Aktuelle Events
Sein Markenzeichen: Sport
Die Erfolgsstory von Unternehmer Willy Bogner
Autor: Sabine HölperWilly Bogner ist Spitzensportler, Filmregisseur und Inhaber des gleichnamigen Sportmode-Labels. Im Jahr 1932 gründete sein Vater das Unternehmen. Heute ist Bogner weltweit Marktführer in hochwertiger Skimode, setzt mehr als 200 Mio. Euro im Jahr um und beschäftigt rund 770 Mitarbeiter.
München ist eine perfekte Basis für Ausflüge in die Alpen. Nur ein paar Kilometer – und man steht „droben“ auf dem Berg, wo die Sonne jetzt im Winter vom Schnee reflektiert wird. Da kommt die Bräune ganz von alleine. Meist braungebrannt ist auch der gebürtige Münchner Willy Bogner. Häufig ist er im Gebirge, schnallt sich ein Paar Ski unter die Füße – und ab geht die Post. Selbst als recht guter Skifahrer kommt man ihm dann nicht hinterher.
Bogner, heute 71, hat noch immer den Mumm des Spitzensportlers in sich, der er schon in seiner Jugend war. Bereits im Alter von 16 Jahren war Bogner mehrfacher deutscher Jugendmeister. Zweimal, 1960 in Squaw Valley und 1964 in Innsbruck, startete Bogner für die deutsche Olympiamannschaft.
86-prozentige Markenbekanntheit
Wer heute 30, 40, 50 Jahre alt ist, ist zu jung, um sich an Willy Bogner als erfolgreichen Abfahrtsläufer zu erinnern. Der Name Bogner ist den meisten dennoch ein Begriff. 86 Prozent der Deutschen kennen die Skimode-Marke, in den USA gehört sie sogar zum offiziellen Sprachgebrauch. Im Wörterbuch werden „Bogners“ als Synonym für Keilhosen geführt. Nun sind auch Keilhosen nicht mehr jedem bekannt.
Dabei legten sie den Grundstein für den internationalen Erfolg des Unternehmens. 1948 präsentierte Bogner die Hosen aus Stretchmaterial erstmals auf einer Modenschau. Seither trug, wer etwas auf sich hielt, die Keilhosen aus München, darunter Stars wie Marilyn Monroe, Jane Mansfield oder Ingrid Bergman. Im vergangenen Jahr, dem Jubiläumsjahr des Unternehmens, tauchten die Keilhosen im Übrigen wieder auf – im Rahmen der Bogner „Heritage Collection“.
Mit Ski und Strickwaren aus Norwegen fing es an
Im Hause Bogner pflegt man die Tradition. 81 Jahre währt sie bereits. 1932 gründete Bogners Vater, ebenfalls Willy mit Vornamen, gemeinsam mit einem Freund ein Importgeschäft für Ski, Zubehör und Strickwaren aus Norwegen.
Seine Motivation war die Leidenschaft für den Skisport. Im Langlauf und Springen gehörte Bogner senior zu den Besten in Europa. Elfmal wurde er Deutscher Meister in der Nordischen Kombination, fünfmal Bayerischer Meister. 1935 belegte er bei den Ski-Weltmeisterschaften in der Tschechoslowakei den dritten Platz. Zu Bogners Glaubwürdigkeit als Leistungssportler gesellte sich „der Geschmack der Mutter“ Maria, die Bogner 1937 heiratete. „Sie fand die Anzüge der Skifahrer scheußlich“, sagt Bogner junior.
„In den Klamotten kannst Du alleine fahren“, habe sie zu ihrem Mann gesagt. Der fuhr dann lieber nicht alleine, sondern gab den Startschuss für die erste eigene Kollektion. Bereits 1936 trug die deutsche Olympia-Mannschaft erstmals Bogner. Seither blieb es bei der Arbeitsteilung: Maria Bogner war für die Entwürfe zuständig, ihr Mann für das Kaufmännische und fürs Marketing.
Das „baumelnde B“
Der größte Marketing-Coup allerdings gelang seiner Frau. 1955 führte sie ein Logo ein, das „baumelnde B“ an den Reißverschlüssen. „Bogner hat als eines der ersten Unternehmen ein Branding geschaffen“, sagt der Firmenchef. „Das war eine geniale Idee.“ Das B sei heute so wichtig wie damals.
Dies ist ein Auszug aus einem aktuellen Artikel unseres Print-Objekts StartingUp:
Den vollständigen Artikel lesen Sie in der aktuellen StartingUp - Heft 01/13 - ab dem 21. Februar 2013 im Handel oder jederzeit online bestellbar in unserem Bestellservice-Bereich
Den vollständigen Artikel lesen Sie in der Ausgabe 01/2013
Diese Artikel könnten Sie auch interessieren:
Münchner Scale-up Wemolo erreicht Break-even
Mit KI zur Profitabilität: Das 2019 gegründete Münchner Tech-Scale-up Wemolo, der "schrankenlose Parkraumspezialist", verzeichnet nach eigenen Angaben ein durchschnittliches Jahreswachstum von 280 Prozent, ist profitabel und verwaltet mehr als 255.000 Stellplätze in Europa.

Die digitale Transformation von Parkplätzen birgt großes Potenzial – vor allem, wenn sie nicht nur Schranken und Tickets eliminiert, sondern neue Geschäftsmodelle erschließt. In einem europäischen Markt für automatisierte Parksysteme, der auf 50 Milliarden Euro geschätzt wird, hat sich das Münchner Unternehmen Wemolo innerhalb kürzester Zeit in die erste Liga gearbeitet.
Mit einem Jahresumsatz von rund 40 Millionen Euro im Jahr 2024 und einer positiven EBIT-Marge im ersten Quartal 2025 hat das Scale-up trotz des signifikanten Wachstums die Gewinnzone erreicht. Die jährliche Wachstumsrate betrug seit Gründung 2019 durchschnittlich 280 Prozent (CAGR), was Wemolo laut Deloitte zu einem der am schnellsten wachsenden Tech-Unternehmen Deutschlands macht. Nach mehreren Finanzierungsrunden mit insgesamt rund 30 Millionen Euro (650.000 € Pre-Seed, 4,7 Mio. € Seed, 15 Mio. € Series A und zuletzt 10 Mio. € Growth Financing durch Partner wie die CIBC Innovation Banking) untermauert Wemolo damit die Attraktivität digitaler Parklösungen als Wachstumsbranche.
“Wir haben unsere Skalierungsphase genutzt, um parallel die Entwicklung unserer Technologie zu beschleunigen und rasch Marktanteile in fünf europäischen Ländern zu gewinnen”, sagt Wemolo-Mitgründer und CEO Dr. Yukio Iwamoto. Zu den Investor*innen zählen neben den strategischen Partnern Armira Growth und henQ auch die Flix Founders (Gründerteam des Mobilitätsanbieters Flix), wobei Jochen Engert dem Unternehmen als Beirat zur Seite steht.
"Dass sich Wemolo nach vergleichsweise kurzer Zeit ins Plus gearbeitet hat, ist das Ergebnis unseres kapitaleffizienten Wachstumskurses - mit deutlich weniger Investitionskapital als bei vergleichbaren Tech-Unternehmen. Unser KI-basiertes System liefert für Immobilieneigentümer, Asset-Manager, Einzelhandel und Kommunen nicht nur digitale Parklösungen, sondern auch wertvolle Daten für strategische Geschäftsentscheidungen", so Jochen Engert.
Vom Campus-Projekt zur Digitalplattform
Ursprünglich im Juli 2019 aus einem Projekt der UnternehmerTUM entstanden, betreibt Wemolo heute KI-basierte Kamerasysteme zur Kennzeichenerfassung und Abrechnung an über 3.000 Standorten in fünf Ländern. Täglich erfasst das Unternehmen mehr als zwei Millionen Parkvorgänge digital und wickelt diese ab. Das Unternehmen beschäftigt aktuell rund 250 Mitarbeitende und verwaltet insgesamt 255.000 Stellplätze – von Supermärkten und zentralen Parkhäusern über Krankenhäuser bis hin zu Freizeitanlagen wie Skigebieten und Badeseen.
"Unsere Profitabilität basiert nicht auf Kostendiät, sondern auf nachhaltiger Skalierung: mehr Volumen bei stabilen Fixkosten, bessere Flächenauslastung und immer wertvollere Daten-Assets für unsere Kunden", erklärt CEO und Mitgründer Jakob Bodenmüller. "Dank unserer KI-basierten Plattform können wir sehr schnell auf Marktanforderungen reagieren und unsere Lösung kontinuierlich weiterentwickeln."
Geschäftsmodell mit messbarem Mehrwert für Betreiber*innen
Das Kernprinzip: Mithilfe KI-basierter Computer Vision werden Ein- und Ausfahrten erfasst, was Schranken, Tickets, Parkscheiben und vor allem kostenintensives Personal vor Ort überflüssig macht. Wemolo bietet verschiedene Module für die Parkraumdigitalisierung - von der Überwachung kostenfreier Flächen bis zu volldigitalen Bezahlsystemen, die auf die jeweiligen Kund*innenanforderungen angepasst werden können. Die intelligente Plattform ermöglicht nicht nur die effiziente Bewirtschaftung von Parkraum und reibungslose Nutzer*innenerlebnisse, sondern liefert auch wertvolle Daten für optimierte Geschäftsentscheidungen.
“Wir liefern anonymisierte, aber hochgradig aussagekräftige Daten zur Flächennutzung”, erklärt CPTO und Mitgründer Bastian Pieper. “Ein Beispiel: Durch die effektive Vermeidung von Fremdparkern konnte einer unserer Lebensmittelkunden die Verfügbarkeit seiner Kundenparkplätze deutlich erhöhen. Das Ergebnis: Ein messbarer Anstieg des Filialumsatzes, der bei typischen Margen des Lebensmitteleinzelhandels eine Gewinnsteigerung im mittleren fünfstelligen Bereich pro Jahr ermöglicht.”
“Bei gewerblichen Immobilienprojekten ermöglichen unsere präzisen Nutzungsdaten eine optimierte Stellplatzdimensionierung, was für Investoren zu signifikanten Einsparungen bei Tiefgaragen-Investitionen führt und die Gesamtrendite der Immobilie verbessert”, ergänzt Pieper.
Wachstumsfinanzierung strategisch eingesetzt
Den Break-even wertet das Management als Bestätigung des Geschäftsmodells, aber auch als Signal des wachsenden Bedarfs am Markt. “Wir merken, dass immer mehr Unternehmen und Immobilieneigentümer aktiv nach einer unkomplizierten, verlässlichen Lösung suchen, um ihre Parkflächen zu digitalisieren – und zugleich relevante Daten zu erheben. Das Thema steht weiterhin am Anfang. Wir wollen Wemolo zum stärksten Anbieter auf dem Feld der smarten Parklösungen ausbauen”, sagt Iwamoto.
“Wir verfolgen bei unserer Technologieentwicklung einen hybriden Ansatz”, erklärt Pieper. “Die entscheidenden Komponenten – unsere custom-trainierte KI und die zentrale Softwareplattform – entwickeln wir komplett inhouse, während wir Spezialkomponenten wie Bezahlautomaten nach unserem Design in Deutschland fertigen lassen.”
“Wir setzen auf robuste Industrial-Grade-Hardware, auf der unsere speziell trainierte KI läuft, um jedes Fahrzeug unter allen Wetterbedingungen zuverlässig zu erfassen. Diese Kombination aus eigener Software-Expertise und gezielter Hardware-Integration ermöglicht uns viel schnellere Innovationszyklen als bei traditionellen Parksystembetreibern oder reinen Software-Anbietern”, führt Pieper fort. “Ähnlich wie Tech-Vorreiter aus dem Silicon Valley bringen wir neue Features und KI-Optimierungen in Wochen statt Quartalen zur Marktreife.”
Expansion und Herausforderungen des Wachstums
Wemolo ist bereits in fünf europäischen Ländern aktiv, darunter Deutschland, Österreich, Schweiz, Polen und Italien. Für 2025 plant das Unternehmen, seine digitalen Bezahllösungen in diesen und weiteren europäischen Märkten auszubauen. Dabei setzt das Scale-up auf ein Netzwerk aus strategischen Kooperationen mit Lebensmitteleinzelhändlern, Immobilienentwicklern und kommunalen Einrichtungen.
“Die klassischen Schrankenparksysteme sind in vielen Regionen noch Standard, aber der Markt wandelt sich rapide”, sagt Bodenmüller. “Unser digitales Konzept steigert den Verbraucherkomfort, die Wirtschaftlichkeit von Immobilien und erfüllt ESG-Anforderungen.”
Die größten Herausforderungen beim weiteren Wachstum sieht das Management vor allem in der unterschiedlichen Regulierung zur Kameraüberwachung in den europäischen Ländern sowie in der Akzeptanz schrankenloser Systeme bei traditionell orientierten Betreibern. “Mit unserer DSGVO-konformen Technologie und messbaren Kostenvorteilen durch den Wegfall wartungsintensiver Schranken und Ticketsysteme überzeugen wir den Markt”, betont Pieper.
Ambitionierte Ziele in einem wachsenden Markt
Vor dem Hintergrund der Profitabilität plant Wemolo nun den nächsten Wachstumsschritt. “Wir sind im digitalen Parksegment bereits Marktführer in Europa und wollen zum absolut stärksten Provider werden”, sagt Iwamoto. “Dass wir jetzt bereits profitabel sind, verschafft uns die nötige Unabhängigkeit, um in Technologie, Teams und Expansion zu investieren, ohne dabei von externem Kapital abhängig zu sein." Branchenexperten prognostizieren für den europäischen Markt digitaler Parksysteme ein anhaltend starkes Wachstum. Denn bislang gelten weniger als 25 Prozent des auf rund 50 Milliarden Euro geschätzten Gesamtmarktes als technologisch modernisiert – etwa durch kamerabasierte Zugangssysteme, automatisierte Bezahlprozesse oder intelligente Flächenanalysen.
Circunomics startet eigenes Batterie-Testlabor
Die Circunomics-Gründer Felix Wagner und Jan Born haben sich das Ziel gesetzt, eine zirkuläre Batteriewirtschaft zu etablieren, indem sie einen digitalen Marktplatz für den Second-Life-Einsatz und das Recycling gebrauchter Batterien bieten. Mit der Einrichtung des eigenen Batterie-Testlabors setzt das Start-up mit Hauptsitz Mainz seine Expansion fort.

„Die Kreislaufwirtschaft ist in Zukunft von immer größerer Bedeutung. Dies ist für uns die große Chance, mit dem digitalen Marktplatz für gebrauchte Batterien, Module und Zellen eine herausragende Position einzunehmen“, sagt Felix Wagner, Co-Founder und CEO von Circunomics. „Im Jahr 2030 werden alleine im Automobilsektor zwischen 200 und 300 Millionen Elektrofahrzeuge auf den Straßen der Welt unterwegs sein. Das bedeutet, dass dann jedes Jahr etwa sechs Millionen gebrauchte Batterien als Rückläufer aus Altfahrzeugen auf den Markt kommen. Diese wiederzuverwenden oder gezielt zu recyclen ist eine Mega-Aufgabe, die gelöst werden muss. Schließlich haben wir alle ein Ziel: Weniger CO2 zu produzieren und weniger der wertvollen, seltenen Rohstoffe zu verbrauchen.“
Battery Lifecycle Management Solution
Die Ergebnisse KI-basierter Analysen von gebrauchten Batterien, die beispielsweise in elektrischen Fahrzeugen verwendet werden, mit selbst ermittelten Laborwerten aus einer Real-Life-Simulation abgleichen, trainieren und verifizieren: Das ist die Aufgabe des neuen Batterie-Testlabors, das vom Start-up Circunomics in Roßdorf bei Darmstadt eingerichtet wurde und jetzt seinen Betrieb vollumfänglich aufgenommen hat.
Die 2019 gegründete Circunomics GmbH ist damit in der Lage, eine Datenbasis für die selbst entwickelte Software aufzubauen, die wiederum genutzt wird, um den Gesundheitszustand (State of Health) einer gebrauchten Batterie während und nach einer Erstverwendung (First Life) sehr präzise zu ermitteln. Vielmehr aber kann detailliert simuliert und hochgerechnet werden, wie sich die gebrauchte Batterie bei einer Zweitverwendung (Second Life) zum Beispiel in einem stationären Speichersystem verhält. Zudem kann eine Empfehlung ausgesprochen werden, welche Batterien für das jeweilige Projekt am besten geeignet sind.
Mit der Einrichtung des Batterie-Testlabors setzt das Start-up mit Hauptsitz Mainz seine Expansion fort, die nach einer erfolgreich durchgeführten Series-A-Finanzierungsrunde möglich ist. Zu Jahresbeginn 2025 hatte Circunomics von Investor*innen über acht Millionen Euro erhalten.
Real-Life-Simulation im Testlabor
Im neuen Batterie-Testlabor in Roßdorf können je nach Bedarf und Programm verschiedene Zellen gleichzeitig in einer sicher abgeschirmten Prüfeinrichtung untergebracht und unterschiedlichsten Belastungen ausgesetzt werden. Es erfolgt eine umfangreiche Real-Life-Simulation täglicher Batterienutzungssituationen beispielsweise in einem Elektrofahrzeug: Schnell oder langsam aufeinander folgende Ladezyklen, unterschiedliche Ladestromstärken mit bis zu 300 Ampere Gleichstrom, verschiedene Degradierungszustände der Batterie und das Ganze – wenn notwendig – bei unterschiedlichen Temperaturen. Möglich ist eine Temperaturspanne von minus 20 bis plus 60 Grad Celsius. Die jeweiligen Tests der Zellen können über einen kurzen, mittleren oder längeren Zeitraum durchgeführt werden. Das können wenige Tage, Wochen und Monate, aber auch bis zu zwei Jahre sein.
„Bisher haben wir die Zellen von einem externen Dienstleister analysieren lassen. Diese Aufgaben nehmen wir jetzt selbst in die Hand, erhöhen damit unsere Effizienz, sind schneller mit dem Abgleich von Daten, wodurch wir in der Lage sind, unsere Simulationen und Hochrechnungen für eine Verwendung im Second Life noch genauer und zuverlässiger anbieten zu können“, erklärt Jan Born, Co-Founder und CTO von Circunomics. Und ergänzt: „Wir haben einerseits Millionen von Daten, die während des First Life einer Batterie gesammelt werden und die uns zur Verfügung gestellt werden. Auf dieser Basis haben wir bisher mit der KI-unterstützten Software am Computer analysiert, was die gebrauchte Batterie noch im Stande ist, im Second Life zu leisten, bevor sie dann endgültig dem Recycling zugeführt wird. Im neuen Labor und mit den eigenen Analysen sehen wir nun, wie sich eine Zelle im simulierten Batterieleben verhält und wir können die dabei ermittelten Ergebnisse, mit denen aus der Software abgleichen und verifizieren.“
KI-Übergangsphase: Fluch und Segen
Zwischen Wundermaschine und Blackbox – Warum wir gerade in einer KI-Übergangsphase leben und was das generell für das Marketing bedeutet.

Künstliche Intelligenz (KI) verändert gerade in rasantem Tempo unsere Welt. Sie automatisiert Prozesse, entlastet Teams, liefert Analysen in Echtzeit und ermöglicht einen bisher nicht gekannten Grad an Personalisierung. Wer heute im Marketing arbeitet, kommt an KI nicht mehr vorbei – sei es beim Texten von Werbebotschaften, beim Targeting, in der Bildgenerierung oder der Erfolgsmessung.
KI verspricht Effizienz, Präzision und neue kreative Möglichkeiten. Doch die Euphorie wird zunehmend begleitet von einer neuen, ernüchternden Erfahrung: Künstliche Intelligenz kann auch Nutzererlebnisse verschlechtern, Prozesse intransparent machen – oder gar ganze Geschäftsmodelle gefährden. Der technologische Fortschritt ist zweifellos da, doch gesellschaftlich, wirtschaftlich und kulturell befinden wir uns noch mitten in einer Übergangsphase. Und das birgt Risiken – nicht nur für Plattformen, sondern auch für Unternehmen, die sie nutzen.
Beispiel Pinterest: Wenn der Algorithmus plötzlich entscheidet
Ein aktuelles Beispiel liefert Pinterest: Die visuelle Such- und Inspirationsplattform setzt verstärkt auf KI, um Inhalte effizient zu kategorisieren, Hassrede zu erkennen, urheberrechtlich geschützte Werke zu markieren oder Spam zu unterbinden. Was auf dem Papier sinnvoll und zukunftsgerichtet klingt – ein moderner „Content Safety Stack“ mit automatisierter Moderation –, hat in der Praxis zahlreiche Creator*innen und Unternehmen auf dem falschen Fuß erwischt.
Accounts wurden gelöscht, Pins blockiert oder ganze Seiten unsichtbar gemacht – oft ohne erkennbare Begründung. Was ist passiert? Die KI-Modelle bei Pinterest wurden darauf trainiert, problematische Inhalte automatisiert zu erkennen und Plattformregeln durchzusetzen. Doch wie in vielen KI-Systemen liegt der Teufel im Detail: Die Modelle sind noch nicht präzise genug, um zwischen legitimen und grenzwertigen Inhalten zuverlässig zu unterscheiden – vor allem in einem visuellen Umfeld wie Pinterest. Besonders problematisch wird es, wenn Nutzer*innen keine Möglichkeit haben, die Entscheidungen nachzuvollziehen oder effektiv dagegen vorzugehen.
Für Unternehmen, die Pinterest als Marketingplattform nutzen, ist das ein unkalkulierbares Risiko. Wer auf Sichtbarkeit und Reichweite angewiesen ist, kann es sich kaum leisten, dass automatisierte Systeme ohne Vorwarnung Inhalte sperren. Der Vertrauensschaden ist enorm.
Im Spannungsfeld der KI-Nutzung
Dieser Fall steht exemplarisch für ein zentrales Spannungsfeld der KI-Nutzung: Auf der einen Seite die große Hoffnung auf Automatisierung, Kostenersparnis und Kontrolle – auf der anderen Seite die Realität einer noch nicht vollständig ausgereiften Technologie, die häufig wie eine Blackbox agiert. Für Nutzer*innen bedeutet das: weniger Transparenz, weniger Kontrolle, mehr Frustration. Ähnliche Phänomene beobachten wir auch bei großen Social-Media-Plattformen wie Meta oder TikTok. Auch hier sorgen KI-basierte Moderationssysteme regelmäßig für Unmut – sei es durch falsch erkannte Verstöße, Einschränkungen der Reichweite oder Verzögerungen im Kundenservice, der durch automatisierte Antworten ersetzt wurde. Dabei geht es nicht um generelle Ablehnung von KI – sondern um die Art und Weise, wie sie implementiert und kommuniziert wird.
Gute KI ist unsichtbar – weil sie funktioniert
Das Marketing der Zukunft soll nicht nur effizient, sondern muss auch verantwortungsvoll sein. Es wird davon abhängen, wie gut Unternehmen die Balance finden zwischen Automatisierung und menschlicher Kontrolle. Zwischen der Verlockung, Prozesse zu beschleunigen, und der Notwendigkeit, Vertrauen zu erhalten. Gute KI ist unsichtbar – weil sie funktioniert. Sie analysiert, aber entscheidet nicht alleine. Zukunftsfähiges Marketing ist also geprägt von einer Kombination aus technologischer Intelligenz und menschlicher Relevanz. KI, Automatisierung und Datenanalyse ermöglichen eine bisher unerreichte Präzision: Zielgruppen werden individueller angesprochen, Inhalte in Echtzeit ausgespielt und Customer Journeys automatisiert optimiert. Personalisierung ist dabei kein Zusatz mehr, sondern Standard.
Gleichzeitig verändern sich die Erwartungen der Konsument*innen: Sie wollen authentische Marken, klare Haltung, Datenschutz und echte Mehrwerte – keine leeren Werbeversprechen. Deshalb wird Marketing künftig nicht nur effizient, sondern auch ethisch und wertebasiert sein müssen. Vertrauen wird zur zentralen Währung. Auch deshalb ist das Marketing der Zukunft vor allem Inhouse zu verorten. Agenturen befinden sich auf dem absteigenden Ast – sie sind teuer und liefern nicht die Ergebnisse, die Unternehmen und Marken wirklich benötigen. Zu dieser Entwicklung gehört auch, dass Inhouse-Marketing-Verantwortliche umfassend geschult werden müssen, damit sich der Einsatz von KI maximal einfach gestaltet und gleichzeitig äußerst produktiv ist.
KI ist weder Fluch noch Segen – sie ist ein mächtiges Werkzeug, das mit Bedacht eingesetzt werden muss. Wer KI einfach laufen lässt, riskiert Vertrauensverluste. Wer sie aber erklärt, einbettet und begleitet, kann gewinnen – an Effizienz, Qualität und Glaubwürdigkeit. Das Marketing der Zukunft ist nicht einfach KI-gesteuert. Es ist menschenzentriert – mit KI als starkem, aber verantwortungsbewusstem Assistenten.
Der Autor Bastian Sens gründete Sensational Marketing im Jahr 2010 – zunächst als klassische Onlinemarketing-Agentur. Im Laufe der Jahre kristallisierte sich jedoch ein alternativer Weg heraus, sodass sich das Unternehmen zu einer Onlinemarketing-Academy wandelte.
charles: DSGVO-konformer KI-Agent für WhatsApp gelauncht
Noch bevor Tech-Riesen wie Meta ihre Angebote auf den Markt bringen, bietet das Berliner Start-up charles erprobte, skalierbare und regulatorisch abgesicherte KI-Agent-Lösungen.

Während Meta LLM-gestützte Agenten auf WhatsApp für Verbraucher*innen einführt, will das Berliner Start-up charles Marken einen entscheidenden Vorsprung verschaffen. Mit der Einführung seines AI Agent Squad will sich charles als führender europäischer Anbieter markensicherer, hochspezialisierter KI-Agenten auf WhatsApp mit integrierter Sicherheit und Compliance etablieren – und damit den weltweit meistgenutzten Messenger in einen echten Handels- und Servicekanal transformieren.
Die KI-Agenten von charles nutzen WhatsApps Interaktivität, proprietäres Markenwissen und die Leistungsfähigkeit moderner KI, um Kund*innen direkt in WhatsApp anzusprechen - kontextbezogen, personalisiert und autonom. Von intelligenten Produktempfehlungen bis zu Support soll die Interaktion Kund*innen ein äußerst persönliches Gefühl vermitteln.
„Unsere KI-Agenten übernehmen echte Aufgaben wie Produktempfehlungen, Beantwortung von Fragen oder Reklamationsbearbeitung. Sie agieren wie echte Mitarbeiter: Man weist ihnen eine echte Aufgabe zu und gibt alle Mittel an die Hand, die sie benötigen, um diese Aufgabe zu erfüllen – sei es durch Zugriff auf Daten oder klare Vorgaben geben“, sagt Andreas Tussing, CEO von charles. “So ermöglichen wir Gespräche, die heute aufgrund von Ressourcen noch nicht möglich sind, und bieten gleichzeitig ein personalisiertes und innovatives Kundenerlebnis.“
WhatsApps native Interaktivität trifft auf markensichere KI
Mit den Berliner KI-Agenten soll WhatsApp zur leistungsstärksten Plattform für Kundenbeziehungen werden - und die Herausforderungen von Marken in Bezug auf Konversion und Kundenbindung lösen, ohne Authentizitätsverlust. Durch die Kombination der hohen Engagement-Raten von WhatsApp mit KI-gesteuerter Automatisierung und Personalisierung sollen Marken gleichzeitig Kundenzufriedenheit und Umsätze steigern sowie Betriebskosten senken können.
Fokus auf markenspezifisches Know-how, Security und Compliance
Der AI Agent Squad nutzt modernste KI-Technologien und verbindet generative Sprachmodelle mit markenspezifischen Datenquellen wie Produktkatalogen, CRM-Systemen und Kundenpräferenzen. Integrierte Schutzvorkehrungen und Tonalitätskontrollen gewährleisten Markensicherheit, während alle Daten auf europäischen Servern verarbeitet werden, ohne externe API-Aufrufe oder Datenextraktion - DSGVO-konform und markensicher.
What's next? Der Wettlauf um eigene Messaging-KI
Mit der Einführung von Memory durch OpenAI und Meta‘s Llama-basierte Agenten auf WhatsApp, heizt sich der Markt für personalisierte, generative Kundenkommunikation auf. Der EU AI Act und das aktuelle Handelsklima erhöhen die Dringlichkeit – Lösungen mit starker Data Governance und Auditierbarkeit sind daher unerlässlich. Charles will sich vor diesem Hintergrund als skalierbare, europäische Alternative zu generischen LLM-Lösungen positionieren – in Europa entwickelt und gehostet.
Imkado: KI-gestützte App digitalisiert die Imkerei
Das bayerische AgriTech-Start-up Imkado launcht KIM – eine innovative Gratis-App mit KI für Bienenhalter*innen und forciert damit die Digitalisierung der Imkerei-Branche.

Mit "KIM - Die Imker App" bringt Imkado, das seit 2024 digitale Lösungen für die Imkerei-Branche entwickelt, eine vollständig kostenlose digitale Lösung auf den Markt, die die traditionelle Imkerei in die digitale Ära führt. Die Anwendung kombiniert eine leistungsstarke Stockkartenverwaltung mit einem KI-Assistenten und zeigt damit zugleich beispielhaft, wie Digitalisierung auch in traditionellen Branchen transformatives Potenzial entfalten kann.
Traditionelles Wissen trifft Digitalisierung
Denn die Imkerei-Branche, die in Deutschland mehr als 150.000 aktive Imker*innen umfasst, operiert vielfach noch mit analoger Dokumentation. KIM digitalisiert diesen Kernprozess und nutzt zudem KI, um praxisnahe Beratung zu bieten. Die App wurde speziell für die mobile Nutzung am Bienenstand optimiert und funktioniert auch offline – essentiell für den Einsatz an abgelegenen Standorten.
"Wir sehen in der Verbindung von traditionellem Wissen mit modernster Technologie enormes Potenzial", erklärt Stefan Seifert, Gründer und Geschäftsführer von Imkado. "Mit unserem KI-Assistenten haben wir einen digitalen Imkerpaten geschaffen, der rund um die Uhr verfügbar ist und dabei hilft, Herausforderungen in der Bienenhaltung zu meistern."
Booster für die gesamte Imker*innen-Gemeinschaft
Technisch setzt die App auf eine hybride Architektur, die vollständige Offline-Funktionalität mit Cloud-Synchronisation verbindet. Der integrierte KI-Assistent basiert auf fortschrittlicher Sprachmodell-Technologie und wurde durch imkereispezifische Anpassungen optimiert, um praxisnahe Fragen zur Bienenhaltung zu beantworten. "Wir arbeiten kontinuierlich daran, unseren Assistenten zu verbessern und planen regelmäßige Updates, um stets die neuesten KI-Entwicklungen in die App zu integrieren", erklärt Seifert das Entwicklungskonzept.
Im Gegensatz zu den üblichen Monetarisierungsstrategien der App-Wirtschaft verzichtet Imkado bewusst auf Abonnementmodelle oder In-App-Käufe. "Unser Ziel ist es, eine wertvolle kostenlose Lösung anzubieten, die die gesamte Imkergemeinschaft voranbringt", erläutert Seifert. "Als etablierter Fachhändler für Imkereibedarf sehen wir die App als Brücke zwischen digitaler Innovation und praktischen Bedürfnissen der Imker. Wer unsere digitalen Lösungen schätzt, findet in unserem spezialisierten Onlineshop genau die hochwertigen Produkte, die perfekt zu seiner imkerlichen Praxis passen – ein Mehrwert für beide Seiten."
Die App adressiert einen wachsenden Markt, da die Imkerei durch das gestiegene Bewusstsein für Biodiversität und Umweltschutz in den letzten Jahren einen signifikanten Aufschwung erlebt. Besonders in urbanen Räumen wächst die Zahl der Neu-Imker*innen kontinuierlich.
In fünf Schritten zu rankingfähigen KI-Texten
Das aktuelle Whitepaper von eology beleuchtet das Potenzial und die Grenzen von KI-gestütztem Content im Hinblick auf SEO. Hier gibt’s Tipps rund um das Thema rankingfähige KI-Texte.

Die auf Suchmaschinenmarketing spezialisierte Online-Marketing-Agentur eology zeigt in ihrem Whitepaper „KI-Texte und Google-Rankings: Wie gut ranken KI-Inhalte?“, wie KI-Inhalte auf Google ranken, welche Herausforderungen sie mit sich bringen und welche Schritte erforderlich sind, um sie rankingfähig zu machen. Zudem wird auch auf spezifische technische, strategische und kreative Aspekte eingegangen, die für die Erstellung hochwertiger Inhalte entscheidend sind.
Gewusst wie: rankingfähige KI-Teste
Was zweifelsfrei erwiesen ist: Nach dem SEO-Qualitätsstandard erstellte KI-Texte sind rankingfähig und können die Sichtbarkeit einer Domain genauso unterstützen wie menschliche Inhalte. Allerdings ist die Erstellung solcher Texte nicht damit getan, einfach einen Prompt einzugeben und das Ergebnis online zu stellen. Es bedarf menschlicher Zuarbeit und Kontrolle.
Di Expert*innen von eology haben aus ihrer Studie heraus Best Practices ermittelt, um zu rankingfähigen Texten zu kommen. In fünf Schritten kannst du das auch:
1. Schritt: Chatbot briefen
Bei ChatGPT einen CustomGPT anlegen mit allen notwendigen Projektinstruktionen. Auf diese greift die KI immer zurück, ihr müsst sie daher nicht immer wieder neu eingeben. Das spart Zeit und sorgt langfristig für besseren Output. Bei Claude geht das nicht. Hier kopiert ihr die Projektinstruktionen einfach in den Chat. Die KI meldet dann, dass sie die Aufgabe verstanden hat und fasst diese noch einmal zusammen.
Folgende Instruktionen sind wichtig:
• Keywordset
• Infos zur Verwendung der Keywords (Verteilung, Häufigkeit, Positionierung im Text)
• Textlänge
• Zielgruppe und Leseransprache
• Stil, Tonalität und weitere Infos zum Wording
• Formaler Textaufbau (Überschriften, Aufzählungen, Tabellen)
• Inhaltlicher Textaufbau, ggf. Gliederung
2. Schritt: Chatbot testen
Prompt erstellen mit allen für den einzelnen Text relevanten Informationen (Thema, Keywordset). Da ihr alle Projektinstruktionen bereits an den Chatbot übermittelt habt, braucht ihr in den Prompt nur noch die Infos für den einzelnen Text reinschreiben. Er lautet dann: „Hallo GPT, erstellst Du mir bitte einen Text zum Thema „XY“ mit diesen Keywords: Hauptkeyword=Thema: [Hauptkeyword] Nebenkeywords: [Nebenkeywords] W-Fragen: [W-Fragen]. Danke.“
3. Schritt: Output prüfen
Output prüfen auf alle Projektanforderungen: SEO, Keywords, Wording, Rechtschreibung sowie Inhalt.
4. Schritt: Anpassungen vornehmen
Wenn der Output nicht passt, gebt der KI Anweisungen für Änderungen, passt die Projektinstruktionen an oder optimiert den Prompt. Ladet Beispieltexte hoch mit eurem gewünschten Stil, lasst die KI den Stil beschreiben und packt die Stilbeschreibung in die Projektinstruktionen. Wenn der Chatbot wiederholt zu wenig Text liefert, kann es Sinn machen, dass ihr diese Information doch in den Prompt eingeben müsst, selbst wenn diese in den Instruktionen steht. Insbesondere ChatGPT neigt dazu, zu wenig Text zu liefern und muss immer wieder daran erinnert werden.
5. Schritt: Bilder generieren
Instruktionen für die Bilderstellung in den Projektinstruktionen hinterlegen. Bei einem CustomGPT hinterlegt ihr auch den Stil für die Bilder, denn dann habt ihr eine Chance auf einen einheitlichen Stil. Allerdings ist ChatGPT mit der Schnittstelle zu DALL-E nicht die beste Bild-KI. Daher funktioniert nicht alles reibungs- los. Für eine hochwertige und professionelle Bildgenerierung nutzt besser eine spezielle Bild-KI wie Midjourney.
Generative KI – Chancen für Startups
Wie Startups mit drei Tipps die Kosten und Performance für ihren KI-Case optimieren können.

Das deutsche KI-Startup-Ökosystem befindet sich 2025 weiter im Gründungsboom. Nie gab es mehr KI-Gründer in Deutschland und alleine im vergangenen Jahr wuchs die Zahl der KI-Startups um 35 Prozent. Auch für Investoren bleibt KI eines der vielversprechendsten Themen. Sie investierten 2024 fast 200 Millionen mehr in deutsche KI-Jungunternehmen als im Vorjahr. Vor allem deutsche KI-Startups im B2B-Bereich mit branchenspezifischen Lösungen für die Fertigung, Logistik und das Gesundheitswesen haben aktuell ausgezeichnete Wachstumschancen. Sie können von einer engen Vernetzung mit dem Mittelstand und führenden Forschungseinrichtungen in Deutschland profitieren. Typische KI-Anwendungsfelder von aufstrebenden deutschen Startups wie BlueAvenir, PlanA, Smart Reporting oder nnamu liegen dabei u.a. in der Softwareentwicklung, Sprach- und Bilderkennung oder datenbasierten Analyseverfahren zur Entscheidungsunterstützung.
KI-Chancen und die häufigsten Hürden
Während die Gesamtfinanzierung für KI-Projekte wächst, scheitern in der Praxis vielversprechende Ideen von Startups aber auch immer wieder am konkreten Business Case. Langfristig können sich insbesondere unterschätzte Kosten und eine schwache Performance der Anwendungen wie ein Bremsklotz auswirken. Die Nutzung von Sprachmodellen ist dank API-basierten Diensten sehr einfach geworden, dennoch können sich hier bei großen Volumina und ungeschickter Modell-Wahl schnell höhere Kosten aufsummieren. Gleichzeitig spielt die Performance des KI-Systems eine wichtige Rolle für eine langfristige Profitabilität. So führen besonders hohe Latenzzeiten bei der Model-Inference zu trägeren Systemen, die Nutzeranfragen nicht schnell genug verbreiten und die Attraktivität der Anwendung erheblich mindern.
Gerade Startups setzen oft auf die Cloud, da sie unabhängig vom technischen Hintergrund einfachen Zugang zu KI und die nötige Flexibilität ermöglicht. Drei innovative Methoden erweisen sich in der Cloud als besonders hilfreich, um eine optimale Balance zwischen Leistungsfähigkeit, Kosten und Nutzerfreundlichkeit für die Umsetzung des eigenen KI-Anwendungsfalls zu finden. So kann jeder Gründer seine KI-Ideen schnell, kosteneffizient und sicher umsetzen.
KI-Modellauswahl: Kleiner, aber schneller
Für Startups ist es entscheidend, das richtige KI-Modell für ihren Anwendungsfall zu wählen, um Kosten und Leistung optimal auszubalancieren. Anbieter wie Anthropic, AI21 Labs, Meta, Cohere, Mistral und Amazon bieten Modelle in verschiedenen Größen an – kleinere Varianten sind oft günstiger und reagieren mit kürzerer Antwortzeit. Nach einer ersten Validierung mit einem leistungsstarken Modell können Startups Tools wie Amazon Bedrock Evaluations nutzen, um herauszufinden, welches Modell in welcher Größe ähnliche Ergebnisse bei geringeren Kosten oder höherer Geschwindigkeit liefert. Diese Evaluierungen helfen dabei, die Leistungsfähigkeit und Effizienz zu beurteilen, indem Metriken wie semantische Robustheit und Genauigkeit bei der Informationsabfrage analysiert werden. Durch eine Kombination aus automatisierten Bewertungen mit Large Language Models (LLMs) und menschlicher Prüfung können Startups die beste Balance zwischen Leistung, Kosten und Geschwindigkeit für ihre individuellen Bedürfnisse finden.
Prompt Caching: Zwischenspeicherung für wiederkehrende Anfragen
Eine weitere smarte Methode, um die Antwortzeiten von KI-Modellen zu verkürzen und Kosten zu senken, ist das Prompt-Caching. Wenn ein digitaler Assistent sich bei jeder Frage immer wieder die gleichen Grundinformationen durchlesen müsste, dann wäre das extrem ineffizient. Genau hier setzt das Prompt-Caching an und speichert feste Teile des Prompts, wie grundlegende Anweisungen für das LLM, direkt in der Inferenz-Hardware zwischen. Nur die variablen, nutzerspezifischen Daten, die sich von Aufruf zu Aufruf verändern, werden bei jeder Anfrage neu übermittelt. Das spart nicht nur Rechenleistung, sondern sorgt auch für schnellere Antworten – ideal für Anwendungen wie Chatbots oder personalisierte KI-Assistenten, die häufig wiederkehrende Anfragen verarbeiten. Mit Amazon Bedrock lässt sich diese Technik einfach nutzen, indem das Caching und das Setzen von Cache-Checkpoints automatisch verwaltet werden können. Sobald das Caching aktiviert ist, übernimmt der Service das gesamte Cache-Management automatisch. So lassen sich bis zu 90 Prozent kosteneffiziente KI-Anwendungen mit minimalem Konfigurationsaufwand realisieren.
Model Distillation: KI-Wissen auf das Wesentliche fokussieren
Eine dritte bewährte Option ist Model Distillation. Das Prinzip ist einfach und kann vereinfacht als ein intelligenter Wissenstransfer in der Welt der KI beschrieben werden. Also so, als ob ein erfahrener Lehrer (ein großes, leistungsstarkes KI-Modell) seinem Schüler (einem kleineren, schnelleren Modell) die wichtigsten Konzepte beibringt. Dabei nutzt dieser Prozess synthetische Trainingsdaten, die auf realen Anwendungsbeispielen basieren. Das Ergebnis ist ein kompakteres Modell, das für einen spezifischen Anwendungsfall ähnlich gute Ergebnisse liefert wie das größere Modell, dabei aber deutlich schneller und kostengünstiger arbeitet. Destillierte Modelle in Amazon Bedrock können bis zu fünfmal schneller arbeiten und die Kosten um bis zu 75 Prozent senken im Vergleich zu den Originalmodellen – bei Genauigkeitsverlust von weniger als zwei Prozent.
Fazit
Erfolgreiche KI-Lösungen können mit der Cloud kosteneffizienter und performanter umgesetzt werden. Das erfordert zwar ein wenig technisches Know-how, aber die Cloud reduziert die Einstiegshürden erheblich und ermöglicht es auch kleineren Unternehmen, mit drei bewährten Methoden das KI-Potenzial effektiver auszuschöpfen. Startups haben mit der Cloud die maximale Flexibilität, um entweder von den leistungsfähigsten vortrainierten LLMs zu profitieren oder alternativ eigene LLMs mit maßgeschneiderter Infrastruktur zu entwickeln bzw. auf fertige Dienste mit integrierter generativer KI zuzugreifen.
Der Autor Constantin Gonzalez ist Principal Solutions Architect bei Amazon Web Services (AWS) in München.
Die Autorin Jennifer Grün ist Senior Specialist - Machine Learning bei AWS in München.
So schafft KI neue CEO-Realitäten
Künstliche Intelligenz (KI) ist in der Führungsebene angekommen, doch welche Konsequenzen hat das für CEOs? Eine Studie enthüllt Eingeständnisse deutscher und internationaler CEOs zum Thema KI.

Der aktuelle „Global AI Confessions Report: CEO Edition" der KI-Plattform Dataiku enthüllt Eingeständnisse deutscher und internationaler Führungskräfte, die hinsichtlich KI einer neuen Realität gegenüberstehen. Wichtige Insights aus der Studie:
- 95 Prozent der deutschen CEOs geben zu, dass ein KI-Agent bei Geschäftsentscheidungen einen gleichwertigen oder besseren Rat geben könnte als ein menschliches Vorstandsmitglied.
- 69 Prozent der deutschen CEOs glauben, dass eine gescheiterte KI-Strategie oder eine KI-induzierte Krise dazu führen wird, dass ein CEO bis Ende 2025 aus dem Amt gedrängt wird.
- Mit 62 Prozent bzw. 66 Prozent rangieren deutsche CEOs unter allen globalen CEOs an der Spitze, wenn es um die Messung von Kosten- und Ressourcenanforderungen und Skalierbarkeit von KI geht.
- 78 Prozent der deutschen CEOs sind der Meinung, dass EU-Vorschriften die KI-Nutzung in ihren Organisationen verlangsamen könnten.
Für die Studie, die von The Harris Poll durchgeführt wurde, wurden im Januar und Februar 2025 über 500 CEOs in den USA, Großbritannien, Frankreich und Deutschland befragt. Die Unternehmen der insgesamt 100 befragten deutschen CEOs rangieren bei einem Jahresumsatz von mehr als 250 Millionen Euro und eine Unternehmensgröße von mehr als 500 Mitarbeitenden.
Der Bericht enthüllt: Die KI-Strategie ist zum entscheidenden Faktor für das Überleben von Unternehmen geworden. Die Ergebnisse belegen zudem, dass die Konsequenzen des Einsatzes von KI auch auf höchster Entscheiderebene angekommen sind.
KI kommt im Vorstand an
Laut Aussagen deutscher Geschäftsführer stellt KI die Rolle der Entscheidungsfindung auf Vorstandsebene zunehmend in Frage. Zu den wichtigsten Ergebnissen gehören:
- 93 Prozent der deutschen CEOs sind der Meinung, dass sie davon profitieren würden, ein aktuelles Vorstandsmitglied durch einen KI-Experten zu ergänzen oder zu ersetzen.
- 95 Prozent der deutschen CEOs geben zu, dass ein KI-Agent bei Geschäftsentscheidungen einen gleichwertigen oder besseren Rat geben könnte als ein menschliches Vorstandsmitglied.
KI-Strategie: Übernahme von Kernkompetenzen
Auch auf den darauf folgenden Rängen zeichnet sich ab, dass Künstliche Intelligenz das Berufsprofil der Führungsebene deutlich wandeln kann:
- 90 Prozent der deutschen CEOs sind der Meinung, dass KI einen besseren Strategieplan entwickeln kann als ein Mitglied ihres Führungsteams (Vizepräsidenten bis zur Vorstandsebene).
- 49 Prozent der CEOs deutscher Unternehmen schätzen, dass sie 3–4 Teammitglieder durch KI ersetzen könnten, um strategische Planung zu betreiben. Ganze 13 Prozent gaben an, dass sie sogar 7 oder mehr Führungskräfte für die gleiche Aufgabe ersetzen könnten.
Keine KI-Strategie ist allerdings auch keine Antwort, denn
- 69 Prozent der deutschen CEOs glauben, dass eine gescheiterte KI-Strategie oder eine KI-induzierte Krise dazu führen wird, dass ein CEO bis Ende 2025 aus dem Amt gedrängt wird.
- 76 Prozent der deutschen CEOs sind der Meinung, dass sie Gefahr laufen, ihren Job zu verlieren, wenn sie nicht innerhalb von 2 Jahren messbare KI-getriebene Geschäftsgewinne erzielen.
KI als Kernkompetenz zukünftiger CEOs
Führungskräfte müssen sich laut der Umfrage auf dem Jobmarkt zukünftig anders aufstellen. KI-Kompetenz gilt als “Must-Have”, was auch aus dem Berufsalltag deutscher CEOs hervorgeht.
- 31 Prozent der deutschen CEOs sind der Meinung, dass Erfahrung in der Umsetzung einer erfolgreichen KI-Strategie oder deren Implementierung in 3–4 Jahren eine der wichtigsten Kompetenzen sein wird, nach denen Vorstände bei der Bewertung eines potenziellen Geschäftsführers suchen werden.
- 82 Prozent der deutschen CEOs geben an, dass ihre direkte Beteiligung an KI-bezogenen Entscheidungen im vergangenen Jahr zugenommen hat.
- 70 Prozent der deutschen CEOs geben an, an mehr als der Hälfte der KI-Entscheidungen ihres Unternehmens beteiligt zu sein.
Die „KI-Commodity-Falle“ und KI-Washing: Blinde Flecken der Geschäftsführung
Trotz zunehmender Abhängigkeit von KI sind sich viele CEOs der Gefahren schlecht umgesetzter KI-Strategien in gefährlicher Weise nicht bewusst.
- 87 Prozent der CEOs tappen weltweit in die „KI-Falle“ und sind zuversichtlich, dass KI-Standardagenten genauso effektiv sein können wie maßgeschneiderte Lösungen für hochgradig nuancierte vertikale oder domänenspezifische Geschäftsanwendungen.
- CEOs deutscher Unternehmen gehen im internationalen Vergleich mit 39 Prozent am ehesten davon aus, dass es bei eigenen KI-Initiativen mehr um die Optik als um die Wirkung geht. Dieser Umstand nennt sich auch “AI Washing” und zielt darauf ab, KI-Innovation vorzuspielen, anstatt einen bedeutenden Mehrwert zu schaffen.
Worauf deutsche CEOs allerdings vergleichsweise viel Wert legen, sind Kostenkontrolle und Skalierbarkeit von KI-Lösungen. Mit 66 Prozent rangieren deutsche CEOs unter allen globalen CEOs (62 Prozent) an der Spitze, wenn es um die Messung von Kosten- und Ressourcenanforderungen und Skalierbarkeit als Kernattribute innerhalb ihres Rahmens für die regelmäßige Bewertung der Effektivität von KI-Analysen, -Modellen und -Anwendungen geht.
KI-Governance und regulatorische Unsicherheit
Während sich die Einführung von KI beschleunigt, schaffen schlechte Governance und regulatorische Unsicherheit erhebliche Hindernisse:
- 25 Prozent der deutschen CEOs geben an, dass sich ein KI-Projekt aufgrund regulatorischer Unsicherheiten verzögert hat, während 35 Prozent zugeben, dass ein Projekt aus solchen Umständen abgebrochen oder aufgegeben wurde.
- 78 Prozent der deutschen CEOs sind der Meinung, dass EU-Vorschriften die KI-Nutzung in ihren Organisationen verlangsamen könnten.
- 94 Prozent der CEOs vermuten weltweit, dass Mitarbeitende GenAI-Tools wie ChatGPT, Claude und Midjourney ohne Genehmigung des Unternehmens verwenden (bekannt als „Schatten-KI“) und damit ein massives Governance-Versagen innerhalb von Organisationen aufdecken.
Den vollständigen „Global AI Confessions Report: CEO Edition“ findest du hier
KI-Integration: Chancen und Impact für Startups
Im Interview mit Dennis Lehmeier, Startup Segment Leader Germany & Europe Central bei Amazon Web Services (AWS): Wie Startups generative KI effizient nutzen können, um zu skalieren und ihre Innovationen schneller voranzutreiben.

Herr Lehmeier – das aktuell alles überschattende Thema ist künstliche Intelligenz (KI) bzw. die Frage, wie Startups bestmöglich davon profitieren können. Welchen positiven Impact von KI sehen Sie für Startups?
KI ist fest in der deutschen Startup-Szene angekommen und die Zahl der KI-Neugründungen in Deutschland steigt, insbesondere vor dem Hintergrund neuer Einsatzmöglichkeiten. Vor allem Startups im Bereich Softwareprogrammierung, Datenanalyse, Gesundheit und Nachhaltigkeit setzen in Deutschland stark auf KI und nutzen die Technologie als Innovationsturbo.
Typische KI-Anwendungsfelder sind beispielsweise die Spracherkennung, Bildanalysen und Verfahren zur Entscheidungsunterstützung. So kann KI heute schon in den Biowissenschaften die klinische Entwicklung von Wirkstoffen erheblich beschleunigen und in der Industrie sowohl das Lieferkettenmanagement als auch die gesamten Produktionsabläufe deutlich effizienter gestalten. Die Cloud kann dabei helfen, KI-Tools schnell und effizient einzusetzen. Eine KI-Studie von AWS zeigte zuletzt, dass 7 von 10 deutschen Startups bereits aktiv KI einsetzen – Tendenz stark steigend. Die Adaptionsrate unter Startups ist dabei deutlich höher als in anderen Branchen. Gleichzeitig profitieren bereits 74 Prozent durch die Nutzung von KI und verzeichnen durch den Einsatz einen direkten Wertzuwachs. Unternehmen jeder Branche können von KI profitieren.
Was sind die aus Ihrer Sicht aktuell bedeutendsten KI-Trends für Startups?
Mit der zunehmenden Verbreitung generativer KI und Grundlagenmodelle (Foundation Models, FMs) verschiebt sich der Wettbewerbsfokus für Startups. Statt selbst leistungsstarke KI-Modelle von Grund auf zu entwickeln, können junge Unternehmen über die Cloud auf verschiedene extrem leistungsstarke Modelle wie Amazon Nova zugreifen und diese für ihre individuellen Anforderungen anpassen. Dadurch wird generative KI einfacher zugänglich und für Unternehmen jeder Größe und mit unterschiedlichen IT-Fähigkeiten leicht nutzbar.
Da viele Akteure auf dieselben technologischen Grundlagen zurückgreifen können, verlagert sich der Differenzierungsfaktor zunehmend auf die kundenspezifische Wertschöpfung. Der Erfolg hängt davon ab, wie nahtlos KI-Lösungen in bestehende Arbeitsprozesse und Systemlandschaften integriert werden können. Ähnlich wie bei SaaS-Modellen geht es darum, eine intuitive Benutzeroberfläche und ein klares Nutzenversprechen für eine definierte Zielgruppe zu schaffen. Der Mehrwert entsteht durch die intelligente, kontextbezogene Anwendung.
Unser Ziel ist es, Startups maximale Flexibilität zu bieten: sie können eigene FMs mit maßgeschneiderter Infrastruktur entwickeln, bestehende vortrainierte Modelle nutzen oder auf Dienste mit integrierter generativer KI wie Amazon Q zurückgreifen. So kann jeder Gründer ein KI-Startup aufbauen und es ergeben sich vielfältige Anwendungsfelder durch cloudbasierte KI-Lösungen: von der automatisierten Kundenbetreuung über die intelligente Datenanalyse bis hin zur Entwicklung völlig neuer Produkte.
KI als Innovations-Booster birgt somit ein riesiges Potenzial. Doch wo Licht ist, ist auch Schatten: KI ist kein Selbstläufer – gefragt sind praxistaugliche Regeln, die eine vertrauensvolle Nutzung ermöglichen, ohne Innovationen zu blockieren. Wie stehen Sie vor diesem Hintergrund zum aktuellen AI-Act?
Als einer der weltweit führenden Entwickler und Anbieter von KI-Tools und -Diensten setzen wir uns für eine sichere, geschützte und verantwortungsvolle Entwicklung von KI-Technologie ein. Wir arbeiten eng mit Regierungen und Industrien zusammen, um dies zu gewährleisten. Unser Ziel ist es, Innovationen im Interesse unserer Kunden und der Verbraucher voranzutreiben und gleichzeitig notwendige Schutzmaßnahmen zu etablieren und umzusetzen. Dafür bieten wir auch diverse Services und Tools. Beispielsweise bieten wir mit Amazon Bedrock Guardrails Unterstützung für die Implementierung von Sicherheitsvorkehrungen, die auf die jeweiligen generativen KI-Anwendungen des Startups zugeschnitten sind, damit Halluzinationen besser verhindert und schädliche Inhalte blockiert werden können.
Ich bin überzeugt, dass KI enorme Fortschritte in essenziellen Bereichen wie Gesundheit und Bildung ermöglichen wird. Die Technologie hilft uns, komplexe Probleme zu lösen, die zuvor als unüberwindbar galten. Die Vorteile überwiegen bei verantwortungsvollem Einsatz deutlich die Risiken. Gleichzeitig sollte jeder, der KI nutzt, ethische Aspekte von Anfang an immer mitbedenken und angemessene Sicherheitsvorkehrungen zum verantwortungsvollen Einsatz treffen.
Sie unterstützen Startups umfassend dabei, generative KI in AWS auszubauen. Welche Maßnahmen bzw. Angebote stehen Startups dabei konkret zur Verfügung?
Weltweit setzen über 280.000 Startups und 80 Prozent aller Unicorns auf AWS, um mit Hilfe der Cloud zu wachsen und ihr Geschäft zu skalieren. Auch deutsche Unternehmen wie About You, Delivery Hero und FlixBus haben ihre Erfolgsgeschichte mit der Cloud gestartet. Um Startups gezielt beim Aufbau generativer KI-Lösungen zu unterstützen, bieten wir eine Vielzahl maßgeschneiderter Programme.
Mit AWS Activate haben wir seit der Gründung bereits über 6 Milliarden Dollar an AWS Guthaben für Startups bereitgestellt. Dieses können ausgewählte Gründer nutzen, um unsere leistungsstarken KI-Dienste zu testen und schon in frühen Phasen mit neuen Technologien zu experimentieren. Zusätzlich haben wir zuletzt 230 Millionen Dollar für Startups zugesagt, die die Entwicklung generativer KI aktiv vorantreiben, etwa durch die Entwicklung von Grundlagenmodellen oder KI-Tools. Neben technologischen Ressourcen bietet AWS Activate auch umfassende Unterstützung in Form von Fundraising-Hilfen, rechtlicher Beratung, technischem Coaching und Zugang zu einem globalen Netzwerk aus Experten, Investoren und Partnern. Außerdem haben wir den Generative AI Accelerator ins Leben gerufen – ein 10-wöchiges Förderprogramm für 80 Startups weltweit, das maßgeschneiderte Go-to-Market-Strategien bietet und ausgewählten Unternehmen bis zu einer Million Dollar an AWS Guthaben ermöglicht. Auch das Münchner Softwareunternehmen DQC ist Teil des Programms.
Mit solchen Maßnahmen geben wir Startups die notwendigen Werkzeuge an die Hand, um generative KI effizient zu skalieren und Innovationen schneller voranzutreiben.
Beim AWS GenAI Loft Berlin dreht sich vom 24. Februar bis zum 7. März 2025 alles rund um KI bzw. GenAI. An wen adressieren Sie das Event und was erwartet die Teilnehmenden?
Das AWS GenAI Loft findet erstmalig in Berlin statt. Das Event im Mitosis LAB in der Sonnenallee 67 richtet sich an Startups, Entwickler, Investoren, KI-Experten und alle, die sich mit den neuesten Entwicklungen im Bereich Generative AI befassen möchten. Die Veranstaltung bietet jeden Tag eine Mischung aus praxisnahen Workshops, technischen Deep Dives und Networking-Möglichkeiten, bei denen die Teilnehmer mit führenden Experten von AWS, NVIDIA, DoiT, Storm Reply und Automat-it in Kontakt treten können. Neben zahlreichen Vorträgen, spannenden KI-Demos und Hands-on Sessions mit AWS Solutions Architects können die Teilnehmer von kostenlosem Coaching profitieren und von der Möglichkeit, sich mit anderen innovativen deutschen Startups vor Ort auszutauschen. Unter dem Motto „Learn, Build, Connect“ steht der praktische Umgang mit modernsten KI-Technologien wie Amazon Q oder Amazon Bedrock im Fokus. Das Event ist zudem kostenfrei und eine Registrierung ist vorab online möglich.
Alles dreht sich somit letztlich darum, KI-Projekte voranzutreiben und (Startup-)Innovationen schnell auf den Markt zu bringen. Was muss aus Ihrer Sicht an welcher Stelle geschehen, damit unsere Startups beim Thema KI global mithalten können – sowohl als Nutzende wie auch als KI-Entwickler?
Wir sehen in zahlreichen Studien deutlich, dass Unternehmen, die KI einsetzen, nachweislich von höherer Effizienz und Innovationskraft profitieren. Eine Bitkom-Untersuchung aus 2024 zeigt beispielsweise auch, dass drei Viertel der deutschen Startups, die KI in ihre Produkte oder Dienstleistungen integrieren, leichter an Finanzierung gelangen. Kosteneinsparungen und Effizienzsteigerungen sind dabei oft starke Treiber für die KI-Implementierung.
Um dieses Momentum zu nutzen und das KI-Potenzial auszuschöpfen, sehe ich drei Schlüsselherausforderungen in Deutschland.
Erstens muss die digitale Kompetenzlücke geschlossen werden. KI-Kenntnisse werden in nahezu allen Bereichen essenziell sein, weshalb verstärkt in Aus- und Weiterbildungsprogramme investiert werden muss.
Zweitens muss der Zugang zu Kapital für Startups durch stärkere Finanzierungsmöglichkeiten und Unterstützungsprogramme verbessert werden, um die nachhaltige Wettbewerbsfähigkeit und Skalierung von KI-Startups zu fördern.
Drittens ist es wichtig, die regulatorischen Standards für KI möglichst länderübergreifend zu harmonisieren, um Unternehmen mehr Planungssicherheit zu bieten und gleichzeitig einen verantwortungsvollen Einsatz von KI-Technologien zu gewährleisten.
Ganz praktisch sollten Startups zunächst übergeordnet ihre langfristigen Ziele definieren – sei es in zwei oder drei Jahren, um daraus abzuleiten, welche Schritte einen Beitrag zur Erreichung dieser Ziele leisten. Diese Herangehensweise zwingt Startups und Gründer, fokussiert zu bleiben und in der Gegenwart strategische Entscheidungen zu treffen, um sich für die nächste KI-Entwicklungsphase zu positionieren.
Herr Lehmeier, danke für das Gespräch!
Florian Bretschneider: Das steckt hinter dem Appointment-Setting-System
Appointment Setter spielen im Verkaufsprozess von Coaching-, Beratungs- und Softwareunternehmen eine immer wichtigere Rolle. Das Geschäft ist mittlerweile in einem starken Aufwärtstrend und bietet vor allem Neu- und Quereinsteigern die Chance auf eine lukrative Remote-Position als Appointment Setter.

Der Appointment Setter ist dafür verantwortlich, den Posteingang von Coaching-, Beratungs- und Softwareunternehmen zu beantworten und Termine mit neuen Interessenten für Beratungsgespräche der Vertriebsmitarbeiter zu vereinbaren.
Mit dem richtigen Know-how zur „Lead-Maschine“ werden
Florian Bretschneider, Unternehmer und Self-Made-Millionär sieht die größten Vorteile darin: „Beim Appointment Setting musst du weder Geld in Werbung, Software, Mitarbeiter, Büro noch in Produkte investieren. Du startest in einem funktionierenden System, das bereits Geld produziert und kannst es nach wenigen Wochen von überall auf der Welt ausführen, solange du ein Handy mit Internetverbindung hast.“
Ideales Geschäftsmodell für Einsteiger in den Onlinemarkt: Was macht ein Appointment Setter?
Der Appointment Setter spielt eine zentrale Rolle im Vertriebsprozess von Coaching-, Beratungs- und Softwareunternehmen. Seine Hauptaufgabe besteht darin, den Posteingang dieser Unternehmen zu verwalten und qualifizierte Termine mit Interessenten für Vertriebsmitarbeiter zu vereinbaren. Diese Unternehmen erreichen täglich Hunderte bis Tausende potenzielle Kunden durch gezielte Werbung auf Plattformen wie Instagram, TikTok, Google und Snapchat. Um aus dieser großen Anzahl an Anfragen die passenden Interessenten herauszufiltern, setzen sie auf spezialisierte Appointment Setter. Diese erhalten in der Regel eine Umsatzbeteiligung von etwa 5 %, was sie besonders lukrativ macht – insbesondere in Branchen mit hochpreisigen Produkten und Dienstleistungen.
Ein Beispiel: Wenn das Unternehmen beispielsweise 20 neue Kunden á 6.000€ pro Monat durch die neuen Termine des Appointment Setters gewinnt, generiert das Unternehmen 120.000€ Umsatz, wovon der Appointment Setter im Schnitt 6.000€ (5%) ausgezahlt bekommt.
Das Vereinbaren von Terminen über den Chat bietet eine geringe Einstiegshürde und eignet sich besonders für Einsteiger. Es zählt zu den einfachsten und am schnellsten zu erlernenden Aufgaben im gesamten Verkaufsprozess.
Da beim Appointment Setting kein eigenes Business aufgebaut werden muss, ist es besonders attraktiv für Menschen, die nicht vor die Kamera treten, keine Follower auf Social Media aufbauen und keine Coaching- oder Verkaufsgespräche führen möchten – und dennoch am stark wachsenden E-Learning-Markt partizipieren wollen. Besonders gefragt sind Appointment Setter in den Bereichen Fitness/Gesundheit, Online-Business, Dating/Beziehungen, Investieren/Finanzen und Mindset/Persönlichkeitsentwicklung.
Florian Bretschneider erklärt: „Einer der größten Vorteile beim Appointment Setting ist, dass es nicht nur sehr schnell zu lernen ist und bereits in drei bis vier Wochen Ergebnisse bringt, sondern dass jeder das Modell auch zu 100 Prozent anonym machen kann. Man braucht dafür weder eine eigene Website noch muss man Social-Media-Reichweite aufbauen.“ Nur eine einzige Fähigkeit ist erforderlich: effektiv Terminierungen über den Chat durchzuführen.
Der Selfmade Millionär mit über 10 Millionen € Umsatz in den letzten Jahren: „Mit dem richtigen Know-how kann jeder zu einer “Termin-Maschine” werden.“
LegalTech-Trends 2025
Der Legal-Markt steht an einem Wendepunkt: Innovative, KI-basierte Tools transformieren die Branche und eröffnen neue Möglichkeiten. Diese sechs Trends werden die Branche verändern und prägen.

1. „Agentic AI“ für Legal Workflows
Künstliche Intelligenz (KI) ist das Herzstück der LegalTech-Zukunft. Anwendungen unterstützen schon heute Kanzleien und Unternehmen dabei, Dokumente zu analysieren und komplexe rechtliche Fragestellungen mit automatischer Prüfung von Gerichtsurteilen zu bearbeiten. KI ist dabei jedoch nur ein einzelnes Feature einer ganzheitlichen Legal-Workflow-Plattform. Aber ein wichtiges. Mit KI werden zeitintensive Aufgaben automatisiert, sodass Anwält*innen mehr Zeit für strategische Tätigkeiten haben und Legal Assistants von administrativen Aufgaben entlastet werden.
Gleichzeitig entstehen durch KI neue Herausforderungen. Digitale Souveränität, Datenschutz, Bias in Algorithmen und die Qualität der automatisierten Entscheidungsprozesse sind Themen, die sowohl Kanzleien, Rechtsabteilungen als auch Gesetzgeber beschäftigen werden. Da Datenschutz und Privacy i.d.R. bei europäischen und deutschen LegalTech-Anbieter*innen ein stärkerer Teil der Software-Anbieter DNA sind, haben sie einen Vorteil gegenüber US-amerikanischen Hersteller*innen.
2. Unified Contract Management & Enterprise Legal Management
Beim Contract & Matter Management zeichnet sich eine große Veränderung ab – hin zu modernen, flexiblen, cloudbasierten Contract- und Matter-Management-Tools. Durch höhere Anforderungen der Fachbereiche hinsichtlich der Geschwindigkeit bei der Bearbeitung von Rechtsfällen, nimmt die Bedeutung von Unternehmensjuristen weiter zu. Während sie früher primär als Berater agierten, übernehmen sie mittlerweile eine zunehmend strategische Rolle. Hierbei helfen ihnen ganzheitliche Enterprise Legal Management Software Lösungen die sowohl bei der Anfrage, Annahme und effizienten Durchführung von Rechtsfällen unterstützen. Die neue Rolle der Inhouse-Jurist*innen erfordert nicht nur technologische Kompetenz, sondern auch betriebswirtschaftliches Verständnis und die Fähigkeit, mit anderen Unternehmensbereichen zusammenzuarbeiten.
3. Legal Front-Door & Self-Service Legal Tools
In der IT wird seit vielen Jahren das „Shift to left“ Prinzip verfolgt. Jetzt wird es verstärkt auch in Legal Prozessen genutzt. Das Prinzip zielt darauf ab, die Effizienz über Self-Service Möglichkeiten zu steigern, Reaktionszeiten zu verkürzen und Kosten zu senken, indem Probleme näher an ihrer Quelle – also dem Mandanten, Anwender bzw. dem Fachbereich gelöst werden. Eine Legal Front Door ist im Grunde eine digitale Rezeption, eine zentrale Plattform, die es den Mitarbeitenden eines Unternehmens oder Mandant*innen einer Kanzlei ermöglicht, auf rechtliche, standardisierte Dienstleistungen wie NDA-Erstellung, Digitale Mandatsannahme, Compliance Anleitungen und Legal Ressourcen zuzugreifen.
4. Compliance Analytics: Risiken in rechtlichen Dokumenten erkennen und beheben
Die Analyse von Verträgen und Schriftgut ist zentraler Bestandteil der modernen Rechtspraxis. Compliance Analytics ermöglicht es Jurist*innen Risiken in Verträgen und Dokumenten zu analysieren, vorherzusagen und Verstöße proaktiv und automatisiert zu korrigieren. Durch datenbasierte Analysen können potenzielle Verstöße gegenüber Unternehmensrichtlinien wie Haftungsgrenzen, AGB-Compliance identifiziert und über automatisierbare Workflows angepasst bzw. Compliance-Verstöße automatisch behoben werden. Diese präventive Herangehensweise bietet nicht nur einen finanziellen Mehrwert, sondern reduziert auch Haftungsrisiken und stärkt die Wettbewerbsfähigkeit von Kanzleien und Rechtsabteilungen.
5. Von der/vom Jurist*in zum/zur LegalTech-Expert*in
Die Automatisierung repetitiver Aufgaben, wie die Überprüfung von Dokumenten oder Durchführen von Recherchen, hat tiefgreifende Auswirkungen auf die Arbeitsweise von Jurist*innen. Während Junior-Anwält*innen früher oft mit derartigen Tätigkeiten betraut wurden, können sie sich heute dank moderner Technologien auf strategischere Aufgaben konzentrieren. Das beschleunigt ihre berufliche Entwicklung und verändert traditionelle Karrieremodelle. Dabei sollte jedoch sichergestellt sein, dass die notwendigen praktischen Erfahrungen gesammelt werden können, denn nur so lässt sich eine fundierte Expertise aufbauen. Zwar bleibt das juristische Wissen weiterhin wichtig, aber die Fähigkeit die richtigen juristischen Fragen zu entwickeln und zu stellen wird in Zukunft wichtiger sein als „nur“ juristisches Wissen and geeignete Antworten zu haben. Auch die juristische Ausbildung verändert sich, inkl. der Nutzung moderner KI-basierten LegalTech-Tools zur Recherche, Analyse und Erstellung von Dokumenten. Universitäten und Kanzleien passen ihre Ausbildungsprogramme an, um die nächste Generation von Jurist*innen auf die Anforderungen des digitalen Zeitalters vorzubereiten.
6. Investitionen in LegalTech
Laut einer aktuellen Umfrage von JP Morgan unter Unternehmensjurist*innen haben bei 71 Prozent der Rechtsabteilungen die Investition in LegalTech-Tools eine hohe bis sehr hohe Bedeutung. Aber nur 32 Prozent der Rechtsabteilungen haben LegalTech-Tools in ihren Budgets berücksichtigt. 80 Prozent gaben an, KI-LegalTech-Tools im laufenden Jahr einführen zu wollen – wollen dafür aber nur durchschnittlich 13 Prozent des gesamten Legal Budget ausgeben. Das belegt, dass die Investitionen in LegalTech-Tools zwar weiter zunehmen, die Diskrepanz zwischen KI-Ambitionen und Finanzierung jedoch bleibt. Die Legal-Innovationsfähigkeit ist also abhängig von der Legal-Investitionsfähigkeit.
Fazit
Die LegalTech-Trends zeigen, wie Technologie die juristische Arbeit verändert. Da generative KI trotz heutiger multi-modaler Fähigkeiten wie Text, Bild und Audio vor allem die Analyse und Erstellung von Text hervorragend beherrscht, hat der Legal-Bereich quasi eine Pionierstellung in der modernen KI-Bewegung. Der Rechtsmarkt ist eine „Text First“-Industrie und hervorragend geeignet, um die Innovationen von generativer KI zu beschleunigen. Von KI-gestützter Effizienzsteigerung über datenbasierte Risikoanalysen bis hin zur Automatisierung von Routineaufgaben: Der Legal-Markt wird nicht nur digitaler, sondern auch dynamischer. Für Kanzleien und Unternehmensjurist*innen bringt das einerseits neue Möglichkeiten mit sich, andererseits aber auch die Notwendigkeit, sich weiterzuentwickeln. Die Herausforderungen sind vielfältig, doch eines steht fest: Die Zukunft des Rechtsmarkts gehört denen, die technologische Innovationen nicht nur akzeptieren, sondern aktiv mitgestalten.
Der Autor Oliver Bendig ist CEO des LegalTech-Anbieters stp.one
Casablanca.AI: Ein Blick, der den Unterschied macht
Mit ihrer selbst entwickelten KI ermöglicht das 2020 gegründete Start-up Casablanca.AI authentische Videocalls. Dabei wird rein softwarebasiert in Echtzeit realer Augenkontakt in digitalen Meetings erzeugt und so ein natürliches sowie direktes Gesprächserlebnis hergestellt.

„Beim ersten Augenkontakt hat’s sofort gefunkt.“ Dieser Ausspruch könnte ebenso aus einer Hollywood-Romanze stammen wie auch aus einem Verkaufs- oder Bewerbungsgespräch. Denn der Blickkontakt verkörpert einen der mächtigsten und entscheidendsten Bestandteile der nonverbalen Kommunikation. Der Austausch von Blicken aktiviert das neuronale Belohnungssystem, was wiederum für Glücksgefühle sorgt und motiviert. Bereits vor über 20 Jahren ging das aus einer Studie (Reward value of attractiveness and gaze) hervor.
Ohne Augenkontakt kein echtes Vertrauen
„Hier kommen wir wiederum sehr schnell zum Thema Vertrauen. Ohne Augenkontakt fehlt hierfür die wichtigste Grundlage, wirkliche Nähe kommt nicht zustande“, sagt Carsten Kraus, Gründer und CEO der Casablanca.AI GmbH. „Wenn wir darüber nachdenken, ergibt sich schnell ein großes Problem: Viele Gespräche, insbesondere im geschäftlichen Kontext, laufen heute auf digitalem Wege in Videokonferenzen ab. Direkter Augenkontakt besteht hier nie, ohne dass die Mimik des Gesprächspartners aus dem Sichtfeld verschwindet.“ Das Pforzheimer KI-Start-up Casablanca hat das Problem erkannt und schafft Abhilfe.
Videocalls auf neuem Level
Innerhalb eines Videocalls gibt es für die Gesprächsteilnehmende genau zwei Optionen: den Blick in die Kameralinse und den auf den Bildschirm. Bei ersterem besteht keine Möglichkeit, den Gesichtsausdruck des Gegenübers zu sehen. Dagegen führt die zweite Alternative dazu, dass sich die Augenpaare nicht treffen. „Erfahrungsgemäß schwanken User*innen und variieren innerhalb eines Calls immer wieder. Sie stehen sozusagen vor der Wahl, welche Option sich zum jeweiligen Zeitpunkt eher eignet. Damit geht dem Gespräch viel Qualität ab“, erläutert Kraus, der mit seinem Unternehmen eine „virtuelle Kamera“ mit lokaler KI entwickelt. Diese greift in Echtzeit das Bild der physischen Webcam ab und richtet den Blick sowie den Gesichtswinkel der aufgezeichneten Person aus. „Nicht erst seit der Corona-Pandemie liegen Videokonferenzen absolut im Trend. Insbesondere in der Geschäftswelt hat sich diese Technik als unverzichtbar herauskristallisiert, spart viel Zeit und damit Kosten. Die Schwierigkeit bestand aber bisher darin, in diesen Gesprächen das notwendige Vertrauen aufzubauen, beispielsweise für einen erfolgreichen Verkaufsabschluss“, so Kraus. „Das möchten wir ändern und die Kommunikation per Video auf ein neues Level heben, sozusagen auf das eines analogen Gesprächs.“
Natürlichkeit und Authentizität zählen
Blicke machen die Basis sozialer Interaktion aus. Sie tragen zur Interpretation von nonverbalen Signalen bei. Eine dementsprechend große Rolle nehmen sie in der Geschäftswelt etwa für Verkäufer*innen, Berater*innen oder Personalverantwortliche ein. „Vertrauen hat auf ihr Handeln große Auswirkungen, mangelt es daran, sinken die Erfolgsaussichten zum Beispiel im Verkaufsgespräch. Auch der zunehmend digitale Bewerbungsprozess hat nach wie vor die Hürde des fehlenden Augenkontakts und damit auch der mangelnden Nähe zu überspringen“, zeigt Kraus die Relevanz auf. „Gelingt dies aber, entsteht eine persönliche Beziehung und das Gespräch geht über die Übermittlung von Informationen hinaus – und das bei beliebiger physischer Distanz. Dabei kommt es immer auch auf die Natürlichkeit und Authentizität des Videocalls an.“ Damit dies bestmöglich funktioniert, richtet Casablanca nicht nur die Augen entsprechend aus, sondern dreht den gesamten Kopf in die passende Position. So lässt sich auch in digitalen Meetings sagen: „Beim ersten Augenkontakt hat’s sofort gefunkt.“
Nachhaltigkeit: Sinnorientierung statt Image-PR und Greenwashing
Im Interview: Co-Gründer Günther Reifer vom Terra Institute.

Als Experten mit langjähriger Erfahrung und Kompetenz in der Beratungstätigkeit gründeten Evelyn Oberleiter und Günther Reifer vor 10 Jahren gemeinsam das Terra Institute: Ein Beratungsunternehmen mit Schwerpunkt in Geschäftsmodellinnovation, Nachhaltigkeitsmanagement, Produktentwicklung, Kreislaufwirtschaft und sinnorientiertem, transformativem Leadership. Das Terra Institute hat heute 25 Mitarbeiter in Deutschland, Österreich und Italien.
Im Interview zum Thema Nachhaltiges Wirtschaften: Terra Institute-Co-Gründer Günther Reifer.
Heutzutage macht das Thema Nachhaltigkeit einen großen Teil vom Image eines Unternehmens aus. Wer nicht nachhaltig ist, geht nicht mit dem Puls der Zeit. Doch was ist überhaupt mit Nachhaltigkeit gemeint und wie kann sie in einem Unternehmen umgesetzt werden?
Nachhaltigkeit hat verschiedene Definitionen. Die gängigste besagt: „Nachhaltigkeit gewährleistet, dass zukünftige Generationen nicht schlechter gestellt sind, ihre Bedürfnisse auf der Erde zu befriedigen als die gegenwärtig lebende Generation.“ Für ein produzierendes Unternehmen bedeutet das konkret: Die Verwendung von nachwachsenden Rohstoffen, ressourcenschonende Produktion, Vermeidung von Müll, ein möglichst geringer CO2-Ausstoß und im besten Fall ein recyclebares Endprodukt. Wenn ein Produkt all diese Kriterien erfüllt, kann es sich ökologisch nachhaltig nennen.
Ein Beispiel: Ein T-Shirt aus 100 Prozent Bio-Baumwolle, dessen Aufdruck jedoch giftige Chemikalien enthält, ist keineswegs nachhaltig. Es ist wichtig, dass wir den gesamten Produktionsprozess betrachten – vom Design zum finalen Produkt bis zur Rückführung in den Wertstoffkreislauf.
Wenn ein Unternehmen ein ökologisch nachhaltiges Produkt herstellt, ist dann das gesamte Unternehmen nachhaltig?
Noch lange nicht. Nachhaltigkeit steht nämlich auf drei Standbeinen: Umwelt, Gesellschaft und Wirtschaft. Neben den ökologischen Aspekten bestimmen also noch soziale und ökonomische Faktoren, inwieweit ein Unternehmen nachhaltig ist. Die soziale Komponente widmet sich dabei in erster Linie dem Wohlergehen von Mensch und Gesellschaft. Für Mitarbeiter des Unternehmens bedeutet das zum Beispiel ein fairer Lohn, geregelte Arbeitszeiten und Pausen sowie die Möglichkeit auf persönliche und berufliche Weiterentwicklung. Insbesondere der Aspekt Schulungen spielt wiederum eine wichtige Rolle für die ökologische Nachhaltigkeit des Unternehmens.
Um ökologische Nachhaltigkeit ganzheitlich im Unternehmen zu etablieren, muss zunächst ein gemeinsames Bewusstsein dafür geschaffen werden. Bei Führungskräften genauso wie bei allen Mitarbeitern. Durch regelmäßige Coachings der Mitarbeiter – sei es persönlich oder digital – werden Nachhaltigkeit und Klimaschutz zur Angelegenheit des gesamten Unternehmens. Alle sind auf dem neuesten Stand und ziehen am selben Strang.
Was sind die ökonomischen Faktoren, die ein Unternehmen nachhaltig machen? Und stehen diese nicht im Konflikt mit den ökologischen Aspekten der Nachhaltigkeit?
Die meisten denken wahrscheinlich, dass sich Umwelt und Wirtschaft von vorneherein ausschließen. Das stimmt so jedoch nicht. Fakt ist: Nur ein Unternehmen, was auch ökonomisch nachhaltig ist, wird langfristig bestehen bleiben und so seinen Beitrag für eine bessere Zukunft leisten können. Die Umstellung auf eine ökologisch nachhaltige Produktion ist dabei kein Verlustgeschäft. Wenn Sie zum Beispiel alles regional produzieren statt einzelne Produktionsprozesse ins Ausland zu verlagern, dann sind auch Ihre Lieferketten kürzer. Das spart erhebliche Transportkosten und CO2. Zudem sind regionale Lieferketten transparenter und daher leichter zu managen.
Auch im Fall einer globalen Krise wie der Corona-Pandemie ist das Risiko einer Produktionsunterbrechung deutlich reduziert. In innovative und verbesserte Fertigungstechnologien zu investieren, zahlt sich auch aus. Material-, Wasser- und Energieverbrauch werden so reduziert und anfallende Abfallprodukte können recycelt werden. Nachhaltigkeit ist also nicht teurer, sondern langfristig gesehen sogar lukrativ.
Was sind die ersten Schritte für ein Unternehmen, um nachhaltig zu werden?
Die Bereitschaft für Veränderung ist immer der erste Schritt. Das gesamte Unternehmen – Führungskräfte wie Mitarbeiter – muss eine neue Sinnorientierung erfahren. Dafür werden zunächst die aktuellen sozioökonomischen Megatrends intensiv analysiert. Mit den gewonnenen Erkenntnissen wird anschließend der gesamte Betrieb durchleuchtet und aufgeräumt. Gemeinsam wird ermittelt, welche Kompetenzen Führungskräfte und Mitarbeiter mitbringen, was noch verbesserungswürdig ist und wie sich zukunftsrelevante Themen aus Nachhaltigkeit, Gesellschaft und Wirtschaft in das Unternehmen integrieren lassen. Dabei ist es wichtig, bestehende Strukturen zu überdenken, von alten Gewohnheiten loszulassen und sich neue Ziele zu setzen.
Natürlich ist so eine Neuorientierung, bei der alle drei Dimensionen der Nachhaltigkeit berücksichtigt werden, ein sehr komplexer Prozess, der für viele Unternehmen eine Herausforderung darstellt. Wir vom Terra Institute möchten Unternehmen in ihrem Umdenken bestärken und ihren Transformationsprozess tatkräftig unterstützen!
Fünf globale Robotik-Trends 2025
Das sind die wichtigsten Trends, die die Robotik und Automation im Jahr 2025 weltweit prägen werden. Gut zu wissen nicht nur für Robotik-Start-ups und -Gründer*innen.

Der Marktwert installierter Industrie-Roboter hat mit 16,5 Mrd. US-Dollar weltweit einen historischen Höchststand erreicht. Die künftige Nachfrage wird durch technologische Innovationen, neue Marktentwicklungen und die Erschließung neuer Geschäftsfelder angetrieben. Die International Federation of Robotics (IFR) – 1987 als nicht gewinnorientierte Organisation gegründet –, berichtet über die wichtigsten Trends, die die Robotik und Automation im Jahr 2025 prägen werden.
1. Künstliche Intelligenz – Physisch, analytisch, generativ
Der Trend zum verstärkten Einsatz künstlicher Intelligenz (KI) setzt sich fort: In der Robotik helfen verschiedene KI-Technologien dabei, ein breites Spektrum von Aufgaben effizienter auszuführen: Mit analytischer KI lassen sich große Datenmengen verarbeiten und analysieren, die von der Roboter-Sensorik erfasst werden. Dies hilft dabei, auf unvorhersehbare Situationen oder wechselnde Bedingungen in öffentlichen Räumen oder bei der Produktion von „High-Mix-Low-Volume-Aufgaben“ zu reagieren. Mit Bildverarbeitungssystemen ausgerüstete Roboter analysieren ihre Arbeitsschritte, um Muster zu erkennen und Arbeitsabläufe zu optimieren. Ziel ist beispielsweise, Tempo und Präzision zu steigern.
Roboter- und Chip-Hersteller*innen investieren aktuell in die Entwicklung spezieller Hard- und Software, die Umgebungen aus der realen Welt simulieren. Diese sogenannte physische KI ermöglicht es Robotern, sich selbst in solchen virtuellen Umgebungen zu trainieren. Dabei gemachte Erfahrungen treten an die Stelle traditioneller Programmierung. Solche generativen KI-Projekte zielen darauf ab, einen „ChatGPT-Moment“ für physische KI zu schaffen.
KI-gesteuerte Simulationstechnologie für Roboter dürfte sich sowohl in typischen industriellen Umgebungen als auch in Anwendungen der Servicerobotik durchsetzen.
2. Humanoide
Roboter in menschlicher Gestalt erregen große mediale Aufmerksamkeit. Die Vision: Roboter werden zu Allzweckwerkzeugen, die selbständig eine Spülmaschine beladen und gleichermaßen anderswo am Fließband arbeiten können. Robotik-Start-ups arbeiten an diesen humanoiden Alleskönnern.
Industrielle Hersteller*innen konzentrieren sich dagegen auf Humanoide, die zunächst individuelle Einzelaufgaben bewerkstelligen. Die meisten dieser Pilotprojekte laufen in der Automobilindustrie. Diese Branche spielt seit jeher eine Pionierrolle bei der Entwicklung von Roboteranwendungen. Das gilt sowohl für die Industrie-Robotik als auch für die Logistik und Lagerhaltung. Aus heutiger Sicht bleibt jedoch abzuwarten, ob humanoide Roboter einen wirtschaftlich tragfähigen und skalierbaren Business-Case für die breite industrielle Anwendung darstellen werden, insbesondere im Vergleich zu bereits bestehenden Lösungen.
Nichtsdestotrotz gibt es zahlreiche Anwendungen, die von der humanoiden Form profitieren könnten und Marktpotenzial für die Robotik bieten, beispielsweise in der Logistik und Lagerhaltung.
3. Nachhaltigkeit und Energieeffizienz
Die Erfüllung der nachhaltigen Entwicklungsziele der Vereinten Nationen (UN) und damit korrespondierender Regularien weltweit wird zu einer wichtigen Voraussetzung sich als Lieferant*in zu qualifizieren. Roboter spielen für Hersteller*innen eine Schlüsselrolle, wenn es darum geht, diese Ziele zu erreichen.
Grundsätzlich verringert Robotik mit ihrer Präzisionsarbeit die Verschwendung von Material und verbessert das Output zu Input-Verhältnis in Fertigungsprozessen. Diese automatisierten Systeme gewährleisten zudem eine gleichbleibende Qualität, die für Produkte mit langer Lebensdauer und minimalem Wartungsaufwand unerlässlich ist. Bei der Herstellung umweltfreundlicher Energietechnologien wie Solarzellen, Batterien für Elektroautos oder Recyclinganlagen sind Roboter für eine kosteneffiziente Produktion von entscheidender Bedeutung. Sie ermöglichen es Hersteller*innen, ihre Produktion schnell zu skalieren, um eine wachsende Nachfrage der Kund*innen zu befriedigen, ohne Kompromisse bei der Qualität oder Nachhaltigkeit einzugehen.
Darüber hinaus wird die Robotertechnologie dahingehend verbessert, Maschinen energieeffizienter zu machen: Die Leichtbauweise beweglicher Roboterkomponenten senkt beispielsweise deren Energieverbrauch, ebenso neue Standby-Modi, die die Hardware in eine energiesparende Parkposition bringen. In der Greifer-Technologie gibt es Fortschritte bei der Anwendung bionischer Lösungen, um z.B. eine starke Greifkraft bei sehr geringem Energieverbrauch zu erreichen.
4. Neue Geschäftsfelder und Kund*innenbranchen für die Robotik
In der Fertigungsindustrie gibt es insgesamt noch viel Potenzial für die Automation mit Robotern. Die meisten Betriebe im produzierenden Gewerbe zählen zu den kleineren und mittelgroßen Unternehmen (KMU). Aktuell stellen hohe Anfangsinvestitionen und Gesamtbetriebskosten für KMU jedoch eine Hürde für den Einsatz von Industrie-Robotern dar. Geschäftsmodelle wie Robot-as-a-Service (RaaS) sollen es Unternehmen erleichtern, von der Roboterautomatisierung zu profitieren, ohne eine festgelegte Kapitalsumme investieren zu müssen. RaaS-Anbietende, die sich auf bestimmte Branchen oder Anwendungen spezialisiert haben, können schnell anspruchsvolle Lösungen liefern. Darüber hinaus bietet die Low-Cost-Robotik Lösungen für potenzielle Kund*innen, für die ein Hochleistungsroboter überdimensioniert wäre. Viele Anwendungen haben geringe Anforderungen an Präzision, Traglast und Lebensdauer. Die Low-Cost-Robotik adressiert dieses neue „good enough“-Segment.
Abseits des produzierenden Gewerbes gehören Bauwirtschaft, Laborautomation und Lagerhaltung zu interessanten neuen Kund*innensegmenten. Branchenübergreifend wird die Nachfrage darüber hinaus von einem Ausbau inländischer Produktionskapazitäten in strategisch wichtigen Branchen angetrieben, deren Bedeutung aufgrund der jüngsten Krisen ins politische Bewusstsein gerückt ist. Die Automatisierung ermöglicht Hersteller*innen eine Rückverlagerung von Produktionskapazitäten näher zum/zur Kund*in ohne Einbußen bei der Kosteneffizienz.
5. Roboter gegen den Arbeitskräftemangel
Nach Angaben der Internationalen Arbeitsorganisation (ILO) leidet das verarbeitende Gewerbe weltweit weiterhin unter Arbeitskräftemangel. Einer der Hauptgründe dafür ist der demografische Wandel, der die Arbeitsmärkte in führenden Volkswirtschaften wie den Vereinigten Staaten, Japan, China, der Republik Korea und Deutschland belastet. Die konkreten Effekte sind zwar von Land zu Land unterschiedlich, aber in der Summe überall in der Lieferkette ein Grund zur Besorgnis.
Der Einsatz von Robotern verringert die Auswirkungen des Arbeitskräftemangels in der Fertigung deutlich. Mit der Automation von gefährlichen, schmutzigen oder repetitiven Tätigkeiten, können sich menschliche Arbeitskräfte auf interessantere und höherwertige Aufgaben konzentrieren. Roboter übernehmen Arbeiten wie ermüdende visuelle Qualitätskontrollen, gesundheitsschädliche Lackierarbeiten oder schweres Heben von Lasten. Technologische Innovationen wie einfache Bedienbarkeit, kollaborierende Roboter oder sogenannte mobile Manipulatoren helfen Lücken im Arbeitsprozess zu füllen, wann und wo immer sie benötigt werden.