI tatsächlich zeigt

Der ROI von Customer Support zeigt sich nur selten als „direkt generierter Umsatz“. Stattdessen wird er sichtbar in vermiedenen Verlusten und reduzierten Risiken. Konkret äußert sich das in Veränderungen im Kundenverhalten, etwa durch:

  • weniger Rückerstattungen,
  • geringere Eskalationen,
  • einen Rückgang öffentlicher Beschwerden,
  • sinkendes Abwanderungsrisiko.
  • höheres Vertrauen an entscheidenden Punkten der Customer Journey

Diese Signale entstehen nicht über Nacht. Sie bauen sich über Zeit auf – und werden deshalb in Budgetdiskussionen häufig unterschätzt.

In einem unserer Kundenprojekte (Details aufgrund einer NDA anonymisiert) wurde der Customer Support über einen Zeitraum von zwölf Monaten vollständig neu aufgebaut. Ziel war nicht allein eine schnellere Reaktionszeit, sondern eine frühere und konsistentere Problemlösung entlang der gesamten Customer Journey. Die Ergebnisse waren eindeutig:

  • Rückerstattungsquote von 40 % auf 4 % gesenkt.
  • CSAT-Anstieg von 50 auf 95.
  • NPS-Steigerung von 32 auf 80.
  • Verbesserung der Trustpilot-Bewertung von 3,0 auf 4,7.
  • Erhöhung der Chargeback-Erfolgsquote von 5 % auf 90 % durch ein dediziertes Billing-Team im Support.

Keine dieser Kennzahlen für sich genommen „beweist“ ROI. In ihrer Gesamtheit zeigen sie jedoch, wie Support begann, Ergebnisse zu beeinflussen, die in klassischen CX-Dashboards kaum sichtbar sind: Rückerstattungen gingen zurück, weil Probleme frühzeitig gelöst wurden; öffentliche Bewertungen verbesserten sich, weil weniger Kunden an ihre Belastungsgrenze kamen; Loyalität wuchs, weil Support von Schadensbegrenzung zu echter Bedürfnislösung überging.

Darüber hinaus begann das Team, Kundenanfragen systematisch zu analysieren, um Muster und frühe Reibungspunkte zu identifizieren. Dadurch wurden Abweichungen zwischen angenommener Customer Journey und tatsächlichem Kundenerlebnis sichtbar. Für das Management entstand so eine deutlich belastbarere Grundlage für strategische Entscheidungen. Diese Erkenntnisse führten zu neuen Services, die sich am realen Kundenverhalten orientierten – und damit Wachstum und Umsatz beschleunigten.

So zeigt sich Support-ROI in der Praxis: nicht als einzelne Kennzahl, sondern als Zusammenspiel aus vermiedenen Verlusten, gestärktem Vertrauen und datenbasierten Entscheidungen.

Wie hybrider Support die Wirtschaftlichkeit verändert

Über Jahre hinweg galt Automatisierung als vermeintliche „Wunderlösung“ zur Kostensenkung. Die Logik war simpel: geringere Supportkosten führen automatisch zu höherem ROI. In der Realität ist der Zusammenhang komplexer. Niedrigere Kosten bedeuten nicht automatisch höhere Erträge – insbesondere dann nicht, wenn Automatisierung genau die Mechanismen entfernt, die Verluste verhindern.

Wird Support ausschließlich auf Effizienz optimiert, verschwinden ungelöste Probleme nicht. Sie verlagern sich: in Rückerstattungen, Chargebacks, Abwanderung und öffentliche Beschwerden. Einsparungen tauchen in einer Zeile der GuV auf, während sich der Schaden still im restlichen Unternehmen summiert. Hybrider Support kann diese Gleichung verändern – aber nur, wenn er bewusst gestaltet wird.
Wenn KI im Support richtig eingesetzt wird:

  • lassen sich bis zu 85 % der Anfragen automatisiert bearbeiten,
  • liegt der CSAT rund 15 % höher als in nicht-hybriden Setups,
  • führt KI echte Aktionen aus (Rückerstattungen, Kündigungen, Account-Änderungen) statt nur standardisierte Antworten zu versenden.

In abonnementbasierten Geschäftsmodellen beginnen wir beispielsweise stets mit einer Analyse eingehender Anfragen, um zu verstehen, welche Aktionen sich sicher vollständig automatisieren lassen. Rund 50 % der Kündigungsanfragen sind in der Regel unkompliziert und risikoarm – und damit gut für eine End-to-End-Automatisierung geeignet.

Die verbleibenden Fälle unterscheiden sich deutlich. Etwa ein Viertel der Kündigungsanfragen stammt von frustrierten oder emotional belasteten Kunden. Diese Interaktionen bergen das höchste Risiko für Abwanderung. In gut konzipierten hybriden Setups übernimmt Automatisierung hier die Rolle eines Co-Piloten: Sie kennzeichnet risikoreiche Fälle, eskaliert sie an menschliche Agents und liefert Kontext – während Tonfall, Urteilsvermögen und finale Entscheidungen bewusst beim Menschen bleiben.

Der wirtschaftliche Effekt entsteht dabei nicht durch den Ersatz von Menschen, sondern durch den gezielten Einsatz menschlicher Aufmerksamkeit genau in den Momenten, die Vertrauen und Loyalität tatsächlich entscheiden.

Warum hybrider ROI klassische Messlogik sprengt

In Projekten, in denen First-Level-KI sinnvoll eingeführt wird, sinken die Supportkosten innerhalb eines Jahres typischerweise um 15–25 %, abhängig vom Geschäftsmodell. Gleichzeitig verbessern sich häufig die Erlebniskennzahlen. Diese Kombination ist jedoch kein Selbstläufer – sie entsteht nur dann, wenn Automatisierung Probleme wirklich löst und nicht lediglich verlagert.

Der Haken: Hybrider Support macht ROI schwerer messbar. Klassische ROI-Modelle gehen davon aus, dass Wertschöpfung klar getrennt erfolgt. In Wirklichkeit entsteht der größte Effekt genau dort, wo KI und Menschen zusammenarbeiten: Probleme werden verhindert, Kundenbeziehungen stabilisiert und Loyalität geschützt.

Finanzteams sehen deshalb oft Verbesserungen, können sie aber in bestehenden Scorecards nicht abbilden. Während sich das operative Modell weiterentwickelt hat, ist die Logik der Messung stehen geblieben.

Was Führungskräfte tatsächlich messen sollten

2026 müssen Unternehmen von Aktivitätsmetriken zu Wirkungssignalen wechseln. Ein praxisnaher Ansatz besteht darin, Ergebnisse auf drei Ebenen zu verfolgen:

  1. Finanzielle Risiken und Leckagen: Rückerstattungsquoten, Chargeback-Erfolgsraten, Dispute-Volumen, wiederkehrende Zahlungsprobleme.
  2. Vertrauens- und Reibungssignale: öffentliche Bewertungen, Eskalationstrends, Wiederholungskontakte, Kundenstimmung.
  3. Bindungsindikatoren: Abwanderungsrisikosegmente, Kündigungsmuster und Retention-Ergebnisse (auch wenn die exakte Umsatzzuordnung später erfolgt).

Diese Signale machen Wert früher sichtbar als klassische Umsatzberichte. Sie zeigen, ob Support Verluste verhindert – und genau dort beginnt ROI in der Regel.

Wie sich Support-Budgets rechnen

Support-Budgets scheitern, wenn sie ausschließlich an Ticketvolumen und Headcount ausgerichtet sind. Ein gesünderer Ansatz beginnt mit einer anderen Frage: Wo kostet schlechter Support unser Unternehmen am meisten Geld?

Teams, die echten ROI aus Support erzielen, investieren typischerweise in drei Bereiche:

  1. Präventionsfähigkeit: Support übernimmt Zahlungs- und Abrechnungsthemen, steuert risikoreiche Fälle und etabliert Feedback-Loops zur Ursachenanalyse.
  2. Automatisierung mit Fokus auf Lösung: First-Level-KI erledigt risikoarme Aufgaben vollständig, statt Anfragen lediglich weiterzureichen.
  3. Menschliches Urteilsvermögen dort, wo es zählt: Menschen bearbeiten Hochrisiko-Kündigungen, Eskalationen, emotional sensible Fälle und betreuen besonders wertvolle Kunden.

In diesem Moment hört Support auf, ein Kostenpunkt zu sein, und wird zu einem strategischen Hebel, der Umsatz schützt, Risiken reduziert und mit dem Unternehmen skaliert.

Fazit

2026 entsteht der tatsächliche ROI von Customer Support vor allem dadurch, dass vermeidbare Probleme gar nicht erst zu Umsatzverlusten werden.

Automatisierung ist entscheidend – aber nur dann, wenn sie Probleme tatsächlich löst. Und menschliches Urteilsvermögen sollte gezielt dort eingesetzt werden, wo es Retention, Loyalität und Vertrauen wirklich beeinflusst.

Für Führungskräfte, die sich auf Ergebnisse statt auf Aktivitätskennzahlen konzentrieren, ist Support kein Cost Center mehr. Er ist das, was er schon heute sein sollte: ein Hebel zum Schutz von Umsatz, zur Reduktion von Risiken und zur Nutzung von Kundenverhalten als Grundlage für fundierte unternehmerische Entscheidungen.

Die Autorin Nataliia Onyshkevych ist CEO von EverHelp. Sie arbeitet mit wachsenden Unternehmen aus unterschiedlichen Branchen daran, Customer Support in KI-gestützten Umgebungen skalierbar und wirkungsvoll zu gestalten.

From Lab to Launch

Wie Start-ups Forschung in Wirkung und Wachstum übersetzen: So gelingt Life-Sciences-Start-ups die Series A.

Life Sciences gehören zu den spannendsten, aber auch anspruchsvollsten Bereichen für Wachstumskapital. Kaum ein Sektor verbindet wissenschaftliche Exzellenz so direkt mit gesellschaftlichem Nutzen und gleichzeitig mit langen Entwicklungszyklen, hohen Kosten und komplexen regulatorischen Anforderungen. Genau diese Mischung macht den Weg vom Forschungslabor bis zum Series A-Deal so herausfordernd – und sie erklärt, warum Impact-Investoren hier besonders genau hinschauen.

Hervorragende Technologien werden nicht automatisch zu einer überzeugenden Investmentstory. Entscheidend ist, ob ein Start-up den Sprung von der wissenschaftlichen Idee zur skalierbaren Wertschöpfung schafft. Wer Series A-Kapital aufnehmen will, muss zeigen, dass aus Forschung ein Produkt werden kann, aus einem Produkt ein Markt und aus einem Markt ein nachhaltiges Geschäftsmodell.

Wissenschaft allein reicht nicht: Der Forschungsansatz muss investierbar werden

Viele Life Sciences-Start-ups starten mit einem starken technologischen Fundament. Die wissenschaftliche Tiefe ist oft beeindruckend, ebenso wie die Expertise im Team. Für Investoren ist das jedoch nur der Ausgangspunkt. Series A-Investoren erwarten einen realistischen Anwendungskontext und ein skalierbares Businessmodell mit klarer Exitstrategie. Damit verändern sich die entscheidenden Fragen im Unternehmen und auch die Teamanforderungen. Wie stabil ist die Datenlage? Wie groß ist der adressierbare Markt? Wie robust ist das Verfahren außerhalb idealer Laborbedingungen? Ist die Patentlage verteidigbar? Wie ist das Wettbewerbsumfeld strukturiert – und welche Schritte (inkl. Regulatorik und Kapitalbedarf) sind nötig, um ein marktfähiges Produkt zu schaffen? Je klarer ein Start-up diesen Übergang strukturieren und belegen kann, desto eher entsteht Vertrauen beim Investor: Denn die Series A ist oft der Zeitpunkt, an dem Investoren das hohe Risiko eines Life Sciences-Start-ups anhand seines Kommerzialisierungspotenzials genauer beurteilen. Detaillierte Informationen zu Entwicklungszeit, Kapitalbedarf, Regulatorik sowie Marktzugang, Exitoptionen und die richtige Equity Story werden zu entscheidenden Faktoren für ein Series A-Start-up.

Impact ist kein Buzzword: Wirkung muss messbar und plausibel sein

Impact-Investoren investieren nicht nur in Rendite, sondern auch in Wirkung. Gerade in den Life Sciences kann Impact sehr konkret sein, etwa durch bessere Diagnostik, effizientere Therapien, schnellere Entwicklungspfade oder niedrigere Kosten im Gesundheitssystem – oder auch eine erste neue Therapieoption für bestimmte Indikationen. Impact muss verständlich, messbar und realistisch hergeleitet werden. Viele Start-ups formulieren ihren Impact zu allgemein. Am meisten Erfolg verspricht eine klare, fokussierte Wirkungskette. Welches Problem wird gelöst? Für welche Patientengruppe oder welches Versorgungssystem? Welche Outcomes verbessern sich tatsächlich? Und welche Evidenz spricht dafür, dass diese Wirkung erreichbar ist? Gibt es kompetitive Therapien oder Diagnostika, wie strukturiert sich der Preis, und vor allem: Gibt es eine (teilweise) Erstattung der Versicherungen? Wer Impact so darstellt, dass er nicht nur emotional, sondern auch ökonomisch und klinisch nachvollziehbar wird, schafft einen echten Vorteil im Fundraising.

Der Weg zur Series A: Strategie schlägt Hoffnung

Series A-Kapital ist nicht einfach „mehr Geld“. Es markiert einen Strategiewechsel. In dieser Phase wollen Investoren sehen, dass ein Start-up seinen Entwicklungsplan realistisch strukturiert, die Risiken kennt und einen klaren Pfad zur Kommerzialisierung aufzeigen kann. Dazu gehören belastbare Meilensteine, ein sauberer Finanzierungsplan und eine klare Priorisierung. Welche Daten müssen bis wann vorliegen? Welche regulatorischen Schritte sind kritisch? Welche Partnerschaften sind erforderlich, um Zeit und Kosten zu reduzieren und sich strategisch zu platzieren? Und wie sieht der Plan aus, wenn einzelne Annahmen nicht eintreten? Ein überzeugender Series A-Case zeigt nicht nur das Best Case-Szenario, sondern auch professionelles Risikomanagement – denn Investoren wissen, dass im Life Sciences-Umfeld nicht alles planbar ist. Umso wichtiger ist ein strukturierter, realistischer Ansatz.

Team, Governance und Umsetzungskraft: Investoren investieren in Führung

Im Life Sciences-Bereich ist die Teamfrage oft entscheidend. Nicht, weil wissenschaftliche Kompetenz unwichtig wäre, sondern weil Series A eine operative Phase ist. Investoren suchen Teams, die nicht nur Forschung können, sondern auch kommerzielle Produktentwicklung, klinische Strategie, Marktlogik und Partnerschaften. Start-ups wirken besonders überzeugend, wenn sie früh ein starkes Set-up schaffen. Dazu gehören erfahrene Advisors, ein realistisches Verständnis für klinische und regulatorische Prozesse sowie eine Governance-Struktur, die Wachstum ermöglicht. Ein starkes Board, klare Rollen und ein transparenter Kommunikationsstil sind nicht nur „nice to have“, sondern Signale von Reife. Gerade Impact-Investoren achten darauf, ob die Mission eines Unternehmens auch organisatorisch getragen wird. Wer Wirkung verspricht, muss zeigen, dass Verantwortung strukturell verankert ist.

Skalierung in Life Sciences: Partnerschaften oft der schnellste Hebel

Während in klassischen Tech-Modellen Skalierung oft über Vertrieb und Marketing läuft, ist der Hebel in den Life Sciences häufig ein anderer. Strategische Partnerschaften können der Schlüssel sein, um schneller Richtung Markt zu kommen und früh einen Exitpfad zu skizzieren. Das kann über Pharmakooperationen, Diagnostikpartner, Forschungseinrichtungen oder Industriepartner geschehen.

Für Investoren ist dabei entscheidend, dass Partnerschaften nicht nur als Option erwähnt werden, sondern als strategischer Bestandteil des Geschäftsmodells. Wer zeigen kann, dass der Zugang zu Infrastruktur, klinischen Studien, Produktionskapazitäten oder Vertriebskanälen realistisch gesichert ist, reduziert das Risiko (oft auch die Kosten) und erhöht die Attraktivität der Series A-Runde.

Gleichzeitig sollten Start-ups vermeiden, sich zu früh abhängig zu machen. Gute Deals entstehen, wenn die eigene Position stark genug ist, um Partnerschaften auf Augenhöhe zu verhandeln.

Fazit: Series A gewinnt, wer Impact in ein skalierbares Geschäftsmodell übersetzt

Der Weg vom Labor zum Launch ist in den Life Sciences kein Sprint, sondern ein anspruchsvoller, kapitalintensiver Prozess. Impact-Investoren sind bereit, diesen Weg zu begleiten, erwarten jedoch Klarheit, Struktur und Evidenz. Wissenschaftliche Exzellenz ist die Basis, doch Series A-Kapital gibt es nur, wenn daraus ein investierbares Produkt, ein plausibler Markt und ein professionell geführtes Unternehmen entsteht. Start-ups, die ihren Impact messbar machen, ihre Meilensteine realistisch planen und ihr Team auf Umsetzung ausrichten, haben die besten Chancen, Wirkung und Rendite zusammenzubringen: Denn am Ende überzeugt nicht die Vision allein, sondern vor allem die Fähigkeit, sie in messbare Ergebnisse zu übersetzen.

Dies ist ein Beitrag aus der StartingUp 01/26 – hier geht's zum E-Shop.

Neues Venture Studio und 30-Mio.-Fonds für Europas Sicherheitstechnologien

Ein Konsortium aus Beratung, Venture Building und Kapitalmanagement startet eine neue Initiative für Technologien im Bereich „Resilience & Defence“. PwC Deutschland, Bridgemaker und Segenia Capital haben am 12. Februar den Launch eines gemeinsamen Venture Studios bekannt gegeben. Die Allianz positioniert sich als „System-Integrator“, um die Lücke zwischen universitärer Forschung und marktfähigen Produkten im Sicherheitssektor zu schließen.

Der Markt für Sicherheitstechnologie und den Schutz kritischer Infrastrukturen (KRITIS) wandelt sich von einer Nische zum zentralen Fokus der europäischen Innovationspolitik. Mit dem neuen Venture Studio reagieren die Initiatoren auf die geopolitische Notwendigkeit, technologische Souveränität in Europa zu stärken.

Für Gründer*innen im DeepTech-Bereich eröffnet sich damit eine Alternative zum klassischen Venture Capital (VC). Während normale VCs oft erst investieren, wenn ein Produkt Marktumsätze zeigt („Product-Market-Fit“), setzt diese Initiative früher an. Sie adressiert spezifisch die hohen Hürden im Defence-Sektor – wie langwierige staatliche Beschaffungsprozesse und komplexe Regulierung.

Smart Money statt nur Kapital: Der „System-Integrator“-Ansatz

Das Kernproblem vieler europäischer DeepTech-Start-ups ist die Skalierung von der reinen Forschung (Technology Readiness Level 1) hin zur industriellen Anwendung (Level 6+). Während Milliarden-Töpfe wie der NATO Innovation Fund oft erst in Wachstumsphasen greifen, fehlt es häufig an Kapital für die „schmutzige Phase“ des Prototypenbaus („Valley of Death“).

Das Konsortium tritt hier nicht als reiner Geldgeber auf, sondern bündelt drei Disziplinen, um Dual-Use-Technologien (zivile und militärische Nutzbarkeit) schneller zur Marktreife zu bringen:

  1. Regulatorik & Marktzugang (PwC Deutschland): Unterstützung bei der Navigation durch behördliche Anforderungen („Vergaberechts-Compliance“).
  2. Company Building (Bridgemaker): Operative „Execution Power“ beim Aufbau der Ventures – von der Hardware bis zur Software.
  3. Kapital (Segenia Capital): Professionelles Fondsmanagement für die Frühphase.

Für Gründer*innen wirkt dieses Setup wie ein Qualitäts-Filter: Wer das Studio durchläuft, gilt für spätere Series-A-Investoren als „vorgeprüft“ und regulatorisch abgesichert.

Bekannte Gesichter aus dem Ökosystem

Die Personalien hinter der Initiative signalisieren Branchenkennern, dass hier operatives Verständnis auf politisches Netzwerk trifft.

Federführend bei PwC agiert Florian Nöll. Als ehemaliger langjähriger Vorsitzender des Bundesverbands Deutsche Startups gilt er als einer der wichtigsten Brückenbauer zwischen der Berliner Politik und der Gründerszene. Seine Erfahrung ist essenziell, um junge Tech-Firmen durch die oft starren Beschaffungsprozesse der öffentlichen Hand zu navigieren.

Auf der operativen Seite bringt Henrike Luszick (CEO Bridgemaker) einen Track Record ein, der über reine Software-Modelle hinausgeht. Mit Ventures wie Nestor (einem Joint Venture für mobile Überwachungssysteme mit KI-Analyse) hat der Company Builder bereits bewiesen, dass er Hardware-Themen im Sicherheitsbereich erfolgreich am Markt platzieren kann.

30-Millionen-Euro-Fonds & der „Dual-Use“-Hebel

Parallel zum operativen Studio-Betrieb wird ein Venture Fonds mit einem Zielvolumen von 30 Millionen Euro aufgelegt. Segenia Capital, als bei der BaFin registrierter AIFM-Manager, übernimmt die Verwaltung. Die im Vergleich zu Mega-Fonds überschaubare Summe unterstreicht den Fokus auf die Pre-Seed- und Seed-Phase (Tickets ca. 500k – 1,5 Mio. EUR). Der Fonds operiert nach einem „Dual-Track-Ansatz“: Er finanziert sowohl interne Ausgründungen des Studios als auch externe Startups, die strategisch ins Portfolio passen.

Dass München als einer der zentralen Standorte gewählt wurde, ist strategisch kein Zufall. Die bayerische Landeshauptstadt hat sich – getrieben durch die TU München und Einhörner wie Quantum Systems – zum europäischen Hub für DefenceTech entwickelt.

Für Gründer*innen ist zudem der strategische Fokus auf Dual-Use entscheidend. Technologien, die primär für Resilienz und den Schutz kritischer Infrastrukturen entwickelt werden, aber auch militärisch nutzbar sind, umschiffen die strengen ESG-Hürden vieler institutioneller Investoren. Dies öffnet Kapitalquellen, die reinen Rüstungs-Start-ups oft verschlossen bleiben.

Einordnung: Reality Check – Hürden bleiben bestehen

Trotz der prominenten Unterstützung und der Marktlogik müssen interessierte Gründer*innen genau hinsehen. Venture-Studio-Modelle stehen oft in der Kritik, durch hohe Service-Anteile für das operative „Building“ die „Cap Table“ (Gesellschafterstruktur) frühzeitig zu verwässern. Wenn Studio und Fonds signifikante Anteile halten, bleibt Gründer*innen oft weniger Equity, was Folgerunden mit externen VCs erschweren kann („Skin in the Game“-Debatte).

Zudem sind 30 Millionen Euro im kapitalintensiven Hardware-Sektor schnell aufgebraucht – das Risiko einer Finanzierungslücke nach der Seed-Phase bleibt. Die größte Unbekannte ist jedoch der Kunde Staat: Auch mit PwC im Rücken gelten für Start-ups weiterhin die strengen Vergaberechte der öffentlichen Hand. Ob das Studio diese „Paperwork Barrier“ tatsächlich signifikant verkürzen kann, muss die Praxis erst noch zeigen.

Key Facts

  • Initiatoren: PwC Deutschland, Bridgemaker, Segenia Capital
  • Marktpositionierung: Early-Stage „System-Integrator“ (Kapital + Regulatorik + Building)
  • Fokus: Resilience, Defence Technology, KRITIS, Dual-Use
  • Finanzierung: Fonds mit 30 Mio. EUR Zielvolumen (Pre-Seed/Seed Fokus)
  • Investitionsstrategie: Neugründungen (Inkubation) und externe Direktinvestments
  • Standorte: Berlin, Frankfurt am Main, München

1,3 Mio. Euro Finanzierung für BauTech-Start-up conmeet

Das 2023 von Benedikt Kisner, Leandro Ananias und Lennart Eckerlein gegründete conmeet bietet eine All-in-One-Plattform für das Bau- und Handwerksgewerbe.

Nach Jahren der Entwicklung im „Stealth Mode“ meldet sich das Cloud-Software-Start-up conmeet mit einem Erfolg am Markt: Das 2023 gegründete Unternehmen hat seine Pre-Seed-Finanzierungsrunde über 1,3 Millionen Euro abgeschlossen. Das frische Kapital soll die Markteinführung der All-in-One-Plattform für das Bau- und Handwerksgewerbe beschleunigen. Als Lead-Investor tritt der VC-Fonds May Ventures auf.

Das im nordrhein-westfälischen Borken ansässige Unternehmen zielt mit seiner Lösung auf die Digitalisierung mittelständischer Bau- und Handwerksunternehmen ab. Kern des Geschäftsmodells ist eine cloud-native Plattform, die verschiedene Unternehmensbereiche wie CRM, ERP, Projektmanagement, Controlling und Banking in einer zentralen Anwendung bündelt. Ziel ist es, die in der Branche weit verbreitete Fragmentierung durch isolierte Softwarelösungen – den sogenannten „Flickenteppich“ – aufzulösen.

Erfahrene Gründer und erfolgreicher Track-Record

Hinter conmeet steht ein Trio mit komplementären Kompetenzen, das die Software in den vergangenen zwei Jahren im Verborgenen entwickelte, bevor im Sommer 2023 die formale Gründung der GmbH erfolgte und vor einigen Monaten die ersten Kunden angebunden wurden.

Der Einstieg von CEO Benedikt Kisner in den ConTech-Markt wird in der Szene dabei besonders aufmerksam verfolgt. Kisner lieferte mit dem Aufbau der netgo group eine der beachtlichsten Wachstumsstorys im deutschen IT-Mittelstand ab. Er führte das Unternehmen bis zum Exit an den Private-Equity-Investor Waterland – zum Zeitpunkt seines Ausstiegs verzeichnete die Gruppe über 1.300 Mitarbeitende und erwirtschaftete Umsätze im dreistelligen Millionenbereich. Komplettiert wird das Gründungsteam durch CTO Leandro Ananias und COO Lennart Eckerlein, der langjährige Führungserfahrung aus dem Handwerkssektor einbringt.

Marktanalyse: Angriff auf den App-Dschungel

Mit dem Marktstart tritt conmeet in ein dicht besiedeltes und umkämpftes Wettbewerbsfeld ein. Moderne Cloud-Herausforderer wie ToolTime, Plancraft oder HERO Software haben in den letzten Jahren bereits erfolgreich digitale Lösungen im Handwerk etabliert. Diese Anbieter punkten oft mit hoher Benutzerfreundlichkeit bei spezifischen Workflows wie Terminplanung oder Angebotserstellung und adressieren primär kleine bis mittlere Betriebe.

Die Differenzierungsstrategie von conmeet zielt jedoch auf eine Lücke im "Upper Mid-Market": Während viele Wettbewerber als Insellösungen fungieren, die über Schnittstellen verbunden werden müssen, positioniert sich das Start-up als integriertes Betriebssystem. Anstatt nur Büroprozesse zu digitalisieren, greift die Software tiefer in die Wertschöpfungskette ein – von der integrierten Banksteuerung bis zur Einbindung von Subunternehmern in Projekthierarchien.

Die Marktchancen stehen dabei gut, da der Leidensdruck in der Branche wächst: Der anhaltende Fachkräftemangel zwingt Bauunternehmen zur drastischen Effizienzsteigerung. Wer nicht mehr Personal findet, muss die Verwaltung automatisieren. Genau hier – in der komplexen Steuerung von Großprojekten und Firmenverbünden – will conmeet sich etablieren.

Starkes Eigeninvestment der Gründer

Eine Besonderheit der aktuellen Runde: Die drei Gründer beteiligen sich selbst mit einem substanziellen Betrag aus eigener Tasche an der Finanzierung. Als Lead-Investor tritt der Venture-Capital-Fonds May Ventures unter der Leitung von Managing Partner Maximilian Derpa auf. Derpa sieht in der Kombination aus technologischer Kompetenz und der durch Eckerlein eingebrachten Branchenerfahrung den ausschlaggebenden Faktor für das Investment: „Conmeet adressiert ein echtes Problem im Mittelstand mit einer technologisch fortschrittlichen Lösung“, so Dominik Lohle von May Ventures.

Ausblick: KI-Integration und Ökosystem

Mit den eingeworbenen 1,3 Millionen Euro plant das Start-up den Ausbau der Teams in Vertrieb, Marketing und Produktentwicklung. Mittelfristig verfolgt das Unternehmen ambitionierte Technologieziele: Geplant ist der Einsatz von KI-Agenten zur autonomen Steuerung von Geschäftsprozessen. Parallel soll die Plattform zu einem umfassenden Ökosystem für die Immobilienwirtschaft ausgebaut werden – von Architekten über Generalunternehmer bis hin zum Facility Management.

GeneralMind: 12 Mio. Dollar Investment nur 6 Monate nach Gründung

Das Berliner KI-Start-up GeneralMind entwickelt ein sog. autonomes AI System of Action, das wiederkehrende, komplexe Arbeitsschritte entlang von Waren- und Zahlungsflüssen automatisiert.

GeneralMind, ein „KI System of Actionˮ zur Automatisierung von digitaler Zettelwirtschaft, unstrukturierter Koordination sowie ineffizienter manueller Prozesse entlang der gesamten Lieferkette, gibt heute den Abschluss seiner Eigenkapitalfinanzierung in Höhe von 12 Millionen US-Dollar bekannt. Die Runde ist eine der größten bekannten europäischen Pre-Seed Runden der letzten Jahre und wurde weniger als sechs Monate nach der Aufnahme der Geschäftstätigkeit des Unternehmens abgeschlossen. GeneralMind will die Mittel verwenden, um die Skalierung seiner Technologie in Europa voranzutreiben.

Angeführt wurde die Finanzierungsrunde von Lakestar, Leo Capital, Lucid Capital, Heliad, BOOOM, mit Partizipierung von etablierten Angel-Investoren wie Alexander Kudlich, Jens Urbaniak, Samir Sood und Vishal Lugani.

GeneralMind wurde in Berlin vom Gründerteam um die Razor Group gemeinsam mit führenden Technologen aus dem Silicon Valley gegründet: Tushar Ahluwalia Shrestha Chowdhury, Dr. Oliver Dlugosch, Lennart von Hardenberg, Nishrit Shrivastava und Sergiu Șoima. Neben dem Hauptsitz in Berlin betreibt das Unternehmen einen weiteren Standort in Bangalore.

GeneralMind – das „AI System of Action“

Unternehmen arbeiten heute mit sogenannten Systems of Record SoR, zum Beispiel ERP-Systemen, um die Komplexität von Lieferketten zu bewältigen. Trotz dieser Systeme findet ein Großteil der operativen Arbeit weiterhin in E-Mail-Posteingängen und Spreadsheets statt: Teams müssen unstrukturierte Kommunikation und Koordination, Übergaben, Rückfragen und Ausnahmen manuell zusammenführen, nachhalten und in Systeme übertragen. Oft fehlt dabei klare Nachverfolgbarkeit, es entstehen Medienbrüche und die Fehleranfälligkeit ist hoch, obwohl genau diese Arbeit entscheidend ist, um die Lieferkette zuverlässig am Laufen zu halten.

GeneralMind entwickelt das „AI System of Action“ (SoA), um genau diese manuelle, repetitive Arbeit sowie unstrukturierte Koordination entlang der Lieferkette end-to-end zu übernehmen, als operative KI-Ebene über bestehenden Systemen, menschenüberwacht und bei Bedarf mit Freigabe.

KI-Autopilot für operative Prozesse mit menschlicher Fähigkeit

Der KI-Autopilot von GeneralMind übernimmt die „digitale Zettelwirtschaft" entlang komplexer Lieferketten, indem er automatisiert manuelle, repetitive Abläufe zwischen E-Mail, Excel und ERP-Systemen autonom ausführt. Eingehende Aufgaben (oft per E-Mail) werden erfasst, analysiert und anschließend end-to-end ausgeführt. Besonders dort, wo viele kleinteilige Aufgaben zuverlässig abgearbeitet, Abstimmungen sauber nachgehalten, Termine und Fristen gesichert und zahlreiche interne und externe Stakeholder entlang des Prozesses koordiniert werden müssen. Zum Beispiel in Beschaffung, Vertrieb oder der Rechnungsbearbeitung.

Diese „digitale Zettelwirtschaft“ kostet global agierende Unternehmen entlang ihrer Lieferketten teilweise Umsätze in Milliardenhöhe. Ware bleibt liegen, Entscheidungen verzögern sich, Aufgaben gehen im Tagesgeschäft unter.

„Unternehmen wissen oft genau, wo es hakt, scheitern aber an der operativen Umsetzung“, sagt Tushar Ahluwalia, Gründer und CEO von GeneralMind. „Ich habe im E-Commerce immer wieder gesehen, wie digitale Zettelwirtschaft, ineffiziente manuelle Prozesse und schmerzhafte Stakeholder-Koordination zwischen unstrukturierter Kommunikation und ERP-Systemen enorme Ineffizienzen in großen Unternehmen erzeugen. Genau dieses Problem lösen wir mit GeneralMind. Unsere KI übernimmt diese Prozesse end-to-end; kein Copilot, sondern mit Autopilot-Funktionalität, die von Menschen überwacht und bei Bedarf freigegeben wird“, ergänzt er.

Vom Labor zur Großindustrie: MicroHarvest startet Bau einer 15.000-Tonnen-Anlage

Das 2021 von Katelijne Bekers, Jonathan Roberz und Dr. Luísa Cruz gegründete Hamburger BioTech MicroHarvest vollzieht den Schritt vom Labor in die industrielle Massenproduktion. Im Chemiepark Leuna entsteht eine kommerzielle Großanlage mit einer Jahreskapazität von 15.000 Tonnen.

Der Hamburger Proteinhersteller MicroHarvest verlässt den Pilotmaßstab und beginnt mit der industriellen Umsetzung seiner Fermentationstechnologie. Wie das Unternehmen am 12. Februar bekannt gab, fiel die Standortwahl für die erste kommerzielle Großanlage auf den Chemiepark Leuna in Sachsen-Anhalt.

Rapider Aufstieg: Von der Gründung zum Anlagenbau

Das Tempo, das MicroHarvest vorlegt, ist im Deep-Tech-Bereich ungewöhnlich hoch. Gegründet 2021 von Katelijne Bekers (CEO), Jonathan Roberz (COO) und Dr. Luísa Cruz (CTO) in Hamburg, gelang dem Gründer-Trio binnen weniger Jahre gelang der Sprung von der Verfahrensentwicklung zur Planung einer Großanlage, deren Produktionsstart bereits in rund zwei Jahren vorgesehen ist.

Technologie: Biomasse-Fermentation in Rekordzeit

Kern des Erfolgs ist ein proprietäres Verfahren der Biomasse-Fermentation. Anders als bei der Präzisionsfermentation werden hier die Mikroorganismen selbst zum Produkt: Bakterien vermehren sich exponentiell und werden zu sogenanntem Single Cell Protein (SCP) verarbeitet. Der technologische USP liegt in der Geschwindigkeit: Vom Rohstoff bis zum fertigen Protein vergehen laut MicroHarvest nur 24 Stunden. Das Verfahren gilt als eines der effizientesten weltweit und benötigt nur einen Bruchteil der Fläche und des Wassers konventioneller Proteinquellen.

Validierung durch Top-Investoren und Awards

Dass das Scale-up nun eine Investition im mittleren zweistelligen Millionenbereich stemmen kann, ist auch das Resultat einer soliden Finanzierungsstrategie. Bereits 2022 sicherte sich MicroHarvest in einer Series-A-Runde Kapital, angeführt von FoodTech-VCs wie Astanor Ventures und FoodLabs. Für den Bau in Leuna kommt nun ein Zuwendungsbescheid über knapp 5,5 Millionen Euro aus der Bundesförderung für Energie- und Ressourceneffizienz hinzu.

Standortentscheidung und Marktstrategie

In Leuna sollen rund 25 direkte Arbeitsplätze entstehen. Die Entscheidung für den Standort fiel nach der Prüfung von rund 40 Optionen in Europa. Ausschlaggebend waren die industrielle Infrastruktur und die Nähe zu regionalen Rohstoffen wie Melasse, die kurze Transportwege ermöglichen.

„Wir bauen kein Pilotprojekt, sondern eine Produktionsinfrastruktur für relevante Mengen. Leuna bietet dafür genau das richtige Umfeld: bestehende Industrie, verlässliche Utilities und ein regionales Agrar- und Verarbeitungsnetzwerk“, betont Co-Founder Jonathan Roberz.

Marktseitig ist der Boden bereitet: MicroHarvest zielt zunächst auf den B2B-Markt für Tiernahrung und Aquakultur und konnte bereits Produkteinführungen mit Partnern wie VEGDOG und THE PACK realisieren. Perspektivisch arbeitet das Unternehmen auch an Anwendungen für den Human-Food-Bereich.

Learnings für Gründer*innen

Der Case MicroHarvest zeigt exemplarisch, dass für Hardware-Start-ups die Standortwahl keine reine Immobilienthematik ist. Die Anbindung an bestehende Ökosysteme – hier die Stoffströme und Utilities eines etablierten Chemieparks – kann den entscheidenden Geschwindigkeitsvorteil beim Roll-out liefern. Zudem beweist die Finanzierungsstruktur, wie wichtig der intelligente Mix aus Venture Capital und staatlicher Förderung (hier für Capex) ist, um kapitalintensive Industrieprojekte zu realisieren.

Millionen-Spritze gegen den Brain Drain: Blockbrain holt 17,5 Mio. Euro

Wissen ist das neue Gold – doch es wandert oft mit den Mitarbeitenden aus der Tür. Das 2022 gegründete Stuttgarter Scale-up Blockbrain will das verhindern. Mit einer „No-Code“-Plattform konservieren die Gründer Antonius Gress, Mattias Protzmann und Nam Hai Ngo Firmenwissen in KI-Agenten. Jetzt gab es frisches Kapital, dass primär in die Expansion nach Großbritannien und Europa sowie in die Produktentwicklung fließen soll.

Der demografische Wandel setzt Unternehmen unter Druck: Wenn erfahrene Fachkräfte in den Ruhestand gehen oder kündigen, hinterlassen sie oft nicht nur eine leere Stelle, sondern eine Wissenslücke. Eingespielte Prozesse und implizites Erfahrungswissen („Tribal Knowledge“) gehen verloren. Genau hier hakt Blockbrain ein. Das Tech-Unternehmen gab heute den Abschluss einer Serie-A-Finanzierungsrunde über 17,5 Millionen Euro bekannt.

Angeführt wird die Runde vom Münchner VC Alstin Capital und dem Londoner Tech-Investor 13books Capital. Zudem stockten die Bestandsinvestoren Giesecke+Devrient Ventures, Landesbank Baden-Württemberg Ventures und Mätch VC ihr finanzielles Engagement auf. Auch das Family Office von Harting beteiligte sich an der Runde, was die Gesamtfinanzierung des Unternehmens auf 22,5 Millionen Euro hebt.

Vom Konzern-Problem zur Start-up-Lösung

Dass Blockbrain bei der Industrie einen Nerv trifft, liegt auch an der DNA des Gründerteams. CEO Antonius Gress kennt die Schmerzen großer Organisationen aus seiner Zeit bei Bosch, während CTO Mattias Protzmann als Mitgründer von Statista bereits bewiesen hat, wie man Datenmodelle skaliert. Dritter im Bunde ist Nam Hai Ngo (ehemals Antler).

Ihr Ansatz: Eine „No-Code“-Plattform, mit der Unternehmen ohne Programmieraufwand sogenannte Knowledge Bots erstellen können. Diese digitalen Zwillinge speichern nicht nur Dokumente, sondern bilden Entscheidungslogiken und Methodenwissen von Experten ab. Die Anwendungsfelder reichen vom schnelleren Onboarding neuer Mitarbeiter bis zur Automatisierung komplexer Vertriebsprozesse.

Der Markt scheint ihnen recht zu geben: 2025 konnte Blockbrain nach eigenen Angaben den Umsatz verfünffachen. Kunden wie Bosch, Roland Berger und die Seifert Logistics Group setzen die Lösung bereits ein. Letztere berichtet von einer Zeitersparnis von bis zu 15 Prozent pro Woche durch die KI-Assistenten.

Sicherheit als „Moat“ gegen ChatGPT & Co.

Während viele Unternehmen beim Einsatz generativer KI wegen Halluzinationen und Datenlecks zögern, positioniert sich Blockbrain als der „sichere Hafen“. Die Plattform ist nicht nur ISO-27001-zertifiziert und „EU-AI-Act-ready“, sondern ermöglicht durch eine Multi-Model-Architektur auch die volle Datensouveränität. Kund*innendaten können bei Bedarf in regionalen Cloud-Umgebungen des Nutzenden verbleiben.

Wie groß der Vorsprung vor herkömmlichen Enterprise-Lösungen ist, untermauert das Start-up mit Zahlen: In einem unabhängigen Benchmark des Sicherheitsspezialisten Giesecke+Devrient erzielte Blockbrain 92 von 105 Punkten – der Zweitplatzierte kam lediglich auf 58 Punkte. „Sich einfach auf Versprechungen und die Stärke eines Modells zu verlassen, ist im Unternehmenskontext schlicht nicht genug“, kommentiert CTO Protzmann die Strategie.

Expansion mit „Forward-Deployed“ Ingenieuren

Das frische Kapital fließt nun primär in die Expansion nach Großbritannien und Europa sowie in die Produktentwicklung. Dabei setzt Blockbrain auf ein spezielles Personalmodell: Sogenannte Forward-Deployed AI-Engineers sollen Kund*innen eng bei der Integration begleiten – remote oder vor Ort. Ziel ist es, Recherche-Workflows weiter zu automatisieren und KI vom Experimentierfeld zum verlässlichen Werkzeug im Kerngeschäft zu machen.

INLEAP Photonics sichert sich Millionenfinanzierung für Drohnenabwehr

Das 2023 als Spin-off aus dem Laser Zentrum Hannover e.V. (LZH) ausgegründete DeepTech-Start-up INLEAP Photonics transferiert industrielle Hochleistungstechnologie in den Verteidigungssektor.

Der Markt für DefenseTech wächst, getrieben durch die veränderte geopolitische Sicherheitslage und die Zunahme asymmetrischer Bedrohungen durch Drohnen. In genau dieses Segment stößt nun INLEAP Photonics vor. Das 2023 gegründete Hannoveraner Unternehmen gab heute bekannt, seine Pre-Seed-Finanzierungsrunde bereits im Sommer 2025 abgeschlossen zu haben und nun offiziell aus der Stealth-Phase hervorzutreten.

Angeführt wurde die Runde vom High-Tech Gründerfonds (HTGF). Zudem beteiligten sich Ventis Capital sowie private Investoren. Über die genaue Höhe der Finanzierung wurde Stillschweigen bewahrt.

Ingenieurs-Duo setzt auf Dual-Use-Strategie

Hinter der Technologie stehen zwei promovierte Ingenieure, die den klassischen Weg vom Forschungslabor in das Unternehmertum beschreiten: Dr.-Ing. Marius Lammers (CEO) und Dr.-Ing. Felix Wellmann (CTO). Beide gründeten INLEAP Photonics als Spin-off aus dem Laser Zentrum Hannover e.V. (LZH), einer der führenden Adressen für angewandte Laserforschung in Europa.

Die Gründer verbinden dabei tiefgreifende wissenschaftliche Expertise mit industriellem Pragmatismus. Während Lammers die strategische Ausrichtung im komplexen Defense-Markt verantwortet, treibt Wellmann die technische Weiterentwicklung der Laserstrahlführung voran. Ihr Ansatz ist ein Lehrbuchbeispiel für „Dual-Use“: Die Kerntechnologie wurde ursprünglich nicht als Waffe konzipiert, sondern um industrielle Hochgeschwindigkeitsprozesse wie die Batteriezellenproduktion oder Additive Fertigung zu optimieren.

Millisekunden statt Minuten

Diese industrielle DNA nutzen Lammers und Wellmann nun für einen Pivot in den Sicherheitssektor. Unter dem Namen FASTLIGHT® SHIELD entwickelt das Start-up ein mobiles Abwehrsystem, das Drohnen durch gezielte Energieeinbringung neutralisieren soll. Das zentrale Versprechen der Gründer: Die Präzision und Geschwindigkeit, die in der Industrie für Fertigungsprozesse notwendig ist, verschafft in der Drohnenabwehr den entscheidenden Zeitvorteil.

„Die aktuelle Sicherheitslage erlaubt keine langsamen Lösungen“, erklärt Marius Lammers den Schritt. „Wir begegnen der asymmetrischen Drohnenbedrohung mit technologischer Überlegenheit.“ Felix Wellmann ergänzt, dass der Prototyp bereits bewiesen habe, agile Ziele in Millisekunden abwehren zu können – eine Leistung, die auf der langjährigen Forschung des Duos zur Laserstrahllenkung basiert.

Kapital für die Einsatzreife

Das frische Kapital fließt laut Unternehmensangaben primär in die Skalierung dieses Prototypen hin zu einem robusten Gesamtsystem. Ziel ist die Validierung in realen Einsatzszenarien sowie die Integration in bestehende Sicherheitsarchitekturen von staatlichen Akteuren und Betreibern kritischer Infrastrukturen.

Für den Lead-Investor HTGF ist das Team und die Technologie ein strategisches Asset. Dr. Koen Geurts, Senior Investment Manager beim HTGF, betont: „Lasereffektoren für Drohnen- und Luftabwehr gehören zu den klar wachsenden Technologiefeldern, die nur wenige Unternehmen beherrschen.“ Die Ambition sei es, mit INLEAP einen globalen Player aus Deutschland heraus aufzubauen.

DIONYS: Schluss mit Event-Chaos

Events und Offsites erleben ein massives Comeback. Doch hinter den Kulissen vieler Locations herrscht oft noch analoges Chaos. Das Münchner Start-up DIONYS will genau das ändern: Schluss mit dem E-Mail-Pingpong, hin zu echten Buchungen.

Die steigende Nachfrage nach Firmen-Events und privaten Feiern stellt die Hospitality-Branche vor administrative Herausforderungen. Während Hotelzimmer und Tischreservierungen weitgehend digitalisiert sind, erfolgt die Bearbeitung von Gruppenanfragen und Event-Konfigurationen in vielen Betrieben noch manuell. Das 2025 gegründete Software-Start-up DIONYS tritt an, um diesen Prozess durch Standardisierung zu beschleunigen.

Konfigurator statt E-Mail-Pingpong

Das Kernprodukt des Unternehmens ist eine Softwarelösung, die den Angebotsprozess für Veranstaltungen digitalisiert. Anstatt individuelle Angebote manuell zu tippen, sollen Kunden ihre Events – von Menüs bis zu Getränkepaketen – über eine Online-Oberfläche selbst konfigurieren können.

CEO Folke Mehrtens beschreibt den aktuellen Zustand der Branche als paradox: „Es ist absurd: Gerade dort, wo Events den meisten Umsatz bringen, fehlt oft jede Struktur. Solange Events wie Sonderfälle behandelt werden, bleiben sie ein operativer Schmerz.“

Die Software von DIONYS zielt darauf ab, diesen „Schmerz“ zu lindern, indem sie Events von der manuellen Ausnahme zum standardisierten Produkt wandelt – buchbar und transparent wie im E-Commerce.

Technik trifft auf operative Erfahrung

Technisch steht das Unternehmen vor der Hürde, die individuellen Parameter von Gastronomiebetrieben – etwa spezifische Stornoregeln oder variable Menüfolgen – in einen Algorithmus zu überführen. CTO Gregor Matte betont, dass die Herausforderung weniger in der reinen Buchung, sondern in der Abbildung der operativen Vielfalt liege.

Um die Praxistauglichkeit sicherzustellen, setzt das Gründungsteam auf Mitstreiter mit Branchenhintergrund. Neben Mehrtens (Strategie) und Matte (Technik) sind unter anderem Ekkehard Bay (ehemals Manager im Mandarin Oriental) sowie Daniel Simon (ehemals OpenTable) an Bord.

Wettbewerb und der Faktor „Mensch“

DIONYS positioniert sich in einem dichten Marktumfeld zwischen etablierten Back-Office-Lösungen wie Bankettprofi und modernen Reservierungssystemen wie aleno. Die Münchner suchen ihre Nische bei individuellen Event-Locations und Restaurants, die sich von reinen Tagungshotels abgrenzen.

Die in der Branche verbreitete Sorge, dass durch die Digitalisierung die persönliche Note leide, versucht Head of Hospitality Ekkehard Bay zu entkräften: „Wenn Standardfragen digital geklärt sind, bleibt im echten Gespräch mehr Zeit für das, was wirklich zählt: besondere Wünsche und echte Aufmerksamkeit.“

Erste Marktdaten und Ausblick

Seit dem Start im Herbst 2025 wurden nach Angaben des Unternehmens Anfragen mit einem Volumen von rund 400.000 Euro über das System abgewickelt. Zu den ersten Nutzern zählen bekannte Münchner Betriebe wie Kustermann und die Bar Valentin. Das Erlösmodell basiert auf einer Kombination aus monatlicher Softwaregebühr und umsatzabhängigen Komponenten.

Für die nächste Wachstumsphase strebt DIONYS die Akquise von 100 „Pionier-Betrieben“ in der DACH-Region an. Ob sich der Ansatz als neuer Industriestandard durchsetzen kann, wird davon abhängen, ob die Software die komplexen Anforderungen einer breiten Masse an unterschiedlichen Betrieben tatsächlich ohne manuelles Nachsteuern abbilden kann. Daniel Simon gibt sich zuversichtlich: „In drei Jahren wird Event-Management nicht mehr improvisiert, sondern datenbasiert gesteuert.“