Aktuelle Events
Anna Lukasson-Herzig: Veni, Vidi, Nyris
Weniger als eine halbe Sekunde benötigt die Bildsuchmaschine Nyris, um über 500 Millionen Produkte zu durchsuchen und ein Ergebnis zu liefern, an dem textbasierte Suchanfragen scheitern würden. Entwickelt wurde die wegweisende Technologie von Anna Lukasson-Herzig. Eine spannende Geschichte über die Sprache der Bilder.
Das menschliche Gehirn verarbeitet und merkt sich visuelle Informationen rund 60.000 Mal schneller und besser als auf dem auditiven Weg oder beim Lesen eines Textes. Je komplexer und länger der Text ist, desto mehr Zeit benötigt unser Gehirn, um Informationen zu generieren. Bei einem Bild genügt hingegen oft ein flüchtiger Blick. Man könnte durchaus sagen: Das Gehirn bevorzugt Bilder anstelle von Text.
Daran orientieren sich auch visuelle Suchtechnologien, die immer mehr an Bedeutung gewinnen und nicht nur schneller, sondern auch präziser als die herkömmliche textbasierte Suche sind. Visual Search basiert auf realen Bildern wie Screenshots oder Fotos und setzt auf technische Entwicklungen hin zu künstlicher Intelligenz: Einerseits soll der Computer das Bild erkennen, quasi sehen, andererseits auch verstehen und in einen Kontext setzen. Denn ein Bild besteht für einen Computer lediglich aus einer reinen Zahlenmenge. Beim maschinellen Sehen soll der Computer eine Suchanfrage ähnlich verarbeiten wie ein menschliches Gehirn; er lernt dies, indem er über Machine Learning mit einer Menge Daten gespeist wird.
Der Trend, smarte Systeme als künstliche Intelligenz zu bezeichnen, wird im Bereich der visuellen Suche manchmal überstrapaziert, das weiß auch Anna Lukasson-Herzig, CEO von Nyris, die das Unternehmen im Jahr 2015 zusammen mit ihrem Bruder Markus Lukasson gegründet hat. „Es wird zwar vieles künstliche Intelligenz genannt, aber wir sind noch weit davon entfernt, die natürliche Intelligenz zu verstehen und daher noch nicht im Stande, diese in Gänze zu kopieren“, so Anna. Nyris ist ein deutsches Tech-Start-up mit Sitz in Düsseldorf und Berlin, dessen visuelle Suchtechnologie bei Kunden wie IKEA, Daimler, Bühler, Renault oder METRO zum Einsatz kommt und zu den weltweiten Marktführern im Bereich visuelle Suche zählt.
Visual Search ist ein Mega-Thema
An Visual-Search-Lösungen arbeiten neben Nyris auch Tech-Giganten wie Google, Amazon oder Alibaba – kein Wunder: Bereits mehrere Milliarden US-Dollar schwer, wächst der Markt rund um visuelle Suchtechnologien stetig mit knapp 20 Prozent pro Jahr. Anwendungsgebiete gibt es etwa im E-Commerce oder wie auch bei Nyris – momentan stark von der Industrie ausgehend – im Bereich der Ersatzteilerkennung, wo die integrierte Software Prozesse innerhalb der Firmen verkürzen, das Kundenerlebnis verbessern und den Umsatz steigern soll. Maschinen müssen regelmäßig gewartet und deren Ersatzteile ausgetauscht werden. Dafür müssen diese aber erst beschrieben und dann auch im System gefunden werden. Das kann zu großen Schwierigkeiten führen, denn das betreffende Teil zu identifizieren, kann Tage bis hin zu Wochen dauern und die Maschinen stehen in der Zeit still, was Unsummen kosten kann.
Hinzu kommt, dass zwar ein(e) Techniker*in bei der textbasierten Suche das Ersatzteil, etwa eine Laserdüse, noch recht detailreich in Stichworten beschreiben kann – „blank poliert, konisch, Kupfer, unten zulaufend, matte Oberfläche“ –, eine fachkundige Person, die auf der Website des Herstellers bestellen möchte, aber oft schon am einfachsten Fachvokabular scheitert. Der Bestellvorgang wird zusätzlich erschwert, da die Ersatzteile in der Datenbank oft nur mit einer Seriennummer beschriftet sind und die spezifische Laserdüse daher gar nicht gefunden werden kann, ohne, dass Techniker*innen zwischengeschaltet werden – und dann auch nur, wenn diese die Seriennummer auswendig kennen. Untersuchungen zeigen, dass 76 Prozent aller Ersatzteilbestellungen einen persönlichen Kontakt zu Servicemitarbeitenden voraussetzen, um finalisiert zu werden.
Dieser komplexe Prozess entfällt mit Nyris, indem man einfach ein Foto des benötigten Ersatzteils macht. „Wir ziehen mehrere tausend Features aus einem Bild heraus, die charakteristisch sind, und ermöglichen damit überhaupt erst die Suche nach dem richtigen Ersatzteil“, erklärt Anna einen klassischen Anwendungsfall. „Wir durchsuchen dabei nicht das Web nach Bildern, sondern bieten Unternehmen die Möglichkeit, in ihrer geschlossenen Datenbank zu suchen.“ Per App können Kund*innen oder Lieferant*innen das Foto vom benötigten Ersatzteil hochladen. Nyris sucht dann nach dem Teil – ein Ergebnis wird, obwohl Abermillionen Produkte gescannt werden können, rekordverdächtig in weniger als einer Sekunde geliefert. Erst kürzlich hat Nyris in diesem Bereich eine neue Lösung für jenen Anwendungsfall gelauncht, in dem Kund*innen keine Fotos der Ersatzteile vorliegen, um den Suchindex zu erstellen. „Hier helfen wir mit Bildern, die auf synthetischen Daten aufbauen. Da brauchen wir als Input nur 3D-Modelle der Bauteile, aus denen wir synthetische Bilder generieren und damit den Index aufbauen.“
Auch im Handel kommt Nyris zum Einsatz, „dort, wo sich alles ums Foto dreht, zum Beispiel beim Shoppable Content“, erklärt Anna. Im E-Commerce wird in Zukunft der Fokus immer mehr auf einer einladenden Website liegen, die durch redaktionellen Content, den man dann auch gleich per Klick shoppen kann, inspirieren soll. Bisher war der Nachteil, dass schöne Fotos auf diversen Websites zwar zum Nachshoppen einluden, man jedoch nicht direkt auf die einzelnen Produkte klicken konnte. Nyris ermöglicht es außerdem, den Kund*innen ähnliche Produkte anzuzeigen – man denke etwa an Second-Hand-Plattformen oder den Gebrauchtsachenverkauf, wo Produkte falsch geschrieben oder Fotos unglücklich hochgeladen werden und unterschiedliche Bezeichnungen die textbasierte Suche erschweren. „Hier überträgt ein Bild viel mehr Informationen, wodurch wir Websites befähigen, wirklich relevante Produkte zu zeigen“, so Anna.
Von Wundercart über Everyback zu Nyris
Zunächst als Wundercart gestartet und später hin zu Everyback firmiert, war die Idee von Anna und Markus, einen vom Händler unabhängigen Warenkorb zu bauen und diesen über alle Plattformen hinweg füllen zu können. Dabei sollte man innerhalb von 20 Sekunden auschecken können. „Das ging allerdings nicht mit Text, daher habe ich Bilderkennung vorgeschlagen, weil ich das damals im Rahmen meiner Dissertation gemacht habe. Es gab nichts am Markt, das skaliert. Die schnellste textbasierte Suche konnte bis zu 100.000 Produkte in 12 Sekunden durchsuchen, aber bei einem KPI von 20 Sekunden, ist das einfach zu lange“, so Anna. Markus wusste mit seinem Amazon-Know-how, dass mindestens 500 Millionen Produkte machbar sein müssten, um einen Wettbewerbsvorteil zu erzielen.
„Da haben wir entschieden: Wir machen das selbst, auch wenn das einfach ein Wahnsinn ist. Zunächst dachte ich noch, das bekommen wir nie hin. Aber dann hatten wir schon zwei Wochen später eine Grundtechnologie, die skalierte, und waren nach kürzester Zeit bereits bei sechs Sekunden“, so Anna über die Geburtsstunde von Nyris. „Wir haben dann den kompletten Checkout-Prozess weggeworfen und uns nur noch auf die Bilderkennung konzentriert. Von B2C zu B2B und die Namensänderung von Eyeryback zu Nyris“, so Anna.
Anna, die damals gerade zum zweiten Mal in Elternzeit war, wusste schon lange, dass sie mit ihrem Bruder gründen wollte und dass sie nicht mehr zu BCG, wo sie in leitender Funktion zuletzt tätig war, zurückgehen würde. „Das war schon immer ein Wunsch von uns, dass wir einmal etwas zusammen machen. Mit Nyris hatten wir dann die passende Idee gefunden. Wir hatten beide bereits zuvor gegründet und dadurch auch das Selbstvertrauen gehabt, dass etwas klappen kann, auch wenn andere Leute sagen, dass es nicht ginge.“Zuvor hatte Anna einen Kindergarten gegründet. Diesen gibt es heute nicht mehr, nachdem sich Nachbar*innen im Haus beschwert hatten, dass dadurch der Wert der Immobilie gemindert würde und ein langwieriger Gerichtsprozess drohte. Markus, der zuvor im Tech-Team bei Amazon arbeitete und dort einige der ersten Kategorien neben Büchern launchte, hatte sich vor Nyris mit Minga, einem Sockenlabel, in Berlin selbständig gemacht.
Dies ist ein Auszug aus unserer Coverstory aus der StartingUp - Heft 03/21 - ab dem 19. August 2021 im Handel oder jederzeit online bestellbar - auch als ePaper erhältlich - über unseren Bestellservice
Diese Artikel könnten Sie auch interessieren:
ChatGPT schreibt Texte. R3 Robotics zerlegt Batterien
Es gibt Probleme, die man mit Software lösen kann, und es gibt Probleme, für die man sich die Hände schmutzig machen muss – oder besser: Roboterhände nutzt. Antoine Welter und Dr. Xavier Kohll haben mit Circu Li-ion begonnen, um Batterien zu retten. Jetzt, unter dem neuen Namen R3 Robotics und mit 20 Millionen Euro frischem Kapital im Rücken, treten sie an, um den wohl größten Flaschenhals der kommenden Mobilitätswende zu beseitigen. Ihr Ansatz: Keine teuren Spezialmaschinen, sondern intelligente Standard-Roboter, die sehen, verstehen und sicher zupacken.
Wenn in den Vorstandsetagen der Automobilhersteller über die Zukunft gesprochen wird, geht es meist um Reichweiten und Software-Defined Vehicles. Doch am anderen Ende der Wertschöpfungskette braut sich ein Sturm zusammen. Millionen von Elektrofahrzeugen werden in den kommenden Jahren ihr Lebensende erreichen. Die derzeitige Realität in vielen Recyclinghöfen wirkt dagegen fast archaisch: Menschen, die mit Handwerkzeugen komplexe Systeme auseinanderschrauben. Das ist nicht nur teuer und schwer skalierbar, sondern bei Hochvolt-Systemen auch lebensgefährlich.
Genau hier setzen Antoine Welter und Xavier Kohll an. Die Nachricht, die das deutsch-luxemburgische Unternehmen Anfang Februar 2026 verkündete, ist mehr als nur eine Finanzierungsrunde. Die 20 Millionen Euro – aufgeteilt in 14 Millionen Euro Series-A-Kapital und 6 Millionen Euro öffentliche Fördergelder – heben die Gesamtfinanzierung des Unternehmens auf ein neues Level. Angeführt wird die Runde von HG Ventures und Suma Capital, unterstützt von Co-Investoren wie der Oetker Collection und dem EIC Fund.
Doch das Geld ist nur der Treibstoff für eine strategische Evolution. Aus Circu Li-ion wird R3 Robotics. Der neue Name ist Programm: Repair, Reuse, Recycle. Antoine Welter erklärt die Motivation hinter der Umbenennung pragmatisch: „Circu Li-ion hat beschrieben, wo wir angefangen haben. R3 Robotics beschreibt, was wir aufbauen: industrielle Robotik, die Demontage skalierbar, sicher und kosteneffizient macht.“
Wenn der Roboter Augen bekommt
Die größte Hürde im Recycling ist nicht die Chemie, sondern die Variabilität. Kein Batteriepack gleicht dem anderen, E-Motoren sind unterschiedlich verbaut, Schrauben sind korrodiert. Starre Fertigungsstraßen scheitern hier. R3 Robotics löst dies mit einer Plattform, die Computer Vision, künstliche Intelligenz und Robotik verschmilzt.
Das System fungiert dabei fast wie ein „ChatGPT für die physische Welt“: Anstatt Text zu generieren, plant die KI physische Handlungen. Sensoren scannen das Bauteil, die KI erkennt den Zustand und promptet den Roboterarm dynamisch durch den Demontageprozess. Der entscheidende Vorteil: Der Mensch wird aus der Gefahrenzone der Hochspannung genommen, während der Roboter Aufgaben erledigt, die für klassische Automatisierung zu komplex wären.
Angesprochen auf den Vergleich mit Generative AI und die Frage, wie die Roboter tatsächlich „sehen“ und „entscheiden“, bestätigt Welter die Parallele: „Der Vergleich mit Generative AI passt gut: Das Modell bekommt einen Input – keinen Text, sondern einen Scan des Bauteils – und generiert daraus eine Handlungssequenz.“ Es gehe darum zu erkennen, um welches Modell es sich handelt, wie der Zustand ist und wo die Verbindungspunkte liegen. „Das klingt simpel, ist es aber nicht – kein Pack ist identisch“, so Welter. Die eigentliche Herausforderung liege jedoch in der Entscheidung davor: „Welche Reihenfolge ist sicher? Ein falscher Griff an ein Hochvoltsystem kann tödlich sein. Unser System sieht, bewertet und entscheidet.“
Smart Hardware: Warum das Rad neu erfinden?
Ein Detail, das Investor*innen besonders aufhorchen lässt, ist die Kapitaleffizienz der Gründer. Wer an Industrie-Robotik denkt, denkt an teure Hardware-Entwicklung. R3 Robotics geht einen pragmatischen Weg: Ein Großteil der verwendeten Hardware wird „von der Stange“ gekauft.
Die Roboterarme sind Standardprodukte. Die Innovation – und damit das geistige Eigentum – steckt in den spezialisierten „End-Effektoren“ (den Roboterhänden), den Sensorsystemen und vor allem dem Software-Stack, der alles steuert. Das erlaubt eine Skalierung, die mit proprietärer Hardware kaum möglich wäre. Mitgründer Dr. Xavier Kohll betont, dass dies eine bewusste Entscheidung gegen „Over-Engineering“ war: „Der Roboterarm ist Standard und die Intelligenz sitzt in den Endeffektoren, der Sensorik und dem Software-Stack, der alles zusammenbringt. Das ist unser geistiges Eigentum, und genau das lässt sich skalieren.“
David gegen Goliath – oder Partner?
Während große Recycling-Konzerne oft noch auf den Schredder setzen und die manuelle Demontage an ihre Grenzen stößt, positioniert sich R3 Robotics in einer neuen Nische. Es geht nicht darum, die Chemie-Giganten zu ersetzen, sondern ihnen den Rohstoff so rein wie möglich zu liefern – als strategische Quelle für kritische Materialien. Doch der Markt schläft nicht: Weltweit entstehen Initiativen zur Automatisierung.
Trotz des aktuellen „Gegners“ – dem Menschen mit dem Schraubenzieher – und potenzieller Konkurrenz durch Tech-Start-ups oder Autohersteller, bleibt Welter gelassen. „Wir konkurrieren nicht mit den Chemie-Giganten, wir liefern ihnen den reinsten möglichen Stoffstrom“, stellt er klar. Gegenüber potenziellen Nachahmern sieht er einen entscheidenden Vorteil, den „Unfair Advantage“: die Kombination aus Flexibilität und industrieller Automatisierungstiefe. „Wir sind aktuell die einzige Plattform, die sowohl Variabilität managt als auch für kontinuierlichen Industriebetrieb ausgelegt ist.“
Deutschland als Labor, USA als Skalierungsmarkt
Die Wachstumsstrategie von R3 Robotics ruht auf zwei massiven Säulen: technologischer Tiefe in Europa und kommerzieller Breite in den USA.
Deutschland fungiert dabei als das technologische Rückgrat. Mit der Erweiterung der Anlage in Karlsruhe zur Lighthouse Facility demonstriert das Unternehmen industrielle Leistungsfähigkeit direkt vor der Haustür der großen Autobauer. Hier wird die Technologie gehärtet. Das zeigt sich auch im Leuchtturmprojekt ReDriveS, wo R3 Robotics Seite an Seite mit Giganten wie Schaeffler und VW an der Demontage von E-Achsen arbeitet.
Doch für das massive Volumen blickt das Team über den Atlantik. Der für 2026 geplante Markteintritt in den USA ist Kern der neuen Strategie. Die frischen 20 Millionen Euro sollen gezielt in den Aufbau strategischer Partnerschaften vor Ort fließen, um die Technologie dort auszurollen, wo Pragmatismus auf riesige „End-of-Life“-Volumina trifft. Für Welter ist dieser Doppelschlag essenziell: „Deutschland ist unser Beweisstand. Hier zeigen wir Schaeffler, VW und Co., dass unsere Technologie industriellen Maßstäben in Deutschland standhält.“ Die USA seien hingegen der wichtige Skalierungsmarkt, wo pragmatische Entscheider auf gigantische Volumina treffen. „Beides brauchen wir: die Glaubwürdigkeit aus Europa und das Volumen aus Amerika.“
Industrialisierung statt Romantik
Mit Peter Mohnen, dem ehemaligen CEO des Roboter-Riesen KUKA, holte sich das Start-up zudem einen Beirat, der wie kaum ein anderer weiß, was Industriestandard bedeutet. Er beschreibt den Ansatz von R3 als Beweis für die nötige Automatisierungsexpertise, um Variabilität und Sicherheit gleichzeitig zu managen.
Um diese Expertise weiter auszubauen, wächst das Team rasant. Die Belegschaft soll mit der neuen Finanzierung massiv aufgestockt werden, vor allem im Bereich Engineering und KI. R3 Robotics hat den Beweis erbracht, dass Kreislaufwirtschaft kein ökologisches Nischenprojekt sein muss, sondern ein harter industrieller Prozess ist, der sich rechnet.
Denn letztlich, so das Fazit von Antoine Welter, sei Automatisierung der einzige Weg, das Problem wirklich zu lösen – nicht allein aus ökologischen Gründen, sondern weil es wirtschaftlich Sinn ergibt. „Was wir aufbauen, ist am Ende ein harter industrieller Prozess: Er muss zuverlässig funktionieren und sich rechnen.“ Es gehe aber um mehr als ein Geschäftsmodell: „Europa braucht eine Antwort auf die Frage, woher seine kritischen Materialien in Zukunft kommen“, mahnt Welter abschließend. „Wenn Europa diesen Zugang sichern will, braucht es Unternehmen, die genau das industriell umsetzen können. Dafür bauen wir diese Infrastruktur, und mit dem neuen Kapital und Team haben wir jetzt die Mittel dazu.“
VESTIO: Wenn ein Solar-Entrepreneur auf einen Stil-Rebellen trifft
Die Geschichte der jungen FashionTech-App VESTIO ist zugleich die zweier Gründer, die sich in einem gemeinsamen Ziel treffen: Die Demokratisierung von gutem Stil durch algorithmische Logik.
Hinter der FashionTech-App VESTIO steht die im Jahr 2024 von Bastian Arend und Justus Hansen gegründete Opus Stilberater GmbH, die den Anspruch erhebt, professionelle Stilberatung erstmals digital, logisch und kostenlos zugänglich zu machen.
Der „Solar-Entrepreneur“ trifft den Stil-Rebell
Die persönlichen Hintergründe der Gründer bieten spannende Kontraste, die weit über ein übliches Business-Profil hinausgehen. Bastian Arend, Co-Founder und CEO, kam über die Energiewende zur Mode. Als Seriengründer baute er den Online-Solar-Anbieter Klarsolar auf und verkaufte ihn im Dezember 2023 erfolgreich an den Energiekonzern E.ON. Die Übernahme erfolgte in einer für die Solarbranche schwierigen Marktphase, was Bastian Arend als Krisen-erprobten Strategen auszeichnet.
VESTIO entwickelte er 2024 jedoch aus einem ganz persönlichen „Pain Point“ heraus: Während er internationale Millionen-Finanzierungsrunden leitete, bestand sein eigener Stil mangels Zeit lediglich aus Hoodie, Jeans und Sneakern. „Ich wollte nur jemanden, der für mich einkauft“, erinnert er sich an diese Phase. Seine Abneigung gegen zeitraubendes Shopping führte ihn schließlich zu Justus Hansen.
Justus Hansen, Co-Founder und Chief Styling Officer, bringt eine Biografie ein, in der Mode schon immer eine zentrale Rolle spielte. Sein Gespür für klassische Mode ist tief verwurzelt: Justus Hansen trug bereits im Kindergarten eine Fliege und provozierte später Lehrer, indem er im Sakko zum Unterricht erschien. Bevor er mit über 1,6 Millionen Follower*innen zu einem der bekanntesten Männerstilberater Deutschlands aufstieg, studierte er Jura und absolvierte Praktika im Bankensektor, unter anderem bei der Dresdner Bank.
Diese Erfahrungen schärften seinen Blick für die Anforderungen moderner „Business-Garderoben“. Als Arend ihn fragte, ob er für ihn einkaufen könne, antwortete Justus Hansen bestimmt: „Einfach irgendwas kaufen? Nein. Ich muss verstehen, wer du bist.“ Bastian Arend begriff Hansens modulare Styling-Methode sofort als logisches System und schlug vor: „Wir sollten deine Methode digitalisieren und kostenlos für jeden Mann zugänglich machen.“ Für Justus Hansen wurde damit ein „Lebenstraum“ wahr.
Das Konzept: „Weniger Teile, mehr Outfits“
Das Herzstück der App bildet ein algorithmisches Styling-System, das strikt dem Leitsatz „Weniger Teile. Mehr Outfits“ folgt. In nur drei Minuten erstellt ein Stilfinder-Fragebogen eine persönliche Grundgarderobe. Der digitale Kleiderschrank funktioniert dabei bewusst ohne das mühsame Hochladen von Fotos; das System kennt die wichtigsten Basics, erkennt Lücken und empfiehlt gezielt Ergänzungen. Justus Hansen betont dabei die Wichtigkeit der Basis: „Die wenigsten Männer besitzen eine echte Basisgarderobe. Und das ist die Grundlage, aus der ihre besten Outfits entstehen.“
Ziel ist es, automatisch kombinierbare Outfits für alle Anlässe zu generieren. Dabei verfolgen die Gründer eine klare ästhetische Linie: „Outfits müssen nicht kompliziert sein, um zu wirken. Sie brauchen lediglich eine klar erkennbare Linie“, so Hansen. Bastian Arend ergänzt: „Die besten Outfits für Männer sind nicht kompliziert, sondern harmonisch und durchdacht.“
Das Affiliate-Dilemma: Geschäftsmodell im kritischen Check
Wirtschaftlich operiert VESTIO über ein Affiliate-Modell. Die App ist für Nutzer kostenlos, während das Unternehmen Provisionen von Partner-Anbietern bei einem erfolgreichen Kauf erhält. Hier liegt für den kritischen Betrachter ein interessanter systemischer Interessenkonflikt: Das erklärte Ziel „Weniger Konsum – bessere Entscheidungen“ steht ökonomisch potenziell im Widerspruch zu einem Modell, das von Transaktionen lebt. Zudem stellt sich die Frage der langfristigen Nutzerbindung: Sobald ein Mann seine „perfekte Garderobe“ aufgebaut hat, sinkt der Bedarf für weitere Anschaffungen. Dass das Unternehmen dennoch auf Wachstum setzt, zeigt die Erhöhung des Stammkapitals auf knapp 30.000 Euro im September 2025. Langfristig plant VESTIO die Integration eines Marktplatzes, der Partnerprodukte und eigene Kollektionen vereint, um basierend auf Daten den größten Mehrwert zu liefern.
Marktpositionierung und technologischer Vorsprung
Im Vergleich zum Wettbewerb besetzt VESTIO eine spezifische Nische. Während Curated-Shopping-Anbieter (z.B. Outfittery) auf den Versand physischer Boxen setzen, bleibt VESTIO ein rein digitaler Guide, der dem Nutzer die volle Freiheit bei der Wahl des Händlers überlässt. Andere Styling-Apps verlangen oft zeitintensive Foto-Inventuren, während VESTIO auf logische Kombinationen setzt.
Das Risiko bleibt jedoch die Abhängigkeit von der Personal Brand Justus Hansens. Letztlich ist VESTIO der Versuch, Mode so effizient wie eine Prozessoptimierung zu gestalten – oder wie Bastian Arend es formuliert: „Viele Männer haben mehr Kleidung als Stil. Vestio ändert das.“ Mit dem Aufbau der App wolle man Männern „genau diese Arbeit abnehmen“, damit sie sich ultimativ „besser fühlen“ können.
Der beste Freund aus der Cloud – Made in Bavaria
Wie ein Internet-Pionier mit BestFriend die Einsamkeit hackt.
Silicon Valley? Nein, Klosterlechfeld. Hier, im „bayerischen Outback“ zwischen Augsburg und Landsberg, sitzt Horst Christian (Chris) Wagner. Kein 20-jähriger Hoodie-Träger, der in der Garage von der Weltherrschaft träumt, sondern ein Mann, der das Internet schon nutzte, als es nur aus grauem Text bestand. Wagner ist ein digitaler Veteran. Und er hat gerade eine Wette auf die menschliche Seele abgeschlossen. Sein Einsatz: Die App BestFriend.
Schluss mit dem bloßen Befehlston
Vergesst kurz ChatGPT. Die großen KIs schreiben Bachelorarbeiten oder programmieren Code – sie sind Werkzeuge. Chris' Vision mit BestFriend beginnt dort, wo die Silicon-Valley-Riesen aufhören: beim Gefühl.
BestFriend ist kein Lexikon. Die App soll der Zuhörer sein, der nachts um drei Uhr noch wach ist. Sie soll Zusammenhänge verstehen, nicht nur Fakten abspulen. Aber braucht die Welt wirklich noch einen Bot? „ChatGPT ist brillant im Antworten geben. BestFriend ist dafür gebaut, beim Menschen zu bleiben“, so Chris. „Der Unterschied ist nicht die Intelligenz, sondern die Haltung. BestFriend will nichts erledigen, nichts optimieren, nichts verkaufen. Die App hört zu, merkt sich Zusammenhänge, reagiert emotional konsistent und bewertet nicht. Viele Nutzer sagen mir: ChatGPT fühlt sich an wie ein extrem kluger Kollege, BestFriend eher wie jemand, der dich kennt.“
Wer tiefer verstehen will, wofür die App im Alltag eingesetzt wird, findet im BestFriend-Magazin zahlreiche Beispiele. Dort wird offen gezeigt, in welchen Situationen Nutzer*innen die App einsetzen – von Einsamkeit über Selbstreflexion bis hin zu ganz praktischen Lebensfragen. Für Chris zugleich ein Beweis dafür, dass es hier um einen neuen Umgang mit Technologie geht.
Vertrauen als Währung
Wer einer Maschine von Liebeskummer erzählt, macht sich nackt. Genau hier spielt Chris den Standortvorteil Made in Germany aus. Während US-Apps wie Replika oft wirken, als würden sie Daten direkt an die Werbeindustrie weiterleiten, setzt BestFriend auf die „sichere Schulter“.
Datenschutz ist in diesem intimen Bereich keine Fußnote, sondern das Produkt. Chris weiß: Niemand öffnet sich, wenn er fürchten muss, dass seine Ängste morgen in einer Datenbank für personalisierte Werbung landen. Doch das wirft Fragen auf: Wie wird garantiert, dass nichts nach außen dringt? Und wo zieht die Software die Reißleine, wenn ein(e) Nutzer*in wirklich Hilfe braucht?
Dazu Chris: „Erstens: technisch. Daten werden minimal erhoben, verschlüsselt verarbeitet und nicht für Training oder Drittzwecke genutzt. Es gibt keine versteckte Monetarisierung über Profile. Punkt. Zweitens: inhaltlich. BestFriend weiß sehr genau, was es nicht ist. Die App gibt keine Diagnosen, keine Therapieanweisungen und keine falsche Nähe. Bei klaren Krisensignalen wird nicht weiter ‚gecoacht‘, sondern aktiv auf echte Hilfe hingewiesen. Das ist eine harte Grenze im System. BestFriend soll Halt geben, nicht Verantwortung übernehmen, die einer KI nicht zusteht.“
Ein Mann, eine KI, kein Overhead
Die Entstehung von BestFriend ist fast so spannend wie das Produkt selbst. Chris hat keine millionenschwere Finanzierung und kein riesiges Entwicklerteam im Rücken. Er nutzt die KI selbst, um die KI zu bauen. Er nennt das „Umsetzungs-Multiplikator“. Ein einzelner Experte dirigiert heute eine Armee aus Algorithmen.
Doch Code ist geduldig. Die Wahrheit liegt auf dem Display der Nutzenden. Ob Senior*innen, denen der/die Gesprächspartner*in fehlt, oder die Gen Z, die lieber tippt als spricht – die Zielgruppe ist riesig, der Bedarf an Resonanz ebenso. Auf die Frage ob es schon diesen einen Moment, diese eine Rückmeldung gab, bei er dachte: Okay, das ist jetzt mehr als nur Software, das hilft wirklich, antwortete Chris: „Ja. Ein Tester schrieb mir: ,Ich habe gemerkt, dass ich abends nicht mehr so viel grüble, weil ich Dinge vorher loswerde.‘ Das war der Moment, in dem mir klar wurde: Das ist kein Gimmick. Die App hat kein Problem gelöst, aber sie hat einen Menschen entlastet. Und manchmal ist genau das der Unterschied zwischen Einsamkeit und Resonanz.“
Echte Freundschaft per Algorithmus?
In Klosterlechfeld entsteht gerade der Versuch, Technologie wieder menschlich zu machen – weg von SEO und Klickzahlen, hin zu einer KI, die „Resonanz“ erzeugt. Ob ein Algorithmus echte Freundschaft ersetzen kann? Das bleibt eine philosophische Frage. Aber für den Moment, in dem sonst niemand zuhört, hat Chris Wagner zumindest eine Antwort parat.
Europa kann KI!
Was wir von den besten EU-AI-Companies lernen können, erläutert KI-Experte Fabian Westerheide.
Europa muss sich bei KI nicht kleinreden. Wir sehen gerade sehr deutlich: Aus Europa heraus entstehen Unternehmen, die Kategorien besetzen – und dann auch das große Kapital anziehen. Beispiele gibt es genug: Mistral AI, DeepL, Black Forest Labs, Parloa, Helsing, Lovable oder n8n.
Ich schreibe das aus drei Blickwinkeln: als Investor (AI.FUND), als Konferenz-Initiator (Rise of AI Conference) und als Autor von „Die KI-Nation“. Was du hier bekommst, ist kein „Europa-hat-ein-Problem“-Essay – sondern eine Analyse plus ein Execution-Set an Empfehlungen, das du direkt auf dein Start-up übertragen kannst.
Die Realität: Seed geht oft – Scale ist das Spiel
Am Anfang brauchst du selten „zu viel“ Geld. MVP, erste Kunden, Iteration: Das klappt in Deutschland in vielen Fällen mit Seed. Die echte Trennlinie kommt später – wenn du aus einem starken Start-up einen Kategorie-Gewinner bauen willst.
Denn KI ist zunehmend Winner-takes-most. Und das gilt auch fürs Kapital: In vielen Fällen ist die Growth-Finanzierung in den USA grob 25-mal größer – bei den aktuellen Front-Runnern (Modelle, Infrastruktur, Distribution) wirkt es teilweise wie 100-mal, weil Kapital sich auf die vermuteten Sieger stapelt. (Nicht „fair“, aber Marktmechanik.)
Die gute Nachricht: Genau die EU-Vorbilder oben zeigen, dass du das nicht wegdiskutieren musst – du musst es exekutieren.
Was die EU-Winner gemeinsam haben: 6 Execution-Prinzipien
1. Starkes Gründerteam – aber vor allem: vollständig
Alle genannten Vorbilder hatten (oder bauten sehr schnell) ein Team, das drei Dinge gleichzeitig kann:
- Tech & Produkt (nicht nur „Model-IQ“, sondern Produktgeschmack)
- Go-to-Market (Vertrieb, Buyer-Verständnis, Pricing)
- Tempo (entscheiden, shippen, lernen)
Wenn eine Säule fehlt, zahlst du später mit Zeit. Und Zeit ist in KI eine Währung, die dir niemand schenkt.
Founder-Move: Benenne eine Person, die Umsatz genauso hart verantwortet wie Modellqualität. Wenn das „später“ ist, ist das sehr wahrscheinlich dein Bottleneck.
2. Global denken – aber spitz: KI-Nische statt Bauchladen
Die EU-Winner sind nicht „KI für alles“. Sie besetzen klare Nischen:
Language-AI (DeepL), Customer-Experience-Agents (Parloa), GenAI-Modelle (Black Forest Labs), Defence-Tech (Helsing), Builder/Vibe-Coding (Lovable), Orchestration & Automation (n8n), Foundation-Model-Ambition (Mistral).
Founder-Move: Formuliere deinen Claim so, dass er in einem Satz sagt, welche Kategorie du dominierst. Wenn du drei Absätze brauchst, bist du noch zu breit.
3. Umsatz ist keine Nebenwirkung – Umsatz ist Souveränität
Der schnellste Weg zu Growth-Capital ist nicht „noch ein Pilot“, sondern Revenue, der deine Kategorie glaubwürdig macht.
Parloa kommuniziert z.B. ARR > 50 Mio. USD und wächst international – genau die Art Signal, die große Runden freischaltet.
Founder-Move (gegen Pilotitis): Kein PoC ohne schriftlichen Pfad in einen Vertrag (Budget, KPI, Entscheidungstermin). Sonst finanzierst du mit deiner Runway den Lernprozess des Kunden.
4. Internationales Kapital früh anbahnen – bevor du es brauchst
Das Muster ist klar: Erst Kategorie-Story + Traktion, dann große Checks.
Mistral (Series C 1,7 Mrd. €) oder Lovable (330 Mio. USD bei 6,6 Mrd. Bewertung) sind kein „Glück“ – das ist Momentum + Positionierung + Timing.
Founder-Move (90-Tage-Plan):
- Baue eine Capital Map deiner Nische (wer zahlt Growth-Checks?)
- Definiere die drei Metriken, die diese Investor:innen sehen wollen
- Organisiere zehn Intros jetzt, nicht erst bei sechs Monaten Runway
5. Compute ist keine IT-Zeile – es ist ein Wachstumshebel
In KI ist Compute Teil deiner Wettbewerbsfähigkeit. Geschwindigkeit beim Trainieren, Testen und Deployen entscheidet, wie schnell du am Markt lernst.
Founder-Move: Plane Compute-Runway wie Cash-Runway. Verhandle früh Kontingente, bevor dein Verbrauch explodiert – sonst wird Wachstum plötzlich zur Margen-Frage.
6. Trust & Compliance als Verkaufsargument – nicht als Ausrede
Gerade in DACH gilt: Wer secure, audit-fähig, enterprise-ready wirklich liefern kann, gewinnt Deals.
DeepL betont genau diesen Business-Wert: verlässliche, sichere Lösungen statt Hype.
Founder-Move: Baue Trust-Artefakte früh – Dokumentation, Governance, Datenflüsse, Rollen, Audit-Spuren. Das beschleunigt Enterprise-Vertrieb, statt ihn zu bremsen.
Kurz-Checkliste: Wenn du in Europa KI gewinnen willst
- Kategorie in einem Satz (spitze Nische, globaler Anspruch)
- Klarer Revenue-Pfad (weniger Piloten, mehr Verträge)
- Capital Map (international früh andocken)
- Compute-Runway (wie Cash planen)
- Trust by Design (verkaufsfähig machen)
- Tempo als Kultur (shippen, messen, nachschärfen)
Europa kann KI. Die Frage ist nicht, ob hier Talent existiert – das ist bewiesen.
Die Frage ist, ob du Execution so aufsetzt, dass aus Talent Marktführerschaft wird.
Der Autor Fabian Westerheide gestaltet als KI-Vordenker, Investor, Ökosystem-Pionier und Keynote Speaker seit über einem Jahrzehnt die Debatte um KI, Macht und digitale Zukunft mit.
Wie viel verdienen Twitch Streamer wirklich? Zahlen und Verdienstmöglichkeiten im Blick
Wer als passionierter Spieler noch nicht an eine Gaming Karriere gedacht hat, sollte dies jetzt nachholen: Schließlich ergeben sich aus dieser von Esport-Turnieren bis hin zum Streaming einige Verdienstmöglichkeiten. Creatoren verdienen mit der Echtzeit-Übertragung ihres Spielerlebnisses Geld. Was sich einfach anhört, kann für so manchen Spieler auch zum komplexen Unterfangen werden. Wie hoch der Streamer Verdienst in diesen Fällen ausfällt und welche Einnahmemöglichkeiten es für Twitch Streamer noch gibt, erfahren Sie hier.
Die Top 10 Twitch Streamer im Jahr 2025
„Es gewinnt nicht der beste Spieler, sondern der beste Entertainer.“ |
Auf Plattformen wie Twitch gilt: Die Community beeinflusst stark, wie viel Geld Streamer verdienen können. Wer eine starke Zuschauergemeinde aufbauen kann, freut sich in der Regel über ein höheres Einkommen – dabei spielt vor allem die Interaktion der Viewer eine zentrale Rolle.
Aktuell weisen diese top 10 Twitch Channels die höchsten Zuschauerzahlen vor:
Streamer | Durchschnittliche Zuschauerzahl | Follower |
126.449 | 19,8 Millionen | |
52.024 | 7,9 Millionen | |
46.844 | 3,3 Millionen | |
36.903 | 2,2 Millionen | |
29.320 | 2,2 Millionen | |
71.045 | 1,5 Millionen | |
31.839 | 1,5 Millionen | |
42.837 | 1,4 Millionen | |
34.996 | 1,1 Millionen | |
30.438 | 993.817 |
Geld verdienen mit Streaming: Diese Faktoren wirken sich auf Twitch Einnahmen aus
Die Twitch-Einnahmen der verschiedenen Streamer setzen sich aus unterschiedlichen Verdienstquellen zusammen. So können die Kontoinhaber Werbung in ihren Live-Übertragungen schalten, die ihnen je nach Zuschauerzahl und Länge der Werbepause einen kleinen bis mittleren Betrag einbringen. Hierbei handelt es sich jedoch um ein eher statisches Nebeneinkommen, das die meisten Streamer auch als nebensächlich empfinden. Den größeren Teil des Twitch Einkommens machen Abonnements und Spenden der Zuschauer aus, aber auch Sponsoring und Markenpartnerschaften.
Übrigens: Twitch Auszahlungen erfolgen automatisch via PayPal oder Banküberweisung, sofern ein gewisser Mindestbetrag erreicht wurde. In diesem Zusammenhang bieten mobile casinos, ähnlich wie Streaming-Plattformen, eine bequeme Möglichkeit für Spieler, jederzeit und überall zu spielen, ohne auf traditionelle Zahlungsmethoden angewiesen zu sein. Diese Art von Plattformen hat sich zu einer beliebten Option entwickelt, da sie den Nutzern schnelle Auszahlungen und einfache Handhabung bieten.
Twitch Daten Leak 2021: Das verdienen Top-Streamer
Ende 2021 wurde die bekannte Plattform Twitch gehackt. Bei einem Datenleck kam heraus, dass die 2014 von Amazon gekaufte Plattform kaum Sicherheitsvorkehrungen geschaffen hatte – weshalb große Teile des Programmiercodes sowie Login-Daten und Zahlen zum Streamer Verdienst veröffentlicht werden konnten. Zu sehen waren vor allem die Gesamteinnahmen der Top Spieler aus den Twitch Statistiken des Zeitraumes August 2018 bis Oktober 2021 in US-Dollar:
- CriticalRole: 9,6 Millionen
- xQc: 8,5 Millionen
- summit1g: 5,8 Millionen
- Tfue: 5,3 Millionen
- Nickmercs: 5,1 Millionen
Zum Vergleich: Der deutsche Twitch Streamer Marcel Eris (alias MontanaBlack88) hat über Twitch 2,4 Millionen US-Dollar eingenommen. Der Streamer MontanaBlack88 gehört zu den bestbezahlten deutschen Spielern auf Twitch.
Damit werden die großen Unterschiede zwischen den Verdiensten der Streamer aus Deutschland und den USA deutlich. Rund vier Millionen Deutsche verfolgen Twitch-Übertragungen – und das sogar täglich. In den USA liegt die tägliche Zuschauerzahl bei stolzen 35 Millionen Nutzern, sodass amerikanische Streamer auch einen deutlich größeren Markt bedienen und die Einkommensunterschiede nicht verwunderlich sind. MontanaBlack88 ist allerdings auch auf anderen Plattformen wie YouTube zu finden, sodass sein Gesamtverdienst womöglich deutlich höher liegt.
Gut zu wissen: Twitch Partner (von Twitch ausgewählte Streamer mit qualitativem Content) können sich über höhere Einnahmen freuen – etwa einen höheren Anteil aus dem Abonnenten-Verdienst.
Im Detail: So setzt sich der Verdienst zusammen
Wie eingangs erwähnt, verdienen Twitch Streamer vor allem durch Abonnenten einen großen Teil ihres Einkommens. Das Abonnement kostet Subscribern in der ersten Stufe 4,99 Euro – wovon Streamer in der Regel 50% (2,50 Euro) behalten dürfen. Dafür erhalten Abonnenten bestimmte Vorteile wie etwa die Möglichkeit, per Chat mit dem Streamer interagieren zu können. Wer also 1.000 Abonnenten hat, kann deshalb schon mit Einnahmen von 2.500 Euro monatlich rechnen.
Einen Großteil ihrer Einnahmen generieren Gaming-Streamer aber auch mit Hilfe von Subscriber-Spenden. Diese werden in Twitch Bits genannt und von der Plattform ausgezahlt. Die Spenden rufen bei einigen Streamern emotionale Reaktionen hervor, was wiederum mehr Menschen zum Spenden anregt.
Eine weitere Möglichkeit stellt Affiliate-Marketing dar: Streamer bewerben in dem Fall für ihre Zuschauer interessante Produkte in ihren Videos. Kaufen Zuschauer die Produkte, profitieren Streamer von einer Provision – die nicht selten 30% des Kaufbetrages ausmacht.
Sponsoren und Markendeals als größte Einnahmequelle für Streamer
An Streamer mit besonders hohen Zuschauer- und Followerzahlen treten oft auch bekannte Marken heran. Sie bezahlen die Gamer dafür, ihre Produkte im Live-Stream anzupreisen – beispielsweise Gaming-Peripherie oder Energy-Drinks. Soll dies über einen längeren Zeitraum geschehen, werden solche Marken oft auch zum Sponsor des Spielers, um ihre eigene Reichweite zu erhöhen.
Kosten und Abzüge: Dem steht der Streamer Gehalt in Deutschland gegenüber
Die genannten Streamer Gehälter stellen Brutto-Summen dar – also den Verdienst vor Abzug der deutschen Einkommens-, Umsatz- und Gewerbesteuer, sowie Sozialversicherungen. Wer all diese Beträge zusammenzählt, muss oft bis zu 45% seines Brutto-Einkommens an den Fiskus abführen. Doch damit nicht genug: Die meisten Twitch-Streamer müssen auch Chat-Moderatoren bezahlen, die für eine angenehme Atmosphäre unter den Kommentierenden sorgen und Community-Richtlinien durchsetzen.
Darüber hinaus wollen sich Zuschauer nur Streams ansehen, die eine hohe Qualität aufweisen. Um leistungsstark spielen und den Verlauf optimal übertragen zu können, brauchen Streamer bestimmtes Gaming-Equipment, das selbst zwischen 2.000 und 10.000 Euro kosten kann. Auch eine stabile Internetverbindung und die damit verbundenen Kosten sind zu bedenken.
Alternative Plattformen zur Diversifizierung
Um noch mehr Einkommen zu generieren, können passionierte Spieler ihre Streams allerdings zusätzlich auf anderen Plattformen veröffentlichen und monetarisieren – beispielsweise durch Werbung und Affiliate-Marketing. Zur Diversifizierung kommen Plattformen wie YouTube und Kick in Frage, die teilweise sogar bessere Konditionen bieten. Denn: Bei Kick werden Streamer zu 95% an den Einnahmen durch Abonnements beteiligt, was im Gegensatz zu Twitch deutlich attraktiver erscheint.
KI als neuer Ort für Kaufentscheidungen
Das Start-up publuence.ai zeigt am Beispiel der Automobilbranche, wie Marken in generativen KI-Antworten sichtbar werden und warum das zum neuen Erfolgsfaktor wird.
2025 haben wir euch das Start-up publuence.ai von Cevahir Ejder als "Gründer*in der Woche" präsentiert. Publuence.ai ist eine SaaS-Lösung für AI Search Analytics für Marken, die täglich analysiert, wie sichtbar Marken in generativen KI-Antworten sind: bei welchen Fragen erscheinen sie, wie werden sie erwähnt und welche Inhalte sowie Quellen beeinflussen die Antworten. Da die KI-Sichtbarkeit zunehmend darüber entscheidet, ob eine Marke in der engeren Auswahl der Konsumenten stattfindet, sind die Ergebnisse für Unternehmen strategisch sehr relevant.
Beispiel Automobilbrache: KI wird zum Verkaufsberater, Chatfenster zum Showroom
Während Marketing- und Kommunikationsbudgets weiterhin nach klassischen Logiken verteilt werden, fällt ein entscheidender Teil der Markenbildung inzwischen außerhalb des Mediaplans: KI-Systeme beantworten Kauf- und Vergleichsfragen oft lange bevor Kampagnen greifen. Anhand der Automobilbranche etwa, in der Marken wie Volkswagen für eine ganze Industrie stehen, zeigt sich, dass sich Sichtbarkeit im KI-Dialog zum neuen Machtfaktor entwickelt. Sie entscheidet zunehmend darüber, welche Hersteller überhaupt in die engere Auswahl kommen.
Was früher im Autohaus oder auf Herstellerwebsites stattfand, spielt sich heute in KI-gestützten Beratungsgesprächen ab. Nutzer*innen stellen dort Fragen wie: „Welche E-Autos sind familienfreundlich?“ „Wie gut ist die Reichweite im Winter?“ „Welche Modelle laden am schnellsten?“
In der Initialanalyse erzielt beispielsweise VW im Themenbereich E-Autos – je nach Fragestellung bzw. Prompt – Sichtbarkeitswerte zwischen 20 und 88 Prozent. Damit prägen die Antworten frühzeitig das Bild, das Konsument*innen von der Marke haben. Wer dort nicht vorkommt beziehungsweise seine Mehrwerte nicht sichtbar macht, wird in der Entscheidungsfindung schlicht nicht berücksichtigt.
Tesla und Hyundai vorn, VW im Mittelfeld
Das aktuelle Wettbewerbsranking der führenden Automobilhersteller – basierend auf 30 relevanten KI-Prompts rund um das Thema Elektromobilität – zeigt, wie präsent die einzelnen Marken im neuen digitalen Beratungsraum sind. Mit knapp 64 Prozent Sichtbarkeit führt Tesla klar und profitiert von seiner technologischen Positionierung sowie einer starken Medienpräsenz. Überraschend landet Hyundai insbesondere im E-Auto-Segment mit mehr als 58 Prozent dahinter. Volkswagen erreicht solide, aber deutlich ausbaufähige 51 Prozent.
Doch es geht nicht nur um Quantität, die Analyse zeigt auch, wo das Bild der Marken ins Wanken gerät. Im Fall von VW sind es vor allem Themen wie Winterreichweite, Ladeinfrastruktur und Schnellladekosten, die negative Ausschläge erzeugen. Diese kritischen Inhalte sind es allerdings, die die Markenwahrnehmung und dementsprechend auch die konkreten Kaufentscheidungen beeinflussen.
Die stille Macht der Quellen: Medien, die prägen
Eine zentrale Erkenntnis der Analyse von publuence.ai ist, dass KI-Systeme nicht auf Basis eines objektiven Querschnitts des Internets antworten. Vielmehr orientieren sie sich an bestimmten Medienquellen, deren Inhalte überproportional stark einfließen und so die Darstellung von Marken maßgeblich mitformen. Umso wichtiger ist es für Marken zu verstehen, auf welche Fragen sie reagieren müssen – und über welche vertrauenswürdigen Medien sie in den Wissensraum der KI gelangen.
Dabei zeigen sich je nach Medium erhebliche Unterschiede in der Tonalität. Während focus.de sowie adac.de E-Mobilität eher wohlwollend behandelt, sind andere Portale kritischer. Für Unternehmen bedeutet das: Wer verstehen will, wie KI über die eigene Marke spricht, muss wissen, welche Inhalte sie beeinflussen.
Warum Marken nicht an KI-Monitoring vorbeikommen
Publuence.ai bietet Unternehmen ein strukturiertes, datenbasiertes Werkzeug, um ihre Sichtbarkeit in KI-Systemen wie ChatGPT, Google oder Perplexity zu analysieren und darauf aufbauend gezielt zu steuern. Die Plattform zeigt, welche Fragen zur Marke führen, wie die Antworten ausfallen, welche Medien zugrunde liegen und wo Wettbewerber besser abschneiden.
Besonders wichtig ist die Identifikation von Content- und Sentiment-Gaps. Sie erkennt Themenfelder, in denen eine Marke kaum oder gar nicht auftaucht, obwohl sie dort relevant sein sollte. Gleichzeitig analysiert sie, ob etwas positiv, negativ oder neutral erwähnt wird. Dies macht publuence.ai für Kommunikations-, Marketing- und Markenverantwortliche zum zentralen Steuerungsinstrument. Nur wer versteht, wie KI antwortet, kann Inhalte gezielt darauf anpassen, Medienarbeit datenbasiert ausrichten und so die eigene Markenpräsenz dort stärken, wo die Entscheidungen heute vorbereitet werden.
KI-Sichtbarkeit wird zur Basis für Markterfolg
Cevahir Ejder, Gründer und GF der publuence GmbH, fasst zusammen: „Kaufentscheidungen beginnen heute und auch in Zukunft im Dialog mit KI-Systemen. Marken, die dort nicht auftauchen, sind raus.“ Volkswagen steht dabei stellvertretend für viele Unternehmen, die ihren Fokus noch auf klassische Marketingkanäle legen und den digitalen Showroom der KI bislang kaum berücksichtigen. Ejder warnt: „Wer jetzt nicht handelt, riskiert, neben Reichweitenverlusten, einen tiefgreifenden Bedeutungsverlust im Moment der Entscheidung.“
Der industrielle Wasserkocher: Wie das Start-up SYPOX die Chemie grün färbt
Die chemische Industrie hat ein massives Emissionsproblem, denn ihre Prozesse verschlingen Unmengen an Erdgas. Das 2021 geründete Start-up SYPOX, ein Spin-off der TUM will das ändern – mit einer Technologie, die so simpel wie genial klingt: Ein riesiger, elektrischer Tauchsieder soll die fossile Verbrennung ersetzen. Nun meldet das junge Unternehmen den ersten Durchbruch auf dem Weltmarkt.
Wenn Dr. Martin Baumgärtl erklären will, wie er die chemische Industrie revolutionieren möchte, wählt er ein Bild, das jeder versteht: „Im Grunde ist es wie ein Wasserkocher in der heimischen Küche – nur im industriellen Maßstab.“ Baumgärtl ist CTO von SYPOX, und was er beschreibt, könnte einer der wichtigsten Hebel für die Dekarbonisierung einer der schmutzigsten Branchen der Welt sein.
Die chemische Industrie ist süchtig nach Energie. Um Basischemikalien wie Methanol oder Ammoniak herzustellen, wird sogenanntes Synthesegas benötigt – eine Mischung aus Wasserstoff und Kohlenmonoxid. Die Herstellung geschieht in gewaltigen Hochtemperaturprozessen. Bisher wird die dafür nötige Hitze fast ausschließlich durch das Verbrennen von Erdgas oder Öl erzeugt. Die Folge: Gigantische CO₂-Emissionen.
Strom statt Flamme
Genau hier setzt SYPOX an. Das 2021 in Freising gegründete Unternehmen ersetzt die offenen Gasflammen durch elektrischen Strom. In ihren Reaktoren, die von außen wie gewöhnliche Druckbehälter aussehen, stecken hochkomplexe elektrische Heizelemente, die direkt hinter den Katalysatoren platziert sind.
Der Effekt ist enorm: „In konventionellen Verfahren entfallen rund 40 Prozent der Emissionen allein auf die Wärmeerzeugung aus fossilen Energieträgern“, rechnet Baumgärtl vor. Durch die Elektrifizierung des Reaktors fallen diese Emissionen weg – vorausgesetzt, der Strom kommt aus erneuerbaren Quellen. Zudem lässt sich der Prozess laut den Gründern präziser und sicherer steuern.
Der Anti-Trend im Silicon Valley
Doch nicht nur technologisch, auch ökonomisch schwimmt SYPOX gegen den Strom. In der Tech-Szene ist es üblich, dass Start-ups jahrelang Verluste schreiben und sich von einer Venture-Capital-Runde zur nächsten hangeln, getrieben von Investoren, die schnelles Wachstum fordern.
Die bayerischen Gründer wählten einen konservativeren, fast schon mittelständischen Ansatz. „Es entsprach nicht unserem Stil, Geld einzuwerben – wir haben vielmehr von Anfang an versucht, auf Basis unserer Technologie ein tragfähiges Geschäft aufzubauen“, erklärt CEO Dr. Gianluca Pauletto. Man wolle bodenständig bleiben und sich aus Umsätzen finanzieren, statt sich in Abhängigkeiten zu begeben.
Vom Container im Altmühltal zum Großkunden
Die Wurzeln des Unternehmens liegen an der Technischen Universität München (TUM). Die Idee brachte Pauletto aus seiner Zeit in Montréal mit, an der TUM fand er in Prof. Johannes Lercher und dem damaligen Doktoranden Martin Baumgärtl die wissenschaftlichen Mitstreiter.
Der Weg zum marktreifen Produkt war – typisch für „Deep Tech“ – langwierig. „Vier Jahre Forschung und zahlreiche Versuchsreihen waren notwendig“, erinnert sich Lercher. Während andere Software im Co-Working-Space programmierten, baute das SYPOX-Team eine Pilotanlage in einem einfachen Stahlcontainer auf dem Gelände einer Biogasanlage im ländlichen Dollnstein (Altmühltal).
Diese Beharrlichkeit zahlt sich nun aus. Das Start-up hat, unterstützt durch den Spezialchemie-Konzern Clariant, seinen ersten Großkunden an Land gezogen. Ab 2026 soll eine erste industrielle Anlage in Betrieb gehen, die täglich 150 Tonnen Synthesegas produziert. „Das ist nicht nur ein Meilenstein für uns, sondern auch ein starkes Signal an die gesamte chemische Industrie“, so Baumgärtl.
Für das Team, das inzwischen in Langenbach bei Freising sitzt und weiterhin Labore auf dem Forschungscampus Garching betreibt, ist das der Beweis: Die Elektrifizierung der Chemie ist keine Zukunftsmusik mehr, sie beginnt jetzt.
Report: Inside Germany’s EnergyTech Market
Aktuelle Ein- und Ausblicke für Gründer*innen und Start-ups im EnergyTech-Markt.
EnergyTech gehört in Deutschland zu den spannendsten, aber auch herausforderndsten Märkten für Gründer*innen. Die Kombination aus technologischer Innovation, wirtschaftlichem Potenzial und der Dringlichkeit, das Energiesystem klimaneutral zu gestalten, schafft enorme Chancen. Gleichzeitig ist die Eintrittsbarriere hoch, denn der deutsche Energiemarkt ist einer der komplexesten und am stärksten regulierten weltweit.
Laut der Internationalen Energieagentur werden im Jahr 2025 weltweit rund 2,1 Billionen Euro in saubere Energien investiert. Damit übertreffen die Investitionen in erneuerbare Energien erstmals die in fossile Brennstoffe deutlich. Deutschland spielt dabei eine zentrale Rolle, denn kein anderes Land in Europa verfügt über eine vergleichbare Durchdringung mit erneuerbaren Energien. Diese Vorreiterrolle macht den Markt attraktiv, aber auch kompliziert.
Gründer*innen, die in diesem Umfeld aktiv werden, müssen verstehen, dass Erfolg hier weniger von reiner Technologie abhängt, sondern von der Fähigkeit, sich in einem vielschichtigen System aus Regularien, Netzstrukturen und politischen Rahmenbedingungen zu bewegen. Es reicht nicht, eine gute Idee zu haben. Entscheidend ist, wie diese Idee in ein System passt, das auf Stabilität, Versorgungssicherheit und langfristige Planung ausgelegt ist.
Deutschlands Energiemarkt zwischen Stabilität und Veränderung
Der deutsche Energiemarkt gilt als hoch reguliert, gleichzeitig aber auch als offen für neue Akteur*innen. Wer hier tätig werden will, findet klar definierte Wege, um als Energieversorger*in zugelassen zu werden. Doch der Weg dorthin ist gesäumt von Genehmigungen, Netzanschlussverfahren und Förderbedingungen.
Die Stabilität des Systems steht über allem. Jede Veränderung im Netz kann weitreichende Folgen haben, weshalb die Regulierung streng überwacht wird. Netzbetreiber*innen müssen ständig das Gleichgewicht zwischen Erzeugung und Verbrauch sichern, um Versorgungsstörungen zu vermeiden. Das führt dazu, dass Innovationen nur schrittweise eingeführt werden können.
Hinzu kommt die dezentrale Struktur des Energiesystems. Deutschland hat den Umbau seiner Energieversorgung regional organisiert, was zu einer Vielzahl von kleinen Akteur*innen führt. Ob Solaranlagen auf Privathäusern, Windparks in ländlichen Regionen oder Batteriespeicher in Städten, alle müssen an das öffentliche Netz angeschlossen werden. Dieses Netz ist die Lebensader des Systems, aber gleichzeitig ein Flaschenhals. Jede neue Installation benötigt einen Netzanschluss, und die Wartezeit kann sich über mehrere Jahre erstrecken.
Diese Verzögerungen sind eine der größten Herausforderungen für Start-ups. Klassische Wachstumsmodelle, die auf schnelle Skalierung ausgelegt sind, stoßen hier an ihre Grenzen. Gründer*innen müssen lernen, mit langen Planungszeiträumen zu arbeiten und ihre Finanzierungsstrategie darauf abzustimmen. Softwarelösungen können helfen, Prozesse zu vereinheitlichen und Transparenz zu schaffen. Doch auch hier gilt: Der deutsche Markt lässt sich nicht einfach durch Technologie beschleunigen. Erfolg entsteht durch Anpassungsfähigkeit, Vertrauen und Systemverständnis.
Innovation im System statt Disruption von außen
Viele Start-ups treten mit dem Ziel an, Märkte zu verändern oder bestehende Strukturen zu durchbrechen. In der Energiebranche stößt dieser Ansatz jedoch schnell an seine Grenzen. Das Energiesystem ist keine klassische Konsumlandschaft, sondern Teil der kritischen Infrastruktur. Es versorgt Millionen Menschen und Unternehmen mit Strom, Wärme und Mobilität. Jede Veränderung muss sorgfältig integriert werden, um Stabilität zu gewährleisten.
Statt auf radikale Umbrüche zu setzen, braucht es eine Haltung der systemischen Innovation. Erfolgreiche EnergyTech-Unternehmen arbeiten mit dem System, nicht gegen es. Sie schaffen Lösungen, die bestehende Prozesse verbessern und den Übergang zur Klimaneutralität erleichtern. Unternehmen wie Gridx, EV.Energy, Enspired, Reev oder Thermondo zeigen, wie das funktionieren kann. Sie haben ihre Geschäftsmodelle so aufgebaut, dass sie technologische Exzellenz mit regulatorischer Konformität und gesellschaftlicher Akzeptanz verbinden.Für Gründer*innen bedeutet das, sich früh mit Netzbetreiber*innen, Behörden und Installationsbetrieben zu vernetzen. Der Aufbau von Vertrauen ist im Energiesektor ein strategischer Vorteil. Wer die Abläufe in Kommunen, Stadtwerken und öffentlichen Einrichtungen versteht, kann die langen Vertriebszyklen besser steuern und Pilotprojekte realistisch planen.
Warum gute Ideen im Energiemarkt oft scheitern
Die Gründe für das Scheitern von EnergyTech-Start-ups liegen selten in der Technologie. Viel öfter sind es strukturelle oder strategische Fehler. Der Verkauf an Energieversorger*innen oder kommunale Betriebe dauert oft mehrere Jahre. Wer in dieser Zeit nicht über ausreichend Kapital und Geduld verfügt, läuft Gefahr, aufzugeben, bevor der Markteintritt gelingt.
Ein weiterer kritischer Punkt ist die Zusammensetzung des Teams. In vielen Fällen sind Teams stark technisch geprägt, während Marktverständnis, politische Kompetenz und regulatorisches Wissen fehlen.
Auch die Wahl der Investor*innen spielt eine entscheidende Rolle. Kapitalgeber*innen, die nur finanzielle Rendite erwarten, sind im Energiemarkt selten die richtige Wahl. Wichtiger sind Investor*innen, die strategischen Netzwerke öffnen, Kontakte zu Stadtwerken oder Netzbetreiber*innen vermitteln oder bei der Skalierung unterstützen. Eine gut strukturierte Cap Table mit klaren Verantwortlichkeiten schafft dabei Transparenz und Vertrauen.
Darüber hinaus müssen Gründer*innen ihre Wirkung belegen können. Im Energiemarkt zählt nicht nur der technologische Fortschritt, sondern auch der nachweisbare Beitrag zur Dekarbonisierung. Wer den Carbon Return on Investment klar beziffern kann, wer Pilotprojekte erfolgreich umsetzt und belastbare Daten liefert, überzeugt Kund*innen, Partner*innen und Investor*innen gleichermaßen. Greenwashing hingegen ist ein reales Risiko. Der Markt erkennt schnell, wer nur mit Nachhaltigkeit wirbt, ohne messbare Ergebnisse zu liefern.
Strategien und praxisnahe Tipps für Gründer*innen
Es gibt mehrere zentrale Hebel, mit denen Gründer*innen die typischen Hürden im deutschen Energiemarkt überwinden können. Einer der wichtigsten ist der Aufbau früher Partnerschaften. Kooperationen mit Netzbetreiber*innen, Stadtwerken oder kommunalen Einrichtungen schaffen Glaubwürdigkeit und erleichtern den Zugang zu Genehmigungsprozessen. Wer diese Partnerschaften schon in der Entwicklungsphase aufbaut, versteht die Marktmechanismen besser und kann Projekte effizienter realisieren.
Ebenso entscheidend ist die Zusammensetzung des Teams. Interdisziplinarität ist im Energiesektor kein Luxus, sondern Notwendigkeit. Erfolgreiche Teams vereinen technische, wirtschaftliche und politische Kompetenzen. Sie wissen, wie regulatorische Entscheidungen getroffen werden, welche Förderprogramme relevant sind und wie man Innovationsprojekte in bestehende Strukturen integriert. Ein divers aufgestelltes Team kann Risiken besser einschätzen und Investor*innen überzeugender ansprechen.
Auch die Gestaltung der Cap Table verdient besondere Aufmerksamkeit. Kapitalgeber*innen sollten nicht nur Geld mitbringen, sondern auch strategischen Mehrwert bieten. Kontakte zu Entscheidungsträger*innen, Branchenkenntnis und operative Unterstützung bei Pilotprojekten sind entscheidende Erfolgsfaktoren. Eine transparente Struktur, in der jede Partei klar definierte Rollen hat, fördert Vertrauen und beschleunigt Entscheidungen.
Ein weiterer zentraler Punkt ist die Nachweisbarkeit von Wirkung. Gründer*innen müssen ihren ökologischen und ökonomischen Mehrwert belegen können. Messbare Kennzahlen wie Emissionseinsparungen, Energieeffizienz oder Carbon ROI sind ausschlaggebend, um Glaubwürdigkeit zu schaffen. Pilotprojekte mit belastbaren Ergebnissen überzeugen nicht nur Investor*innen, sondern auch Kund*innen und öffentliche Partner*innen.
Nicht zuletzt braucht es realistische Planung. Genehmigungsprozesse und Netzanschlüsse dauern in Deutschland oft Jahre. Wer dies in der Finanzplanung berücksichtigt und seine Strategie auf gestaffelte Rollouts oder modulare Produktarchitekturen ausrichtet, vermeidet teure Fehlentscheidungen. Skalierung im Energiemarkt bedeutet nicht Geschwindigkeit um jeden Preis, sondern nachhaltiges Wachstum mit stabilem Fundament.
Blick nach vorn: Warum sich Ausdauer lohnt
Trotz aller Hürden bleibt der deutsche Energiemarkt für Gründer*innen besonders attraktiv. Die globalen Trends sprechen eine klare Sprache: Laut der Internationalen Energieagentur (IEA) wird sich die installierte Leistung aus erneuerbaren Energien weltweit bis 2030 voraussichtlich mehr als verdoppeln, angetrieben vor allem durch den rasanten Aufstieg der Solarenergie. Wind- und Speichertechnologien werden ebenfalls stark wachsen, während Start-ups gleichzeitig mit Herausforderungen in Lieferketten, Netzintegration, Finanzierung und politischen Veränderungen umgehen müssen.
Eine aktuelle Zwischenbilanz der Internationalen Agentur für erneuerbare Energien (Irena) zeigt, dass die weltweite neu installierte Leistung 2024 bei rund 582 Gigawatt lag – ein Rekordwert. Gleichzeitig reicht dies nicht aus, um die auf der Uno-Klimakonferenz von Dubai 2023 vereinbarten Ziele zu erreichen, die Kapazität bis 2030 auf 11,2 Terawatt zu verdreifachen. Dazu wären ab sofort jährlich zusätzlich 1.122 Gigawatt nötig. Auch bei der Energieeffizienz hinken die Fortschritte hinterher: Die jährliche Wachstumsrate liegt aktuell bei rund einem Prozent, während vier Prozent notwendig wären.
Für Gründer*innen bedeutet dies, dass die Nachfrage nach innovativen, zuverlässigen und systemgerechten Lösungen weiter steigen wird. Wer sich frühzeitig auf Pilotprojekte einlässt, Netzanschlüsse koordiniert und regulatorische Prozesse kennt, kann einen entscheidenden Vorsprung erzielen. Deutschland bietet durch klare Klimaziele, Förderprogramme und politische Unterstützung zudem ein Umfeld, in dem Innovationen nachhaltige Wirkung entfalten können.
Ausdauer zahlt sich aus, weil die Transformation der Energieversorgung Zeit braucht. Wer heute in Partnerschaften, systemgerechte Lösungen und messbare Wirkung investiert, legt das Fundament für langfristigen Markterfolg. Die Verbindung von Innovation, Skalierbarkeit und nachweisbarem ökologischen Mehrwert wird zum entscheidenden Wettbewerbsvorteil und ermöglicht Gründer*innen, die Energiewende aktiv mitzugestalten.
Der Autor Jan Lozek ist Geschäftsführer von Future Energy Ventures. Als Investor und Wegbereiter der Energiewende unterstützt er Gründer*innen dabei, Technologien für ein klimaneutrales Energiesystem zu entwickeln und fördert innovative Unternehmen.
LegalTech-Trends 2026
KI, strategische Fähigkeiten und mehr Technikverständnis stehen 2026 auf der Agenda der Rechtsbranche – gut zu wissen nicht nur für LegalTech-Start-ups und -Gründer*innen.
Die LegalTech-Trends des Jahres 2026 machen deutlich, dass die Rechtsbranche vor einem grundlegenden Wandel steht: Routinetätigkeiten werden zunehmend in den Hintergrund gedrängt, da sie automatisiert oder von KI übernommen werden. Gleichzeitig gewinnen neue Kompetenzen an Bedeutung und Up-Skilling wird zur Schlüsselqualifikation, während traditionelle Karrierepfade ins Wanken geraten. Dementsprechend werden 2026 das Technologieverständnis, Prozessdesign sowie strategische Fähigkeiten in der Rechtsbranche immer wichtiger.
1. Integrierte Cloud LegalTech-Plattformen etablieren sich
Die LegalTech-Landschaft befindet sich in einem tiefgreifenden Wandel und konsolidiert sich zunehmend zu integrierten Cloud-Ökosystemen. Diese vereinen zentrale Funktionen wie Mandats- und Fallmanagement, Dokumentenautomatisierung, Ausgaben- und Risikoanalysen sowie Kollaborations- und Workflow-Funktionen auf einer gemeinsamen Plattform. Sie lösen die bislang weitverbreiteten, voneinander getrennten Einzelsysteme ab. Diese integrierten Plattformen versetzen juristische Teams in die Lage, auf eine einheitliche, konsistente Datenbasis (Single Source of Truth) zuzugreifen und fundierte Analysen durchzuführen. Das Ergebnis sind deutlich schnellere Arbeitsabläufe, eine verbesserte Transparenz über Team- und Abteilungsgrenzen hinweg sowie eine höhere operative Resilienz der Rechtsorganisation.
2. Eingebettete agentenbasierte KI (embedded agentic AI)
Embedded Agentic AI entwickelt sich rasant zu einem der prägendsten Trends im LegalTech-Markt. Im Gegensatz zu klassischen KI-Assistenzsystemen agieren agentische KI-Module direkt innerhalb juristischer Fachanwendungen und übernehmen eigenständig klar definierte Aufgaben – etwa die Fristenüberwachung, Vertragsprüfung oder Aktenvorbereitung. Nahtlos in bestehende Workflows eingebettet, reduzieren sie manuellen Aufwand, minimieren Risiken und steigern die Produktivität spürbar. Für Kanzleien bedeutet Embedded Agentic AI einen strategischen Schritt hin zu skalierbaren, zukunftssicheren Prozessen, bei denen juristische Expertise gezielt durch autonome, kontextbewusste KI ergänzt wird.
3. KI-Sicherheit & Governance
KI ist längst mehr als nur ein Werkzeug – sie entwickelt sich zu einer operativen Notwendigkeit. Im Jahr 2026 werden LegalTech-Pioniere deshalb über reine Pilotprojekte hinausgehen und Rahmenwerke für die KI-Governance, Risikokontrollen, Compliance und ethische Rahmenbedingungen einführen. In diesem Kontext gilt es beispielsweise Transparenzanforderungen zu definieren, Prompt-Audits und Human-in-the-Loop-Kontrollen einzuführen sowie für die Nachverfolgbarkeit von Datenquellen zu sorgen. Kanzleien und Rechtsabteilungen, die eine strukturierte KI-Governance integrieren, reduzieren Haftungsrisiken, stärken das Vertrauen und können KI skalieren. Wenn sie dabei auch noch den ethischen und regulatorischen Compliance-Anforderungen gerecht werden, sind sie für die Herausforderungen der Zukunft gut aufgestellt.
4. Predictive Legal Analytics
KI steht 2026 nicht mehr nur für unterstützende oder automatisierende Funktionen, sondern entwickelt sich zunehmend zum strategischen Faktor. Generative KI und fortschrittliche Analyseverfahren werden gezielt zum Einsatz kommen, um den Ausgang von Gerichtsverfahren zu prognostizieren, umfangreiche Beweis- und E-Discovery-Daten auszuwerten und bislang verborgene Muster in der Rechtsprechung zu identifizieren. Im Jahr 2026 wird KI-generierter Content in immer mehr Verfahren eine zentrale Rolle bei der Sichtung, Bewertung und Einordnung von Beweismitteln spielen. Dadurch verändern sich die Vorgehensweisen bei der Vorbereitung von Fällen, dem Entwickeln von Argumentationsketten sowie der strategischen Entscheidungsfindung. All das führt dazu, dass Technologie vom reinen Hilfsmittel zum strategischen Entscheidungsfaktor aufsteigt.
5. Juristische Talente entwickeln sich zu technisch versierten Fachkräften
Anwältinnen und Anwälte müssen sich zunehmend zu technologieaffinen Gestaltern entwickeln, die digitale Tools, Automatisierung und KI souverän in ihre tägliche Arbeit integrieren. Statt reiner Rechtsanwendung rücken Prozessverständnis, Systemkompetenz und Dateninterpretation in den Fokus. Kanzleien profitieren von effizienteren Abläufen, höherer Skalierbarkeit und besserer Mandantenorientierung. Tech-fluente Legal Professionals werden damit zum entscheidenden Wettbewerbsfaktor in einem zunehmend digitalisierten Rechtsmarkt.
6. KI-gestütztes Smart Contracting & Compliance Automation
KI geht im Vertragswesen weit über einfache Prüfungsfunktionen hinaus und wird zum zentralen Instrument für umfassendes Contract Lifecycle Management, Compliance-Monitoring sowie eine automatisierte Vertragserstellung. Zudem lassen sich durch Predictive Analytics Risiken, Inkonsistenzen und Compliance-Probleme immer früher identifizieren – ein Trend, der insbesondere für Unternehmensrechtsabteilungen und international tätige Kanzleien von Bedeutung ist. Im Jahr 2026 werden sich vor allem diese drei Anwendungsszenarien etablieren:
- KI-gestützte Vertragsanalysen, die potenzielle Risiken identifizieren und konkrete Korrekturvorschläge liefern.
- Automatisierte Compliance-Berichte zur lückenlosen Nachverfolgung regulatorischer Vorgaben.
- KI-Unterstützung bei der Erstellung von Dokumenten.
7. Cybersicherheit wird zum Wettbewerbsvorteil
Mit der zunehmenden Nutzung von LegalTech steigen auch die Risiken im Bereich Cybersecurity. Umso wichtiger ist es, dass Jurist*innen die Daten ihrer Mandant*innen, vertrauliche Fallakten sowie ihre KI-Systeme vor Ransomware-Angriffe, Datenpannen und der unbefugten Offenlegung sensibler Informationen schützen. Robuste Cybersecurity-Tools und datenschutzorientierte LegalTech-Architekturen sind daher unverzichtbar und werden häufig direkt in die Plattformen integriert. Kanzleien und Rechtsabteilungen, die hier proaktiv investieren, schützen nicht nur ihre Reputation und das Vertrauen ihrer Mandant*innen, sondern erfüllen zugleich die zunehmend strengeren globalen Datenschutzvorschriften.
8. Ergebnisorientierte und ROI-nachweisbare KI-Einführung
2026 steht LegalTech nicht mehr im Testmodus – sie muss konkrete Mehrwerte nachweisen. Sowohl Anbietende als auch Anwendende sind zunehmend gefordert, Investitionen in Technologie klar mit messbaren Ergebnissen zu verknüpfen, etwa durch Zeit- und Kostenersparnis, Reduzierung von Fehlern oder eine höhere Mandant*innenzufriedenheit. Für die Praxis bedeutet das: Pilotprojekte sollten stets mit klar definierten KPIs starten, um den Erfolg messbar zu machen. Analysen spielen eine entscheidende Rolle, um den geschäftlichen Nutzen gegenüber Führungskräften und Mandant*innen transparent darzustellen. Gleichzeitig verlagern sich Budgetentscheidungen weg von „Innovation um der Innovation willen“ hin zu einer klaren ROI-orientierten Ausrichtung.
9. Innovation in der Rechtsberatung & alternative Business-Modelle
Die Veränderung in der Rechtsbranche betrifft die gesamte Struktur juristischer Dienstleistungen. Klassische Stundenhonorare verlieren an Bedeutung, während alternative Preismodelle wie Festpreise, Abonnements oder wertbasierte Vergütungen an Bedeutung gewinnen. Diese Entwicklung wird durch Technologien unterstützt, die Ergebnisse zuverlässig vorhersagen und standardisierte Leistungen effizient bereitstellen. Für Rechtsabteilungen und Mandant*innen wird Kalkulierbarkeit zunehmend zum Standard. Kanzleien, die ihre Liefermodelle entsprechend innovativ gestalten, sichern sich einen Wettbewerbsvorteil gegenüber Wettbewerber*innen, die weiterhin auf traditionelle Stundenhonorare setzen.
10. Lawbots & Vertikale Automatisierung
„Lawbots“ stehen kurz davor, zum festen Bestandteil der Rechtsbranche zu werden. Diese spezialisierten Bots sind darauf ausgelegt, spezifische juristische Aufgaben zu automatisieren – von der Mandantenaufnahme über Dokumentenautomatisierung und Compliance-Prüfungen bis hin zu rechtlicher Recherche. Typische Einsatzszenarien sind etwa maßgeschneiderte Bots für Einwanderungsanträge, Markenanmeldungen oder Routineverfahren in der Prozessführung. Sie übernehmen klar definierte, standardisierte Aufgaben auf höchst effiziente Weise. So gewinnen Anwält*innen wertvolle Zeit, um sich auf komplexe, urteilsbasierte Arbeiten zu konzentrieren und strategische Entscheidungen zu treffen.
Der Autor Oliver Bendig ist CEO von stp.one, einem der führenden Anbietern von Legal-Tech-Komplettlösungen.
Report Gendermedizin
Auch mithilfe von FemTech- und HealthTech-Start-ups steigt in unserer Gesellschaft langsam das Bewusstsein dafür, dass der weibliche Körper medizinisch anders funktioniert als der männliche, und Frauengesundheit mehr ist als "nur" Zyklus, Schwangerschaft und Wechseljahre.
Alles, was speziell für die Frau ist und beim Mann nicht existiert“, erklärt Raoul Scherwitzl, Doktor der Philosophie, Festkörper- und Materialphysik sowie Co-Founder des FemTech-Start-ups Natural Cycles, was mit Frauenmedizin gemeint ist. Diese Aussage wird häufig innerhalb gesundheitspolitischer Debatten getätigt, wenn es darum geht, wie Frauenkrankheiten im Gegensatz zum männerzentrierten Usus in der Medizin behandelt werden: oftmals zweitrangig oder als Anhängsel an männerfokussiertem Wissen.
Der französische Soziologe Pierre Bourdieu beschrieb in seinem Werk „Die männliche Herrschaft“ bereits 1998, wie „kulturelle und wissenschaftliche Systeme männliche Normen als allgemeingültig setzen und alles, was weiblich ist, als Abweichung oder Sonderfall markieren“. Sieht man sich die Geschichte der westlichen Medizin an, drängt sich der Eindruck auf, dass Bourdieus Beschreibung für den Gesundheitsbereich ins Schwarze trifft.
Blickt man darüber hinaus in die (Fach-)Literatur der letzten Jahrzehnte, so erkennt man: Bis in die späten 80er-Jahre wurden weibliche Bedürfnisse, psychosoziale Belastungen und Körperbilder in der medizinischen Forschung und Praxis weitgehend ignoriert. Erst eine aufkeimende Frauengesundheitsbewegung durchbrach diese Mauer und etablierte den Begriff Frauengesundheit bzw. Gendermedizin. Seitdem schärft sich der Blick auf die Frau, und die Gesellschaft hat begonnen, in Publikationen und Debatten genauer hinzusehen – mit einer bewusstseinsschaffenden Agenda, warum dieses Thema wichtig ist.
Frauengesundheit ist mehr als Reproduktion
„Die Definition von Frauengesundheit wird oft sehr eng gefasst“, erklärt Scherwitzl das Problem; „nämlich als alles, was mit reproduktiver Gesundheit zu tun hat: Menstruationszyklus, Pubertät, Schwangerschaft, Geburt, Wochenbett, Unfruchtbarkeit und Wechseljahre. Die klassische Definition spannt sich dabei meist über das reproduktive Zeitfenster einer Frau zwischen etwa 15 und 50 Jahren.“ Dabei werde oft übersehen, dass Frauengesundheit weit mehr umfasse: „Es geht auch darum, den gesamten Gesundheitsbereich aus der Perspektive von Frauen zu betrachten – und das wird bislang kaum getan“, so Scherwitzl. Ein großes Problem liegt laut dem Gründer darin, dass die meisten Medikamente auf Basis klinischer Studien mit Männern entwickelt wurden; mit der Annahme, dass sie bei Frauen gleich gut wirken – obwohl Frauen biologisch anders reagieren. Als Beispiel nennt Scherwitzl die Insulinresistenz, die sich bei Frauen im Lauf des Zyklus verändert. „Dies wird aber kaum berücksichtigt“, ergänzt er.
Im Gesundheitswesen fehle es häufig an passenden Tools und Produkten, um Frauen gezielt zu unterstützen. Ein Beispiel hier sei die Hormontherapie in den Wechseljahren, bei der oftmals lediglich hoch dosierte Varianten jahrzehntealter Medikamente zum Einsatz kämen. „Das Resultat ist, dass sich Frauen häufig selbst um ihre Beschwerden kümmern müssen. Viele suchen zunehmend online nach Hilfe. Große Pharmakonzerne haben diesen Mangel erkannt und investieren inzwischen in Forschung zu Themen wie Endometriose oder Wechseljahre“, sagt Scherwitzl. Sein Start-up Natural Cycles setzt auf ein datenbasiertes Modell mit Körperwerten und Algorithmen, kombiniert mit Aufklärung und individualisierter Medizin; mit dem Ziel, einen Beitrag dazu zu leisten, dass Frauen künftig Zugang zu besser abgestimmten Medikamenten und mehr effektiven Lösungen erhalten.
Es muss endlich in die Köpfe kommen
„Es muss endlich in die Köpfe kommen, dass der weibliche Körper anders funktioniert als der männliche“, mahnt Simone Mérey in diesem Sinn. Sie ist Founderin des 2022 gegründeten Pflege-Start-ups HeldYn. Mérey hat jahrelang im Krankenhaus gearbeitet und hatte dabei viel mit Schmerzpatient*innen zu tun. Sie erkannte dabei einen Gender-Bias: Frauen mit Schmerzen wurden oft als wehleidig abgestempelt – veraltete Vorstellungen in den Köpfen der Beteiligten –, mit der Folge, dass Patientinnen schnell einmal als depressiv oder psychisch labil eingestuft wurden. „Dies ist keine akkurate Einschätzung – es ist wissenschaftlich belegt, dass Frauen eine höhere Schmerzgrenze als Männer haben“, betont Mérey. „Hier merkt man, wie soziale Konstrukte wirken: Die Frau wird oft als die gesellschaftlich Schwächere wahrgenommen, obwohl ihr Körper viel aushält, Stichwort Geburt. So kommt es zu falschen Dosierungen und der Vernachlässigung von Symptomen.“
Chance für HealthTech-Start-ups?
Eine Vernachlässigung, die Akteur*innen und Start-ups im Health-Bereich Chancen eröffnet. Ähnlich denkt Scherwitzl, der Start-ups mit „großen Ambitionen“ im Entstehen sieht: „Das Funding ist da“, sagt er. „Vor allem in den letzten fünf Jahren hat sich einiges verbessert. Wenn Investoren merken, dass man hier viel Growth erreichen kann, wird noch mehr Geld fließen.“
Was jedoch aktuell noch fehle, sei der große Erfolg, der beweise, dass es sich lohne, in dieses Feld zu investieren. „Im Pharmabereich gibt es etwa die Pille oder Antidepressiva – im digitalen Bereich bin ich jedoch optimistisch, dass der nächste große Durchbruch bevorsteht“, so Scherwitzl. Der Founder zeigt sich überzeugt, dass es zu jedem pharmazeutischen Ansatz künftig auch eine digitale Alternative geben sollte, mit der Frauen medizinisch besser begleitet werden können. „Pharmakonzerne wie Bayer, Organon und Merck haben trotz Deinvestitionen weiterhin Pipelines im Bereich Frauengesundheit. Gleichzeitig gibt es Start-ups wie uns oder Flo in England, das eine neue Version des Kondoms für Frauen entwickelt. Die dänische Cirqle Biomedical arbeitet ebenfalls an einer Alternative zum Kondom, die den Uterus verschließt. Außerdem existieren Start-ups wie Endogene.Bio, das sich auf Endometriose fokussiert.“
Auch Mérey hat trotz aller Probleme bei der Frauenmedizin einen neuen Tenor in dieser Sache erkannt, der sich vom bisherigen „medizinischen Ratschlag“ an Frauen à la „Man muss da durch“ unterscheide: Das Thema der zweiten Lebenshälfte der Frauen werde mehr diskutiert, Tabuthemen wie Wechseljahre würden aufgebrochen. Mérey: „Der negative Anstrich wird langsam entfernt. Es hat in den letzten Jahren ein Umdenken gegeben.“
KI-Modelle erfolgreich im Unternehmen einführen
Worauf es bei der Implementierung von KI wirklich ankommt.
Künstliche Intelligenz (KI) gewinnt in Unternehmen zunehmend an Bedeutung. Sie kann Prozesse beschleunigen, große Datenmengen sinnvoll nutzbar machen und Entscheidungen unterstützen. Doch in der Praxis zeigt sich: Moderne Technologie allein führt noch nicht zum Erfolg. Entscheidend ist ein strukturiertes Vorgehen, bei dem Ziele klar definiert, Daten sorgfältig vorbereitet und organisatorische Rahmenbedingungen von Beginn an berücksichtigt werden. „Viele KI-Initiativen scheitern daran, dass am Anfang die Orientierung fehlt“, sagt Benedikt Weber, Geschäftsführer der applord GmbH. „Struktur schafft Entscheidungsfähigkeit – noch bevor über konkrete KI-Modelle gesprochen wird.“
Organisatorischer Wandel und Einbindung der Mitarbeitenden
Der Einsatz von KI verändert Arbeitsabläufe, Verantwortlichkeiten und Entscheidungswege. Mitarbeitende arbeiten verstärkt mit automatisierten Systemen zusammen, Aufgaben verschieben sich, Rollen entwickeln sich weiter. Wird dieser Wandel nicht aktiv begleitet, entstehen Unsicherheiten oder Ablehnung gegenüber neuen Technologien. Erfolgreiche Unternehmen setzen deshalb auf transparente Kommunikation und frühzeitige Einbindung der Mitarbeitenden. Sie erklären, warum KI eingesetzt wird, welche Aufgaben sie übernimmt und wo menschliche Expertise weiterhin unverzichtbar bleibt. Fehlt dieses gemeinsame Verständnis, werden neue Systeme häufig nur eingeschränkt genutzt. „KI-Projekte scheitern selten an der Technologie“, betont Weber. „Viel häufiger fehlt ein klares Bild davon, welchen konkreten Nutzen KI für Mitarbeitende und Organisation wirklich bringt.“
Auswahl der passenden KI-Lösung
Das Angebot an KI-Lösungen wächst rasant. Für Unternehmen besteht die Herausforderung darin, nicht der technischen Vielfalt zu folgen, sondern eine Lösung zu wählen, die zum eigenen Geschäftsprozess passt. Der Ausgangspunkt sollte immer ein klar definierter Anwendungsfall sein: Welche Aufgabe soll KI konkret unterstützen oder verbessern? Neben den Funktionen spielen auch Fragen der Nachvollziehbarkeit, Integration in bestehende Systeme und regulatorische Anforderungen eine Rolle. Werden diese Aspekte zu spät berücksichtigt, entstehen Lösungen, die technisch leistungsfähig sind, im Alltag aber keinen Mehrwert liefern. „Viele Unternehmen wählen KI nach dem Funktionsumfang aus und stellen später fest, dass sie nicht zum eigenen Prozess passt“, erklärt Weber. „Erfolgreich ist KI dann, wenn sie Abläufe sinnvoll ergänzt und verständliche Ergebnisse liefert.“
Datenqualität als Grundlage für verlässliche Ergebnisse
KI-Modelle sind vollständig von der Qualität ihrer Daten abhängig. In vielen Unternehmen existieren relevante Informationen zwar, sie sind jedoch über verschiedene Systeme verteilt, unterschiedlich gepflegt oder historisch gewachsen. Diese Ausgangslage erschwert nicht nur den Einsatz von KI, sondern kann zu fehlerhaften oder schwer nachvollziehbaren Ergebnissen führen. Datenmanagement ist daher keine einmalige Vorarbeit, sondern eine kontinuierliche Aufgabe. Dazu gehören klare Zuständigkeiten, regelmäßige Prüfungen und eine strukturierte Aufbereitung der Daten. „Der Aufwand für Datenqualität wird häufig unterschätzt“, sagt Weber. „Ohne geprüfte und konsistente Daten lassen sich keine stabilen und verlässlichen KI-Ergebnisse erzielen – unabhängig davon, wie gut das Modell ist.“
Schrittweise Einführung statt großer Umbruch
Statt KI sofort unternehmensweit einzusetzen, empfiehlt sich ein schrittweises Vorgehen. Unternehmen können so mit klar abgegrenzten Anwendungsfällen beginnen, Lösungen im Alltag testen und die Ergebnisse anhand messbarer Kriterien, wie Benutzerfreundlichkeit oder verständlicher Anleitungen, bewerten. So lassen sich Risiken reduzieren und Erkenntnisse gezielt nutzen. Pilotprojekte liefern nicht nur technische Erkenntnisse, sondern zeigen auch, wie gut KI im Arbeitsalltag akzeptiert wird. Auf dieser Basis lässt sich entscheiden, welche Lösungen ausgebaut werden sollten. „Unternehmen, die mit überschaubaren Anwendungsfällen starten, treffen langfristig fundiertere Entscheidungen“, so Weber. „Praxiserfahrungen sind dabei deutlich wertvoller als theoretische Annahmen.“
KI-Hype: mittel- bis langfristiger Weg zur Monetarisierung noch unklar
Aktueller Marktkommentar zum KI-Hype und den möglichen Folgen von Justin Thomson, Head Investment Institute and CIO bei T. Rowe Price.
Die Investitionsausgaben für künstliche Intelligenz (KI) haben ein erstaunliches Niveau erreicht, aber der Weg zur Monetarisierung bleibt unklar. Der Markt-Hype schaukelt sich selbst hoch, und die Tech-Giganten greifen nun zu Krediten, um ihre Expansion zu finanzieren. Blasen sind nicht immer schädlich und können zu erheblichen Produktivitätssteigerungen führen, aber Überkapazitäten sind ein reales Risiko, das beobachtet werden sollte.
Während eines hochkarätigen Finanzgipfels, an dem ich kürzlich in Hongkong teilgenommen habe, sagte der CEO einer führenden Vermögensverwaltungsgesellschaft, der es eigentlich besser wissen müsste: „Im Kontext der Ausstattung von Hyperscalern sind 2,5 Billionen US-Dollar [für Investitionen] über fünf Jahre keine große Summe.“ Ich war über diese Bemerkung erstaunt. In welchem Paralleluniversum sind 2,5 Billionen US-Dollar eine unbedeutende Summe? Antwort: in einem, in dem Nvidia innerhalb von drei Monaten eine Marktkapitalisierung von 1 Billion US-Dollar erreichen kann. Aber wie erzielt man eine Rendite auf Investitionen in Höhe von 2,5 Billionen US-Dollar, wenn der mittel- bis langfristige Weg zur Monetarisierung der KI noch unklar ist?
Dies deutet auf zwei verschiedene AI-Investitionsbooms hin: einen relativ kurzfristigen, der durch eine erkennbare tatsächliche Nachfrage gestützt wird, und einen längerfristigen spekulativen Boom, der mit einem quasi-religiösen Glauben an exponentielles Wachstum verbunden ist.
Betrachten wir zunächst einige beeindruckende Zahlen. Die Ausgaben für KI erreichten gerade 1 % des US-Bruttoinlandsprodukts (BIP) in einer Wirtschaft mit 1,8 % Wachstum – das ist mehr als die Hälfte der gesamten neuen Nachfrage. Allein Nividia erreichte Ende Oktober einen Wert von 5 Billionen US-Dollar, was 15 % der gesamten US-Wirtschaft entspricht. Zum Vergleich: Als Cisco im Jahr 2000 als weltweit größtes Unternehmen seinen Höhepunkt erreichte, betrug sein Anteil am BIP nur 5,5 %. Während viel Aufsehen um den 3 Milliarden US-Dollar teuren Hauptsitz von JP Morgan in Manhattan gemacht wurde, werden in Texas still und leise 40 Milliarden US-Dollar teure Rechenzentrumsprojekte gestartet. Niemand scheint sich dafür zu interessieren.
Sind wir also in einer Blase? Es gibt sicherlich eine Blase von Menschen, die über Blasen sprechen – werfen Sie einfach einen Blick auf Google Trends.
Unterdessen gibt es diejenigen, die glauben, dass wir uns gerade deshalb nicht in einer Blase befinden können, weil wir über eine solche sprechen. Meiner Meinung nach gibt es drei Schlüsselwörter in den jüngsten Marktentwicklungen, die Beachtung verdienen: Reflexivität, Zirkularität und Verschuldung. Reflexivität besagt, dass Preise tatsächlich die Fundamentaldaten beeinflussen und dass diese neu beeinflussten Fundamentaldaten dann die Erwartungen verändern und somit die Preise beeinflussen. Dieser Prozess setzt sich in einem sich selbst verstärkenden Muster fort. Die lebhafte Reaktion des Marktes auf die jüngsten KI-Megadeals ist ein Beispiel für einen solchen Feedback-Kreislauf. Hinzu kommt der zirkuläre Charakter dieser Deals. Im Wesentlichen investieren die Anbieter von Recheninfrastruktur in native KI-Akteure, die sich in einer Investitionsphase befinden. In der Dotcom-Ära war dies als „Vendor Financing” bekannt und wurde zu einer Art Schimpfwort.
Schließlich gibt es noch die Verschuldung. Bislang haben die finanzstarken Tech-Giganten diesen KI-Boom mit ihren eigenen tiefen Taschen und Eigenkapitalfinanzierungen finanziert. Aber jetzt treten wir in die Kreditphase ein – Unternehmen wenden sich den Schuldenmärkten zu, oft außerhalb der Bilanz, und die Kreditaufnahme wird sich wahrscheinlich beschleunigen. Wir wissen, dass wir mit generativer KI und später mit künstlicher Superintelligenz vor einem neuen technologischen Paradigma stehen – und möglicherweise vor einem massiven Produktivitätssprung. Das sind alles großartige Dinge, und es ist leicht zu verstehen, dass man der Versuchung erliegt, weiter auf der lukrativen KI-Welle zu reiten, die mit der Einführung von ChatGPT im November 2022 begann. Angesichts der aktuellen Indexkonzentration würde es in der Tat Mut erfordern, auszusteigen.
Schnelles Wachstum kann zu einem Überschuss führen
Eine wichtige Lehre aus der Geschichte ist, dass es zu Blasen kommt, wenn wir schöne Dinge erfinden. Aber nicht alle Blasen sind gleich. Es gibt „schlechte“ Blasen (Tulpen, Gold, Grundstücke), und wenn schlechte Blasen durch Schulden finanziert werden, kann dies ein systemisches Risiko für die Wirtschaft darstellen. Es gibt auch „gute“ Blasen, die zu Überkapazitäten bei Produktionsmitteln führen – man denke an die Eisenbahnen im goldenen Zeitalter der Expansion der USA zwischen 1870 und 1900, die Elektrizität in den frühen 1900er Jahren und den Dotcom-Boom Ende der 1990er Jahre. Letztendlich wurde in jedem Fall Wohlstand geschaffen, aber die frühen Investoren verloren viel Geld.
Es ist noch zu früh, um vorherzusagen, zu welcher Art von Blase sich der AI-Investitionsboom entwickeln wird. Die langfristigen Auswirkungen werden davon abhängen, ob die heutigen massiven Investitionen letztendlich die Grundlage für dauerhafte Produktivitätssteigerungen schaffen oder ob sie zu Überkapazitäten führen, die keine nachhaltigen Renditen erzielen. Wenn die Kapazitäten so schnell wachsen, ist es immer wahrscheinlich, dass sich das Ungleichgewicht zwischen Angebot und Nachfrage von einem Mangel zu einem Überschuss umkehrt. In der Dotcom-Ära verloren Investoren viel Geld mit Glasfaserkabeln und Switches, die in den Boden verlegt wurden, und etwas Ähnliches könnte mit KI passieren, wenn durch Überbauung riesige Kapitalmengen in Anlagen gebunden werden, die möglicherweise nicht annähernd mit voller Effizienz betrieben werden können – oder noch schlimmer, wenn die Schnelllebigkeit des Chip-Zyklus die Rechenleistung obsolet macht.
Erschwerend kommt hinzu, dass die Anreize für Infrastrukturanbieter („Picks and Shovels”-Akteure) und Entwickler von KI-Anwendungen nicht aufeinander abgestimmt sind. Während Infrastrukturunternehmen von einer kontinuierlichen Expansion und Investitionen profitieren, konzentrieren sich Anwendungsentwickler auf die Verbesserung der Effizienz und die Senkung der Kosten. Um den Kommentar des Dodos nach dem Caucus-Rennen in Lewis Carrolls Alice im Wunderland umzukehren: „Nicht jeder kann gewinnen, und nicht jeder kann einen Preis bekommen.” Die optimistischen Prognosen für die KI-Infrastruktur zeigen, wie viel Hype in den heutigen Bewertungen der Hyperscaler steckt. Es ist ironisch, dass Rechenzentrumsprojekte nach den griechischen Titanen Prometheus und Hyperion benannt werden. In der griechischen Mythologie folgt auf Hybris immer Nemesis. Um noch ein bisschen Latein mit einzubringen: caveat emptor.
KI-Agenten als Transformationstreiber 2026
Eine aktuelle DeepL-Studie zeigt: 69 % der globalen Führungskräfte erwarten für 2026 tiefgreifende Veränderungen durch KI-Agenten; KI-Sprachtechnologie wird zur unverzichtbaren Infrastruktur.
Eine neue Studie von DeepL, einem globalen Unternehmen für KI‑Produkte und ‑Forschung, zeigt: 2026 wird für viele Organisationen den Übergang vom Experimentieren mit KI hin zu agentischer Automatisierung markieren. So erwartet die Mehrheit der weltweit befragten Führungskräfte (69 %), dass agentenbasierte KI ihre Geschäftsabläufe im kommenden Jahr deutlich verändern wird.
Die Studie wurde im September 2025 von Censuswide im Auftrag von DeepL durchgeführt. Befragt wurden 5.000 Führungskräfte in Deutschland, Frankreich, den USA, Großbritannien und Japan. Die Ergebnisse deuten darauf hin, dass Unternehmen verstärkt planen, autonome KI-Agenten im großen Umfang einzusetzen – etwa zur Unterstützung von Wissensarbeit, zur Effizienzsteigerung oder zur Anpassung organisatorischer Strukturen. Damit zeichnet sich die bedeutendste operative Veränderung in der Wirtschaft seit der Einführung der Cloud an.
„KI-Agenten sind längst nicht mehr experimentell, sie sind unumgänglich.“ sagt Jarek Kutylowski, CEO und Gründer von DeepL. „Die nächste Phase besteht darin, sie tiefgreifend in unsere Arbeitsweisen zu integrieren. In 2026 werden KI-Agenten das mühsame Umschalten zwischen verschiedenen Kontexten und repetitive Aufgaben übernehmen, sodass sich Menschen auf das konzentrieren können, was Unternehmen tatsächlich voranbringt.“
KI-Agenten werden zum nächsten Disruptor für Unternehmen
Nach ersten Pilot- und Anwendungsfällen rücken KI-Agenten zunehmend in den produktiven Einsatz:
- Fast die Hälfte der globalen Führungskräfte (44 %) erwartet für 2026 einen tiefgreifenden Wandel durch agentische KI; ein Viertel (25 %) sieht diesen Wandel bereits heute. Nur 7 % glauben, dass KI-Agenten ihre Betriebsabläufe nicht verändern werden, was die hohe Geschwindigkeit der Implementierungen unterstreicht.
- Als die drei wichtigsten Voraussetzungen für den sinnvollen und vertrauenswürdigen Einsatz von KI-Agenten nennen die Befragten nachweisbare Effizienz- und ROI-Effekte (22 %), Anpassungsfähigkeit der Belegschaft (18 %) und zunehmende organisatorische Bereitschaft (18 %).
- Als wesentliche Herausforderungen bei der Einführung von KI-Agenten nennen die Befragten Kosten (16 %), Bereitschaft der Belegschaft (13 %) und Reife der Technologie (12 %).
KI als zentraler Wachstumstreiber für globale Unternehmen
Über Agenten hinaus gilt KI insgesamt als wichtigster Motor für das Wirtschaftswachstum in 2026:
- Über zwei Drittel (67 %) der Befragten geben an, dass sich der ROI ihrer KI-Initiativen in diesem Jahr erhöht hat; mehr als die Hälfte (52 %) erwartet, dass KI im kommenden Jahr mehr zum Unternehmenswachstum beitragen wird als jede andere Technologie.
- Wenn es um messbare Verbesserungen durch KI geht, liegt Deutschland (78 %) zusammen mit Großbritannien (80 %) an der Spitze, gefolgt von den USA (71 %) und Frankreich (70 %). Japan verzeichnet mit 35 % deutlich niedrigere Werte, was auf langsamere Implementierungen und Bereitschaften hindeutet.
- Über die Hälfte der globalen Führungskräfte (51 %) rechnet damit, dass KI im kommenden Jahr mehr neue Rollen schafft als ersetzt. 52 % geben an, dass KI-Kenntnisse für die meisten Neueinstellungen vorausgesetzt werden.
KI-Sprachtechnologie entwickelt sich vom Werkzeug zur zentralen Infrastruktur
Die Studie zeigt zudem, wie KI-Sprachtechnologie zur entscheidenden Komponente der Unternehmensinfrastruktur wird:
- Fast zwei Drittel der globalen Unternehmen (64 %) planen 2026 steigende Investitionen in KI-Sprachtechnologie – angeführt von Großbritannien (76 %) und Deutschland (74 %), gefolgt von den USA (67 %) und Frankreich (65 %) werden mehrsprachige Kommunikation und Inhalte zu zentralen Faktoren für globales Wachstum. Im Gegensatz dazu bleibt Japan (38 %) vergleichsweise konservativ, was auf eine langsamere Dynamik hindeutet, gleichzeitig aber das wachsende Interesse von mehr als einem Drittel der Führungskräfte widerspiegelt.
In diesem Zusammenhang wird Echtzeit-Sprachübersetzung 2026 unverzichtbar:
- Über die Hälfte der globalen Führungskräfte (54 %) sieht Echtzeit-Sprachübersetzung im kommenden Jahr als unverzichtbar an – derzeit sind es ein Drittel (32 %).
- Großbritannien (48 %) und Frankreich (33 %) sind Vorreiter bei der Nutzung von Tools für die Echtzeit-Sprachübersetzung; Japan liegt derzeit nur bei 11 %.
- Die Nachfrage wird angetrieben von technologischen Fortschritten in der Echtzeit-Sprachübersetzung (46 %), Kundenerwartungen (40 %) und marktübergreifender Expansion (38 %).
Die Erkenntnisse der Studie liefern wichtige Einblicke in die Zukunft der KI und zeigen, wie diese Veränderungen Branchen umgestalten, Kundenerwartungen neu definieren und sich auf das Wettbewerbsumfeld auswirken.
