Patentrecherche via Crowdsourcing


44 likes

­­Mit Bluepatent ist eine Plattform für Recherche-Dienstleistungen im Schutzrechtsbereich online gegangen.

Bluepatent bringt Unternehmen mit einer globalen Recherche-Community zusammen. Die Unternehmen sichern sich dadurch entscheidende Vorteile im IP-Management. Und erfolgreiche Rechercheure werden für ihre Arbeit mit Prämien belohnt.

Unternehmen und Erfinder nutzen Bluepatent im Wesentlichen aus zwei Gründen: Sie suchen nach Informationen, um bestehende Patente anzugreifen, oder sie suchen nach Beweisen dafür, dass konkurrierende Unternehmen ihre Rechte verletzen.

www.bluepatent.com

 

Agentic AI als Erfolgsgrundlage für Start-ups

KI befeuert den aktuellen Gründungsboom, doch für eine erfolgreiche Skalierung braucht es mehr. Warum Agentic AI auf Basis einer soliden Datenarchitektur zum entscheidenden Erfolgsfaktor für Start-ups wird.

Das Jahr startete für Start-ups mit einer Rekordmeldung: In Deutschland wurden im vergangenen Jahr fast ein Drittel mehr Gründungen verzeichnet. In absoluten Zahlen wurden 2025 insgesamt 3.568 neue Firmen geschaffen – ein neuer Höchststand, wie der Start-up-Verband im Januar verkündete. Dies ist auch der künstlichen Intelligenz (KI) zu verdanken, wie sich beim genauen Hinschauen herausstellt. 853 dieser neuen Unternehmen kommen aus dem Bereich Software. Doch nicht nur sie verwenden KI; bei einer Umfrage gab ein Drittel aller Gründer und Gründerinnen an, dass sie mit KI arbeiten. Dementsprechend sehen die Sprecher des Verbands in der Technologie auch die treibende Kraft hinter dem Start-up-Rekord.

Wirft man einen Blick über den Tellerrand hinaus, so lässt sich feststellen, dass die Start-up-Szene in Europa insgesamt floriert. Der „State of European Tech 2025“-Report im Auftrag von Atomico und anderen schätzt, dass im letzten Jahr Investitionen in Höhe von 44 Milliarden US-Dollar (umgerechnet ca. 38 Mrd. EUR) in diesen Sektor geflossen sind. Geldgeber erwarten inzwischen, dass Start-ups mit KI und Deep Tech arbeiten, so der Report. Demnach flossen auch 36 Prozent der europäischen Start-up-Investitionen in genau diese beiden Felder.

Das Gründungsumfeld könnte also kaum besser sein. Doch ein Rekord an Start-ups und steigende Investitionssummen bedeuten nicht zwangsläufig auch eine einfache Skalierung der Geschäftsmodelle. Viele – zu viele – Start-ups scheitern nach erfolgreichen ersten Jahren an der Weiterentwicklung ihres Geschäfts. Neben einer Reihe üblicher Herausforderungen stehen vor allem Bürokratie, Fragen zur Datenhoheit und ein Betrieb über Landesgrenzen und Wirtschaftszonen hinweg im Vordergrund. Start-ups müssen nachweisen, dass ihre Nutzung von KI auf soliden, regulierten Datenfundamenten basiert und den Compliance-Vorgaben entspricht.

Hier kommt Agentic AI ins Spiel. Die Einbettung von KI-Agenten in den Kern der Betriebsabläufe ist die Antwort auf viele dieser Herausforderungen und wird für das Wachstum im Jahr 2026 von entscheidender Bedeutung sein.

Solide Datenbasis vor KI-Einsatz

Start-ups, die dies erreichen wollen, sollten sich darauf konzentrieren, ihre KI-Nutzung auf einer soliden Datenbasis aufzubauen, deren Fundament eine einheitliche Datenarchitektur ist. Sie tun sich deutlich leichter damit, die dafür nötigen Architekturentscheidungen zu treffen, als etablierte Unternehmen mit entsprechender Legacy-IT. Gründer und Gründerinnen sollten daher von Beginn an darüber nachdenken, wie sie eine starke Datenarchitektur aufsetzen, Silos abbauen und KI als Herzstück ihrer Prozesse einbetten.

Diese Grundlage hilft bei der Einführung von KI-Agenten, damit deren Output auch die Erwartungen erfüllt: Geschäftsprozesse effizienter zu strukturieren und zu optimieren sowie die Entscheidungsfindung zu beschleunigen. Start-ups, die dies umsetzen, werden sich gegen ihre Konkurrenten durchsetzen und letztlich erfolgreich sein.

KI-Agenten als Innovationsbeschleuniger

Indem Start-ups KI-Agenten von Beginn an in den Kern ihrer Geschäftsabläufe integrieren, skalieren sie schneller als mit dem Einsatz von nur einem reinen Large Language Model (LLM). Der Grund dafür liegt in der Standardisierung der Daten, die für KI-Agenten notwendig ist. Auf dieser Grundlage können die Agenten ihre einzigartigen, autonomen Fähigkeiten ausspielen, da sie mit unternehmenseigenen Daten trainiert werden. Vor allem bei Start-ups können Potenziale schnell gehoben werden: Wenn Agenten für bestimmte Aufgaben entwickelt werden, können sie diese auch lösen – egal wie komplex und fachspezifisch sie sein mögen. Stimmt die Datenbasis, lassen sich auch mehrere Agenten miteinander verknüpfen, um sogar noch komplexere Herausforderungen zu bewältigen.

Ein Beispiel dafür ist die mögliche Kooperation zwischen einem Kundensupport-Agenten und einem Prognose-Agenten. Wenn ein Kunde einen Support-Fall auslöst, kann der andere Agent sogleich die Kosten berechnen, was die Kundenzufriedenheit durch eine schnellere Reaktion steigern kann. Für die Skalierung von Start-ups ist ein enges Zusammenspiel der Abteilungen wichtig, um die Geschäftsbeziehungen zu zufriedenen Kunden weiter ausbauen zu können. Der Einsatz von KI-Agenten kann, gepaart mit dem menschlichen Element, begrenzte personelle Ressourcen ausgleichen und eine bessere Serviceleistung ermöglichen, was für ein schnelles Wachstum unabdingbar ist.

Doch nicht nur der Kundenkontakt lässt sich automatisieren, sondern auch eine ganze Reihe von Routinevorgängen in der internen Verwaltung der Firmen selbst. Dies ermöglicht nicht nur dem Management, sondern auch den Investoren, schnell einen fundierten Überblick über Liquidität, Umsatz, Einnahmen und Gewinn zu erhalten. Die Erkenntnisse in Echtzeit führen zu schnellen und datenbasierten Entscheidungen, was für junge Unternehmen Gold wert ist und es ihnen ermöglicht, flexibel zu bleiben.

Die Datenbasis muss stimmen

Für Start-ups sind Probleme beim Datenzugriff ein kritisches Risiko für den Geschäftserfolg. Eine einheitliche, moderne Datenarchitektur ermöglicht die Demokratisierung des Datenzugriffs und löst Datensilos auf. Der Vorteil liegt auf der Hand: Schneller Datenzugriff schafft Transparenz gegenüber Kunden und Aufsichtsbehörden. Darüber hinaus erhöht dies auch das Vertrauen der Mitarbeitenden und schafft ein Gefühl des Zusammenhalts.

Governance ist auch bei der Verwendung von KI-Agenten von entscheidender Bedeutung. Der Druck zur Einhaltung von Vorschriften sollte daher als Vorteil betrachtet werden.

Der Dreiklang aus Datenherkunft, Versionierung und automatisierter Auswertung der Ergebnisse hilft jungen Unternehmen dabei, Governance auf einem soliden Fundament aufzubauen. Die Teams erhalten direkte Transparenz darüber, wie sich die KI-Agenten verhalten, auf welchen Daten sie basieren und wie sie ihre Ergebnisse im Laufe der Zeit verändern. Laufende Bewertungen tragen dazu bei, dass KI-Agenten präziser werden, um genau jene hochwertigen Ergebnisse zu liefern, die Start-ups für die Skalierung ihrer Geschäftsmodelle benötigen. Dies ist besonders wichtig, wenn proprietäre KI-Modelle entwickelt und von der Testphase in die Produktion überführt werden, wobei gesetzliche Vorschriften wie die DSGVO oder der EU AI Act zwingend einzuhalten sind.

Parloa, ein deutsches Start-up-Unternehmen mit einer Bewertung von drei Milliarden US-Dollar, ist ein hervorragendes Beispiel dafür, wie dieser Ansatz in der Praxis aussehen kann: Das Unternehmen hat KI-Agenten zum Kern seines Kundenservice gemacht und gleichzeitig eine einheitliche, kontrollierte Datenbasis aufgebaut, die vollständig mit der DSGVO und dem EU AI Act konform ist. Seine Plattform folgt den Prinzipien des „Privacy by Design“, sodass sensible Kundendaten ohne Kontrollverlust verwendet werden können. Durch die Verwaltung des gesamten Lebenszyklus von KI-Agenten macht Parloa Governance zu etwas Greifbarem und gibt den Teams Klarheit darüber, welche Daten verwendet wurden, wie sich die Agenten verhalten haben und wie sich die Ergebnisse im Laufe der Zeit entwickelt haben. Diese Kombination aus moderner Architektur und starker Governance ermöglicht es den Kunden von Parloa, Zugang zu hochwertigen Daten zu erhalten und die Transparenz für Regulierungsbehörden sowie Endnutzer zu erhöhen – und dennoch KI-gesteuerte Kundeninteraktionen in Umgebungen zu skalieren, in denen Fehler oder Missbrauch inakzeptabel sind.

Fazit

KI-Agenten bieten europäischen Start-ups eine einmalige Gelegenheit, schnell zu wachsen und gleichzeitig Investoren anzuziehen, die bekanntermaßen ihr Geld bevorzugt in Unternehmen investieren, die Wert auf Datenverwaltung, Genauigkeit, Qualität und die Schaffung von echtem Mehrwert durch Technologie legen. Es ist jedoch ein Fehler, sich ohne sorgfältige Überlegungen auf die Einführung von Agenten zu stürzen. Start-ups, die KI-Agenten einsetzen, ohne zuvor eine einheitliche Datenbasis aufzubauen und eine solide Verwaltung sowie Bewertung sicherzustellen, riskieren, mehr Komplexität als Mehrwert zu schaffen. Letztlich werden jene Gründer und Gründerinnen erfolgreich sein, die ihre Geschäftsmodelle branchen- und länderübergreifend skalieren können – hierbei spielt der Einsatz von KI-Agenten bereits jetzt eine entscheidende Rolle.

Der Autor Nico Gaviola ist VP Digital Natives & Emerging Enterprise bei Databricks EMEA.

ChatGPT schreibt Texte. R3 Robotics zerlegt Batterien

Es gibt Probleme, die man mit Software lösen kann, und es gibt Probleme, für die man sich die Hände schmutzig machen muss – oder besser: Roboterhände nutzt. Antoine Welter und Dr. Xavier Kohll haben mit Circu Li-ion begonnen, um Batterien zu retten. Jetzt, unter dem neuen Namen R3 Robotics und mit 20 Millionen Euro frischem Kapital im Rücken, treten sie an, um den wohl größten Flaschenhals der kommenden Mobilitätswende zu beseitigen. Ihr Ansatz: Keine teuren Spezialmaschinen, sondern intelligente Standard-Roboter, die sehen, verstehen und sicher zupacken.

Wenn in den Vorstandsetagen der Automobilhersteller über die Zukunft gesprochen wird, geht es meist um Reichweiten und Software-Defined Vehicles. Doch am anderen Ende der Wertschöpfungskette braut sich ein Sturm zusammen. Millionen von Elektrofahrzeugen werden in den kommenden Jahren ihr Lebensende erreichen. Die derzeitige Realität in vielen Recyclinghöfen wirkt dagegen fast archaisch: Menschen, die mit Handwerkzeugen komplexe Systeme auseinanderschrauben. Das ist nicht nur teuer und schwer skalierbar, sondern bei Hochvolt-Systemen auch lebensgefährlich.

Genau hier setzen Antoine Welter und Xavier Kohll an. Die Nachricht, die das deutsch-luxemburgische Unternehmen Anfang Februar 2026 verkündete, ist mehr als nur eine Finanzierungsrunde. Die 20 Millionen Euro – aufgeteilt in 14 Millionen Euro Series-A-Kapital und 6 Millionen Euro öffentliche Fördergelder – heben die Gesamtfinanzierung des Unternehmens auf ein neues Level. Angeführt wird die Runde von HG Ventures und Suma Capital, unterstützt von Co-Investoren wie der Oetker Collection und dem EIC Fund.

Doch das Geld ist nur der Treibstoff für eine strategische Evolution. Aus Circu Li-ion wird R3 Robotics. Der neue Name ist Programm: Repair, Reuse, Recycle. Antoine Welter erklärt die Motivation hinter der Umbenennung pragmatisch: „Circu Li-ion hat beschrieben, wo wir angefangen haben. R3 Robotics beschreibt, was wir aufbauen: industrielle Robotik, die Demontage skalierbar, sicher und kosteneffizient macht.“

Wenn der Roboter Augen bekommt

Die größte Hürde im Recycling ist nicht die Chemie, sondern die Variabilität. Kein Batteriepack gleicht dem anderen, E-Motoren sind unterschiedlich verbaut, Schrauben sind korrodiert. Starre Fertigungsstraßen scheitern hier. R3 Robotics löst dies mit einer Plattform, die Computer Vision, künstliche Intelligenz und Robotik verschmilzt.

Das System fungiert dabei fast wie ein „ChatGPT für die physische Welt“: Anstatt Text zu generieren, plant die KI physische Handlungen. Sensoren scannen das Bauteil, die KI erkennt den Zustand und promptet den Roboterarm dynamisch durch den Demontageprozess. Der entscheidende Vorteil: Der Mensch wird aus der Gefahrenzone der Hochspannung genommen, während der Roboter Aufgaben erledigt, die für klassische Automatisierung zu komplex wären.

Angesprochen auf den Vergleich mit Generative AI und die Frage, wie die Roboter tatsächlich „sehen“ und „entscheiden“, bestätigt Welter die Parallele: „Der Vergleich mit Generative AI passt gut: Das Modell bekommt einen Input – keinen Text, sondern einen Scan des Bauteils – und generiert daraus eine Handlungssequenz.“ Es gehe darum zu erkennen, um welches Modell es sich handelt, wie der Zustand ist und wo die Verbindungspunkte liegen. „Das klingt simpel, ist es aber nicht – kein Pack ist identisch“, so Welter. Die eigentliche Herausforderung liege jedoch in der Entscheidung davor: „Welche Reihenfolge ist sicher? Ein falscher Griff an ein Hochvoltsystem kann tödlich sein. Unser System sieht, bewertet und entscheidet.“

Smart Hardware: Warum das Rad neu erfinden?

Ein Detail, das Investor*innen besonders aufhorchen lässt, ist die Kapitaleffizienz der Gründer. Wer an Industrie-Robotik denkt, denkt an teure Hardware-Entwicklung. R3 Robotics geht einen pragmatischen Weg: Ein Großteil der verwendeten Hardware wird „von der Stange“ gekauft.

Die Roboterarme sind Standardprodukte. Die Innovation – und damit das geistige Eigentum – steckt in den spezialisierten „End-Effektoren“ (den Roboterhänden), den Sensorsystemen und vor allem dem Software-Stack, der alles steuert. Das erlaubt eine Skalierung, die mit proprietärer Hardware kaum möglich wäre. Mitgründer Dr. Xavier Kohll betont, dass dies eine bewusste Entscheidung gegen „Over-Engineering“ war: „Der Roboterarm ist Standard und die Intelligenz sitzt in den Endeffektoren, der Sensorik und dem Software-Stack, der alles zusammenbringt. Das ist unser geistiges Eigentum, und genau das lässt sich skalieren.“

David gegen Goliath – oder Partner?

Während große Recycling-Konzerne oft noch auf den Schredder setzen und die manuelle Demontage an ihre Grenzen stößt, positioniert sich R3 Robotics in einer neuen Nische. Es geht nicht darum, die Chemie-Giganten zu ersetzen, sondern ihnen den Rohstoff so rein wie möglich zu liefern – als strategische Quelle für kritische Materialien. Doch der Markt schläft nicht: Weltweit entstehen Initiativen zur Automatisierung.

Trotz des aktuellen „Gegners“ – dem Menschen mit dem Schraubenzieher – und potenzieller Konkurrenz durch Tech-Start-ups oder Autohersteller, bleibt Welter gelassen. „Wir konkurrieren nicht mit den Chemie-Giganten, wir liefern ihnen den reinsten möglichen Stoffstrom“, stellt er klar. Gegenüber potenziellen Nachahmern sieht er einen entscheidenden Vorteil, den „Unfair Advantage“: die Kombination aus Flexibilität und industrieller Automatisierungstiefe. „Wir sind aktuell die einzige Plattform, die sowohl Variabilität managt als auch für kontinuierlichen Industriebetrieb ausgelegt ist.“

Deutschland als Labor, USA als Skalierungsmarkt

Die Wachstumsstrategie von R3 Robotics ruht auf zwei massiven Säulen: technologischer Tiefe in Europa und kommerzieller Breite in den USA.

Deutschland fungiert dabei als das technologische Rückgrat. Mit der Erweiterung der Anlage in Karlsruhe zur Lighthouse Facility demonstriert das Unternehmen industrielle Leistungsfähigkeit direkt vor der Haustür der großen Autobauer. Hier wird die Technologie gehärtet. Das zeigt sich auch im Leuchtturmprojekt ReDriveS, wo R3 Robotics Seite an Seite mit Giganten wie Schaeffler und VW an der Demontage von E-Achsen arbeitet.

Doch für das massive Volumen blickt das Team über den Atlantik. Der für 2026 geplante Markteintritt in den USA ist Kern der neuen Strategie. Die frischen 20 Millionen Euro sollen gezielt in den Aufbau strategischer Partnerschaften vor Ort fließen, um die Technologie dort auszurollen, wo Pragmatismus auf riesige „End-of-Life“-Volumina trifft. Für Welter ist dieser Doppelschlag essenziell: „Deutschland ist unser Beweisstand. Hier zeigen wir Schaeffler, VW und Co., dass unsere Technologie industriellen Maßstäben in Deutschland standhält.“ Die USA seien hingegen der wichtige Skalierungsmarkt, wo pragmatische Entscheider auf gigantische Volumina treffen. „Beides brauchen wir: die Glaubwürdigkeit aus Europa und das Volumen aus Amerika.“

Industrialisierung statt Romantik

Mit Peter Mohnen, dem ehemaligen CEO des Roboter-Riesen KUKA, holte sich das Start-up zudem einen Beirat, der wie kaum ein anderer weiß, was Industriestandard bedeutet. Er beschreibt den Ansatz von R3 als Beweis für die nötige Automatisierungsexpertise, um Variabilität und Sicherheit gleichzeitig zu managen.

Um diese Expertise weiter auszubauen, wächst das Team rasant. Die Belegschaft soll mit der neuen Finanzierung massiv aufgestockt werden, vor allem im Bereich Engineering und KI. R3 Robotics hat den Beweis erbracht, dass Kreislaufwirtschaft kein ökologisches Nischenprojekt sein muss, sondern ein harter industrieller Prozess ist, der sich rechnet.

Denn letztlich, so das Fazit von Antoine Welter, sei Automatisierung der einzige Weg, das Problem wirklich zu lösen – nicht allein aus ökologischen Gründen, sondern weil es wirtschaftlich Sinn ergibt. „Was wir aufbauen, ist am Ende ein harter industrieller Prozess: Er muss zuverlässig funktionieren und sich rechnen.“ Es gehe aber um mehr als ein Geschäftsmodell: „Europa braucht eine Antwort auf die Frage, woher seine kritischen Materialien in Zukunft kommen“, mahnt Welter abschließend. „Wenn Europa diesen Zugang sichern will, braucht es Unternehmen, die genau das industriell umsetzen können. Dafür bauen wir diese Infrastruktur, und mit dem neuen Kapital und Team haben wir jetzt die Mittel dazu.“

Automatisierung vor Hiring, sonst wird Komplexität skaliert

Wer Wachstum vor allem mit Hiring beantwortet, verzichtet damit oft unbewusst auf einen der wichtigsten Hebel moderner Organisationen: Klarheit durch Prozesse und Automatisierung. Tipps und To-Dos.

Wachstum wird in Start-ups oft sehr eindimensional gedacht: mehr Nachfrage gleich mehr Menschen. Sobald Anfragen steigen, Deals reinkommen oder neue Märkte locken, folgt fast automatisch der nächste Hiring-Plan. Dabei wird häufig die Ursache mit Wirkung verwechselt. Nicht fehlende Kapazität bremst junge Unternehmen, sondern fehlende Struktur. Prozesse entstehen improvisiert, Verantwortung wird situativ verteilt, operative Arbeit frisst Fokus. Und irgendwann fühlt sich Wachstum nicht mehr nach Fortschritt, sondern nach Dauerstress an.

Gerade in der Start-up-Branche wird Wachstum zudem stark über sichtbare Kennzahlen bewertet. In Gesprächen mit Investor*innen lautet eine der ersten Fragen häufig nicht Gewinn oder EBITA, sondern: Wie viele Mitarbeitende seid ihr und wie viel Umsatz macht ihr? Die Anzahl der Mitarbeitenden wird damit fast zu einem Statussymbol. Hiring wird nicht nur zur operativen, sondern auch zur psychologischen Größe und ein Zeichen von Fortschritt. Diese Logik verstärkt den Reflex, früh zu skalieren, auch wenn die strukturellen Voraussetzungen dafür noch fehlen. Wer Wachstum vor allem mit Hiring beantwortet, verzichtet damit oft unbewusst auf einen der wichtigsten Hebel moderner Organisationen: Klarheit durch Prozesse und Automatisierung.

Warum Hiring allein selten skaliert

Mehr Menschen im Team wirken wie eine schnelle Lösung. In der Praxis zeigt sich jedoch häufig ein ähnliches Muster: Neue Kolleg*innen übernehmen Aufgaben, die eigentlich nur deshalb existieren, weil Abläufe unklar oder manuell gewachsen sind. Statt nachhaltiger Entlastung entsteht zusätzliche Koordination.

Typische Symptome sind:

  • operative Aufgaben blockieren strategische Arbeit,
  • Wissen verteilt sich auf einzelne Köpfe,
  • Entscheidungen hängen an Personen statt an klaren Abläufen,
  • Abstimmungen nehmen zu, ohne dass die Wertschöpfung im gleichen Maß wächst.

Das Problem ist nicht Hiring an sich, sondern die Reihenfolge. In vielen Fällen wird Hiring eingesetzt, um kurzfristig Druck rauszunehmen, obwohl das eigentliche Nadelöhr fehlende Klarheit ist. Wer einstellt, bevor Abläufe stabil sind, schafft zwar mehr Kapazität, skaliert aber auch Komplexität.

Prozesse als Voraussetzung für wirksames Wachstum

Prozesse werden in Start-ups häufig mit Bürokratie verwechselt. Tatsächlich sind sie das Gegenteil: Sie reduzieren Reibung. Gute Prozesse verlagern Entscheidungen vom Einzelfall ins System. Sie beantworten zwei zentrale Fragen zuverlässig: Was passiert als Nächstes – und wer ist verantwortlich?

Gerade kleine Teams profitieren davon besonders. Prozesse schaffen keine Starrheit, sondern Handlungsspielraum. Sie machen Arbeit vorhersehbar, Übergaben sauber und Entscheidungen reproduzierbar. Erst auf dieser Grundlage kann ein wachsendes Team seine Stärke wirklich entfalten.

Automatisierung im KI-Zeitalter: neue Möglichkeiten, neue Verantwortung

Mit KI hat sich die Eintrittshürde für Automatisierung massiv gesenkt. Viele Aufgaben, die früher manuell oder individuell erledigt wurden, lassen sich heute zuverlässig unterstützen oder teilweise abnehmen, vorausgesetzt, der zugrunde liegende Ablauf ist klar definiert. Entscheidend ist dabei nicht die Tool-Auswahl, sondern die Frage, was automatisiert wird. Automatisierung verstärkt bestehende Strukturen, gute wie schlechte. Wer unklare Abläufe automatisiert, skaliert keine Effizienz, sondern Chaos. Gleichzeitig gibt es zentrale Bereiche, die sich bewusst nicht oder nur sehr begrenzt automatisieren lassen und auch nicht sollten. Recruiting ist einer davon. Der Aufbau eines funktionierenden Teams lebt von persönlicher Einschätzung, Teamdynamik und kulturellem Fit. Ähnliches gilt für Sales: Vertrauensaufbau, Verhandlung und das persönliche Gespräch bleiben essenziell. Automatisierung ist hier unterstützend, aber kein Ersatz. Besonders geeignet sind Tätigkeiten, die häufig auftreten, wenig kreativen Spielraum haben und auf wiederkehrenden Informationen basieren.

Bereiche, die sich heute besonders gut automatisieren lassen

Lead- und Anfragequalifizierung
Unstrukturierte Anfragen lassen sich mithilfe von KI zusammenfassen, bewerten und priorisieren. Statt jede Anfrage manuell zu prüfen, entstehen klare Kriterien, die relevante von irrelevanten Leads trennen und Follow-ups vorbereiten.

Angebots- und Abrechnungsprozesse
Angebote, Verträge und Rechnungen folgen in vielen Startups ähnlichen Mustern. Automatisierte Vorlagen, angebundene Datenquellen und definierte Freigaben sparen Zeit, reduzieren Fehler und schaffen Transparenz.

Onboarding von Kund:innen und Mitarbeitenden
Onboarding ist kein Einzelfall, sondern ein wiederkehrender Prozess. Checklisten, automatische Aufgaben und zentrale Informationspunkte sorgen für Verlässlichkeit. KI kann helfen, Informationen zu strukturieren und kontextbezogen bereitzustellen.

Support und interne Anfragen

Ein Großteil von Fragen wiederholt sich. Wissensbasen in Kombination mit KI-gestützter Suche und Antwortvorschlägen entlasten Teams und machen sichtbar, wo Standards fehlen.

Projektmanagement und Übergaben
Klare Projekt-Templates, automatisierte Status-Updates und definierte Trigger reduzieren Abstimmungsaufwand. KI kann dabei unterstützen, Risiken früh zu erkennen oder nächste Schritte vorzuschlagen.

Was Start-ups daraus lernen können

Automatisierung ersetzt keine Entscheidungen, sie macht sie skalierbar. Voraussetzung dafür ist Klarheit über Abläufe, Verantwortlichkeiten und Prioritäten. Wer versucht, Chaos zu automatisieren, verstärkt es lediglich.

Hilfreiche Leitfragen sind:

  • Welche Aufgaben wiederholen sich regelmäßig?
  • Wo entstehen manuelle Engpässe?
  • Welche Tätigkeiten binden qualifizierte Menschen ohne echten Mehrwert?

Die Antworten darauf liefern meist schnell die größten Hebel.

Der KI-Wendepunkt: Systeme und Personal

Nachhaltiges Wachstum entsteht dort, wo Start-ups Systeme aufbauen und diese bewusst mit ihrem Team verzahnen. Nicht, weil Systeme Menschen ersetzen, sondern weil sie Menschen von struktureller Überforderung entlasten. Automatisierung schafft dabei nicht nur Effizienz, sondern Entscheidungsqualität: Wenn Daten sauber fließen, Übergaben klar sind und Standards greifen, werden Prioritäten weniger Bauchgefühl und stärker reproduzierbar.

Der gezielte Einsatz von KI-Tools verschiebt diesen Wendepunkt zusätzlich. Sie können Routinearbeiten abfangen, Informationen aus unstrukturierten Inputs verdichten und Entscheidungen vorbereiten – etwa durch Lead-Vorqualifizierung, Support-Clustering oder zusammengefasste Status-Updates. KI wirkt dabei nicht als Ersatz für Klarheit, sondern als Verstärker funktionierender Prozesse.

Hiring bleibt auch weiterhin essentiell. Seine Wirkung entfaltet es jedoch erst dann vollständig, wenn Prozesse klar sind und Automatisierung sowie KI gezielt unterstützen. So entsteht Wachstum, das nicht nur schneller, sondern auch gesünder ist.

Der Autor Markus Hetzenegger ist Gründer & CEO von NYBA Media. 2018 gegründet, zählt NYBA heute zu den führenden Marketing-Unternehmen im Live-Entertainment.

Von der Kochbox zum Hundenapf: Ex-HelloFresh-Duo startet Tasty Petfood

Wie Lisa Vannini und Nadja Chylla mit ihrem Start-up Tasty Petfood die etablierten Premium-Tierfuttermarken herausfordern.

Das Berliner Start-up Tasty Petfood ist offiziell in den Markt eingetreten. Das Unternehmen, gegründet von den ehemaligen HelloFresh-Kolleginnen Lisa Vannini und Nadja Chylla, positioniert sich im Premium-Segment für Hundefutter und setzt dabei auf ein digitales Vertriebsmodell. Der offizielle Marktstart in Deutschland und der Schweiz erfolgte am 6. Februar 2026.

Transfer von Food-Logistik auf den Heimtiermarkt

Die Gründerinnen arbeiteten zuvor über fünf Jahre gemeinsam beim Kochboxen-Versender HelloFresh. Das dort in den Bereichen Skalierung und Operations gewonnene Know-how wollen Lisa und Nadja nun auf den Heimtiermarkt übertragen.

„Wir haben gemerkt, dass viele Hundehalter entweder bei klassischem Trockenfutter bleiben oder sehr viel Zeit in aufwendige BARF-Konzepte investieren müssen. Genau diese Lücke zwischen Bequemlichkeit und echter Qualität wollten wir schließen“, berichtet Lisa.

Das Kernprodukt von Tasty Petfood unterscheidet sich logistisch von herkömmlichem Nassfutter oder Barf-Angeboten: Das Unternehmen vertreibt dampfgegartes Frischfutter im Glas. Ein wesentlicher Unterschied zu vielen Wettbewerbern im Frische-Segment ist die Haltbarmachung: Die Produkte benötigen keine geschlossene Kühlkette und können ungekühlt gelagert werden. Dies reduziert die Komplexität in der Lagerhaltung und im Versand erheblich – ein Faktor, der im D2C-Bereich direkten Einfluss auf die Unit Economics hat. „Unser Anspruch war Qualität wie selbstgekocht – aber ohne Kühlschrank und ohne komplizierte Logistik. Dass wir Frische, Haltbarkeit und Alltagstauglichkeit verbinden können, ist für viele Kundinnen und Kunden ein echter Gamechanger“, sagt Nadja.

Wachstumskurs in einem Milliardenmarkt

Mit ihrem Geschäftsmodell stoßen die Gründerinnen in ein wirtschaftlich hochattraktives Umfeld vor. Nach aktuellen Daten des Industrieverbands Heimtierbedarf (IVH) und des Zentralverbands Zoologischer Fachbetriebe (ZZF) liegt der Gesamtumsatz der Branche bei rund sieben Milliarden Euro, wobei allein das Segment für Fertignahrung gut 4,4 Milliarden Euro ausmacht. Trotz allgemeiner wirtschaftlicher Herausforderungen bleibt die Zahlungsbereitschaft der Halter hoch.

Während der Absatz im Standard-Segment teils stagniert, wächst der Bereich für Premium-Nahrung kontinuierlich. Tasty Petfood ordnet sich im oberen Preissegment ein und zielt auf eine kaufkräftige Zielgruppe, die den Trend zur „Humanisierung“ des Haustiers vorantreibt.

„Hunde werden heute immer stärker als Familienmitglieder gesehen. Entsprechend steigen die Ansprüche an Transparenz, Zutatenqualität und Nährstoffversorgung – ähnlich wie beim eigenen Essen“, so Lisa.

Die Nische zwischen Konzern und Tiefkühltruhe

In diesem dynamischen Umfeld muss sich Tasty Petfood gegen zwei Lager behaupten. Zum einen konkurriert das Start-up mit etablierten Premium-Marken im stationären Handel wie Terra Canis, das als Pionier für „Human Grade“-Nahrung gilt und seit 2017 mehrheitlich zum Nestlé-Konzern gehört. Zum anderen wächst der Druck durch rein digitale Player wie Butternut Box oder HelloBello, die ebenfalls auf personalisiertes Frischfutter setzen, dieses jedoch tiefgekühlt versenden.

Genau hier besetzt Tasty Petfood eine strategische Lücke: Start-ups fungieren in diesem Sektor aktuell als wesentliche Innovationstreiber, und die Berliner Gründerinnen nutzen dies für eine „Ambient Fresh“-Strategie. Mit ungekühlt haltbarem Frischfutter verbindet das Unternehmen den steigenden Wunsch nach Convenience mit der Qualität von Frische-Menüs – ein entscheidender Logistik-Vorteil gegenüber der aufwendigen Tiefkühl-Konkurrenz. „Wir sitzen genau zwischen Tiefkühltruhe und Trockenfutter. Unser Futter ist reisefähig, blockiert keinen Gefrierschrank und passt damit perfekt in den Alltag moderner Hundehalter“, sagt Nadja.

Datengetriebenes Abo-Modell

Der Bestellvorgang für den/die Endkund*in ist vollständig datengestützt aufgebaut. Zu Beginn erfassen Interessent*innen über ein Online-Quiz relevante Parameter wie Rasse, Alter und Gewicht des Tieres. Auf Grundlage dieser Daten berechnet das Unternehmen einen individuellen Futterplan, der exakt auf den Hund zugeschnitten ist. Um die Akzeptanz zu testen, erhalten Neukund*innen zunächst eine Probebox mit verschiedenen Sorten. Bei erfolgreicher Annahme geht das Modell automatisch in ein flexibles Abonnement über, bei dem sowohl die Rationsgröße als auch der Lieferrhythmus dynamisch an den tatsächlichen Bedarf des Hundes angepasst werden. „Viele Halter sind unsicher, ob sie ihren Hund wirklich bedarfsgerecht füttern. Unser Algorithmus nimmt ihnen diese Entscheidung ab und sorgt dafür, dass Menge und Nährstoffe langfristig passen“, so Lisa.

Positionierung im Premium-Segment

Das Produktportfolio umfasst zum Start sechs Sorten auf Monoprotein-Basis. Durch den hohen Fleischanteil und den Verzicht auf Füllstoffe oder Konservierungsmittel zielt das Start-up auf die „Human Grade“-Nische ab. Das Produkt ist dabei so designt, dass es optisch und qualitativ an selbstgekochtes Futter erinnert, um die Hürde für qualitätsbewusste Käufer*innen zu senken. Das Kalkül: Die Zielgruppe sucht die Qualität einer BARF-Ernährung, benötigt aber die Convenience eines Fertigprodukts. „Unser Ziel ist es, Pet Nutrition durch sichtbare Qualität und Transparenz neu zu definieren“, so Nadja über den Anspruch, moderne Halterbedürfnisse mit dem Produkt-Design zu adressieren.

Highspeed-Pivot: Wie POLARIS die Bundeswehr für sich gewann

Ein Bremer NewSpace-Start-up baut für die Bundeswehr das Raumflugzeug der Zukunft. Mit seinem revolutionären Antrieb sticht POLARIS dabei sogar die US-Konkurrenz aus und fungiert zugleich als Eisbrecher für die deutsche DeepTech-Szene.

Wenn Alexander Kopp über die Ostsee blickt, sieht er nicht nur Wasser, sondern die Zukunft der europäischen Souveränität. Während in Berlin oft über die Trägheit der Beschaffungswesen geklagt wird, lässt der Gründer von  POLARIS Raumflugzeuge Fakten sprechen – oder besser gesagt: Triebwerke heulen.

Das DLR-Spin-off schafft gerade, woran Konzerne seit Jahrzehnten scheitern: Ein Raumflugzeug zu bauen, das wie ein normaler Airliner startet, aber die Leistung einer Rakete besitzt. Und noch etwas ist ungewöhnlich in der deutschen Start-up-Landschaft: Der erste große Kunde, der die Bremer „Tüftler“ finanziert, ist kein Risikokapitalgeber aus dem Silicon Valley, sondern das Beschaffungsamt der Bundeswehr.

Der Traum vom Aerospike

Was das Team um den ehemaligen DLR-Ingenieur Kopp antreibt, ist der Abschied von der teuren Einweg-Mentalität der Raumfahrt. Seine Strategie ist eine radikale Flucht nach vorn: „Wenn wir im Wettbewerb bestehen wollen, uns vielleicht sogar an die Spitze setzen wollen, müssen wir die Raketen überspringen“, erklärte Kopp gegenüber dem Magazin 1E9. „Wir müssen direkt neue, bessere Konzepte umsetzen. Keine Raketen, sondern Raumflugzeuge.“

Der technologische Schlüssel, um diese Vision Realität werden zu lassen, ist das sogenannte Linear Aerospike-Triebwerk. Es gilt als der „Heilige Gral“ der Raketentechnik, an dem sich schon die NASA in den 90er Jahren die Zähne ausbiss. Das Problem herkömmlicher Raketendüsen ist ihre Glockenform – sie sind physikalisch bedingt entweder nur am Boden oder im All effizient, nie beides gleichzeitig.

Das Aerospike-Triebwerk hingegen ist ein technologisches Chamäleon: Durch seine offene, stachelförmige Bauweise passt sich der Abgasstrahl automatisch dem Luftdruck an. Es arbeitet auf dem Rollfeld genauso effizient wie im Vakuum. Dass das nicht nur graue Theorie ist, bewies Polaris im Oktober 2024: Mit dem Demonstrator „MIRA II“ gelang dem Start-up über der Ostsee die weltweit erste Zündung eines solchen Triebwerks im Flug.

Bootstrapping in Feldgrau

Diese Mischung aus „Rapid Prototyping“ – also dem schnellen Bauen, Testen und Verbessern – und technologischer Exzellenz kam genau zur richtigen Zeit für die Strategen der Bundeswehr. Berührungsängste mit dem Uniformträger hat der Gründer dabei nicht, im Gegenteil. „Wenn man sich die Historie der Raumfahrt anschaut, kamen die Durchbrüche meist direkt oder indirekt durch das Militär“, ordnete Kopp die Zusammenarbeit im Business Insider pragmatisch ein.

Denn beim Militär treibt man das Thema „Responsive Space“ voran. Das Szenario ist so simpel wie bedrohlich: Im Konfliktfall werden eigene Aufklärungssatelliten zerstört oder geblendet. Mit dem System von POLARIS, dessen finales Modell „Aurora“ ab 2026 produziert werden soll, könnte Deutschland binnen 24 Stunden Ersatz-Satelliten in den Orbit schießen. Und zwar von jedem normalen Flughafen aus, ohne auf verwundbare Startrampen angewiesen zu sein. Für POLARIS wurde das Militär so vom reinen Geldgeber zum strategischen Anker-Kunden, der dem Start-up den nötigen „Runway“ verschafft – finanziell wie physisch.

Ein Eisbrecher für die deutsche DeepTech-Szene

POLARIS operiert dabei längst nicht mehr im luftleeren Raum. Der Erfolg der Bremer sendet ein Signal in den Markt, das weit über das eigene Unternehmen hinausstrahlt: Der Staat ist bereit, in junge High-Tech-Firmen zu investieren, wenn die Technologie „Dual-Use“ ist, also zivil und militärisch genutzt werden kann.

Davon profitieren Start-ups wie das Münchner Unternehmen OroraTech, deren Waldbrand-Satelliten im Ernstfall schnell ersetzt werden müssten – eine perfekte Fracht für Polaris. Auch im Bereich der Datenverarbeitung entstehen Synergien: Wenn ein Hyperschall-Flieger Terabytes an Aufklärungsdaten sammelt, braucht es KI-Lösungen von Firmen wie dem Defense-Einhorn Helsing, um diese Informationen in Echtzeit auszuwerten. POLARIS wirkt hier wie ein Eisbrecher, der validiert, dass „Made in Germany“ auch im neuen „Space Race“ eine Währung ist.

Denn die Konkurrenz schläft nicht. In den USA pumpen das Pentagon und die Air Force Millionen in Wettbewerber wie Hermeus oder Stratolaunch, und China arbeitet mit Hochdruck am Projekt „Tengyun“. Doch während im Silicon Valley oft noch an Simulationen gefeilt wird, haben die Bremer mit ihrem fliegenden Aerospike-Triebwerk einen Vorsprung, der sich mit Geld allein schwer aufholen lässt. Aus der visionären Idee in einem Bremer Büro ist ein Projekt von nationaler Tragweite geworden. Wenn Alexander Kopps Plan aufgeht, schauen die Amerikaner beim nächsten Wettlauf ins All nicht nach oben, sondern in den Rückspiegel.

Globaler Wettbewerb: Polaris vs. US-Konkurrenz

Merkmal

Polaris Raumflugzeuge (Deutschland)

Hermeus (USA)

Stratolaunch (USA)

Haupt-Fahrzeug

Aurora (in Entwicklung)

Quarterhorse (Demo) / Darkhorse

Talon-A

Start-Methode

Horizontal (Startbahn)

Horizontal (Startbahn)

Air-Launch (Abwurf vom Trägerflugzeug „Roc“)

Antrieb

Linear Aerospike (Rakete) + Turbinen

TBCC (Turbine + Ramjet)

Flüssig-Raketentriebwerk (Konventionell)

Haupt-Mission

Multimission: Satellitenstart (Orbit) + Hyperschall-Test/Aufklärung

Transport: Passagier/Fracht (Point-to-Point) + Militär

Testbed: Zielsimulation & Testplattform für US-Militär

Wiederverwendbar?

Ja (System landet wie Flugzeug)

Ja

Ja (landet gleitend auf Landebahn)

Aktueller Status

Fliegend: Skalierte Demonstratoren (MIRA) erfolgreich getestet.

Boden-Tests: Triebwerkstests erfolgreich, Rolltests ("Taxiing").

Operativ: Talon-A hat bereits motorisierte Hyperschallflüge absolviert.

Finanzierung

Bundeswehr (BAAINBw) & Private Investoren

US Air Force, Pentagon (DIU) & Venture Capital

Private Equity (Cerberus Capital Management)

Die Wächter des Firmengedächtnisses

Wie das 2025 von Christian Kirsch und Stefan Kirsch gegründete Start-up amaiko den Strukturwandel im Mittelstand adressiert.

Der demografische Wandel und eine erhöhte Personalfluktuation stellen mittelständische Unternehmen zunehmend vor die Herausforderung, internes Know-how zu bewahren. Viele Unternehmen stehen vor der Schwierigkeit, dass Firmenwissen fragmentiert vorliegt. Informationen sind häufig in unterschiedlichen Systemen oder ausschließlich in den Köpfen der Mitarbeitenden gespeichert. Verlassen langjährige Fachkräfte den Betrieb in den Ruhestand oder wechseln jüngere Arbeitnehmerinnen und Arbeitnehmer kurzfristig die Stelle, gehen diese Informationen oft verloren. Zudem bindet die Suche nach relevanten Dokumenten in verwaisten Ordnerstrukturen Arbeitszeit, die in operativen Prozessen fehlt.

Das 2025 gegründete Start-up amaiko aus Niederbayern setzt hierbei auf einen technischen Ansatz, der auf die Einführung neuer Plattformen verzichtet und stattdessen eine KI-Lösung direkt in die bestehende Infrastruktur von Microsoft Teams integriert. Vor diesem Hintergrund entwickelten die Brüder Christian und Stefan Kirsch mit amaiko eine Softwarelösung, die spezifisch auf die Ressourcenstruktur mittelständischer Betriebe ausgelegt ist.

Integration statt neuer Insellösungen – und die Abgrenzung zu Copilot

Ein wesentliches Merkmal des Ansatzes ist die Entscheidung gegen eine separate Software-Plattform. Christian Kirsch, Geschäftsführer von PASSION4IT und amaiko, positioniert die Lösung als „Teams-native“. Das bedeutet, dass der KI-Assistent technisch in Microsoft Teams eingebettet wird – jene Umgebung, die in vielen Büros bereits als primäres Kommunikationswerkzeug dient. Ziel ist es, die Hürden bei der Implementierung zu senken, da Nutzer ihre gewohnte Arbeitsumgebung nicht verlassen müssen.

Angesichts der Tatsache, dass Microsoft mit dem „Microsoft 365 Copilot“ derzeit eine eigene, tief integrierte KI-Lösung ausrollt, stellt sich die Frage nach der Positionierung. Christian Kirsch sieht hier jedoch keine direkte Konkurrenzsituation, sondern eine klare Differenzierung: Copilot sei eine sehr breite, Microsoft-zentrische KI-Funktion. Amaiko hingegen verstehe sich als spezialisierter, mittelstandsorientierter Wissensassistent, der Beziehungen, Rollen, Prozesse und Unternehmenslogik tiefgreifend abbildet.

Ein entscheidender Vorteil liegt laut Kirsch zudem in der Offenheit des Systems: „Während Copilot naturgemäß an MicrosoftSysteme gebunden ist, lässt sich amaiko herstellerunabhängig in eine viel breitere Softwarelandschaft integrieren – vom ERP über CRM bis zu Branchenlösungen. Unser Ziel ist nicht, Copilot zu kopieren, sondern reale Mittelstandsprozesse nutzbar zu machen“, so der Co-Founder.

Funktionsweise, Sicherheit und Haftung

Funktional unterscheidet sich das System von herkömmlichen Suchmasken durch eine agentenähnliche Logik. Die Software bündelt Wissen aus internen Quellen wie Richtlinien oder Projektdokumentationen und stellt diese kontextbezogen zur Verfügung. Ein Fokus liegt dabei auf der Datensouveränität. Hierbei betont Christian Kirsch, dass Kundendaten nicht in öffentlichen Modellen verarbeitet werden: „Die Modelle laufen in der europäischen Azure AI Foundry, unsere eigenen Dienste auf deutschen Servern. Die Daten des Kunden bleiben on rest vollständig im jeweiligen Microsoft365Tenant. Es findet kein Training der Foundation Models mit Kundendaten statt – weder bei Microsoft noch bei uns. Grundlage dafür sind die Azure OpenAI NonTraining Guarantees, die Microsoft in den Product Terms sowie in SOC2/SOC3 und ISO27001Reports dokumentiert.“

Auch rechtlich zieht das Start-up eine klare Grenze, sollte die KI einmal fehlerhafte Informationen, sogenannte Halluzinationen, liefern. „Amaiko generiert Vorschläge, keine rechts oder sicherheitsverbindlichen Anweisungen. Das stellen wir in unseren AGB klar: Die Entscheidungshoheit bleibt beim Unternehmen. Wir haften für den sicheren Betrieb der Plattform, nicht für kundenseitig freigegebene Inhalte oder daraus abgeleitete Maßnahmen. Es geht um eine saubere Abgrenzung – technische Verantwortung bei uns, inhaltliche Verantwortung beim Unternehmen“, so Christian Kirsch.

Geschäftsmodell und Markteintritt

Seit der Vorstellung der Version amaiko.ai im Juli 2025 wird das System nach Angaben des Unternehmens mittlerweile von über 200 Anwendern genutzt. Durch die Integration in die bestehende Microsoft-365-Landschaft entfällt für mittelständische Kunden eine aufwendige Systemmigration, was die technische Eintrittsbarriere gering hält.

Passend zu diesem Ansatz ist amaiko als reines SaaS-Produkt konzipiert, das Unternehmen ohne Einstiegshürde direkt online buchen können. Laut Kirsch sind keine Vorprojekte, individuellen Integrationspfade oder teuren Beratungspflichten notwendig: „Die Nutzung ist selbsterklärend und leichtgewichtig. Wer zusätzlich Unterstützung möchte – etwa zur Wissensstrukturierung oder Governance – kann sie bekommen. Aber die technische Einführung selbst ist bewusst so gestaltet, dass Mittelständler ohne Implementierungsaufwand starten können.“

Unterm Strich liefert amaiko damit eine pragmatische Antwort auf den drohenden Wissensverlust durch den demografischen Wandel: Statt auf komplexe IT-Großprojekte zu setzen, holt das bayerische Start-up die Mitarbeitenden dort ab, wo sie ohnehin kommunizieren. Ob sich die „Teams-native“-Strategie langfristig gegen die Feature-Macht von Microsoft behauptet, bleibt abzuwarten – doch mit dem Fokus auf Datensouveränität und mittelständische Prozesslogik hat amaiko gewichtige Argumente auf seiner Seite, um sich als spezialisierter Wächter des Firmengedächtnisses zu etablieren.

Diese 10 Start-ups bauen an der Zukunft der AgriFood-Branche

Die deutsche Start-up-Landschaft verzeichnete 2025 ein Rekordhoch bei Neugründungen. Doch gerade im AgriFood-Sektor ist der Weg vom Prototyp zum Marktführer steinig. Kapitalintensive Hardware und strenge Regulatorik bremsen viele aus. Der Growth Alliance Accelerator zeigt, wie Gründer*innen diese Hürden überspringen – und präsentiert zehn Akteure, die auf der Erfolgsspur sind.

Es ist ein Paradoxon: Die Nachfrage nach nachhaltigen Lebensmitteln und effizienter Landwirtschaft ist so hoch wie nie, doch für Gründer*innen und junge Unternehmen in der AgriFood-Branche bleibt der Markteintritt ein Hürdenlauf. Während Software-Start-ups oft mit geringem Kapital skalieren, kämpfen Food- und AgTech-Pioniere mit der „Hardware-Falle“. Sie benötigen teure Produktionsanlagen, Labore und müssen langwierige Zulassungsverfahren (z.B. Novel-Food-Verordnung) durchlaufen.

Dennoch ist die Branche im Aufwind: Laut dem Deutschen Startup Monitor und aktuellen Zahlen des Startup-Verbands stiegen die Gründungszahlen 2025 um beachtliche 29 Prozent. Das Kapital ist da, doch es fließt selektiv. Investor*innen suchen heute keine reinen Ideen mehr, sondern validierte Geschäftsmodelle mit technologischem Tiefgang (DeepTech). Genau hier setzte das Finale des Growth Alliance Accelerator 2025 am 28. Januar 2026 in Frankfurt/Main an.

Brückenschlag zwischen Acker und Finanzwelt

Initiiert vom TechQuartier und der Landwirtschaftlichen Rentenbank, hat sich der Accelerator als Schmiede für die „Scale-up“-Phase etabliert. Vier Monate lang wurden zehn Start-ups, die bereits eine Nutzer*innenbasis vorweisen konnten, fit für die nächste Finanzierungsrunde gemacht.

Das Programm adressierte genau die Pain Points der Branche: Verhandlungstaktik, Rechtsfragen und vor allem den Zugang zu Kapital. Ein Highlight war das Investor Dinner im November 2025, bei dem die Gründer*innen direkten Zugang zu Risikokapitalgeber*innen erhielten – in der aktuellen Marktphase ein entscheidender Wettbewerbsvorteil.

Die „Class of 2025“: Wer die Transformation treibt

Die zehn Absolvent*innen decken die gesamte Wertschöpfungskette ab – vom Boden über das Labor bis zum Supermarktregal. Hier ein Blick auf die Köpfe hinter den Innovationen:

1. High-Tech auf dem Acker: Robotik und Daten

Die Digitalisierung der Landwirtschaft (Smart Farming) ist der stärkste Hebel für mehr Effizienz.

Paltech GmbH

Die Brüder Felix und Florian Schiegg gründeten 2022 Paltech zusammen mit Jorge Decombe im Allgäu. Ihr autonomer Roboter für chemiefreie Unkrautbekämpfung im Grünland ist eine Antwort auf strengere Pestizid-Gesetze und Personalmangel.

Bacchus Software GmbH

Das 2023 gegründete Start-up bacchus Weinbau-Software um das Trio Maximilian Dick, Julian Herrlich und Philipp Bletzer digitalisiert den Weinbau. Ihre Software ersetzt das händische Fahrtenbuch und koordiniert die komplette Weinbergsarbeit.

Agrario Energy

Die Energiewende macht Landwirt*innen zu Energiewirt*innen. Seit 2023 bieten die Gründer Alexander von Breitenbach und Chris Weber mit Agrario Energy eine unabhängige Vergleichsplattform, die Flächeneigentümer mit Betreiber*innen von Erneuerbare-Energien-Anlagen zusammenbringt.

2. Deep Tech & Sicherheit: Das Labor als Wächter

Lebensmittelsicherheit wird durch globale Lieferketten immer komplexer. Hier setzen wissenschaftsbasierte Ausgründungen an.

NanoStruct GmbH

NanoStruct wurde 2021 als Spin-off der Universität Würzburg gegründet. Das Team nutzt Nanotechnologie, um gefährliche Bakterien in Lebensmitteln in Minuten statt Tagen aufzuspüren.

SAFIA Technologies

Gegründet 2020 von Timm Schwaar (aus der Bundesanstalt für Materialforschung), entwickelt das Berliner Start-up SAFIA Technologies Schnelltests für Mykotoxine (Schimmelpilzgifte). Ihre Technologie ermöglicht Laborqualität im Schnelltest-Format.

Landman.Bio

Das noch junge Unternehmen (Gründung 2023) Landman.Bio nutzt Bakteriophagen (Viren, die Bakterien fressen) als natürliche Waffe gegen Pflanzenkrankheiten – eine dringend benötigte Alternative zu Antibiotika und klassischen Pestiziden in der Nutzpflanzenzucht.

3. Sustainability & Climate: Kohlenstoff als Währung

CO2-Tracking ist kein Marketing-Gimmick mehr, sondern ökonomische Notwendigkeit.

CinSOIL

Das 2024 in Berlin gegründete CinSOIL-Team um Dr. Giorgi Shuradze, Dr. Antonella Succurro und Dr. Tavseef Shah kommt aus der Wissenschaft. Ihr KI-Tool nutzt Satellitendaten, um Bodenkohlenstoff zu erfassen. Das ermöglicht Agrarunternehmen, Dekarbonisierung nicht nur zu behaupten, sondern zu beweisen.

Niatsu

Gegründet 2023 von Marius Semm und Jakob Tresch in Zürich, adressiert Niatsu die Lebensmittelindustrie. Ihre Software berechnet den Product Carbon Footprint (PCF) automatisiert und kostengünstig, was gerade für den Mittelstand entscheidend ist.

4. Future Food

Was wir morgen essen (und trinken).

VANOZZA

Eines der etabliertesten Start-ups der Runde. Gegründet 2019 von Nico Hansen in Hamburg, hat sich Vanozza mit fermentierten Käsealternativen auf Cashew-Basis einen Namen gemacht und arbeitet nun an der „zweiten Generation“ ihrer Produkte.

food42morrow/JUMA

Die Frankfurter Gründer Raoul und Max Kammann sowie Carlos Lopez Granado gründeten die GmbH bereits 2020 und brachten 2022 ihre Marke JUMA (Tee-Eistees auf Guayusa-Basis) auf den Markt. Sie bedienen den Trend zu „Functional Food“.

Fazit

Die AgriFood-Start-ups des Abschlussjahrgangs des Growth Alliance Accelerators 2025 haben die Phase der reinen Ideen-Findung bereits eindrucksvoll gemeistert. Jetzt geht es um Skalierung, industrielle Anwendung und messbaren Impact. Programme wie die Growth Alliance sind dabei der Katalysator, der wissenschaftliche Exzellenz mit dem nötigen Geschäftssinn verbindet.

Social Engineering auf dem Vormarsch

Wie Deepfakes die Sicherheit von Führungskräften stärker in den Fokus rücken.

Fotorealistische KI liefert innerhalb von kürzester Zeit realistische Visuals. Was in vielerlei Hinsicht den Arbeitsalltag erleichtert, bedeutet für Social Engineering jedoch eine neue Eskalationsstufe, wie nicht zuletzt die hitzige Debatte um massenhaft sexualisierte Deepfakes von realen Personen durch Grok eindrücklich vor Augen führte.

Auch Personen in leitenden Funktionen in Unternehmen sind vor solchen Manipulationen nicht gefeit. Zunehmend zielen Angriffe auf Menschen mit Zugriffsrechten und Entscheidungsbefugnissen, deren Freigaben unmittelbare Wirkung auf die Sicherheit einer ganzen Organisation haben. „Fotorealistische KI und hybride Social-Engineering-Kampagnen erhöhen den Druck auf Schlüsselpersonen. Daher brauchen Unternehmen belastbare Verifikationsprozesse, Krisenroutinen und integrierte Schutzkonzepte“, erklärt Markus Weidenauer, geschäftsführender Gesellschafter der SecCon Group GmbH.

Deepfakes zielen auf privates Umfeld

Nach Angaben des Bundesamts für Sicherheit in der Informationstechnik (BSI) lassen sich Deepfakes als Verfahren beschreiben, die gezielt Spear-Phishing und andere Social-Engineering-Angriffe nutzen, um Vertrauen aufzubauen und Autorität zu simulieren. Generative KI fungiert dabei als zentraler technischer Enabler, da sie die realistische Erzeugung manipulativer Audio-, Video- und Textinhalte erstmals in industriellem Maßstab ermöglicht. „Die eigentliche Bedrohung ergibt sich dabei nicht aus einzelnen KI-generierten Inhalten, sondern aus deren koordinierter Nutzung“, weiß der Sicherheitsexperte.

Infolge der steigenden Qualität und der zunehmenden Verfügbarkeit generativer KI wird es darüber hinaus zunehmend schwieriger, Fakt von Fiktion zu unterscheiden „Zwar können isolierte Inhalte für sich betrachtet zweifelhaft sein, doch das konsistente Zusammenspiel mehrerer manipulierter Medieninhalte erhöht die wahrgenommene Glaubwürdigkeit erheblich“, ergänzt der Profi und weist darauf hin, dass sich diese Entwicklung in der Praxis zuspitzt. „Social Engineering, Deepfakes und digitale Erpressung werden immer häufiger mit Observationen des privaten Umfelds sowie Angriffen auf die Heim-IT kombiniert. Durch diese Eskalation der Angriffsmittel bauen Täter gezielt psychologischen Druck auf, der die Widerstandsfähigkeit der Betroffenen weiter reduziert.“

Risiken kennen, Wege einüben

Kompromittierte Schlüsselpersonen mit Steuerungs- und Entscheidungsfähigkeiten bergen hohes Schadenspotenzial für Betriebe. Das reicht von unmittelbaren finanziellen Verlusten bis zu dauerhaften Reputationsschäden. Dieses Risiko wird insbesondere dort verstärkt, wo organisatorische und prozessuale Absicherungen fehlen. „Resilienz bedeutet aber, auch in potenziellen Krisensituationen sichere Entscheidungen treffen zu können“, betont Markus Weidenauer. Trotzdem mangelt es vielen Unternehmen sowohl an speziellen Trainings zum Thema Social Engineering als auch an Meldewegen, klaren Freigabeprozessen, die auch unter Druck funktionieren, sowie alternativen Kommunikationskanälen. „Nur wenn Mitarbeiter diese Strukturen kennen und regelmäßig einüben, entsteht eine Kultur, in der eine frühzeitige Eskalation in der Meldekette als notwendiger Beitrag zur Sicherheit des gesamten Betriebs wahrgenommen wird“, fügt Markus Weidenauer hinzu.

Dringender Handlungsbedarf in Unternehmen

Um hier Abhilfe zu schaffen, verabschiedete im September 2025 das Bundeskabinett das sogenannte KRITIS-Dachgesetz zur Stärkung der Resilienz kritischer Einrichtungen. Es verpflichtet die Unternehmensleitung, Schutz- und Präventionsmaßnahmen umzusetzen, deren Wirksamkeit nachzuweisen ist. Der dem Regelwerk zugrunde liegende All-Gefahren-Ansatz fordert, dabei physische, digitale und organisatorische Dimensionen gemeinsam zu betrachten. „Auch wenn Führungskräftesicherheit hier kein eigener Rechtsbegriff ist, sollte sie Teil der Anforderungen an ein modernes Sicherheitsmanagement sein“, so der Geschäftsführer der SecCon Group.

Das bedeutet: Führungskräfte etwa vor Erpressungsversuchen durch Social Engineering zu schützen, ist weder persönlicher Luxus noch Symbolpolitik, sondern ein Element der nachweisbaren Unternehmensresilienz. Schließlich ist die Sicherung von Steuerungs- und Entscheidungsfähigkeit ein Governance-Baustein. Nicht die Person steht im Mittelpunkt, sondern die Handlungsfähigkeit des Instituts.

Report: Inside Germany’s EnergyTech Market

Aktuelle Ein- und Ausblicke für Gründer*innen und Start-ups im EnergyTech-Markt.

EnergyTech gehört in Deutschland zu den spannendsten, aber auch herausforderndsten Märkten für Gründer*innen. Die Kombination aus technologischer Innovation, wirtschaftlichem Potenzial und der Dringlichkeit, das Energiesystem klimaneutral zu gestalten, schafft enorme Chancen. Gleichzeitig ist die Eintrittsbarriere hoch, denn der deutsche Energiemarkt ist einer der komplexesten und am stärksten regulierten weltweit.

Laut der Internationalen Energieagentur werden im Jahr 2025 weltweit rund 2,1 Billionen Euro in saubere Energien investiert. Damit übertreffen die Investitionen in erneuerbare Energien erstmals die in fossile Brennstoffe deutlich. Deutschland spielt dabei eine zentrale Rolle, denn kein anderes Land in Europa verfügt über eine vergleichbare Durchdringung mit erneuerbaren Energien. Diese Vorreiterrolle macht den Markt attraktiv, aber auch kompliziert.

Gründer*innen, die in diesem Umfeld aktiv werden, müssen verstehen, dass Erfolg hier weniger von reiner Technologie abhängt, sondern von der Fähigkeit, sich in einem vielschichtigen System aus Regularien, Netzstrukturen und politischen Rahmenbedingungen zu bewegen. Es reicht nicht, eine gute Idee zu haben. Entscheidend ist, wie diese Idee in ein System passt, das auf Stabilität, Versorgungssicherheit und langfristige Planung ausgelegt ist.

Deutschlands Energiemarkt zwischen Stabilität und Veränderung

Der deutsche Energiemarkt gilt als hoch reguliert, gleichzeitig aber auch als offen für neue Akteur*innen. Wer hier tätig werden will, findet klar definierte Wege, um als Energieversorger*in zugelassen zu werden. Doch der Weg dorthin ist gesäumt von Genehmigungen, Netzanschlussverfahren und Förderbedingungen.

Die Stabilität des Systems steht über allem. Jede Veränderung im Netz kann weitreichende Folgen haben, weshalb die Regulierung streng überwacht wird. Netzbetreiber*innen müssen ständig das Gleichgewicht zwischen Erzeugung und Verbrauch sichern, um Versorgungsstörungen zu vermeiden. Das führt dazu, dass Innovationen nur schrittweise eingeführt werden können.

Hinzu kommt die dezentrale Struktur des Energiesystems. Deutschland hat den Umbau seiner Energieversorgung regional organisiert, was zu einer Vielzahl von kleinen Akteur*innen führt. Ob Solaranlagen auf Privathäusern, Windparks in ländlichen Regionen oder Batteriespeicher in Städten, alle müssen an das öffentliche Netz angeschlossen werden. Dieses Netz ist die Lebensader des Systems, aber gleichzeitig ein Flaschenhals. Jede neue Installation benötigt einen Netzanschluss, und die Wartezeit kann sich über mehrere Jahre erstrecken.

Diese Verzögerungen sind eine der größten Herausforderungen für Start-ups. Klassische Wachstumsmodelle, die auf schnelle Skalierung ausgelegt sind, stoßen hier an ihre Grenzen. Gründer*innen müssen lernen, mit langen Planungszeiträumen zu arbeiten und ihre Finanzierungsstrategie darauf abzustimmen. Softwarelösungen können helfen, Prozesse zu vereinheitlichen und Transparenz zu schaffen. Doch auch hier gilt: Der deutsche Markt lässt sich nicht einfach durch Technologie beschleunigen. Erfolg entsteht durch Anpassungsfähigkeit, Vertrauen und Systemverständnis.

Innovation im System statt Disruption von außen

Viele Start-ups treten mit dem Ziel an, Märkte zu verändern oder bestehende Strukturen zu durchbrechen. In der Energiebranche stößt dieser Ansatz jedoch schnell an seine Grenzen. Das Energiesystem ist keine klassische Konsumlandschaft, sondern Teil der kritischen Infrastruktur. Es versorgt Millionen Menschen und Unternehmen mit Strom, Wärme und Mobilität. Jede Veränderung muss sorgfältig integriert werden, um Stabilität zu gewährleisten.

Statt auf radikale Umbrüche zu setzen, braucht es eine Haltung der systemischen Innovation. Erfolgreiche EnergyTech-Unternehmen arbeiten mit dem System, nicht gegen es. Sie schaffen Lösungen, die bestehende Prozesse verbessern und den Übergang zur Klimaneutralität erleichtern. Unternehmen wie Gridx, EV.Energy, Enspired, Reev oder Thermondo zeigen, wie das funktionieren kann. Sie haben ihre Geschäftsmodelle so aufgebaut, dass sie technologische Exzellenz mit regulatorischer Konformität und gesellschaftlicher Akzeptanz verbinden.Für Gründer*innen bedeutet das, sich früh mit Netzbetreiber*innen, Behörden und Installationsbetrieben zu vernetzen. Der Aufbau von Vertrauen ist im Energiesektor ein strategischer Vorteil. Wer die Abläufe in Kommunen, Stadtwerken und öffentlichen Einrichtungen versteht, kann die langen Vertriebszyklen besser steuern und Pilotprojekte realistisch planen.

Warum gute Ideen im Energiemarkt oft scheitern

Die Gründe für das Scheitern von EnergyTech-Start-ups liegen selten in der Technologie. Viel öfter sind es strukturelle oder strategische Fehler. Der Verkauf an Energieversorger*innen oder kommunale Betriebe dauert oft mehrere Jahre. Wer in dieser Zeit nicht über ausreichend Kapital und Geduld verfügt, läuft Gefahr, aufzugeben, bevor der Markteintritt gelingt.

Ein weiterer kritischer Punkt ist die Zusammensetzung des Teams. In vielen Fällen sind Teams stark technisch geprägt, während Marktverständnis, politische Kompetenz und regulatorisches Wissen fehlen.

Auch die Wahl der Investor*innen spielt eine entscheidende Rolle. Kapitalgeber*innen, die nur finanzielle Rendite erwarten, sind im Energiemarkt selten die richtige Wahl. Wichtiger sind Investor*innen, die strategischen Netzwerke öffnen, Kontakte zu Stadtwerken oder Netzbetreiber*innen vermitteln oder bei der Skalierung unterstützen. Eine gut strukturierte Cap Table mit klaren Verantwortlichkeiten schafft dabei Transparenz und Vertrauen.

Darüber hinaus müssen Gründer*innen ihre Wirkung belegen können. Im Energiemarkt zählt nicht nur der technologische Fortschritt, sondern auch der nachweisbare Beitrag zur Dekarbonisierung. Wer den Carbon Return on Investment klar beziffern kann, wer Pilotprojekte erfolgreich umsetzt und belastbare Daten liefert, überzeugt Kund*innen, Partner*innen und Investor*innen gleichermaßen. Greenwashing hingegen ist ein reales Risiko. Der Markt erkennt schnell, wer nur mit Nachhaltigkeit wirbt, ohne messbare Ergebnisse zu liefern.

Strategien und praxisnahe Tipps für Gründer*innen

Es gibt mehrere zentrale Hebel, mit denen Gründer*innen die typischen Hürden im deutschen Energiemarkt überwinden können. Einer der wichtigsten ist der Aufbau früher Partnerschaften. Kooperationen mit Netzbetreiber*innen, Stadtwerken oder kommunalen Einrichtungen schaffen Glaubwürdigkeit und erleichtern den Zugang zu Genehmigungsprozessen. Wer diese Partnerschaften schon in der Entwicklungsphase aufbaut, versteht die Marktmechanismen besser und kann Projekte effizienter realisieren.

Ebenso entscheidend ist die Zusammensetzung des Teams. Interdisziplinarität ist im Energiesektor kein Luxus, sondern Notwendigkeit. Erfolgreiche Teams vereinen technische, wirtschaftliche und politische Kompetenzen. Sie wissen, wie regulatorische Entscheidungen getroffen werden, welche Förderprogramme relevant sind und wie man Innovationsprojekte in bestehende Strukturen integriert. Ein divers aufgestelltes Team kann Risiken besser einschätzen und Investor*innen überzeugender ansprechen.

Auch die Gestaltung der Cap Table verdient besondere Aufmerksamkeit. Kapitalgeber*innen sollten nicht nur Geld mitbringen, sondern auch strategischen Mehrwert bieten. Kontakte zu Entscheidungsträger*innen, Branchenkenntnis und operative Unterstützung bei Pilotprojekten sind entscheidende Erfolgsfaktoren. Eine transparente Struktur, in der jede Partei klar definierte Rollen hat, fördert Vertrauen und beschleunigt Entscheidungen.

Ein weiterer zentraler Punkt ist die Nachweisbarkeit von Wirkung. Gründer*innen müssen ihren ökologischen und ökonomischen Mehrwert belegen können. Messbare Kennzahlen wie Emissionseinsparungen, Energieeffizienz oder Carbon ROI sind ausschlaggebend, um Glaubwürdigkeit zu schaffen. Pilotprojekte mit belastbaren Ergebnissen überzeugen nicht nur Investor*innen, sondern auch Kund*innen und öffentliche Partner*innen.

Nicht zuletzt braucht es realistische Planung. Genehmigungsprozesse und Netzanschlüsse dauern in Deutschland oft Jahre. Wer dies in der Finanzplanung berücksichtigt und seine Strategie auf gestaffelte Rollouts oder modulare Produktarchitekturen ausrichtet, vermeidet teure Fehlentscheidungen. Skalierung im Energiemarkt bedeutet nicht Geschwindigkeit um jeden Preis, sondern nachhaltiges Wachstum mit stabilem Fundament.

Blick nach vorn: Warum sich Ausdauer lohnt

Trotz aller Hürden bleibt der deutsche Energiemarkt für Gründer*innen besonders attraktiv. Die globalen Trends sprechen eine klare Sprache: Laut der Internationalen Energieagentur (IEA) wird sich die installierte Leistung aus erneuerbaren Energien weltweit bis 2030 voraussichtlich mehr als verdoppeln, angetrieben vor allem durch den rasanten Aufstieg der Solarenergie. Wind- und Speichertechnologien werden ebenfalls stark wachsen, während Start-ups gleichzeitig mit Herausforderungen in Lieferketten, Netzintegration, Finanzierung und politischen Veränderungen umgehen müssen.

Eine aktuelle Zwischenbilanz der Internationalen Agentur für erneuerbare Energien (Irena) zeigt, dass die weltweite neu installierte Leistung 2024 bei rund 582 Gigawatt lag – ein Rekordwert. Gleichzeitig reicht dies nicht aus, um die auf der Uno-Klimakonferenz von Dubai 2023 vereinbarten Ziele zu erreichen, die Kapazität bis 2030 auf 11,2 Terawatt zu verdreifachen. Dazu wären ab sofort jährlich zusätzlich 1.122 Gigawatt nötig. Auch bei der Energieeffizienz hinken die Fortschritte hinterher: Die jährliche Wachstumsrate liegt aktuell bei rund einem Prozent, während vier Prozent notwendig wären.

Für Gründer*innen bedeutet dies, dass die Nachfrage nach innovativen, zuverlässigen und systemgerechten Lösungen weiter steigen wird. Wer sich frühzeitig auf Pilotprojekte einlässt, Netzanschlüsse koordiniert und regulatorische Prozesse kennt, kann einen entscheidenden Vorsprung erzielen. Deutschland bietet durch klare Klimaziele, Förderprogramme und politische Unterstützung zudem ein Umfeld, in dem Innovationen nachhaltige Wirkung entfalten können.

Ausdauer zahlt sich aus, weil die Transformation der Energieversorgung Zeit braucht. Wer heute in Partnerschaften, systemgerechte Lösungen und messbare Wirkung investiert, legt das Fundament für langfristigen Markterfolg. Die Verbindung von Innovation, Skalierbarkeit und nachweisbarem ökologischen Mehrwert wird zum entscheidenden Wettbewerbsvorteil und ermöglicht Gründer*innen, die Energiewende aktiv mitzugestalten.

Der Autor Jan Lozek ist Geschäftsführer von Future Energy Ventures. Als Investor und Wegbereiter der Energiewende unterstützt er Gründer*innen dabei, Technologien für ein klimaneutrales Energiesystem zu entwickeln und fördert innovative Unternehmen.

LegalTech-Trends 2026

KI, strategische Fähigkeiten und mehr Technikverständnis stehen 2026 auf der Agenda der Rechtsbranche – gut zu wissen nicht nur für LegalTech-Start-ups und -Gründer*innen.

Die LegalTech-Trends des Jahres 2026 machen deutlich, dass die Rechtsbranche vor einem grundlegenden Wandel steht: Routinetätigkeiten werden zunehmend in den Hintergrund gedrängt, da sie automatisiert oder von KI übernommen werden. Gleichzeitig gewinnen neue Kompetenzen an Bedeutung und Up-Skilling wird zur Schlüsselqualifikation, während traditionelle Karrierepfade ins Wanken geraten. Dementsprechend werden 2026 das Technologieverständnis, Prozessdesign sowie strategische Fähigkeiten in der Rechtsbranche immer wichtiger.

1. Integrierte Cloud LegalTech-Plattformen etablieren sich

Die LegalTech-Landschaft befindet sich in einem tiefgreifenden Wandel und konsolidiert sich zunehmend zu integrierten Cloud-Ökosystemen. Diese vereinen zentrale Funktionen wie Mandats- und Fallmanagement, Dokumentenautomatisierung, Ausgaben- und Risikoanalysen sowie Kollaborations- und Workflow-Funktionen auf einer gemeinsamen Plattform. Sie lösen die bislang weitverbreiteten, voneinander getrennten Einzelsysteme ab. Diese integrierten Plattformen versetzen juristische Teams in die Lage, auf eine einheitliche, konsistente Datenbasis (Single Source of Truth) zuzugreifen und fundierte Analysen durchzuführen. Das Ergebnis sind deutlich schnellere Arbeitsabläufe, eine verbesserte Transparenz über Team- und Abteilungsgrenzen hinweg sowie eine höhere operative Resilienz der Rechtsorganisation.

2. Eingebettete agentenbasierte KI (embedded agentic AI)

Embedded Agentic AI entwickelt sich rasant zu einem der prägendsten Trends im LegalTech-Markt. Im Gegensatz zu klassischen KI-Assistenzsystemen agieren agentische KI-Module direkt innerhalb juristischer Fachanwendungen und übernehmen eigenständig klar definierte Aufgaben – etwa die Fristenüberwachung, Vertragsprüfung oder Aktenvorbereitung. Nahtlos in bestehende Workflows eingebettet, reduzieren sie manuellen Aufwand, minimieren Risiken und steigern die Produktivität spürbar. Für Kanzleien bedeutet Embedded Agentic AI einen strategischen Schritt hin zu skalierbaren, zukunftssicheren Prozessen, bei denen juristische Expertise gezielt durch autonome, kontextbewusste KI ergänzt wird.

3. KI-Sicherheit & Governance

KI ist längst mehr als nur ein Werkzeug – sie entwickelt sich zu einer operativen Notwendigkeit. Im Jahr 2026 werden LegalTech-Pioniere deshalb über reine Pilotprojekte hinausgehen und Rahmenwerke für die KI-Governance, Risikokontrollen, Compliance und ethische Rahmenbedingungen einführen. In diesem Kontext gilt es beispielsweise Transparenzanforderungen zu definieren, Prompt-Audits und Human-in-the-Loop-Kontrollen einzuführen sowie für die Nachverfolgbarkeit von Datenquellen zu sorgen. Kanzleien und Rechtsabteilungen, die eine strukturierte KI-Governance integrieren, reduzieren Haftungsrisiken, stärken das Vertrauen und können KI skalieren. Wenn sie dabei auch noch den ethischen und regulatorischen Compliance-Anforderungen gerecht werden, sind sie für die Herausforderungen der Zukunft gut aufgestellt.

4. Predictive Legal Analytics

KI steht 2026 nicht mehr nur für unterstützende oder automatisierende Funktionen, sondern entwickelt sich zunehmend zum strategischen Faktor. Generative KI und fortschrittliche Analyseverfahren werden gezielt zum Einsatz kommen, um den Ausgang von Gerichtsverfahren zu prognostizieren, umfangreiche Beweis- und E-Discovery-Daten auszuwerten und bislang verborgene Muster in der Rechtsprechung zu identifizieren. Im Jahr 2026 wird KI-generierter Content in immer mehr Verfahren eine zentrale Rolle bei der Sichtung, Bewertung und Einordnung von Beweismitteln spielen. Dadurch verändern sich die Vorgehensweisen bei der Vorbereitung von Fällen, dem Entwickeln von Argumentationsketten sowie der strategischen Entscheidungsfindung. All das führt dazu, dass Technologie vom reinen Hilfsmittel zum strategischen Entscheidungsfaktor aufsteigt.

5. Juristische Talente entwickeln sich zu technisch versierten Fachkräften

Anwältinnen und Anwälte müssen sich zunehmend zu technologieaffinen Gestaltern entwickeln, die digitale Tools, Automatisierung und KI souverän in ihre tägliche Arbeit integrieren. Statt reiner Rechtsanwendung rücken Prozessverständnis, Systemkompetenz und Dateninterpretation in den Fokus. Kanzleien profitieren von effizienteren Abläufen, höherer Skalierbarkeit und besserer Mandantenorientierung. Tech-fluente Legal Professionals werden damit zum entscheidenden Wettbewerbsfaktor in einem zunehmend digitalisierten Rechtsmarkt.

6. KI-gestütztes Smart Contracting & Compliance Automation

KI geht im Vertragswesen weit über einfache Prüfungsfunktionen hinaus und wird zum zentralen Instrument für umfassendes Contract Lifecycle Management, Compliance-Monitoring sowie eine automatisierte Vertragserstellung. Zudem lassen sich durch Predictive Analytics Risiken, Inkonsistenzen und Compliance-Probleme immer früher identifizieren – ein Trend, der insbesondere für Unternehmensrechtsabteilungen und international tätige Kanzleien von Bedeutung ist. Im Jahr 2026 werden sich vor allem diese drei Anwendungsszenarien etablieren:

  • KI-gestützte Vertragsanalysen, die potenzielle Risiken identifizieren und konkrete Korrekturvorschläge liefern.
  • Automatisierte Compliance-Berichte zur lückenlosen Nachverfolgung regulatorischer Vorgaben.
  • KI-Unterstützung bei der Erstellung von Dokumenten.

 7. Cybersicherheit wird zum Wettbewerbsvorteil

Mit der zunehmenden Nutzung von LegalTech steigen auch die Risiken im Bereich Cybersecurity. Umso wichtiger ist es, dass Jurist*innen die Daten ihrer Mandant*innen, vertrauliche Fallakten sowie ihre KI-Systeme vor Ransomware-Angriffe, Datenpannen und der unbefugten Offenlegung sensibler Informationen schützen. Robuste Cybersecurity-Tools und datenschutzorientierte LegalTech-Architekturen sind daher unverzichtbar und werden häufig direkt in die Plattformen integriert. Kanzleien und Rechtsabteilungen, die hier proaktiv investieren, schützen nicht nur ihre Reputation und das Vertrauen ihrer Mandant*innen, sondern erfüllen zugleich die zunehmend strengeren globalen Datenschutzvorschriften.

8. Ergebnisorientierte und ROI-nachweisbare KI-Einführung

2026 steht LegalTech nicht mehr im Testmodus – sie muss konkrete Mehrwerte nachweisen. Sowohl Anbietende als auch Anwendende sind zunehmend gefordert, Investitionen in Technologie klar mit messbaren Ergebnissen zu verknüpfen, etwa durch Zeit- und Kostenersparnis, Reduzierung von Fehlern oder eine höhere Mandant*innenzufriedenheit. Für die Praxis bedeutet das: Pilotprojekte sollten stets mit klar definierten KPIs starten, um den Erfolg messbar zu machen. Analysen spielen eine entscheidende Rolle, um den geschäftlichen Nutzen gegenüber Führungskräften und Mandant*innen transparent darzustellen. Gleichzeitig verlagern sich Budgetentscheidungen weg von „Innovation um der Innovation willen“ hin zu einer klaren ROI-orientierten Ausrichtung.

9. Innovation in der Rechtsberatung & alternative Business-Modelle

Die Veränderung in der Rechtsbranche betrifft die gesamte Struktur juristischer Dienstleistungen. Klassische Stundenhonorare verlieren an Bedeutung, während alternative Preismodelle wie Festpreise, Abonnements oder wertbasierte Vergütungen an Bedeutung gewinnen. Diese Entwicklung wird durch Technologien unterstützt, die Ergebnisse zuverlässig vorhersagen und standardisierte Leistungen effizient bereitstellen. Für Rechtsabteilungen und Mandant*innen wird Kalkulierbarkeit zunehmend zum Standard. Kanzleien, die ihre Liefermodelle entsprechend innovativ gestalten, sichern sich einen Wettbewerbsvorteil gegenüber Wettbewerber*innen, die weiterhin auf traditionelle Stundenhonorare setzen.

10. Lawbots & Vertikale Automatisierung

„Lawbots“ stehen kurz davor, zum festen Bestandteil der Rechtsbranche zu werden. Diese spezialisierten Bots sind darauf ausgelegt, spezifische juristische Aufgaben zu automatisieren – von der Mandantenaufnahme über Dokumentenautomatisierung und Compliance-Prüfungen bis hin zu rechtlicher Recherche. Typische Einsatzszenarien sind etwa maßgeschneiderte Bots für Einwanderungsanträge, Markenanmeldungen oder Routineverfahren in der Prozessführung. Sie übernehmen klar definierte, standardisierte Aufgaben auf höchst effiziente Weise. So gewinnen Anwält*innen wertvolle Zeit, um sich auf komplexe, urteilsbasierte Arbeiten zu konzentrieren und strategische Entscheidungen zu treffen.

Der Autor Oliver Bendig ist CEO von stp.one, einem der führenden Anbietern von Legal-Tech-Komplettlösungen.

Gaming & digitale Medien – eine Perspektive für Start-ups?

Diese Voraussetzungen sollten Gründerinnen und Gründer von Start-ups in der Gamingbranche oder der Gestaltung digitaler Medien mitbringen, um erfolgreich zu sein.

Digitale Start-ups verbinden attraktive Zukunftsperspektiven mit einem geringen Startkapital. Für die digitale Generation aktueller Schul- und Universitätsabgänger stellt sich die Frage, ob ein Einstieg in die Gamingbranche oder die Gestaltung digitaler Medien für die Gründung eines Start-ups ausreichen kann. Solche Perspektiven sind gegeben, die neben ausreichend Kreativität eine fundierte Ausbildung in Computertechnik und Business gleichermaßen voraussetzen.

Indie-Games – eine Perspektive für Entwickler?

Noch vor einigen Jahren war die Gamingbranche als Perspektive für Gründer eher unattraktiv. Die großen, internationalen Studios dominierten die Szene, wobei für Triple-A-Titel längst Tausende von Entwicklern an unterschiedlichen Standorten benötigt wurden. Unter dem Zeit- und Kostengrund vieler Studios sowie der Entlassungswelle der letzten Jahre ist es für immer mehr Developer uninteressant, auf die Anstellung in einem der großen Softwarehäuser zu hoffen.

Die unabhängige Entwicklung von digitalen Medien oder Spielen bleibt jedoch beliebt und kann zur Basis eines Start-ups werden. Immer mehr Gamer wenden sich von den überteuerten, großen Marken der Szene ab und vertrauen auf kleinere Entwickler mit mehr Freiheiten bei der Umsetzung. Selbst die großen Gaming-Plattformen halten regelmäßig eine Auswahl beliebter und neuer Indie-Games für Millionen Nutzer bereit.

Unabhängig von Größe und Art eines Studios bleibt die Gamingbranche international und setzt verschiedene Skills vom Development bis zum erfolgreichen Marketing voraus. Dies alles lässt sich längst in speziell abgestimmten Studiengängen erlernen.

Spielentwicklung der neuesten Generation als Studiengang

Studiengänge wie Games & Immersive Media an der Hochschule Furtwangen erlauben es, einen Bachelor im Gaming-Umfeld zu erlangen und alle relevanten Fähigkeiten für den zukünftigen Berufsweg zu gewinnen. Neben Computer Science und Anwendungen im spielerischen Bereich nehmen Business, Design und Medien als zweiter Bereich einen wesentlichen Stellenwert im Studium ein.

Diese Kombination des bilingualen Studiengangs ergibt Sinn. Schließlich ist nicht jeder kreative Programmierer und Spieleentwickler ein Geschäftsmann, genauso wenig wie Marketer gerne stundenlang mit Quellcode arbeiten. Moderne Studiengänge wie dieser führen beide Welten zusammen und sorgen für eine fundierte Ausbildung, um tiefe Einblicke in beide relevanten Arbeitsfelder zu gewinnen.

Starke Unterstützung für zukünftige Start-ups

Die Hochschule Furtwangen geht mit ihrer Unterstützung weit über den reinen Studiengang hinaus. Bewusst wird angehenden Start-ups unter die Arme gegriffen, die ihre ersten Schritte ins Gaming-Business mit kreativen Spielen und Studienprojekten gehen möchten.

Neben einer umfassenden Beratung auf dem Weg zum eigenen Business werden ein Support für Fördermittel sowie Räumlichkeiten für das gemeinschaftliche Arbeiten an Spielen oder digitalen Medien geboten. Viele Formalitäten und Unsicherheiten, die sich bei Start-ups unabhängig von Branche und Geschäftsfeld ergeben, werden so seitens der Hochschule kompetent und professionell unterstützt.

Für den Einstieg sind Kenntnisse im Gaming-Bereich ideal, die über die reine „Freude am Zocken“ hinausgehen. Kreativität in der Planung und Umsetzung eigener Projekte sollte nachgewiesen werden – anders als die zwingende Notwendigkeit, eine Programmiersprache zu beherrschen.

Sichtbarkeit im digitalen Umfeld entscheidend

Wie bei allen Produkten entscheidet weniger die tatsächliche Qualität, sondern die Sichtbarkeit und eine wirkungsvolle Werbung über Erfolg von Misserfolg von Games. Gerade das Marketing für digitale Produkte ist wegen der hohen Konkurrenz und einer Fülle an Informationen in der digitalen Welt eine immense Herausforderung. Hier eine fachkundige Unterstützung von Anfang an zu erhalten, bewahrt Entwickler und kreative Köpfe davor, grundlegende Fehler zu begehen und frühzeitig den Traum vom Gaming-Job zu begraben.

KI-Trends 2026: Reifer, realer, relevanter

2026 tritt KI in eine neue Phase ein: weniger Hype, mehr Haltung. Expert*innen aus Technologie, Kommunikation und Mittelstand zeigen, wie künstliche Intelligenz Prozesse transformiert, Entscheidungen präziser macht und Marken stärkt – aber auch neue Risiken schafft, von Voice-Cloning bis Abhängigkeiten großer Plattformen. Klar wird: KI entfaltet ihr Potenzial dort, wo Unternehmen sie verantwortungsvoll einsetzen, Transparenz schaffen und menschliche Kompetenz stärken.

Zwischen Dynamik und Verantwortung: KI braucht gemeinsame Sichtweisen

„KI schafft keine perfekten Lösungen auf Knopfdruck, sondern eröffnet neue Wege, Herausforderungen besser zu bewältigen. Die größten Chancen liegen darin, Wissensverlust zu vermeiden, Reibungsverluste zu reduzieren und individueller auf Menschen einzugehen – im Gesundheitswesen genauso wie in HR, Bildung und Produktion. Gleichzeitig besteht die größte Herausforderung darin, eine gemeinsame Sichtweise auf KI zu entwickeln: Alle reden darüber, aber oft über völlig Unterschiedliches. Das gelingt nur über kleine Schritte, viel Kommunikation und eine Annäherung auf Augenhöhe. Zugleich zeichnet sich ein klarer Trend ab: die Fragmentarisierung der KI-Landschaft und eine problematische Abhängigkeit von US-Anbietern, die neue, eigene Handlungswege erfordert. Wer diese Dynamik versteht und verantwortungsvoll gestaltet, erschließt das Potenzial von KI von automatisierten medizinischen Leistungen über effizientere Produktionsprozesse bis hin zu deutlich schnelleren Innovationszyklen.“

KI-Hype: mittel- bis langfristiger Weg zur Monetarisierung noch unklar

Aktueller Marktkommentar zum KI-Hype und den möglichen Folgen von Justin Thomson, Head Investment Institute and CIO bei T. Rowe Price.

Die Investitionsausgaben für künstliche Intelligenz (KI) haben ein erstaunliches Niveau erreicht, aber der Weg zur Monetarisierung bleibt unklar. Der Markt-Hype schaukelt sich selbst hoch, und die Tech-Giganten greifen nun zu Krediten, um ihre Expansion zu finanzieren. Blasen sind nicht immer schädlich und können zu erheblichen Produktivitätssteigerungen führen, aber Überkapazitäten sind ein reales Risiko, das beobachtet werden sollte.

Während eines hochkarätigen Finanzgipfels, an dem ich kürzlich in Hongkong teilgenommen habe, sagte der CEO einer führenden Vermögensverwaltungsgesellschaft, der es eigentlich besser wissen müsste: „Im Kontext der Ausstattung von Hyperscalern sind 2,5 Billionen US-Dollar [für Investitionen] über fünf Jahre keine große Summe.“ Ich war über diese Bemerkung erstaunt. In welchem Paralleluniversum sind 2,5 Billionen US-Dollar eine unbedeutende Summe? Antwort: in einem, in dem Nvidia innerhalb von drei Monaten eine Marktkapitalisierung von 1 Billion US-Dollar erreichen kann. Aber wie erzielt man eine Rendite auf Investitionen in Höhe von 2,5 Billionen US-Dollar, wenn der mittel- bis langfristige Weg zur Monetarisierung der KI noch unklar ist?

Dies deutet auf zwei verschiedene AI-Investitionsbooms hin: einen relativ kurzfristigen, der durch eine erkennbare tatsächliche Nachfrage gestützt wird, und einen längerfristigen spekulativen Boom, der mit einem quasi-religiösen Glauben an exponentielles Wachstum verbunden ist.

Betrachten wir zunächst einige beeindruckende Zahlen. Die Ausgaben für KI erreichten gerade 1 % des US-Bruttoinlandsprodukts (BIP) in einer Wirtschaft mit 1,8 % Wachstum – das ist mehr als die Hälfte der gesamten neuen Nachfrage. Allein Nividia erreichte Ende Oktober einen Wert von 5 Billionen US-Dollar, was 15 % der gesamten US-Wirtschaft entspricht. Zum Vergleich: Als Cisco im Jahr 2000 als weltweit größtes Unternehmen seinen Höhepunkt erreichte, betrug sein Anteil am BIP nur 5,5 %. Während viel Aufsehen um den 3 Milliarden US-Dollar teuren Hauptsitz von JP Morgan in Manhattan gemacht wurde, werden in Texas still und leise 40 Milliarden US-Dollar teure Rechenzentrumsprojekte gestartet. Niemand scheint sich dafür zu interessieren.

Sind wir also in einer Blase? Es gibt sicherlich eine Blase von Menschen, die über Blasen sprechen – werfen Sie einfach einen Blick auf Google Trends.

Unterdessen gibt es diejenigen, die glauben, dass wir uns gerade deshalb nicht in einer Blase befinden können, weil wir über eine solche sprechen. Meiner Meinung nach gibt es drei Schlüsselwörter in den jüngsten Marktentwicklungen, die Beachtung verdienen: Reflexivität, Zirkularität und Verschuldung. Reflexivität besagt, dass Preise tatsächlich die Fundamentaldaten beeinflussen und dass diese neu beeinflussten Fundamentaldaten dann die Erwartungen verändern und somit die Preise beeinflussen. Dieser Prozess setzt sich in einem sich selbst verstärkenden Muster fort. Die lebhafte Reaktion des Marktes auf die jüngsten KI-Megadeals ist ein Beispiel für einen solchen Feedback-Kreislauf. Hinzu kommt der zirkuläre Charakter dieser Deals. Im Wesentlichen investieren die Anbieter von Recheninfrastruktur in native KI-Akteure, die sich in einer Investitionsphase befinden. In der Dotcom-Ära war dies als „Vendor Financing” bekannt und wurde zu einer Art Schimpfwort.

Schließlich gibt es noch die Verschuldung. Bislang haben die finanzstarken Tech-Giganten diesen KI-Boom mit ihren eigenen tiefen Taschen und Eigenkapitalfinanzierungen finanziert. Aber jetzt treten wir in die Kreditphase ein – Unternehmen wenden sich den Schuldenmärkten zu, oft außerhalb der Bilanz, und die Kreditaufnahme wird sich wahrscheinlich beschleunigen. Wir wissen, dass wir mit generativer KI und später mit künstlicher Superintelligenz vor einem neuen technologischen Paradigma stehen – und möglicherweise vor einem massiven Produktivitätssprung. Das sind alles großartige Dinge, und es ist leicht zu verstehen, dass man der Versuchung erliegt, weiter auf der lukrativen KI-Welle zu reiten, die mit der Einführung von ChatGPT im November 2022 begann. Angesichts der aktuellen Indexkonzentration würde es in der Tat Mut erfordern, auszusteigen.

Schnelles Wachstum kann zu einem Überschuss führen

Eine wichtige Lehre aus der Geschichte ist, dass es zu Blasen kommt, wenn wir schöne Dinge erfinden. Aber nicht alle Blasen sind gleich. Es gibt „schlechte“ Blasen (Tulpen, Gold, Grundstücke), und wenn schlechte Blasen durch Schulden finanziert werden, kann dies ein systemisches Risiko für die Wirtschaft darstellen. Es gibt auch „gute“ Blasen, die zu Überkapazitäten bei Produktionsmitteln führen – man denke an die Eisenbahnen im goldenen Zeitalter der Expansion der USA zwischen 1870 und 1900, die Elektrizität in den frühen 1900er Jahren und den Dotcom-Boom Ende der 1990er Jahre. Letztendlich wurde in jedem Fall Wohlstand geschaffen, aber die frühen Investoren verloren viel Geld.

Es ist noch zu früh, um vorherzusagen, zu welcher Art von Blase sich der AI-Investitionsboom entwickeln wird. Die langfristigen Auswirkungen werden davon abhängen, ob die heutigen massiven Investitionen letztendlich die Grundlage für dauerhafte Produktivitätssteigerungen schaffen oder ob sie zu Überkapazitäten führen, die keine nachhaltigen Renditen erzielen. Wenn die Kapazitäten so schnell wachsen, ist es immer wahrscheinlich, dass sich das Ungleichgewicht zwischen Angebot und Nachfrage von einem Mangel zu einem Überschuss umkehrt. In der Dotcom-Ära verloren Investoren viel Geld mit Glasfaserkabeln und Switches, die in den Boden verlegt wurden, und etwas Ähnliches könnte mit KI passieren, wenn durch Überbauung riesige Kapitalmengen in Anlagen gebunden werden, die möglicherweise nicht annähernd mit voller Effizienz betrieben werden können – oder noch schlimmer, wenn die Schnelllebigkeit des Chip-Zyklus die Rechenleistung obsolet macht.

Erschwerend kommt hinzu, dass die Anreize für Infrastrukturanbieter („Picks and Shovels”-Akteure) und Entwickler von KI-Anwendungen nicht aufeinander abgestimmt sind. Während Infrastrukturunternehmen von einer kontinuierlichen Expansion und Investitionen profitieren, konzentrieren sich Anwendungsentwickler auf die Verbesserung der Effizienz und die Senkung der Kosten. Um den Kommentar des Dodos nach dem Caucus-Rennen in Lewis Carrolls Alice im Wunderland umzukehren: „Nicht jeder kann gewinnen, und nicht jeder kann einen Preis bekommen.” Die optimistischen Prognosen für die KI-Infrastruktur zeigen, wie viel Hype in den heutigen Bewertungen der Hyperscaler steckt. Es ist ironisch, dass Rechenzentrumsprojekte nach den griechischen Titanen Prometheus und Hyperion benannt werden. In der griechischen Mythologie folgt auf Hybris immer Nemesis. Um noch ein bisschen Latein mit einzubringen: caveat emptor.

KI-Agenten als Transformationstreiber 2026

Eine aktuelle DeepL-Studie zeigt: 69 % der globalen Führungskräfte erwarten für 2026 tiefgreifende Veränderungen durch KI-Agenten; KI-Sprachtechnologie wird zur unverzichtbaren Infrastruktur.

Eine neue Studie von DeepL, einem globalen Unternehmen für KIProdukte und Forschung, zeigt: 2026 wird für viele Organisationen den Übergang vom Experimentieren mit KI hin zu agentischer Automatisierung markieren. So erwartet die Mehrheit der weltweit befragten Führungskräfte (69 %), dass agentenbasierte KI ihre Geschäftsabläufe im kommenden Jahr deutlich verändern wird.

Die Studie wurde im September 2025 von Censuswide im Auftrag von DeepL durchgeführt. Befragt wurden 5.000 Führungskräfte in Deutschland, Frankreich, den USA, Großbritannien und Japan. Die Ergebnisse deuten darauf hin, dass Unternehmen verstärkt planen, autonome KI-Agenten im großen Umfang einzusetzen – etwa zur Unterstützung von Wissensarbeit, zur Ezienzsteigerung oder zur Anpassung organisatorischer Strukturen. Damit zeichnet sich die bedeutendste operative Veränderung in der Wirtschaft seit der Einführung der Cloud an.

„KI-Agenten sind längst nicht mehr experimentell, sie sind unumgänglich.“ sagt Jarek Kutylowski, CEO und Gründer von DeepL. „Die nächste Phase besteht darin, sie tiefgreifend in unsere Arbeitsweisen zu integrieren. In 2026 werden KI-Agenten das mühsame Umschalten zwischen verschiedenen Kontexten und repetitive Aufgaben übernehmen, sodass sich Menschen auf das konzentrieren können, was Unternehmen tatsächlich voranbringt.“

KI-Agenten werden zum nächsten Disruptor für Unternehmen

Nach ersten Pilot- und Anwendungsfällen rücken KI-Agenten zunehmend in den produktiven Einsatz:

  • Fast die Hälfte der globalen Führungskräfte (44 %) erwartet für 2026 einen tiefgreifenden Wandel durch agentische KI; ein Viertel (25 %) sieht diesen Wandel bereits heute. Nur 7 % glauben, dass KI-Agenten ihre Betriebsabläufe nicht verändern werden, was die hohe Geschwindigkeit der Implementierungen unterstreicht.
  • Als die drei wichtigsten Voraussetzungen für den sinnvollen und vertrauenswürdigen Einsatz von KI-Agenten nennen die Befragten nachweisbare Ezienz- und ROI-Eekte (22 %), Anpassungsfähigkeit der Belegschaft (18 %) und zunehmende organisatorische Bereitschaft (18 %).
  • Als wesentliche Herausforderungen bei der Einführung von KI-Agenten nennen die Befragten Kosten (16 %), Bereitschaft der Belegschaft (13 %) und Reife der Technologie (12 %).

KI als zentraler Wachstumstreiber für globale Unternehmen

Über Agenten hinaus gilt KI insgesamt als wichtigster Motor für das Wirtschaftswachstum in 2026:

  • Über zwei Drittel (67 %) der Befragten geben an, dass sich der ROI ihrer KI-Initiativen in diesem Jahr erhöht hat; mehr als die Hälfte (52 %) erwartet, dass KI im kommenden Jahr mehr zum Unternehmenswachstum beitragen wird als jede andere Technologie.
  • Wenn es um messbare Verbesserungen durch KI geht, liegt Deutschland (78 %) zusammen mit Großbritannien (80 %) an der Spitze, gefolgt von den USA (71 %) und Frankreich (70 %). Japan verzeichnet mit 35 % deutlich niedrigere Werte, was auf langsamere Implementierungen und Bereitschaften hindeutet.
  • Über die Hälfte der globalen Führungskräfte (51 %) rechnet damit, dass KI im kommenden Jahr mehr neue Rollen schat als ersetzt. 52 % geben an, dass KI-Kenntnisse für die meisten Neueinstellungen vorausgesetzt werden.

KI-Sprachtechnologie entwickelt sich vom Werkzeug zur zentralen Infrastruktur

Die Studie zeigt zudem, wie KI-Sprachtechnologie zur entscheidenden Komponente der Unternehmensinfrastruktur wird:

  • Fast zwei Drittel der globalen Unternehmen (64 %) planen 2026 steigende Investitionen in KI-Sprachtechnologie – angeführt von Großbritannien (76 %) und Deutschland (74 %), gefolgt von den USA (67 %) und Frankreich (65 %) werden mehrsprachige Kommunikation und Inhalte zu zentralen Faktoren für globales Wachstum. Im Gegensatz dazu bleibt Japan (38 %) vergleichsweise konservativ, was auf eine langsamere Dynamik hindeutet, gleichzeitig aber das wachsende Interesse von mehr als einem Drittel der Führungskräfte widerspiegelt.

In diesem Zusammenhang wird Echtzeit-Sprachübersetzung 2026 unverzichtbar:

  • Über die Hälfte der globalen Führungskräfte (54 %) sieht Echtzeit-Sprachübersetzung im kommenden Jahr als unverzichtbar an – derzeit sind es ein Drittel (32 %).
  • Großbritannien (48 %) und Frankreich (33 %) sind Vorreiter bei der Nutzung von Tools für die Echtzeit-Sprachübersetzung; Japan liegt derzeit nur bei 11 %.
  • Die Nachfrage wird angetrieben von technologischen Fortschritten in der Echtzeit-Sprachübersetzung (46 %), Kundenerwartungen (40 %) und marktübergreifender Expansion (38 %).

Die Erkenntnisse der Studie liefern wichtige Einblicke in die Zukunft der KI und zeigen, wie diese Veränderungen Branchen umgestalten, Kundenerwartungen neu definieren und sich auf das Wettbewerbsumfeld auswirken.