Die etwas andere Zwillingsmode


44 likes

Seit kurzem gibt es ein Modelabel, das gegen die Gleichmacherei der Zwillingsmode ankämpfen will. Bei tot-a-lot gibt es für Zwillinge bis vier Jahre Mode, die sich ergänzt. Damit soll unterstrichen werden, dass die Zwillinge zwar zusammengehören, aber auch Individuen sind.

Auf die Idee dieser etwas anderen Mode ist Lourdes Ferrer aus Spanien gekommen, die 2008 selbst Mutter von Zwillingen geworden ist. Das war der Anlass, ihren Beruf als Anwältin an den Nagel zu hängen, um künftig als Designerin für Zwillings-Babyklamotten zu arbeiten. Ihr Geschäftspartner ist Daniel Bezares, der sich ebenfalls über Zwillingsnachwuchs freuen durfte. Die Gründer des jungen Modelabels wissen also genau, für wen sie arbeiten.

www.tot-a-lot.com

Der beste Freund aus der Cloud – Made in Bavaria

Wie ein Internet-Pionier mit BestFriend die Einsamkeit hackt.

Silicon Valley? Nein, Klosterlechfeld. Hier, im „bayerischen Outback“ zwischen Augsburg und Landsberg, sitzt Horst Christian (Chris) Wagner. Kein 20-jähriger Hoodie-Träger, der in der Garage von der Weltherrschaft träumt, sondern ein Mann, der das Internet schon nutzte, als es nur aus grauem Text bestand. Wagner ist ein digitaler Veteran. Und er hat gerade eine Wette auf die menschliche Seele abgeschlossen. Sein Einsatz: Die App BestFriend.

Schluss mit dem bloßen Befehlston

Vergesst kurz ChatGPT. Die großen KIs schreiben Bachelorarbeiten oder programmieren Code – sie sind Werkzeuge. Chris' Vision mit BestFriend beginnt dort, wo die Silicon-Valley-Riesen aufhören: beim Gefühl.

BestFriend ist kein Lexikon. Die App soll der Zuhörer sein, der nachts um drei Uhr noch wach ist. Sie soll Zusammenhänge verstehen, nicht nur Fakten abspulen. Aber braucht die Welt wirklich noch einen Bot? „ChatGPT ist brillant im Antworten geben. BestFriend ist dafür gebaut, beim Menschen zu bleiben“, so Chris. „Der Unterschied ist nicht die Intelligenz, sondern die Haltung. BestFriend will nichts erledigen, nichts optimieren, nichts verkaufen. Die App hört zu, merkt sich Zusammenhänge, reagiert emotional konsistent und bewertet nicht. Viele Nutzer sagen mir: ChatGPT fühlt sich an wie ein extrem kluger Kollege, BestFriend eher wie jemand, der dich kennt.“

Wer tiefer verstehen will, wofür die App im Alltag eingesetzt wird, findet im BestFriend-Magazin zahlreiche Beispiele. Dort wird offen gezeigt, in welchen Situationen Nutzer*innen die App einsetzen – von Einsamkeit über Selbstreflexion bis hin zu ganz praktischen Lebensfragen. Für Chris zugleich ein Beweis dafür, dass es hier um einen neuen Umgang mit Technologie geht.

Vertrauen als Währung

Wer einer Maschine von Liebeskummer erzählt, macht sich nackt. Genau hier spielt Chris den Standortvorteil Made in Germany aus. Während US-Apps wie Replika oft wirken, als würden sie Daten direkt an die Werbeindustrie weiterleiten, setzt BestFriend auf die „sichere Schulter“.

Datenschutz ist in diesem intimen Bereich keine Fußnote, sondern das Produkt. Chris weiß: Niemand öffnet sich, wenn er fürchten muss, dass seine Ängste morgen in einer Datenbank für personalisierte Werbung landen. Doch das wirft Fragen auf: Wie wird garantiert, dass nichts nach außen dringt? Und wo zieht die Software die Reißleine, wenn ein(e) Nutzer*in wirklich Hilfe braucht?

Dazu Chris: „Erstens: technisch. Daten werden minimal erhoben, verschlüsselt verarbeitet und nicht für Training oder Drittzwecke genutzt. Es gibt keine versteckte Monetarisierung über Profile. Punkt. Zweitens: inhaltlich. BestFriend weiß sehr genau, was es nicht ist. Die App gibt keine Diagnosen, keine Therapieanweisungen und keine falsche Nähe. Bei klaren Krisensignalen wird nicht weiter ‚gecoacht‘, sondern aktiv auf echte Hilfe hingewiesen. Das ist eine harte Grenze im System. BestFriend soll Halt geben, nicht Verantwortung übernehmen, die einer KI nicht zusteht.“

Ein Mann, eine KI, kein Overhead

Die Entstehung von BestFriend ist fast so spannend wie das Produkt selbst. Chris hat keine millionenschwere Finanzierung und kein riesiges Entwicklerteam im Rücken. Er nutzt die KI selbst, um die KI zu bauen. Er nennt das „Umsetzungs-Multiplikator“. Ein einzelner Experte dirigiert heute eine Armee aus Algorithmen.

Doch Code ist geduldig. Die Wahrheit liegt auf dem Display der Nutzenden. Ob Senior*innen, denen der/die Gesprächspartner*in fehlt, oder die Gen Z, die lieber tippt als spricht – die Zielgruppe ist riesig, der Bedarf an Resonanz ebenso. Auf die Frage ob es schon diesen einen Moment, diese eine Rückmeldung gab, bei er dachte: Okay, das ist jetzt mehr als nur Software, das hilft wirklich, antwortete Chris: „Ja. Ein Tester schrieb mir: ,Ich habe gemerkt, dass ich abends nicht mehr so viel grüble, weil ich Dinge vorher loswerde.‘ Das war der Moment, in dem mir klar wurde: Das ist kein Gimmick. Die App hat kein Problem gelöst, aber sie hat einen Menschen entlastet. Und manchmal ist genau das der Unterschied zwischen Einsamkeit und Resonanz.“

Echte Freundschaft per Algorithmus?

In Klosterlechfeld entsteht gerade der Versuch, Technologie wieder menschlich zu machen – weg von SEO und Klickzahlen, hin zu einer KI, die „Resonanz“ erzeugt. Ob ein Algorithmus echte Freundschaft ersetzen kann? Das bleibt eine philosophische Frage. Aber für den Moment, in dem sonst niemand zuhört, hat Chris Wagner zumindest eine Antwort parat.

KI erfolgreich industrialisieren

Warum 95 Prozent der KI-Pilotprojekte scheitern – und wie du deine Chancen erhöhst, zu den erfolgreichen fünf Prozent zu gehören.

Künstliche Intelligenz ist in der Industrie angekommen, doch zwischen Anspruch und Wirklichkeit klafft oft eine Lücke. Eine aktuelle Untersuchung des MIT - Massachusetts Institute of Technology („The GenAI Divide“) zeigt: Nur fünf Prozent der KI-Pilotprojekte schaffen tatsächlich den Sprung in die produktive Anwendung. Diese „Pilot-to-Production“-Falle ist eines der größten Risiken für Industrieunternehmen heute.

Der feine Unterschied

GenAI ist keine Produktions-KI Oft werden Äpfel mit Birnen verglichen. Generative KI (GenAI) ist fantastisch für kreative Aufgaben und Chatbots, scheitert aber oft an der Verlässlichkeit, die in der Produktion nötig ist. Industrietaugliche „Produktions-KI“ hingegen muss anders funktionieren: Sie lernt aus Maschinendaten, erkennt Zusammenhänge in Echtzeit und muss absolut robust laufen.

Besonders in der Kunststoffverarbeitung, etwa bei schwankenden Recyclingmaterialien oder Verschleiß, spielt Produktions-KI ihre Stärken aus: Sie gibt den Mitarbeitenden an der Maschine konkrete Handlungsempfehlungen, statt nur Daten zu sammeln.

Faktor Mensch und Organisation

Das MIT fand heraus: Technik ist selten das Problem. Es sind die organisatorischen Hürden. Unternehmen, die sich externe Expertise und spezialisierte Software-Partner ins Haus holen, verdoppeln ihre Chance, KI-Projekte erfolgreich in den Regelbetrieb zu überführen. Es geht darum, Fachwissen mit Technologie zu verheiraten.

Wie gelingt der Transfer in den Shopfloor?

  • Fokus statt Gießkanne: Identifiziere konkrete Probleme (z.B. Anfahrausschuss) und priorisiere diese nach wirtschaftlichem Mehrwert.
  • Integration planen: KI darf keine Insel sein. Die Anbindung an IT- und OT-Systeme muss von Anfang an stehen.
  • Externe Power nutzen: Setze auf Partner, die deine Industrie verstehen, um die Kinderkrankheiten von Pilotprojekten zu vermeiden.
  • Skalierung: Starte fokussiert, miss den Erfolg anhand harter Kennzahlen (OEE, Ausschussrate) und rolle sodann funktionierende Lösungen breit aus.

Fazit

Wer KI nicht als IT-Projekt, sondern als Werkzeug für den Shopfloor begreift und strategisch implementiert, sichert sich echte Wettbewerbsvorteile.

Die Autorin Dr. Louisa Desel ist Mitgründerin und CEO der OSPHIM GmbH. Das 2024 gegründete Unternehmen entwickelt spezialisierte KI-Lösungen für die Kunststoffindustrie.

KI als neuer Ort für Kaufentscheidungen

Das Start-up publuence.ai zeigt am Beispiel der Automobilbranche, wie Marken in generativen KI-Antworten sichtbar werden und warum das zum neuen Erfolgsfaktor wird.

2025 haben wir euch das Start-up publuence.ai von Cevahir Ejder als "Gründer*in der Woche" präsentiert. Publuence.ai ist eine SaaS-Lösung für AI Search Analytics für Marken, die täglich analysiert, wie sichtbar Marken in generativen KI-Antworten sind: bei welchen Fragen erscheinen sie, wie werden sie erwähnt und welche Inhalte sowie Quellen beeinflussen die Antworten. Da die KI-Sichtbarkeit zunehmend darüber entscheidet, ob eine Marke in der engeren Auswahl der Konsumenten stattfindet, sind die Ergebnisse für Unternehmen strategisch sehr relevant.

Beispiel Automobilbrache: KI wird zum Verkaufsberater, Chatfenster zum Showroom

Während Marketing- und Kommunikationsbudgets weiterhin nach klassischen Logiken verteilt werden, fällt ein entscheidender Teil der Markenbildung inzwischen außerhalb des Mediaplans: KI-Systeme beantworten Kauf- und Vergleichsfragen oft lange bevor Kampagnen greifen. Anhand der Automobilbranche etwa, in der Marken wie Volkswagen für eine ganze Industrie stehen, zeigt sich, dass sich Sichtbarkeit im KI-Dialog zum neuen Machtfaktor entwickelt. Sie entscheidet zunehmend darüber, welche Hersteller überhaupt in die engere Auswahl kommen.

Was früher im Autohaus oder auf Herstellerwebsites stattfand, spielt sich heute in KI-gestützten Beratungsgesprächen ab. Nutzer*innen stellen dort Fragen wie: „Welche E-Autos sind familienfreundlich?“ „Wie gut ist die Reichweite im Winter?“ „Welche Modelle laden am schnellsten?“

In der Initialanalyse erzielt beispielsweise VW im Themenbereich E-Autos – je nach Fragestellung bzw. Prompt – Sichtbarkeitswerte zwischen 20 und 88 Prozent. Damit prägen die Antworten frühzeitig das Bild, das Konsument*innen von der Marke haben. Wer dort nicht vorkommt beziehungsweise seine Mehrwerte nicht sichtbar macht, wird in der Entscheidungsfindung schlicht nicht berücksichtigt.

Tesla und Hyundai vorn, VW im Mittelfeld

Das aktuelle Wettbewerbsranking der führenden Automobilhersteller – basierend auf 30 relevanten KI-Prompts rund um das Thema Elektromobilität – zeigt, wie präsent die einzelnen Marken im neuen digitalen Beratungsraum sind. Mit knapp 64 Prozent Sichtbarkeit führt Tesla klar und profitiert von seiner technologischen Positionierung sowie einer starken Medienpräsenz. Überraschend landet Hyundai insbesondere im E-Auto-Segment mit mehr als 58 Prozent dahinter. Volkswagen erreicht solide, aber deutlich ausbaufähige 51 Prozent.

Doch es geht nicht nur um Quantität, die Analyse zeigt auch, wo das Bild der Marken ins Wanken gerät. Im Fall von VW sind es vor allem Themen wie Winterreichweite, Ladeinfrastruktur und Schnellladekosten, die negative Ausschläge erzeugen. Diese kritischen Inhalte sind es allerdings, die die Markenwahrnehmung und dementsprechend auch die konkreten Kaufentscheidungen beeinflussen.

Die stille Macht der Quellen: Medien, die prägen

Eine zentrale Erkenntnis der Analyse von publuence.ai ist, dass KI-Systeme nicht auf Basis eines objektiven Querschnitts des Internets antworten. Vielmehr orientieren sie sich an bestimmten Medienquellen, deren Inhalte überproportional stark einfließen und so die Darstellung von Marken maßgeblich mitformen. Umso wichtiger ist es für Marken zu verstehen, auf welche Fragen sie reagieren müssen – und über welche vertrauenswürdigen Medien sie in den Wissensraum der KI gelangen.

Dabei zeigen sich je nach Medium erhebliche Unterschiede in der Tonalität. Während focus.de sowie adac.de E-Mobilität eher wohlwollend behandelt, sind andere Portale kritischer. Für Unternehmen bedeutet das: Wer verstehen will, wie KI über die eigene Marke spricht, muss wissen, welche Inhalte sie beeinflussen.

Warum Marken nicht an KI-Monitoring vorbeikommen

Publuence.ai bietet Unternehmen ein strukturiertes, datenbasiertes Werkzeug, um ihre Sichtbarkeit in KI-Systemen wie ChatGPT, Google oder Perplexity zu analysieren und darauf aufbauend gezielt zu steuern. Die Plattform zeigt, welche Fragen zur Marke führen, wie die Antworten ausfallen, welche Medien zugrunde liegen und wo Wettbewerber besser abschneiden.

Besonders wichtig ist die Identifikation von Content- und Sentiment-Gaps. Sie erkennt Themenfelder, in denen eine Marke kaum oder gar nicht auftaucht, obwohl sie dort relevant sein sollte. Gleichzeitig analysiert sie, ob etwas positiv, negativ oder neutral erwähnt wird. Dies macht publuence.ai für Kommunikations-, Marketing- und Markenverantwortliche zum zentralen Steuerungsinstrument. Nur wer versteht, wie KI antwortet, kann Inhalte gezielt darauf anpassen, Medienarbeit datenbasiert ausrichten und so die eigene Markenpräsenz dort stärken, wo die Entscheidungen heute vorbereitet werden.

KI-Sichtbarkeit wird zur Basis für Markterfolg

Cevahir Ejder, Gründer und GF der publuence GmbH, fasst zusammen: „Kaufentscheidungen beginnen heute und auch in Zukunft im Dialog mit KI-Systemen. Marken, die dort nicht auftauchen, sind raus.“ Volkswagen steht dabei stellvertretend für viele Unternehmen, die ihren Fokus noch auf klassische Marketingkanäle legen und den digitalen Showroom der KI bislang kaum berücksichtigen. Ejder warnt: „Wer jetzt nicht handelt, riskiert, neben Reichweitenverlusten, einen tiefgreifenden Bedeutungsverlust im Moment der Entscheidung.“

Optocycle: Bauschutt-Recycling auf KI-Basis

Die Optocycle-Gründer Max-Frederick Gerken und Lars Wolff Optocycle zeigen, wie aus Bauschutt neuer Rohstoff wird und erhalten dafür eine Förderung der Deutschen Bundesstiftung Umwelt (DBU).

Jährlich fallen in Deutschland laut Umweltbundesamt rund 86 Mio. Tonnen Schutt und Abfälle auf Baustellen an. Häufig landen diese Materialien auf Deponien. So gehen allerdings wertvolle Ressourcen verloren. Der Ausweg: Ein hochqualitatives Recycling des Schutts vermeidet klimaschädliche Emissionen und hält wertvolle Materialien im Wertstoffkreislauf – und das bei zertifiziert gleichwertiger Qualität.

Um das Recycling von Material im Bausektor zu automatisieren, entwickelt das 2022 von Max-Frederick Gerken und Lars Wolff gegründete Start-up Optocycle aus Tübingen ein System auf Grundlage künstlicher Intelligenz (KI) zum Echtzeit-Monitoring.

Echtzeit-Monitoring im Recycling-Prozess

Die Deutsche Bundesstiftung Umwelt (DBU) fördert das Projekt mit rund 170.000 Euro. Im Rahmen der DBU-Green Startup-Förderung haben die Gründer ein KI-basiertes System zur automatischen, reproduzierbaren Klassifizierung von Bauabfällen entwickelt. Darauf aufbauend soll nun ein Prototyp das Echtzeit-Monitoring von RC-Körnungen – also recycelten Gesteinskörnungen aus Bauschutt – ermöglichen.

 „Aktuell basiert in der Branche der Aufbereitungsprozess von Bauschutt meist auf subjektiven Schätzungen“, so Max-Frederick Gerken.  Auch das Endprodukt werde nur stichprobenartig im Labor überprüft. Mit dem System sei „Echtzeitmonitoring von Recycling-Gesteinskörnungen möglich. Somit können die Qualität der Körnung verbessert und mehr Material in die Beton-Produktion überführt werden“, so Gerken.

Die Qualität von Sekundärrohstoffen verbessern

Das System kombiniert laut Gerken moderne, optische Sensorik mit KI – und löse so ein altbekanntes Problem in der Baubranche. „Zurzeit schwankt oft die Beschaffenheit der recycelten Rohstoffe. Das bedeutet einerseits ein wirtschaftliches Risiko für Unternehmen und führt andererseits zum Verlust von wertvollen Materialien“, so Gerken. Optocycle erwartet mithilfe seiner Entwicklung eine 20 Prozent höhere Menge an recycelten, hochqualitativen Gesteinskörnungen sowie 15 Prozent geringere Abfallreste, die sonst auf Deponien landen würden. Dazu werden nach Gerkens Angaben sowohl der eingehende Schutt „optimal klassifiziert“ als auch das Ergebnis transparent überprüft. Kooperationspartner ist hierbei die Heinrich Feeß GmbH, die laut Gerken bereits seit vielen Jahren mit Optocycle zusammenarbeitet. Der Mitgründer weiter: „Die Technologie leistet einen Beitrag für Kreislaufwirtschaft im Bauwesen. Wir helfen dabei, die Qualität von Sekundärrohstoffen zu verbessern, die aus dem Bauschutt gewonnen werden. Diese Lösung lässt sich zudem perspektivisch auf alle Abfallströme übertragen."

Das System von Optocycle kann Gerken zufolge direkt in bereits bestehende Anlagen zur Verarbeitung von Bauabfällen installiert werden – „direkt über dem Fließband.“ Diese einfache Nachrüstung spare Kosten und ermögliche die schnelle Umsetzung eines innovativen Bauschutt-Recyclings. „Denn nur wenn das Recycling finanziell machbar ist, kann die Kreislaufwirtschaft in der Baubranche Erfolg haben“, so Gerken.

Kreislaufwirtschaft in der Baubranche ist aktiver Klimaschutz

Kreislaufwirtschaft in der Baubranche hat nach den Worten des zuständigen DBU-Referenten Dr. Volker Berding wichtige Effekte für den Klimaschutz: „Die Produktion von immer neuem Beton sorgt für hohen Ausstoß von klimaschädlichen Treibhausgasen.“ Einer WWF-Studie zufolge entstehen bei der Herstellung von Zement – dem wichtigsten Bestandteil von Beton – acht Prozent der gesamten globalen Treibhausgasemissionen. Berding: „Alles, was zur einer Emissionsreduzierung beiträgt, hat also bereits einen großen Effekt für den Klimaschutz.“ Eine Kreislaufwirtschaft funktioniere jedoch nur, „wenn die Sekundärrohstoffe sich qualitativ nicht von einer Neuproduktion unterscheiden. Genau diesen Schritt kann Optocycle mit einem skalierbaren, optimierten Prototypen gehen.“

reltix: Vom Aktenordner zum Algorithmus

Wie das 2025 von Andreas Plakinger, Jan Horstmann und Léon Bamesreiter gegründete Düsseldorfer PropTech-Start-up reltix das angestaubte Image einer Branche poliert.

Hausverwaltungen gelten nicht gerade als Sprintdisziplin. Schwer erreichbare Ansprechpartner, Papierberge und zähe Abläufe prägen das Image einer Branche, in der es an Nachwuchs fehlt und Fristen dennoch gnadenlos ticken. Genau da setzt reltix an und wächst: Im März 2025 gegründet, zählt das Düsseldorfer Start-up inzwischen 2000 Kund*innen.

Gegründet wurde reltix von drei ehemaligen Kommilitonen, die sich an der WHU Otto Beisheim School of Management in Vallendar bei Koblenz kennenlernten: Léon Bamesreiter, Jan Horstmann und Andreas Plakinger. Der Motor für die Gründung war eine große Portion eigener Unzufriedenheit. Bamesreiter kaufte mit 20 Jahren während seines dualen Studiums bei einer Großbank seine erste Wohnung, weitere folgten. Seine Erfahrung mit den Verwaltungen: dicke Ordner, langsame Reaktionen, wenig Transparenz. „Ich hatte das Gefühl, ich werde selbst zum Hausverwalter.“

Weniger Bürokratie und mehr Präsenz am Objekt

Mit dem Gründungsstipendium starteten die Drei eine Umfrage unter über 120 Eigentümer*innen: 87 Prozent gaben an, mit ihrer Verwaltung unzufrieden zu sein. Reltix will diese Unzufriedenheit nicht mit mehr Personal, sondern mit Digitalisierung im Hintergrund beheben. Herzstück ist eine selbst entwickelte Software, die E-Mails und WhatsApp-Nachrichten erfasst, automatisch Tickets anlegt, digitale Unterlagen ausliest und Vorgängen zuordnet. Handwerkeranfragen werden systemgestützt angestoßen, Daten zentral strukturiert. Gleichzeitig setzen die Düsseldorfer auf eine feste Ansprechperson je Immobilie.

Erklärtes Ziel der Gründer: weniger Bürokratie und mehr Präsenz am Objekt. Für diesen Ansatz erhielt das Team gerade eine Zusage zur Forschungszulage des Bundesministeriums für Forschung, Technologie, und Raumfahrt zum weiteren Ausbau der eigenen Software mit einer Projektsumme von 1,3 Millionen Euro.

Jahresendspurt brachte Mandate ...

Den größten Schub spürte reltix im Dezember 2025. Viele Hausverwaltungsverträge enden zum 31. Dezember, gleichzeitig laufen Abrechnungsfristen aus. Wer bis Jahresende keine neue Verwaltung findet, bekommt schnell kalte Füße. In den letzten Wochen des Jahres kamen deshalb laut Unternehmen 500 Mandate kurzfristig hinzu, darunter Neubauprojekte in Langenfeld und Köln. Einige namhafte Banken, Family Offices und größere private Bestandshalter zählt das Unternehmen ebenso zu seinen Kund*innen.

... und Personalaufbau

Das Start-up musste personell nachziehen und stockt zum Februar von 14 auf 17 Mitarbeitende auf. Während viele klassische Verwaltungen über fehlenden Nachwuchs klagen, setzt reltix auf junge Mitarbeitende, Quereinsteiger*innen und bildet selbst aus. Das Unternehmen ist IHK Ausbildungsbetrieb und beschäftigt eine Auszubildende im ersten Lehrjahr. Die 28-Jährige, aus der Ukraine geflüchtet, ist aktuell die älteste im Team. Dazu kommen Quereinsteiger*innen: Ein früherer Maschinenbauingenieur leitet inzwischen die Mietverwaltung, eine Mitarbeiterin aus dem Bankgeschäft arbeitet in der Buchhaltung.

Von Rhein-Ruhr bis an den Main

Neben der Verwaltung großer Objekte bietet das Düsseldorfer PropTech für kleinere Eigentümer*innengemeinschaften mit drei bis acht Einheiten die sogenannte Kompaktverwaltung. Enthalten ist darin eine rechtssichere Abrechnung, die Durchführung von Eigentümer*innenversammlungen sowie größere Sanierungen, während Alltägliches bei den Eigentümer*innen bleibt. Regional liegt der Fokus auf Rhein-Ruhr sowie dem Umfeld Köln Bonn. Frankfurt mit einem weiteren Standort ist als nächster Schritt Richtung Sommer geplant. Düsseldorf soll Hauptsitz bleiben.

SPEIKI: das Spucktuch zum Anziehen

SPEIKI wurde von Dr. Karin Mehling entwickelt – als ihr eigenes Kind ein sogenanntes Spuckbaby war und gängige Hilfsmittel im Alltag nicht funktionierten. Aus dieser Erfahrung entstand ein durchdachtes Spucktuch, das genau auf die Bedürfnisse von Eltern und das Verhalten der betroffenen Babys abgestimmt ist.

Was tun, wenn das eigene Baby ständig spuckt – und keine Lösung wirklich hilft? Genau diese Frage hat sich Gründerin Dr. Karin Mehling 2020 gestellt, als sie selbst mitten in der herausfordernden Spuckphase ihres zweiten Kindes steckte. Rund 70 Prozent der Säuglinge spucken in den ersten vier bis sechs Lebensmonaten – ein häufiges Phänomen, das durch den noch unreifen Magenpförtner, einem Muskel am Mageneingang, verursacht wird.

Der Alltag ist in dieser Zeit vor allem geprägt durch Flecken wischen und Wäsche waschen, unangenehme Gerüche und feuchte Textilien. Aus ihrer persönlichen Erfahrung entstand das SPEIKI Original (Kurzform für Speikind): Ein „Spucktuch zum Anziehen“, das Eltern von Speikindern spürbar entlastet, da es die ausgespuckte Milch fast vollständig auffängt.

Per Bootstrapping aus dem Wohnzimmer in den Markt

Entwickelt wurde das SPEIKI Original am Wohnzimmertisch für den eigenen Sohn. 2021 meldete die promovierte Germanistin, Verlagskauffrau sowie PR- und Marketing-Managerin ihr Gewerbe als Einzelunternehmerin, wenig später konnte das Spucktuch bereits in Serie gehen.

In der per Bootstrapping finanzierten Startphase war es laut der Gründerin die größte Challenge, zu akzeptieren, nicht alles sofort schaffen zu können. Während sie als Angestellte ihren Fokus auf die klar definierten Projekte und Tätigkeiten legen konnte, kamen nun als Solo-Selbständige die Notwendigkeiten rund um Buchhaltung, Herstellung, Verwaltung und vieles mehr hinzu.

„Mit zwei Kindern zu Hause und bald einen weiteren Buben im Bauch gründete ich mein Einzelunternehmen. Entwicklung, Vermarktung, Vertrieb – alles stemmte ich allein und ,nebenbei‘. Nachts, zwischen Windeln und Weinen, auf dem Boden neben der Badewanne, in der die Buben sitzen – es gab fast keinen Ort und keine Zeit, die ich nicht versuchte zu nutzen, um meine Vision voranzutreiben: Mit meinem Textil-Label kluge Lösungen für den Baby-Alltag zu schaffen, die wirklich unterstützen. Dabei leiteten und leiten mich mein Ehrgeiz, mein Allrounder-Gemüt und meine Zielstrebigkeit, ebenso wie meine Werte, die dem Prinzip der ökonomischen Nachhaltigkeit folgen.“

Gefertigt wird das Spucktuch in einer bayerischen Nähmanufaktur. Regionalität ist Karin Mehling wichtig, als Unternehmerin sieht sie sich in der Verantwortung, nachhaltig zu wirtschaften.

Fünf Jahre erfolgreich im stark umkämpften Babyausstattungsmarkt

Der Weg von der ersten Idee bis zum etablierten Produkt zeigt den typischen Werdegang vieler Einzelunternehmen: handgemachte Prototypen, lokale Produktionswege und ein wachsendes Sortiment, das sich an den alltäglichen Bedürfnissen von Familien orientiert. Der Hauptfokus liegt bis heute auf dem SPEIKI selbst. Ergänzende Produkte runden das Portfolio ab, bleiben aber klar am Bedarf von Familien mit Spuck- und Stillthemen ausgerichtet.

Das Ergebnis: Ein Sortiment, das trotz spitzer Positionierung breit genug ist, um relevant zu bleiben. Das Wachstum der Marke basiert vor allem auf organischer Sichtbarkeit, Community-Nähe und authentischer Kommunikation.

„Ich habe mich bewusst auf das Kernprodukt konzentriert – und ergänze nur dort, wo Familien echte Bedürfnisse haben“, erklärt die Gründerin. Die Nachfrage zeigt, dass dieser Ansatz funktioniert: Das Unternehmen feiert in diesem Jahr sein fünfjähriges Jubiläum und blickt auf eine Entwicklung zurück, die weit über die Region hinaus Wirkung zeigt. Als Direct-to-Customer-Unternehmen mit jährlich wachsenden Umsätzen ein Meilenstein im stark umkämpften Babyausstattungsmarkt. „Dass aus einer spontanen Idee so viel werden kann, hätte ich selbst nicht zu träumen gewagt“, sagt Karin Mehling. „Aber offensichtlich haben viele Eltern genau das gebraucht.“

Infinite Roots: Hamburger BioTech bringt pilzbasierte Gerichte ins Kühlregal

Das 2018 von Dr. Mazen Rizk, Anne-Cathrine Hutz und Dr. Thibault Godard als Mushlabs gegründete Hamburger Start-up Infinite Roots (ehemals Mushlabs) bringt die Vorteile der Pilzwelt erstmals als eigenständige Hauptzutat ins Kühlregal.

Infinite Roots ist ein forschungsgetriebenes BioTech-Unternehmen aus Hamburg. Seit 2018 entwickelt das Unternehmen (zunächst unter dem Namen Mushlab) neuartige Lebensmittel auf Basis von Pilzen – inspiriert vom Myzel, dem unterirdischen Wurzelgeflecht essbarer Pilze. Durch Fermentation schafft Infinite Roots Produkte, die über bloße Fleischalternativen hinausgehen. Das Ziel ist es, eine neue Kategorie zu etablieren: Lebensmittel, die echtes Umami und wertvolle Nährstoffe liefern, mit kurzen Zutatenlisten auskommen und die Umwelt entlasten.

Mit mehr als 60 Expert*innen aus Biotechnologie, Data, Lebensmittelwissenschaft und Kulinarik will das Team neue Standards für Geschmack, Qualität und Nachhaltigkeit setzen und zeigen, dass die Ernährung der Zukunft nicht Verzicht bedeutet, sondern Vielfalt und Genuss.

Die MushRoots-Produkte des Unternehmens sind keine Fleischimitate, sondern bieten ein eigenständiges, pilzbasiertes Geschmackserlebnis. Sie zeichnen sich durch einen saftigen, herzhaften Biss und ausgeprägte Umami-Noten aus. Die Hamburger setzen dabei auf Speisepilze, kombiniert mit vertrauten, hochwertigen Zutaten. Entsprechend bauen die Produkte auf einer natürlichen Zutatenliste auf und verzichten auf künstliche Aromen, Geschmacksverstärker und Farbstoffe. So entsteht ein Geschmackserlebnis, das an herzhafte Hausmannskost erinnert. Die Produkte lassen sich vielseitig im Alltag, etwa als Hack, Bällchen oder Patties.

„Im Kühlregal sehen Konsument*innen seit Jahren dieselbe Logik: Tierprotein hier, Pflanzenprotein dort“, sagt Philip Tigges, CCO/CFO von Infinite Roots. „Mit MushRoots bringen wir nicht nur eine dritte Option ins Regal, sondern kehren auch zu Lebensmitteln mit einer natürlichen Hauptzutat zurück. Pilze bieten einen herzhaften Geschmack, sind vielseitig, in allen gewohnten Rezepten einsetzbar und können kinderleicht zubereitet werden.“

MushRoots setzt dabei auf eine Proteinquelle mit vergleichsweise geringem ökologischen Fußabdruck. Pilze lassen sich lokal und ressourcenschonend kultivieren. „Wir wollten nie ein weiteres Fleischimitat herstellen, sondern eine eigene Kategorie umami-reicher Pilzprodukte schaffen, die durch Charakter und Geschmack überzeugen“, ergänzt Tigges. „Unser Ziel ist es jetzt, Menschen für Pilzprodukte zu gewinnen, ohne dass sie Fleisch vermissen.“

Jetzt meldet Infinite Roots, dass vier MushRoots-Produkte ab sofort bei REWE Nord in Norddeutschland und Billa Plus in Österreich erhältlich sind und damit eine neue Kategorie an Pilz-Produkten in die Kühlregale Einzug gehalten haben.

Schneller aus dem Labor

Wie Gründer*innen aus dem universitären Umfeld der Transfer von Wissen aus der akademischen Welt in die Privatwirtschaft noch besser gelingt, erörtern wir im Interview mit Dr. Philipp Baaske, Mitgründer von NanoTemper Technologies, Business Angel und seit Oktober 2025 Vizepräsident für Entrepreneurship an der Ludwig-Maximilians-Universität München (LMU).

NanoTemper, einer der Weltmarktführer für biophysikalische Messinstrumente, wurde 2008 als Spin-off der LMU gegründet. Was hatte dich damals dazu bewogen, vom Forscher zum Gründer zu werden?

Für mich war es sehr persönlich. Meine Mutter wurde mit Brustkrebs diagnostiziert, und das Medikament, das ihr das Leben gerettet hat, wurde dank Biotechnologie entwickelt. Mir wurde klar, dass Wissenschaft nur dann wirklich mächtig ist, wenn sie den Patienten erreicht. Dieser Gedanke hat mich nie mehr losgelassen.

Im Labor habe ich die Neugier, die Präzision, das Entdecken geliebt. Aber ich sah auch die Lücke: brillante Ideen blieben oft in Publikationen stecken, weit weg vom Alltag der Menschen. Ich wollte nicht bei der Entdeckung stehen bleiben. Ich wollte helfen, Entdeckungen in Produkte zu verwandeln, die jeder nutzen kann.

Diese Überzeugung wurde durch meine Herkunft noch verstärkt. Ich bin in einem kleinen bayerischen Dorf aufgewachsen, in einer Familie von Handwerkern. Meine Eltern haben mir beigebracht, dass Arbeit praktisch sein muss, dass sie den Menschen dienen sollte. Die Wissenschaft faszinierte mich, aber ich spürte eine Unruhe: Wie viel mächtiger kann unser Wissen werden, wenn wir es vom Labor auf den Alltag der Menschen übertragen?

Also habe ich zusammen mit meinem Mitgründer Stefan Duhr den Sprung gewagt. Zwei junge Wissenschaftler in einem Labor im Keller, die die ersten Prototypen von Hand bauten. Wir hatten kein Risikokapital, keine Roadmap, nur Entschlossenheit und den Glauben, dass das, was wir erschaffen, etwas verändern könnte. Uns trieb die gleiche Hartnäckigkeit an, die ich in der Werkstatt meiner Eltern gesehen hatte: Wenn etwas nicht funktionierte, reparierte man es, bis es funktionierte.

Wenn ich jetzt zurückblicke, war es nicht der Businessplan oder die Marktanalyse, die den Ausschlag gaben. Es war der Glaube, dass Forschung nicht im Labor enden, sondern die Brücke zur Gesellschaft schlagen sollte. Und für mich wurde Unternehmertum der Weg, diese Brücke zu bauen.

Was waren die größten Hürden auf diesem Weg?

Die größten Hürden waren nicht technischer, sondern menschlicher Natur. Als Wissenschaftler waren wir darauf trainiert, uns tief in die Experimente zu vertiefen, aber wir wussten nicht, wie man mit Kunden spricht, Verträge aushandelt oder Teams leitet. Das musste ich alles von Grund auf neu lernen.

In den Anfangsjahren haben wir Prototypen verkauft, bevor das Produkt überhaupt fertig war. Das hat uns gezwungen, schnell zu handeln, aber es hat uns auch Demut gelehrt: Kunden erwarten Zuverlässigkeit und nicht nur clevere Ideen. Später, als das Wachstum unsere Finanzen überstieg, mussten wir schwierige Entscheidungen treffen. Einmal musste ich Kollegen entlassen, um das Unternehmen zu retten. Das war einer der schwierigsten Momente meines Lebens, aber es hat mir gezeigt, dass Führung nicht darin besteht, Schmerzen zu vermeiden, sondern Verantwortung zu übernehmen.

Natürlich gab es unzählige kleinere Hürden: Menschen davon zu überzeugen, einem jungen Unternehmen zu vertrauen, die Gehaltsabrechnung zu erledigen, Instrumente von Hand zu reparieren. Aber diese Hindernisse wurden zu unserer Lehrzeit.

Wie können wir den Wissens- und Technologietransfer verbessern und gleichzeitig einen echten gesellschaftlichen Mehrwert schaffen?

Über Fördermittel wird viel gesprochen, was gut ist, denn wir müssen sie verbessern. Aber ich glaube, wir sollten über die Fördermittel hinausdenken. Der Fokus muss auf dem Impact liegen, nicht nur auf der Förderung. In den Life Sciences bedeutet das vor allem eines: Innovationen schneller zu den Patienten und den behandelnden Ärzten zu bringen.

Wir haben exzellente Forschung und Wissenschaftler von Weltrang. Die Frage ist, wie schnell ihre Entdeckungen den Weg vom Labor in die medizinische Praxis finden. Entscheidend sind stärkere Partnerschaften zwischen Universitäten, Krankenhäusern und praktizierenden Ärzten. Wenn Forscher, Kliniker und Ärzte früh zusammenarbeiten, wird der Weg von der Entdeckung zum Patienten kürzer und effektiver.

Ein weiterer wichtiger Aspekt ist, Wissenschaftler dazu zu ermutigen, den Schritt in die Selbständigkeit zu wagen. Viele zögern, weil sie glauben, dass ihnen die unternehmerischen Fähigkeiten fehlen. Was sie jedoch wirklich brauchen, ist eine unterstützende Umgebung: Mentoren, Vorbilder und die Möglichkeit, ihre Ideen auszuprobieren.

Schließlich geht es beim Wissenstransfer nicht darum, Patente von einem Büro in ein anderes zu verlagern. Es geht darum, wissenschaftliche Erkenntnisse in etwas umzusetzen, das das Leben der Menschen berührt und Ärzten hilft, ihre Patienten besser zu behandeln.

Die Skalierung von Forschungsergebnissen in der Privatwirtschaft funktioniert in Deutschland und Europa anders als in den USA. Was können wir aus den USA lernen und was sollten wir anders machen?

Ich bewundere den Mut des US-Ökosystems, in dem Gründer oft von großen Zielen träumen, schnell agieren und frühzeitig Investoren finden. Diese Energie schafft Dynamik und hat viele bahnbrechende Unternehmen hervorgebracht.

Europa hat seine eigenen Stärken. Wir sind bekannt für Qualität, Präzision und Vertrauen. Kunden schätzen, dass wir Dinge bauen, die lange halten. Unsere Herausforderung besteht darin, diese Stärken mit mehr Geschwindigkeit und Mut zu kombinieren. Wir haben die Chance, ein anderes Modell als das US-amerikanische zu entwickeln: verantwortungsvolles Wachstum, profitable Unternehmen und nachhaltige Wirkung, die über Jahrzehnte anhält, und nicht nur Finanzierungszyklen.

Kurz gesagt: Wir können uns von den USA die Zuversicht abschauen, aber wir sollten uns unserer europäischen DNA treu bleiben: geduldig, diszipliniert und langfristig orientiert.

Seit Oktober 2025 bist du Vizepräsident für Entrepreneurship an LMU. Wie willst du dort die Bereiche Entrepreneurship und Technologietransfer voranbringen?

Die LMU ist eine der weltweit führenden Universitäten mit 54.000 Studierenden und 18 Fakultäten. Sie vereint Exzellenz in allen Bereichen und Forschungsgebieten wie Medizin, Physik, KI, Recht, Wirtschaftswissenschaften und Geisteswissenschaften. Meine Aufgabe ist es, dafür zu sorgen, dass diese Vielfalt in die Gesellschaft getragen wird. In Form von Unternehmen, Wissen und Menschen, die ihre Fähigkeiten einsetzen. Und das muss schnell geschehen.

Eine natürliche Stärke der LMU liegt in DeepTech, in den Life Sciences, insbesondere in der Biotechnologie, und in aufkommenden Bereichen wie künstliche Intelligenz und Quanten-Technologien. In diesen Bereichen gibt es bereits bahnbrechende Forschung, und der Einfluss auf Patienten, Industrie und Gesellschaft kann enorm sein. Mein Fokus liegt darauf, diese Bereiche zu stärken und die Wege von der Forschung zur Anwendung zu beschleunigen und zu vereinfachen.

Das bedeutet, dass wir Studierenden und Forschern Zugang zu Büros und Laboren, Inkubationsprogrammen, Finanzierungsmöglichkeiten und starke Partnerschaften mit relevanten Akteuren in München und darüber hinaus bieten, dass wir ein Umfeld schaffen, in dem sie frühzeitig und in der Nähe der Kunden mutige Ideen testen können. In dem sie aus Fehlern und Erfolgen lernen können, von erfahrenen Gründern Ratschläge erhalten und Unternehmertum als attraktive Option sehen.

Vor allem aber möchte ich, dass die Zahl der Start-ups, die von der LMU ausgründen, deutlich ansteigt. Sind Lehre, Forschung und Unternehmertum auf Weltniveau und stärken sich gegenseitig, wird die LMU noch mehr zu einem Ort, an dem Ideen wirklich Wirkung entfalten. Nicht nur in München, sondern weit darüber hinaus.

Vor Kurzem ist dein Buch „The Honorable Entrepreneur“ erschienen. Welche Tipps daraus willst du Gründer*innen mit auf den Weg geben?

Diese sieben Prinzipien haben mich in den letzten 20 Jahren von einer kleinen Labor-WG in einem Keller zu einem globalen Unternehmen geführt:

  • Vertrauen aufbauen oder gar nichts aufbauen: Vertrauen ist die Grundlage für die Zusammenarbeit mit Mitgründern, Mitarbeitern, Investoren und Kunden. Ohne Vertrauen kann kein Unternehmen bestehen.
  • Menschen an erste Stelle setzen – immer: Erfolg wird von Teams und nicht von Einzelkämpfern geschaffen. Wenn du dich um deine Mitarbeiter kümmerst, werden sie die Mission mit dir durchziehen.
  • Innovieren für den Impact: Baue keine Technologie nur für dich selbst. Frage dich: Verbessert das das Leben – für Patienten, Kunden, die Gesellschaft?
  • Schnell und klug skalieren: Wachstum ist wichtig, aber Wachstum ohne Disziplin kann ein Unternehmen zerstören. Fokussiertes, profitables Skalieren schafft Resilienz.
  • Ein profitables, nachhaltiges Unternehmen aufbauen: Profitabilität ist kein Nachgedanke, sondern das, was dir Freiheit und Unabhängigkeit gibt.
  • Die Vision umsetzen: Viele Gründer verlieren sich in glänzenden Ablenkungen. Bleib fokussiert. Setze um, was am wichtigsten ist.
  • Gib etwas zurück: Teile deine Erfahrung, unterstütze andere und trage zum Ökosystem bei. Wahre Erfolge sind diejenigen, die überleben, wenn man selbst nicht mehr da ist.

Meine Botschaft ist einfach: Man kann im Geschäftsleben erfolgreich sein, ohne dabei seine Seele zu verkaufen. Rentabilität und Prinzipien sind keine Gegensätze, sondern gehören zusammen.

Philipp, Danke für deine Insights

Hinweis: Dieses Interview wurde ursprünglich auf Englisch geführt und ins Deutsche übersetzt.

KI-Modelle erfolgreich im Unternehmen einführen

Worauf es bei der Implementierung von KI wirklich ankommt.

Künstliche Intelligenz (KI) gewinnt in Unternehmen zunehmend an Bedeutung. Sie kann Prozesse beschleunigen, große Datenmengen sinnvoll nutzbar machen und Entscheidungen unterstützen. Doch in der Praxis zeigt sich: Moderne Technologie allein führt noch nicht zum Erfolg. Entscheidend ist ein strukturiertes Vorgehen, bei dem Ziele klar definiert, Daten sorgfältig vorbereitet und organisatorische Rahmenbedingungen von Beginn an berücksichtigt werden. „Viele KI-Initiativen scheitern daran, dass am Anfang die Orientierung fehlt“, sagt Benedikt Weber, Geschäftsführer der applord GmbH. „Struktur schafft Entscheidungsfähigkeit – noch bevor über konkrete KI-Modelle gesprochen wird.“

Organisatorischer Wandel und Einbindung der Mitarbeitenden

Der Einsatz von KI verändert Arbeitsabläufe, Verantwortlichkeiten und Entscheidungswege. Mitarbeitende arbeiten verstärkt mit automatisierten Systemen zusammen, Aufgaben verschieben sich, Rollen entwickeln sich weiter. Wird dieser Wandel nicht aktiv begleitet, entstehen Unsicherheiten oder Ablehnung gegenüber neuen Technologien. Erfolgreiche Unternehmen setzen deshalb auf transparente Kommunikation und frühzeitige Einbindung der Mitarbeitenden. Sie erklären, warum KI eingesetzt wird, welche Aufgaben sie übernimmt und wo menschliche Expertise weiterhin unverzichtbar bleibt. Fehlt dieses gemeinsame Verständnis, werden neue Systeme häufig nur eingeschränkt genutzt. „KI-Projekte scheitern selten an der Technologie“, betont Weber. „Viel häufiger fehlt ein klares Bild davon, welchen konkreten Nutzen KI für Mitarbeitende und Organisation wirklich bringt.“

Auswahl der passenden KI-Lösung

Das Angebot an KI-Lösungen wächst rasant. Für Unternehmen besteht die Herausforderung darin, nicht der technischen Vielfalt zu folgen, sondern eine Lösung zu wählen, die zum eigenen Geschäftsprozess passt. Der Ausgangspunkt sollte immer ein klar definierter Anwendungsfall sein: Welche Aufgabe soll KI konkret unterstützen oder verbessern? Neben den Funktionen spielen auch Fragen der Nachvollziehbarkeit, Integration in bestehende Systeme und regulatorische Anforderungen eine Rolle. Werden diese Aspekte zu spät berücksichtigt, entstehen Lösungen, die technisch leistungsfähig sind, im Alltag aber keinen Mehrwert liefern. „Viele Unternehmen wählen KI nach dem Funktionsumfang aus und stellen später fest, dass sie nicht zum eigenen Prozess passt“, erklärt Weber. „Erfolgreich ist KI dann, wenn sie Abläufe sinnvoll ergänzt und verständliche Ergebnisse liefert.“

Datenqualität als Grundlage für verlässliche Ergebnisse

KI-Modelle sind vollständig von der Qualität ihrer Daten abhängig. In vielen Unternehmen existieren relevante Informationen zwar, sie sind jedoch über verschiedene Systeme verteilt, unterschiedlich gepflegt oder historisch gewachsen. Diese Ausgangslage erschwert nicht nur den Einsatz von KI, sondern kann zu fehlerhaften oder schwer nachvollziehbaren Ergebnissen führen. Datenmanagement ist daher keine einmalige Vorarbeit, sondern eine kontinuierliche Aufgabe. Dazu gehören klare Zuständigkeiten, regelmäßige Prüfungen und eine strukturierte Aufbereitung der Daten. „Der Aufwand für Datenqualität wird häufig unterschätzt“, sagt Weber. „Ohne geprüfte und konsistente Daten lassen sich keine stabilen und verlässlichen KI-Ergebnisse erzielen – unabhängig davon, wie gut das Modell ist.“

Schrittweise Einführung statt großer Umbruch

Statt KI sofort unternehmensweit einzusetzen, empfiehlt sich ein schrittweises Vorgehen. Unternehmen können so mit klar abgegrenzten Anwendungsfällen beginnen, Lösungen im Alltag testen und die Ergebnisse anhand messbarer Kriterien, wie Benutzerfreundlichkeit oder verständlicher Anleitungen, bewerten. So lassen sich Risiken reduzieren und Erkenntnisse gezielt nutzen. Pilotprojekte liefern nicht nur technische Erkenntnisse, sondern zeigen auch, wie gut KI im Arbeitsalltag akzeptiert wird. Auf dieser Basis lässt sich entscheiden, welche Lösungen ausgebaut werden sollten. „Unternehmen, die mit überschaubaren Anwendungsfällen starten, treffen langfristig fundiertere Entscheidungen“, so Weber. „Praxiserfahrungen sind dabei deutlich wertvoller als theoretische Annahmen.“

KI & Bewertungen: Sichtbarkeit in einer neuen Suchrealität

Tipps und To-dos: Wie du dein Bewertungsmanagement strategisch aufsetzt und Sichtbarkeit und Vertrauen im KI-Zeitalter steigerst.

Generative Antworten in Suchmaschinen und Assistenten verändern die Spielregeln der Online-Sichtbarkeit. Nicht mehr nur klassische Rankings entscheiden, sondern die Frage, wem die KI genug vertraut, um es überhaupt zu nennen. Aktuelle, glaubwürdige und inhaltlich konkrete Bewertungen werden dabei zum Schlüsselsignal. Für kleine und mittlere Unternehmen bedeutet das: Bewertungsmanagement ist kein Nice-to-have mehr, sondern ein Pflichtprogramm, das Auffindbarkeit, Auswahl und Conversion spürbar beeinflusst. Im Folgenden erfährst du, wie du dein Bewertungsmanagement strategisch aufsetzen solltest, um Sichtbarkeit und Vertrauen im KI-Zeitalter zu steigern.

Warum Bewertungen jetzt geschäftskritisch sind

KI-Modelle zerlegen Rezensionen in viele kleine Bedeutungseinheiten und ziehen daraus ein konsistentes Bild. Welche Leistung wurde erbracht, an welchem Ort, mit welcher Qualität und für welchen Anlass. Aus den einzelnen Stimmen entsteht so ein Vertrauensprofil, das über bloße Sternesummen hinausgeht. Entscheidend ist nicht die bloße Menge, sondern die Frische und die inhaltliche Dichte der Aussagen. Eine Rezension wie „Schnell geholfen am Sonntag, sehr kompetente Beratung zu Reiseimpfungen“ liefert gleich mehrere Signale. Zeitliche Verfügbarkeit, thematische Expertise und konkreter Nutzen. Genau solche Details erhöhen die Wahrscheinlichkeit, in generativen Antworten aufzutauchen, wenn Menschen in ihrer Nähe nach einer Lösung suchen. Wer regelmäßig neue, authentische und präzise Bewertungen erhält, verschafft der KI verlässliche Hinweise und sichert sich dadurch mehr Sichtbarkeit in genau den Momenten, in denen Entscheidungen vorbereitet werden.

Bewertungsmanagement als Prozess, nicht als Aktion

Wirksam wird Bewertungsarbeit, wenn sie selbstverständlich Teil der täglichen Abläufe ist. Nach dem Kontakt freundlich um Feedback bitten, den Weg zur passenden Plattform so kurz wie möglich machen, interne Zuständigkeiten klar regeln und Reaktionszeiten verbindlich festlegen. Aus diesen scheinbar kleinen Schritten entsteht ein stabiler Rhythmus, der kontinuierlich neue Kund*innenstimmen hervorbringt und der KI immer wieder frische Kontexte liefert. Ein solcher Prozess ist robuster als jede einmalige Kampagne, weil er verlässlich Vertrauen aufbaut und saisonale Schwankungen abfedert. Teams profitieren, wenn sie Zielkorridore definieren, etwa eine bestimmte Zahl neuer Rezensionen pro Woche und wenn sie Fortschritte sichtbar machen. So wird aus gutem Vorsatz ein gelebter Ablauf, der die gesamte Organisation stärkt.

Sprache der Kund*innen wirkt wie natürliches SEO

KI versteht Alltagssprache deutlich besser als Listen isolierter Schlagwörter. Unternehmen gewinnen, wenn sie um freie, aber konkrete Formulierungen bitten, ohne Vorgabetexte und ohne Druck. Eine höfliche Bitte wie: „Wenn es für Sie passt, nennen Sie gern, was Ihnen besonders geholfen hat“ öffnet den Raum für präzise Hinweise auf Leistungen, Erreichbarkeit, Barrierefreiheit oder Schnelligkeit. Solche natürlich entstandenen Details sind für Menschen überzeugend und zugleich für Maschinen gut interpretierbar. Sie zeigen, wofür ein Betrieb tatsächlich steht, und verankern die passenden Begriffe in einem echten Nutzungskontext. Das Ergebnis ist eine Sprache, die Vertrauen schafft und die Auffindbarkeit stärkt, ohne künstlich zu wirken.

Antworten trainieren Vertrauen für Menschen und Maschinen

Jede Reaktion auf eine Bewertung ist ein sichtbares Zeichen von Serviceorientierung und zugleich zusätzlicher Kontext für die KI. Gute Antworten bedanken sich aufrichtig, beziehen sich konkret auf das Erlebte und bieten einen klaren nächsten Schritt an. Bei Kritik zählt ein professioneller Umgang. Das Anliegen nachvollziehen, Verantwortung übernehmen, eine realistische Lösung anbieten und einen direkten Kontaktweg nennen. So entsteht ein Bild von Verlässlichkeit, das Hemmschwellen senkt und Wiederbesuche wahrscheinlicher macht. Die KI erkennt diesen Umgang ebenso und ordnet das Unternehmen eher als vertrauenswürdig ein. Mit der Zeit entsteht ein stabiler Kreislauf aus guter Erfahrung, konstruktiver Reaktion und wachsendem Vertrauen.

Lokaler Content und Social Proof gehören zusammen

Bewertungen entfalten ihre volle Wirkung, wenn sie auf eine solide Informationsbasis treffen. Konsistente Unternehmensdaten, vollständige Leistungsseiten pro Standort, klare Öffnungszeiten inklusive Ausnahmen und eine schnelle, mobil optimierte Webseite erleichtern die Einordnung für Nutzer*innen und Maschine. Wenn ausgewählte Zitate oder Bewertungsschnipsel an relevanten Stellen sichtbar werden, etwa auf der Startseite, in der Buchungsstrecke oder in den häufigen Fragen, entsteht ein schlüssiges Gesamtbild. Der lokale Bezug bleibt klar erkennbar, die Erwartungen sind gut gesetzt, und die nächsten Schritte sind ohne Umwege möglich. So wird aus Social Proof ein handfester Conversion Hebel.

Vom Feedback zur Verbesserungsschleife

Rezensionen sind fortlaufende Marktforschung aus erster Hand. Wer wiederkehrende Themen auswertet, etwa Wartezeiten, Erreichbarkeit oder Bezahloptionen, erkennt schnell die Stellschrauben mit der größten Wirkung. Wichtig ist, die daraus abgeleiteten Verbesserungen konsequent umzusetzen und sichtbar zu machen. Informieren, handeln, erneut um Rückmeldung bitten. Dieser offene Kreislauf wirkt nach innen und nach außen. Mitarbeitende erleben, dass Feedback Veränderungen anstößt, Kund*innen erleben, dass ihre Hinweise ernst genommen werden, und die KI registriert die fortlaufende Pflege der Qualität. Mit jeder Runde werden Erlebnisse besser und Bewertungen stärker, was die Sichtbarkeit weiter erhöht.

Fazit

Sichtbarkeit entsteht heute dort, wo Menschen nach konkreten Lösungen fragen und wo KIs verlässliche Hinweise zu Qualität und Relevanz finden. Unternehmen, die Bewertungen als strategischen, kontinuierlichen Prozess verstehen, erhöhen ihre Chance, in generativen Antworten genannt zu werden und gewinnen genau in den entscheidenden Momenten an Präsenz. Vieles davon ist eine Frage kluger Organisation und klarer Abläufe. Der finanzielle Aufwand bleibt überschaubar, der Nutzen für Auffindbarkeit, Vertrauen und Umsatz ist deutlich spürbar.

Die Autorin Franziska Ortner ist Produktmanagerin bei SELLWERK

Gründen mit dem Smartphone: 5 innovative Businessideen für Mobile-First

Innovative Businessideen rund ums Smartphone. Entdecke E-Commerce, Nischen-Apps und mobile Dienste als lukrative Geschäftsmodelle.

Das Smartphone hat unsere Welt in den letzten zwei Jahrzehnten grundlegend verändert. Was einst ein reines Kommunikationsmittel war, ist heute unsere digitale Schaltzentrale, das wichtigste Werkzeug für Konsum, Organisation und – vor allem – für das Unternehmertum.

Mehr als fünf Milliarden Menschen besitzen weltweit ein mobiles Endgerät. Diese beispiellose Marktdurchdringung hat eine „Mobile-First-Ära“ geschaffen, in der fast jeder Prozess und jede Dienstleistung über das kleine Display abgewickelt wird. Für Gründer bietet diese Allgegenwart des Smartphones ein enormes Potenzial.

Die besten Geschäftsideen entstehen dort, wo Technologie auf einen echten Bedarf trifft. Ob es darum geht, ein bestehendes Problem effizienter zu lösen oder eine völlig neue Nische zu erschließen – das Smartphone ist die zentrale Plattform dafür.

Dieser Artikel beleuchtet innovative Businessideen, die direkt aus der mobilen Revolution entstanden sind. Von cleveren Hardware-Ergänzungen über spezialisierte Apps bis hin zu neuen Dienstleistungen: Das Smartphone ist das Sprungbrett für Ihren nächsten erfolgreichen Start-up.

Produkte und Personalisierung im mobilen Umfeld

Obwohl das Smartphone selbst ein hochkomplexes Stück Technologie ist, bietet auch das unmittelbare Umfeld des Geräts zahlreiche lukrative Möglichkeiten für Gründer. Diese sogenannten Hardware-nahen Ideen drehen sich oft um Zubehör oder physische Dienste, die das mobile Nutzererlebnis verbessern.

Eine der erfolgreichsten Nischen der letzten Jahre ist die Personalisierung. Da fast jeder Mensch ein Smartphone besitzt, suchen Nutzer nach Wegen, ihr Gerät einzigartig zu machen. Ein klassisches, aber immer noch wachsendes Geschäftsfeld ist dabei, die Handyhülle selber zu gestalten. E-Commerce-Plattformen, die einen einfachen Online-Konfigurator anbieten, ermöglichen es Kunden, ihre Hüllen mit eigenen Fotos, Designs oder individuellen Texten zu versehen. Dieses Geschäftsmodell basiert auf geringen Stückkosten, einem einfachen Produktionsprozess (meist Druck) und dem starken Wunsch nach Individualität.

Neben der reinen Ästhetik gibt es weitere zukunftsorientierte Produktideen:

  • Smarte Ergänzungen: Denken Sie an spezielles, kompaktes Zubehör für mobile Content-Creation (z.B. Mini-LED-Ringe, spezialisierte Mikrofone).
  • Nachhaltigkeit und Schutz: Hochwertige, langlebige oder biologisch abbaubare Schutzfolien und Hüllen sprechen eine wachsende, umweltbewusste Zielgruppe an.
  • Mobile-Payment-Lösungen: Innovative, physische Halterungen oder Adapter, die das Smartphone noch besser in den Alltag (wie Bezahlvorgänge oder Fahrzeugnutzung) integrieren.

Der Schlüssel zum Erfolg liegt hier darin, ein Massenprodukt – das Smartphone – durch ein Nischenprodukt zu ergänzen, das entweder ein Problem löst oder einen emotionalen Mehrwert wie Einzigartigkeit bietet.

Digitale Dienste und Nischen-Apps

Die wahre Kraft des Smartphones liegt in seiner Software. Hier warten unzählige Möglichkeiten für Gründer, die bereit sind, mit einer App oder einem spezifischen digitalen Dienst eine Marktlücke zu füllen. Anstatt generische Anwendungen zu entwickeln, liegt der Fokus heute auf Nischen-Apps, die sehr spezifische Probleme einer klar definierten Zielgruppe lösen.

Ein vielversprechendes Feld sind Micro-Learning-Anwendungen. Nutzer können kurze, gamifizierte Lerneinheiten für hochspezialisierte Fähigkeiten (etwa Excel-Makros, Weinverkostung oder spezifische Programmiersprachen) direkt in der Hosentasche abrufen. Dieses Modell funktioniert hervorragend über ein Abo-System und nutzt die wenigen Minuten Wartezeit, die jeder im Alltag hat.

Weitere zukunftsweisende Businessideen sind:

  • AR-gestützte Shopping-Helfer: Apps, die Augmented Reality nutzen, um dem Kunden zu zeigen, wie ein Möbelstück im eigenen Wohnzimmer aussieht oder wie eine neue Wandfarbe wirkt. Der Vorteil liegt in der direkten Kaufentscheidung.
  • Lokale Service-Vermittler: Digitale Plattformen, die Kleinstaufträge im lokalen Umfeld vermitteln (z.B. Nachbarschaftshilfe, Hunde-Sitting oder kurzfristige Handwerksleistungen). Der mobile Aspekt ist hier die einfache, standortbasierte Koordination.
  • Gesundheit und Wellness: Spezialisierte Anwendungen, die mithilfe der Smartphone-Sensoren Daten sammeln, analysieren und personalisierte Empfehlungen für Schlaf, Stressreduktion oder Ernährung liefern.

Der Schlüssel zum Erfolg in diesem Segment ist der Fokus auf ein sauberes, intuitives Design (UX/UI) und ein skalierbares Geschäftsmodell, das oft auf Abonnements oder In-App-Käufen basiert. Die Hürde ist hier oft geringer, da keine physischen Lagerbestände nötig sind.

Mobile Content-Kreation und Monetarisierung

Das moderne Smartphone ist nicht nur ein Konsumgerät, sondern auch ein hochentwickeltes Produktionswerkzeug. Die verbesserten Kamera- und Schnittfunktionen haben das Gerät zum primären Werkzeug für professionelle Content-Kreation gemacht. Dies eröffnet neue Geschäftsfelder für Gründer, die Dienstleistungen oder Nischeninhalte anbieten.

Ein zukunftsträchtiges Feld ist die spezialisierte mobile Videoproduktion. Anstatt teure Kamerateams zu buchen, können Unternehmen mobile Content-Creator beauftragen. Diese liefern hochwertiges Material schnell und flexibel, indem sie effiziente Workflows direkt über das Smartphone nutzen, um dynamische Videos für soziale Medien oder Marketingkampagnen zu erstellen.

Weitere lukrative Dienstleistungsmodelle, die auf dem Smartphone aufbauen:

  • Mobile Fotografie für E-Commerce: Spezialisten erstellen und bearbeiten Produktfotos direkt mit dem Smartphone. Dies bietet kleinen Online-Shops einen schnellen und kostengünstigen Service.
  • Nischen-Content: Mit hochwertigen mobilen Mikrofonen können Gründer spezialisierte Audioinhalte (wie Branchen-Insider-Podcasts) direkt über das Gerät erstellen und monetarisieren.

Das Smartphone senkt die Eintrittsbarriere für Gründer in der Medien- und Kreativbranche erheblich. Erfolg hat hier, wer sich auf eine Nische spezialisiert und die Flexibilität des mobilen Workflows als Wettbewerbsvorteil nutzt.

Schlussworte

Das Smartphone hat sich unwiderruflich als zentrales Werkzeug der digitalen Wirtschaft etabliert. Es ist nicht nur ein Kanal für den Konsum, sondern vor allem eine Plattform für innovative Geschäftsmodelle. Von der individualisierten Hardware wie der Möglichkeit zur Handyhülle selber gestalten bis hin zu hochspezialisierten Nischen-Apps – die Wachstumschancen sind enorm.

Für angehende Gründer gilt: Die besten Ideen nutzen die Stärken des mobilen Geräts – nämlich die ständige Verfügbarkeit, die eingebauten Sensoren und die einfache Bedienung.

Der Erfolg liegt nicht in der Entwicklung der nächsten "Super-App", sondern darin, ein spezifisches Problem einer klar definierten Zielgruppe effizient und mobil zu lösen. Wer die Mobile-First-Mentalität verinnerlicht, hat die Geschäftszentrale der Zukunft bereits in der Hosentasche.

HR-Trends 2026

Die Arbeitswelt verändert sich, die Position der Unternehmen wird stärker, eine Rezession auf Management- und Führungsebene droht: die HR-Welt bleibt ein Schmelztiegel verschiedenster Strömungen. Das sind die fünf größten Herausforderungen für 2026.

Die Arbeitswelt verändert sich - sowohl für Personalmanager*innen als auch für die Belegschaft. Während sich vor wenigen Jahren die Arbeitnehmenden in einer starken Verhandlungsposition befanden, schlägt das Pendel jetzt immer stärker zugunsten der Unternehmen aus. Das eröffnet ihnen die Chance, die Arbeitswelt mehr nach ihren Vorstellungen zu gestalten, um ihren Unternehmenserfolg zu sichern. Gleichzeitig tragen sie auch die große Verantwortung, das Arbeitsumfeld ihrer Mitarbeitenden kontinuierlich zu verbessern, das Engagement zu fördern und die Rolle der KI für die kommenden Jahre mit Weitblick und Sorgfalt auszubalancieren.

Wir werfen einen Blick nach vorne und skizzieren die fünf wichtigsten HR-Trends für die DACH-Region im kommenden Jahr.

1. Kulturelle Transparenz – Strategiewechsel bei der Talentakquise

Die Stagnation der Wirtschaft, der angespannte Arbeitsmarkt, weniger Stellenangebote – all das führt dazu, dass Mitarbeitende lieber in ihren derzeitigen Positionen und Rollen verharren. Die Folge ist ein “Talentestau:” Mitarbeitende, die sonst das Unternehmen verlassen würden, bleiben und blockieren damit die Wechsel- und Entwicklungsmöglichkeiten derer, die eher bereit sind, ihre Karriere engagiert voranzubringen. Auf der Suche nach effektiven Möglichkeiten, diese Engpässe zu überwinden, werden Unternehmen im kommenden Jahr ihre Strategie hin zu mehr kultureller Transparenz ausrichten. Anstatt neue Talente mit einem Wertversprechen oder der einseitigen Hervorhebung positiver Alleinstellungsmerkmale zu gewinnen, kommunizieren sie ihre tatsächlichen Erwartungen und die Realität des Arbeitsalltags klar. Damit betonen sie bewusst auch Aspekte, die weniger passende Bewerbende eher abschrecken - damit sich die wirklich passenden umso stärker angesprochen fühlen. Beispiele dafür können u.a. die Erwartung, wieder vollständig zur Büropräsenz zurückzukehren, Prozessreife und Struktur der Unternehmen sowie die Nutzung von KI-Tools im Arbeitsalltag sein.

2. Neudefinition des Erfolgs – Leistung statt Leistungsschau?

Mitarbeitende haben oft das Gefühl, dass ihre tatsächlich geleistete Arbeit nicht richtig bewertet wird und sie nicht ausreichend Anerkennung erfahren. Analysen von Culture Amp ergaben, dass 2025 rund 20 Prozent der Mitarbeitenden nicht genau wissen, wie sich die Bewertung ihrer Performance zusammensetzt. Die Folge dieser Unkenntnis sind Mutmaßungen und die Fokussierung auf mehr Sichtbarkeit: Mitarbeitende betreiben eine Art Leistungsschau und arbeiten so, dass es vor allem produktiv aussieht. Wenn das Gefühl hinzukommt, einem passiven Monitoring ausgesetzt zu sein – in der DACH-Region nur unter strengen Auflagen erlaubt – konzentrieren sich Mitarbeitende auf das, was vermeintlich gemessen wird. Diese Kluft wird sich 2026 weiter vergrößern, wenn die Verantwortlichen ihre Leistungsbewertung nicht neu ausrichten, um ein vertrauenswürdiges und vollständigeres Bild von der Performance ihrer Mitarbeitenden zu erhalten. Wer hingegen menschzentrierte Feedbacksysteme wie Upward Feedback, 360GradFeedback und reflektierende Einzelgespräche verankert, kann das Vertrauen stärken und ein ganzheitlicheres Verständnis der Beiträge der Mitarbeitenden erhalten.

3. Mensch und KI – zwei Seiten der HR-Medaille

2026 werden KI-Tools verstärkt Einzug in den HR-Abteilungen halten. Routineaufgaben wie z.B. eine erste Bewerberauswahl oder die Beantwortung von häufig gestellten Fragen werden zunehmend automatisiert beantwortet. Doch mit den Möglichkeiten der KI wächst auch die Erkenntnis, dass sie nicht die Lösung für alles sein darf. Darüber hinaus tritt 2026 der EU AI Act vollständig in Kraft. Demzufolge werden KI-Tools im Zusammenhang mit Personaleinsatz als Hochrisiko eingestuft: Sie unterliegen sehr strengen Richtlinien bezüglich Transparenz, Kontrolle und Grenzen des KI-Einsatzes. Bei der Frage, welche Aufgaben der KI überlassen werden können und welche nach wie vor die Empathie, die Erfahrung und das Wissen echter HR-Expert*innen erfordern, ist Fingerspitzengefühl gefragt. Auch scheinbar administrative Aufgaben benötigen manchmal den direkten persönlichen Austausch. Unternehmen werden dazu übergehen, deutlicher zu definieren, welche Fragestellungen und Bereiche maschinenbezogene Fähigkeiten und welche menschliche Fähigkeiten erfordern. 2026 wird sich ein deutlicher Trend bemerkbar machen: Die verstärkte Integration von KI in den Personalabteilungen und gleichzeitig die permanente Überprüfung, welche Aufgabenbereiche zukünftig KI-gestützt erledigt werden sollen.

4. Führung neu denken – Managementpositionen verlieren an Attraktivität

Auch das verraten die Analysen von Culture Amp: 72 Prozent der Generation Z sind nicht an Führungspositionen interessiert. Die jungen Arbeitnehmenden bleiben lieber in ihren jeweiligen Rollen, manche entscheiden sich ganz bewusst gegen eine Managementkarriere. Der Reiz, eine Leitungsfunktion zu übernehmen, nimmt insbesondere im Bereich des mittleren Managements ab: Diese Manager*innen fühlen sich zwischen den Erwartungen der Unternehmensführung und den Erwartungen ihres Teams oft unter starkem Druck. In der Folge könnte es im kommenden Jahr zu einer weiteren Abflachung der Hierarchien in den Unternehmen kommen, manche befürchten gar eine Rezession auf der Management- und Führungsebene. Gleichzeitig eröffnen sich Manager*innen durch den Einsatz von KI-Tools neue Möglichkeiten, ihren Einfluss zu vergrößern. Für jene Talente, die sich darauf einlassen, werden Führungspositionen dadurch zugänglicher und nachhaltiger. In Anbetracht dessen werden sich die Dynamiken in den Teams verändern. Unternehmen werden Führungsrollen zunehmend überdenken und ihre Manager*innen besser unterstützen, statt weitere einzustellen. Denn wenn weniger Menschen führen wollen, braucht es nicht mehr, sondern besser unterstützte Manager*innen.

5. Ambitionen und Leistungsbereitschaft wird außerhalb der Arbeitswelt ausgelebt

Ob berufliche Nebentätigkeit, Ehrenamt oder leidenschaftliches Hobby – immer mehr Mitarbeitende bringen Energie und Motivation für Tätigkeiten auf, die außerhalb ihrer regulären Arbeit liegen. Sie erkennen, dass sie ihre Stärken auch anderswo verwirklichen können. Dieser Trend hin zu mehr Kreativität, Leidenschaft und Erfüllung durch sinnvolle Tätigkeiten nach Feierabend und am Wochenende wird sich auch 2026 fortsetzen. Das Risiko für Unternehmen geht dabei über bloße Ablenkung hinaus: Bleiben angemessene Antworten im kommenden Jahr aus, wandern Ambitionen nach außen ab. Führung muss etwas Besseres anbieten: Die Chance 2026 liegt darin, den Hauptjob so zu gestalten, dass er sich wieder energiegeladen, kreativ und investitionswürdig anfühlt.

Fazit

Die Strömungen und Entwicklungen in der HR-Welt bringen einen fortdauernden Wandel mit sich. Gespannt blicken die Personalabteilungen auf die für 2026 vorgesehene nationale Umsetzung der Entgelttransparenz-Richtlinie der EU (EU Pay Transparency Directive and Equal Pay). Die weitreichendsten Veränderungen verursacht aber der Einzug der KI in die Arbeits- und Lebenswelt der Mitarbeitenden. Dies wirft unablässig neue Fragen auf: Droht der Talentepool zu versiegen, wenn Aufgaben für Berufseinsteiger*innen von KI übernommen werden und sie infolgedessen keine Erfahrung aufbauen können? Wird sich die Belegschaft eines Unternehmens früher oder später in KI-resistente und KI-affine Gruppen aufspalten? Die HR-Welt bleibt ein Schmelztiegel verschiedenster Strömungen im Unternehmen, die datengestützte Strategien erfordern.

Der Autor Dr. Arne Sjöström ist Regional Director, People Science EMEA bei Culture Amp mit dem Schwerpunkt Organisationspsychologie und angewandte Forschung.

KI und Selbstreflexion: Was macht KI mit dir?

Wie du innovative KI-Technologie und persönliche Entwicklung strategisch geschickt kombinierst, um dein Start-up nachhaltig zu skalieren.

Künstliche Intelligenz (KI) gilt als Wachstumsbooster. Doch wer dabei nur auf Technik setzt, lässt ein entscheidendes Potenzial ungenutzt – die eigene persönliche Entwicklung. Warum es gerade die Verbindung aus KI und Selbstreflexion ist, die Gründer*innen und Start-ups langfristig erfolgreich macht, liest du hier.

Gründen bedeutet, Entscheidungen unter Unsicherheit zu treffen

Wer ein Start-up aufbaut, bewegt sich im Spannungsfeld von Vision und Verantwortung. Geschäftsmodell, Finanzierung, Teamführung, Produktentwicklung – all das passiert meist parallel und unter enormem Zeitdruck. Technologie wird dabei oft als Hebel gesehen, um schneller und effizienter zu arbeiten. Und das stimmt: Tools, die auf KI basieren, können Prozesse automatisieren, Muster erkennen, Kund*innenbeziehungen vertiefen. Doch Technik allein garantiert keinen Erfolg. Entscheidend ist, wer sie wie einsetzt. Und hier kommt ein oft unterschätzter Faktor ins Spiel: der/die Gründer*in selbst mit den Mustern seiner/ihrer Persönlichkeit.

Jede einzelne Erfahrung, die die Marke rund um eine(n) Gründer*in prägt, kann niemals von einer KI erzeugt werden. Diese kann im zweiten Schritt sachlich analysieren, wie Erlebnisse für zukünftige Prozesse genutzt werden, die dazugehörigen Werte oder Ängste aber stecken in der Person selbst als Fundament.

Markenkern, Werte und Identität – das unsichtbare Fundament des Erfolgs

Jede Marke beginnt mit einer Geschichte, und diese umfasst den Menschen als Dreh- und Angelpunkt. Die Erfahrungen, Werte und Überzeugungen der Gründer*in formen den Kern eines Start-ups weit vor dem ersten Pitchdeck. Während KI dabei helfen kann, diese Identität greifbar zu machen, zu analysieren oder in die Kommunikation zu übersetzen, erzeugen kann sie diese nicht.

Gerade in der frühen Phase entscheidet nicht nur das Produkt über den Erfolg, sondern die Haltung dahinter: Wofür steht das Unternehmen? Welche Werte prägen die Entscheidungen? Welches Bedürfnis treibt den/die Gründer*in auch jenseits der KPIs an? Eine klare Positionierung entsteht nicht im Workshop, sondern im inneren Prozess. Es ist die Fähigkeit zur Selbstreflexion, die hier als Kompass dient:

  • Was ist mir wirklich wichtig?
  • Was darf sich nie ändern, selbst wenn wir skalieren?
  • Was wäre ein Deal, den ich nie eingehen würde – egal wie lukrativ er erscheint?

Wer diesen Markenkern kennt, trifft strategische Entscheidungen konsistenter, kommuniziert authentischer und baut Vertrauen bei Investor*innen, Mitarbeitenden und Kund*innen auf. Und erst dann lohnt sich der Einsatz von KI wirklich, um diese klare Positionierung zum Beispiel zu verstärken, nicht aber zu ersetzen.

KI – mehr als nur Effizienzmaschine

KI hat längst ihren Platz in der Start-up-Welt gefunden. Vom Recruiting über Sales bis hin zum Customer Support. KI-gestützte Tools erleichtern die Arbeit und verschaffen jungen Unternehmen echte Wettbewerbsvorteile:

  • Automatisierung: Mithilfe von KI lassen sich zeitintensive Prozesse wie Terminplanung, Rechnungsstellung oder E-Mail-Korrespondenz automatisieren. Das schafft Raum für strategische Aufgaben.
  • Personalisierung: Wer seine Kund*innen wirklich verstehen will, profitiert von datenbasierten Insights. KI hilft dabei, Verhalten zu analysieren, Bedürfnisse vorherzu­sagen und Inhalte gezielt auszuspielen.
  • Recruiting: Im „War for Talents“ zählt Geschwindigkeit, ergänzend aber unbedingt auch Qualität. KI-Tools unterstützen dabei, Bewerber*innen effizient zu sichten und unbewusste Bias zu reduzieren.

Richtig eingesetzt, ermöglicht KI mehr Fokus, schnellere Iterationen und datengestützte Entscheidungen. Aber genau hier beginnt auch das Problem: Technologie kann nur das verstärken, was ohnehin vorhanden ist oder eben (noch) nicht.

Selbstreflexion – der unterschätzte Erfolgsfaktor

Gründer*innen stehen täglich vor Entscheidungen mit Tragweite. Doch unter Druck, Unsicherheit und Wachstumsschmerz wird oft reaktiv gehandelt statt reflektiert geführt. Genau hier setzt Selbstreflexion an. Wer sich seiner Stärken, Muster und blinden Flecken bewusst ist, trifft bessere Entscheidungen – für sich, das Team und das Unternehmen. Selbstre­flexion ist kein esoterisches Extra, sondern ein pragmatisches Führungsinstrument. Einige wirkungsvolle Methoden:

  • Regelmäßige Selbstchecks: Was hat in dieser Woche funk­tioniert und warum? Was nicht? Was sagt das über meine Prioritäten aus?
  • Feedback aktiv einholen: nicht nur von Mitgründer*innen oder Coaches, sondern auch vom Team. Nicht defensiv reagieren, sondern neugierig auf das Feedback sein.
  • Mentoring und Coaching: Externe Sparringspartner*innen helfen, Perspektiven zu erweitern und Denkfehler zu entlarven.
  • Reflexionstools nutzen: vom (digitalen) Journal bis zur strukturierten Entscheidungsanalyse gibt es einfache Hilfsmittel, die Klarheit schaffen.

Wer bereit ist, sich selbst zu hinterfragen, entwickelt nicht nur sich, sondern auch sein Start-up weiter. Denn Führung beginnt nicht mit der Verantwortung für andere, sondern mit der Verantwortung für sich selbst.

Die Synergie – wenn KI auf Selbstreflexion trifft

Die wirklich erfolgreichen Gründer*innen sind nicht ent­weder Tech-Expert*innen oder People-Leader*innen. Sie verbinden beides. Sie nutzen KI, um operative Exzellenz zu schaffen und reflektieren gleichzeitig, wie sie führen, entscheiden, kommunizieren. Diese Kombination erzeugt eine Form von unternehmerischer Klarheit, die sowohl innovativ als auch resilient ist.

KI kann Erkenntnisse liefern. Aber nur, wer sie richtig einordnet, profitiert davon. Selbstreflexion schafft den Raum, um mit Technologie sinnvoll umzugehen. Umgekehrt kann KI helfen, Reflexionsprozesse zu unterstützen, etwa durch gezielte Feedback-Auswertung oder datengestützte Teamanalysen.

Ein Beispiel aus der Praxis: Ein Start-up im HR-Tech-Bereich nutzt KI, um Kund*innenfeedback in Echtzeit zu analysieren. Gleichzeitig reflektieren die Gründer*innen wöchentlich im Führungsteam, welche Learnings daraus für Produkt und Kommunikation folgen und welche persönlichen Muster sie bei sich selbst erkennen. Diese Kombination aus technolo­gischem Blick nach außen und menschlichem Blick nach innen führt dazu, dass das Unternehmen nicht nur schneller wächst, sondern dabei auch klar bleibt.

Skalierung braucht Klarheit in der Technik und im Kopf

Start-ups, die skalieren wollen, müssen effizient sein, gleichzeitig aber auch fokussiert, werteorientiert und anpassungsfähig. KI ist dabei ein mächtiges Werkzeug. Doch ohne die Fähigkeit zur Selbstreflexion bleibt sie oft bloß ein weiteres Tool im Tech-Stack.

Deshalb gilt: Die Kombination aus klugem KI-Einsatz und bewusster persönlicher Entwicklung ist kein Luxus, sondern unternehmerische Notwendigkeit. Wer beides ernst nimmt, schafft ein Unternehmen, das nicht nur wächst, sondern dabei auch „gesund“ bleibt.

Die Autorin Lea Baptista ist Geschäftsführerin der GG Consulting Agency und unterstützt Unternehmer*innen, Führungskräfte und Teams dabei, ihren Führungsstil klar zu definieren, Selbstreflexion als Werkzeug zu nutzen und authentisch erfolgreich zu sein.

Vorsicht vor diesen KI-Versuchungen

Allzu großes Vertrauen in GenAI ist fahrlässig, dennoch prüfen nur rund ein Viertel der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit. Das sind die größten Gefahren und effektivsten Gegenmaßnahmen.

Die Leistung und die Zuverlässigkeit von KI-Assistenten nehmen gefühlt weiter zu. Doch wer in den letzten Wochen intensives Prompting bei ChatGPT, Perplexity und Co. betrieben und die Ergebnisse eingehend analysiert hat, fühlte sich in diesem Gefühl nicht bestätigt. Im Gegenteil: Die Qualität der generierten Antworten lässt neuerdings öfter zu wünschen übrig. Auf YouTube gibt es zahlreiche Videos zu diesem Phänomen, das sich offenbar auch die Herstellenden nicht so ganz erklären können, aber auch klassische Medien berichten darüber. In Anbetracht der Tatsache, wie abhängig sich viele Menschen im Berufsleben schon heute von GenAI-Tools gemacht haben, ist dieser Trend erschreckend und ernüchternd. Ein blindes Vertrauen in die digitalen Helfer aus der Familie generativer KI birgt zudem großes Schadenspotenzial, etwa dann, wenn sich Ärzt*innen bei der Diagnose auf sie stützen oder Entwickler*innen von der KI vorgeschlagene Frameworks ohne Sicherheitscheck implementieren.

Völliges Vertrauen in GenAI ist also, zurückhaltend formuliert, mindestens gewagt. Die Situation ist ernst und erfordert von GenAI-Anbietenden ein Mindestmaß an Qualitätssicherung – offenbar kein einfaches Unterfangen. Bis dahin ist es wichtig, eigene Maßnahmen zu ergreifen, um nicht in die Falle der folgenden vier Qualitätskiller zu geraten.

1. Halluzinationen

KI-Assistenten wie ChatGPT und Co. wurde die Aufgabe erteilt, Antworten zu liefern – koste es, was es wolle. Wenn die Wissensbibliothek nicht ausreicht, um komplexe Sachverhalte zu beantworten, fängt generative KI an, sich etwas auszudenken. Die von solchen Halluzinationen ausgehende Gefahr ist bekannt. Umso bedrückender ist die Tatsache, dass laut einer aktuellen Studie nur rund ein Viertel (27 %) der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit prüfen. Das sind zwar immerhin sieben Prozentpunkte mehr als bei gewöhnlichen Inhalten aus dem Internet, wie eine Studie des PR-COM Re­search Lab belegt, aber noch immer viel zu wenige.

Gegenmaßnahmen: Wer GenAI nutzt, sollte ausnahmslos alle von ihr produzierten Inhalte überprüfen. Dazu sollten User*innen insbesondere die von der KI verwendeten Primärquellen checken oder – wenn möglich – Expert*innen zur Prüfung der Korrektheit der Antworten zurate ziehen.

2. Bias

Die Anbieter*innen aktueller KI-Assistenten haben sehr viel Arbeit in ihre Produkte gesteckt, um den Bias, also die Voreingenommenheit ihrer Modelle auszumerzen und sie zur Vorurteilsfreiheit zu erziehen.

Verlassen sollten sich User*innen auf die moralische und ethische Unantastbarkeit ihrer Modelle dennoch nicht. Zwar ist es unwahrscheinlich, dass Produkte großer Hersteller*innen noch rassistische, sexistische oder sonstige ethisch fragwürdige Ansichten vertreten, aber komplett ausgeschlossen ist es eben nicht. Noch relativ hoch ist die Gefahr zudem bei der Nutzung von kostenlosen GenAI-Assistenten oder Nischen-Tools.

Gegenmaßnahmen: Auch im Zusammenhang mit Bias gilt es, die Ergebnisse einer KI-Befragung immer genauestens zu checken und mit geltenden Gesetzen und den vorherrschenden Wertevorstellungen unserer Gesellschaft abzugleichen. Wer dubiose KI-Tools meidet, kann sich zudem viel Ärger ersparen.

3. Content-Kannibalisierung

Immer mehr KI-generierter Content flutet das Internet – die logische Folge der zunehmenden Nutzung von GenAI-Assistenten. Leider trainieren KI-Entwickler*innen ihre Chatbots und deren zugrunde liegende Sprachmodelle unter anderem mit genau diesen Inhalten. Und schlimmer noch: Der exponentiell steigende KI-Inhalt ist darüber hinaus auch der Wissensschatz, auf den die KI für ihre Antworten zurückgreift. Dadurch entsteht ein Teufelskreis aus KI, die sich irgendwann nur noch mit von ihr selbst generierten Inhalten trainiert und auch nur noch von ihr produzierten Content als Basiswissen verwendet. Der Mensch wird aus dieser Gleichung immer weiter herausgekürzt. Die Qualität der Ergebnisse von Anfragen an die KI wird somit zunehmend abnehmen. Hinzu kommt, dass alle User*­innen irgendwann die gleichen Ergebnisse abrufen, nutzen und veröffentlichen.

Gegenmaßnahmen: Es ergibt Sinn, hin und wieder auch ohne KI zu agieren und Content zu produzieren, der frei von KI-generierten Inhalten ist und das Qualitätsmerkmal „Made in a human brain“ trägt.

4. Wissensoligopol

Der KI-Markt ist derzeit auf einige wenige Big Player geschrumpft, die sich die enormen Rechenressourcen und Entwicklungskosten für generative KI leisten können. Dadurch entsteht zunehmend ein Wissensoligopol, in dem die großen Anbieter*innen wie OpenAI, Google, Microsoft und DeepSeek zukünftig die Art und Weise bestimmen, welche Informationen überhaupt noch zugänglich sind. Schon jetzt gehen Suchanfragen auf den traditionellen Suchmaschinen deutlich zurück, die Ergebnisse zwar nach Algorithmen ranken, aber selten Treffer komplett ausblenden. Viel restriktiver agieren GenAI-Tools, deren implementierte Filter die freiheitliche Verbreitung von Wissen einzuschränken drohen: Was nicht mit den politischen und moralischen Ideen der Hersteller übereinstimmt, wird automatisch unterdrückt. Das erinnert ein wenig an das Wahrheitsministerium aus Orwells „1984“.

Gegenmaßnahmen: Es ist wichtig, dass Unternehmen und offizielle Stellen auch unabhängige Projekte fördern und deren Nutzer*innen- sowie Supporter*innen-Basis wächst. Gleichzeitig sollten User*innen es dringend verinnerlichen, dass KI- Assistenten nicht der Wahrheit letzter Schluss sind. Das Nutzen möglichst vieler Quellen, um das eigene Wissen aufzubauen, ist immer besser als ein vermeintlicher „Single Point of Truth“.

Fazit

Wir sind noch lange nicht so weit, dass ein blindes Vertrauen in generative KI zu rechtfertigen ist. Es ist zwar logisch, dass wir eine vermeintlich arbeitserleichternde Technologie erst einmal ungern hinterfragen – doch dieser Bequemlichkeit wohnt, je nach Einsatzzweck, ein erhebliches Schadenspotenzial inne. Zum jetzigen Zeitpunkt lautet also die Maxime, restlos jede von GenAI generierte Antwort genauestens auf den Prüfstand zu stellen.

Der Autor Alain Blaes ist CEO der Münchner Kommunikationsagentur PR-COM (mit Fokus auf High-tech- und IT-Industrie im B2B-Umfeld).