Aktuelle Events
Mit Visual Content auf der Überholspur
Wofür und wie du automatische Bildgenerierung in deinem Start-up gewinnbringend einsetzen kannst.
Ansprechende visuelle Inhalte zu gestalten, ist für Entrepreneur*innen eine Aufgabe, die täglich viel Zeit kosten kann. Doch gerade für Start-ups ist sie besonders wichtig, da Gründer*innen ihre Marke erst noch aufbauen müssen. Automatische Bildgenerierung ermöglicht es dir, die Gestaltung von Bannern, Social-Media-Beiträgen oder Newsletter-Coupons innerhalb von Minuten zu realisieren. Ist die Bildvorlage einmal fertig, können Textelemente und Bilder schnell und hundertfach automatisch ausgetauscht werden. Wer auf diese Weise repetitive Aufgaben im Marketing digitalisiert, spart seine Ressourcen und verschafft sich einen Vorteil im Wettbewerb.
Was Bildgenerierung bedeutet und wie du sie nutzt
In diesem Artikel ist die Definition von Bild weit gefasst und beinhaltet Banner, Grafiken oder Fotos mit Beschriftung. Die ersten Programme für die automatische Generierung von Bildern kamen 2021 auf den Markt; die Entwicklung ist also noch relativ neu. Alternativ spricht man auch von automatischer Bilderzeugung oder Bildautomatisierung. Im Internet findest du die Tools unter dem Stichwort Automated Image Generation oder Image Generation Api. Doch Achtung: Die automatische Bildgenerierung ist nicht zu verwechseln mit der sogenannten Text-to-Image-AI, bei der anhand von schriftlichen Anweisungen reine KI-Bilder erzeugt werden.
Beispiel: Erzeugung von Bannern im E-Mail-Marketing
Am besten lässt sich die Technik anhand eines Beispiels erklären. Möchtest du etwa eine E-Mail-Kampagne für alle Abonnent*innen deines Newsletters starten, wäre dies ein idealer Anwendungsfall. Jede(r) Abonnent*in soll ein individuelles Banner bekommen. Fotos, Text, namentliche Ansprache des/der Kund*in – alles soll maßgeschneidert sein. Egal, ob du nun als ersten Schritt eine Vorlage aus der Vorlagenbibliothek verwendest oder selbst eine gestaltest, wie du es vielleicht von Programmen wie Canva oder Crello kennst: Jedes Bild besteht aus Schichten (Layers), wie zum Beispiel Text, Bildern oder Hintergrund. Du definierst nun diese Schichten, legst das Layout fest und kannst dann die Vorlage automatisieren.
Im Prozess der Automatisierung kann das System die Schichten dynamisch in der Vorlage „ersetzen“ und so ein neues Bild erstellen. Im Idealfall importierst du noch eine Liste mit den Namen deiner Kund*innen in das Programm, um dir die Eingabe der einzelnen Namen zu ersparen. Es wäre auch möglich, jedem Kund*innenbanner noch ein individuelles Bild zuzuordnen. So kann das System dann in Sekunden hunderte oder tausende personalisierte Banner produzieren. Du könntest also deine Kampagne noch am gleichen Tag beginnen.
Je nach Programm gibt es verschiedene Möglichkeiten der Automatisierung, die nachfolgend näher erläutert werden sollen.
Bildgenerierung über die Website
Der simple Weg ohne großen Firlefanz: Du gibst die Daten der einzelnen Schichten in ein Formular oder, wenn es viele Banner auf einmal werden sollen, in eine Tabelle ein und lädst dort die Bilder hoch. Du kannst auch vorhandene Tabellen aus Google Sheets oder Microsoft Office importieren.
Bildgenerierung über No-Code-Tools
Wer über No-Code-Tools wie Zapier oder Integrately automatisiert, braucht keine Programmiersprache zu beherrschen. Personalisierte Bilder werden direkt in No-Code-Workflows generiert.
REST-API (Programmierschnittstellen)
Wenn du Vorkenntnisse in IT hast und das entsprechende Tool flexibel in dein System integrieren willst, ist diese Art der Automatisierung die richtige Wahl. Denn wer über REST-API automatisiert, also über Schnittstellen, muss programmieren können.
URL-Parameter
Auch hier brauchst du Kenntnisse im Programmieren. Dynamische Bilder entstehen, indem du Parameter im Bildlink veränderst (Bild, Text, Farbe etc.). Der Vorteil bei dieser Methode ist, dass Verknüpfungen gut erstellt werden können. So entsteht ein automatisierter Workflow. Im Fall des Kampagnenbeispiels könntest du die Banner gleich an deine Kund*innen verschicken, indem du den Bildgenerator mit deiner E-Mail-Automatisierung verknüpfst.
Die Vorteile der Bildgenerierung für Gründer*innen
Effizienz wird durch Marketing Automatisierung gesteigert. Gerade in Early-Stage-Start-ups fehlt die Zeit für die Gestaltung von visuellem Content, weil sich viele Aufgaben auf wenige Schultern verteilen. Besonders in den sozialen Medien sind jedoch regelmäßige Beiträge unerlässlich. Weil die Tools Bilder innerhalb von Minuten variieren können und nervige repetitive Aufgaben übernehmen, werden Ressourcen freigesetzt und die Effizienz erhöht. Wer erfolgreich sein will, darf die Wirksamkeit in den Arbeitsprozessen nie aus den Augen verlieren. Automatische Bildgenerierung ist ein Mittel, um kreative, finanzielle und zeitliche Ressourcen zu schonen.
Die Handhabung ist einfach
Die Programme sind komplex, allerdings bleibt dies in der Technik verborgen. Die Nutzeroberflächen hingegen sind intuitiv, übersichtlich und leicht zu bedienen. Je nach Vorkenntnissen können die Nutzer*innen in der Regel zwischen verschiedenen Wegen der Automatisierung wählen. Die Programme verfügen außerdem über Vorlagen-Bibliotheken, sodass Designerfahrung keine Voraussetzung ist.
Fehler werden vermieden
Wer hunderte Banner nacheinander von Hand anpasst, wird früher oder später Fehler machen. Hier schlägt der Algorithmus den Menschen. Fehler, die wiederum zeitraubend sein können, entstehen erst gar nicht.
Die Automatisierung hilft der SEO
Mit den Programmen können Nutzer*innen große Mengen an Bannern generieren. Es ist also möglich, für jeden Suchbegriff das passende Bild zu erzeugen. Und was nicht unterschätzt werden darf: Einzigartige Bilder, Unique Visual Content, finden die Suchmaschinen großartig. Wenn du deine Banner und Grafiken optimal für mehr Reichweite nutzen willst, kannst du das Thema Bilder-SEO mithilfe der Lektüre des Fachartikels von Melissa Fach vertiefen. Die Autorin erklärt, wie du Alt-Tags nutzt oder Bilder für Websites so optimierst, dass bei der Ladegeschwindigkeit noch ordentlich was geht.
Bildgenerierung als Einstieg in die Automatisierung
Programme zur Bildautomatisierung lassen sich gut mit anderer Software verknüpfen, etwa mit E-Mail-Automatisierungen. Sie sind niedrigschwellig und kosten nicht viel, sodass sie einen guten Ausgangspunkt darstellen, um in die Automatisierung einzusteigen. Wer gleich mit einem „Big Bang“ alles auf einmal automatisieren will, muss viel Geld und Ressourcen in die Hand nehmen. Ein agiler Ansatz ist hier oft vorteilhafter. In der Regel kann man die Tools einen begrenzten Zeitraum testen, bevor man ein Abo abschließt. In dieser Zeit hat man dann meist ein Recht auf 25 bis 30 generierte Bilder.
Automatische Bildgenerierung kann dir einen Vorteil im Wettbewerb bringen
Auch wenn die Tools seit 2021 langsam und stetig bekannter werden, gilt: Wer jetzt einsteigt, hat immer noch die Nase vorn. Doch der Nutzen liegt nicht allein darin, anderen voraus zu sein. Start-ups können sich ihren Wettbewerbsvorteil auch dadurch verschaffen, dass sie durch die Automatisierung visuellen Content ohne Grafik- und IT-Abteilung ganz nach Bedarf gestalten.
Anwendungsbereiche der Bildautomatisierung
E-Commerce
Wer seinen Kund*innen eine große Auswahl an Produkten bietet, weiß, wie viel Arbeit die ständige Aktualisierung des Online-Katalogs bedeutet. Für Rabattaktionen wie etwa einen Season Sale müssen viele Produktbilder ausgetauscht und Preise verändert werden. Wer dieses Ersetzen von Daten manuell erledigt, braucht viel Zeit und Nerven. Das Austauschen der einzelnen „Schichten“ in den Bildern (in dem Fall zum Beispiel Preise und Produktfotos) können Unternehmer*innen der Automatisierung überlassen und gewinnen so Zeit, um sich bereits mit der neuen Kollektion zu befassen oder Kund*innen noch intensiver zu betreuen.
E-Mail-Marketing
Bildgeneratoren ermöglichen dir, personalisierte E-Cards an deine Kund*innen zu verschicken, etwa bei Abschluss eines Vertrags. Auch Coupons können damit hundertfach produziert werden, ebenso wie Header, die schnell die verstärkte Aufmerksamkeit wecken können, damit Kund*innen den Text der E-Mail auch lesen. Wenn du dem Ganzen noch die Krone aufsetzen willst, verknüpfst du die Bildautomatisierung mit einer E-Mail-Automatisierung.
Unternehmensblog
Visueller Inhalt als Wiedererkennungseffekt ist hier das Schlagwort. Viele Blogger*innen teasern ihre Texte mit Grafiken, die passend zum Thema variiert werden. Da das Schreiben allein schon viel Arbeit macht, kann es eine Entlastung sein, wenn die Teaser-Bilder dank Bildgenerierung keinen Aufwand mehr darstellen.
Soziale Medien
Die sozialen Miedien ist einer der wichtigsten Bereiche für die Anwendung automatischer Bildgenerierung. Wer auf Instagram, Twitter oder Facebook Produkte vermarkten will, muss reaktionsschnell und stets aktiv sein. Das ist in Start-ups gar nicht so leicht, wo sich die Aufgaben türmen und das Team meist noch überschaubar ist. Aber auch in größeren Unternehmen fehlt für die sozialen Medien oft die Zeit. Lassen die Kommentare jedoch nach, vergessen die Nutzer*innen möglicherweise die Marken und verlieren diese mehr und mehr ihre Sichtbarkeit im Netz. Bildautomatisierung kann Unternehmer*innen helfen, durch regelmäßige Banner-Produktion Schritt zu halten und in gleicher Zeit mehr zu posten.
Social Commerce
Laut Studien kaufen bereits zwei Milliarden Menschen weltweit über soziale Netzwerke ein, Tendenz steigend. Instagram wird das Einkaufen voraussichtlich auch in Deutschland bald noch leichter machen. In den USA läuft der sogenannte In-App-Checkout, bei dem Nutzer*innen die Plattform zum Kaufen gar nicht mehr verlassen müssen, bereits erfolgreich. Um im Wettbewerb mitzuhalten, müssen Unternehmen demnach den Social Commerce ernst nehmen. Da kommen schnell viele Banner zusammen, die an das entsprechende Format der Plattform angeglichen werden müssen. Da jedes soziale Netzwerk seine eigene Zielgruppe hat, ist auch hier die Anpassung der Banner zu berücksichtigen. Mit der Automatisierung geht das schnell und einfach.
Datenschutz und Anbieterauswahl
Bei der Auswahl des/der Entwickler*in deiner Automatisierungssoftware hast du die Wahl zwischen Firmen, deren Server auf europäischem oder auf amerikanischem Boden stehen. Je nach Sicherheitsbedürfnis entscheidest du dich also für die strengere deutsche DSGVO oder den lockereren Datenschutz in den USA. Da es um Daten deines Unternehmens und deiner Kund*innen geht, solltest du dir darüber Gedanken machen. Vielleicht entscheidet auch die Sprache des Tools darüber, welches du letztendlich auswählst. Bisher gibt es Bildgeneratoren in englischer, deutscher und französischer Sprache.
Fazit
Der Nutzen automatischer Bildgenerierung ist groß, der zeitliche und finanzielle Aufwand gering. Deshalb sollten gerade Gründer*innen hellhörig werden, denn mit Personal, Zeit und Geld müssen Start-ups gut haushalten. Vielleicht winkt schon der nächste Auftrag, für den man diese Ressourcen besser brauchen könnte. Bildautomatisierung kann daher ein niedrigschwelliger Einstieg in die Digitalisierung sein, an der heute kein Unternehmen mehr vorbeikommt. Die Tools sind einfach zu handhaben und eignen sich daher auch für jene, die mit Technik allgemein auf Kriegsfuß stehen. Andererseits kommen dank der Wahlmöglichkeiten bei der Art der Automatisierung auch Tech-Freaks auf ihre Kosten. Für die Zukunft wird es eine spannende Frage sein, inwieweit die Entwickler*innen die Programme noch mit Elementen künstlicher Intelligenz aufrüsten werden und ob dann die Qualität der Ergebnisse befriedigend sein wird.
Die Autorin Friederike Marx-Kohlstädt ist Journalistin und verantwortet die Presse- und Öffentlichkeitsarbeit beim Freiburger Softwareentwickler DynaPictures, https://dynapictures.de
Diese Artikel könnten Sie auch interessieren:
Verkaufen ohne Shop: Zahlungen erhalten mit PayPal Open
Sie verkaufen digitale Kunst, Online-Kurse oder Handgemachtes? Dafür ist ein Shop nicht zwingend nötig. Mit Zahlungslinks und Kaufen-Buttons von PayPal erhalten Sie Ihre Zahlungen, wo die Verkäufe entstehen – schnell, sicher und unkompliziert.
Zahlungen empfangen, wo Ihre Community ist
Viele Soloselbständige nutzen Social Media, E-Mails oder Messenger nicht nur zur Kommunikation, sondern auch zur Vermarktung ihrer Produkte. Mit den passenden Tools können sie dort zusätzlich direkt Zahlungen empfangen – ganz ohne Onlineshop oder technisches Setup.
PayPal Open bietet drei flexible Möglichkeiten, Zahlungen zu erhalten:
- Zahlungslinks, die schnell geteilt werden können, etwa per E-Mail, DM, Post oder QR-Code.
- Kaufen-Buttons, die sich in eine bestehende Seite integrieren lassen, zum Beispiel in ein Link-in-Bio-Tool oder eine Landingpage.
- Tap to Pay macht Ihr Smartphone zum Zahlungsterminal (kompatibles Smartphone vorausgesetzt).
Alle Varianten funktionieren schnell, mobiloptimiert und bieten eine vertraute Nutzererfahrung. Damit wird der Ort, an dem Interesse entsteht, direkt zum Verkaufsort.
Zahlungslinks: Vom Post zur Bezahlung in Sekunden
Ein Kauf beginnt nicht im Warenkorb, sondern dort, wo Interesse entsteht: in einem Post, einer Story oder einer E-Mail. Genau hier setzen Zahlungslinks von PayPal an: Sie führen direkt von der Produktinfo zur Zahlung, ohne Umwege über externe Plattformen.
Das ist besonders hilfreich bei:
- digitalen Produkten
- E-Book-, Kurs- oder Software-Verkäufen
- (Online-)Vorbestellungen oder Trinkgeld-Modellen
Ein Zahlungslink erzeugt eine eigene Bezahlseite mit Titel, Preis, Beschreibung und Produktbild. Varianten wie Größen oder Farben sind ebenso integrierbar wie frei wählbare Preise. Versandkosten und Steuern können automatisch berechnet werden.
Der fertige Zahlunglink lässt sich flexibel teilen: per Messenger, E-Mail, Social Media oder als QR-Code auf einem Produktetikett oder Tischaufsteller. Die Zahlungsseite unterstützt gängige Zahlarten wie Kreditkarte, Wallets sowie ausgewählte regionale Methoden wie SEPA-Lastschrift, iDEAL oder Swish – je nach Land und Verfügbarkeit für die jeweiligen Käufer:innen.
Besonders praktisch: Ihre Kund:innen brauchen dafür kein eigenes PayPal-Konto. So können Zahlungen sicher und bequem online abgewickelt werden.
Für Selbständige, die regelmäßig digitale Inhalte verkaufen, ist das eine einfache Möglichkeit, Zahlungen mit PayPal zu empfangen, ohne ein klassisches Shopsystem aufsetzen zu müssen.
Kaufen-Buttons: Ihre Seite wird zur Verkaufsfläche
Wer bereits eine Website oder ein Link-in-Bio-Tool nutzt, kann PayPals Warenkorb- oder Kaufen-Buttons mit wenigen Zeilen Code integrieren. Damit verwandeln Sie eine einfache Landingpage in eine funktionale Verkaufsfläche. Sie erstellen den Button in Ihrem PayPal-Konto und erhalten automatisch den passenden HTML-Code, der nur noch kopiert und in die Website eingefügt wird. Kund:innen klicken, zahlen mit ihrer bevorzugten Methode und der Betrag wird direkt gutgeschrieben.
Sie behalten die volle Kontrolle über Ihre Gestaltung, Storytelling und Nutzerführung und profitieren gleichzeitig von einem verlässlichen Check-out, der hilft Vertrauen zu schaffen. Eine schlanke Lösung für alle, die ihr Angebot online präsentieren und Zahlungen direkt abwickeln möchten.
Mit Tap to Pay ganz einfach vor Ort verkaufen
Neben den digitalen Optionen können Sie auch vor Ort Zahlungen annehmen: direkt über Ihr Smartphone. Mit der PayPal-Funktion „Tap to Pay“ akzeptieren Sie kontaktlose Zahlungen per Karte oder Wallet ohne separates Kartenlesegerät. Alles, was Sie benötigen, ist ein kompatibles iPhone oder Android-Gerät mit NFC-Funktion (Tap to Pay funktioniert auf Geräten mit Android 8.0, NFC-Funktionen und Google Play Services. iOS ab iPhone XS und höher).
Besonders praktisch ist das beispielsweise für:
- Märkte, Pop-up-Stores
- Workshops und Live-Events
- Verkäufe im kleinen Rahmen, bei denen Flexibilität zählt
Agentic AI als Erfolgsgrundlage für Start-ups
KI befeuert den aktuellen Gründungsboom, doch für eine erfolgreiche Skalierung braucht es mehr. Warum Agentic AI auf Basis einer soliden Datenarchitektur zum entscheidenden Erfolgsfaktor für Start-ups wird.
Das Jahr startete für Start-ups mit einer Rekordmeldung: In Deutschland wurden im vergangenen Jahr fast ein Drittel mehr Gründungen verzeichnet. In absoluten Zahlen wurden 2025 insgesamt 3.568 neue Firmen geschaffen – ein neuer Höchststand, wie der Start-up-Verband im Januar verkündete. Dies ist auch der künstlichen Intelligenz (KI) zu verdanken, wie sich beim genauen Hinschauen herausstellt. 853 dieser neuen Unternehmen kommen aus dem Bereich Software. Doch nicht nur sie verwenden KI; bei einer Umfrage gab ein Drittel aller Gründer und Gründerinnen an, dass sie mit KI arbeiten. Dementsprechend sehen die Sprecher des Verbands in der Technologie auch die treibende Kraft hinter dem Start-up-Rekord.
Wirft man einen Blick über den Tellerrand hinaus, so lässt sich feststellen, dass die Start-up-Szene in Europa insgesamt floriert. Der „State of European Tech 2025“-Report im Auftrag von Atomico und anderen schätzt, dass im letzten Jahr Investitionen in Höhe von 44 Milliarden US-Dollar (umgerechnet ca. 38 Mrd. EUR) in diesen Sektor geflossen sind. Geldgeber erwarten inzwischen, dass Start-ups mit KI und Deep Tech arbeiten, so der Report. Demnach flossen auch 36 Prozent der europäischen Start-up-Investitionen in genau diese beiden Felder.
Das Gründungsumfeld könnte also kaum besser sein. Doch ein Rekord an Start-ups und steigende Investitionssummen bedeuten nicht zwangsläufig auch eine einfache Skalierung der Geschäftsmodelle. Viele – zu viele – Start-ups scheitern nach erfolgreichen ersten Jahren an der Weiterentwicklung ihres Geschäfts. Neben einer Reihe üblicher Herausforderungen stehen vor allem Bürokratie, Fragen zur Datenhoheit und ein Betrieb über Landesgrenzen und Wirtschaftszonen hinweg im Vordergrund. Start-ups müssen nachweisen, dass ihre Nutzung von KI auf soliden, regulierten Datenfundamenten basiert und den Compliance-Vorgaben entspricht.
Hier kommt Agentic AI ins Spiel. Die Einbettung von KI-Agenten in den Kern der Betriebsabläufe ist die Antwort auf viele dieser Herausforderungen und wird für das Wachstum im Jahr 2026 von entscheidender Bedeutung sein.
Solide Datenbasis vor KI-Einsatz
Start-ups, die dies erreichen wollen, sollten sich darauf konzentrieren, ihre KI-Nutzung auf einer soliden Datenbasis aufzubauen, deren Fundament eine einheitliche Datenarchitektur ist. Sie tun sich deutlich leichter damit, die dafür nötigen Architekturentscheidungen zu treffen, als etablierte Unternehmen mit entsprechender Legacy-IT. Gründer und Gründerinnen sollten daher von Beginn an darüber nachdenken, wie sie eine starke Datenarchitektur aufsetzen, Silos abbauen und KI als Herzstück ihrer Prozesse einbetten.
Diese Grundlage hilft bei der Einführung von KI-Agenten, damit deren Output auch die Erwartungen erfüllt: Geschäftsprozesse effizienter zu strukturieren und zu optimieren sowie die Entscheidungsfindung zu beschleunigen. Start-ups, die dies umsetzen, werden sich gegen ihre Konkurrenten durchsetzen und letztlich erfolgreich sein.
KI-Agenten als Innovationsbeschleuniger
Indem Start-ups KI-Agenten von Beginn an in den Kern ihrer Geschäftsabläufe integrieren, skalieren sie schneller als mit dem Einsatz von nur einem reinen Large Language Model (LLM). Der Grund dafür liegt in der Standardisierung der Daten, die für KI-Agenten notwendig ist. Auf dieser Grundlage können die Agenten ihre einzigartigen, autonomen Fähigkeiten ausspielen, da sie mit unternehmenseigenen Daten trainiert werden. Vor allem bei Start-ups können Potenziale schnell gehoben werden: Wenn Agenten für bestimmte Aufgaben entwickelt werden, können sie diese auch lösen – egal wie komplex und fachspezifisch sie sein mögen. Stimmt die Datenbasis, lassen sich auch mehrere Agenten miteinander verknüpfen, um sogar noch komplexere Herausforderungen zu bewältigen.
Ein Beispiel dafür ist die mögliche Kooperation zwischen einem Kundensupport-Agenten und einem Prognose-Agenten. Wenn ein Kunde einen Support-Fall auslöst, kann der andere Agent sogleich die Kosten berechnen, was die Kundenzufriedenheit durch eine schnellere Reaktion steigern kann. Für die Skalierung von Start-ups ist ein enges Zusammenspiel der Abteilungen wichtig, um die Geschäftsbeziehungen zu zufriedenen Kunden weiter ausbauen zu können. Der Einsatz von KI-Agenten kann, gepaart mit dem menschlichen Element, begrenzte personelle Ressourcen ausgleichen und eine bessere Serviceleistung ermöglichen, was für ein schnelles Wachstum unabdingbar ist.
Doch nicht nur der Kundenkontakt lässt sich automatisieren, sondern auch eine ganze Reihe von Routinevorgängen in der internen Verwaltung der Firmen selbst. Dies ermöglicht nicht nur dem Management, sondern auch den Investoren, schnell einen fundierten Überblick über Liquidität, Umsatz, Einnahmen und Gewinn zu erhalten. Die Erkenntnisse in Echtzeit führen zu schnellen und datenbasierten Entscheidungen, was für junge Unternehmen Gold wert ist und es ihnen ermöglicht, flexibel zu bleiben.
Die Datenbasis muss stimmen
Für Start-ups sind Probleme beim Datenzugriff ein kritisches Risiko für den Geschäftserfolg. Eine einheitliche, moderne Datenarchitektur ermöglicht die Demokratisierung des Datenzugriffs und löst Datensilos auf. Der Vorteil liegt auf der Hand: Schneller Datenzugriff schafft Transparenz gegenüber Kunden und Aufsichtsbehörden. Darüber hinaus erhöht dies auch das Vertrauen der Mitarbeitenden und schafft ein Gefühl des Zusammenhalts.
Governance ist auch bei der Verwendung von KI-Agenten von entscheidender Bedeutung. Der Druck zur Einhaltung von Vorschriften sollte daher als Vorteil betrachtet werden.
Der Dreiklang aus Datenherkunft, Versionierung und automatisierter Auswertung der Ergebnisse hilft jungen Unternehmen dabei, Governance auf einem soliden Fundament aufzubauen. Die Teams erhalten direkte Transparenz darüber, wie sich die KI-Agenten verhalten, auf welchen Daten sie basieren und wie sie ihre Ergebnisse im Laufe der Zeit verändern. Laufende Bewertungen tragen dazu bei, dass KI-Agenten präziser werden, um genau jene hochwertigen Ergebnisse zu liefern, die Start-ups für die Skalierung ihrer Geschäftsmodelle benötigen. Dies ist besonders wichtig, wenn proprietäre KI-Modelle entwickelt und von der Testphase in die Produktion überführt werden, wobei gesetzliche Vorschriften wie die DSGVO oder der EU AI Act zwingend einzuhalten sind.
Parloa, ein deutsches Start-up-Unternehmen mit einer Bewertung von drei Milliarden US-Dollar, ist ein hervorragendes Beispiel dafür, wie dieser Ansatz in der Praxis aussehen kann: Das Unternehmen hat KI-Agenten zum Kern seines Kundenservice gemacht und gleichzeitig eine einheitliche, kontrollierte Datenbasis aufgebaut, die vollständig mit der DSGVO und dem EU AI Act konform ist. Seine Plattform folgt den Prinzipien des „Privacy by Design“, sodass sensible Kundendaten ohne Kontrollverlust verwendet werden können. Durch die Verwaltung des gesamten Lebenszyklus von KI-Agenten macht Parloa Governance zu etwas Greifbarem und gibt den Teams Klarheit darüber, welche Daten verwendet wurden, wie sich die Agenten verhalten haben und wie sich die Ergebnisse im Laufe der Zeit entwickelt haben. Diese Kombination aus moderner Architektur und starker Governance ermöglicht es den Kunden von Parloa, Zugang zu hochwertigen Daten zu erhalten und die Transparenz für Regulierungsbehörden sowie Endnutzer zu erhöhen – und dennoch KI-gesteuerte Kundeninteraktionen in Umgebungen zu skalieren, in denen Fehler oder Missbrauch inakzeptabel sind.
Fazit
KI-Agenten bieten europäischen Start-ups eine einmalige Gelegenheit, schnell zu wachsen und gleichzeitig Investoren anzuziehen, die bekanntermaßen ihr Geld bevorzugt in Unternehmen investieren, die Wert auf Datenverwaltung, Genauigkeit, Qualität und die Schaffung von echtem Mehrwert durch Technologie legen. Es ist jedoch ein Fehler, sich ohne sorgfältige Überlegungen auf die Einführung von Agenten zu stürzen. Start-ups, die KI-Agenten einsetzen, ohne zuvor eine einheitliche Datenbasis aufzubauen und eine solide Verwaltung sowie Bewertung sicherzustellen, riskieren, mehr Komplexität als Mehrwert zu schaffen. Letztlich werden jene Gründer und Gründerinnen erfolgreich sein, die ihre Geschäftsmodelle branchen- und länderübergreifend skalieren können – hierbei spielt der Einsatz von KI-Agenten bereits jetzt eine entscheidende Rolle.
Der Autor Nico Gaviola ist VP Digital Natives & Emerging Enterprise bei Databricks EMEA.
Mission Defense: Wie Start-ups im rüstungstechnischen Markt Fuß fassen
Immer mehr Start-ups drängen mit agilen Innovationen in die hochregulierte Verteidigungs- und Luftfahrtindustrie. Daher gut zu wissen: Wie junge Unternehmen durch die richtige Systemarchitektur die strengen Auflagen meistern und vom Zulieferer zum echten Systempartner aufsteigen.
Die Luft- und Raumfahrt sowie die Verteidigungsindustrie zählen zu den am stärksten regulierten und technologisch anspruchsvollsten Märkten der Welt. Lange galt: Wer hier mitspielen will, braucht jahrzehntelange Erfahrung, Milliardenbudgets und stabile Regierungsbeziehungen. Doch genau dieses Bild verschiebt sich.
Neue Player treten auf den Plan: Start-ups entwickeln Trägersysteme, Drohnenplattformen, Kommunikationslösungen oder Sensorik, und tun das in einer Geschwindigkeit, die vielen etablierten Anbietern Kopfzerbrechen bereitet. Die zentrale Frage lautet deshalb: Wie können junge Unternehmen in einer hochregulierten Branche nicht nur überleben, sondern mitgestalten?
Agilität als Superkraft – aber Prototypen reichen nicht
Ob neue unbemannte Plattformen, Software-Defined Defense Systeme oder taktische Kommunikation – überall gilt: Was heute entwickelt wird, muss morgen schon einsatzbereit sein. Der Bedarf an schneller Innovation ist nicht theoretisch, sondern operativ. Start-ups sind in der Lage, auf diesen Druck zu reagieren, mit kurzen Entscheidungswegen, agilen Teams und digitaler DNA.
Allerdings reichen gute Ideen und schnelles Prototyping nicht aus. Wer Systeme für den operativen Einsatz liefern will, muss Anforderungen erfüllen, die weit über funktionierende Technik hinausgehen: Cybersicherheit, regulatorische Nachvollziehbarkeit, Zertifizierungsfähigkeit und Interoperabilität mit internationalen Partnern.
Das Fundament: Die Systemarchitektur entscheidet
Von Anfang an auf die richtigen technischen Grundlagen zu setzen, ist entscheidend. Das betrifft vor allem drei Bereiche: Skalierbarkeit, Nachvollziehbarkeit und Interoperabilität. Systeme müssen so gebaut sein, dass sie modular erweitert, in komplexe Systemlandschaften integriert und nach internationalen Standards auditiert werden können.
Ein durchgängiger digitaler Entwicklungs- und Betriebsfaden, ein sogenannter Digital Thread oder auch Intelligent Product Lifecycle, ermöglicht es, Produktdaten, Softwarestände und Konfigurationsänderungen über den gesamten Lebenszyklus hinweg zu verfolgen. Für die Zulassung softwaredefinierter, sicherheitskritischer Systeme ist das ebenso essenziell wie für die spätere Wartung, Upgrades oder die Einbindung in multinationale Operationen.
Security by Design: Sicherheit lässt sich nicht nachrüsten
Verteidigungsnahe Produkte unterliegen Exportkontrollen, Sicherheitsauflagen und branchenspezifischen Normen, darunter etwa ISO 15288 für Systems Engineering, ISO 27001 für Informationssicherheit oder die europäischen Anforderungen für Luftfahrt und Raumfahrt. Diese Vorgaben lassen sich nicht einfach „nachrüsten“. Sie müssen von Beginn an ein integraler Bestandteil der Systemarchitektur und Prozessführung sein.
Gerade in sicherheitskritischen Bereichen ist die Fähigkeit, regulatorische Anforderungen nachweislich zu erfüllen, ein entscheidender Wettbewerbsvorteil. Sie entscheidet darüber, ob ein Produkt zugelassen, in Serie gefertigt und in multinationale Programme integriert werden kann.
Interoperabilität als Schlüssel zum Teamplay
Ein weiterer kritischer Faktor ist die Fähigkeit zur Kooperation. In den meisten großen Programmen arbeiten unterschiedliche Unternehmen, oft aus verschiedenen Ländern, mit unterschiedlichen Systemen zusammen. Wer hier bestehen will, muss in der Lage sein, mit standardisierten Schnittstellen, interoperablen Plattformarchitekturen und harmonisierten Datenmodellen zu arbeiten. Interoperabilität ist dafür die technische Grundlage. Ohne sie lassen sich Systeme weder integrieren noch gemeinsam weiterentwickeln.
Vom Zulieferer zum echten Systempartner
Start-ups, die sich diesen Anforderungen stellen, können mehr sein als Zulieferer. Sie haben das Potenzial, Systempartner zu werden: mit eigener Wertschöpfung, eigenem IP und eigenem Einfluss auf die technologische Entwicklung. Der Weg dorthin ist anspruchsvoll, aber offen. Er erfordert keine hundertjährige Firmengeschichte, sondern eine klare Architekturstrategie, ein tiefes Verständnis für regulatorische Anforderungen und den Willen, komplexe Systeme systematisch zu entwickeln.
Der Verteidigungs- und Luftfahrtsektor steht an einem Wendepunkt. Wer heute die richtigen Grundlagen legt, kann morgen zu denjenigen gehören, die nicht nur mitlaufen, sondern die Spielregeln neu definieren.
Der Autor Jens Stephan, Director Aerospace & Defence bei PTC, bringt über 20 Jahre Erfahrung im Bereich komplexer Software-/SaaS-Lösungen und IT-Infrastruktur mit.
Die Erschöpfung kommt früher, als viele denken
Serie: Führen im Start-up, Teil 1: Warum Überforderung kein Spätphänomen von Konzernen ist, sondern in der Seed-Phase beginnt.
Gründer*innen kalkulieren Markt- und Finanzierungsrisiken mit bemerkenswerter Präzision. Wettbewerbsanalyse, Cashflow-Szenarien, Hiring-Roadmap, Skalierungsstrategie – alles wird modelliert, gerechnet, optimiert. Was kaum modelliert wird: die eigene psychische Dauerbelastung.
In Businessplänen steht fast alles. Nur selten eine realistische Betrachtung dessen, was permanente Unsicherheit mit der Urteilsfähigkeit eines Menschen macht. Genau hier liegt eine der unterschätztesten Variablen unternehmerischen Erfolgs.
Die verbreitete Annahme lautet: Erschöpfung ist ein Spätphänomen. Sie betrifft Manager*innen in gewachsenen Strukturen, nicht Gründer im Aufbau.
Die Praxis vieler Start-ups zeigt etwas anderes: Erschöpfung beginnt nicht im zehnten Jahr.
Sie beginnt im ersten.
Wenn Verantwortung keine Pause kennt
In jungen Unternehmen ist Verantwortung nicht verteilt. Sie ist verdichtet. Produktentwicklung, Finanzierungsgespräche, erste Mitarbeitende, rechtliche Fragen, Marketing, strategische Richtungsentscheidungen – vieles läuft über wenige Personen. Oft über eine einzige.
Dazu kommen finanzielle Unsicherheit, familiäre Erwartungen, sozialer Druck und das eigene Selbstbild als Unternehmer*in.
Diese Mischung erzeugt keinen punktuellen Stress. Sie erzeugt Daueranspannung. Das menschliche Stresssystem ist jedoch nicht für permanente Unsicherheit gebaut. Kurzfristig steigert Druck die Leistungsfähigkeit. Langfristig sinkt die Differenzierungsfähigkeit. Entscheidungen werden schneller. Aber nicht automatisch klarer.
Warum Gründer*innen selten über Erschöpfung sprechen
Kaum ein(e) Gründer*in würde im ersten oder zweiten Jahr offen von Überforderung sprechen. Die Szene lebt von Durchhalte-Narrativen. Belastbarkeit gilt als Kompetenzmerkmal. Genau hier entsteht ein blinder Fleck.
Erschöpfung kündigt sich selten dramatisch an. Sie verändert Nuancen:
- Die Geduld mit dem Team wird dünner.
- Delegation fällt schwerer.
- Kritik fühlt sich schneller wie ein Angriff an.
- Strategische Richtungen ändern sich, weil Druck reduziert werden muss – nicht, weil die Analyse es nahelegt.
Nach außen bleibt das Bild stabil. Intern verschiebt sich die Qualität der Führung.
Der unsichtbare Übergang zur Systemdynamik
Viele Start-ups berichten im dritten oder vierten Jahr von Spannungen im Kernteam. Konflikte häufen sich. Schlüsselpersonen gehen. Entscheidungen wirken inkonsistent.
In der Rückschau wird oft der Markt verantwortlich gemacht oder das schnelle Wachstum. Seltener wird gefragt, ob die Führung bereits in der Frühphase unter einer Belastung stand, die nie bewusst adressiert wurde.
Systeme lernen früh. Wenn Dauerüberlastung normalisiert wird, entsteht implizit eine Kultur, in der Tempo wichtiger ist als Reflexion und Verfügbarkeit wichtiger als Stabilität. Diese Muster werden nicht beschlossen. Sie entstehen im Alltag.
Der wirtschaftliche Zusammenhang
Erschöpfung ist kein individuelles Befindlichkeitsthema. Sie hat strukturelle Wirkung. Sinkt die Urteilskraft, steigt die Wahrscheinlichkeit strategischer Zickzackbewegungen. Fehlt Geduld, eskalieren Konflikte schneller. Fällt Delegation schwer, entstehen Wachstumsengpässe. Wirkt Führung instabil, sinkt Vertrauen. Das sind keine weichen Faktoren. Sie haben ökonomische Konsequenzen.
Analysen gescheiterter Start-ups zeigen seit Jahren, dass Teamkonflikte und interne Führungsprobleme zu den häufigsten Ursachen für das Scheitern zählen – häufig noch vor rein operativen Faktoren. Solche Dynamiken entstehen nicht plötzlich. Sie entwickeln sich unter Druck. Leise.
Ein Perspektivwechsel
Vielleicht beginnt professionelle Führung nicht mit dem ersten Führungskräfte-Workshop. Vielleicht beginnt sie in dem Moment, in dem sich Gründer*innen fragen, wie sie selbst unter Dauerunsicherheit funktionieren. Nicht um weicher zu werden, sondern um klarer zu bleiben.
Wer in der Frühphase nur das Wachstum managt, aber nicht die eigene Belastung reflektiert, baut ein Unternehmen auf einem instabilen Fundament. Erschöpfung ist kein Zeichen von Schwäche. Sie ist ein Frühindikator.
Und wer sie ignoriert, skaliert nicht nur das Geschäft, sondern auch die eigene Überlastung.
Die Autorin Nicole Dildei ist Unternehmensberaterin, Interimsmanagerin und Coach mit Fokus auf Organisationsentwicklung und Strategieberatung, Integrations- und Interimsmanagement sowie Coach•sulting.
Medizinal-Cannabis: Zwischen Wachstumsschub und regulatorischer Neujustierung
Zwischen Boom und strengeren Regeln: Der Markt für Medizinal-Cannabis steht nach einem Rekordjahr am Scheideweg. Investoren und Patienten blicken gespannt auf mögliche Gesetzesänderungen für 2026.
2025 war das erste vollständige Geschäftsjahr nach Inkrafttreten des Medizinal-Cannabisgesetzes im April 2024 – und damit ein echter Praxistest für den deutschen Markt. Mit der Entkopplung von Cannabis aus dem Betäubungsmittelrecht und der Vereinfachung der Verschreibung über Telemedizinplattformen änderten sich die Rahmenbedingungen spürbar. Die Effekte ließen nicht lange auf sich warten und resultierten in steigende Verordnungszahlen, stark wachsende Importmengen und einem beschleunigten Ausbau von Versorgungsstrukturen. Doch wie geht es weiter?
Ein Markt im ersten Jahr nach der Reform
Die Importzahlen verdeutlichen die Dynamik. Während 2023 noch rund 30 Tonnen medizinisches Cannabis nach Deutschland eingeführt wurden, entwickelten sich die Zahlen anschließend immer rasanter. Das Bundesministerium für Gesundheit vermeldete im ersten Halbjahr 2025 einen Anstieg der Importe von mehr als 400 Prozent, von rund 19 auf 80 Tonnen. Hochgerechnet auf das Gesamtjahr dürfte das Volumen jenseits der 140-Tonnen-Marke liegen. Diese Änderungen haben einen aufstrebenden Markt geschaffen, wodurch sich Deutschland zum größten Einzelmarkt für Medizinal-Cannabis in Europa entwickelt hat.
Parallel dazu stieg auch die Zahl der ausgestellten Rezepte deutlich an. Schätzungen gehen inzwischen von mehreren Millionen Patientinnen und Patienten aus, die Cannabis auf ärztliche Verordnung nutzen. Das Marktvolumen wird für 2025 auf bis zu eine Milliarde Euro geschätzt.
Ausbau der Strukturen und steigende Professionalisierung
Für viele Unternehmen der Branche war 2025 ein Jahr des Ausbaus. Investiert wurde in GMP-konforme Prozesse (Good Manufacturing Practice), Lieferkettenstabilität, Qualitätssicherung und digitale Patientensteuerung. Deutschland bleibt stark importabhängig, die inländische Produktion deckt weiterhin nur einen begrenzten Teil des Bedarfs. Internationale Partnerschaften mit Produzenten in Kanada, Portugal oder anderen EU-Staaten sind daher weiterhin zentraler Bestandteil der Marktstruktur.
Politische Reaktionen auf das Wachstum
Mit der steigenden Bedeutung des Marktes wächst auch die politische Aufmerksamkeit, die Debatte rund um die Teillegalisierung polarisiert und spaltet Meinungen. Vertreter der CDU äußerten frühzeitig Bedenken, dass vereinfachte Verschreibungswege zu Fehlentwicklungen führen könnten. Besonders digitale Plattformmodelle bzw. Telemedizinanbieter mit Sitz im Ausland geraten dabei in den Fokus der Kritik.
Im Herbst 2025 wurde von Warken & Co. ein Gesetzeswurf zur Änderung des Medizinal-Cannabisgesetzes vorgestellt. Dieser sieht unter anderem strengere Vorgaben für telemedizinische Verschreibungen vor, genauer gesagt einen verpflichtenden persönlichen Arztkontakt sowie ein Versandverbot über Telemedizinanbieter. Ziel ist es, medizinische Standards zu präzisieren und potenziellen Missbrauch zu verhindern. Die politische Argumentation verweist auf die stark gestiegenen Importzahlen und die zunehmende Zahl digital vermittelter Rezepte. Gleichzeitig wird betont, dass Cannabis als medizinische Therapie klar vom Freizeitkonsum abgegrenzt bleiben müsse und sich dabei viele Freizeitkonsumenten als Patienten ausgeben.
Innerhalb der Branche wird diese Entwicklung differenziert bewertet. Sascha Mielcarek, CEO der Canify AG, ordnet den Gesetzentwurf nüchtern ein: „Der Kabinettsentwurf zur Änderung des MedCanG schießt mit Kanonen auf Spatzen. Wir haben ein wachsendes Problem mit der missbräuchlichen Anwendung von Opioiden, Benzodiazepin und anderen verschreibungspflichtigen Medikamenten. Die Therapie mit Cannabis bietet in vielen Fällen eine nebenwirkungsärmere Alternative und mit dem Gesetzentwurf würde der Zugriff genau darauf erschwert werden. Medizinisches Cannabis eignet sich nicht, einen Präzedenzfall zu schaffen. Der Gesetzentwurf ist kein Beitrag zur Patientensicherheit.“
Unabhängig von der Bewertung einzelner Maßnahmen zeigt sich vor allem, dass der regulatorische Rahmen weiterhin in Bewegung ist. Für Unternehmen bedeutet das eine Phase erhöhter Unsicherheit bei gleichzeitig stabiler Nachfrage. Experten befürchten, dass der Markt um die Hälfte einbrechen könnte, sollte ein physischer, persönlicher Arztkontakt Wirklichkeit werden.
Was bedeutet das für Start-ups und Investoren?
Für Gründer und Kapitalgeber bleibt der Markt grundsätzlich attraktiv. Das Wachstum der vergangenen zwei Jahre zeigt eine robuste Nachfrage. Gleichzeitig sind die Eintrittsbarrieren hoch. Wer im medizinischen Cannabissektor aktiv werden möchte, benötigt regulatorisches Know-how, belastbare Lieferketten, medizinische Anbindung und Kapital für Qualitätssicherung und Compliance.
Gerade diese Anforderungen wirken jedoch auch stabilisierend. Der Markt ist stark reguliert, professionell organisiert und eingebettet in bestehende Gesundheitsstrukturen. Für Investoren stellt sich daher weniger die Frage nach dem Potenzial als nach der Planbarkeit. Politische Anpassungen wirken sich unmittelbar auf Geschäftsmodelle, Bewertungen und Expansionsstrategien aus.
Ausblick auf 2026
Mit Blick auf das neue Jahr zeichnet sich ein Szenario der Neujustierung ab. Möglich ist eine Konsolidierung, bei der sich professionelle Anbieter weiter etablieren und regulatorische Klarstellungen für mehr Stabilität sorgen. Ebenso denkbar sind weitere gesetzliche Anpassungen, die das Wachstum stärker strukturieren. 2026 wird zeigen, unter welchen regulatorischen Bedingungen sich dieser Markt weiterentwickelt – und wie attraktiv er für Gründer und Investoren langfristig bleibt.
Customer-Support-ROI 2026: Warum Ticket-Automatisierung allein nicht ausreicht
Im Jahr 2026 stehen viele Führungskräfte vor einem echten Paradox: Die klassischen Kennzahlen im Customer Support erreichen Höchststände – und dennoch bleibt der Zusammenhang mit messbarem wirtschaftlichem Nutzen oft unklar.
Das Problem liegt nicht darin, dass gängige Automatisierungsansätze grundsätzlich nicht funktionieren. Vielmehr reicht es nicht aus, lediglich Tickets zu automatisieren, wenn Customer Support tatsächlich einen belastbaren ROI liefern soll. Der wahre Wert von Support liegt heute nicht mehr in der massenhaften Bearbeitung von Anfragen, sondern darin, Probleme frühzeitig zu verhindern, bevor sie sich zu messbaren wirtschaftlichen Verlusten entwickeln.
Warum sich Support-ROI 2026 schwerer belegen lässt
Moderne Support-Organisationen entwickeln sich zunehmend hin zu hybriden Modellen, in denen KI und menschliche Agents zusammenarbeiten. Eine Gartner-Umfrage zeigt: 95 % der Customer-Service-Verantwortlichen planen, auch künftig menschliche Agents parallel zu KI einzusetzen. Hybride Setups sind damit längst auf dem Weg zum Standard.
In der Praxis übernehmen KI-Systeme heute Routineanfragen, während Menschen komplexe oder kritische Fälle bearbeiten. Mit dieser veränderten Arbeitslogik verlieren klassische Kennzahlen wie Kosten pro Ticket, durchschnittliche Bearbeitungszeit oder Automatisierungsquote an Aussagekraft. In manchen Fällen verschleiern sie den tatsächlichen Wert von Support sogar.
Das führt dazu, dass Führungsteams häufig Folgendes beobachten:
- steigende Automatisierungsquoten bei stagnierenden Einsparungen,
- verbesserte CSAT-Werte ohne klaren finanziellen Effekt,
- starke CX- und Effizienzkennzahlen, die sich dennoch nicht in unternehmerische Ergebnisse übersetzen lassen.
Support ist nicht weniger wertvoll geworden. Doch durch den Einsatz von KI sind die Erwartungen gestiegen – und lineares Denken in einzelnen Metriken reicht nicht mehr aus, um den tatsächlichen Beitrag von Support zu bewerten.
Wo sich Customer-Support-ROI tatsächlich zeigt
Der ROI von Customer Support zeigt sich nur selten als „direkt generierter Umsatz“. Stattdessen wird er sichtbar in vermiedenen Verlusten und reduzierten Risiken. Konkret äußert sich das in Veränderungen im Kundenverhalten, etwa durch:
- weniger Rückerstattungen,
- geringere Eskalationen,
- einen Rückgang öffentlicher Beschwerden,
- sinkendes Abwanderungsrisiko.
- höheres Vertrauen an entscheidenden Punkten der Customer Journey
Diese Signale entstehen nicht über Nacht. Sie bauen sich über Zeit auf – und werden deshalb in Budgetdiskussionen häufig unterschätzt.
In einem unserer Kundenprojekte (Details aufgrund einer NDA anonymisiert) wurde der Customer Support über einen Zeitraum von zwölf Monaten vollständig neu aufgebaut. Ziel war nicht allein eine schnellere Reaktionszeit, sondern eine frühere und konsistentere Problemlösung entlang der gesamten Customer Journey. Die Ergebnisse waren eindeutig:
- Rückerstattungsquote von 40 % auf 4 % gesenkt.
- CSAT-Anstieg von 50 auf 95.
- NPS-Steigerung von 32 auf 80.
- Verbesserung der Trustpilot-Bewertung von 3,0 auf 4,7.
- Erhöhung der Chargeback-Erfolgsquote von 5 % auf 90 % durch ein dediziertes Billing-Team im Support.
Keine dieser Kennzahlen für sich genommen „beweist“ ROI. In ihrer Gesamtheit zeigen sie jedoch, wie Support begann, Ergebnisse zu beeinflussen, die in klassischen CX-Dashboards kaum sichtbar sind: Rückerstattungen gingen zurück, weil Probleme frühzeitig gelöst wurden; öffentliche Bewertungen verbesserten sich, weil weniger Kunden an ihre Belastungsgrenze kamen; Loyalität wuchs, weil Support von Schadensbegrenzung zu echter Bedürfnislösung überging.
Darüber hinaus begann das Team, Kundenanfragen systematisch zu analysieren, um Muster und frühe Reibungspunkte zu identifizieren. Dadurch wurden Abweichungen zwischen angenommener Customer Journey und tatsächlichem Kundenerlebnis sichtbar. Für das Management entstand so eine deutlich belastbarere Grundlage für strategische Entscheidungen. Diese Erkenntnisse führten zu neuen Services, die sich am realen Kundenverhalten orientierten – und damit Wachstum und Umsatz beschleunigten.
So zeigt sich Support-ROI in der Praxis: nicht als einzelne Kennzahl, sondern als Zusammenspiel aus vermiedenen Verlusten, gestärktem Vertrauen und datenbasierten Entscheidungen.
Wie hybrider Support die Wirtschaftlichkeit verändert
Über Jahre hinweg galt Automatisierung als vermeintliche „Wunderlösung“ zur Kostensenkung. Die Logik war simpel: geringere Supportkosten führen automatisch zu höherem ROI. In der Realität ist der Zusammenhang komplexer. Niedrigere Kosten bedeuten nicht automatisch höhere Erträge – insbesondere dann nicht, wenn Automatisierung genau die Mechanismen entfernt, die Verluste verhindern.
Wird Support ausschließlich auf Effizienz optimiert, verschwinden ungelöste Probleme nicht. Sie verlagern sich: in Rückerstattungen, Chargebacks, Abwanderung und öffentliche Beschwerden. Einsparungen tauchen in einer Zeile der GuV auf, während sich der Schaden still im restlichen Unternehmen summiert. Hybrider Support kann diese Gleichung verändern – aber nur, wenn er bewusst gestaltet wird.
Wenn KI im Support richtig eingesetzt wird:
- lassen sich bis zu 85 % der Anfragen automatisiert bearbeiten,
- liegt der CSAT rund 15 % höher als in nicht-hybriden Setups,
- führt KI echte Aktionen aus (Rückerstattungen, Kündigungen, Account-Änderungen) statt nur standardisierte Antworten zu versenden.
In abonnementbasierten Geschäftsmodellen beginnen wir beispielsweise stets mit einer Analyse eingehender Anfragen, um zu verstehen, welche Aktionen sich sicher vollständig automatisieren lassen. Rund 50 % der Kündigungsanfragen sind in der Regel unkompliziert und risikoarm – und damit gut für eine End-to-End-Automatisierung geeignet.
Die verbleibenden Fälle unterscheiden sich deutlich. Etwa ein Viertel der Kündigungsanfragen stammt von frustrierten oder emotional belasteten Kunden. Diese Interaktionen bergen das höchste Risiko für Abwanderung. In gut konzipierten hybriden Setups übernimmt Automatisierung hier die Rolle eines Co-Piloten: Sie kennzeichnet risikoreiche Fälle, eskaliert sie an menschliche Agents und liefert Kontext – während Tonfall, Urteilsvermögen und finale Entscheidungen bewusst beim Menschen bleiben.
Der wirtschaftliche Effekt entsteht dabei nicht durch den Ersatz von Menschen, sondern durch den gezielten Einsatz menschlicher Aufmerksamkeit genau in den Momenten, die Vertrauen und Loyalität tatsächlich entscheiden.
Warum hybrider ROI klassische Messlogik sprengt
In Projekten, in denen First-Level-KI sinnvoll eingeführt wird, sinken die Supportkosten innerhalb eines Jahres typischerweise um 15–25 %, abhängig vom Geschäftsmodell. Gleichzeitig verbessern sich häufig die Erlebniskennzahlen. Diese Kombination ist jedoch kein Selbstläufer – sie entsteht nur dann, wenn Automatisierung Probleme wirklich löst und nicht lediglich verlagert.
Der Haken: Hybrider Support macht ROI schwerer messbar. Klassische ROI-Modelle gehen davon aus, dass Wertschöpfung klar getrennt erfolgt. In Wirklichkeit entsteht der größte Effekt genau dort, wo KI und Menschen zusammenarbeiten: Probleme werden verhindert, Kundenbeziehungen stabilisiert und Loyalität geschützt.
Finanzteams sehen deshalb oft Verbesserungen, können sie aber in bestehenden Scorecards nicht abbilden. Während sich das operative Modell weiterentwickelt hat, ist die Logik der Messung stehen geblieben.
Was Führungskräfte tatsächlich messen sollten
2026 müssen Unternehmen von Aktivitätsmetriken zu Wirkungssignalen wechseln. Ein praxisnaher Ansatz besteht darin, Ergebnisse auf drei Ebenen zu verfolgen:
- Finanzielle Risiken und Leckagen: Rückerstattungsquoten, Chargeback-Erfolgsraten, Dispute-Volumen, wiederkehrende Zahlungsprobleme.
- Vertrauens- und Reibungssignale: öffentliche Bewertungen, Eskalationstrends, Wiederholungskontakte, Kundenstimmung.
- Bindungsindikatoren: Abwanderungsrisikosegmente, Kündigungsmuster und Retention-Ergebnisse (auch wenn die exakte Umsatzzuordnung später erfolgt).
Diese Signale machen Wert früher sichtbar als klassische Umsatzberichte. Sie zeigen, ob Support Verluste verhindert – und genau dort beginnt ROI in der Regel.
Wie sich Support-Budgets rechnen
Support-Budgets scheitern, wenn sie ausschließlich an Ticketvolumen und Headcount ausgerichtet sind. Ein gesünderer Ansatz beginnt mit einer anderen Frage: Wo kostet schlechter Support unser Unternehmen am meisten Geld?
Teams, die echten ROI aus Support erzielen, investieren typischerweise in drei Bereiche:
- Präventionsfähigkeit: Support übernimmt Zahlungs- und Abrechnungsthemen, steuert risikoreiche Fälle und etabliert Feedback-Loops zur Ursachenanalyse.
- Automatisierung mit Fokus auf Lösung: First-Level-KI erledigt risikoarme Aufgaben vollständig, statt Anfragen lediglich weiterzureichen.
- Menschliches Urteilsvermögen dort, wo es zählt: Menschen bearbeiten Hochrisiko-Kündigungen, Eskalationen, emotional sensible Fälle und betreuen besonders wertvolle Kunden.
In diesem Moment hört Support auf, ein Kostenpunkt zu sein, und wird zu einem strategischen Hebel, der Umsatz schützt, Risiken reduziert und mit dem Unternehmen skaliert.
Fazit
2026 entsteht der tatsächliche ROI von Customer Support vor allem dadurch, dass vermeidbare Probleme gar nicht erst zu Umsatzverlusten werden.
Automatisierung ist entscheidend – aber nur dann, wenn sie Probleme tatsächlich löst. Und menschliches Urteilsvermögen sollte gezielt dort eingesetzt werden, wo es Retention, Loyalität und Vertrauen wirklich beeinflusst.
Für Führungskräfte, die sich auf Ergebnisse statt auf Aktivitätskennzahlen konzentrieren, ist Support kein Cost Center mehr. Er ist das, was er schon heute sein sollte: ein Hebel zum Schutz von Umsatz, zur Reduktion von Risiken und zur Nutzung von Kundenverhalten als Grundlage für fundierte unternehmerische Entscheidungen.
Die Autorin Nataliia Onyshkevych ist CEO von EverHelp. Sie arbeitet mit wachsenden Unternehmen aus unterschiedlichen Branchen daran, Customer Support in KI-gestützten Umgebungen skalierbar und wirkungsvoll zu gestalten.
Münchner Robotik-Start-up Sitegeist holt 4 Mio. Euro Pre-Seed
Das 2025 von Dr. Lena-Marie Pätzmann, Julian Hoffmann, Nicola Kolb und Claus Carste gegründete Sitegeist entwickelt modulare, KI-gesteuerte Roboter, die autonom die Sanierung maroder Beton-Infrastruktur übernehmen.
Die Instandhaltung der öffentlichen Infrastruktur entwickelt sich zunehmend zum Nadelöhr der Bauindustrie. Allein in Deutschland beziffert die KfW den Sanierungsstau auf mehrere hundert Milliarden Euro. In diesem Marktumfeld konnte Sitegeist nun die Investoren überzeugen: Angeführt wird die Runde von den VCs b2venture und OpenOcean. Zudem beteiligten sich UnternehmerTUM Funding for Innovators sowie renommierte Business Angels, darunter Alexander Schwörer, Verena Pausder und Lea-Sophie Cramer.
Der Markt: Skandinavische Dominanz trifft auf Münchner KI
Sitegeist betritt mit seiner Lösung für die Betonsanierung keinen unbesetzten Markt. Der Bereich der Abbruch- und Sanierungsroboter wird traditionell von starken skandinavischen Herstellern wie Brokk, Aquajet oder Conjet (alle Schweden) dominiert. Diese Anbieter haben sich mit robusten Maschinen für den selektiven Betonabtrag weltweit etabliert.
Doch Sitegeist setzt technologisch an einem anderen Punkt an: Während die Systeme der etablierten Wettbewerber in der Regel tele-operiert sind – also permanent von Fachkräften ferngesteuert werden müssen –, zielen die Münchner auf echte Autonomie. Mitgründer Claus Carste (CPO), der an der TUM ursprünglich selbst an Teleoperation forschte, entwickelte den Ansatz bewusst weiter: Weg von der Fernsteuerung, hin zur eigenständigen Problemlösung durch die Maschine.
„Golden Pretzel“- und „Munich Startup Special Prize“-Gewinner mit autonomem Ansatz
Der technologische Sprung soll vor allem den Fachkräftemangel abfedern: Wo bei herkömmlichen Systemen ein(e) Bediener*in pro Maschine gebunden ist, ermöglicht der autonome Ansatz von Sitegeist perspektivisch, dass eine Fachkraft mehrere Roboter gleichzeitig überwacht.
„Die spannendsten KI-Roboter von heute haben keine Finger und Daumen“, kommentiert Sam Hields, Partner bei OpenOcean. Die Roboter nutzen Sensorik und KI, um ihre Umgebung eigenständig zu erfassen. Sie erkennen Unebenheiten im Beton und passen ihre Arbeitsweise in Echtzeit an. Ein digitales 3D-Modell (BIM) des Bestandsgebäudes ist dafür nicht notwendig.
Dass dieser Ansatz Potenzial hat, bewies das Team bereits im Vorjahr: 2025 gewann Sitegeist (damals teils noch unter dem Projektnamen Aiina Robotics bekannt) den renommierten Pitch-Wettbewerb der Bits & Pretzels Konferenz und sicherte sich die „Golden Pretzel“ sowie den „Munich Startup Special Prize“.
Philosophie trifft Deep Tech
Hinter der Technologie steht ein vierköpfiges Gründerteam, das interdisziplinäre Expertise vereint und tief im Münchner Ökosystem verwurzelt ist. CEO Dr. Lena-Marie Pätzmann bringt dabei eine ungewöhnliche Perspektive ein: Die Absolventin der Universität St. Gallen hält auch einen Bachelor in Philosophie – eine Kombination, die bei der ethischen und gesellschaftlichen Einordnung von KI-Arbeitskräften zunehmend an Bedeutung gewinnt.
Zusammen mit Julian Hoffmann (CTO), Nicola Kolb (COO, ehemalige Stipendiatin der Bayerischen EliteAkademie) und Claus Carste (CPO) gründete sie das Unternehmen im Jahr 2025 als Spin-off der Technischen Universität München (TUM). Es entstammt dem Robotik-Lehrstuhl von Prof. Matthias Althoff, der bereits Erfolge wie RobCo hervorbrachte.
Florian Schweitzer, Partner bei b2venture, sieht in dieser Konstellation einen entscheidenden Vorteil: „Das Team ist bereit, buchstäblich durch Wände zu gehen, um Robotik auf realen Baustellen nutzbar zu machen.“ Mit dem frischen Kapital plant Sitegeist nun, das Team am Standort München weiter auszubauen und die Einführung der Systeme auf realen Baustellen zu beschleunigen.
Key Facts: Sitegeist
- Gründung: 2025 (Spin-off der TU München, Projektname „Aiina Robotics“)
- Sektor: Construction Tech / Robotik
- Finanzierung: 4 Mio. € Pre-Seed (Februar 2026)
- Investoren: b2venture, OpenOcean, UnternehmerTUM Funding for Innovators
- Angels: u.a. Verena Pausder, Lea-Sophie Cramer, Alexander Schwörer
- Awards: Gewinner „Golden Pretzel“ (Bits & Pretzels 2025), Munich Startup Special Prize
- USP: Autonome, KI-gesteuerte Anpassung an komplexe Oberflächen (vs. klassische Fernsteuerung/Tele-Operation bei Wettbewerbern wie Brokk oder Aquajet)
- Management: Dr. Lena-Marie Pätzmann (CEO), Julian Hoffmann (CTO), Nicola Kolb (COO), Claus Carste (CPO)
Wachstum um jeden Preis ist vorbei
Im Juni geht die Hinterland of Things 2026 an den Start – mit klarem Fokus auf Umsetzung statt Debatte. Dominik Gross, Mitgründer und Geschäftsführer der Founders Foundation, spricht über den Schulterschluss von Mittelstand, Start-ups und Kapital, B2B-Tech-Trends sowie NRW als Hotspot für B2B-Gründungen.
Im Juni findet die nächste Hinterland of Things statt. Können Sie bereits von ersten Highlights berichten, auf die sich die Teilnehmer*innen freuen dürfen?
Die Hinterland of Things Conference 2026 steht unter dem Motto „and Action“, denn Deutschland hat kein Erkenntnisproblem – Deutschland hat ein Umsetzungsproblem. Das Motto steht für den gemeinsamen Nenner, wie Unternehmer die Industrie neu denken, Kapital zu Wachstum und Wissen zu Wertschöpfung machen, die nächste Generation von Gründern stärken und Politik wieder handlungsfähig wird: Wir wissen genug – wir müssen handeln. Ein zentrales Highlight ist der klare Schulterschluss zwischen Mittelstand, Start-ups und Kapital. Ein einzigartiger USP in der deutschen Konferenzlandschaft, muss man ehrlich sagen. Wir bringen nicht nur die Tech-Szene mit Gründern und Investoren zusammen, sondern eben auch die Inhaber, Familienmitglieder und Entscheider aus dem deutschen Mittelstand. Dieser Dreiklang ist einmalig. Darüber hinaus setzen wir wieder starke Akzente bei Kapitalthemen – von (Corporate) Venture Capital und Venture Clienting über Börsengänge bis hin zur Frage, wie Deutschland vom Land der Sparer zum Land der Builder wird. Auch der Transfer von Wissenschaft in markt- und investitionsfähige Unternehmen spielt für uns als Forschungsland eine zentrale Rolle. Kurz gesagt: weniger Debatte, mehr Entscheidung; weniger Diagnose, mehr Action.
Der Fokus liegt auf B2B-Tech-Start-ups. Welche B2B-Trends sehen Sie aktuell, welche Erwartungen haben Sie für die Branche dieses Jahr?
Wir sehen aktuell eine klare Verschiebung von Vision hin zu Verwertbarkeit. B2B-Tech-Start--ups müssen nicht mehr erklären, was sie technologisch können, sondern welches konkrete Problem sie für Unternehmen lösen. Effizienz, Produktivität und Kostensenkung stehen klar im Vordergrund. Zugleich ermöglicht Technologie Sprunginnovationen für die Industrie. Beispielsweise im Bereich Robotik: Humanoide Roboter auf zwei Beinen brauchen vielleicht noch etwas, aber überall dort, wo Roboter Prozesse, Abläufe und Arbeitsschritte automatisieren oder assistieren können, werden wir schon in wenigen Jahren neue Produkte und Geschäftsmodelle erleben. Und darüber hinaus gilt geradezu „natürlich“, dass sämtliche Geschäftsmodelle künstliche Intelligenz in ihrer DNA verankert haben werden. Unternehmen und Kapitalgeber investieren gezielter, erwarten schnelleren Impact und belastbare Business Cases. Wachstum um jeden Preis ist vorbei – gefragt sind robuste Geschäftsmodelle mit klarer Skalierungsperspektive. Für die Branche bedeutet das: weniger Hype, mehr Substanz. Start-ups, die echte industrielle Probleme adressieren und eng mit ihrer Kundschaft entwickeln, werden sich durchsetzen. Genau dort entsteht aktuell die spannendste Dynamik im B2B-Bereich.
NRW zählt zu den Start-up-Hotspot-Bundesländern in Deutschland, zeigte sich im aktuellen Startup Next Generation Report unter den Top-Plätzen. Was zeichnet NRW und speziell Bielefeld Ihrer Meinung nach als Start-up-Standort für B2B besonders aus?
NRW verbindet etwas, das für B2B-Start-ups entscheidend ist: industrielle Substanz und unternehmerische Nähe. Hier sitzen viele mittelständische Weltmarktführer, die offen für Kooperationen sind und Start-ups von Tag null an reale Anwendungsfälle bieten. Genau das brauchen B2B-Start-ups, um Produkte marktfähig zu entwickeln und schnell zu skalieren. Bielefeld steht exemplarisch dafür. Die Region ist geprägt von Industrie, Hidden Champions und kurzen Entscheidungswegen. Gleichzeitig gibt es ein wachsendes Start-up-Ökosystem, das eng mit Unternehmen, Hochschulen und Investoren vernetzt ist. Diese Kombination aus Praxisnähe, Kooperationsbereitschaft und einem klaren Fokus auf Umsetzung macht NRW – und Bielefeld im Besonderen – zu einem sehr starken Standort für B2B!
Inwiefern unterstützt die Founders Foundation neben der großen Konferenz B2B-Start-ups, was bieten Sie Jungunternehmen?
Die Konferenz ist nur ein sichtbarer Teil unserer Arbeit – quasi unser Leuchtturm, mit dem wir alle Augen auf die Region und ihr Potenzial lenken. Als Founders Foundation begleiten wir B2B-Start-ups entlang der gesamten frühen Wachstumsphase – von der ersten Idee bis zur Skalierung – und das als gemeinnützige Organisation, ohne Anteile zu nehmen. Unser Fokus liegt darauf, unternehmerische Fähigkeiten aufzubauen und Gründung als ernsthafte Karriereoption zu etablieren. Dafür bieten wir – je nach Reifegrad von Idee und Team – verschiedene Programme, ein über zehn Jahre gewachsenes Netzwerk aus den erfahrensten Serial Entrepreneurs der deutschen Start-up-Szene, etablierten Unternehmern und Industriepartnern sowie ein großes Investorennetzwerk. Hinzu kommen konkrete Anwendungsfälle aus dem Mittelstand. Für Start-ups ist das entscheidend, weil sie früh Feedback aus dem Markt bekommen und ihre Lösungen unter realen Bedingungen testen können. Unser Anspruch ist es, Gründer nicht nur zu inspirieren, sondern sie in die Umsetzung zu bringen. Genau da schließt sich der Kreis: and Action.
Dominik Gross, vielen Dank für das Gespräch
Dies ist ein Beitrag aus der StartingUp 01/26 – hier geht's zum E-Shop.
1,3 Mio. Euro Finanzierung für BauTech-Start-up conmeet
Das 2023 von Benedikt Kisner, Leandro Ananias und Lennart Eckerlein gegründete conmeet bietet eine All-in-One-Plattform für das Bau- und Handwerksgewerbe.
Nach Jahren der Entwicklung im „Stealth Mode“ meldet sich das Cloud-Software-Start-up conmeet mit einem Erfolg am Markt: Das 2023 gegründete Unternehmen hat seine Pre-Seed-Finanzierungsrunde über 1,3 Millionen Euro abgeschlossen. Das frische Kapital soll die Markteinführung der All-in-One-Plattform für das Bau- und Handwerksgewerbe beschleunigen. Als Lead-Investor tritt der VC-Fonds May Ventures auf.
Das im nordrhein-westfälischen Borken ansässige Unternehmen zielt mit seiner Lösung auf die Digitalisierung mittelständischer Bau- und Handwerksunternehmen ab. Kern des Geschäftsmodells ist eine cloud-native Plattform, die verschiedene Unternehmensbereiche wie CRM, ERP, Projektmanagement, Controlling und Banking in einer zentralen Anwendung bündelt. Ziel ist es, die in der Branche weit verbreitete Fragmentierung durch isolierte Softwarelösungen – den sogenannten „Flickenteppich“ – aufzulösen.
Erfahrene Gründer und erfolgreicher Track-Record
Hinter conmeet steht ein Trio mit komplementären Kompetenzen, das die Software in den vergangenen zwei Jahren im Verborgenen entwickelte, bevor im Sommer 2023 die formale Gründung der GmbH erfolgte und vor einigen Monaten die ersten Kunden angebunden wurden.
Der Einstieg von CEO Benedikt Kisner in den ConTech-Markt wird in der Szene dabei besonders aufmerksam verfolgt. Kisner lieferte mit dem Aufbau der netgo group eine der beachtlichsten Wachstumsstorys im deutschen IT-Mittelstand ab. Er führte das Unternehmen bis zum Exit an den Private-Equity-Investor Waterland – zum Zeitpunkt seines Ausstiegs verzeichnete die Gruppe über 1.300 Mitarbeitende und erwirtschaftete Umsätze im dreistelligen Millionenbereich. Komplettiert wird das Gründungsteam durch CTO Leandro Ananias und COO Lennart Eckerlein, der langjährige Führungserfahrung aus dem Handwerkssektor einbringt.
Marktanalyse: Angriff auf den App-Dschungel
Mit dem Marktstart tritt conmeet in ein dicht besiedeltes und umkämpftes Wettbewerbsfeld ein. Moderne Cloud-Herausforderer wie ToolTime, Plancraft oder HERO Software haben in den letzten Jahren bereits erfolgreich digitale Lösungen im Handwerk etabliert. Diese Anbieter punkten oft mit hoher Benutzerfreundlichkeit bei spezifischen Workflows wie Terminplanung oder Angebotserstellung und adressieren primär kleine bis mittlere Betriebe.
Die Differenzierungsstrategie von conmeet zielt jedoch auf eine Lücke im "Upper Mid-Market": Während viele Wettbewerber als Insellösungen fungieren, die über Schnittstellen verbunden werden müssen, positioniert sich das Start-up als integriertes Betriebssystem. Anstatt nur Büroprozesse zu digitalisieren, greift die Software tiefer in die Wertschöpfungskette ein – von der integrierten Banksteuerung bis zur Einbindung von Subunternehmern in Projekthierarchien.
Die Marktchancen stehen dabei gut, da der Leidensdruck in der Branche wächst: Der anhaltende Fachkräftemangel zwingt Bauunternehmen zur drastischen Effizienzsteigerung. Wer nicht mehr Personal findet, muss die Verwaltung automatisieren. Genau hier – in der komplexen Steuerung von Großprojekten und Firmenverbünden – will conmeet sich etablieren.
Starkes Eigeninvestment der Gründer
Eine Besonderheit der aktuellen Runde: Die drei Gründer beteiligen sich selbst mit einem substanziellen Betrag aus eigener Tasche an der Finanzierung. Als Lead-Investor tritt der Venture-Capital-Fonds May Ventures unter der Leitung von Managing Partner Maximilian Derpa auf. Derpa sieht in der Kombination aus technologischer Kompetenz und der durch Eckerlein eingebrachten Branchenerfahrung den ausschlaggebenden Faktor für das Investment: „Conmeet adressiert ein echtes Problem im Mittelstand mit einer technologisch fortschrittlichen Lösung“, so Dominik Lohle von May Ventures.
Ausblick: KI-Integration und Ökosystem
Mit den eingeworbenen 1,3 Millionen Euro plant das Start-up den Ausbau der Teams in Vertrieb, Marketing und Produktentwicklung. Mittelfristig verfolgt das Unternehmen ambitionierte Technologieziele: Geplant ist der Einsatz von KI-Agenten zur autonomen Steuerung von Geschäftsprozessen. Parallel soll die Plattform zu einem umfassenden Ökosystem für die Immobilienwirtschaft ausgebaut werden – von Architekten über Generalunternehmer bis hin zum Facility Management.
GeneralMind: 12 Mio. Dollar Investment nur 6 Monate nach Gründung
Das Berliner KI-Start-up GeneralMind entwickelt ein sog. autonomes AI System of Action, das wiederkehrende, komplexe Arbeitsschritte entlang von Waren- und Zahlungsflüssen automatisiert.
GeneralMind, ein „KI System of Actionˮ zur Automatisierung von digitaler Zettelwirtschaft, unstrukturierter Koordination sowie ineffizienter manueller Prozesse entlang der gesamten Lieferkette, gibt heute den Abschluss seiner Eigenkapitalfinanzierung in Höhe von 12 Millionen US-Dollar bekannt. Die Runde ist eine der größten bekannten europäischen Pre-Seed Runden der letzten Jahre und wurde weniger als sechs Monate nach der Aufnahme der Geschäftstätigkeit des Unternehmens abgeschlossen. GeneralMind will die Mittel verwenden, um die Skalierung seiner Technologie in Europa voranzutreiben.
Angeführt wurde die Finanzierungsrunde von Lakestar, Leo Capital, Lucid Capital, Heliad, BOOOM, mit Partizipierung von etablierten Angel-Investoren wie Alexander Kudlich, Jens Urbaniak, Samir Sood und Vishal Lugani.
GeneralMind wurde in Berlin vom Gründerteam um die Razor Group gemeinsam mit führenden Technologen aus dem Silicon Valley gegründet: Tushar Ahluwalia Shrestha Chowdhury, Dr. Oliver Dlugosch, Lennart von Hardenberg, Nishrit Shrivastava und Sergiu Șoima. Neben dem Hauptsitz in Berlin betreibt das Unternehmen einen weiteren Standort in Bangalore.
GeneralMind – das „AI System of Action“
Unternehmen arbeiten heute mit sogenannten Systems of Record SoR, zum Beispiel ERP-Systemen, um die Komplexität von Lieferketten zu bewältigen. Trotz dieser Systeme findet ein Großteil der operativen Arbeit weiterhin in E-Mail-Posteingängen und Spreadsheets statt: Teams müssen unstrukturierte Kommunikation und Koordination, Übergaben, Rückfragen und Ausnahmen manuell zusammenführen, nachhalten und in Systeme übertragen. Oft fehlt dabei klare Nachverfolgbarkeit, es entstehen Medienbrüche und die Fehleranfälligkeit ist hoch, obwohl genau diese Arbeit entscheidend ist, um die Lieferkette zuverlässig am Laufen zu halten.
GeneralMind entwickelt das „AI System of Action“ (SoA), um genau diese manuelle, repetitive Arbeit sowie unstrukturierte Koordination entlang der Lieferkette end-to-end zu übernehmen, als operative KI-Ebene über bestehenden Systemen, menschenüberwacht und bei Bedarf mit Freigabe.
KI-Autopilot für operative Prozesse mit menschlicher Fähigkeit
Der KI-Autopilot von GeneralMind übernimmt die „digitale Zettelwirtschaft" entlang komplexer Lieferketten, indem er automatisiert manuelle, repetitive Abläufe zwischen E-Mail, Excel und ERP-Systemen autonom ausführt. Eingehende Aufgaben (oft per E-Mail) werden erfasst, analysiert und anschließend end-to-end ausgeführt. Besonders dort, wo viele kleinteilige Aufgaben zuverlässig abgearbeitet, Abstimmungen sauber nachgehalten, Termine und Fristen gesichert und zahlreiche interne und externe Stakeholder entlang des Prozesses koordiniert werden müssen. Zum Beispiel in Beschaffung, Vertrieb oder der Rechnungsbearbeitung.
Diese „digitale Zettelwirtschaft“ kostet global agierende Unternehmen entlang ihrer Lieferketten teilweise Umsätze in Milliardenhöhe. Ware bleibt liegen, Entscheidungen verzögern sich, Aufgaben gehen im Tagesgeschäft unter.
„Unternehmen wissen oft genau, wo es hakt, scheitern aber an der operativen Umsetzung“, sagt Tushar Ahluwalia, Gründer und CEO von GeneralMind. „Ich habe im E-Commerce immer wieder gesehen, wie digitale Zettelwirtschaft, ineffiziente manuelle Prozesse und schmerzhafte Stakeholder-Koordination zwischen unstrukturierter Kommunikation und ERP-Systemen enorme Ineffizienzen in großen Unternehmen erzeugen. Genau dieses Problem lösen wir mit GeneralMind. Unsere KI übernimmt diese Prozesse end-to-end; kein Copilot, sondern mit Autopilot-Funktionalität, die von Menschen überwacht und bei Bedarf freigegeben wird“, ergänzt er.
Gründungs-Optimismus 2026: Trotz Gegenwind auf Wachstumskurs?
Während die makroökonomischen Vorzeichen auf Abkühlung stehen – die OECD prognostizierte zuletzt eine Verlangsamung des globalen Wirtschaftswachstums um rund zehn Prozent in den kommenden Jahren – zeichnet sich in der deutschen Gründer*innenszene ein überraschendes Gegenbild ab: Ein neuer Optimismus macht sich breit.
Laut dem aktuellen „Work Change Special Report“ von LinkedIn (befragt wurden über 1000 Unternehmensführungen und Fachkräfte in Deutschland) blicken 55 Prozent der deutschen Kleinunternehmer*innen zuversichtlich auf das Wachstum in den kommenden zwölf Monaten. Dieser Wert sticht besonders hervor, da kleine Unternehmen (KMU) rund 90 Prozent aller Unternehmen ausmachen und für 70 Prozent des globalen BIP verantwortlich sind. Wenn dieser Sektor trotzt, hat das Signalkraft.
Damit zeigt der Report eine klare Trendwende: Die wirtschaftliche Unsicherheit führt nicht zur Schockstarre, sondern zu mehr Eigeninitiative. Die Zahl der LinkedIn-Mitglieder in Deutschland, die ihrem Profil den Titel „Founder“ hinzufügen, ist im Jahresvergleich um 61 Prozent gestiegen. Ein Indiz dafür, dass sich der Begriff des Unternehmertums wandelt – weg von rein formalen Strukturen, hin zu einer agilen Founder-Economy, die oft digital startet, bevor sie im Handelsregister landet.
KI als der große „Gleichmacher“ für kleine Teams
Was treibt diesen Mut zur Selbständigkeit in einem schwierigen Umfeld? Die Daten legen nahe, dass technologische Barrieren fallen. Künstliche Intelligenz (KI) fungiert hier als „Equalizer“, der kleinen Teams Wettbewerbschancen eröffnet, die früher Konzernen vorbehalten waren. Das generative KI-Potenzial wird global auf eine Wertschöpfung von bis zu 6,6 Billionen US-Dollar geschätzt – und kleine Unternehmen wollen sich ihren Teil davon sichern.
- Wettbewerbsvorteil: 53 Prozent der Geschäftsführer*innen kleiner Unternehmen in Deutschland geben an, dass KI entscheidend für das Wachstum ihres Unternehmens ist.
- Gründungsmotor: Fast 30 Prozent der Fachkräfte in Deutschland sagen, dass erst die Verfügbarkeit von KI sie dazu ermutigt hat, den Schritt in die Selbständigkeit zu wagen.
- Hohe Adaption: Während in der breiten Wirtschaft die Implementierung oft schleppend verläuft, sind die auf LinkedIn aktiven Kleinunternehmen bereits deutlich weiter: Hier geben 84 Prozent an, KI bereits in irgendeiner Form zu nutzen.
Die Renaissance der Soft Skills: Vertrauen als Differenzierungsmerkmal
Der Report warnt jedoch davor, sich allein auf Technologie zu verlassen. In einer Ära, in der KI-generierte Inhalte exponentiell zunehmen, wird der Human Factor zum entscheidenden Wettbewerbsvorteil.
Wenn Aufmerksamkeit ein knappes Gut ist, wird Vertrauen zur härtesten Währung.
- Netzwerkeffekte: 69 Prozent der Marketingverantwortlichen in kleinen Unternehmen bestätigen, dass Käufer*innen Informationen heute primär über ihre Netzwerke validieren, bevor sie Entscheidungen treffen.
- Markenaufbau: Für 71 Prozent der deutschen Kleinunternehmer*innen ist der Aufbau einer starken Marke der Schlüssel, um ihre 3-bis-5-Jahres-Ziele zu erreichen.
- Authentizität: 72 Prozent setzen verstärkt auf „Community-Driven-Content“ – also Stimmen von Mitarbeitern und Experten –, da bloße Markenbotschaften an Wirkung verlieren.
Fazit für Gründer*innen
Die Strategie für 2026 lautet Hybridität: Erfolgreiche Gründer*innen nutzen KI für Geschwindigkeit und Skalierung im Hintergrund, investieren aber gleichzeitig massiv in den Aufbau persönlicher Netzwerke und einer glaubwürdigen Marke. Oder wie es die Daten zeigen: 65 Prozent der deutschen Kleinunternehmer*innen sehen das aktive Netzwerken inzwischen als essenziellen Schlüssel für langfristiges Wachstum an.
Wer heute gründet, tut dies mit mächtigeren Werkzeugen als je zuvor – muss aber mehr denn je beweisen, dass hinter der Technologie echte Menschen stehen.
Automatisierung vor Hiring, sonst wird Komplexität skaliert
Wer Wachstum vor allem mit Hiring beantwortet, verzichtet damit oft unbewusst auf einen der wichtigsten Hebel moderner Organisationen: Klarheit durch Prozesse und Automatisierung. Tipps und To-Dos.
Wachstum wird in Start-ups oft sehr eindimensional gedacht: mehr Nachfrage gleich mehr Menschen. Sobald Anfragen steigen, Deals reinkommen oder neue Märkte locken, folgt fast automatisch der nächste Hiring-Plan. Dabei wird häufig die Ursache mit Wirkung verwechselt. Nicht fehlende Kapazität bremst junge Unternehmen, sondern fehlende Struktur. Prozesse entstehen improvisiert, Verantwortung wird situativ verteilt, operative Arbeit frisst Fokus. Und irgendwann fühlt sich Wachstum nicht mehr nach Fortschritt, sondern nach Dauerstress an.
Gerade in der Start-up-Branche wird Wachstum zudem stark über sichtbare Kennzahlen bewertet. In Gesprächen mit Investor*innen lautet eine der ersten Fragen häufig nicht Gewinn oder EBITA, sondern: Wie viele Mitarbeitende seid ihr und wie viel Umsatz macht ihr? Die Anzahl der Mitarbeitenden wird damit fast zu einem Statussymbol. Hiring wird nicht nur zur operativen, sondern auch zur psychologischen Größe und ein Zeichen von Fortschritt. Diese Logik verstärkt den Reflex, früh zu skalieren, auch wenn die strukturellen Voraussetzungen dafür noch fehlen. Wer Wachstum vor allem mit Hiring beantwortet, verzichtet damit oft unbewusst auf einen der wichtigsten Hebel moderner Organisationen: Klarheit durch Prozesse und Automatisierung.
Warum Hiring allein selten skaliert
Mehr Menschen im Team wirken wie eine schnelle Lösung. In der Praxis zeigt sich jedoch häufig ein ähnliches Muster: Neue Kolleg*innen übernehmen Aufgaben, die eigentlich nur deshalb existieren, weil Abläufe unklar oder manuell gewachsen sind. Statt nachhaltiger Entlastung entsteht zusätzliche Koordination.
Typische Symptome sind:
- operative Aufgaben blockieren strategische Arbeit,
- Wissen verteilt sich auf einzelne Köpfe,
- Entscheidungen hängen an Personen statt an klaren Abläufen,
- Abstimmungen nehmen zu, ohne dass die Wertschöpfung im gleichen Maß wächst.
Das Problem ist nicht Hiring an sich, sondern die Reihenfolge. In vielen Fällen wird Hiring eingesetzt, um kurzfristig Druck rauszunehmen, obwohl das eigentliche Nadelöhr fehlende Klarheit ist. Wer einstellt, bevor Abläufe stabil sind, schafft zwar mehr Kapazität, skaliert aber auch Komplexität.
Prozesse als Voraussetzung für wirksames Wachstum
Prozesse werden in Start-ups häufig mit Bürokratie verwechselt. Tatsächlich sind sie das Gegenteil: Sie reduzieren Reibung. Gute Prozesse verlagern Entscheidungen vom Einzelfall ins System. Sie beantworten zwei zentrale Fragen zuverlässig: Was passiert als Nächstes – und wer ist verantwortlich?
Gerade kleine Teams profitieren davon besonders. Prozesse schaffen keine Starrheit, sondern Handlungsspielraum. Sie machen Arbeit vorhersehbar, Übergaben sauber und Entscheidungen reproduzierbar. Erst auf dieser Grundlage kann ein wachsendes Team seine Stärke wirklich entfalten.
Automatisierung im KI-Zeitalter: neue Möglichkeiten, neue Verantwortung
Mit KI hat sich die Eintrittshürde für Automatisierung massiv gesenkt. Viele Aufgaben, die früher manuell oder individuell erledigt wurden, lassen sich heute zuverlässig unterstützen oder teilweise abnehmen, vorausgesetzt, der zugrunde liegende Ablauf ist klar definiert. Entscheidend ist dabei nicht die Tool-Auswahl, sondern die Frage, was automatisiert wird. Automatisierung verstärkt bestehende Strukturen, gute wie schlechte. Wer unklare Abläufe automatisiert, skaliert keine Effizienz, sondern Chaos. Gleichzeitig gibt es zentrale Bereiche, die sich bewusst nicht oder nur sehr begrenzt automatisieren lassen und auch nicht sollten. Recruiting ist einer davon. Der Aufbau eines funktionierenden Teams lebt von persönlicher Einschätzung, Teamdynamik und kulturellem Fit. Ähnliches gilt für Sales: Vertrauensaufbau, Verhandlung und das persönliche Gespräch bleiben essenziell. Automatisierung ist hier unterstützend, aber kein Ersatz. Besonders geeignet sind Tätigkeiten, die häufig auftreten, wenig kreativen Spielraum haben und auf wiederkehrenden Informationen basieren.
Bereiche, die sich heute besonders gut automatisieren lassen
Lead- und Anfragequalifizierung
Unstrukturierte Anfragen lassen sich mithilfe von KI zusammenfassen, bewerten und priorisieren. Statt jede Anfrage manuell zu prüfen, entstehen klare Kriterien, die relevante von irrelevanten Leads trennen und Follow-ups vorbereiten.
Angebots- und Abrechnungsprozesse
Angebote, Verträge und Rechnungen folgen in vielen Startups ähnlichen Mustern. Automatisierte Vorlagen, angebundene Datenquellen und definierte Freigaben sparen Zeit, reduzieren Fehler und schaffen Transparenz.
Onboarding von Kund:innen und Mitarbeitenden
Onboarding ist kein Einzelfall, sondern ein wiederkehrender Prozess. Checklisten, automatische Aufgaben und zentrale Informationspunkte sorgen für Verlässlichkeit. KI kann helfen, Informationen zu strukturieren und kontextbezogen bereitzustellen.
Support und interne Anfragen
Ein Großteil von Fragen wiederholt sich. Wissensbasen in Kombination mit KI-gestützter Suche und Antwortvorschlägen entlasten Teams und machen sichtbar, wo Standards fehlen.
Projektmanagement und Übergaben
Klare Projekt-Templates, automatisierte Status-Updates und definierte Trigger reduzieren Abstimmungsaufwand. KI kann dabei unterstützen, Risiken früh zu erkennen oder nächste Schritte vorzuschlagen.
Was Start-ups daraus lernen können
Automatisierung ersetzt keine Entscheidungen, sie macht sie skalierbar. Voraussetzung dafür ist Klarheit über Abläufe, Verantwortlichkeiten und Prioritäten. Wer versucht, Chaos zu automatisieren, verstärkt es lediglich.
Hilfreiche Leitfragen sind:
- Welche Aufgaben wiederholen sich regelmäßig?
- Wo entstehen manuelle Engpässe?
- Welche Tätigkeiten binden qualifizierte Menschen ohne echten Mehrwert?
Die Antworten darauf liefern meist schnell die größten Hebel.
Der KI-Wendepunkt: Systeme und Personal
Nachhaltiges Wachstum entsteht dort, wo Start-ups Systeme aufbauen und diese bewusst mit ihrem Team verzahnen. Nicht, weil Systeme Menschen ersetzen, sondern weil sie Menschen von struktureller Überforderung entlasten. Automatisierung schafft dabei nicht nur Effizienz, sondern Entscheidungsqualität: Wenn Daten sauber fließen, Übergaben klar sind und Standards greifen, werden Prioritäten weniger Bauchgefühl und stärker reproduzierbar.
Der gezielte Einsatz von KI-Tools verschiebt diesen Wendepunkt zusätzlich. Sie können Routinearbeiten abfangen, Informationen aus unstrukturierten Inputs verdichten und Entscheidungen vorbereiten – etwa durch Lead-Vorqualifizierung, Support-Clustering oder zusammengefasste Status-Updates. KI wirkt dabei nicht als Ersatz für Klarheit, sondern als Verstärker funktionierender Prozesse.
Hiring bleibt auch weiterhin essentiell. Seine Wirkung entfaltet es jedoch erst dann vollständig, wenn Prozesse klar sind und Automatisierung sowie KI gezielt unterstützen. So entsteht Wachstum, das nicht nur schneller, sondern auch gesünder ist.
Der Autor Markus Hetzenegger ist Gründer & CEO von NYBA Media. 2018 gegründet, zählt NYBA heute zu den führenden Marketing-Unternehmen im Live-Entertainment.
SET100-Liste 2026: ClimateTech entwächst den Kinderschuhen
Zum zehnten Mal hat die Deutsche Energie-Agentur (dena) die globalen Top-Start-ups der Energiewende identifiziert. Die Analyse der SET100-Liste 2026 zeigt: Statt Visionen dominieren heute umsatzstarke Geschäftsmodelle und industrielle Hardware-Lösungen.
Wer verstehen will, wie sich die globale Start-up-Szene im Bereich Energie und Klima entwickelt, muss in diesem Jahr auf den Reifegrad der Technologien schauen. Die Zeiten, in denen Climate Tech vornehmlich aus Software-Piloten im frühen Stadium bestand, scheinen vorbei zu sein. Zum zehnjährigen Jubiläum der Innovationsplattform Start Up Energy Transition (SET) veröffentlichte die dena am 11. Februar 2026 die neue SET100-Liste. Ein Blick in die Daten der 100 ausgewählten Unternehmen offenbart eine massive Verschiebung hin zu marktreifen Lösungen.
Vom Prototyp zum Markteintritt
Aus insgesamt 470 Bewerbungen aus 79 Ländern wählte eine internationale Jury die vielversprechendsten Kandidat*innen aus. Auffällig ist dabei der hohe technologische Reifegrad (Technology Readiness Level, TRL). 79 Prozent der gelisteten Start-ups befinden sich bereits in der „Late Stage“ (TRL 7-9), verfügen also über marktreife Produkte oder sind bereits in der Skalierung.
Philipp Richard, Bereichsleiter Digitale Technologien & Start-up Ökosystem bei der dena, betont die fortgeschrittene technische Bereitschaft dieses Jahrgangs: „Viele Start-ups befinden sich jetzt auf TRL 7-9, was auf Lösungen hinweist, die für den sofortigen Einsatz auf dem Markt bereit sind.“. Die Start-ups haben die Pilotphase weitgehend hinter sich gelassen – 80 Prozent verfügen über Produkte, die über den Status eines „Minimum Viable Product“ (MVP) hinausgehen.
Umsatzsprung und Kapitalfluss
Diese Reife spiegelt sich auch in den betriebswirtschaftlichen Kennzahlen wider. Die monatlichen Umsätze der SET100-Unternehmen haben sich im Jahresvergleich mehr als verdoppelt – von 10,1 Millionen Euro im August 2024 auf 20,9 Millionen Euro im August 2025.
Dabei zeigt sich eine klare Trennung bei der Kapitalverteilung. Obwohl der Sektor „Clean Energy & Storage“ mit 39 Start-ups die größte Gruppe in der Liste stellt, floss das meiste Kapital in einen anderen Bereich. Die Finalisten der Kategorie „Industry“ konnten mit 93,6 Millionen Euro mehr als die Hälfte des gesamten Finanzierungsvolumens der Finalisten auf sich vereinen. Dies deutet auf ein wachsendes Interesse von Investor*innen an Lösungen für schwer dekarbonisierbare Industriesektoren (Hard-to-Abate-Sectors) hin, die oft kapitalintensive Hardware erfordern.
Hardware dominiert, Software flankiert
Die Analyse der Geschäftsmodelle zeigt, dass reine Softwarelösungen in vielen Bereichen zur Minderheit werden. Besonders in den Sektoren „Buildings & Construction“ sowie „Mobility & Transportation“ dominieren Hardware-Lösungen mit 62 Prozent beziehungsweise 50 Prozent. Lediglich im Bereich „Clean Energy & Storage“ liegt der Software-Anteil mit 51 Prozent noch vorn, was auf die hohe Bedeutung von Netzmanagement und digitalen Speicherlösungen hinweist.
Insgesamt zeigt die Liste 2026 eine hohe Produktkomplexität: 59 Prozent der Lösungen werden als „sehr komplex“ eingestuft. Gleichzeitig ist der Weg zur Profitabilität für viele greifbar: 18 Prozent der Start-ups haben den Break-even bereits erreicht, weitere 36 Prozent erwarten diesen Schritt innerhalb der nächsten 12 Monate.
Die Finalist*innen im Überblick
Aus den Top 100 wurden 15 Finalist*innen ausgewählt, die ihre Lösungen am 17. März 2026 auf dem SET Tech Festival in Berlin präsentieren werden. Die Bandbreite reicht von Kreislaufwirtschaft bis zu KI-gesteuerter Netzstabilität:
- Clean Energy & Storage: Hier treten unter anderem Alternō (Singapur) mit thermischen Speichern auf Sandbasis und Flower (Schweden) mit KI-basiertem Energiehandel an.
- Industry: In dieser kapitalstarken Kategorie finden sich Unternehmen wie Cyclic Materials (Kanada), das Seltene Erden recycelt, und InPlanet (Deutschland), das auf beschleunigte Gesteinsverwitterung zur CO2-Speicherung setzt.
- Buildings & Construction: Hier liegt der Fokus auf Materialien und Inspektion, etwa durch Birdsview (Norwegen) mit KI-gestützter Betondiagnose oder Mykor (UK) mit Dämmstoffen aus Pilzmyzel.
- Mobility: Finalisten wie CLIP.bike (USA) setzen auf E-Bike-Nachrüstungen, während Gridio (Estland) intelligentes Laden von E-Autos ermöglicht.
- Energy Access: Unternehmen wie Acecore (USA/Nigeria) und BioMassters (Ruanda) adressieren die Energieversorgung im globalen Süden.
Herausforderungen bleiben bestehen
Trotz der positiven Entwicklung sehen sich die Gründerinnen und Gründer weiterhin mit signifikanten Hürden konfrontiert. Als größte Herausforderung identifizieren die Unternehmen die Anpassung an politische Rahmenbedingungen und Regulierung – ein Thema, das besonders im stark reglementierten Energiesektor schwer wiegt. Auch die internationale Expansion und die Akquise von Talenten zählen zu den drängendsten Problemen. Im Industriesektor, der stark auf spezialisierte Ingenieurskunst angewiesen ist, wird der Fachkräftemangel als besonders kritisch bewertet.
Der SET Award 2026 markiert einen Wendepunkt: ClimateTech ist keine Nische für Idealisten mehr, sondern ein reifer Markt mit validierten Geschäftsmodellen, der zunehmend traditionelle Industriestrukturen aufbricht.
DIONYS: Schluss mit Event-Chaos
Events und Offsites erleben ein massives Comeback. Doch hinter den Kulissen vieler Locations herrscht oft noch analoges Chaos. Das Münchner Start-up DIONYS will genau das ändern: Schluss mit dem E-Mail-Pingpong, hin zu echten Buchungen.
Die steigende Nachfrage nach Firmen-Events und privaten Feiern stellt die Hospitality-Branche vor administrative Herausforderungen. Während Hotelzimmer und Tischreservierungen weitgehend digitalisiert sind, erfolgt die Bearbeitung von Gruppenanfragen und Event-Konfigurationen in vielen Betrieben noch manuell. Das 2025 gegründete Software-Start-up DIONYS tritt an, um diesen Prozess durch Standardisierung zu beschleunigen.
Konfigurator statt E-Mail-Pingpong
Das Kernprodukt des Unternehmens ist eine Softwarelösung, die den Angebotsprozess für Veranstaltungen digitalisiert. Anstatt individuelle Angebote manuell zu tippen, sollen Kunden ihre Events – von Menüs bis zu Getränkepaketen – über eine Online-Oberfläche selbst konfigurieren können.
CEO Folke Mehrtens beschreibt den aktuellen Zustand der Branche als paradox: „Es ist absurd: Gerade dort, wo Events den meisten Umsatz bringen, fehlt oft jede Struktur. Solange Events wie Sonderfälle behandelt werden, bleiben sie ein operativer Schmerz.“
Die Software von DIONYS zielt darauf ab, diesen „Schmerz“ zu lindern, indem sie Events von der manuellen Ausnahme zum standardisierten Produkt wandelt – buchbar und transparent wie im E-Commerce.
Technik trifft auf operative Erfahrung
Technisch steht das Unternehmen vor der Hürde, die individuellen Parameter von Gastronomiebetrieben – etwa spezifische Stornoregeln oder variable Menüfolgen – in einen Algorithmus zu überführen. CTO Gregor Matte betont, dass die Herausforderung weniger in der reinen Buchung, sondern in der Abbildung der operativen Vielfalt liege.
Um die Praxistauglichkeit sicherzustellen, setzt das Gründungsteam auf Mitstreiter mit Branchenhintergrund. Neben Mehrtens (Strategie) und Matte (Technik) sind unter anderem Ekkehard Bay (ehemals Manager im Mandarin Oriental) sowie Daniel Simon (ehemals OpenTable) an Bord.
Wettbewerb und der Faktor „Mensch“
DIONYS positioniert sich in einem dichten Marktumfeld zwischen etablierten Back-Office-Lösungen wie Bankettprofi und modernen Reservierungssystemen wie aleno. Die Münchner suchen ihre Nische bei individuellen Event-Locations und Restaurants, die sich von reinen Tagungshotels abgrenzen.
Die in der Branche verbreitete Sorge, dass durch die Digitalisierung die persönliche Note leide, versucht Head of Hospitality Ekkehard Bay zu entkräften: „Wenn Standardfragen digital geklärt sind, bleibt im echten Gespräch mehr Zeit für das, was wirklich zählt: besondere Wünsche und echte Aufmerksamkeit.“
Erste Marktdaten und Ausblick
Seit dem Start im Herbst 2025 wurden nach Angaben des Unternehmens Anfragen mit einem Volumen von rund 400.000 Euro über das System abgewickelt. Zu den ersten Nutzern zählen bekannte Münchner Betriebe wie Kustermann und die Bar Valentin. Das Erlösmodell basiert auf einer Kombination aus monatlicher Softwaregebühr und umsatzabhängigen Komponenten.
Für die nächste Wachstumsphase strebt DIONYS die Akquise von 100 „Pionier-Betrieben“ in der DACH-Region an. Ob sich der Ansatz als neuer Industriestandard durchsetzen kann, wird davon abhängen, ob die Software die komplexen Anforderungen einer breiten Masse an unterschiedlichen Betrieben tatsächlich ohne manuelles Nachsteuern abbilden kann. Daniel Simon gibt sich zuversichtlich: „In drei Jahren wird Event-Management nicht mehr improvisiert, sondern datenbasiert gesteuert.“
