Die Spielebranche - noch immer ein Zukunftsmarkt?


44 likes

Wie sieht es für jungen Unternehmen aus, die mit nachhaltigen Strategien in der Spielebranche Fuß fassen möchten?

Immer wieder heißt es, dass bestimmte Teilbereiche der Spielebranche tot sind oder überhaupt erst keine Zukunft in der Chance haben. Das Beispiel, das in diesem Zuge oft genannt wird, befasst sich mit der Anfangszeit der Computerspiele. Zahlreiche Experten sahen diese als einen bloßen Trend an, der keine wirkliche Chance hat, denn der geneigte Spieler wird davon schnell wieder ablassen und zurück zu Gesellschaftsspielen finden. Wie so oft haben sich die großen Experten getäuscht, heute tätigen die Entwickler von PC- und Konsolenspielen Umsätze im mehrstelligen Milliardenbereich.

Doch wie sieht es mit jungen Unternehmen aus, die
mit nachhaltigen Strategien in der Spielebranche Fuß fassen möchten? Besteht überhaupt noch die Chance, gegen die wirklich großen aus der Szene anzutreten und was braucht es, um gegen diese zu bestehen?
Tatsächlich sind es in der Spielebranche nach wie vor die Ideen, die eine Grundlage für alles bilden. Ohne die Idee ergibt es für ein Start-up erst gar keinen Sinn, ein Konstrukt darum herum zu entwerfen. Natürlich braucht es weiterhin ein starkes Team und die Fähigkeit, zum richtigen Zeitpunkt die richtigen Entscheidungen zu treffen. So muss etwa
beim Skalieren des Unternehmens präzise der Markt eingeschätzt werden. Gelingt es einem tatsächlich, ein eigenes Produkt zu vermarkten, so ist es zum einen schlimm, wenn mit der Produktion und der Logistik nicht mitgehalten werden kann, zum anderen noch schlimmer, wenn der Umsatz und die Gewinne nicht ausreichen, um die große Produktion und das Team zu bezahlen.

Ohne erfahrenes Team ist Erfolg kaum möglich

PC- und Konsolenspiele sind die Domäne der großen, namhaften Hersteller. Als kleines Start-up hat man hier kaum eine Chance. Das sieht allerdings vollkommen anders aus, wenn es um iOS Spiele geht. Der Umfang von Apps ist in keiner Weise mit dem eines Konsolenspiels zu vergleichen. Oftmals steckt hinter einem einzigen Spiel ein einzelner Entwickler, der damit einen Überraschungserfolg landet.

Wie einfach das Programmieren von Apps oder ähnlich kleinen Programmen sein kann, das zeigen diese Apps. Tatsächlich kommt es bei einer App oder bei kleineren Spielen, die in erster Linie für das Smartphone gedacht sind, noch weitaus mehr auf die gute, grundlegend neue Idee an. Die Konkurrenz ist groß, das bedeutet allerdings auch, dass die Mehrheit der angebotenen Spiele oder Apps nicht unbedingt von bester Qualität ist. Mit einem engagierten Team, dem richtigen Marketing und einer eifrigen Pflege der App, die sich durch Updates und neue Versionen manifestiert, ist der Erfolg tatsächlich planbar.

Je einfacher, desto erfolgreicher

Dass die simpelsten Ideen manchmal die besten sind, das versteht sich mittlerweile von selbst. Gerade, wenn es um das Spielerische geht, braucht es oftmals nicht viel, um jemanden von seiner Idee zu überzeugen. Der Anfänger schätzt einfache Spiele, sie ermöglichen ihm, sich langsam und mit System voranzutasten. Wer sein Genre oder seine Spielreihe für sich gefunden hat, der wird sich ohnehin für komplexere und schwierigere Spiele in Zukunft entscheiden, das versteht sich von selbst. Doch für junge Unternehmen, die den Erfolg in der Spielebranche suchen, ergibt sich damit die Gewissheit, dass die besten Möglichkeiten in den einfachen und kleinen Dingen zu finden sind. Ein nachträgliches Skalieren ist immer zu einem späteren Zeitpunkt möglich, sodass der Fokus mit Nachdruck auf die erfolgreichen Anfänge gelegt werden darf.

Diese Artikel könnten Sie auch interessieren:

Report Gendermedizin

Auch mithilfe von FemTech- und HealthTech-Start-ups steigt in unserer Gesellschaft langsam das Bewusstsein dafür, dass der weibliche Körper medizinisch anders funktioniert als der männliche, und Frauengesundheit mehr ist als "nur" Zyklus, Schwangerschaft und Wechseljahre.

Alles, was speziell für die Frau ist und beim Mann nicht existiert“, erklärt Raoul Scherwitzl, Doktor der Philosophie, Festkörper- und Materialphysik sowie Co-Founder des FemTech-Start-ups Natural Cycles, was mit Frauenmedizin gemeint ist. Diese Aussage wird häufig innerhalb gesundheitspolitischer Debatten getätigt, wenn es darum geht, wie Frauenkrankheiten im Gegensatz zum männerzentrierten Usus in der Medizin behandelt werden: oftmals zweitrangig oder als Anhängsel an männerfokussiertem Wissen.

Der französische Soziologe Pierre Bourdieu beschrieb in seinem Werk „Die männliche Herrschaft“ bereits 1998, wie „kulturelle und wissenschaftliche Systeme männliche Normen als allgemeingültig setzen und alles, was weiblich ist, als Abweichung oder Sonderfall markieren“. Sieht man sich die Geschichte der westlichen Medizin an, drängt sich der Eindruck auf, dass Bourdieus Beschreibung für den Gesundheitsbereich ins Schwarze trifft.

Blickt man darüber hinaus in die (Fach-)Literatur der letzten Jahrzehnte, so erkennt man: Bis in die späten 80er-Jahre wurden weibliche Bedürfnisse, psychosoziale Belastungen und Körperbilder in der medizinischen Forschung und Praxis weitgehend ignoriert. Erst eine aufkeimende Frauengesundheitsbewegung durchbrach diese Mauer und etablierte den Begriff Frauengesundheit bzw. Gendermedizin. Seitdem schärft sich der Blick auf die Frau, und die Gesellschaft hat begonnen, in Publikationen und Debatten genauer hinzusehen – mit einer bewusstseinsschaffenden Agenda, warum dieses Thema wichtig ist.

Frauengesundheit ist mehr als Reproduktion

„Die Definition von Frauengesundheit wird oft sehr eng gefasst“, erklärt Scherwitzl das Problem; „nämlich als alles, was mit reproduktiver Gesundheit zu tun hat: Menstruations­zyklus, Pubertät, Schwangerschaft, Geburt, Wochenbett, Unfruchtbarkeit und Wechseljahre. Die klassische Definition spannt sich dabei meist über das reproduktive Zeitfenster einer Frau zwischen etwa 15 und 50 Jahren.“ Dabei werde oft übersehen, dass Frauengesundheit weit mehr umfasse: „Es geht auch darum, den gesamten Gesundheitsbereich aus der Perspektive von Frauen zu betrachten – und das wird bislang kaum getan“, so Scherwitzl. Ein großes Problem liegt laut dem Gründer darin, dass die meisten Medikamente auf Basis klinischer Studien mit Männern entwickelt wurden; mit der Annahme, dass sie bei Frauen gleich gut wirken – obwohl Frauen biologisch anders reagieren. Als Beispiel nennt Scherwitzl die Insulinresistenz, die sich bei Frauen im Lauf des Zyklus verändert. „Dies wird aber kaum berücksichtigt“, ergänzt er.

Im Gesundheitswesen fehle es häufig an passenden Tools und Produkten, um Frauen gezielt zu unterstützen. Ein Beispiel hier sei die Hormontherapie in den Wechseljahren, bei der oftmals lediglich hoch dosierte Varianten jahrzehntealter Medikamente zum Einsatz kämen. „Das Resultat ist, dass sich Frauen häufig selbst um ihre Beschwerden kümmern müssen. Viele suchen zunehmend online nach Hilfe. Große Pharmakonzerne haben diesen Mangel erkannt und investieren inzwischen in Forschung zu Themen wie Endometriose oder Wechseljahre“, sagt Scherwitzl. Sein Start-up Natural Cycles setzt auf ein datenbasiertes Modell mit Körperwerten und Algorithmen, kombiniert mit Aufklärung und individualisierter Medizin; mit dem Ziel, einen Beitrag dazu zu leisten, dass Frauen künftig Zugang zu besser abgestimmten Medikamenten und mehr effektiven Lösungen erhalten.

Es muss endlich in die Köpfe kommen

„Es muss endlich in die Köpfe kommen, dass der weibliche Körper anders funktioniert als der männliche“, mahnt Simone Mérey in diesem Sinn. Sie ist Founderin des 2022 gegründeten Pflege-Start-ups HeldYn. Mérey hat jahrelang im Krankenhaus gearbeitet und hatte dabei viel mit Schmerzpatient*innen zu tun. Sie erkannte dabei einen Gender-Bias: Frauen mit Schmerzen wurden oft als wehleidig abgestempelt – veraltete Vorstellungen in den Köpfen der Beteiligten –, mit der Folge, dass Patientinnen schnell einmal als depressiv oder psychisch labil eingestuft wurden. „Dies ist keine akkurate Einschätzung – es ist wissenschaftlich belegt, dass Frauen eine höhere Schmerzgrenze als Männer haben“, betont Mérey. „Hier merkt man, wie soziale Konstrukte wirken: Die Frau wird oft als die gesellschaftlich Schwächere wahrgenommen, obwohl ihr Körper viel aushält, Stichwort Geburt. So kommt es zu falschen Dosierungen und der Vernachlässigung von Symptomen.“

Chance für HealthTech-Start-ups?

Eine Vernachlässigung, die Akteur*innen und Start-ups im Health-Bereich Chancen eröffnet. Ähnlich denkt Scherwitzl, der Start-ups mit „großen Ambitionen“ im Entstehen sieht: „Das Funding ist da“, sagt er. „Vor allem in den letzten fünf Jahren hat sich einiges verbessert. Wenn Investoren merken, dass man hier viel Growth erreichen kann, wird noch mehr Geld fließen.“

Was jedoch aktuell noch fehle, sei der große Erfolg, der beweise, dass es sich lohne, in dieses Feld zu investieren. „Im Pharmabereich gibt es etwa die Pille oder Antidepressiva – im digitalen Bereich bin ich jedoch optimistisch, dass der nächste große Durchbruch bevorsteht“, so Scherwitzl. Der Founder zeigt sich überzeugt, dass es zu jedem pharmazeutischen Ansatz künftig auch eine digitale Alternative geben sollte, mit der Frauen medizinisch besser begleitet werden können. „Pharmakonzerne wie Bayer, Organon und Merck haben trotz Deinvestitionen weiterhin Pipelines im Bereich Frauengesundheit. Gleichzeitig gibt es Start-ups wie uns oder Flo in England, das eine neue Version des Kondoms für Frauen entwickelt. Die dänische Cirqle Biomedical arbeitet ebenfalls an einer Alternative zum Kondom, die den Uterus verschließt. Außerdem existieren Start-ups wie Endogene.Bio, das sich auf Endometriose fokussiert.“

Auch Mérey hat trotz aller Probleme bei der Frauenmedizin einen neuen Tenor in dieser Sache erkannt, der sich vom bisherigen „medizinischen Ratschlag“ an Frauen à la „Man muss da durch“ unterscheide: Das Thema der zweiten Lebenshälfte der Frauen werde mehr diskutiert, Tabuthemen wie Wechseljahre würden aufgebrochen. Mérey: „Der negative Anstrich wird langsam entfernt. Es hat in den letzten Jahren ein Umdenken gegeben.“

KI-Modelle erfolgreich im Unternehmen einführen

Worauf es bei der Implementierung von KI wirklich ankommt.

Künstliche Intelligenz (KI) gewinnt in Unternehmen zunehmend an Bedeutung. Sie kann Prozesse beschleunigen, große Datenmengen sinnvoll nutzbar machen und Entscheidungen unterstützen. Doch in der Praxis zeigt sich: Moderne Technologie allein führt noch nicht zum Erfolg. Entscheidend ist ein strukturiertes Vorgehen, bei dem Ziele klar definiert, Daten sorgfältig vorbereitet und organisatorische Rahmenbedingungen von Beginn an berücksichtigt werden. „Viele KI-Initiativen scheitern daran, dass am Anfang die Orientierung fehlt“, sagt Benedikt Weber, Geschäftsführer der applord GmbH. „Struktur schafft Entscheidungsfähigkeit – noch bevor über konkrete KI-Modelle gesprochen wird.“

Organisatorischer Wandel und Einbindung der Mitarbeitenden

Der Einsatz von KI verändert Arbeitsabläufe, Verantwortlichkeiten und Entscheidungswege. Mitarbeitende arbeiten verstärkt mit automatisierten Systemen zusammen, Aufgaben verschieben sich, Rollen entwickeln sich weiter. Wird dieser Wandel nicht aktiv begleitet, entstehen Unsicherheiten oder Ablehnung gegenüber neuen Technologien. Erfolgreiche Unternehmen setzen deshalb auf transparente Kommunikation und frühzeitige Einbindung der Mitarbeitenden. Sie erklären, warum KI eingesetzt wird, welche Aufgaben sie übernimmt und wo menschliche Expertise weiterhin unverzichtbar bleibt. Fehlt dieses gemeinsame Verständnis, werden neue Systeme häufig nur eingeschränkt genutzt. „KI-Projekte scheitern selten an der Technologie“, betont Weber. „Viel häufiger fehlt ein klares Bild davon, welchen konkreten Nutzen KI für Mitarbeitende und Organisation wirklich bringt.“

Auswahl der passenden KI-Lösung

Das Angebot an KI-Lösungen wächst rasant. Für Unternehmen besteht die Herausforderung darin, nicht der technischen Vielfalt zu folgen, sondern eine Lösung zu wählen, die zum eigenen Geschäftsprozess passt. Der Ausgangspunkt sollte immer ein klar definierter Anwendungsfall sein: Welche Aufgabe soll KI konkret unterstützen oder verbessern? Neben den Funktionen spielen auch Fragen der Nachvollziehbarkeit, Integration in bestehende Systeme und regulatorische Anforderungen eine Rolle. Werden diese Aspekte zu spät berücksichtigt, entstehen Lösungen, die technisch leistungsfähig sind, im Alltag aber keinen Mehrwert liefern. „Viele Unternehmen wählen KI nach dem Funktionsumfang aus und stellen später fest, dass sie nicht zum eigenen Prozess passt“, erklärt Weber. „Erfolgreich ist KI dann, wenn sie Abläufe sinnvoll ergänzt und verständliche Ergebnisse liefert.“

Datenqualität als Grundlage für verlässliche Ergebnisse

KI-Modelle sind vollständig von der Qualität ihrer Daten abhängig. In vielen Unternehmen existieren relevante Informationen zwar, sie sind jedoch über verschiedene Systeme verteilt, unterschiedlich gepflegt oder historisch gewachsen. Diese Ausgangslage erschwert nicht nur den Einsatz von KI, sondern kann zu fehlerhaften oder schwer nachvollziehbaren Ergebnissen führen. Datenmanagement ist daher keine einmalige Vorarbeit, sondern eine kontinuierliche Aufgabe. Dazu gehören klare Zuständigkeiten, regelmäßige Prüfungen und eine strukturierte Aufbereitung der Daten. „Der Aufwand für Datenqualität wird häufig unterschätzt“, sagt Weber. „Ohne geprüfte und konsistente Daten lassen sich keine stabilen und verlässlichen KI-Ergebnisse erzielen – unabhängig davon, wie gut das Modell ist.“

Schrittweise Einführung statt großer Umbruch

Statt KI sofort unternehmensweit einzusetzen, empfiehlt sich ein schrittweises Vorgehen. Unternehmen können so mit klar abgegrenzten Anwendungsfällen beginnen, Lösungen im Alltag testen und die Ergebnisse anhand messbarer Kriterien, wie Benutzerfreundlichkeit oder verständlicher Anleitungen, bewerten. So lassen sich Risiken reduzieren und Erkenntnisse gezielt nutzen. Pilotprojekte liefern nicht nur technische Erkenntnisse, sondern zeigen auch, wie gut KI im Arbeitsalltag akzeptiert wird. Auf dieser Basis lässt sich entscheiden, welche Lösungen ausgebaut werden sollten. „Unternehmen, die mit überschaubaren Anwendungsfällen starten, treffen langfristig fundiertere Entscheidungen“, so Weber. „Praxiserfahrungen sind dabei deutlich wertvoller als theoretische Annahmen.“

KI-Hype: mittel- bis langfristiger Weg zur Monetarisierung noch unklar

Aktueller Marktkommentar zum KI-Hype und den möglichen Folgen von Justin Thomson, Head Investment Institute and CIO bei T. Rowe Price.

Die Investitionsausgaben für künstliche Intelligenz (KI) haben ein erstaunliches Niveau erreicht, aber der Weg zur Monetarisierung bleibt unklar. Der Markt-Hype schaukelt sich selbst hoch, und die Tech-Giganten greifen nun zu Krediten, um ihre Expansion zu finanzieren. Blasen sind nicht immer schädlich und können zu erheblichen Produktivitätssteigerungen führen, aber Überkapazitäten sind ein reales Risiko, das beobachtet werden sollte.

Während eines hochkarätigen Finanzgipfels, an dem ich kürzlich in Hongkong teilgenommen habe, sagte der CEO einer führenden Vermögensverwaltungsgesellschaft, der es eigentlich besser wissen müsste: „Im Kontext der Ausstattung von Hyperscalern sind 2,5 Billionen US-Dollar [für Investitionen] über fünf Jahre keine große Summe.“ Ich war über diese Bemerkung erstaunt. In welchem Paralleluniversum sind 2,5 Billionen US-Dollar eine unbedeutende Summe? Antwort: in einem, in dem Nvidia innerhalb von drei Monaten eine Marktkapitalisierung von 1 Billion US-Dollar erreichen kann. Aber wie erzielt man eine Rendite auf Investitionen in Höhe von 2,5 Billionen US-Dollar, wenn der mittel- bis langfristige Weg zur Monetarisierung der KI noch unklar ist?

Dies deutet auf zwei verschiedene AI-Investitionsbooms hin: einen relativ kurzfristigen, der durch eine erkennbare tatsächliche Nachfrage gestützt wird, und einen längerfristigen spekulativen Boom, der mit einem quasi-religiösen Glauben an exponentielles Wachstum verbunden ist.

Betrachten wir zunächst einige beeindruckende Zahlen. Die Ausgaben für KI erreichten gerade 1 % des US-Bruttoinlandsprodukts (BIP) in einer Wirtschaft mit 1,8 % Wachstum – das ist mehr als die Hälfte der gesamten neuen Nachfrage. Allein Nividia erreichte Ende Oktober einen Wert von 5 Billionen US-Dollar, was 15 % der gesamten US-Wirtschaft entspricht. Zum Vergleich: Als Cisco im Jahr 2000 als weltweit größtes Unternehmen seinen Höhepunkt erreichte, betrug sein Anteil am BIP nur 5,5 %. Während viel Aufsehen um den 3 Milliarden US-Dollar teuren Hauptsitz von JP Morgan in Manhattan gemacht wurde, werden in Texas still und leise 40 Milliarden US-Dollar teure Rechenzentrumsprojekte gestartet. Niemand scheint sich dafür zu interessieren.

Sind wir also in einer Blase? Es gibt sicherlich eine Blase von Menschen, die über Blasen sprechen – werfen Sie einfach einen Blick auf Google Trends.

Unterdessen gibt es diejenigen, die glauben, dass wir uns gerade deshalb nicht in einer Blase befinden können, weil wir über eine solche sprechen. Meiner Meinung nach gibt es drei Schlüsselwörter in den jüngsten Marktentwicklungen, die Beachtung verdienen: Reflexivität, Zirkularität und Verschuldung. Reflexivität besagt, dass Preise tatsächlich die Fundamentaldaten beeinflussen und dass diese neu beeinflussten Fundamentaldaten dann die Erwartungen verändern und somit die Preise beeinflussen. Dieser Prozess setzt sich in einem sich selbst verstärkenden Muster fort. Die lebhafte Reaktion des Marktes auf die jüngsten KI-Megadeals ist ein Beispiel für einen solchen Feedback-Kreislauf. Hinzu kommt der zirkuläre Charakter dieser Deals. Im Wesentlichen investieren die Anbieter von Recheninfrastruktur in native KI-Akteure, die sich in einer Investitionsphase befinden. In der Dotcom-Ära war dies als „Vendor Financing” bekannt und wurde zu einer Art Schimpfwort.

Schließlich gibt es noch die Verschuldung. Bislang haben die finanzstarken Tech-Giganten diesen KI-Boom mit ihren eigenen tiefen Taschen und Eigenkapitalfinanzierungen finanziert. Aber jetzt treten wir in die Kreditphase ein – Unternehmen wenden sich den Schuldenmärkten zu, oft außerhalb der Bilanz, und die Kreditaufnahme wird sich wahrscheinlich beschleunigen. Wir wissen, dass wir mit generativer KI und später mit künstlicher Superintelligenz vor einem neuen technologischen Paradigma stehen – und möglicherweise vor einem massiven Produktivitätssprung. Das sind alles großartige Dinge, und es ist leicht zu verstehen, dass man der Versuchung erliegt, weiter auf der lukrativen KI-Welle zu reiten, die mit der Einführung von ChatGPT im November 2022 begann. Angesichts der aktuellen Indexkonzentration würde es in der Tat Mut erfordern, auszusteigen.

Schnelles Wachstum kann zu einem Überschuss führen

Eine wichtige Lehre aus der Geschichte ist, dass es zu Blasen kommt, wenn wir schöne Dinge erfinden. Aber nicht alle Blasen sind gleich. Es gibt „schlechte“ Blasen (Tulpen, Gold, Grundstücke), und wenn schlechte Blasen durch Schulden finanziert werden, kann dies ein systemisches Risiko für die Wirtschaft darstellen. Es gibt auch „gute“ Blasen, die zu Überkapazitäten bei Produktionsmitteln führen – man denke an die Eisenbahnen im goldenen Zeitalter der Expansion der USA zwischen 1870 und 1900, die Elektrizität in den frühen 1900er Jahren und den Dotcom-Boom Ende der 1990er Jahre. Letztendlich wurde in jedem Fall Wohlstand geschaffen, aber die frühen Investoren verloren viel Geld.

Es ist noch zu früh, um vorherzusagen, zu welcher Art von Blase sich der AI-Investitionsboom entwickeln wird. Die langfristigen Auswirkungen werden davon abhängen, ob die heutigen massiven Investitionen letztendlich die Grundlage für dauerhafte Produktivitätssteigerungen schaffen oder ob sie zu Überkapazitäten führen, die keine nachhaltigen Renditen erzielen. Wenn die Kapazitäten so schnell wachsen, ist es immer wahrscheinlich, dass sich das Ungleichgewicht zwischen Angebot und Nachfrage von einem Mangel zu einem Überschuss umkehrt. In der Dotcom-Ära verloren Investoren viel Geld mit Glasfaserkabeln und Switches, die in den Boden verlegt wurden, und etwas Ähnliches könnte mit KI passieren, wenn durch Überbauung riesige Kapitalmengen in Anlagen gebunden werden, die möglicherweise nicht annähernd mit voller Effizienz betrieben werden können – oder noch schlimmer, wenn die Schnelllebigkeit des Chip-Zyklus die Rechenleistung obsolet macht.

Erschwerend kommt hinzu, dass die Anreize für Infrastrukturanbieter („Picks and Shovels”-Akteure) und Entwickler von KI-Anwendungen nicht aufeinander abgestimmt sind. Während Infrastrukturunternehmen von einer kontinuierlichen Expansion und Investitionen profitieren, konzentrieren sich Anwendungsentwickler auf die Verbesserung der Effizienz und die Senkung der Kosten. Um den Kommentar des Dodos nach dem Caucus-Rennen in Lewis Carrolls Alice im Wunderland umzukehren: „Nicht jeder kann gewinnen, und nicht jeder kann einen Preis bekommen.” Die optimistischen Prognosen für die KI-Infrastruktur zeigen, wie viel Hype in den heutigen Bewertungen der Hyperscaler steckt. Es ist ironisch, dass Rechenzentrumsprojekte nach den griechischen Titanen Prometheus und Hyperion benannt werden. In der griechischen Mythologie folgt auf Hybris immer Nemesis. Um noch ein bisschen Latein mit einzubringen: caveat emptor.

KI & Bewertungen: Sichtbarkeit in einer neuen Suchrealität

Tipps und To-dos: Wie du dein Bewertungsmanagement strategisch aufsetzt und Sichtbarkeit und Vertrauen im KI-Zeitalter steigerst.

Generative Antworten in Suchmaschinen und Assistenten verändern die Spielregeln der Online-Sichtbarkeit. Nicht mehr nur klassische Rankings entscheiden, sondern die Frage, wem die KI genug vertraut, um es überhaupt zu nennen. Aktuelle, glaubwürdige und inhaltlich konkrete Bewertungen werden dabei zum Schlüsselsignal. Für kleine und mittlere Unternehmen bedeutet das: Bewertungsmanagement ist kein Nice-to-have mehr, sondern ein Pflichtprogramm, das Auffindbarkeit, Auswahl und Conversion spürbar beeinflusst. Im Folgenden erfährst du, wie du dein Bewertungsmanagement strategisch aufsetzen solltest, um Sichtbarkeit und Vertrauen im KI-Zeitalter zu steigern.

Warum Bewertungen jetzt geschäftskritisch sind

KI-Modelle zerlegen Rezensionen in viele kleine Bedeutungseinheiten und ziehen daraus ein konsistentes Bild. Welche Leistung wurde erbracht, an welchem Ort, mit welcher Qualität und für welchen Anlass. Aus den einzelnen Stimmen entsteht so ein Vertrauensprofil, das über bloße Sternesummen hinausgeht. Entscheidend ist nicht die bloße Menge, sondern die Frische und die inhaltliche Dichte der Aussagen. Eine Rezension wie „Schnell geholfen am Sonntag, sehr kompetente Beratung zu Reiseimpfungen“ liefert gleich mehrere Signale. Zeitliche Verfügbarkeit, thematische Expertise und konkreter Nutzen. Genau solche Details erhöhen die Wahrscheinlichkeit, in generativen Antworten aufzutauchen, wenn Menschen in ihrer Nähe nach einer Lösung suchen. Wer regelmäßig neue, authentische und präzise Bewertungen erhält, verschafft der KI verlässliche Hinweise und sichert sich dadurch mehr Sichtbarkeit in genau den Momenten, in denen Entscheidungen vorbereitet werden.

Bewertungsmanagement als Prozess, nicht als Aktion

Wirksam wird Bewertungsarbeit, wenn sie selbstverständlich Teil der täglichen Abläufe ist. Nach dem Kontakt freundlich um Feedback bitten, den Weg zur passenden Plattform so kurz wie möglich machen, interne Zuständigkeiten klar regeln und Reaktionszeiten verbindlich festlegen. Aus diesen scheinbar kleinen Schritten entsteht ein stabiler Rhythmus, der kontinuierlich neue Kund*innenstimmen hervorbringt und der KI immer wieder frische Kontexte liefert. Ein solcher Prozess ist robuster als jede einmalige Kampagne, weil er verlässlich Vertrauen aufbaut und saisonale Schwankungen abfedert. Teams profitieren, wenn sie Zielkorridore definieren, etwa eine bestimmte Zahl neuer Rezensionen pro Woche und wenn sie Fortschritte sichtbar machen. So wird aus gutem Vorsatz ein gelebter Ablauf, der die gesamte Organisation stärkt.

Sprache der Kund*innen wirkt wie natürliches SEO

KI versteht Alltagssprache deutlich besser als Listen isolierter Schlagwörter. Unternehmen gewinnen, wenn sie um freie, aber konkrete Formulierungen bitten, ohne Vorgabetexte und ohne Druck. Eine höfliche Bitte wie: „Wenn es für Sie passt, nennen Sie gern, was Ihnen besonders geholfen hat“ öffnet den Raum für präzise Hinweise auf Leistungen, Erreichbarkeit, Barrierefreiheit oder Schnelligkeit. Solche natürlich entstandenen Details sind für Menschen überzeugend und zugleich für Maschinen gut interpretierbar. Sie zeigen, wofür ein Betrieb tatsächlich steht, und verankern die passenden Begriffe in einem echten Nutzungskontext. Das Ergebnis ist eine Sprache, die Vertrauen schafft und die Auffindbarkeit stärkt, ohne künstlich zu wirken.

Antworten trainieren Vertrauen für Menschen und Maschinen

Jede Reaktion auf eine Bewertung ist ein sichtbares Zeichen von Serviceorientierung und zugleich zusätzlicher Kontext für die KI. Gute Antworten bedanken sich aufrichtig, beziehen sich konkret auf das Erlebte und bieten einen klaren nächsten Schritt an. Bei Kritik zählt ein professioneller Umgang. Das Anliegen nachvollziehen, Verantwortung übernehmen, eine realistische Lösung anbieten und einen direkten Kontaktweg nennen. So entsteht ein Bild von Verlässlichkeit, das Hemmschwellen senkt und Wiederbesuche wahrscheinlicher macht. Die KI erkennt diesen Umgang ebenso und ordnet das Unternehmen eher als vertrauenswürdig ein. Mit der Zeit entsteht ein stabiler Kreislauf aus guter Erfahrung, konstruktiver Reaktion und wachsendem Vertrauen.

Lokaler Content und Social Proof gehören zusammen

Bewertungen entfalten ihre volle Wirkung, wenn sie auf eine solide Informationsbasis treffen. Konsistente Unternehmensdaten, vollständige Leistungsseiten pro Standort, klare Öffnungszeiten inklusive Ausnahmen und eine schnelle, mobil optimierte Webseite erleichtern die Einordnung für Nutzer*innen und Maschine. Wenn ausgewählte Zitate oder Bewertungsschnipsel an relevanten Stellen sichtbar werden, etwa auf der Startseite, in der Buchungsstrecke oder in den häufigen Fragen, entsteht ein schlüssiges Gesamtbild. Der lokale Bezug bleibt klar erkennbar, die Erwartungen sind gut gesetzt, und die nächsten Schritte sind ohne Umwege möglich. So wird aus Social Proof ein handfester Conversion Hebel.

Vom Feedback zur Verbesserungsschleife

Rezensionen sind fortlaufende Marktforschung aus erster Hand. Wer wiederkehrende Themen auswertet, etwa Wartezeiten, Erreichbarkeit oder Bezahloptionen, erkennt schnell die Stellschrauben mit der größten Wirkung. Wichtig ist, die daraus abgeleiteten Verbesserungen konsequent umzusetzen und sichtbar zu machen. Informieren, handeln, erneut um Rückmeldung bitten. Dieser offene Kreislauf wirkt nach innen und nach außen. Mitarbeitende erleben, dass Feedback Veränderungen anstößt, Kund*innen erleben, dass ihre Hinweise ernst genommen werden, und die KI registriert die fortlaufende Pflege der Qualität. Mit jeder Runde werden Erlebnisse besser und Bewertungen stärker, was die Sichtbarkeit weiter erhöht.

Fazit

Sichtbarkeit entsteht heute dort, wo Menschen nach konkreten Lösungen fragen und wo KIs verlässliche Hinweise zu Qualität und Relevanz finden. Unternehmen, die Bewertungen als strategischen, kontinuierlichen Prozess verstehen, erhöhen ihre Chance, in generativen Antworten genannt zu werden und gewinnen genau in den entscheidenden Momenten an Präsenz. Vieles davon ist eine Frage kluger Organisation und klarer Abläufe. Der finanzielle Aufwand bleibt überschaubar, der Nutzen für Auffindbarkeit, Vertrauen und Umsatz ist deutlich spürbar.

Die Autorin Franziska Ortner ist Produktmanagerin bei SELLWERK

NICAMA Naturkosmetik: Von der Studienidee zum nachhaltigen Erfolgsunternehmen

NICAMA Naturkosmetik feiert sein fünfjähriges Bestehen: Was mit kleinen Experimenten während des Studiums begann, ist heute ein etabliertes Naturkosmetikunternehmen mit über 600 Handelspartnern im DACH-Raum.

Was 2019 als mutige Idee von vier Studierenden begann, wurde rasch zu einem inspirierenden Beispiel für gelebte Nachhaltigkeit. In einer Zeit, in der Umweltschutz noch kein selbstverständlicher Trend war, experimentierten die Gründerinnen und Gründer mit festen Shampoos, um eine plastikfreie Alternative zu herkömmlicher Kosmetik zu schaffen. Das erste Produkt entstand mit viel Leidenschaft, Neugier und Improvisation. Damit war der Grundstein für den späteren Unternehmenserfolg gelegt.

Ein erfolgreiches Crowdfunding finanzierte 2019 die erste Produktcharge und machte den Traum vom eigenen Webshop möglich. Es folgten die ersten Partnerschaften mit Bioläden, Outdoorhändlern, Friseuren und Geschenkeläden, die an die Vision glaubten. Heute zählt NICAMA stolz über 600 Vertriebspartner und wächst weiter.

Ein entscheidender Meilenstein war die Entwicklung des 1plus1 Meeresschutz-Prinzips: Für jedes verkaufte Produkt werden 100 Gramm Plastik in Küstenregionen gesammelt. Dieses Prinzip ist transparent, messbar und von jedem/jeder Kund*in nachvollziehbar. Bis heute konnten so über 33.290 Kilogramm Plastik aus der Umwelt entfernt werden. Das entspricht mehr als 3,2 Millionen Plastikflaschen. Darüber hinaus hat das Team mehrere Elbreinigungen organisiert, unter anderem gemeinsam mit der Naturschutzjugend NAJU und Charlotte Meentzen.

Mit dem Schritt in die Upcycling Beauty wurde NICAMA zum Pionier in Deutschland. Dabei werden wertvolle Nebenprodukte aus der Lebensmittelproduktion wie Ingwertrester und Kaffeekirsche zu hochwertigen Inhaltsstoffen verarbeitet. Heute umfasst das Sortiment über 50 plastikfreie Produkte, darunter Seifen, Shampoos, Deocremes, Pflegeöle und Körperpeelings – alle minimalistisch verpackt und mit reduzierten, sorgfältig ausgewählten Rezepturen.

Die Reise war jedoch nicht ohne Herausforderungen: Die Corona Pandemie und die Inflationsfolgen des Ukraine-Krieges setzten auch NICAMA stark zu. Das einst 15-köpfige Team musste sich zwischenzeitlich deutlich verkleinern. Trotz dieser Rückschläge bewies das Unternehmen Durchhaltevermögen. Heute steht es so solide da wie nie zuvor. Seit zwei Jahren verzeichnet NICAMA wieder überdurchschnittliches Wachstum und das deutlich über dem allgemeinen Naturkosmetikmarkt in Deutschland.

Für sein Engagement und seine Innovationskraft wurde das Unternehmen mehrfach ausgezeichnet: 2021 gewann NICAMA den Sächsischen Gründerpreis und erhielt bereits viermal den eku Zukunftspreis des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft.

HR-Trends 2026

Die Arbeitswelt verändert sich, die Position der Unternehmen wird stärker, eine Rezession auf Management- und Führungsebene droht: die HR-Welt bleibt ein Schmelztiegel verschiedenster Strömungen. Das sind die fünf größten Herausforderungen für 2026.

Die Arbeitswelt verändert sich - sowohl für Personalmanager*innen als auch für die Belegschaft. Während sich vor wenigen Jahren die Arbeitnehmenden in einer starken Verhandlungsposition befanden, schlägt das Pendel jetzt immer stärker zugunsten der Unternehmen aus. Das eröffnet ihnen die Chance, die Arbeitswelt mehr nach ihren Vorstellungen zu gestalten, um ihren Unternehmenserfolg zu sichern. Gleichzeitig tragen sie auch die große Verantwortung, das Arbeitsumfeld ihrer Mitarbeitenden kontinuierlich zu verbessern, das Engagement zu fördern und die Rolle der KI für die kommenden Jahre mit Weitblick und Sorgfalt auszubalancieren.

Wir werfen einen Blick nach vorne und skizzieren die fünf wichtigsten HR-Trends für die DACH-Region im kommenden Jahr.

1. Kulturelle Transparenz – Strategiewechsel bei der Talentakquise

Die Stagnation der Wirtschaft, der angespannte Arbeitsmarkt, weniger Stellenangebote – all das führt dazu, dass Mitarbeitende lieber in ihren derzeitigen Positionen und Rollen verharren. Die Folge ist ein “Talentestau:” Mitarbeitende, die sonst das Unternehmen verlassen würden, bleiben und blockieren damit die Wechsel- und Entwicklungsmöglichkeiten derer, die eher bereit sind, ihre Karriere engagiert voranzubringen. Auf der Suche nach effektiven Möglichkeiten, diese Engpässe zu überwinden, werden Unternehmen im kommenden Jahr ihre Strategie hin zu mehr kultureller Transparenz ausrichten. Anstatt neue Talente mit einem Wertversprechen oder der einseitigen Hervorhebung positiver Alleinstellungsmerkmale zu gewinnen, kommunizieren sie ihre tatsächlichen Erwartungen und die Realität des Arbeitsalltags klar. Damit betonen sie bewusst auch Aspekte, die weniger passende Bewerbende eher abschrecken - damit sich die wirklich passenden umso stärker angesprochen fühlen. Beispiele dafür können u.a. die Erwartung, wieder vollständig zur Büropräsenz zurückzukehren, Prozessreife und Struktur der Unternehmen sowie die Nutzung von KI-Tools im Arbeitsalltag sein.

2. Neudefinition des Erfolgs – Leistung statt Leistungsschau?

Mitarbeitende haben oft das Gefühl, dass ihre tatsächlich geleistete Arbeit nicht richtig bewertet wird und sie nicht ausreichend Anerkennung erfahren. Analysen von Culture Amp ergaben, dass 2025 rund 20 Prozent der Mitarbeitenden nicht genau wissen, wie sich die Bewertung ihrer Performance zusammensetzt. Die Folge dieser Unkenntnis sind Mutmaßungen und die Fokussierung auf mehr Sichtbarkeit: Mitarbeitende betreiben eine Art Leistungsschau und arbeiten so, dass es vor allem produktiv aussieht. Wenn das Gefühl hinzukommt, einem passiven Monitoring ausgesetzt zu sein – in der DACH-Region nur unter strengen Auflagen erlaubt – konzentrieren sich Mitarbeitende auf das, was vermeintlich gemessen wird. Diese Kluft wird sich 2026 weiter vergrößern, wenn die Verantwortlichen ihre Leistungsbewertung nicht neu ausrichten, um ein vertrauenswürdiges und vollständigeres Bild von der Performance ihrer Mitarbeitenden zu erhalten. Wer hingegen menschzentrierte Feedbacksysteme wie Upward Feedback, 360GradFeedback und reflektierende Einzelgespräche verankert, kann das Vertrauen stärken und ein ganzheitlicheres Verständnis der Beiträge der Mitarbeitenden erhalten.

3. Mensch und KI – zwei Seiten der HR-Medaille

2026 werden KI-Tools verstärkt Einzug in den HR-Abteilungen halten. Routineaufgaben wie z.B. eine erste Bewerberauswahl oder die Beantwortung von häufig gestellten Fragen werden zunehmend automatisiert beantwortet. Doch mit den Möglichkeiten der KI wächst auch die Erkenntnis, dass sie nicht die Lösung für alles sein darf. Darüber hinaus tritt 2026 der EU AI Act vollständig in Kraft. Demzufolge werden KI-Tools im Zusammenhang mit Personaleinsatz als Hochrisiko eingestuft: Sie unterliegen sehr strengen Richtlinien bezüglich Transparenz, Kontrolle und Grenzen des KI-Einsatzes. Bei der Frage, welche Aufgaben der KI überlassen werden können und welche nach wie vor die Empathie, die Erfahrung und das Wissen echter HR-Expert*innen erfordern, ist Fingerspitzengefühl gefragt. Auch scheinbar administrative Aufgaben benötigen manchmal den direkten persönlichen Austausch. Unternehmen werden dazu übergehen, deutlicher zu definieren, welche Fragestellungen und Bereiche maschinenbezogene Fähigkeiten und welche menschliche Fähigkeiten erfordern. 2026 wird sich ein deutlicher Trend bemerkbar machen: Die verstärkte Integration von KI in den Personalabteilungen und gleichzeitig die permanente Überprüfung, welche Aufgabenbereiche zukünftig KI-gestützt erledigt werden sollen.

4. Führung neu denken – Managementpositionen verlieren an Attraktivität

Auch das verraten die Analysen von Culture Amp: 72 Prozent der Generation Z sind nicht an Führungspositionen interessiert. Die jungen Arbeitnehmenden bleiben lieber in ihren jeweiligen Rollen, manche entscheiden sich ganz bewusst gegen eine Managementkarriere. Der Reiz, eine Leitungsfunktion zu übernehmen, nimmt insbesondere im Bereich des mittleren Managements ab: Diese Manager*innen fühlen sich zwischen den Erwartungen der Unternehmensführung und den Erwartungen ihres Teams oft unter starkem Druck. In der Folge könnte es im kommenden Jahr zu einer weiteren Abflachung der Hierarchien in den Unternehmen kommen, manche befürchten gar eine Rezession auf der Management- und Führungsebene. Gleichzeitig eröffnen sich Manager*innen durch den Einsatz von KI-Tools neue Möglichkeiten, ihren Einfluss zu vergrößern. Für jene Talente, die sich darauf einlassen, werden Führungspositionen dadurch zugänglicher und nachhaltiger. In Anbetracht dessen werden sich die Dynamiken in den Teams verändern. Unternehmen werden Führungsrollen zunehmend überdenken und ihre Manager*innen besser unterstützen, statt weitere einzustellen. Denn wenn weniger Menschen führen wollen, braucht es nicht mehr, sondern besser unterstützte Manager*innen.

5. Ambitionen und Leistungsbereitschaft wird außerhalb der Arbeitswelt ausgelebt

Ob berufliche Nebentätigkeit, Ehrenamt oder leidenschaftliches Hobby – immer mehr Mitarbeitende bringen Energie und Motivation für Tätigkeiten auf, die außerhalb ihrer regulären Arbeit liegen. Sie erkennen, dass sie ihre Stärken auch anderswo verwirklichen können. Dieser Trend hin zu mehr Kreativität, Leidenschaft und Erfüllung durch sinnvolle Tätigkeiten nach Feierabend und am Wochenende wird sich auch 2026 fortsetzen. Das Risiko für Unternehmen geht dabei über bloße Ablenkung hinaus: Bleiben angemessene Antworten im kommenden Jahr aus, wandern Ambitionen nach außen ab. Führung muss etwas Besseres anbieten: Die Chance 2026 liegt darin, den Hauptjob so zu gestalten, dass er sich wieder energiegeladen, kreativ und investitionswürdig anfühlt.

Fazit

Die Strömungen und Entwicklungen in der HR-Welt bringen einen fortdauernden Wandel mit sich. Gespannt blicken die Personalabteilungen auf die für 2026 vorgesehene nationale Umsetzung der Entgelttransparenz-Richtlinie der EU (EU Pay Transparency Directive and Equal Pay). Die weitreichendsten Veränderungen verursacht aber der Einzug der KI in die Arbeits- und Lebenswelt der Mitarbeitenden. Dies wirft unablässig neue Fragen auf: Droht der Talentepool zu versiegen, wenn Aufgaben für Berufseinsteiger*innen von KI übernommen werden und sie infolgedessen keine Erfahrung aufbauen können? Wird sich die Belegschaft eines Unternehmens früher oder später in KI-resistente und KI-affine Gruppen aufspalten? Die HR-Welt bleibt ein Schmelztiegel verschiedenster Strömungen im Unternehmen, die datengestützte Strategien erfordern.

Der Autor Dr. Arne Sjöström ist Regional Director, People Science EMEA bei Culture Amp mit dem Schwerpunkt Organisationspsychologie und angewandte Forschung.

Vorsicht vor diesen KI-Versuchungen

Allzu großes Vertrauen in GenAI ist fahrlässig, dennoch prüfen nur rund ein Viertel der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit. Das sind die größten Gefahren und effektivsten Gegenmaßnahmen.

Die Leistung und die Zuverlässigkeit von KI-Assistenten nehmen gefühlt weiter zu. Doch wer in den letzten Wochen intensives Prompting bei ChatGPT, Perplexity und Co. betrieben und die Ergebnisse eingehend analysiert hat, fühlte sich in diesem Gefühl nicht bestätigt. Im Gegenteil: Die Qualität der generierten Antworten lässt neuerdings öfter zu wünschen übrig. Auf YouTube gibt es zahlreiche Videos zu diesem Phänomen, das sich offenbar auch die Herstellenden nicht so ganz erklären können, aber auch klassische Medien berichten darüber. In Anbetracht der Tatsache, wie abhängig sich viele Menschen im Berufsleben schon heute von GenAI-Tools gemacht haben, ist dieser Trend erschreckend und ernüchternd. Ein blindes Vertrauen in die digitalen Helfer aus der Familie generativer KI birgt zudem großes Schadenspotenzial, etwa dann, wenn sich Ärzt*innen bei der Diagnose auf sie stützen oder Entwickler*innen von der KI vorgeschlagene Frameworks ohne Sicherheitscheck implementieren.

Völliges Vertrauen in GenAI ist also, zurückhaltend formuliert, mindestens gewagt. Die Situation ist ernst und erfordert von GenAI-Anbietenden ein Mindestmaß an Qualitätssicherung – offenbar kein einfaches Unterfangen. Bis dahin ist es wichtig, eigene Maßnahmen zu ergreifen, um nicht in die Falle der folgenden vier Qualitätskiller zu geraten.

1. Halluzinationen

KI-Assistenten wie ChatGPT und Co. wurde die Aufgabe erteilt, Antworten zu liefern – koste es, was es wolle. Wenn die Wissensbibliothek nicht ausreicht, um komplexe Sachverhalte zu beantworten, fängt generative KI an, sich etwas auszudenken. Die von solchen Halluzinationen ausgehende Gefahr ist bekannt. Umso bedrückender ist die Tatsache, dass laut einer aktuellen Studie nur rund ein Viertel (27 %) der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit prüfen. Das sind zwar immerhin sieben Prozentpunkte mehr als bei gewöhnlichen Inhalten aus dem Internet, wie eine Studie des PR-COM Re­search Lab belegt, aber noch immer viel zu wenige.

Gegenmaßnahmen: Wer GenAI nutzt, sollte ausnahmslos alle von ihr produzierten Inhalte überprüfen. Dazu sollten User*innen insbesondere die von der KI verwendeten Primärquellen checken oder – wenn möglich – Expert*innen zur Prüfung der Korrektheit der Antworten zurate ziehen.

2. Bias

Die Anbieter*innen aktueller KI-Assistenten haben sehr viel Arbeit in ihre Produkte gesteckt, um den Bias, also die Voreingenommenheit ihrer Modelle auszumerzen und sie zur Vorurteilsfreiheit zu erziehen.

Verlassen sollten sich User*innen auf die moralische und ethische Unantastbarkeit ihrer Modelle dennoch nicht. Zwar ist es unwahrscheinlich, dass Produkte großer Hersteller*innen noch rassistische, sexistische oder sonstige ethisch fragwürdige Ansichten vertreten, aber komplett ausgeschlossen ist es eben nicht. Noch relativ hoch ist die Gefahr zudem bei der Nutzung von kostenlosen GenAI-Assistenten oder Nischen-Tools.

Gegenmaßnahmen: Auch im Zusammenhang mit Bias gilt es, die Ergebnisse einer KI-Befragung immer genauestens zu checken und mit geltenden Gesetzen und den vorherrschenden Wertevorstellungen unserer Gesellschaft abzugleichen. Wer dubiose KI-Tools meidet, kann sich zudem viel Ärger ersparen.

3. Content-Kannibalisierung

Immer mehr KI-generierter Content flutet das Internet – die logische Folge der zunehmenden Nutzung von GenAI-Assistenten. Leider trainieren KI-Entwickler*innen ihre Chatbots und deren zugrunde liegende Sprachmodelle unter anderem mit genau diesen Inhalten. Und schlimmer noch: Der exponentiell steigende KI-Inhalt ist darüber hinaus auch der Wissensschatz, auf den die KI für ihre Antworten zurückgreift. Dadurch entsteht ein Teufelskreis aus KI, die sich irgendwann nur noch mit von ihr selbst generierten Inhalten trainiert und auch nur noch von ihr produzierten Content als Basiswissen verwendet. Der Mensch wird aus dieser Gleichung immer weiter herausgekürzt. Die Qualität der Ergebnisse von Anfragen an die KI wird somit zunehmend abnehmen. Hinzu kommt, dass alle User*­innen irgendwann die gleichen Ergebnisse abrufen, nutzen und veröffentlichen.

Gegenmaßnahmen: Es ergibt Sinn, hin und wieder auch ohne KI zu agieren und Content zu produzieren, der frei von KI-generierten Inhalten ist und das Qualitätsmerkmal „Made in a human brain“ trägt.

4. Wissensoligopol

Der KI-Markt ist derzeit auf einige wenige Big Player geschrumpft, die sich die enormen Rechenressourcen und Entwicklungskosten für generative KI leisten können. Dadurch entsteht zunehmend ein Wissensoligopol, in dem die großen Anbieter*innen wie OpenAI, Google, Microsoft und DeepSeek zukünftig die Art und Weise bestimmen, welche Informationen überhaupt noch zugänglich sind. Schon jetzt gehen Suchanfragen auf den traditionellen Suchmaschinen deutlich zurück, die Ergebnisse zwar nach Algorithmen ranken, aber selten Treffer komplett ausblenden. Viel restriktiver agieren GenAI-Tools, deren implementierte Filter die freiheitliche Verbreitung von Wissen einzuschränken drohen: Was nicht mit den politischen und moralischen Ideen der Hersteller übereinstimmt, wird automatisch unterdrückt. Das erinnert ein wenig an das Wahrheitsministerium aus Orwells „1984“.

Gegenmaßnahmen: Es ist wichtig, dass Unternehmen und offizielle Stellen auch unabhängige Projekte fördern und deren Nutzer*innen- sowie Supporter*innen-Basis wächst. Gleichzeitig sollten User*innen es dringend verinnerlichen, dass KI- Assistenten nicht der Wahrheit letzter Schluss sind. Das Nutzen möglichst vieler Quellen, um das eigene Wissen aufzubauen, ist immer besser als ein vermeintlicher „Single Point of Truth“.

Fazit

Wir sind noch lange nicht so weit, dass ein blindes Vertrauen in generative KI zu rechtfertigen ist. Es ist zwar logisch, dass wir eine vermeintlich arbeitserleichternde Technologie erst einmal ungern hinterfragen – doch dieser Bequemlichkeit wohnt, je nach Einsatzzweck, ein erhebliches Schadenspotenzial inne. Zum jetzigen Zeitpunkt lautet also die Maxime, restlos jede von GenAI generierte Antwort genauestens auf den Prüfstand zu stellen.

Der Autor Alain Blaes ist CEO der Münchner Kommunikationsagentur PR-COM (mit Fokus auf High-tech- und IT-Industrie im B2B-Umfeld).

Report: Quantencomputing

Wir sind Zeug*innen einer Transformation, die nicht nur die Tech-Branche nachhaltig beeinflussen wird: Quantencomputing und die dazugehörigen Start-ups haben das Potenzial, die Art und Weise, wie wir Daten verarbeiten und Probleme lösen, grundlegend zu verändern.

Quantencomputing (QC) ist ein hochinnovatives Feld der Informatik und Physik, das die Prinzipien der Quantenmechanik nutzt, um Datenverarbeitung und -analyse auf eine Weise zu leisten, die mit klassischen Computern nicht möglich ist. Während klassische Computer Informationen in Form von Bits verarbeiten, die entweder den Wert 0 oder 1 annehmen können, verwenden Quantencomputer Quantenbits oder Qubits. Diese Qubits können sich in einem Zustand der Überlagerung befinden, was bedeutet, dass sie gleichzeitig 0 und 1 darstellen können. Dies ermöglicht es Quantencomputern, komplexe Berechnungen viel schneller durchzuführen als ihre klassischen Pendants.

Herausforderungen

Trotz des enormen Potenzials stehen Forschende und Unternehmen vor vielen Herausforderungen. Eine der größten Hürden ist die sog. Dekohärenz, ein Phänomen, bei dem die Quanteninformation durch Wechselwirkungen mit der Umgebung verloren geht. Um stabile und fehlerfreie Quantenberechnungen durchzuführen, müssen Qubits in einem kontrollierten Zustand gehalten werden, was technisch äußerst anspruchsvoll ist.

Eine weitere Herausforderung ist die Skalierbarkeit. Während einige Prototypen von Quantencomputern bereits existieren, stellt der Bau von Systemen mit einer ausreichenden Anzahl von Qubits, um praktische Probleme zu lösen, eine erhebliche technische Herausforderung dar.

Trends

In den letzten Jahren ist ein zunehmender Fokus auf hybride Ansätze zu verzeichnen, bei denen Quantencomputer in Kombination mit klassischen Computern eingesetzt werden, um spezifische Probleme zu lösen. Diese hybriden Systeme nutzen die Stärken beider Technologien und bieten eine praktikable Lösung für viele aktuelle Herausforderungen.

Zudem ist eine wachsende Zusammenarbeit zwischen akademischen Institutionen, großen Tech-Unternehmen und Start-ups zu beobachten. Diese Partnerschaften sind entscheidend, um Wissen und Ressourcen zu bündeln und die Entwicklung von QC-Technologien voranzutreiben. Unternehmen wie IBM, Google oder Microsoft investieren erheblich in Quantenforschung und -entwicklung und bieten Plattformen für Entwickler*innen und Forschenden an, um ihre eigenen Quantenalgorithmen zu testen.

Ein weiterer Trend ist die zunehmende Verfügbarkeit von QC-Diensten über die Cloud. Unternehmen und Forschende können nun auf Quantencomputer zugreifen, ohne in teure Hardware investieren zu müssen. Dies senkt die Eintritts­barrieren und ermöglicht es einer breiteren Palette von Nutzenden, die Möglichkeiten des QCs zu erkunden.

Die Rolle von Start-ups

Start-ups spielen hierbei mit neuen Ideen und Ansätzen eine entscheidende Rolle als Innovatoren und konzentrieren sich zumeist auf spezifische Anwendungen des QCs, sei es in der Materialwissenschaft, der Medikamentenentwicklung, der Lieferkettenlogistik oder der Optimierung komplexer Systeme u.a. in der Finanzwelt.

Die 2024 im Auftrag des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK) veröffentlichte Studie „Quantencomputing – Markt, Zugang, Perspektiven“ zeigt: Die Zahl der Start-ups zur Entwicklung von Anwendungssoftware stieg in den letzten Jahren stetig, wobei hardwarespezifische Systemsoftware vorrangig von den Hardwareentwickler*innen selbst bereitgestellt wird. Entfielen im Zeitraum von 2002 bis 2018 weltweit noch rund 58 Prozent der kumulierten Gründungen auf Software- oder Service-zentrierte Start-ups und 42 Prozent auf Hardware- bzw. Komponenten-fokussierte Start-ups, waren es im Zeitraum 2018 bis 2022 rund 74 Prozent mit Fokus auf Software und Services sowie 26 Prozent mit Fokus auf Hardware und Komponenten.

Von weltweit über 150 Start-ups fokussiert sich dabei etwa ein Drittel auf die Entwicklung von Systemsoftware und zwei Drittel auf die Entwicklung von Anwendungssoftware. Deutschland belegt dabei mit knapp 20 Start-ups im Jahr 2023 Platz drei im internationalen Vergleich, hinter den USA und Kanada. Damit hat sich Deutschland als ein Hotspot für QC-Start-ups etabliert.

Deutsche QC-Start-ups mischen ganz vorne mit

Deutsche QC-Start-ups sind oft noch in der Entwicklungsphase, die Gründer*innen kommen meist aus Forschung und Wissenschaft, und ihre Geschäftsmodelle konzentrieren sich auf die Entwicklung und den Verkauf von Hardware, Mikroskopen oder Cloud-basierten QC-Diensten.

Als weltweit erstem Unternehmen ist es dem 2018 gegründeten Start-up kiutra, einem Spin-off der Technischen Universität München, gelungen, eine dauerhafte magnetische Kühlung für Temperaturen nahe des absoluten Nullpunkts zu entwickeln. Statt auf Quantencomputer oder QC-Software, setzen die Gründer Alexander Regnat, Jan Spallek, Tomek Schulz und Christian Pfleiderer auf vollautomatische, äußerst wartungsarme und gut skalierbare Kühlungslösungen, die den Betrieb von Quantentechnologien im industriellen Maßstab ermöglichen.

Hamburger FoodTech-Start-up goodBytz bringt Roboterküchen in den Mittelstand

Das Tech-Start-up goodBytz, das führend in der Entwicklung autonomer Roboterinfrastruktur für bessere Lebensmittelversorgung ist, geht eine Partnerschaft mit avitea Industrieservice, einem auf Logistik-, Facility- und Produktionsservices spezialisierten Industrie-Dienstleister ein, um automatisierte Verpflegungslösungen im industriellen Mittelstand voranzutreiben.

Gegründet wurde goodBytz 2021 von Dr. Hendrik Susemihl, Kevin Deutmarg und Philipp von Stürmer. Die Unternehmer lernten sich zuvor beim Robotik-Unternehmen NEURA kennen, wo sie mehrere Jahre gemeinsam an innovativen Technologien gearbeitet haben. Seit der Gründung hat sich goodBytz nach eigenen Angaben zum weltweit am schnellsten wachsenden Unternehmen für Lebensmittelautomatisierung entwickelt.

Die modularen Automatisierungssysteme betreiben aktuell zahlreiche Verpflegungslösungen im B2B-Catering und in der Systemgastronomie. Als Herzstück dient eine intelligente Middleware Software, eine hardwareunabhängige, flexible Plattform, die die Effizienz in traditionellen Küchenumgebungen maximiert. GoodBytz verfolgt die Mission, frische Lebensmittel jederzeit und für jede(n) zugänglich zu machen und treibt damit den technologischen Wandel in der Gastronomiebranche voran.

Neue Chancen für den deutschen Mittelstand

Mit der strategischen Partnerschaft mit avitea Industrieservice, einem auf Logistik-, Facility- und Produktionsservices spezialisierten Industrie-Dienstleister, erschließt goodBytz ein neues Marktsegment: Viele Produktionsbetriebe arbeiten im Drei-Schicht-System und stoßen bei der Versorgung von Mitarbeitenden an ihre Grenzen. Durch die Kombination aus aviteas Marktzugang und dem technologischen Know-how von goodBytz soll diese Lücke künftig geschlossen werden. Gerade für den deutschen Mittelstand ergeben sich daraus enorme Chancen – das Potenzial liegt bei über 10.000 möglichen Installationen.

Als Operations-Partner betreibt avitea künftig Roboterküchen direkt bei seinen Kund*innen. So sind Unternehmen in der Lage, ihren Mitarbeitenden zu jeder Tages- und Nachtzeit eine gesunde, planbare und abwechslungsreiche, regelmäßig wechselnde sowie stets frische Küche anzubieten – ganz ohne eigenes Küchenpersonal und mit komfortabler Vorbestellbarkeit.

„Das Konzept von goodBytz hat uns sofort überzeugt“, ergänzt Markus Humpert, Geschäftsführer von avitea Industrieservice. „Gerade dort, wo sich der Betrieb einer Kantine wirtschaftlich nicht rechnet oder Personal fehlt, können wir gemeinsam eine echte Lücke schließen. Die Qualität der Gerichte ist hervorragend, der Ansatz innovativ. Als Dienstleister und Flexibilisierungspartner für industrielle Kunden können wir gemeinsam mit goodBytz für genau diese Betriebe eine innovative Lösung für tägliche Herausforderungen bieten.“

Robotik schlägt Brücke zwischen Industrie und Alltag

Nils Tersteegen, Marketingleiter der FANUC Deutschland GmbH, sagt dazu: „Für FANUC ist es schön zu sehen, wie unsere bewährte Industrierobotik immer näher an den Alltag der Menschen rückt. GoodBytz schlägt eine Brücke zwischen Industrie und Alltag und zeigt, wie Robotik echten Mehrwert für Mitarbeitende schaffen kann. Viele avitea-Kund*innen setzen bereits heute auf FANUC-Roboter in der Produktion. Wenn künftig einer dieser Roboter für sie das Mittagessen zubereitet, schließt sich auf besonders schöne Weise ein Kreis. Durch Automation kann dem Fachkräftemangel in der Industrie schon heute wirksam begegnet werden. Wenn künftig auch in der Küche Roboter unterstützen, zeigt das, welches Potenzial in dieser Technologie noch steckt.“

Als nächster Schritt ist eine erste Umsetzung im Hotelumfeld geplant, um das Betriebskonzept zu verfeinern und Kund*innen den Mehrwert der Lösung zu zeigen. Anschließend wird der Marktausbau mit weiteren Industrieunternehmen fortgesetzt.

Durch die Kooperation mit avitea will goodBytz Verpflegung zum festen Bestandteil moderner Industrieprozesse machen. Die automatisierten Roboterküchen zeigen, wie sich Effizienz, Gesundheit und Arbeitgeberattraktivität in der industriellen Arbeitswelt verbinden lassen.

„Mit avitea Industrieservice haben wir einen Partner gewonnen, der den industriellen Mittelstand seit Jahrzehnten begleitet und direkten Zugang zu Produktionsbetrieben mit großem Versorgungsbedarf hat“, sagt Dr. Hendrik Susemihl, CEO und Co-Founder von goodBytz. „Gemeinsam verbinden wir unsere Technologie mit dem Marktzugang und der operativen Erfahrung von avitea. So entsteht eine Partnerschaft, die den breiten Einsatz automatisierter Verpflegungslösungen im industriellen Mittelstand ermöglicht und Unternehmen im Wettbewerb um Fachkräfte stärkt.“

EU KI-Gesetz wird scharf gestellt

Diese Strafen für KI-Verstöße drohen ab dem 2. August 2025 – was Personalverantwortliche und Arbeitnehmende jetzt wissen und beachten müssen.

Das KI-Gesetz der Europäischen Union, die weltweit erste umfassende KI-Verordnung, erreicht am 2. August 2025 einen entscheidenden Meilenstein. Ab diesem Stichtag gelten für Unternehmen, Behörden und KI-Anbieter*innen in der EU zahlreiche zentrale Verpflichtungen, bei deren Nichteinhaltung Strafmaßnahmen eingeleitet und verhängt werden können. Was das für Unternehmen und ihre Mitarbeitenden bedeutet, erfährst du hier.

Der AI Act, der am 2. Februar dieses Jahres in Kraft getreten ist, schafft einen einheitlichen Rechtsrahmen für Künstliche Intelligenz (KI) in der EU. Zwar werden viele Regelungen erst 2026 wirksam, doch bereits am 2. August 2025 beginnt eine neue Phase, die sich auf drei Bereiche fokussiert:

  • Strafmaßnahmen bei Nichteinhaltung
  • Verpflichtungen für allgemeine General-Purpose-AI-Modelle (GPAI)
  • Aufbau von Aufsicht und Governance auf nationaler und europäischer Ebene

Strafen bis zu 35 Millionen Euro

Seit dem 2. Februar dieses Jahres sind KI-Systeme mit unannehmbaren Risiken verboten. Ab dem 2. August 2025 können zusätzlich nun Geldbußen für Verstöße gegen bereits bestehende Verpflichtungen verhängt werden, die bis zu 35 Millionen Euro oder 7 Prozent ihres gesamten Jahresumsatzes betragen können. Unternehmen müssen dazu beispielsweise sicherstellen, dass ihre Mitarbeitenden über KI-Kenntnisse verfügen. Die Europäische Union erwartet von ihren Mitgliedstaaten, dass sie eigene wirksame, verhältnismäßige und abschreckende Strafmaßnahmen festlegen. Dabei sollen die besonderen Umstände von KMUs und Start-ups berücksichtigt werden, um deren wirtschaftliche Lebensfähigkeit nicht zu gefährden.

Neue Verpflichtungen für Anbieter*innen von GPAI-Modellen

GPAI-Modelle, die ab dem 2. August 2025 in der Europäischen Union vermarktet werden, unterliegen gesetzlichen Verpflichtungen. Das Europäische Amt für Künstliche Intelligenz hat dazu am 10. Juli 2025 die endgültige Fassung der Verhaltenskodizes veröffentlicht. Anbieter*innen solcher GPAI-Modelle müssen unter anderem technische Dokumentationen erstellen, Urheberrechte beachten und Transparenz über die verwendeten Trainingsdaten sicherstellen.

GPAI-Modelle sind KI-Systeme mit besonders breitem Einsatzspektrum und sind darauf ausgelegt, eine Vielzahl von Aufgaben zu erfüllen. Sie werden mit riesigen Datenmengen trainiert und sind entsprechend vielseitig einsetzbar. Das bekannteste Beispiel sind große Sprachmodelle (Large Language Models, LLM), etwa das generative Sprachmodell GPT-4o, das in ChatGPT integriert ist. Für GPAI-Modelle, die bereits vor dem 2. August 2025 in der Europäischen Union auf dem Markt waren, gilt eine Übergangsfirst bis zum 2. August 2027.

Aufsicht und Governance

Die KI-Verordnung schafft einen Rahmen mit Durchführungs- und Durchsetzungsbefugnissen auf zwei Ebenen.

Auf nationaler Ebene muss jeder EU-Mitgliedstaat bis zum 2. August 2025 mindestens eine Marktüberwachungsbehörde sowie eine notifizierende Behörde benennen. Erstere ist für die Überwachung von KI-Systemen zuständig, letztere für die Notifizierung unabhängiger Konformitätsbewertungsstellen. Die Mitgliedstaaten müssen bis dem Stichtag Informationen zu den nationalen Behörden und deren Kontaktdaten veröffentlichen.

Auf EU-Ebene koordinieren das Europäische Amt für KI und der Europäische KI-Ausschuss die Aufsicht. Zusätzlich werden ein Beratungsforum und ein wissenschaftlicher Ausschuss aus unabhängigen Experten eingerichtet.

Was bedeutet das für Personalabteilungen und Arbeitnehmende?

Das KI-Gesetz hat direkte Auswirkungen darauf, wie KI in den Bereichen Rekrutierung, Performance-Management, Personalanalyse und Mitarbeitenden-Monitoring eingesetzt wird. Personalverantwortliche müssen sicherstellen, dass KI-Tools in diesen Bereichen transparent, fair und konform sind.

  • Fairness und Antidiskriminierung: KI-Systeme, die bei Einstellungs- oder Beförderungsentscheidungen eingesetzt werden, müssen nachvollziehbar und frei von Bias sein. Personalabteilungen sollten ihre Tools und Anbieter*innen regelmäßig überprüfen, um die Einhaltung der Vorschriften sicherzustellen.
  • Vertrauen und Transparenz: Mitarbeitende erhalten einen besseren Einblick, wie KI-Systeme ihre Arbeit beeinflussen, zum Beispiel bei der Einsatzplanung, Leistungsbewertung oder bei der Arbeitssicherheit. Personalabteilung können Vertrauen schaffen, indem sie offen kommunizieren, wie KI eingesetzt wird und wie die Daten der Mitarbeitenden geschützt werden.
  • Verantwortlichkeit von Drittanbieter*innen: Werden KI-Tools von Drittanbieter*innen genutzt, müssen Personalabteilungen sicherstellen, dass diese Anbieter*innen die Anforderungen an Transparenz und Dokumentation erfüllen. Verträge und Beschaffungsprozesse sollten entsprechend angepasst werden.
  • Training und Change Management: Mit stärkeren Regulierungen von KI wird die Personalabteilung eine Schlüsselrolle bei der Schulung von Führungskräften und Mitarbeitenden übernehmen. Ziel ist es, einen verantwortungsvollen Umgang mit KI zu fördern und ethische Standards in der Unternehmenskultur zu verankern.

Fazit

Anbieter*innen von GPAI-Modellen, die bereits vor dem 2. August 2025 auf dem Markt waren, haben bis zum 2. August 2027 Zeit, die neuen Vorschriften vollständig umzusetzen. Weitere Verpflichtungen für KI-Systeme mit hohem Risiko werden 2026 und 2027 folgen. Dieser Meilenstein spiegelt das Bestreben der EU wider, Innovationen zu fördern und gleichzeitig sicherzustellen, dass KI sicher, transparent und mit den europäischen Werten im Einklang steht. Damit rückt die Personalabteilung in den Mittelpunkt einer verantwortungsvollen Einführung von KI am Arbeitsplatz.

Der Autor Tom Saeys ist Chief Operations Officer bei SD Worx, einem international tätigen Dienstleistungsunternehmen im HR-Bereich.

EU AI Act: Status quo

Recht für Gründer*innen: der EU AI Act. Wo stehen wir in Sachen Umsetzung? Was Gründer*innen und Start-ups jetzt wissen müssen.

Künstliche Intelligenz (KI) ist längst kein Zukunftsthema mehr, sondern prägt schon heute Geschäftsmodelle, Investitionsentscheidungen und die Arbeitswelt. Mit der europäischen KI-Verordnung (EU AI Act, im Folgenden AI Act) wurde im Frühjahr 2024 der weltweit erste umfassende Rechtsrahmen für den Einsatz von KI verabschiedet. Inzwischen sind die ersten Regelungen in Kraft getreten. Für Gründer*innen und Start-ups bedeutet das nicht nur zusätzliche Pflichten, sondern auch Chancen, sofern sie sich rechtzeitig vorbereiten.

Überblick: Der AI Act

Die Verordnung folgt einem risikobasierten Ansatz: Je höher das Risiko für Grundrechte oder Sicherheit, desto strenger die Anforderungen. Auf der untersten Stufe stehen KI-Systeme, die keinerlei Vorgaben erfüllen müssen, solange sie nicht in verbotene Anwendungsfälle fallen. An der Spitze der Regulierungspyramide befinden sich die sogenannten Hochrisiko­Systeme, also etwa Anwendungen in der medizinischen Diagnostik, in kritischer Infrastruktur oder bei biometrischen Verfahren. Viele Tools aus dem HR-Bereich fallen darunter.

Daneben bestehen besondere Pflichten für sogenannte Generative KI beziehungsweise General Purpose AI, eingeführt, also große Modelle, die viele Anwendungen treiben und „systemische Risiken“ entfalten können.

Wichtig ist zu wissen, dass die Vorgaben schrittweise gelten. Bereits seit dem 2. Februar 2025 sind bestimmte Praktiken ausdrücklich verboten – zum Beispiel das Social Scoring von Bürger*innen, die flächendeckende Emotionserkennung in Schulen oder am Arbeitsplatz sowie das unkontrollierte Sammeln biometrischer Daten. Wer damit noch experimentiert, bewegt sich schon jetzt im rechtswidrigen Raum.

Seit dem 2. August 2025 gelten außerdem die ersten Pflichten für Anbieter*innen von generativen Modellen. Sie müssen unter anderem Transparenzberichte veröffentlichen und Angaben zu den verwendeten Trainingsdaten machen. Für Modelle, die bereits vor Inkrafttreten am Markt waren, gibt es eine Übergangsfrist bis 2027. Für viele Unternehmen, die solche Modelle nutzen oder in Produkte einbetten, bedeutet das, genau hinzuschauen, welche Informationen von den Modellanbieter*innen zur Verfügung gestellt werden. Sonst können eigene Transparenzpflichten womöglich nicht erfüllt werden.

Noch weiter in der Zukunft liegen die Vorschriften für Hochrisiko-Systeme. Diese greifen ab 2. August 2026 und verlangen ein umfassendes Risikomanagement, eine strenge Qualität der Trainingsdaten, eine lückenlose Protokollierung und eine Konformitätsbewertung, bevor ein Produkt überhaupt in Verkehr gebracht werden darf. Für Hochrisiko-KI, die in ohnehin streng regulierten Produkten steckt, zum Beispiel in Medizinprodukten, gilt eine verlängerte Frist bis 2027.

Konformitätsbewertung heißt vor allem Risikobewertung, welche die Anbieter*innen oder Betreiber*innen selbst durchführen müssen. Eine solche „regulierte Selbstregulierung“ ist ein klassisches Merkmal einer solchen klassischen Produkt­regulierung und Marktüberwachung.

Was fehlt? Guidance und Governance

Noch herrscht allerdings an vielen Stellen Unsicherheit. Zwar hat die EU-Kommission schon erste Leitlinien veröffentlicht, etwa zur Definition von KI-Systemen oder zu den verbotenen Praktiken. Auch für Anbieter*innen generativer KI gibt es inzwischen ein detailliertes Dokumentationsmuster. Noch fehlen allerdings die angekündigten Handreichungen für die Einstufung und Risikobewertung von Hochrisiko-Systemen, die bis Februar 2026 folgen und praktische Beispiele enthalten sollen. Bis dahin bleibt nur, sich für die Bewertung an bestehenden internationalen Standards zu orientieren, zum Beispiel an den Normungsprojekten der Europäischen Komitees für Normung und für elektrotechnische Normung.

Auf Unionsebene entstehen parallel die neuen Governance-Strukturen. Das AI Office innerhalb der Kommission ist bereits aktiv und koordiniert die Umsetzung. Das AI Board, ein Gremium der Mitgliedstaaten, tagt regelmäßig und stimmt Vorgehensweisen ab. Ein wissenschaftliches Panel unabhängiger Expert*innen wurde im Frühjahr eingerichtet, und das Advisory Forum, das die Perspektive von Unternehmen und Zivilgesellschaft einbringen soll, befindet sich gerade in der Bewerbungsphase. Auch die geplante EU-Datenbank für Hochrisiko-Systeme existiert bisher nur auf dem Papier. Ab 2026 müssen Anbieter*innen ihre Systeme dort registrieren; die Plattform selbst wird jedoch gerade erst aufgebaut.

Und wo steht Deutschland?

Auch hierzulande hakt es noch etwas. Eigentlich hätten die Mitgliedstaaten bis 2. August 2025 ihre Marktüberwachungsbehörden benennen müssen. Ein Entwurf für das deutsche Umsetzungsgesetz sieht die Bundesnetzagentur als zentrale Aufsicht vor, doch die formale Benennung ist noch nicht erfolgt. Klar ist, dass die Bundesnetzagentur die Rolle der Notifizierungsbehörde übernimmt, also für die Anerkennung von Konformitätsbewertungsstellen zuständig ist. Zudem entsteht dort ein Kompetenzzentrum für KI, das die Arbeit von Bund und Ländern koordinieren soll.

Reallabore

Ein Bereich, der für KI-Entwickler*innen besonders interessant ist, sind KI-Reallabore, also sichere Testumgebungen, in denen neue Anwendungen unter Aufsicht erprobt und darauf geprüft werden können, ob sie den rechtlichen Rahmen einhalten. Bis zum Sommer 2026 müssen die Mitgliedstaaten mindestens ein solches Reallabor einrichten. Deutschland hat im Mai 2025 ein erstes Pilotprojekt in Hessen gestartet, gemeinsam mit der Bundesnetzagentur und der Bundesdatenschutzbeauftragten. Hier werden reale Unternehmensfälle durchgespielt, um Abläufe und Bedarfe besser zu verstehen. Solche Projekte können eine wertvolle Möglichkeit sein, mit den Aufsichtsbehörden auf Augenhöhe ins Gespräch zu kommen.

Reaktionen

Der AI Act wird zwar kritisch diskutiert, im Grundsatz aber breit akzeptiert. Gerichtliche Klagen direkt gegen die Verordnung gibt es bislang nicht. In der juristischen Literatur überwiegt die Zustimmung zur Zielrichtung. Kritisiert werden vor allem die Komplexität und die noch offenen Fragen bei der praktischen Umsetzung. Streitpunkte finden sich eher außerhalb der Verordnung bei der Frage, ob Trainingsdaten urheberrechtlich geschützt sind oder wie personenbezogene Daten für KI genutzt werden dürfen.

Die Industrie zeigt ein gemischtes Bild. Viele große Anbieter*innen – von Google über OpenAI bis Mistral – haben einen freiwilligen Verhaltenskodex unterzeichnet. Andere, wie etwa Meta, haben sich bewusst dagegen entschieden. Man muss sich also darauf einstellen, dass je nach Anbieter*in sehr unterschied­liche Informationen und Compliance-Nachweise verfügbar sind.

Andererseits wirkt der AI Act bereits am Markt. In öffentlichen Ausschreibungen tauchen Modellklauseln auf, die auf die KI-Verordnung Bezug nehmen. Investor*innen fragen verstärkt nach Compliance-Prozessen, und Unternehmen beginnen, interne Strukturen für Risikomanagement und Dokumentation aufzubauen.

Im Vergleich zu Europa gibt es in den USA bislang nur freiwillige Standards. Die dort bei der Entwicklung und Anwendung von KI (angeblich) vorherrschende größere Freiheit wird zwar viel gerühmt. Einzelne Bundesstaaten wie Colorado arbeiten allerdings an eigenen regulierenden Gesetzen, die ab 2026 greifen sollen. Vielleicht ist es also ein Vorteil, dass europäische Start-ups früh Erfahrungen in einem regulierten Markt sammeln können.

Fazit

Der AI Act entfaltet bereits jetzt Wirkung, auch wenn viele Details erst in den kommenden Monaten geklärt werden. Daher gilt es, nicht abzuwarten, sondern jetzt eine eigene Roadmap zu entwickeln. Wer früh Prozesse für Risikomanagement, Transparenz und Governance etabliert, wird nicht nur rechtlich auf der sicheren Seite sein, sondern auch Vertrauen bei Kund*innen und Investor*innen gewinnen.

Die EU hat ein klares Signal gesetzt: KI soll innovativ sein, aber auch sicher und vertrauenswürdig. Für Start-ups ist das eine Her­ausforderung – aber auch eine Chance, sich von Anfang an professionell aufzustellen und den Markt aktiv mitzugestalten.

Der Autor Dr. Daniel Michel, LL.M. ist als Rechtsanwalt im Bereich IT/IP/Technologie tätig und betreibt seit 2018 mit DATA LAW COUNSEL seine eigene Rechtsberatung im Raum München

Humanoide Roboter: Vision und Realität

Der Weltroboterverband IFR veröffentlicht sein Positionspapier zu Trends, Chancen und möglichen Grenzen rund um das Thema humanoide Roboter.

Menschenähnliche Roboter gelten als die nächste große Innovation in der Robotik: Der weltweit größte Markt für Industrieroboter, China, hat bereits konkrete Pläne für die Massenproduktion von Humanoiden festgelegt. Gleichzeitig kündigten Technologieunternehmen in den USA und Europa große Investitionsvorhaben in diesem Bereich an. Die Vision ist, Allzweckroboter zu entwickeln, die auf menschlicher Mechanik basieren. Einblicke in Trends, Chancen und mögliche Grenzen humanoider Roboter bietet das neue Positionspapier der International Federation of Robotics.

„Futuristisch anmutende humanoide Roboter, die in unserem Zuhause, in Unternehmen und in der Öffentlichkeit arbeiten, faszinieren die Menschen“, sagt Takayuki Ito, Präsident der International Federation of Robotics. „Da die Welt in der wir leben auf den menschlichen Körper zugeschnitten ist, liegt die Idee eines schnellen, universellen Helfers in der Produktion und bei Dienstleistungen auf der Hand. Ob und wann es aber zu einer massenhaften Nutzung von Humanoiden kommen wird, bleibt ungewiss. Nicht zu erwarten ist jedenfalls, dass Humanoide in Zukunft die derzeit auf dem Markt befindlichen Robotertypen ersetzen. Stattdessen werden sie bestehende Technologien ergänzen und erweitern.“

Einsatz von Humanoiden in den Regionen

In den Vereinigten Staaten arbeiten Tech-Unternehmen wie NVIDIA, Amazon und Tesla intensiv an KI- und Robotertechnologien. Neben der Finanzierung durch das Militär wird diese Entwicklung auch durch zahlreiche private Investitionen unterstützt. Das führt zu einer bedeutenden Start-up-Szene, die sich auf humanoide Roboter spezialisiert. Besonders groß ist das Interesse an Humanoiden in Branchen wie der Logistik und in der Fertigung. Dabei werden humanoide Roboter weniger als soziale Begleiter gesehen, sondern eher als Werkzeuge, die dabei helfen, Produktivität und Effizienz zu steigern. So liegt der Schwerpunkt verstärkt auf praktischen Anwendungen und weniger auf der Integration von Robotern in das tägliche soziale Leben.

In China nehmen die Humanoiden eine zentrale Stellung in der nationalen Robotik-Strategie ein. Die Regierung möchte in diesem Technologiebereich Kompetenz und globale Wettbewerbsfähigkeit unter Beweis stellen. Der Einsatzschwerpunkt liegt dabei im Dienstleistungssektor, beispielsweise für die Kundenbetreuung. Die Automatisierung von Produktionslinien in der Fertigung und der Einsatz von Humanoiden, um weniger von menschlichen Arbeitskräften abhängig zu sein, scheint nur auf zweiter Ebene wichtig zu sein. Kernelement der chinesischen Strategie ist der Aufbau einer skalierbaren Lieferkette für Schlüsselkomponenten.

Japan ist ein Pionier in der Entwicklung humanoider Roboter. Als frühes Beispiel wurde Hondas Asimo bereits im Oktober 2000 vorgestellt. Roboter werden in Japan eher als Gefährten, denn als bloße Werkzeuge gesehen. Humanoide Roboter wie Pepper und Palro sind demzufolge in erster Linie als Sozialroboter konzipiert und kommen in Bildungseinrichtungen, Geschäften und Altenpflegeeinrichtungen zum Einsatz. Diese Ausrichtung spiegelt die Nachfrage einer alternden Gesellschaft wider, mit der Japan konfrontiert ist. Ein wichtiger Schwerpunkt der Projekte liegt auf Robotern, die harmonisch mit Menschen zusammenleben können und als Teil der Gesellschaft akzeptiert sind. Führende Unternehmen wie Kawasaki entwickeln humanoide Roboter als eine Forschungsplattform.

In Europa wird auf die ethischen Implikationen von Robotik und KI besonderes viel Wert gelegt. Im Fokus stehen kollaborative Roboter, die im industriellen Umfeld mit Menschen zusammenarbeiten. Kernthemen sind die Verbesserung der Sicherheit und Effizienz und die Nachahmung menschlicher Fähigkeiten. Die Arbeitskraft von Menschen zu kompensieren, steht dagegen nicht im Fokus. Der Schwerpunkt liegt vielmehr auf einem menschenzentrierten Design und den sozialen und gesellschaftlichen Auswirkungen von Robotern. Die europäischen Unternehmen stehen dem Einsatz von Humanoiden generell eher zurückhaltend gegenüber, wenn es um die kurz- bis mittelfristigen Automatisierungsaufgaben im Fertigungs- und Dienstleistungssektor geht.

+++ Ein bahnbrechendes Robotik Start-up aus Deutschland ist NEURA-Robotics: Hier geht’s zu unserer Gründerstory von NEURA Robotics +++

Ausblick

Dank ihrer menschenähnlichen Geschicklichkeit und Anpassungsfähigkeit sind die Humanoiden prädestiniert, komplexe Aufgaben zu automatisieren, mit denen heutige Roboter durch herkömmliche Programmiermethoden Schwierigkeiten haben. Einen massenhaften Einsatz als universelle Haushaltshelfer dürfte es jedoch kurz- bis mittelfristig nicht geben.

Das POSITION PAPER Humanoid Robots - Vision and Reality von IFR gibt's hier zum freien Download

Die Rolle von natürlichem Licht in modernen Architekturkonzepten

Natürliches Licht gilt als einer der zentralen Bausteine zeitgemäßer Baugestaltung. Wie moderne Gebäudeplanungen Licht gezielt als formgebendes Element einsetzt.

Architekten und Bauherren setzen zunehmend auf großflächige Fensterfronten, Dachverglasungen oder offene Raumkonzepte, um Innenräume mit ausreichend Helligkeit zu versorgen. Dabei spielt nicht nur die ästhetische Komponente eine Rolle: Tageslicht wird auch mit einem gesunden Lebensumfeld, größerem Wohlbefinden und einer verbesserten Leistungsfähigkeit in Verbindung gebracht. Diese Erkenntnis hat dazu geführt, dass moderne Gebäudeplanungen das Licht gezielt als formgebendes Element einsetzen. Insbesondere in urbanen Gebieten ist der kluge Umgang mit Sonnenlicht eine anspruchsvolle, aber lohnende Aufgabe.

Das wachsende Bewusstsein für Lichtqualität

In jüngster Zeit interessieren sich immer mehr Fachleute für die Optimierung von Gebäudehüllen und deren lichttechnische Eigenschaften. Passende Lösungen entstehen unter anderem durch hochwertige Tageslichtsysteme, die sowohl in ökologischer als auch ökonomischer Hinsicht von Vorteil sind. Dabei wird den Bewohnern oder Nutzern eine angenehme, gleichmäßige Belichtung geboten, ohne dass sie von übermäßigem Wärmeeintrag oder blendendem Sonnenlicht beeinträchtigt werden. Neben der visuellen Wirkung zählt hier auch die thermische Performance: Ein strukturiertes Vorgehen bei der Auswahl von Filtern, Glasarten und Verschattungslösungen begünstigt ein stimmiges Raumklima, das einen hohen Wohn- und Arbeitskomfort generiert.

Architektonische Vielfalt dank Tageslicht

Die Integration von Fenstern, Oberlichtern und transparenten Fassadenelementen ermöglicht eine außergewöhnliche Flexibilität in der Raumgestaltung. Spezialisierte Fachleute beschäftigen sich mit Tageslichtarchitektur, um neue Wege zu eröffnen, Lichtstreuung und -lenkung auf innovative Art zu realisieren. Nicht zuletzt profitieren junge Unternehmen davon, wenn sie derartige Belichtungsaspekte geschickt einsetzen und im Rahmen ihres Marketing-Konzepts die Attraktivität ihrer Räumlichkeiten sichtbar hervorheben. Hohe Räume, diverse Lichtquellen und die gezielte Einbindung von Fassadenelementen geben Bauherren die Möglichkeit, sich an die Bedürfnisse der Nutzerinnen und Nutzer anzupassen und ein stimmiges, einladendes Gesamtbild zu erschaffen.

Energieeffizienz und Gesundheit

Wer auf eine durchdachte Tageslichtplanung setzt, profitiert von einer gewinnbringenden Symbiose aus ökologischem und ökonomischem Mehrwert. Die angemessene Einbindung von Sonnenstrahlen reduziert künstliche Beleuchtung und kann durch sinnvolle Bauphysik -Konzepte auch den Heiz- und Kühlaufwand minimieren. Gleichzeitig enden die Vorzüge nicht bei nachhaltig niedrigen Energiekosten: Studien legen nahe, dass natürliches Licht das Wohlbefinden fördert und geistige Prozesse positiv beeinflussen kann. Indem Räume gleichmäßig und blendfrei ausgeleuchtet werden, profitieren Angestellte oder Bewohner von einer entspannten Atmosphäre, die Stress mindert und Konzentration steigert. Darüber hinaus wirkt ein gutes Lichtkonzept stimmungsvoll und angenehm, was sich auf Motivation und Produktivität auswirken kann.

Materialauswahl und technologische Innovationen

Moderne Bauprojekte setzen häufig auf spezifische Gläser, Membranen und Metallkonstruktionen, um diffuses, aber dennoch ausreichendes Sonnenlicht zu gewinnen. Eine ausgeglichene Balance zwischen Wärmeschutz und Belichtungsintensität bedeutet für Investoren und Planer zugleich höhere Miet- oder Verkaufschancen. Wer in die Praxis blickt, stellt fest, dass sich die Materialinnovation stetig weiterentwickelt: Von mehrschichtigen Isoliergläsern bis hin zu smarten Beschichtungen ist das Angebot überaus reichhaltig. Diese Vielfalt erlaubt Bauherren, ein maßgeschneidertes Konzept zu wählen, das exakte Vorstellungen hinsichtlich Energieeffizienz, Komfort und Design berücksichtigt. Dabei ist die umfassende Beratung durch Spezialisten wesentlich, um jedes Detail zu perfektionieren.

Planungsaspekte für moderne Gebäude

Bei modernen Bauvorhaben lässt sich beobachten, dass Architektinnen und Architekten natürliche Lichtquellen bereits frühzeitig in die Entwürfe einbeziehen. Die Lichtführung, das Zusammenspiel von Ausrichtung und Verschattung sowie die räumlichen Proportionen sind nur einige Faktoren, die für das Gesamtergebnis entscheidend sind. Auch städtebauliche Gegebenheiten wie benachbarte Gebäude oder der vorhandene Baumbestand spielen eine Rolle. Darüber hinaus sind bauordnungsrechtliche Vorschriften zu berücksichtigen, damit der Lichteinfall technisch und rechtlich harmonisch umgesetzt wird. Ein kompetentes Team aus Statikern, Bauphysikern und Designern gleicht diese Parameter untereinander ab.

Gestalterische Freiheit durch Tageslichtlösungen

Da Sonnenlicht eine natürliche Dynamik besitzt, verändert es sich abhängig von Tages- und Jahreszeit. Dieses Wechselspiel bietet Raum für gestalterische Experimente – etwa durch transparente Innenwände, gläserne Verbindungselemente oder spezielle Deckenaufbauten. Somit werden Lichtakzente geschaffen, die verschiedene Bereiche eines Raums hervorheben und ihm eine lebendige, wandelbare Gestalt verleihen. Ob industriell anmutende Lofts oder repräsentative Büroräume mit hellen Gemeinschaftsflächen: Die Anpassungsfähigkeit naturlichter Planungen erlaubt es, Konzepte zu entwickeln, die so einzigartig sind wie ihre Nutzer selbst. Gleichzeitig können Farben, Oberflächenstrukturen und Möblierung die Lichtwirkung verstärken oder abschwächen.

Inspirierende Beispiele aus der Gegenwart

Rund um den Globus existieren Bauwerke, deren Ausstrahlung wesentlich auf der klugen Verwendung von Tageslicht beruht. Museumsbauten, deren Ausstellungsräume großflächig mit Oberlichtern ausgestattet sind, erzeugen eine fast sakrale Atmosphäre. Ebenso gibt es Wohnbaufassaden, die durch neuartige Verglasungstechniken sowohl stilvoll als auch energieeffizient wirken. In vielen Ländern nimmt die öffentliche Hand aktiv Einfluss und fördert Projekte, die eine nachhaltige Lichtgestaltung ermöglichen. Auf diese Weise entsteht eine vielgestaltige Palette architektonischer Ausdrucksformen, bei denen ästhetische und gesundheitliche Bedürfnisse gleichermaßen berücksichtigt werden.

Ausblick auf künftige Entwicklungen

Künftige Baukonzepte werden das Zusammenspiel von Umweltschutz, Nutzungsflexibilität und gesundheitsfördernder Tageslichtgestaltung weiter ausbauen. Forschung und Praxis streben an, energieeffiziente Systeme mit noch intelligenteren Steuerungen zu verknüpfen und so den Lichteinfall in Echtzeit zu regulieren. Überdies ist zu erwarten, dass sich die Verbindung von wetterabhängigen Sensoren, automatisierter Beschattung und innovativen Materialien weiter professionalisiert – was Gebäude für die Bewohnerinnen und Bewohner noch attraktiver macht. So bleibt die Rolle des natürlichen Lichts auch in der kommenden Generation der Architektur ein beständiger Motor für Kreativität, Wohlbefinden und Effizienz.