Wildplastic baut weltweit erste Lieferkette für wildes Plastik


44 likes

Seit der Gründung 2019 holt die Hamburger Wildplastic GmbH kontinuierlich sogenanntes wildes Plastik aus der Umwelt zurück in den Recyclingkreislauf.

Nur neun Prozent des weltweiten Plastikmülls werden recycelt, 12 Prozent werden verbrannt und 79 Prozent liegen in der Umwelt. Das sind 6,3 Milliarden Tonnen und die Zahl wächst stetig. Wildes Plastik sind jene Kunststoffprodukte, die nach der Benutzung nicht in einem Recyclingkreislauf landen, sondern in der Umwelt entsorgt werden. Hierunter fallen sowohl illegale Mülldeponien als auch das Stadtbild und die Natur. In der Regel landet das wilde Plastik zuerst auf dem Festland und gelangt von dort aus in Gewässer.

Die erste Lieferkette für wildes Plastik

Seit der Gründung 2019 hat die Hamburger Wildplastic GmbH die weltweit einzige Lieferkette für wildes Plastik aufgebaut und holt kontinuierlich wildes Plastik aus der Umwelt zurück in den Recyclingkreislauf. Hierbei arbeitet das 17-köpfige internationale Team eng mit lokalen Organisationen in Partnerländern wie Indien, Ghana, Nigeria, Indonesien oder Thailand zusammen. In der Zusammenarbeit wird darauf geachtet, dass Sammler*innen fair bezahlt und Arbeitsbedingungen verbessert werden. Weiterverarbeitet wird das wilde Plastik anschließend in Europa. Alleine im vergangenen Jahr hat Wildplastic naxch eigenen Angaben 170 Tonnen wildes Plastik zurück in den Kreislauf geholt, 321 Tonnen CO eingespart und Müllsammler*innen 3.708 Tage mit besseren Arbeitsbedingungen ermöglicht.

Wildbags: recyclebare Müllbeutel aus wildem Plastik

Jetzt launcht Wildplastic die 120 Liter Wildbags – große und stabile Müllbeutel, die 100 Prozent aus wildem Plastik hergestellt sind. Das verwendete wilde Plastik wurde aus der Umwelt gerettet und recycelt. Die neuen Wildbags sind ideal für Privathaushalte für sehr große Mülleimer, den nächsten Umzug oder die Einlagerung von zum Beispiel Kleidung. Mit den 120 Liter Wildbags können aber auch Unternehmen – insbesondere der Gastronomie, Hotellerie und Eventbranche – einen Beitrag zu einer saubereren Umwelt und besseren Arbeitsbedingungen für Müllsammler*innen leisten. Ein auffallendes und wiedererkennbares Design hebt die Wildbags von herkömmlichen Müllbeuteln ab. „Mit unserem neuesten Produkt können wir nun allen gängigen Mülleimergrößen ein optisches und nachhaltiges Upgrade verpassen“, sagt Christian Sigmund, Mitgründer und CEO von Wildplastic.

Design als Statement

Wie alle Wildbags sind auch die neuen 120 Liter Müllbeutel designt, um recycelt zu werden. Sie verzichten auf Tragegriffe, um Schnittverluste zu minimieren oder auf Zugbänder, da diese aus einem anderen Kunststoff wie PP oder HDPE bestehen und somit die Recyclingqualität der Wildbags beeinflussen würden. Darüber hinaus werden Zugbänder aus Neuplastik hergestellt, dessen Nutzung Wildplastic in den eigenen Produkten vermeidet. Das auffällige Design der Wildbags soll auf die Müllproblematik und dessen Folgen für die Natur aufmerksam machen. Die Wildbags sind in Deutschland über den Online-Shop des Start-ups erhältlich.

Diese Artikel könnten Sie auch interessieren:

Robotik-Start-up Ottonomy startet Pilotprojekt im Münchner Flughafen

Der Lufthansa Innovation Hub und der Munich Airport kooperieren zur Förderung von Innovation in der Luftfahrt: Pilotprojekte mit Start-ups sind vor diesem Hintergrund wichtige Hebel zur Implementierung innovativer Lösungen.

Die Luftfahrtbranche steht vor einer Vielzahl von Herausforderungen, sowohl auf Kund*innenseite als auch in geschäftlichen Prozessen. Innovation spielt eine entscheidende Rolle bei der Bewältigung dieser Herausforderungen, indem sie Möglichkeiten zur Digitalisierung, Automatisierung, Optimierung und Neuerfindung schafft.

Vor diesem Hintergrund haben der Lufthansa Innovation Hub, die Berliner Innovationseinheit der Lufthansa Group, und die Terminal 2 Gesellschaft des Flughafens München eine Absichtserklärung (MoU) unterzeichnet. Mit der Unterzeichnung bekunden beide ihre Absicht, durch gemeinsame Initiativen die Innovation in der Luftfahrtbranche voranzutreiben.

“Innovation in der Reiseindustrie ist eine gemeinschaftliche Aufgabe, die dem gesamten Ökosystem zukommt”, sagt Dr. Stefan Nothelfer, Senior Director und Leiter Corporate Venturing & Strategic Growth beim Lufthansa Innovation Hub. “Wir freuen uns darauf, mit der Terminal 2 Gesellschaft des Flughafens München zusammenzuarbeiten, um das Kundenerlebnis gemeinsam zu verbessern und den gesamten Reiseprozess zu optimieren.”

Robotik-Einsatz im Terminal 2 des Flughafens München

Ein konkretes Beispiel für das Vorantreiben von Innovation im Flughafenbetrieb durch Pilotprojekte ist die Zusammenarbeit mit dem Robotik-Start-up Ottonomy.

Seit dieser Woche sind zwei autonome Service-Roboter in den Bereichen der Gates und Gepäckausgabe im Terminal 2 des Flughafens München im Einsatz. Die Roboter sind darauf ausgelegt, verschiedene Aufgaben zu übernehmen, um reibungslose Kund*inneninteraktionen zu ermöglichen. Sie unterstützen Passagier*innen mit Informationen und bewerben die Dienstleistungen von Lufthansa Airlines.

Durch das Scannen eines QR-Codes auf dem Roboter mit ihrem Smartphone gelangen Reisende zu Chat-Assistenten für Self-Service-Optionen. Dort können sie Fluginformationen abrufen und Prozesse wie Umbuchungen oder Erstattungen eigenständig verwalten. Die Roboter liefern zudem wichtige Informationen zu flughafenbezogenen Themen wie Tax Refund und Lost and Found. Dank integrierter Behälter können die Roboter auch für den Warentransport eingesetzt werden – etwa künftig für die Verteilung von Wasserflaschen an Passagier*innen.

“Unser Ziel ist es, unseren Gästen das beste Reiseerlebnis in Europa zu bieten”, sagt Marcus Schnabel, Vice President Ground Operations Hub Munich. “Die Nutzung digitaler Lösungen ist für dieses Vorhaben von entscheidender Bedeutung, und wir freuen uns, als Pilotstandort für wegweisende Innovationen zu dienen.”

Ottonomy setzt seine Roboter weltweit an Flughäfen, in Krankenhäusern und für Auslieferungen auf der letzten Strecke zum/zur Kund*in ein. “Unsere Roboter, die mit Contextual AI arbeiten, ermöglichen es Unternehmenskunden, Innovationen voranzutreiben, bessere Kundenerlebnisse zu schaffen und die betriebliche Effizienz in der Luftfahrt zu steigern“, sagte Ritukar Vijay, CEO von Ottonomy. „Eine Partnerschaft mit zukunftsorientierten Branchengrößen wie der Lufthansa bringt diese Vision der Realität ein großes Stück näher.“

Das Pilotprojekt mit Ottonomy entstand im Rahmen von Startup Gate, der Venture-Clienting-Initiative der Lufthansa Group. Startup Gate verbindet Teams der Lufthansa Group mit hochmodernen Start-ups, um deren Technologien schnell zu adaptieren und schlanke sowie kosteneffiziente Kooperationen zu ermöglichen.

Schweiz und Deutschland: So unterschiedlich sind sie beim Online Glücksspiel

Was ist erlaubt, wo sind Grenzen gesetzt: Gut zu wissen für alle, die sich grenzüberschreitend mit dem Thema Online Glücksspiel befassen wollen.

Obwohl das Online Glücksspiel seit Jahren streng reguliert wird, wächst der Markt in Deutschland und in der Schweiz munter weiter. So haben die lizenzierten Anbieter in Deutschland im Jahr 2023 Bruttospielerträge von 4,2 Milliarden Euro erzielt. Im selben Jahr lagen die Umsätze aus Lotterien und Sportwetten in der Schweiz bei 3,76 Milliarden Schweizer Franken. Setzt Deutschland auf strenge Einzahlungslimits und geringe Maximaleinsätze, so reguliert die Schweiz den Markt durch Lizenzbeschränkungen und Netzsperren, wenn es sich um einen nicht genehmigten Anbieter handelt. Die Regeln sind also in beiden Ländern klar, aber sie sind unterschiedlich, doch am Ende lukrativ für beide.

Glücksspiel unterliegt in beiden Ländern strikten Regeln

Es gibt strikte Regeln, die bestimmen, wer in Deutschland und in der Schweiz das Online Glücksspiel anbieten darf.

In Deutschland bildet der deutsche Glücksspielstaatsvertrag die Grundlage. Dieser ist seit dem Jahr 2021 in Kraft und sorgt für eine einheitliche Regulierung, mit der auch klare Grenzen gesetzt werden. Die Konzessionen sind begrenzt, zudem sind die Anforderungen sehr hoch. Jeder Anbieter muss zudem eine Lizenz der Gemeinsamen Glücksspielbehörde der Länder - GGL - vorweisen können. Der Markt wird zudem durch strenge Vorschriften geprägt: monatliches Einzahlungslimit, geringer Maximaleinsatz, 5 Sekunden-Regel, Verbot von Live Casino, keine Kryptowährungen als Einzahlungsmethode.

Wer auf der Suche nach den Top Online Casinos für Schweizer Spieler ist, wird überrascht sein, dass nur landbasierte Casinos eine Online Konzession beantragen würden, weil es kein offenes Lizenzierungsmodell für internationale Betreiber gibt. Der Markt ist somit geschlossen und schützt daher staatliche Einnahmen und reguliert den Wettbewerb. Ein Anbieter, der keine Genehmigung hat, kann seine Dienste nicht anbieten - Netzsperren blockieren unlizenzierte Plattformen.

Während also Deutschland privaten Betreibern aus den unterschiedlichsten Bereichen Lizenzen erteilt, sind in der Schweiz nur schon etablierte Casinohäuser in der Lage bzw. berechtigt, eine Lizenz zu bekommen. Das mag zwar in Deutschland für mehr Vielfalt sorgen, jedoch auch für schärfere Kontrollen. In der Schweiz hingegen bleibt das Glücksspielgeschäft in der Hand weniger Unternehmen.

Wie sieht es bei den Sportwetten aus?

In der Schweiz und in Deutschland wird das Spielangebot von gesetzlichen Vorgaben bestimmt, was natürlich einen direkten Einfluss auf die Vielfalt und auch auf die Zugangsmöglichkeiten hat. In beiden Ländern finden sich regulierte Plattformen, damit das Glück am Online Spielautomat getestet werden kann. Jedoch finden sich verschiedene Einschränkungen:

In Deutschland sind viele Anbieter lizenziert, die aber strenge Vorschriften zu den Einsatzlimits sowie Spielmechaniken beachten müssen. In der Schweiz bleibt das Angebot vorwiegend den landbasierten Casinos mit Online Lizenz vorbehalten, sodass nur eine begrenzte Auswahl geboten wird.

Ein vergleichbares Bild lässt sich mit Blick auf die Sportwetten erkennen: Sind in Deutschland nur private Wettanbieter aktiv, die strikte Werbe- und Einsatzlimits befolgen müssen, bleibt der Bereich in der Schweiz aber unter staatlicher Kontrolle. Der private Betreiber erhält hier gar keinen Marktzugang.

Beide Glücksspielmärkte werden durch technologische Entwicklungen geprägt, weil internationale Entwickler moderne Slots mit neuen Mechaniken liefern. Jedoch können in der Schweiz nur lizenzierte Casinos auf diese Innovationen zugreifen. In Deutschland hingegen besteht ein regulierter Markt, wobei hier jedoch strengere Vorgaben zu erfüllen sind.

Sicherheitsmechanismen stehen im Vordergrund

Ein Schweizer Casino setzt auf kontrollierte Abläufe sowie auf geprüfte Anbieter, damit dem Spieler ein sicheres Spielerlebnis geboten werden kann. Gesetzliche Vorgaben bestimmen den Rahmen, innerhalb dessen dann die Spielplattform operieren darf. Damit die unbefugten Nutzer keinen Zugang erhalten, müssen im Vorfeld Identitätsprüfungen durchgeführt werden. Des Weiteren müssen die Betreiber auch Maßnahmen ergreifen, damit ein problematisches Spielverhalten frühzeitig erkannt und gegebenenfalls eingedämmt werden kann.

In beiden Ländern spielen Sicherheitsmechanismen eine große Rolle: In Deutschland gibt es etwa ein festes Einzahlungslimit von 1.000 Euro pro Monat (plattformübergreifend) sowie einen Maximaleinsatz von 1 Euro pro Runde. In der Schweiz gibt es keine einheitliche Einzahlungsgrenze, aber die lizenzierten Anbieter setzen hier auf individuelle Schutzmaßnahmen, sodass das verantwortungsbewusste Spiel gefördert werden kann.

In Deutschland dürfen die Glücksspielanbieter nicht uneingeschränkt werben, sondern nur zu bestimmten Zeiten. In der Schweiz wird eine vergleichbare Strategie angewendet: Die Werbung darf nur legale Angebote enthalten, während Anreize für das übermäßige Spiel untersagt sind.

Beide Länder gehen auch unterschiedlich vor, wenn es um unregulierte Plattformen geht: Deutschland setzt auf Überwachung und Sanktionen, während die Schweiz hingegen Anbieter, die keine Schweizer Lizenz haben, per Netzsperren ausgeschlossen werden.

Wie handhaben Deutschland und die Schweiz Poker?

In der Schweiz und in Deutschland ist Poker ein Sonderfall: Auch hier vergibt Deutschland Lizenzen für private Anbieter, während die Schweizer ebenfalls nur staatlich konzessionierten Casinos erlaubt, Online Poker anbieten zu dürfen. Mit dieser Herangehensweise wird nicht nur das Spielangebot geprägt, sondern auch die Möglichkeiten für Cash Games, internationale Wettbewerbe und Turniere.

In Deutschland ist Online Poker erlaubt, jedoch gibt es klar definierte Regeln: Der lizenzierte Anbieter muss sich an feste Einzahlungslimits halten, zudem gibt es Turniere und Cash Games nur unter sehr strengen Auflagen. Die Anbieter werden von der GGL überwacht und greift sofort bei Verstößen ein. In der Schweiz unterliegt das Pokerspiel noch engeren Regulierungen: Cash Games und Turniere gibt es nur über lizenzierte landbasierte Casinos, die eine Online Konzession haben. Der private Anbieter hat keinen Zugang zum Markt.

Generative KI – Chancen für Startups

Wie Startups mit drei Tipps die Kosten und Performance für ihren KI-Case optimieren können.

Das deutsche KI-Startup-Ökosystem befindet sich 2025 weiter im Gründungsboom. Nie gab es mehr KI-Gründer in Deutschland und alleine im vergangenen Jahr wuchs die Zahl der KI-Startups um 35 Prozent. Auch für Investoren bleibt KI eines der vielversprechendsten Themen. Sie investierten 2024 fast 200 Millionen mehr in deutsche KI-Jungunternehmen als im Vorjahr. Vor allem deutsche KI-Startups im B2B-Bereich mit branchenspezifischen Lösungen für die Fertigung, Logistik und das Gesundheitswesen haben aktuell ausgezeichnete Wachstumschancen. Sie können von einer engen Vernetzung mit dem Mittelstand und führenden Forschungseinrichtungen in Deutschland profitieren. Typische KI-Anwendungsfelder von aufstrebenden deutschen Startups wie BlueAvenir, PlanA, Smart Reporting oder nnamu liegen dabei u.a. in der Softwareentwicklung, Sprach- und Bilderkennung oder datenbasierten Analyseverfahren zur Entscheidungsunterstützung.

KI-Chancen und die häufigsten Hürden

Während die Gesamtfinanzierung für KI-Projekte wächst, scheitern in der Praxis vielversprechende Ideen von Startups aber auch immer wieder am konkreten Business Case. Langfristig können sich insbesondere unterschätzte Kosten und eine schwache Performance der Anwendungen wie ein Bremsklotz auswirken. Die Nutzung von Sprachmodellen ist dank API-basierten Diensten sehr einfach geworden, dennoch können sich hier bei großen Volumina und ungeschickter Modell-Wahl schnell höhere Kosten aufsummieren. Gleichzeitig spielt die Performance des KI-Systems eine wichtige Rolle für eine langfristige Profitabilität. So führen besonders hohe Latenzzeiten bei der Model-Inference zu trägeren Systemen, die Nutzeranfragen nicht schnell genug verbreiten und die Attraktivität der Anwendung erheblich mindern.

Gerade Startups setzen oft auf die Cloud, da sie unabhängig vom technischen Hintergrund einfachen Zugang zu KI und die nötige Flexibilität ermöglicht. Drei innovative Methoden erweisen sich in der Cloud als besonders hilfreich, um eine optimale Balance zwischen Leistungsfähigkeit, Kosten und Nutzerfreundlichkeit für die Umsetzung des eigenen KI-Anwendungsfalls zu finden. So kann jeder Gründer seine KI-Ideen schnell, kosteneffizient und sicher umsetzen.

KI-Modellauswahl: Kleiner, aber schneller

Für Startups ist es entscheidend, das richtige KI-Modell für ihren Anwendungsfall zu wählen, um Kosten und Leistung optimal auszubalancieren. Anbieter wie Anthropic, AI21 Labs, Meta, Cohere, Mistral und Amazon bieten Modelle in verschiedenen Größen an – kleinere Varianten sind oft günstiger und reagieren mit kürzerer Antwortzeit. Nach einer ersten Validierung mit einem leistungsstarken Modell können Startups Tools wie Amazon Bedrock Evaluations nutzen, um herauszufinden, welches Modell in welcher Größe ähnliche Ergebnisse bei geringeren Kosten oder höherer Geschwindigkeit liefert. Diese Evaluierungen helfen dabei, die Leistungsfähigkeit und Effizienz zu beurteilen, indem Metriken wie semantische Robustheit und Genauigkeit bei der Informationsabfrage analysiert werden. Durch eine Kombination aus automatisierten Bewertungen mit Large Language Models (LLMs) und menschlicher Prüfung können Startups die beste Balance zwischen Leistung, Kosten und Geschwindigkeit für ihre individuellen Bedürfnisse finden.

Prompt Caching: Zwischenspeicherung für wiederkehrende Anfragen

Eine weitere smarte Methode, um die Antwortzeiten von KI-Modellen zu verkürzen und Kosten zu senken, ist das Prompt-Caching. Wenn ein digitaler Assistent sich bei jeder Frage immer wieder die gleichen Grundinformationen durchlesen müsste, dann wäre das extrem ineffizient. Genau hier setzt das Prompt-Caching an und speichert feste Teile des Prompts, wie grundlegende Anweisungen für das LLM, direkt in der Inferenz-Hardware zwischen. Nur die variablen, nutzerspezifischen Daten, die sich von Aufruf zu Aufruf verändern, werden bei jeder Anfrage neu übermittelt. Das spart nicht nur Rechenleistung, sondern sorgt auch für schnellere Antworten – ideal für Anwendungen wie Chatbots oder personalisierte KI-Assistenten, die häufig wiederkehrende Anfragen verarbeiten. Mit Amazon Bedrock lässt sich diese Technik einfach nutzen, indem das Caching und das Setzen von Cache-Checkpoints automatisch verwaltet werden können. Sobald das Caching aktiviert ist, übernimmt der Service das gesamte Cache-Management automatisch. So lassen sich bis zu 90 Prozent kosteneffiziente KI-Anwendungen mit minimalem Konfigurationsaufwand realisieren.

Model Distillation: KI-Wissen auf das Wesentliche fokussieren

Eine dritte bewährte Option ist Model Distillation. Das Prinzip ist einfach und kann vereinfacht als ein intelligenter Wissenstransfer in der Welt der KI beschrieben werden. Also so, als ob ein erfahrener Lehrer (ein großes, leistungsstarkes KI-Modell) seinem Schüler (einem kleineren, schnelleren Modell) die wichtigsten Konzepte beibringt. Dabei nutzt dieser Prozess synthetische Trainingsdaten, die auf realen Anwendungsbeispielen basieren. Das Ergebnis ist ein kompakteres Modell, das für einen spezifischen Anwendungsfall ähnlich gute Ergebnisse liefert wie das größere Modell, dabei aber deutlich schneller und kostengünstiger arbeitet. Destillierte Modelle in Amazon Bedrock können bis zu fünfmal schneller arbeiten und die Kosten um bis zu 75 Prozent senken im Vergleich zu den Originalmodellen – bei Genauigkeitsverlust von weniger als zwei Prozent.

Fazit

Erfolgreiche KI-Lösungen können mit der Cloud kosteneffizienter und performanter umgesetzt werden. Das erfordert zwar ein wenig technisches Know-how, aber die Cloud reduziert die Einstiegshürden erheblich und ermöglicht es auch kleineren Unternehmen, mit drei bewährten Methoden das KI-Potenzial effektiver auszuschöpfen. Startups haben mit der Cloud die maximale Flexibilität, um entweder von den leistungsfähigsten vortrainierten LLMs zu profitieren oder alternativ eigene LLMs mit maßgeschneiderter Infrastruktur zu entwickeln bzw. auf fertige Dienste mit integrierter generativer KI zuzugreifen.

Der Autor Constantin Gonzalez ist Principal Solutions Architect bei Amazon Web Services (AWS) in München.
Die Autorin 
Jennifer Grün ist Senior Specialist - Machine Learning bei AWS in München.

So schafft KI neue CEO-Realitäten

Künstliche Intelligenz (KI) ist in der Führungsebene angekommen, doch welche Konsequenzen hat das für CEOs? Eine Studie enthüllt Eingeständnisse deutscher und internationaler CEOs zum Thema KI.

Der aktuelle „Global AI Confessions Report: CEO Edition" der KI-Plattform Dataiku enthüllt Eingeständnisse deutscher und internationaler Führungskräfte, die hinsichtlich KI einer neuen Realität gegenüberstehen. Wichtige Insights aus der Studie:

 

  • 95 Prozent der deutschen CEOs geben zu, dass ein KI-Agent bei Geschäftsentscheidungen einen gleichwertigen oder besseren Rat geben könnte als ein menschliches Vorstandsmitglied.
  • 69 Prozent der deutschen CEOs glauben, dass eine gescheiterte KI-Strategie oder eine KI-induzierte Krise dazu führen wird, dass ein CEO bis Ende 2025 aus dem Amt gedrängt wird.
  • Mit 62 Prozent bzw. 66 Prozent rangieren deutsche CEOs unter allen globalen CEOs an der Spitze, wenn es um die Messung von Kosten- und Ressourcenanforderungen und Skalierbarkeit von KI geht.
  • 78 Prozent der deutschen CEOs sind der Meinung, dass EU-Vorschriften die KI-Nutzung in ihren Organisationen verlangsamen könnten.

Für die Studie, die von The Harris Poll durchgeführt wurde, wurden im Januar und Februar 2025 über 500 CEOs in den USA, Großbritannien, Frankreich und Deutschland befragt. Die Unternehmen der insgesamt 100 befragten deutschen CEOs rangieren bei einem Jahresumsatz von mehr als 250 Millionen Euro und eine Unternehmensgröße von mehr als 500 Mitarbeitenden.

Der Bericht enthüllt: Die KI-Strategie ist zum entscheidenden Faktor für das Überleben von Unternehmen geworden. Die Ergebnisse belegen zudem, dass die Konsequenzen des Einsatzes von KI auch auf höchster Entscheiderebene angekommen sind. 

KI kommt im Vorstand an

Laut Aussagen deutscher Geschäftsführer stellt KI die Rolle der Entscheidungsfindung auf Vorstandsebene zunehmend in Frage. Zu den wichtigsten Ergebnissen gehören: 

  • 93 Prozent der deutschen CEOs sind der Meinung, dass sie davon profitieren würden, ein aktuelles Vorstandsmitglied durch einen KI-Experten zu ergänzen oder zu ersetzen.
  • 95 Prozent der deutschen CEOs geben zu, dass ein KI-Agent bei Geschäftsentscheidungen einen gleichwertigen oder besseren Rat geben könnte als ein menschliches Vorstandsmitglied.

KI-Strategie: Übernahme von Kernkompetenzen

Auch auf den darauf folgenden Rängen zeichnet sich ab, dass Künstliche Intelligenz das Berufsprofil der Führungsebene deutlich wandeln kann:  

  • 90 Prozent der deutschen CEOs sind der Meinung, dass KI einen besseren Strategieplan entwickeln kann als ein Mitglied ihres Führungsteams (Vizepräsidenten bis zur Vorstandsebene).
  • 49 Prozent der CEOs deutscher Unternehmen schätzen, dass sie 3–4 Teammitglieder durch KI ersetzen könnten, um strategische Planung zu betreiben. Ganze 13 Prozent gaben an, dass sie sogar 7 oder mehr Führungskräfte für die gleiche Aufgabe ersetzen könnten.

Keine KI-Strategie ist allerdings auch keine Antwort, denn

  • 69 Prozent der deutschen CEOs glauben, dass eine gescheiterte KI-Strategie oder eine KI-induzierte Krise dazu führen wird, dass ein CEO bis Ende 2025 aus dem Amt gedrängt wird.
  • 76 Prozent der deutschen CEOs sind der Meinung, dass sie Gefahr laufen, ihren Job zu verlieren, wenn sie nicht innerhalb von 2 Jahren messbare KI-getriebene Geschäftsgewinne erzielen.

KI als Kernkompetenz zukünftiger CEOs

Führungskräfte müssen sich laut der Umfrage auf dem Jobmarkt zukünftig anders aufstellen. KI-Kompetenz gilt als “Must-Have”, was auch aus dem Berufsalltag deutscher CEOs hervorgeht.

  • 31 Prozent der deutschen CEOs sind der Meinung, dass Erfahrung in der Umsetzung einer erfolgreichen KI-Strategie oder deren Implementierung in 3–4 Jahren eine der wichtigsten Kompetenzen sein wird, nach denen Vorstände bei der Bewertung eines potenziellen Geschäftsführers suchen werden.
  • 82 Prozent der deutschen CEOs geben an, dass ihre direkte Beteiligung an KI-bezogenen Entscheidungen im vergangenen Jahr zugenommen hat.
  • 70 Prozent der deutschen CEOs geben an, an mehr als der Hälfte der KI-Entscheidungen ihres Unternehmens beteiligt zu sein.

Die „KI-Commodity-Falle“ und KI-Washing: Blinde Flecken der Geschäftsführung

Trotz zunehmender Abhängigkeit von KI sind sich viele CEOs der Gefahren schlecht umgesetzter KI-Strategien in gefährlicher Weise nicht bewusst.

  • 87 Prozent der CEOs tappen weltweit in die „KI-Falle“ und sind zuversichtlich, dass KI-Standardagenten genauso effektiv sein können wie maßgeschneiderte Lösungen für hochgradig nuancierte vertikale oder domänenspezifische Geschäftsanwendungen.
  • CEOs deutscher Unternehmen gehen im internationalen Vergleich mit 39 Prozent am ehesten davon aus, dass es bei eigenen KI-Initiativen mehr um die Optik als um die Wirkung geht. Dieser Umstand nennt sich auch “AI Washing” und zielt darauf ab, KI-Innovation vorzuspielen, anstatt einen bedeutenden Mehrwert zu schaffen.

Worauf deutsche CEOs allerdings vergleichsweise viel Wert legen, sind Kostenkontrolle und Skalierbarkeit von KI-Lösungen. Mit 66 Prozent rangieren deutsche CEOs unter allen globalen CEOs (62 Prozent) an der Spitze, wenn es um die Messung von Kosten- und Ressourcenanforderungen und Skalierbarkeit als Kernattribute innerhalb ihres Rahmens für die regelmäßige Bewertung der Effektivität von KI-Analysen, -Modellen und -Anwendungen geht.

KI-Governance und regulatorische Unsicherheit

Während sich die Einführung von KI beschleunigt, schaffen schlechte Governance und regulatorische Unsicherheit erhebliche Hindernisse:

  • 25 Prozent der deutschen CEOs geben an, dass sich ein KI-Projekt aufgrund regulatorischer Unsicherheiten verzögert hat, während 35 Prozent zugeben, dass ein Projekt aus solchen Umständen abgebrochen oder aufgegeben wurde. 
  • 78 Prozent der deutschen CEOs sind der Meinung, dass EU-Vorschriften die KI-Nutzung in ihren Organisationen verlangsamen könnten.
  • 94 Prozent der CEOs vermuten weltweit, dass Mitarbeitende GenAI-Tools wie ChatGPT, Claude und Midjourney ohne Genehmigung des Unternehmens verwenden (bekannt als „Schatten-KI“) und damit ein massives Governance-Versagen innerhalb von Organisationen aufdecken.

Den vollständigen „Global AI Confessions Report: CEO Edition“ findest du hier

Florian Bretschneider: Das steckt hinter dem Appointment-Setting-System

Appointment Setter spielen im Verkaufsprozess von Coaching-, Beratungs- und Softwareunternehmen eine immer wichtigere Rolle. Das Geschäft ist mittlerweile in einem starken Aufwärtstrend und bietet vor allem Neu- und Quereinsteigern die Chance auf eine lukrative Remote-Position als Appointment Setter.

Der Appointment Setter ist dafür verantwortlich, den Posteingang von Coaching-, Beratungs- und Softwareunternehmen zu beantworten und Termine mit neuen Interessenten für Beratungsgespräche der Vertriebsmitarbeiter zu vereinbaren.

Mit dem richtigen Know-how zur „Lead-Maschine“ werden

Florian Bretschneider, Unternehmer und Self-Made-Millionär sieht die größten Vorteile darin: „Beim Appointment Setting musst du weder Geld in Werbung, Software, Mitarbeiter, Büro noch in Produkte investieren. Du startest in einem funktionierenden System, das bereits Geld produziert und kannst es nach wenigen Wochen von überall auf der Welt ausführen, solange du ein Handy mit Internetverbindung hast.“

Ideales Geschäftsmodell für Einsteiger in den Onlinemarkt: Was macht ein Appointment Setter?

Der Appointment Setter spielt eine zentrale Rolle im Vertriebsprozess von Coaching-, Beratungs- und Softwareunternehmen. Seine Hauptaufgabe besteht darin, den Posteingang dieser Unternehmen zu verwalten und qualifizierte Termine mit Interessenten für Vertriebsmitarbeiter zu vereinbaren. Diese Unternehmen erreichen täglich Hunderte bis Tausende potenzielle Kunden durch gezielte Werbung auf Plattformen wie Instagram, TikTok, Google und Snapchat. Um aus dieser großen Anzahl an Anfragen die passenden Interessenten herauszufiltern, setzen sie auf spezialisierte Appointment Setter. Diese erhalten in der Regel eine Umsatzbeteiligung von etwa 5 %, was sie besonders lukrativ macht – insbesondere in Branchen mit hochpreisigen Produkten und Dienstleistungen.

Ein Beispiel: Wenn das Unternehmen beispielsweise 20 neue Kunden á 6.000€ pro Monat durch die neuen Termine des Appointment Setters gewinnt, generiert das Unternehmen 120.000€ Umsatz, wovon der Appointment Setter im Schnitt 6.000€ (5%) ausgezahlt bekommt.

Das Vereinbaren von Terminen über den Chat bietet eine geringe Einstiegshürde und eignet sich besonders für Einsteiger. Es zählt zu den einfachsten und am schnellsten zu erlernenden Aufgaben im gesamten Verkaufsprozess.

Da beim Appointment Setting kein eigenes Business aufgebaut werden muss, ist es besonders attraktiv für Menschen, die nicht vor die Kamera treten, keine Follower auf Social Media aufbauen und keine Coaching- oder Verkaufsgespräche führen möchten – und dennoch am stark wachsenden E-Learning-Markt partizipieren wollen. Besonders gefragt sind Appointment Setter in den Bereichen Fitness/Gesundheit, Online-Business, Dating/Beziehungen, Investieren/Finanzen und Mindset/Persönlichkeitsentwicklung.

Florian Bretschneider erklärt: „Einer der größten Vorteile beim Appointment Setting ist, dass es nicht nur sehr schnell zu lernen ist und bereits in drei bis vier Wochen Ergebnisse bringt, sondern dass jeder das Modell auch zu 100 Prozent anonym machen kann. Man braucht dafür weder eine eigene Website noch muss man Social-Media-Reichweite aufbauen.“ Nur eine einzige Fähigkeit ist erforderlich: effektiv Terminierungen über den Chat durchzuführen.

Der Selfmade Millionär mit über 10 Millionen € Umsatz in den letzten Jahren: „Mit dem richtigen Know-how kann jeder zu einer “Termin-Maschine” werden.“

Europäisches KI-Gesetz in Kraft getreten

Der AI Act ist am 2. Februar 2025 in Kraft getreten und gilt für alle Unternehmen und Organisationen mit Angestellten, die KI im Auftrag des Unternehmens nutzen. Bei Nichteinhaltung drohen Geldbußen.

Künstliche Intelligenz (KI) entwickelt sich rasant und findet in immer mehr Bereichen, auch in Unternehmen, Anwendung. Deshalb schafft Europa mit dem AI Act einen einheitlichen Rechtsrahmen, den alle europäischen Unternehmen einhalten müssen.

Nicht allen Arbeitgebenden ist bewusst, dass die europäische Verordnung bereits in Kraft getreten ist. Sie gilt für jede Organisation – unabhängig von ihrer Größe – und ist verbindlich. Das Gesetz betrifft somit alle Unternehmen und Organisationen mit Angestellten, die KI im Auftrag des Unternehmens nutzen, unabhängig vom Beschäftigungsverhältnis. Europa überlässt einen Teil der Durchführung und Umsetzung des KI-Gesetzes den Mitgliedstaaten selbst – ebenso wie die Verhängung von Geldbußen bei Nichteinhaltung. Die konkrete Höhe dieser Bußgelder wird erst am 2. August 2025 feststehen. Dennoch sollten Unternehmen ab dem 2. Februar lieber gut aufgestellt sein, da die Bußgelder auch rückwirkend in Kraft treten können.

Verbindliche KI-Policy und adäquate KI-Kompetenzen

Unternehmen sind dafür verantwortlich, dass ihre Belegschaft über ausreichende KI-Kenntnisse verfügt. Dabei ist es nicht erforderlich, dass jeder Mitarbeitende umfassendes Wissen über KI besitzt. Es muss sichergestellt werden, dass alle Mitarbeitenden, die mit KI-Systemen arbeiten, über die notwendigen Kenntnisse und Fähigkeiten verfügen. So können sie informierte Entscheidungen treffen und potenzielle Risiken erkennen. Dazu gehören alle Mitarbeiter*innen, die mit KI-Systemen arbeiten – vom Anbietenden bis zum/zur Endnutzer*in – und erstreckt sich also nicht nur auf IKT-Fachleute in Unternehmen.

Das KI-Gesetz legt nicht genau fest, welche Maßnahmen Arbeitgebende ergreifen müssen, damit alle beteiligten Personen ausreichende KI-Kenntnisse erwerben. Arbeitgebende sollten daher nicht nur die technischen Kenntnisse, Erfahrungen, Ausbildungen und Fortbildungen der Mitarbeitenden berücksichtigen, sondern auch den Kontext, in dem die KI-Systeme genutzt werden, sowie die betroffenen Personen oder Personengruppe.

Arbeitgebende können selbst entscheiden, welche Kenntnisse und Fähigkeiten ihre Mitarbeitenden benötigen und wie sie diese angeeignet werden können. Mögliche Maßnahmen sind allgemeine KI-Schulungen, die Grundkenntnisse vermitteln und auf verschiedene Zielgruppen zugeschnitten sein können. Dabei kann es sich um spezifische Schulungen handeln, die sich auf bestimmte Tools und Anwendungen konzentrieren, aber auch um die Zusammenarbeit zwischen juristischen und technischen Teams.

Arbeitgebenden wird empfohlen, eine KI-Policy mit klaren Richtlinien für den Einsatz von KI im Unternehmen zu erstellen. Darin kann festgehalten werden, welche Anwendungen von wem und auf welche Weise genutzt werden dürfen. In dieser Richtlinie kann der Arbeitgebende auch Hinweise darauf geben, wie die Mitarbeitenden ausreichend mit KI vertraut bleiben können. Wie wird zum Beispiel vorgegangen, wenn sich im Unternehmen oder bei den Tools etwas ändert? KI-Kompetenz ist schließlich nichts Statisches. Wenn ein(e) Mitarbeiter*in die Rolle wechselt, oder wenn die eingesetzten Tools sich ändern, muss der Arbeitgebende sicherstellen, dass die betreffende Person weiterhin über ausreichende KI-Kenntnisse verfügt.

Verbotene bestimmter KI-Systeme

Zum anderen verbietet der AI Act ab dem 2. Februar 2025 den Einsatz von KI-Systemen, die gegen europäische Normen und Grundwerte verstoßen, indem sie beispielsweise Grundrechte missachten. Darunter fallen auch KI-Systeme für Social Scoring, die Menschen aufgrund ihres sozialen Verhaltens oder persönlicher Eigenschaften bewerten, oder KI-Systeme zur Emotionserkennung am Arbeitsplatz oder im Bildungsbereich. Arbeitgeber sollten daher die eingesetzten KI-Systeme im Hinblick auf die Identifizierung verbotener Systeme und die Einstellung ihrer Nutzung überprüfen.

Ab August 2025 drohen Geldbußen - auch rückwirkend

Ab dem 2. August 2025 drohen Unternehmen und Organisationen, die verbotene KI entwickeln oder einsetzen, hohe Geldbußen. Die Überwachung und die Festlegung der Höhe der Strafen liegen vollständig in der Verantwortung der EU. Die Höhe der Geldbußen sowie die Aufsicht hierüber liegen vollständig in der Verantwortung der EU. Bis zu 35 Millionen Euro Strafe oder sieben Prozent des weltweiten Jahresumsatzes des vorangegangenen Geschäftsjahres – je nachdem, welcher Betrag höher ist – können verhängt werden.

Der Autor Sander Runkel ist Fachanwalt für Arbeitsrecht und Manager Tax & Legal bei SD Worx Deutschland

Casablanca.AI: Ein Blick, der den Unterschied macht

Mit ihrer selbst entwickelten KI ermöglicht das 2020 gegründete Start-up Casablanca.AI authentische Videocalls. Dabei wird rein softwarebasiert in Echtzeit realer Augenkontakt in digitalen Meetings erzeugt und so ein natürliches sowie direktes Gesprächserlebnis hergestellt.

„Beim ersten Augenkontakt hat’s sofort gefunkt.“ Dieser Ausspruch könnte ebenso aus einer Hollywood-Romanze stammen wie auch aus einem Verkaufs- oder Bewerbungsgespräch. Denn der Blickkontakt verkörpert einen der mächtigsten und entscheidendsten Bestandteile der nonverbalen Kommunikation. Der Austausch von Blicken aktiviert das neuronale Belohnungssystem, was wiederum für Glücksgefühle sorgt und motiviert. Bereits vor über 20 Jahren ging das aus einer Studie (Reward value of attractiveness and gaze) hervor.

Ohne Augenkontakt kein echtes Vertrauen

„Hier kommen wir wiederum sehr schnell zum Thema Vertrauen. Ohne Augenkontakt fehlt hierfür die wichtigste Grundlage, wirkliche Nähe kommt nicht zustande“, sagt Carsten Kraus, Gründer und CEO der Casablanca.AI GmbH. „Wenn wir darüber nachdenken, ergibt sich schnell ein großes Problem: Viele Gespräche, insbesondere im geschäftlichen Kontext, laufen heute auf digitalem Wege in Videokonferenzen ab. Direkter Augenkontakt besteht hier nie, ohne dass die Mimik des Gesprächspartners aus dem Sichtfeld verschwindet.“ Das Pforzheimer KI-Start-up Casablanca hat das Problem erkannt und schafft Abhilfe.

Videocalls auf neuem Level

Innerhalb eines Videocalls gibt es für die Gesprächsteilnehmende genau zwei Optionen: den Blick in die Kameralinse und den auf den Bildschirm. Bei ersterem besteht keine Möglichkeit, den Gesichtsausdruck des Gegenübers zu sehen. Dagegen führt die zweite Alternative dazu, dass sich die Augenpaare nicht treffen. „Erfahrungsgemäß schwanken User*innen und variieren innerhalb eines Calls immer wieder. Sie stehen sozusagen vor der Wahl, welche Option sich zum jeweiligen Zeitpunkt eher eignet. Damit geht dem Gespräch viel Qualität ab“, erläutert Kraus, der mit seinem Unternehmen eine „virtuelle Kamera“ mit lokaler KI entwickelt. Diese greift in Echtzeit das Bild der physischen Webcam ab und richtet den Blick sowie den Gesichtswinkel der aufgezeichneten Person aus. „Nicht erst seit der Corona-Pandemie liegen Videokonferenzen absolut im Trend. Insbesondere in der Geschäftswelt hat sich diese Technik als unverzichtbar herauskristallisiert, spart viel Zeit und damit Kosten. Die Schwierigkeit bestand aber bisher darin, in diesen Gesprächen das notwendige Vertrauen aufzubauen, beispielsweise für einen erfolgreichen Verkaufsabschluss“, so Kraus. „Das möchten wir ändern und die Kommunikation per Video auf ein neues Level heben, sozusagen auf das eines analogen Gesprächs.“

Natürlichkeit und Authentizität zählen

Blicke machen die Basis sozialer Interaktion aus. Sie tragen zur Interpretation von nonverbalen Signalen bei. Eine dementsprechend große Rolle nehmen sie in der Geschäftswelt etwa für Verkäufer*innen, Berater*innen oder Personalverantwortliche ein. „Vertrauen hat auf ihr Handeln große Auswirkungen, mangelt es daran, sinken die Erfolgsaussichten zum Beispiel im Verkaufsgespräch. Auch der zunehmend digitale Bewerbungsprozess hat nach wie vor die Hürde des fehlenden Augenkontakts und damit auch der mangelnden Nähe zu überspringen“, zeigt Kraus die Relevanz auf. „Gelingt dies aber, entsteht eine persönliche Beziehung und das Gespräch geht über die Übermittlung von Informationen hinaus – und das bei beliebiger physischer Distanz. Dabei kommt es immer auch auf die Natürlichkeit und Authentizität des Videocalls an.“ Damit dies bestmöglich funktioniert, richtet Casablanca nicht nur die Augen entsprechend aus, sondern dreht den gesamten Kopf in die passende Position. So lässt sich auch in digitalen Meetings sagen: „Beim ersten Augenkontakt hat’s sofort gefunkt.“

MyriaMeat: BioTech-Start-up mit Weltpremiere in der Cultivated Meat-Branche

Das 2022 in München und Göttingen gegründete BioTech-Start-up MyriaMeat, Pionier für die Herstellung von 100 Prozent echtem Cultivated Meat auf Basis von pluripotenten Stammzellen (iPS), hat den weltweit ersten echten Schweinemuskel aus iPS entwickelt.

Auf Basis jahrzehntelanger medizinischer Forschung an der Universität Göttingen, bietet MyriaMeat nachhaltige und ethisch verantwortbare Alternativen zu herkömmlichem Fleisch. Ziel ist der Aufbau einer Plattform, die die Produktion von hochwertigem und reinen Fleisch, sowie einer Vielzahl anderer fleischhaltiger Produkte ermöglicht und das Unternehmen zum relevanten Partner für die Entwicklung innovativer Lebensmittel mit alternativen Proteinen macht.

Das von MyriaMeat entwickelte Cultivated Meat bietet dabei nicht nur ökologische Vorteile, sondern ermöglicht auch eine erhebliche Verbesserung des Tierwohls, da so für die Herstellung von Fleisch keine Tiere mehr geschlachtet werden müssen. Mit seiner bahnbrechenden Forschung setzt MyriaMeat neue Standards für die Zukunft der Ernährung.

Wegweisender Durchbruch in der Cultivated Meat-Branche

Jetzt hat das als Spin-off eines Forscherteams der Universität Göttingen gegründete und von Florian Hüttner (Geschäftsführer) und Dr. Malte Tiburcy (CSO) geführte Start-up einen wegweisenden Durchbruch in der Cultivated Meat-Branche erzielt: Zum ersten Mal weltweit wurde echter Schweinemuskel aus pluripotenten Stammzellen (iPS) entwickelt, der natürliche, ungetriggerte Kontraktionen zeigt – ein lebendiges Zucken, das die funktionelle Fähigkeit echten Muskelgewebes widerspiegelt.

Laut MyriaMeat beweist dieser Erfolg, dass echtes Schweinefleisch vollständig außerhalb eines lebenden Tieres produziert werden kann. Damit rückt kultiviertes Fleisch noch näher an herkömmliches Fleisch heran, das durch Schlachtung gewonnen wird. Das Start-up verfolgt das Ziel, eine exakte 1:1-Kopie von Schweinefleisch herzustellen – kein Ersatzprodukt, sondern echtes Fleisch.

Durch diesen Ansatz soll auch die Akzeptanz bei Fleischkonsumenten steigen, die bislang keine pflanzlichen Alternativen in Betracht ziehen. Insgesamt ist kultiviertes Fleisch geeignet, viele der Probleme, die mit der Massentierhaltung einher gehen, zu lösen.

Meilenstein für nachhaltige Ernährung und Ethik

„Zum ersten Mal zeigt ein tierischer Muskel – in diesem Fall vom Schwein – aus pluripotenten Stammzellen nicht nur die Eigenschaften echten Gewebes, sondern auch spontane Kontraktionen eines Muskels. Das ist der wissenschaftliche Beweis, dass wir echtes Schweinefleisch außerhalb eines lebenden Organismus herstellen können“, erklärt Dr. Malte Tiburcy.

Mit seinem bahnbrechenden Erfolg hebt MyriaMeat die Cultivated Meat-Branche auf ein neues Niveau. Während viele Unternehmen Zellkulturen nutzen, um fleischähnliche Produkte herzustellen, hat MyriaMeat als erstes weltweit aus pluripotenten Stammzellen echten Muskel geformt, der sowohl funktionell als auch strukturell mit natürlichem Schweinegewebe vergleichbar ist.

Einladung zur Partnerschaft

MyriaMeat richtet sich aktiv an Investoren und Unternehmen der Fleischindustrie, die daran interessiert sind, diese zukunftsweisende Technologie in Deutschland und weltweit weiterzuentwickeln. Interessierte Partner sind herzlich eingeladen, sich direkt mit dem Unternehmen in Verbindung zu setzen, um gemeinsam an einer nachhaltigeren Zukunft der Fleischproduktion zu arbeiten.

„Unser Ziel ist es, strategischer Partner der Fleischindustrie zu werden und eine umweltfreundlichere, tierleidfreie sowie ressourcenschonende Alternative für echtes Schweinefleisch und andere Fleischarten zu schaffen“, erklärt Geschäftsführer Florian Hüttner. „Dieser Erfolg zeigt, dass echtes Fleisch auch ohne lebende Tiere produziert werden kann.“

„Wir sehen uns daher nicht als Konkurrenten der Fleischindustrie, sondern als deren Partner. Die Fleischindustrie verfügt über etablierte Vertriebsstrukturen, umfangreiches Know-how und Zugang zu politischen Netzwerken. Unsere Vision ist es daher, gemeinsam mit der Fleischindustrie Produkte zu entwickeln, die bestehende Produktionsmethoden nutzen und die Einführung von kultiviertem Fleisch erleichtern. Auch für die Landwirtschaft könnten sich zukünftig Wege ergeben, von den neuen Produktionsmethoden für Fleisch zu profitieren”, ist sich Hüttner sicher.

Hüttner betont zudem die Bedeutung solcher alternativen Produktionsmethoden vor dem Hintergrund aktueller Herausforderungen wie der Bedrohung durch Maul- und Klauenseuche (MKS). „Kultiviertes Fleisch bietet durch seine Herstellung im Labor nicht nur eine Lösung für ethische und ökologische Probleme, sondern reduziert auch die Angriffsfläche für Krankheiten, denen lebende Tiere ausgesetzt sind – und das ohne Genmanipulation.“

Meta verändert sich für Trump …

… doch was bedeutet der Wandel für die Plattform selbst und was für Influencer und Marken? Ein Kommentar von Philipp Martin, Gründer von Reachbird und Experte für Influencer Marketing im DACH-Raum.

In einer Zeit, in der soziale Medien unseren Alltag mehr denn je prägen, kündigt Meta, das Unternehmen hinter Facebook und Instagram, weitreichende Veränderungen an. Diese Entwicklungen könnten die Plattformen selbst und die Arbeit von Influencern und Marken grundlegend beeinflussen. Als Experte für Influencer Marketing analysiere ich die möglichen Auswirkungen dieser Umwälzungen.

Die Macht der sozialen Medien in Deutschland

Bevor wir uns den spezifischen Änderungen bei Meta zuwenden, lohnt ein Blick auf die derzeitige Bedeutung sozialer Medien in Deutschland. Laut aktuellen Statistiken von Meltwater (2024) nutzen mehr als 80% aller Einwohnerinnen und Einwohner in Deutschland Social Media – und das im Durchschnitt mehr als 1,5 Stunden täglich. Diese Zahlen unterstreichen die enorme Reichweite und den potenziellen Einfluss, den Plattformen wie Facebook und Instagram auf die öffentliche Meinungsbildung haben.

Metas neue Strategie: Abschied vom organisierten Faktencheck

Eine der gravierendsten Änderungen bei Meta betrifft den Umgang mit Faktenchecks. Bisher setzte das Unternehmen auf externe Organisationen, um die Richtigkeit von Informationen zu überprüfen. Nun plant Meta, ähnlich wie bei X (ehemals Twitter), auf die Schwarmintelligenz zu setzen. Meta-Gründer Mark Zuckerberg veröffentlichte ein Video, in welchem er Änderungen im Umgang mit Desinformation und Hate Speech auf seinen Plattformen ankündigte. Diese Entwicklung birgt erhebliche Auswirkungen auf den Wahrheitsgehalt der auf der Plattform geteilten Informationen. Besonders für Influencer und Marken, die auf ihre Glaubwürdigkeit angewiesen sind, entsteht eine neue Herausforderung.

Politische Implikationen

Der Übergang zu einem dezentralisierten System der Inhaltsüberprüfung könnte eine Annäherung an bestimmte politische Strömungen bedeuten. Es stellt sich die Frage, wie die Plattform und ihre Nutzer in Zukunft mit Falschinformationen umgehen werden. Diese Entwicklung könnte als eine Annäherung an die Politik der Republikaner gesehen werden, die durch die Änderungen möglicherweise begünstigt wird. Ein weiterer Aspekt der Änderungen betrifft den Umgang mit sogenannten schädlichen Inhalten. Meta plant, die Regeln in sensiblen Bereichen wie Migration oder Sexualität zu lockern. Diese Lockerung könnte zu einem Anstieg aggressiver, negativer und konfrontativer Beiträge führen. Eine stärkere Polarisierung der Plattform ist zu erwarten – ein Trend, der bereits auf anderen sozialen Netzwerken wie X zu beobachten ist.

Auswirkungen auf das Nutzerverhalten

Die mögliche Zunahme von Hassrede und polarisierenden Inhalten könnte das Nutzererlebnis auf Meta-Plattformen grundlegend verändern. Für Influencer und Marken bedeutet dies, dass sie sich möglicherweise in einem zunehmend negativen Umfeld bewegen müssen. Dies könnte nicht nur ihre Reichweite, sondern auch die Qualität ihrer Interaktionen mit Followern beeinflussen.

Trotz der potenziellen Risiken bietet die Nutzung von Schwarmintelligenz auch Chancen. Es bleibt abzuwarten, wie sich die neue Faktencheck-Strategie langfristig bewährt. Die Möglichkeit, dass jeder mitwirken kann, könnte für mehr Transparenz und schnellere, unkompliziertere Checks sorgen – ähnlich wie bei Wikipedia.

Zukünftig sollen laut Mark Zuckerberg nicht mehr autorisierte Faktenchecker für die Kontrolle sorgen, sondern die Community selbst – indem man mit Community-Notes, ähnlich wie es aktuell bei X bereits der Fall ist, auf falsche Informationen hinweisen kann. Dieser Community-Ansatz ist im ersten Moment nicht schlecht, sondern eine sinnvolle Ergänzung zu dem bestehenden System. Er wird jedoch ohne klare Moderation und ohne professionelle Faktenchecker kaum der Flut an Desinformation auf Social Media gerecht werden können. Vielmehr sollten beide Ansätze genutzt werden, um Desinformation einzudämmen.

Die Verantwortung der Plattformen in Krisenzeiten

Angesichts der bevorstehenden Wahlen und der anhaltenden globalen Krisen tragen Social-Media-Plattformen eine besondere Verantwortung. Gerade in Wahlkampf- und Krisenzeiten müssten sie eigentlich dieser Verantwortung gerecht werden. Diese Verantwortung nehmen sie jetzt nicht mehr wahr. Durch den positiven Effekt, dass über Social Media jede und jeder seine eigene Meinung kundtun und somit an demokratischen Prozessen und der Meinungsbildung uneingeschränkt teilhaben kann, gibt es auch Nachteile. Denn: Wer garantiert, dass es sich bei den veröffentlichten Inhalten um korrekte Informationen handelt? Was, wenn gezielt falsche Informationen über soziale Netzwerke gestreut werden? Gezielte Desinformation über Social Media in Verbindung mit den hohen Nutzerzahlen kann einen großen, negativen Einfluss auf unsere Gesellschaft haben.

Der europäische Kontext: Digital Services Act

Während die angekündigten Änderungen zunächst die USA betreffen, sind sie langfristig auch für den europäischen Markt relevant. Der Digital Services Act in der EU regelt den Umgang mit gezielter Desinformation. Es wird interessant sein zu beobachten, wie Meta diese Regelungen mit seinen neuen Ansätzen in Einklang bringen wird. Umso wichtiger ist es, dass von Seiten der Gesellschaft und auch von Seiten der Plattformen gewisse Regeln aufgesetzt und eingehalten werden. Einen rechtlichen Rahmen bietet in Europa der Digital Services Act, der den Umgang mit gezielter Desinformation regelt.

Auswirkungen auf die Influencer-Welt

Die Änderungen bei Meta haben zudem auch weitreichende Implikationen für die Influencer-Branche. Viele Influencer weltweit gelten als Expertinnen und Experten auf ihren Gebieten - egal ob Fitness- und Gesundheitsinfluencer, Finanzinfluencer oder auch Politikinfluencer. Mit tausenden oder gar Millionen von Abonnenten haben sie einen großen Einfluss und können – wie der Name schon sagt – beeinflussen! Bisher wurde der Content von Influencern nur sehr selten wirklich kontrolliert und eingeschränkt – dies kann durch die neuen Community-Notes auch einen positiven Einfluss auf falsch verbreitete Informationen durch Influencer haben, sofern sich die aktiven Communities der Influencer auch kritisch mit deren Content auseinandersetzen und darauf entsprechend reagieren.

Herausforderung Hate Speech

Ein besonders kritischer Punkt für Influencer ist der Umgang mit Hate Speech. Influencer sind meist täglich Hate Speech ausgesetzt. Eine Einschränkung von Hate Speech war und ist für Influencer von großem Interesse, um in einem positiven Umfeld ihre Inhalte veröffentlichen zu können. Sollte es zu einer Auflösung dieser Einschränkung kommen, so ändert sich die generelle Social Media Tonalität zum Negativen. Einen Vorgeschmack gibt hier ebenfalls die Plattform X, auf welcher es aktuell kaum Einschränkungen gibt und Hate Speech deshalb dort bereits zu einem oft negativ aufgeladenen Community-Klima führt.

Konsequenzen für Marken-Kollaborationen

Die möglichen Veränderungen im Kommunikationsklima auf Meta-Plattformen haben auch Auswirkungen auf die Zusammenarbeit zwischen Marken und Influencern. Die Ziele von Brands in der Zusammenarbeit mit Influencern liegen auf der Hand – es geht um Aufmerksamkeit, Interaktion und Abverkauf. Diese Ziele lassen sich vor allem dann erreichen, wenn das Umfeld positiv ist. Hate Speech bringt mit negativem Kommunikations-Klima auch die Ziele der Markenkommunikation in Gefahr – weshalb wir uns für positive Communities und eine Einschränkung von Hate Speech einsetzen sollten. Gleichzeitig bedeutet dies natürlich nicht, dass kritische Kommentare oder Feedback eingeschränkt werden – es geht rein um das Beschimpfen und Verunglimpfen von Social Media Nutzern.

Blick in die Zukunft: Anpassung und Verantwortung

Es bleibt abzuwarten, wie sich die aktuell angekündigten Änderungen in den USA etablieren werden und zu welchem Resultat dies führt. Für den europäischen Markt wird es vorerst keine Änderungen geben – jedoch sollte die Situation und Entwicklung von Marken, Agenturen und auch Nutzern und Influencern gut beobachtet werden.

Fazit: Eine neue Ära der digitalen Kommunikation

Die von Meta angekündigten Änderungen markieren möglicherweise den Beginn einer neuen Ära in der digitalen Kommunikation. Dieser Wandel bringt nicht nur Herausforderungen, sondern auch Chancen für Influencer und Marken mit sich, insbesondere hinsichtlich der Qualität des Contents und der Authentizität von Informationen.

Die kommenden Monate und Jahre werden zeigen, wie sich diese Veränderungen auf die Social-Media-Landschaft auswirken werden. Eines steht jedoch fest: Influencer, Marken und Nutzer müssen sich auf ein dynamischeres, möglicherweise kontroverseres Umfeld einstellen. Die Fähigkeit, sich anzupassen und verantwortungsvoll zu kommunizieren, wird mehr denn je über den Erfolg in der digitalen Welt entscheiden.

Ausblick: KI und die Digitalwirtschaft

KI, politische Turbulenzen und Cookie-Fragezeichen: Die Digitalbranche wird auch 2025 vor herausfordernden Aufgaben stehen. Wie sie diesen begegnen kann, erläutern Swen Büttner und Christoph Schwarzmann von MGID Deutschland.

Das neue Jahr hat begonnen und noch sind alle Fragen offen: Welche neuen Chancen und Herausforderungen wird KI 2025 für die Digitalwirtschaft bereithalten? Wie geht es weiter rund um Cookies und Datenschutz? Und welche Auswirkungen werden die politischen Umwälzungen in Deutschland und den USA auf die Strategien und Erfolgsaussichten von Advertisern und Publishern haben? Hier fünf Thesen, welche Entwicklungen die Branche in diesem Jahr bewegen werden.

1. Mehrwert: KI geht 2025 endgültig über die Generierung von Creatives hinaus

Generative KI für die Erstellung von Creatives zu nutzen, hat sich fest etabliert und spart Zeit und Geld. Sowohl Advertiser als auch Publisher erkennen aber zunehmend, welche Möglichkeiten sich ihnen darüber hinaus eröffnen. Datengetriebene Ansätze, fundierte Analysen und die Prognose der Performance einzelner Kampagnen sind dabei nur die ersten Schritte. Zunehmend sind KI-Tools verfügbar, die nahezu das komplette Kampagnen-Management und den Media-Einkauf automatisieren und dadurch wesentlich schneller, kostengünstiger und effizienter gestalten. Gerade auch speziell für kleinere Brands werden sich – etwa im Bereich programmatischer Kampagnen – durch KI Möglichkeiten bieten, die bislang als zu komplex galten.

2. Turbulenzen: Politik bestimmt das erste Quartal

Der Amtsantritt von Donald Trump in den USA, Neuwahlen in Deutschland: 2025 beginnt politisch äußerst turbulent. Davon wird auch die Werbebranche nicht unberührt bleiben. Vorstellbar ist, dass Konsumenten angesichts unklarer Zukunftsaussichten erst einmal zurückhaltend agieren. Branding-Kampagnen könnten vor diesem Hintergrund von Kürzungen betroffen sein, während die Budgets für Performance-Kampagnen tendenziell stabiler bleiben dürften. Für Advertiser kann dies bedeuten, sich noch stärker auf eine exakte Zielgruppenauswahl zu konzentrieren und Ergebnisse genau zu evaluieren, um ihre Budgets optimal zu nutzen. In Deutschland könnten Verschiebungen im politischen Spektrum zudem dazu führen, dass rechtskonservative Medien und Narrative – von vielen Brands bislang strikt gemieden – höhere Akzeptanz finden. Dadurch können sich zwar zusätzliche Möglichkeiten ergeben, für Advertiser kann sich dies 2025 allerdings auch zu einer Frage der Moral entwickeln.

3. KI-Schattenseiten: Noch mehr Fake News, noch mehr Made-for-Advertising-Seiten

Neben den vielen Vorteilen der KI wird diese 2025 leider auch negative Trends weiter befeuern. So ist davon auszugehen, dass die Zahl so genannter MFA-Seiten – „Made for Advertising“, also dubiose, rein für Werbeschaltungen konzipierte Websites mit niedriger inhaltlicher Qualität – nochmals steigen wird. Gleiches gilt für die Verbreitung von Fake News. Der Grund dahinter ist simpel: Per KI lassen sich komplette MFA-Seiten, die zumindest auf den ersten Blick kaum noch von seriösen, legitimen Publishern zu unterscheiden sind, abstruseste Fake News und Verschwörungstheorien noch schneller und einfacher erstellen und monetarisieren. Ein Qualitätsproblem, dem sich auch in diesem Jahr die gesamte Werbebranche stellen muss.

4. Monetarisierung: Publisher müssen sich noch breiter aufstellen

Die Zeiten, in denen sich Publisher auf einige wenige Einnahmequellen beschränken konnten, sind definitiv vorbei. 2025 wird vielfach von einer weiteren Diversifizierung geprägt sein. Hier können beispielsweise Optionen wie direkte Partnerschaften, Abo-Modelle oder auch native Ads für viele Publisher eine stärkere Rolle spielen. Dies sorgt nicht nur für mehr Sicherheit und Stabilität, sondern kann gleichzeitig auch dazu beitragen, die Abhängigkeit von einzelnen großen Playern wie Google oder Facebook zu verringern. Selbst plötzliche Änderungen an Algorithmen oder der Infrastruktur dieser BigTech-Giganten treffen gut aufgestellte Publisher nicht so hart.

5. Cookies & Co.: Flexibilität ist Trumpf, First-Party-Daten stehen im Fokus

Das Hin und Her beim „Cookie-Aus“ wird vermutlich auch 2025 erst einmal weitergehen. Brands ziehen daraus jedoch zunehmend ihre Konsequenzen und setzen vermehrt auf einen Mix aus Cookie-basierten und Cookie-losen Strategien. Dadurch bleiben sie einerseits flexibel und tragen andererseits dem Datenschutz Rechnung, der noch weiter an Bedeutung gewinnen wird. Für Publisher steht weiter das Thema First-Party-Daten im Fokus. Sie müssen sich damit beschäftigen, ihre Daten auf clevere Weise zu sammeln, aufzubereiten und gewinnbringend zu nutzen. Positiver Nebeneffekt: Auf diese Weise können sie gleichzeitig engere Verbindungen zu ihren Partnern auf Advertiser-Seite aufbauen.

Was gehört in eine KI-Policy?

Recht für Gründer*innen: Über den verantwortungsvollen Umgang mit KI.

Künstliche Intelligenz (KI) ist längst Teil unseres Alltags und hält in Unternehmen auch zunehmend Einzug. Ob beim Erstellen von Texten, in der Datenanalyse oder bei der Automatisierung von Routine­aufgaben – KI ist ein starkes Werkzeug, das Unternehmen viele Vorteile bieten kann. Doch mit diesen Vorteilen kommen auch Verantwortung und Risiken, die eine klare und durchdachte KI-Policy erfordern.

Diese Einleitung zu einem Artikel über KI-Policies ist KI-generiert. Es ist so schön bequem und schnell gemacht: eines der gängigen LLM-Systeme online aufrufen, beispielsweise ChatGPT, und binnen Sekunden ist der Artikel fertig.

Ihr kennt das im Privaten, vor allem aber auch im Arbeitsumfeld. KI-Tools sind aus der Arbeitswelt nicht mehr wegzudenken. Die Nutzung von KI – insbesondere für berufliche Aufgaben – birgt jedoch Risiken. Manche KI neigt, falsch trainiert, zu diskriminierenden Entscheidungen, was z.B. im HR-Bereich gefährlich ist. Unbedacht erstellte Prompts können den Schutz von Geschäftsgeheimnissen aufs Spiel setzen. Die Datenschutzgrundsätze sind wie immer einzuhalten.

Generative KI schert sich, wenn wir als Nutzer*innen nicht da­rauf Acht geben, nicht um die Urheberrechte derer, deren Werke wir – ob bewusst oder unbewusst – verwenden oder verletzen. Zudem ist seit August 2024 die KI-Verordnung in der EU in Kraft und stellt an Unternehmen, die KI-Systeme und -Modelle entwickeln, anbieten oder betreiben, umfangreiche Anforderungen. Auch die mit KI einhergehenden Risiken sind nicht außer Acht zu lassen.

Seid ihr als Gründer*innen oder in sonst verantwortlicher Position in einem Unternehmen mit mehreren Mitarbeiter*innen tätig, müsst ihr euch Gedanken darüber machen, wie solche Risiken zu fassen und zu begrenzen sind. Tut ihr das nicht, drohen aus diversen Rechtsgrundlagen z.B. Schadensersatzforderungen, Bußgelder oder der Verlust an Assets – Dinge, die allerspätestens bei der nächsten Finanzierungsrunde negativ bewertet werden. In Bezug auf eure Belegschaft müsst ihr also Awareness für diese Themen schaffen und konkrete Vorgaben machen.

Denn eines ist klar: KI wird in eurem Unternehmen genutzt werden, ob mit oder ohne euer Wissen. Und bevor die Mitarbeiter*innen auf privaten Geräten sensible berufliche Aufgaben nicht reglementiert mittels ChatGPT & Co. lösen, beschreibt lieber beizeiten Dos and Don’ts, um sicherstellen, dass KI verantwortungsvoll, sicher und rechtskonform im Unternehmen eingesetzt wird.

Dazu dient eine die Belegschaft informierende und verpflichtende KI-Policy. Im Folgenden findest du einen Überblick darüber, welche Aspekte in eine solche Policy gehören.

1. Richtlinien für den Einsatz generativer KI am Arbeitsplatz

Generative KI-Modelle wie ChatGPT, DALL-E und andere erstellen Inhalte nach Maßgabe der Eingaben der Nutzenden. Bei diesen Prompts und bei der Verwendung der generierten Ergebnisse ist auf Folgendes zu achten:

  • Schutz sensibler Daten: Die Eingabe vertraulicher Informationen in KI-Modelle stellt ein erhebliches Risiko dar, da generative KI-Systeme auf großen Datenmengen trainiert sind und Informationen potenziell unkontrolliert verarbeiten und speichern. Die KI-Policy sollte explizit verbieten, sensible oder vertrauliche Informationen in generative KI-Systeme einzugeben, insbesondere, wenn diese extern betrieben werden. Die Policy sollte beschreiben wie mit sensiblen Daten umzugehen ist und welche Daten für die Verarbeitung durch KI-Systeme ungeeignet sind.
  • Einhaltung des Datenschutzes: Die KI-Policy sollte klarstellen, dass der Einsatz generativer KI-Tools den Anforderungen der Datenschutzgesetze (DSGVO, BDSG) entsprechen muss. Dazu gehören Vorgaben, wie personenbezogene Daten rechtssicher zu handhaben sind und welche dieser Daten überhaupt für den Einsatz von KI-Modellen geeignet sind. Zudem bedarf es Vorgaben zur Anonymisierung und Pseudonymisierung der Daten, daneben Transparenzvorgaben, um betroffene Personen über die Nutzung ihrer Daten zu informieren. Personenbezogene Daten in öffentlichen KI-Systemen einzusetzen, sollte möglichst untersagt werden.
  • Umgang mit geistigem Eigentum: Die Nutzung generativer KI-Modelle kann zu Problemen führen, wenn die KI auf geschütztem Material trainiert wurde, von dem/der Nutzenden urheberrechtlich geschützte Werke in den Prompt einbezogen werden oder die KI Werke erstellt, die bestehende Urheber- oder sonstige Schutzrechte verletzen. Die KI-Policy sollte ein Verbot der Verwendung von Werken enthalten, an denen nicht die für die Bearbeitung erforderlichen Rechte bestehen. Und sie kann Regelungen zur Überprüfung und Genehmigung von KI-erstellten Inhalten festlegen, etwa durch eine Rechtsabteilung oder eine speziell dafür zuständige Stelle.
  • Transparenz und Kennzeichnung: Die KI-Policy sollte festlegen, dass Inhalte, die mithilfe von generativer KI erstellt wurden, transparent gekennzeichnet werden. Dies trägt dazu bei, Missverständnisse zu vermeiden und sicherzustellen, dass die Herkunft von Texten und Bildern klar erkennbar ist. Diese Kennzeichnungspflicht sollte insbesondere dann gelten, wenn KI-generierte Inhalte veröffentlicht werden, aber auch im internen Gebrauch.
  • Positivliste erlaubter KI-Systeme: Um die Mitarbeiter*innen mit der Anwendung dieser Vorgaben auf einzelne am Markt angebotene KI-Systeme nicht allein zu lassen, kann eine KI-Policy auch eine Auflistung der vom Unternehmen freigegebenen Systeme enthalten. Voraussetzung ist dafür natürlich, dass diese Systeme vorab entsprechend fachlich geprüft wurden. Das kann schwierig sein, weil sich Anbieter*innen meist nicht in die Karten schauen lassen.


2. Richtlinien für die Entwicklung und Implementierung von KI

Auch wenn ihr in eurem Unternehmen KI-Systeme entwickeln oder implementieren wollt, sind ethische, rechtliche und technische Anforderungen in einer KI-Policy zu adressieren.

  • Fairness, Transparenz und Nichtdiskriminierung: KI-Systeme können, wenn sie auf verzerrten Datensätzen trainiert werden, Diskriminierung oder Vorurteile reproduzieren. Eine KI-Policy sollte deshalb klare ethische Richtlinien fest­legen, die sicherstellen, dass die entwickelten Modelle fair, transparent und frei von Diskriminierung sind. Ein mögliches Vorgehen ist, regelmäßige Audits und Bias-Tests durchzuführen und in der Policy verpflichtend vorzusehen, um Verzerrungen frühzeitig zu erkennen und zu beheben.
  • Datenschutz und Datensicherheit: Der verantwortungsvolle Umgang mit Nutzer*innendaten ist eine der wichtigsten Anforderungen in der KI-Entwicklung. Die KI-Policy sollte festlegen, dass bei der Verarbeitung personenbezogener Daten durch die KI strenge Schutzanforderungen, am besten strenge Begrenzungen, gelten. Rein automatisierte Entscheidungen sind schon laut DSGVO verboten. Es sollten nur die für die jeweilige Anwendung notwendigen Daten erhoben und verarbeitet werden, und diese Daten sollten weitestgehend anonymisiert oder pseudonymisiert werden. Regelungen für den Zugang zu diesen Daten sowie Maßnahmen zur Datensicherheit (wie Verschlüsselung und Zugriffskontrollen) sollten ebenfalls Bestandteil der Policy sein.
  • Überprüfung auf Halluzinationen und Fehlinterpretationen: Generative KI-Modelle neigen dazu, Informationen zu „halluzinieren“, also falsche oder ungenaue Inhalte zu erstellen. In der KI-Policy sollte festgelegt sein, dass entwickelte KI-Modelle regelmäßig auf ihre Genauigkeit und Zuverlässigkeit überprüft werden. Dies kann durch vorgeschriebene Tests und Simulationen geschehen, bei denen die KI in verschiedenen Szenarien eingesetzt und auf ihre Fähigkeit, korrekte Ergebnisse zu liefern, geprüft wird. Es sollten auch definiert werden, wie Fehler erkannt und behoben werden können.
  • Erklärbarkeit und Nutzer*infreundlichkeit: Komplexe KI-Modelle sind oft schwer verständlich und wirken wie eine Black Box, deren Entscheidungen für Außenstehende kaum nachvollziehbar sind. Die KI-Policy sollte daher sicherstellen, dass die KI so gestaltet ist, dass ihre Funktionsweise für Nutzer*innen transparent und nachvollziehbar ist. Dies ist insbesondere dort wichtig, wo KI-Entscheidungen schwerwiegende Auswirkungen haben können. Ihr solltet sicherstellen, dass für Nutzer*innen eine verständliche Erläuterung darüber bereitgestellt wird, wie und warum die KI zu einem bestimmten Ergebnis gelangt ist. Das ist Voraussetzung für Kontrolle und rechtskonformen Betrieb der KI.
  • Gesetzeskonformität gemäß KI-Verordnung: Nicht zuletzt hat die Europäische Union die KI-Verordnung in Kraft gesetzt, die strenge Anforderungen an die Entwicklung und Nutzung von KI stellt. Die KI-Verordnung dient der Produktsicherheit und verlangt zunächst eine Risikoeinschätzung für die KI-Systeme. Die Maßgaben für eine solche Einschätzung sollten in der Policy angerissen und No-Gos für die Entwicklung von Funktionalitäten, die zu den laut KI-Verordnung verbotenen KI-Anwendungen gehören, ausgesprochen werden. Für sogenannte Hochrisiko-­KI-Systeme gelten besondere Anforderungen, die bei einer Entwicklung mitgedacht werden müssen, wofür eine KI-Policy zumindest sensibilisieren sollte. Die im Einzelfall geforderte Überprüfung und Einstufung des jeweiligen Systems oder Modells kann eine Policy nicht leisten. Die initialen und regelmäßigen Überprüfungen sowie Risikobewertungen sollte sie aber fordern.
  • Regelmäßige Überwachung und Wartung der KI-Modelle: KI-Modelle entwickeln sich weiter und benötigen regelmäßige Überwachung und Wartung, um die Leistung zu optimieren und mögliche Fehler zu minimieren. Die KI-Policy sollte eine solche sich wiederholende Maintenance festlegen, etwa die schon erwähnten regelmäßigen Aktualisierungen, Fehler­behebungen und Performance-Überprüfungen, damit die KI-Systeme immer den aktuellen Standards und Anforderungen entsprechen.


3. Übergreifende Ziele und Vorgaben einer KI-Policy

Eine KI-Policy sollte nicht nur detaillierte Vorgaben zur Nutzung und Entwicklung von KI enthalten, sondern auch allgemeine Leitlinien und Prinzipien für den Einsatz von KI im Unternehmen, um ein Bewusstsein für die Potenziale und Risiken der Technologie zu schaffen.

  • Regelmäßige Überprüfung und Anpassung: Da sich KI-Technologien und gesetzliche Anforderungen stetig weiterentwickeln, sollte auch die KI-Policy regelmäßig überprüft und aktualisiert werden. Dies hilft sicherzustellen, dass das Unternehmen stets auf dem neuesten Stand ist und seine KI-Systeme konform mit den aktuellen gesetzlichen, ethischen und technischen Standards sind. Es ist empfehlenswert, regelmäßige Audits durchzuführen und die Policy an neue Entwicklungen in der KI-Forschung und Gesetzgebung sowie an die Marktanforderungen anzupassen.
  • Unternehmenskultur in Bezug auf KI: Eine KI-Policy sollte dazu dienen, den transparenten und offenen Umgang mit KI in allen Unternehmensbereichen und damit die Akzeptanz für KI-Systeme sowohl innerhalb des Unternehmens als auch bei Kund*innen und Partner*innen zu fördern. Dazu gehört auch, dass das Unternehmen offenlegt, in welchen Bereichen KI eingesetzt wird und welche Entscheidungen die Technologie beeinflusst. Letztendlich ist die KI-Policy ein Ins­trument zur Förderung einer verantwortungsvollen und ethischen Unternehmenskultur in Bezug auf KI. Das schützt letztlich auch die Integrität und die Werte des Unternehmens.
  • Schulungen und Sensibilisierungsmaßnahmen: Um einen solchen kompetenten und verantwortungsvollen Umgang mit KI zu erreichen, sind regelmäßige Schulungen und Sensibilisierungsmaßnahmen für die Mitarbeiter*innen zu den hier genannten Aspekten vorzusehen.

Fazit

Dieser Artikel kann nur einen groben Überblick und Rahmen geben. Die konkreten Inhalte einer auf eure Belange und Nutzungsformen passenden Policy müsst ihr in Anschauung der Spezifika der eingesetzten oder zu entwickelnden KI-Systeme erarbeiten. Das kann auch schlecht an KI delegiert werden: Der Rest des eingangs erwähnten KI-generierten Artikels war nicht wirklich brauchbar, ebenso die testweise mit KI erstellten Policies. Dafür braucht es professionelle Unterstützung.

Der Autor Dr. Daniel Michel, LL.M. ist seit 2004 als Rechtsanwalt im Bereich IT/IP/Technologie tätig. Nach Stationen in spezialisierten und Großkanzleien betreibt er seit 2018 seine eigene Rechtsberatung im Raum München, www.datalawcounsel.com

HR-Trends 2025

Fünf HR-Expert*innen geben ihre persönlichen Einblicke in Perspektiven, Hoffnungen und Strategien für das kommende Jahr.

Personalführung und Human Ressources müssen konstant weitergedacht werden. Gründe dafür gibt es genug – ob Digitalisierung und KI oder demografischer Wandel und Fachkräftemangel. Die HR-Verantwortlichen von ToolTime, Ella Media, Kenjo, Family Office 360grad AG und Mashup Communications zeigen, welche Trends Fach- und Führungskräfte 2025 erwarten.

Wisefood: Die Zero-Waste-Profis

Wie Wisefood mit seinen essbaren Trinkhalmen und ökologischen (Mehrweg-)Produkten zum Vorreiter für nachhaltigen Gastro-Bedarf wurde.

Große Veränderungen beginnen oft im Kleinen, und manchmal entspringt der erste Schritt einer mehr oder weniger spontanen Idee. Im Jahr 2017 erkannten Studierende am Karlsruher Institut für Technologie (KIT), dass bei der Herstellung von Lebensmittelprodukten Abfälle und Reststoffe anfallen, die sich sinnvoll nutzen lassen. „Bei der Herstellung von Apfelsaft bleiben die wertvollen Fasern übrig, der sogenannte Apfel­trester“, so Philipp Silbernagel, Mitgründer und Geschäftsführer der Wisefood GmbH, „und wir wollten daraus essbare Strohhalme herstellen.“

Was als akademisches Projekt und Hobby begann, entwickelte sich zu einem Vorreiterunternehmen, das heute in einem boomenden Marktsegment führend ist. Wisefood bietet ein wachsendes, breit aufgestelltes Portfolio von ökologischen Einweg- und zunehmend auch Mehrwegprodukten für Speisen und Getränke, angefangen beim Trinkhalm, über Besteck und Teller bis hin zu Küchenprodukten und Kerzen. „Wir verkaufen auf allen Kanälen“, sagt Philipp, „vom Groß- und Einzelhandel, über Online-Plattformen und natürlich über unseren eigenen Shop.“ Wisefood beliefert überwiegend Gastronomie und Handel, aber auch Privatkund*innen. Die meisten Produkte laufen unter der Marke Wisefood, einige Händler*innen und Markenhersteller*innen setzen auf Whitelabel-Lösungen. Wisefood ist mittlerweile in über 30 Ländern verfügbar, Tendenz steigend.

Start mit der Nudelmaschine

Der Weg dahin war alles andere als einfach. „Die ersten Prototypen für den essbaren Trinkhalm entstanden in Handarbeit mithilfe einer Nudelmaschine“, so Philipp. Zusammen mit seinen damaligen Mitgründern Danilo Jovicic und Konstantin Neumann wollte er eine Manufaktur für hochpreisige, essbare Trinkhalme aufbauen. „Dann haben wir uns intensiv mit dem Markt für Verpackungen und Einwegprodukte beschäftigt und festgestellt, dass hier sehr viel Müll entsteht und kaum etwas nachhaltig ist.“ Die Gründer erkannten das Potenzial ihrer Idee. Doch die ersten, noch in Handarbeit hergestellten Trinkhalme kosteten 50 Cent und waren damit nur für einen kleinen Nischenmarkt attraktiv. Die Erkenntnis reifte, dass nur ein sehr günstiges Produkt, das auch in der Masse funktioniert, einen spürbaren Unterschied machen würde.

Lernen durch Rückschläge

Anfangs war Wisefood komplett durch eigene Ersparnisse finanziert. „Dann haben wir ein Crowdfunding erfolgreich durchgeführt und gemerkt, dass sich die Leute für Nachhaltigkeit und für unser Produkt interessieren“, so Philipp. 2018 folgte eine kleinere Finanzierungsrunde mit Business Angels. Im selben Jahr ging das Team zur TV-Show „Die Höhle der Löwen“, etwas verfrüht, wie sich herausstellte. „Die Idee weckte zwar Begeisterung, doch in der Testrunde löste sich unser Trinkhalm auf und gab Geschmack an das Getränk ab“, erinnert sich Philipp, ein absolutes No-Go. Nach der Absage der Investor*innen stellte sich die Frage, ob man überhaupt weitermachen sollte. Philipp und sein Team gaben nicht auf und nahmen sich vor, dass zur Ausstrahlung der Sendung, also innerhalb von sechs Monaten, das Produkt marktreif sein sollte. „Die vielen Rückschläge, die wir im Laufe der Zeit hatten, waren wichtige Momente, die uns weitergebracht haben“, so Philipp.

Größer denken

Im Jahr 2019 sortierte sich das Team neu. Zwei Gründungsmitglieder stiegen aus, Maximilian Lemke als Head of Operations, und Patricia Titz als Head of Sales and Business Development stießen dazu. Kennengelernt hatten sich die drei bei UnternehmerTUM, dem Gründerzentrum der TU München. „Wir haben schnell gemerkt, dass wir ein gutes Team sind, und Wisefood zusammen groß machen können“, sagt Philipp. Es folgte der Umzug nach Garching, wo die Räumlichkeiten des Gründerzentrums und vor allem das Netzwerk genutzt werden konnten.

Das Produkt war noch längst nicht reif für den Massenmarkt. München und das Umland boten die passenden Labore sowie Spezialist*innen für die Forschungs- und Entwicklungsarbeit, zudem ein Ökosystem mit vielen weiteren nachhaltigen, technologielastigen Start-ups. Als neuer Investor kam DX Ventures, der Investmentarm von Delivery Hero, mit an Bord. Besonders bei der Entwicklung und der Produktion musste das Team umdenken. „Zu Beginn haben wir auf kleine Labore gesetzt, um unsere Lebensmittelprodukte zu entwickeln“, sagt Philipp, „doch im Rückblick hätten wir früher auf die Spezialist*innen setzen und die Produktion mit Expert*innen hochfahren sollen.“ Zum Beispiel kaufte das Team am Anfang kritische Werkzeuge für die Produktion selbst, etwa einen Extruder für die Trinkhalme. Weil ein einziges Bauteil kaputt ging und nicht schnell genug neu beschafft werden konnte, verlor das Team mehrere Monate. „Aus solchen Lek­tionen haben wir gelernt, größer zu denken“, so Philipp. Heute produziert Wisefood bei einem der führenden Lebensmittelhersteller*innen in München.

Mehr Produkte und Smart Money

Als es im Jahr 2019 zum ersten großen Deal mit Aldi kam, der die Produkte von Wisefood deutschlandweit in alle Märkte des Discounters brachte, sah es aus, als hätten es Philipp und sein Team geschafft. „Einer der schönsten Momente als Gründer ist, wenn man die eigenen Produkte im Laden sieht“, so Philipp. Als die Wisefood-Trinkhalme in über 4000 Aldi-Filialen standen, wurde der Erfolg mit dem ganzen Team gebührend gefeiert. In dem Geschäftsjahr, nur zwei Jahre nach der Gründung, erzielte Wisefood einen siebenstelligen Umsatz bei sechsstelligem Gewinn.

Doch dann folgte mit der Corona-Krise die nächste Zäsur. „Als Restaurants schlossen, Veranstaltungen ausfielen und die Menschen nicht mehr ausgingen, brach die Nachfrage massiv ein“, sagt Philipp, „und da haben wir gemerkt, dass wir mit der Ein-Produkt-Strategie, nur mit unserem Trinkhalm, nicht weit kommen.“ Das Team konzentrierte sich auf die Erweiterung des Produktsortiments, mit neuen Produkten wie Besteck und Tellern. Seitdem kann Wisefood nicht nur viel mehr Kund*innen ansprechen, sondern sind auch die Warenkörbe größer geworden. Für die sommerliche Grillparty gibt es zum Beispiel passende Sets aus nachhaltigem Einweggeschirr.