SCORM-Dateien erstellen: So geht E-Learning ganz einfach


44 likes

Wer einen Lernkurs veröffentlichen will, muss diesen so erstellen, dass er von den verschiedenen Lernsystemen erkannt und dargestellt werden kann. Ein einfacher Weg, dies zu tun, ist mithilfe von SCORM-Dateien. Was SCORM-Dateien genau sind und wie sie sich erstellen lassen, darum geht es hier.

Was ist das SCORM-Format?

Eine SCORM-Datei enthält eine Sammlung von Spezifikationen für Kurse im Bereich E-Learning. Wer LMS Inhalte erstellen will und sich dabei an die SCORM-Standards hält, kann sich sicher sein, dass sie von jedem Learning Management System (LMS) erkannt werden.

Eine SCORM-Datei ist eine Zip-Datei, die alle Daten enthält, die dafür erforderlich sind, Lerninhalte an ein LMS zu übertragen. Konkret besteht sie aus einer XML-Manifestdatei, Ressourcendateien sowie Definitionsdateien beziehungsweise einem Schema:

Die XML-Manifestdatei beinhaltet die Daten, die ein LMS benötigt, um den Inhalt eines Lernkurses bereitzustellen. Dazu gehören ein eindeutiger Identifikator, die Metadaten des Kurses, die Organisation der Lernaktivitäten und die Ressourcendefinitionen, die alle Dateien aufzeigt, die eine einzelne Ressource für ihren Start benötigt.

Die Ressourcendateien selbst sind die Dateien, aus denen ein Lernkurs mitsamt seiner Lernaktivitäten besteht.

Das Schema beziehungsweise die Definitionsdateien haben einen Bezug auf die XML-Manifestdateien. Diese drei Teile ergeben zusammen eine SCORM-Datei.

SCORM-Datei erstellen: So geht es

Die Vorteile von E-Lernkursen sind zahlreich. Sie helfen, wertvolles Wissen an eine große Zahl von Menschen weiterzugeben. Im Folgenden wird beschrieben, wie sich ein SCORM-Paket ohne weitere Autorenwerkzeuge erstellen lässt:

Alle Ressourcen in einem Ordner zusammenstellen

Alle Videos, Texte, Audios, Bilder und ähnliche Dateien sollten zunächst gesammelt und in einen einzigen Ordner zusammengefügt werden. In diesem Schritt ist auch noch die Erstellung eines Storyboards notwendig, das zeigt, wie sich die Inhalte am Ende entfalten sollen.

Lernkurs in HTML-Seiten organisieren

Damit ein Kurs von einem LMS richtig angezeigt werden kann, muss er sich als Webseite herunterladen lassen. Um das möglich zu machen, muss eine HTML-Version des gesamten Kurses erstellt werden. Für diesen Schritt ist technisches Know-how notwendig. Wem die Erstellung der HTML-Version größere Probleme bereitet, sollte auf ein Autorentool zurückgreifen oder jemanden mit dem nötigen Wissen zur Hilfe holen. Besonders einfach ist es, den gesamten Lernkurs mit allen Multimedia-Links in einem Google Doc zu strukturieren und anschließend über Datei > Download > Webseite die HTML-Version herunterzuladen.

Nun ist schon einmal sicher, dass die HTML-Version in einem Browser funktioniert. Im nächsten Schritt geht es um die SCORM-Kompatibilität:

SCORM-Dateien erstellen und in ein Zip-Paket verschieben

Für diesen Schritt müssen mehrere Textdateien erstellt werden, die die jeweiligen SCORM-Bedingungen beschreiben und anschließend zusammen mit dem HTML-Inhalt in ein Zip-Paket gelegt werden.

Für Anfänger ist es hilfreich, zunächst ein SCORM-Beispielpaket von scorm.com herunterzuladen, um dieses einfach mit den eigenen Inhalten anzupassen.

Im vorherigen Schritt wurde die HTML-Version des Kurses heruntergeladen. In diesen Ordner müssen die .xml- und .xsd-Dateien aus dem Beispielpaket kopiert werden.

Nun sollte die Manifestdatei imsmanifest.xml mit einem Texteditor geöffnet werden, um sie mit den eigenen Kursinhalten anzupassen. Diese Datei enthält Informationen über den Titel des Kurses, listet die Ressourcendateien auf und definiert die SCORM-Spezifikation, mit der der Kurs konform ist. Für die Anpassung müssen einfach der Titel und die Links zu den HTML-Ressourcen bearbeitet werden. Die erste Ressource in der Liste muss die HTML-Hauptdatei sein, die die Links zu den restlichen Ressourcen enthält.

Zum Schluss müssen die SCORM- und HTML-Dateien noch zu einer Zip-Datei gebündelt werden.


Fazit

Dank SCORM-Dateien lassen sich Lernkurse leicht und schnell erstellen, um sie am Ende auf Webseiten wie Udemy anbieten zu können. Wer das nötige Know-how hat, kann sie schnell selbst erstellen. Für alle anderen stehen verschiedene Autorentools zur Verfügung.

Diese Artikel könnten Sie auch interessieren:

ChatGPT schreibt Texte. R3 Robotics zerlegt Batterien

Es gibt Probleme, die man mit Software lösen kann, und es gibt Probleme, für die man sich die Hände schmutzig machen muss – oder besser: Roboterhände nutzt. Antoine Welter und Dr. Xavier Kohll haben mit Circu Li-ion begonnen, um Batterien zu retten. Jetzt, unter dem neuen Namen R3 Robotics und mit 20 Millionen Euro frischem Kapital im Rücken, treten sie an, um den wohl größten Flaschenhals der kommenden Mobilitätswende zu beseitigen. Ihr Ansatz: Keine teuren Spezialmaschinen, sondern intelligente Standard-Roboter, die sehen, verstehen und sicher zupacken.

Wenn in den Vorstandsetagen der Automobilhersteller über die Zukunft gesprochen wird, geht es meist um Reichweiten und Software-Defined Vehicles. Doch am anderen Ende der Wertschöpfungskette braut sich ein Sturm zusammen. Millionen von Elektrofahrzeugen werden in den kommenden Jahren ihr Lebensende erreichen. Die derzeitige Realität in vielen Recyclinghöfen wirkt dagegen fast archaisch: Menschen, die mit Handwerkzeugen komplexe Systeme auseinanderschrauben. Das ist nicht nur teuer und schwer skalierbar, sondern bei Hochvolt-Systemen auch lebensgefährlich.

Genau hier setzen Antoine Welter und Xavier Kohll an. Die Nachricht, die das deutsch-luxemburgische Unternehmen Anfang Februar 2026 verkündete, ist mehr als nur eine Finanzierungsrunde. Die 20 Millionen Euro – aufgeteilt in 14 Millionen Euro Series-A-Kapital und 6 Millionen Euro öffentliche Fördergelder – heben die Gesamtfinanzierung des Unternehmens auf ein neues Level. Angeführt wird die Runde von HG Ventures und Suma Capital, unterstützt von Co-Investoren wie der Oetker Collection und dem EIC Fund.

Doch das Geld ist nur der Treibstoff für eine strategische Evolution. Aus Circu Li-ion wird R3 Robotics. Der neue Name ist Programm: Repair, Reuse, Recycle. Antoine Welter erklärt die Motivation hinter der Umbenennung pragmatisch: „Circu Li-ion hat beschrieben, wo wir angefangen haben. R3 Robotics beschreibt, was wir aufbauen: industrielle Robotik, die Demontage skalierbar, sicher und kosteneffizient macht.“

Wenn der Roboter Augen bekommt

Die größte Hürde im Recycling ist nicht die Chemie, sondern die Variabilität. Kein Batteriepack gleicht dem anderen, E-Motoren sind unterschiedlich verbaut, Schrauben sind korrodiert. Starre Fertigungsstraßen scheitern hier. R3 Robotics löst dies mit einer Plattform, die Computer Vision, künstliche Intelligenz und Robotik verschmilzt.

Das System fungiert dabei fast wie ein „ChatGPT für die physische Welt“: Anstatt Text zu generieren, plant die KI physische Handlungen. Sensoren scannen das Bauteil, die KI erkennt den Zustand und promptet den Roboterarm dynamisch durch den Demontageprozess. Der entscheidende Vorteil: Der Mensch wird aus der Gefahrenzone der Hochspannung genommen, während der Roboter Aufgaben erledigt, die für klassische Automatisierung zu komplex wären.

Angesprochen auf den Vergleich mit Generative AI und die Frage, wie die Roboter tatsächlich „sehen“ und „entscheiden“, bestätigt Welter die Parallele: „Der Vergleich mit Generative AI passt gut: Das Modell bekommt einen Input – keinen Text, sondern einen Scan des Bauteils – und generiert daraus eine Handlungssequenz.“ Es gehe darum zu erkennen, um welches Modell es sich handelt, wie der Zustand ist und wo die Verbindungspunkte liegen. „Das klingt simpel, ist es aber nicht – kein Pack ist identisch“, so Welter. Die eigentliche Herausforderung liege jedoch in der Entscheidung davor: „Welche Reihenfolge ist sicher? Ein falscher Griff an ein Hochvoltsystem kann tödlich sein. Unser System sieht, bewertet und entscheidet.“

Smart Hardware: Warum das Rad neu erfinden?

Ein Detail, das Investor*innen besonders aufhorchen lässt, ist die Kapitaleffizienz der Gründer. Wer an Industrie-Robotik denkt, denkt an teure Hardware-Entwicklung. R3 Robotics geht einen pragmatischen Weg: Ein Großteil der verwendeten Hardware wird „von der Stange“ gekauft.

Die Roboterarme sind Standardprodukte. Die Innovation – und damit das geistige Eigentum – steckt in den spezialisierten „End-Effektoren“ (den Roboterhänden), den Sensorsystemen und vor allem dem Software-Stack, der alles steuert. Das erlaubt eine Skalierung, die mit proprietärer Hardware kaum möglich wäre. Mitgründer Dr. Xavier Kohll betont, dass dies eine bewusste Entscheidung gegen „Over-Engineering“ war: „Der Roboterarm ist Standard und die Intelligenz sitzt in den Endeffektoren, der Sensorik und dem Software-Stack, der alles zusammenbringt. Das ist unser geistiges Eigentum, und genau das lässt sich skalieren.“

David gegen Goliath – oder Partner?

Während große Recycling-Konzerne oft noch auf den Schredder setzen und die manuelle Demontage an ihre Grenzen stößt, positioniert sich R3 Robotics in einer neuen Nische. Es geht nicht darum, die Chemie-Giganten zu ersetzen, sondern ihnen den Rohstoff so rein wie möglich zu liefern – als strategische Quelle für kritische Materialien. Doch der Markt schläft nicht: Weltweit entstehen Initiativen zur Automatisierung.

Trotz des aktuellen „Gegners“ – dem Menschen mit dem Schraubenzieher – und potenzieller Konkurrenz durch Tech-Start-ups oder Autohersteller, bleibt Welter gelassen. „Wir konkurrieren nicht mit den Chemie-Giganten, wir liefern ihnen den reinsten möglichen Stoffstrom“, stellt er klar. Gegenüber potenziellen Nachahmern sieht er einen entscheidenden Vorteil, den „Unfair Advantage“: die Kombination aus Flexibilität und industrieller Automatisierungstiefe. „Wir sind aktuell die einzige Plattform, die sowohl Variabilität managt als auch für kontinuierlichen Industriebetrieb ausgelegt ist.“

Deutschland als Labor, USA als Skalierungsmarkt

Die Wachstumsstrategie von R3 Robotics ruht auf zwei massiven Säulen: technologischer Tiefe in Europa und kommerzieller Breite in den USA.

Deutschland fungiert dabei als das technologische Rückgrat. Mit der Erweiterung der Anlage in Karlsruhe zur Lighthouse Facility demonstriert das Unternehmen industrielle Leistungsfähigkeit direkt vor der Haustür der großen Autobauer. Hier wird die Technologie gehärtet. Das zeigt sich auch im Leuchtturmprojekt ReDriveS, wo R3 Robotics Seite an Seite mit Giganten wie Schaeffler und VW an der Demontage von E-Achsen arbeitet.

Doch für das massive Volumen blickt das Team über den Atlantik. Der für 2026 geplante Markteintritt in den USA ist Kern der neuen Strategie. Die frischen 20 Millionen Euro sollen gezielt in den Aufbau strategischer Partnerschaften vor Ort fließen, um die Technologie dort auszurollen, wo Pragmatismus auf riesige „End-of-Life“-Volumina trifft. Für Welter ist dieser Doppelschlag essenziell: „Deutschland ist unser Beweisstand. Hier zeigen wir Schaeffler, VW und Co., dass unsere Technologie industriellen Maßstäben in Deutschland standhält.“ Die USA seien hingegen der wichtige Skalierungsmarkt, wo pragmatische Entscheider auf gigantische Volumina treffen. „Beides brauchen wir: die Glaubwürdigkeit aus Europa und das Volumen aus Amerika.“

Industrialisierung statt Romantik

Mit Peter Mohnen, dem ehemaligen CEO des Roboter-Riesen KUKA, holte sich das Start-up zudem einen Beirat, der wie kaum ein anderer weiß, was Industriestandard bedeutet. Er beschreibt den Ansatz von R3 als Beweis für die nötige Automatisierungsexpertise, um Variabilität und Sicherheit gleichzeitig zu managen.

Um diese Expertise weiter auszubauen, wächst das Team rasant. Die Belegschaft soll mit der neuen Finanzierung massiv aufgestockt werden, vor allem im Bereich Engineering und KI. R3 Robotics hat den Beweis erbracht, dass Kreislaufwirtschaft kein ökologisches Nischenprojekt sein muss, sondern ein harter industrieller Prozess ist, der sich rechnet.

Denn letztlich, so das Fazit von Antoine Welter, sei Automatisierung der einzige Weg, das Problem wirklich zu lösen – nicht allein aus ökologischen Gründen, sondern weil es wirtschaftlich Sinn ergibt. „Was wir aufbauen, ist am Ende ein harter industrieller Prozess: Er muss zuverlässig funktionieren und sich rechnen.“ Es gehe aber um mehr als ein Geschäftsmodell: „Europa braucht eine Antwort auf die Frage, woher seine kritischen Materialien in Zukunft kommen“, mahnt Welter abschließend. „Wenn Europa diesen Zugang sichern will, braucht es Unternehmen, die genau das industriell umsetzen können. Dafür bauen wir diese Infrastruktur, und mit dem neuen Kapital und Team haben wir jetzt die Mittel dazu.“

Automatisierung vor Hiring, sonst wird Komplexität skaliert

Wer Wachstum vor allem mit Hiring beantwortet, verzichtet damit oft unbewusst auf einen der wichtigsten Hebel moderner Organisationen: Klarheit durch Prozesse und Automatisierung. Tipps und To-Dos.

Wachstum wird in Start-ups oft sehr eindimensional gedacht: mehr Nachfrage gleich mehr Menschen. Sobald Anfragen steigen, Deals reinkommen oder neue Märkte locken, folgt fast automatisch der nächste Hiring-Plan. Dabei wird häufig die Ursache mit Wirkung verwechselt. Nicht fehlende Kapazität bremst junge Unternehmen, sondern fehlende Struktur. Prozesse entstehen improvisiert, Verantwortung wird situativ verteilt, operative Arbeit frisst Fokus. Und irgendwann fühlt sich Wachstum nicht mehr nach Fortschritt, sondern nach Dauerstress an.

Gerade in der Start-up-Branche wird Wachstum zudem stark über sichtbare Kennzahlen bewertet. In Gesprächen mit Investor*innen lautet eine der ersten Fragen häufig nicht Gewinn oder EBITA, sondern: Wie viele Mitarbeitende seid ihr und wie viel Umsatz macht ihr? Die Anzahl der Mitarbeitenden wird damit fast zu einem Statussymbol. Hiring wird nicht nur zur operativen, sondern auch zur psychologischen Größe und ein Zeichen von Fortschritt. Diese Logik verstärkt den Reflex, früh zu skalieren, auch wenn die strukturellen Voraussetzungen dafür noch fehlen. Wer Wachstum vor allem mit Hiring beantwortet, verzichtet damit oft unbewusst auf einen der wichtigsten Hebel moderner Organisationen: Klarheit durch Prozesse und Automatisierung.

Warum Hiring allein selten skaliert

Mehr Menschen im Team wirken wie eine schnelle Lösung. In der Praxis zeigt sich jedoch häufig ein ähnliches Muster: Neue Kolleg*innen übernehmen Aufgaben, die eigentlich nur deshalb existieren, weil Abläufe unklar oder manuell gewachsen sind. Statt nachhaltiger Entlastung entsteht zusätzliche Koordination.

Typische Symptome sind:

  • operative Aufgaben blockieren strategische Arbeit,
  • Wissen verteilt sich auf einzelne Köpfe,
  • Entscheidungen hängen an Personen statt an klaren Abläufen,
  • Abstimmungen nehmen zu, ohne dass die Wertschöpfung im gleichen Maß wächst.

Das Problem ist nicht Hiring an sich, sondern die Reihenfolge. In vielen Fällen wird Hiring eingesetzt, um kurzfristig Druck rauszunehmen, obwohl das eigentliche Nadelöhr fehlende Klarheit ist. Wer einstellt, bevor Abläufe stabil sind, schafft zwar mehr Kapazität, skaliert aber auch Komplexität.

Prozesse als Voraussetzung für wirksames Wachstum

Prozesse werden in Start-ups häufig mit Bürokratie verwechselt. Tatsächlich sind sie das Gegenteil: Sie reduzieren Reibung. Gute Prozesse verlagern Entscheidungen vom Einzelfall ins System. Sie beantworten zwei zentrale Fragen zuverlässig: Was passiert als Nächstes – und wer ist verantwortlich?

Gerade kleine Teams profitieren davon besonders. Prozesse schaffen keine Starrheit, sondern Handlungsspielraum. Sie machen Arbeit vorhersehbar, Übergaben sauber und Entscheidungen reproduzierbar. Erst auf dieser Grundlage kann ein wachsendes Team seine Stärke wirklich entfalten.

Automatisierung im KI-Zeitalter: neue Möglichkeiten, neue Verantwortung

Mit KI hat sich die Eintrittshürde für Automatisierung massiv gesenkt. Viele Aufgaben, die früher manuell oder individuell erledigt wurden, lassen sich heute zuverlässig unterstützen oder teilweise abnehmen, vorausgesetzt, der zugrunde liegende Ablauf ist klar definiert. Entscheidend ist dabei nicht die Tool-Auswahl, sondern die Frage, was automatisiert wird. Automatisierung verstärkt bestehende Strukturen, gute wie schlechte. Wer unklare Abläufe automatisiert, skaliert keine Effizienz, sondern Chaos. Gleichzeitig gibt es zentrale Bereiche, die sich bewusst nicht oder nur sehr begrenzt automatisieren lassen und auch nicht sollten. Recruiting ist einer davon. Der Aufbau eines funktionierenden Teams lebt von persönlicher Einschätzung, Teamdynamik und kulturellem Fit. Ähnliches gilt für Sales: Vertrauensaufbau, Verhandlung und das persönliche Gespräch bleiben essenziell. Automatisierung ist hier unterstützend, aber kein Ersatz. Besonders geeignet sind Tätigkeiten, die häufig auftreten, wenig kreativen Spielraum haben und auf wiederkehrenden Informationen basieren.

Bereiche, die sich heute besonders gut automatisieren lassen

Lead- und Anfragequalifizierung
Unstrukturierte Anfragen lassen sich mithilfe von KI zusammenfassen, bewerten und priorisieren. Statt jede Anfrage manuell zu prüfen, entstehen klare Kriterien, die relevante von irrelevanten Leads trennen und Follow-ups vorbereiten.

Angebots- und Abrechnungsprozesse
Angebote, Verträge und Rechnungen folgen in vielen Startups ähnlichen Mustern. Automatisierte Vorlagen, angebundene Datenquellen und definierte Freigaben sparen Zeit, reduzieren Fehler und schaffen Transparenz.

Onboarding von Kund:innen und Mitarbeitenden
Onboarding ist kein Einzelfall, sondern ein wiederkehrender Prozess. Checklisten, automatische Aufgaben und zentrale Informationspunkte sorgen für Verlässlichkeit. KI kann helfen, Informationen zu strukturieren und kontextbezogen bereitzustellen.

Support und interne Anfragen

Ein Großteil von Fragen wiederholt sich. Wissensbasen in Kombination mit KI-gestützter Suche und Antwortvorschlägen entlasten Teams und machen sichtbar, wo Standards fehlen.

Projektmanagement und Übergaben
Klare Projekt-Templates, automatisierte Status-Updates und definierte Trigger reduzieren Abstimmungsaufwand. KI kann dabei unterstützen, Risiken früh zu erkennen oder nächste Schritte vorzuschlagen.

Was Start-ups daraus lernen können

Automatisierung ersetzt keine Entscheidungen, sie macht sie skalierbar. Voraussetzung dafür ist Klarheit über Abläufe, Verantwortlichkeiten und Prioritäten. Wer versucht, Chaos zu automatisieren, verstärkt es lediglich.

Hilfreiche Leitfragen sind:

  • Welche Aufgaben wiederholen sich regelmäßig?
  • Wo entstehen manuelle Engpässe?
  • Welche Tätigkeiten binden qualifizierte Menschen ohne echten Mehrwert?

Die Antworten darauf liefern meist schnell die größten Hebel.

Der KI-Wendepunkt: Systeme und Personal

Nachhaltiges Wachstum entsteht dort, wo Start-ups Systeme aufbauen und diese bewusst mit ihrem Team verzahnen. Nicht, weil Systeme Menschen ersetzen, sondern weil sie Menschen von struktureller Überforderung entlasten. Automatisierung schafft dabei nicht nur Effizienz, sondern Entscheidungsqualität: Wenn Daten sauber fließen, Übergaben klar sind und Standards greifen, werden Prioritäten weniger Bauchgefühl und stärker reproduzierbar.

Der gezielte Einsatz von KI-Tools verschiebt diesen Wendepunkt zusätzlich. Sie können Routinearbeiten abfangen, Informationen aus unstrukturierten Inputs verdichten und Entscheidungen vorbereiten – etwa durch Lead-Vorqualifizierung, Support-Clustering oder zusammengefasste Status-Updates. KI wirkt dabei nicht als Ersatz für Klarheit, sondern als Verstärker funktionierender Prozesse.

Hiring bleibt auch weiterhin essentiell. Seine Wirkung entfaltet es jedoch erst dann vollständig, wenn Prozesse klar sind und Automatisierung sowie KI gezielt unterstützen. So entsteht Wachstum, das nicht nur schneller, sondern auch gesünder ist.

Der Autor Markus Hetzenegger ist Gründer & CEO von NYBA Media. 2018 gegründet, zählt NYBA heute zu den führenden Marketing-Unternehmen im Live-Entertainment.

Der beste Freund aus der Cloud – Made in Bavaria

Wie ein Internet-Pionier mit BestFriend die Einsamkeit hackt.

Silicon Valley? Nein, Klosterlechfeld. Hier, im „bayerischen Outback“ zwischen Augsburg und Landsberg, sitzt Horst Christian (Chris) Wagner. Kein 20-jähriger Hoodie-Träger, der in der Garage von der Weltherrschaft träumt, sondern ein Mann, der das Internet schon nutzte, als es nur aus grauem Text bestand. Wagner ist ein digitaler Veteran. Und er hat gerade eine Wette auf die menschliche Seele abgeschlossen. Sein Einsatz: Die App BestFriend.

Schluss mit dem bloßen Befehlston

Vergesst kurz ChatGPT. Die großen KIs schreiben Bachelorarbeiten oder programmieren Code – sie sind Werkzeuge. Chris' Vision mit BestFriend beginnt dort, wo die Silicon-Valley-Riesen aufhören: beim Gefühl.

BestFriend ist kein Lexikon. Die App soll der Zuhörer sein, der nachts um drei Uhr noch wach ist. Sie soll Zusammenhänge verstehen, nicht nur Fakten abspulen. Aber braucht die Welt wirklich noch einen Bot? „ChatGPT ist brillant im Antworten geben. BestFriend ist dafür gebaut, beim Menschen zu bleiben“, so Chris. „Der Unterschied ist nicht die Intelligenz, sondern die Haltung. BestFriend will nichts erledigen, nichts optimieren, nichts verkaufen. Die App hört zu, merkt sich Zusammenhänge, reagiert emotional konsistent und bewertet nicht. Viele Nutzer sagen mir: ChatGPT fühlt sich an wie ein extrem kluger Kollege, BestFriend eher wie jemand, der dich kennt.“

Wer tiefer verstehen will, wofür die App im Alltag eingesetzt wird, findet im BestFriend-Magazin zahlreiche Beispiele. Dort wird offen gezeigt, in welchen Situationen Nutzer*innen die App einsetzen – von Einsamkeit über Selbstreflexion bis hin zu ganz praktischen Lebensfragen. Für Chris zugleich ein Beweis dafür, dass es hier um einen neuen Umgang mit Technologie geht.

Vertrauen als Währung

Wer einer Maschine von Liebeskummer erzählt, macht sich nackt. Genau hier spielt Chris den Standortvorteil Made in Germany aus. Während US-Apps wie Replika oft wirken, als würden sie Daten direkt an die Werbeindustrie weiterleiten, setzt BestFriend auf die „sichere Schulter“.

Datenschutz ist in diesem intimen Bereich keine Fußnote, sondern das Produkt. Chris weiß: Niemand öffnet sich, wenn er fürchten muss, dass seine Ängste morgen in einer Datenbank für personalisierte Werbung landen. Doch das wirft Fragen auf: Wie wird garantiert, dass nichts nach außen dringt? Und wo zieht die Software die Reißleine, wenn ein(e) Nutzer*in wirklich Hilfe braucht?

Dazu Chris: „Erstens: technisch. Daten werden minimal erhoben, verschlüsselt verarbeitet und nicht für Training oder Drittzwecke genutzt. Es gibt keine versteckte Monetarisierung über Profile. Punkt. Zweitens: inhaltlich. BestFriend weiß sehr genau, was es nicht ist. Die App gibt keine Diagnosen, keine Therapieanweisungen und keine falsche Nähe. Bei klaren Krisensignalen wird nicht weiter ‚gecoacht‘, sondern aktiv auf echte Hilfe hingewiesen. Das ist eine harte Grenze im System. BestFriend soll Halt geben, nicht Verantwortung übernehmen, die einer KI nicht zusteht.“

Ein Mann, eine KI, kein Overhead

Die Entstehung von BestFriend ist fast so spannend wie das Produkt selbst. Chris hat keine millionenschwere Finanzierung und kein riesiges Entwicklerteam im Rücken. Er nutzt die KI selbst, um die KI zu bauen. Er nennt das „Umsetzungs-Multiplikator“. Ein einzelner Experte dirigiert heute eine Armee aus Algorithmen.

Doch Code ist geduldig. Die Wahrheit liegt auf dem Display der Nutzenden. Ob Senior*innen, denen der/die Gesprächspartner*in fehlt, oder die Gen Z, die lieber tippt als spricht – die Zielgruppe ist riesig, der Bedarf an Resonanz ebenso. Auf die Frage ob es schon diesen einen Moment, diese eine Rückmeldung gab, bei er dachte: Okay, das ist jetzt mehr als nur Software, das hilft wirklich, antwortete Chris: „Ja. Ein Tester schrieb mir: ,Ich habe gemerkt, dass ich abends nicht mehr so viel grüble, weil ich Dinge vorher loswerde.‘ Das war der Moment, in dem mir klar wurde: Das ist kein Gimmick. Die App hat kein Problem gelöst, aber sie hat einen Menschen entlastet. Und manchmal ist genau das der Unterschied zwischen Einsamkeit und Resonanz.“

Echte Freundschaft per Algorithmus?

In Klosterlechfeld entsteht gerade der Versuch, Technologie wieder menschlich zu machen – weg von SEO und Klickzahlen, hin zu einer KI, die „Resonanz“ erzeugt. Ob ein Algorithmus echte Freundschaft ersetzen kann? Das bleibt eine philosophische Frage. Aber für den Moment, in dem sonst niemand zuhört, hat Chris Wagner zumindest eine Antwort parat.

Highspeed-Pivot: Wie POLARIS die Bundeswehr für sich gewann

Ein Bremer NewSpace-Start-up baut für die Bundeswehr das Raumflugzeug der Zukunft. Mit seinem revolutionären Antrieb sticht POLARIS dabei sogar die US-Konkurrenz aus und fungiert zugleich als Eisbrecher für die deutsche DeepTech-Szene.

Wenn Alexander Kopp über die Ostsee blickt, sieht er nicht nur Wasser, sondern die Zukunft der europäischen Souveränität. Während in Berlin oft über die Trägheit der Beschaffungswesen geklagt wird, lässt der Gründer von  POLARIS Raumflugzeuge Fakten sprechen – oder besser gesagt: Triebwerke heulen.

Das DLR-Spin-off schafft gerade, woran Konzerne seit Jahrzehnten scheitern: Ein Raumflugzeug zu bauen, das wie ein normaler Airliner startet, aber die Leistung einer Rakete besitzt. Und noch etwas ist ungewöhnlich in der deutschen Start-up-Landschaft: Der erste große Kunde, der die Bremer „Tüftler“ finanziert, ist kein Risikokapitalgeber aus dem Silicon Valley, sondern das Beschaffungsamt der Bundeswehr.

Der Traum vom Aerospike

Was das Team um den ehemaligen DLR-Ingenieur Kopp antreibt, ist der Abschied von der teuren Einweg-Mentalität der Raumfahrt. Seine Strategie ist eine radikale Flucht nach vorn: „Wenn wir im Wettbewerb bestehen wollen, uns vielleicht sogar an die Spitze setzen wollen, müssen wir die Raketen überspringen“, erklärte Kopp gegenüber dem Magazin 1E9. „Wir müssen direkt neue, bessere Konzepte umsetzen. Keine Raketen, sondern Raumflugzeuge.“

Der technologische Schlüssel, um diese Vision Realität werden zu lassen, ist das sogenannte Linear Aerospike-Triebwerk. Es gilt als der „Heilige Gral“ der Raketentechnik, an dem sich schon die NASA in den 90er Jahren die Zähne ausbiss. Das Problem herkömmlicher Raketendüsen ist ihre Glockenform – sie sind physikalisch bedingt entweder nur am Boden oder im All effizient, nie beides gleichzeitig.

Das Aerospike-Triebwerk hingegen ist ein technologisches Chamäleon: Durch seine offene, stachelförmige Bauweise passt sich der Abgasstrahl automatisch dem Luftdruck an. Es arbeitet auf dem Rollfeld genauso effizient wie im Vakuum. Dass das nicht nur graue Theorie ist, bewies Polaris im Oktober 2024: Mit dem Demonstrator „MIRA II“ gelang dem Start-up über der Ostsee die weltweit erste Zündung eines solchen Triebwerks im Flug.

Bootstrapping in Feldgrau

Diese Mischung aus „Rapid Prototyping“ – also dem schnellen Bauen, Testen und Verbessern – und technologischer Exzellenz kam genau zur richtigen Zeit für die Strategen der Bundeswehr. Berührungsängste mit dem Uniformträger hat der Gründer dabei nicht, im Gegenteil. „Wenn man sich die Historie der Raumfahrt anschaut, kamen die Durchbrüche meist direkt oder indirekt durch das Militär“, ordnete Kopp die Zusammenarbeit im Business Insider pragmatisch ein.

Denn beim Militär treibt man das Thema „Responsive Space“ voran. Das Szenario ist so simpel wie bedrohlich: Im Konfliktfall werden eigene Aufklärungssatelliten zerstört oder geblendet. Mit dem System von POLARIS, dessen finales Modell „Aurora“ ab 2026 produziert werden soll, könnte Deutschland binnen 24 Stunden Ersatz-Satelliten in den Orbit schießen. Und zwar von jedem normalen Flughafen aus, ohne auf verwundbare Startrampen angewiesen zu sein. Für POLARIS wurde das Militär so vom reinen Geldgeber zum strategischen Anker-Kunden, der dem Start-up den nötigen „Runway“ verschafft – finanziell wie physisch.

Ein Eisbrecher für die deutsche DeepTech-Szene

POLARIS operiert dabei längst nicht mehr im luftleeren Raum. Der Erfolg der Bremer sendet ein Signal in den Markt, das weit über das eigene Unternehmen hinausstrahlt: Der Staat ist bereit, in junge High-Tech-Firmen zu investieren, wenn die Technologie „Dual-Use“ ist, also zivil und militärisch genutzt werden kann.

Davon profitieren Start-ups wie das Münchner Unternehmen OroraTech, deren Waldbrand-Satelliten im Ernstfall schnell ersetzt werden müssten – eine perfekte Fracht für Polaris. Auch im Bereich der Datenverarbeitung entstehen Synergien: Wenn ein Hyperschall-Flieger Terabytes an Aufklärungsdaten sammelt, braucht es KI-Lösungen von Firmen wie dem Defense-Einhorn Helsing, um diese Informationen in Echtzeit auszuwerten. POLARIS wirkt hier wie ein Eisbrecher, der validiert, dass „Made in Germany“ auch im neuen „Space Race“ eine Währung ist.

Denn die Konkurrenz schläft nicht. In den USA pumpen das Pentagon und die Air Force Millionen in Wettbewerber wie Hermeus oder Stratolaunch, und China arbeitet mit Hochdruck am Projekt „Tengyun“. Doch während im Silicon Valley oft noch an Simulationen gefeilt wird, haben die Bremer mit ihrem fliegenden Aerospike-Triebwerk einen Vorsprung, der sich mit Geld allein schwer aufholen lässt. Aus der visionären Idee in einem Bremer Büro ist ein Projekt von nationaler Tragweite geworden. Wenn Alexander Kopps Plan aufgeht, schauen die Amerikaner beim nächsten Wettlauf ins All nicht nach oben, sondern in den Rückspiegel.

Globaler Wettbewerb: Polaris vs. US-Konkurrenz

Merkmal

Polaris Raumflugzeuge (Deutschland)

Hermeus (USA)

Stratolaunch (USA)

Haupt-Fahrzeug

Aurora (in Entwicklung)

Quarterhorse (Demo) / Darkhorse

Talon-A

Start-Methode

Horizontal (Startbahn)

Horizontal (Startbahn)

Air-Launch (Abwurf vom Trägerflugzeug „Roc“)

Antrieb

Linear Aerospike (Rakete) + Turbinen

TBCC (Turbine + Ramjet)

Flüssig-Raketentriebwerk (Konventionell)

Haupt-Mission

Multimission: Satellitenstart (Orbit) + Hyperschall-Test/Aufklärung

Transport: Passagier/Fracht (Point-to-Point) + Militär

Testbed: Zielsimulation & Testplattform für US-Militär

Wiederverwendbar?

Ja (System landet wie Flugzeug)

Ja

Ja (landet gleitend auf Landebahn)

Aktueller Status

Fliegend: Skalierte Demonstratoren (MIRA) erfolgreich getestet.

Boden-Tests: Triebwerkstests erfolgreich, Rolltests ("Taxiing").

Operativ: Talon-A hat bereits motorisierte Hyperschallflüge absolviert.

Finanzierung

Bundeswehr (BAAINBw) & Private Investoren

US Air Force, Pentagon (DIU) & Venture Capital

Private Equity (Cerberus Capital Management)

Die Wächter des Firmengedächtnisses

Wie das 2025 von Christian Kirsch und Stefan Kirsch gegründete Start-up amaiko den Strukturwandel im Mittelstand adressiert.

Der demografische Wandel und eine erhöhte Personalfluktuation stellen mittelständische Unternehmen zunehmend vor die Herausforderung, internes Know-how zu bewahren. Viele Unternehmen stehen vor der Schwierigkeit, dass Firmenwissen fragmentiert vorliegt. Informationen sind häufig in unterschiedlichen Systemen oder ausschließlich in den Köpfen der Mitarbeitenden gespeichert. Verlassen langjährige Fachkräfte den Betrieb in den Ruhestand oder wechseln jüngere Arbeitnehmerinnen und Arbeitnehmer kurzfristig die Stelle, gehen diese Informationen oft verloren. Zudem bindet die Suche nach relevanten Dokumenten in verwaisten Ordnerstrukturen Arbeitszeit, die in operativen Prozessen fehlt.

Das 2025 gegründete Start-up amaiko aus Niederbayern setzt hierbei auf einen technischen Ansatz, der auf die Einführung neuer Plattformen verzichtet und stattdessen eine KI-Lösung direkt in die bestehende Infrastruktur von Microsoft Teams integriert. Vor diesem Hintergrund entwickelten die Brüder Christian und Stefan Kirsch mit amaiko eine Softwarelösung, die spezifisch auf die Ressourcenstruktur mittelständischer Betriebe ausgelegt ist.

Integration statt neuer Insellösungen – und die Abgrenzung zu Copilot

Ein wesentliches Merkmal des Ansatzes ist die Entscheidung gegen eine separate Software-Plattform. Christian Kirsch, Geschäftsführer von PASSION4IT und amaiko, positioniert die Lösung als „Teams-native“. Das bedeutet, dass der KI-Assistent technisch in Microsoft Teams eingebettet wird – jene Umgebung, die in vielen Büros bereits als primäres Kommunikationswerkzeug dient. Ziel ist es, die Hürden bei der Implementierung zu senken, da Nutzer ihre gewohnte Arbeitsumgebung nicht verlassen müssen.

Angesichts der Tatsache, dass Microsoft mit dem „Microsoft 365 Copilot“ derzeit eine eigene, tief integrierte KI-Lösung ausrollt, stellt sich die Frage nach der Positionierung. Christian Kirsch sieht hier jedoch keine direkte Konkurrenzsituation, sondern eine klare Differenzierung: Copilot sei eine sehr breite, Microsoft-zentrische KI-Funktion. Amaiko hingegen verstehe sich als spezialisierter, mittelstandsorientierter Wissensassistent, der Beziehungen, Rollen, Prozesse und Unternehmenslogik tiefgreifend abbildet.

Ein entscheidender Vorteil liegt laut Kirsch zudem in der Offenheit des Systems: „Während Copilot naturgemäß an MicrosoftSysteme gebunden ist, lässt sich amaiko herstellerunabhängig in eine viel breitere Softwarelandschaft integrieren – vom ERP über CRM bis zu Branchenlösungen. Unser Ziel ist nicht, Copilot zu kopieren, sondern reale Mittelstandsprozesse nutzbar zu machen“, so der Co-Founder.

Funktionsweise, Sicherheit und Haftung

Funktional unterscheidet sich das System von herkömmlichen Suchmasken durch eine agentenähnliche Logik. Die Software bündelt Wissen aus internen Quellen wie Richtlinien oder Projektdokumentationen und stellt diese kontextbezogen zur Verfügung. Ein Fokus liegt dabei auf der Datensouveränität. Hierbei betont Christian Kirsch, dass Kundendaten nicht in öffentlichen Modellen verarbeitet werden: „Die Modelle laufen in der europäischen Azure AI Foundry, unsere eigenen Dienste auf deutschen Servern. Die Daten des Kunden bleiben on rest vollständig im jeweiligen Microsoft365Tenant. Es findet kein Training der Foundation Models mit Kundendaten statt – weder bei Microsoft noch bei uns. Grundlage dafür sind die Azure OpenAI NonTraining Guarantees, die Microsoft in den Product Terms sowie in SOC2/SOC3 und ISO27001Reports dokumentiert.“

Auch rechtlich zieht das Start-up eine klare Grenze, sollte die KI einmal fehlerhafte Informationen, sogenannte Halluzinationen, liefern. „Amaiko generiert Vorschläge, keine rechts oder sicherheitsverbindlichen Anweisungen. Das stellen wir in unseren AGB klar: Die Entscheidungshoheit bleibt beim Unternehmen. Wir haften für den sicheren Betrieb der Plattform, nicht für kundenseitig freigegebene Inhalte oder daraus abgeleitete Maßnahmen. Es geht um eine saubere Abgrenzung – technische Verantwortung bei uns, inhaltliche Verantwortung beim Unternehmen“, so Christian Kirsch.

Geschäftsmodell und Markteintritt

Seit der Vorstellung der Version amaiko.ai im Juli 2025 wird das System nach Angaben des Unternehmens mittlerweile von über 200 Anwendern genutzt. Durch die Integration in die bestehende Microsoft-365-Landschaft entfällt für mittelständische Kunden eine aufwendige Systemmigration, was die technische Eintrittsbarriere gering hält.

Passend zu diesem Ansatz ist amaiko als reines SaaS-Produkt konzipiert, das Unternehmen ohne Einstiegshürde direkt online buchen können. Laut Kirsch sind keine Vorprojekte, individuellen Integrationspfade oder teuren Beratungspflichten notwendig: „Die Nutzung ist selbsterklärend und leichtgewichtig. Wer zusätzlich Unterstützung möchte – etwa zur Wissensstrukturierung oder Governance – kann sie bekommen. Aber die technische Einführung selbst ist bewusst so gestaltet, dass Mittelständler ohne Implementierungsaufwand starten können.“

Unterm Strich liefert amaiko damit eine pragmatische Antwort auf den drohenden Wissensverlust durch den demografischen Wandel: Statt auf komplexe IT-Großprojekte zu setzen, holt das bayerische Start-up die Mitarbeitenden dort ab, wo sie ohnehin kommunizieren. Ob sich die „Teams-native“-Strategie langfristig gegen die Feature-Macht von Microsoft behauptet, bleibt abzuwarten – doch mit dem Fokus auf Datensouveränität und mittelständische Prozesslogik hat amaiko gewichtige Argumente auf seiner Seite, um sich als spezialisierter Wächter des Firmengedächtnisses zu etablieren.

KI als neuer Ort für Kaufentscheidungen

Das Start-up publuence.ai zeigt am Beispiel der Automobilbranche, wie Marken in generativen KI-Antworten sichtbar werden und warum das zum neuen Erfolgsfaktor wird.

2025 haben wir euch das Start-up publuence.ai von Cevahir Ejder als "Gründer*in der Woche" präsentiert. Publuence.ai ist eine SaaS-Lösung für AI Search Analytics für Marken, die täglich analysiert, wie sichtbar Marken in generativen KI-Antworten sind: bei welchen Fragen erscheinen sie, wie werden sie erwähnt und welche Inhalte sowie Quellen beeinflussen die Antworten. Da die KI-Sichtbarkeit zunehmend darüber entscheidet, ob eine Marke in der engeren Auswahl der Konsumenten stattfindet, sind die Ergebnisse für Unternehmen strategisch sehr relevant.

Beispiel Automobilbrache: KI wird zum Verkaufsberater, Chatfenster zum Showroom

Während Marketing- und Kommunikationsbudgets weiterhin nach klassischen Logiken verteilt werden, fällt ein entscheidender Teil der Markenbildung inzwischen außerhalb des Mediaplans: KI-Systeme beantworten Kauf- und Vergleichsfragen oft lange bevor Kampagnen greifen. Anhand der Automobilbranche etwa, in der Marken wie Volkswagen für eine ganze Industrie stehen, zeigt sich, dass sich Sichtbarkeit im KI-Dialog zum neuen Machtfaktor entwickelt. Sie entscheidet zunehmend darüber, welche Hersteller überhaupt in die engere Auswahl kommen.

Was früher im Autohaus oder auf Herstellerwebsites stattfand, spielt sich heute in KI-gestützten Beratungsgesprächen ab. Nutzer*innen stellen dort Fragen wie: „Welche E-Autos sind familienfreundlich?“ „Wie gut ist die Reichweite im Winter?“ „Welche Modelle laden am schnellsten?“

In der Initialanalyse erzielt beispielsweise VW im Themenbereich E-Autos – je nach Fragestellung bzw. Prompt – Sichtbarkeitswerte zwischen 20 und 88 Prozent. Damit prägen die Antworten frühzeitig das Bild, das Konsument*innen von der Marke haben. Wer dort nicht vorkommt beziehungsweise seine Mehrwerte nicht sichtbar macht, wird in der Entscheidungsfindung schlicht nicht berücksichtigt.

Tesla und Hyundai vorn, VW im Mittelfeld

Das aktuelle Wettbewerbsranking der führenden Automobilhersteller – basierend auf 30 relevanten KI-Prompts rund um das Thema Elektromobilität – zeigt, wie präsent die einzelnen Marken im neuen digitalen Beratungsraum sind. Mit knapp 64 Prozent Sichtbarkeit führt Tesla klar und profitiert von seiner technologischen Positionierung sowie einer starken Medienpräsenz. Überraschend landet Hyundai insbesondere im E-Auto-Segment mit mehr als 58 Prozent dahinter. Volkswagen erreicht solide, aber deutlich ausbaufähige 51 Prozent.

Doch es geht nicht nur um Quantität, die Analyse zeigt auch, wo das Bild der Marken ins Wanken gerät. Im Fall von VW sind es vor allem Themen wie Winterreichweite, Ladeinfrastruktur und Schnellladekosten, die negative Ausschläge erzeugen. Diese kritischen Inhalte sind es allerdings, die die Markenwahrnehmung und dementsprechend auch die konkreten Kaufentscheidungen beeinflussen.

Die stille Macht der Quellen: Medien, die prägen

Eine zentrale Erkenntnis der Analyse von publuence.ai ist, dass KI-Systeme nicht auf Basis eines objektiven Querschnitts des Internets antworten. Vielmehr orientieren sie sich an bestimmten Medienquellen, deren Inhalte überproportional stark einfließen und so die Darstellung von Marken maßgeblich mitformen. Umso wichtiger ist es für Marken zu verstehen, auf welche Fragen sie reagieren müssen – und über welche vertrauenswürdigen Medien sie in den Wissensraum der KI gelangen.

Dabei zeigen sich je nach Medium erhebliche Unterschiede in der Tonalität. Während focus.de sowie adac.de E-Mobilität eher wohlwollend behandelt, sind andere Portale kritischer. Für Unternehmen bedeutet das: Wer verstehen will, wie KI über die eigene Marke spricht, muss wissen, welche Inhalte sie beeinflussen.

Warum Marken nicht an KI-Monitoring vorbeikommen

Publuence.ai bietet Unternehmen ein strukturiertes, datenbasiertes Werkzeug, um ihre Sichtbarkeit in KI-Systemen wie ChatGPT, Google oder Perplexity zu analysieren und darauf aufbauend gezielt zu steuern. Die Plattform zeigt, welche Fragen zur Marke führen, wie die Antworten ausfallen, welche Medien zugrunde liegen und wo Wettbewerber besser abschneiden.

Besonders wichtig ist die Identifikation von Content- und Sentiment-Gaps. Sie erkennt Themenfelder, in denen eine Marke kaum oder gar nicht auftaucht, obwohl sie dort relevant sein sollte. Gleichzeitig analysiert sie, ob etwas positiv, negativ oder neutral erwähnt wird. Dies macht publuence.ai für Kommunikations-, Marketing- und Markenverantwortliche zum zentralen Steuerungsinstrument. Nur wer versteht, wie KI antwortet, kann Inhalte gezielt darauf anpassen, Medienarbeit datenbasiert ausrichten und so die eigene Markenpräsenz dort stärken, wo die Entscheidungen heute vorbereitet werden.

KI-Sichtbarkeit wird zur Basis für Markterfolg

Cevahir Ejder, Gründer und GF der publuence GmbH, fasst zusammen: „Kaufentscheidungen beginnen heute und auch in Zukunft im Dialog mit KI-Systemen. Marken, die dort nicht auftauchen, sind raus.“ Volkswagen steht dabei stellvertretend für viele Unternehmen, die ihren Fokus noch auf klassische Marketingkanäle legen und den digitalen Showroom der KI bislang kaum berücksichtigen. Ejder warnt: „Wer jetzt nicht handelt, riskiert, neben Reichweitenverlusten, einen tiefgreifenden Bedeutungsverlust im Moment der Entscheidung.“

Der industrielle Wasserkocher: Wie das Start-up SYPOX die Chemie grün färbt

Die chemische Industrie hat ein massives Emissionsproblem, denn ihre Prozesse verschlingen Unmengen an Erdgas. Das 2021 geründete Start-up SYPOX, ein Spin-off der TUM will das ändern – mit einer Technologie, die so simpel wie genial klingt: Ein riesiger, elektrischer Tauchsieder soll die fossile Verbrennung ersetzen. Nun meldet das junge Unternehmen den ersten Durchbruch auf dem Weltmarkt.

Wenn Dr. Martin Baumgärtl erklären will, wie er die chemische Industrie revolutionieren möchte, wählt er ein Bild, das jeder versteht: „Im Grunde ist es wie ein Wasserkocher in der heimischen Küche – nur im industriellen Maßstab.“ Baumgärtl ist CTO von SYPOX, und was er beschreibt, könnte einer der wichtigsten Hebel für die Dekarbonisierung einer der schmutzigsten Branchen der Welt sein.

Die chemische Industrie ist süchtig nach Energie. Um Basischemikalien wie Methanol oder Ammoniak herzustellen, wird sogenanntes Synthesegas benötigt – eine Mischung aus Wasserstoff und Kohlenmonoxid. Die Herstellung geschieht in gewaltigen Hochtemperaturprozessen. Bisher wird die dafür nötige Hitze fast ausschließlich durch das Verbrennen von Erdgas oder Öl erzeugt. Die Folge: Gigantische CO-Emissionen.

Strom statt Flamme

Genau hier setzt SYPOX an. Das 2021 in Freising gegründete Unternehmen ersetzt die offenen Gasflammen durch elektrischen Strom. In ihren Reaktoren, die von außen wie gewöhnliche Druckbehälter aussehen, stecken hochkomplexe elektrische Heizelemente, die direkt hinter den Katalysatoren platziert sind.

Der Effekt ist enorm: „In konventionellen Verfahren entfallen rund 40 Prozent der Emissionen allein auf die Wärmeerzeugung aus fossilen Energieträgern“, rechnet Baumgärtl vor. Durch die Elektrifizierung des Reaktors fallen diese Emissionen weg – vorausgesetzt, der Strom kommt aus erneuerbaren Quellen. Zudem lässt sich der Prozess laut den Gründern präziser und sicherer steuern.

Der Anti-Trend im Silicon Valley

Doch nicht nur technologisch, auch ökonomisch schwimmt SYPOX gegen den Strom. In der Tech-Szene ist es üblich, dass Start-ups jahrelang Verluste schreiben und sich von einer Venture-Capital-Runde zur nächsten hangeln, getrieben von Investoren, die schnelles Wachstum fordern.

Die bayerischen Gründer wählten einen konservativeren, fast schon mittelständischen Ansatz. „Es entsprach nicht unserem Stil, Geld einzuwerben – wir haben vielmehr von Anfang an versucht, auf Basis unserer Technologie ein tragfähiges Geschäft aufzubauen“, erklärt CEO Dr. Gianluca Pauletto. Man wolle bodenständig bleiben und sich aus Umsätzen finanzieren, statt sich in Abhängigkeiten zu begeben.

Vom Container im Altmühltal zum Großkunden

Die Wurzeln des Unternehmens liegen an der Technischen Universität München (TUM). Die Idee brachte Pauletto aus seiner Zeit in Montréal mit, an der TUM fand er in Prof. Johannes Lercher und dem damaligen Doktoranden Martin Baumgärtl die wissenschaftlichen Mitstreiter.

Der Weg zum marktreifen Produkt war – typisch für „Deep Tech“ – langwierig. „Vier Jahre Forschung und zahlreiche Versuchsreihen waren notwendig“, erinnert sich Lercher. Während andere Software im Co-Working-Space programmierten, baute das SYPOX-Team eine Pilotanlage in einem einfachen Stahlcontainer auf dem Gelände einer Biogasanlage im ländlichen Dollnstein (Altmühltal).

Diese Beharrlichkeit zahlt sich nun aus. Das Start-up hat, unterstützt durch den Spezialchemie-Konzern Clariant, seinen ersten Großkunden an Land gezogen. Ab 2026 soll eine erste industrielle Anlage in Betrieb gehen, die täglich 150 Tonnen Synthesegas produziert. „Das ist nicht nur ein Meilenstein für uns, sondern auch ein starkes Signal an die gesamte chemische Industrie“, so Baumgärtl.

Für das Team, das inzwischen in Langenbach bei Freising sitzt und weiterhin Labore auf dem Forschungscampus Garching betreibt, ist das der Beweis: Die Elektrifizierung der Chemie ist keine Zukunftsmusik mehr, sie beginnt jetzt.

SPEIKI: das Spucktuch zum Anziehen

SPEIKI wurde von Dr. Karin Mehling entwickelt – als ihr eigenes Kind ein sogenanntes Spuckbaby war und gängige Hilfsmittel im Alltag nicht funktionierten. Aus dieser Erfahrung entstand ein durchdachtes Spucktuch, das genau auf die Bedürfnisse von Eltern und das Verhalten der betroffenen Babys abgestimmt ist.

Was tun, wenn das eigene Baby ständig spuckt – und keine Lösung wirklich hilft? Genau diese Frage hat sich Gründerin Dr. Karin Mehling 2020 gestellt, als sie selbst mitten in der herausfordernden Spuckphase ihres zweiten Kindes steckte. Rund 70 Prozent der Säuglinge spucken in den ersten vier bis sechs Lebensmonaten – ein häufiges Phänomen, das durch den noch unreifen Magenpförtner, einem Muskel am Mageneingang, verursacht wird.

Der Alltag ist in dieser Zeit vor allem geprägt durch Flecken wischen und Wäsche waschen, unangenehme Gerüche und feuchte Textilien. Aus ihrer persönlichen Erfahrung entstand das SPEIKI Original (Kurzform für Speikind): Ein „Spucktuch zum Anziehen“, das Eltern von Speikindern spürbar entlastet, da es die ausgespuckte Milch fast vollständig auffängt.

Per Bootstrapping aus dem Wohnzimmer in den Markt

Entwickelt wurde das SPEIKI Original am Wohnzimmertisch für den eigenen Sohn. 2021 meldete die promovierte Germanistin, Verlagskauffrau sowie PR- und Marketing-Managerin ihr Gewerbe als Einzelunternehmerin, wenig später konnte das Spucktuch bereits in Serie gehen.

In der per Bootstrapping finanzierten Startphase war es laut der Gründerin die größte Challenge, zu akzeptieren, nicht alles sofort schaffen zu können. Während sie als Angestellte ihren Fokus auf die klar definierten Projekte und Tätigkeiten legen konnte, kamen nun als Solo-Selbständige die Notwendigkeiten rund um Buchhaltung, Herstellung, Verwaltung und vieles mehr hinzu.

„Mit zwei Kindern zu Hause und bald einen weiteren Buben im Bauch gründete ich mein Einzelunternehmen. Entwicklung, Vermarktung, Vertrieb – alles stemmte ich allein und ,nebenbei‘. Nachts, zwischen Windeln und Weinen, auf dem Boden neben der Badewanne, in der die Buben sitzen – es gab fast keinen Ort und keine Zeit, die ich nicht versuchte zu nutzen, um meine Vision voranzutreiben: Mit meinem Textil-Label kluge Lösungen für den Baby-Alltag zu schaffen, die wirklich unterstützen. Dabei leiteten und leiten mich mein Ehrgeiz, mein Allrounder-Gemüt und meine Zielstrebigkeit, ebenso wie meine Werte, die dem Prinzip der ökonomischen Nachhaltigkeit folgen.“

Gefertigt wird das Spucktuch in einer bayerischen Nähmanufaktur. Regionalität ist Karin Mehling wichtig, als Unternehmerin sieht sie sich in der Verantwortung, nachhaltig zu wirtschaften.

Fünf Jahre erfolgreich im stark umkämpften Babyausstattungsmarkt

Der Weg von der ersten Idee bis zum etablierten Produkt zeigt den typischen Werdegang vieler Einzelunternehmen: handgemachte Prototypen, lokale Produktionswege und ein wachsendes Sortiment, das sich an den alltäglichen Bedürfnissen von Familien orientiert. Der Hauptfokus liegt bis heute auf dem SPEIKI selbst. Ergänzende Produkte runden das Portfolio ab, bleiben aber klar am Bedarf von Familien mit Spuck- und Stillthemen ausgerichtet.

Das Ergebnis: Ein Sortiment, das trotz spitzer Positionierung breit genug ist, um relevant zu bleiben. Das Wachstum der Marke basiert vor allem auf organischer Sichtbarkeit, Community-Nähe und authentischer Kommunikation.

„Ich habe mich bewusst auf das Kernprodukt konzentriert – und ergänze nur dort, wo Familien echte Bedürfnisse haben“, erklärt die Gründerin. Die Nachfrage zeigt, dass dieser Ansatz funktioniert: Das Unternehmen feiert in diesem Jahr sein fünfjähriges Jubiläum und blickt auf eine Entwicklung zurück, die weit über die Region hinaus Wirkung zeigt. Als Direct-to-Customer-Unternehmen mit jährlich wachsenden Umsätzen ein Meilenstein im stark umkämpften Babyausstattungsmarkt. „Dass aus einer spontanen Idee so viel werden kann, hätte ich selbst nicht zu träumen gewagt“, sagt Karin Mehling. „Aber offensichtlich haben viele Eltern genau das gebraucht.“

DLR-Spin-off Nunos liefert Raumfahrt-Technik für den Acker

Das 2024 von Fabian Miersbach und Tim Paulke gegründete Start-up Nunos hat ein Verfahren entwickelt, das Gülle in effizienteren, geruchlosen Dünger umwandelt. Die Deutsche Bundesstiftung Umwelt (DBU) fördert Nunos mit 125.000 Euro.

Das Düngen mit Gülle ist wichtiger Bestandteil einer im Kreislauf gedachten Landwirtschaft. Aktuell ruhen viele Äcker noch, doch ab Februar versorgen zahlreiche Landwirt*innen ihre Felder wieder auf diese Weise mit Nährstoffen. Doch durch Gülle entstehen auch umweltschädliche Gase wie Ammoniak und Methan. Das Hürther Start-up Nunos hat nun ein Verfahren entwickelt, das Gülle in effizienteren, geruchlosen Dünger umwandelt. Dies verringert den Ausstoß von Treibhausgasen (THG) und sorgt gleichzeitig für eine bessere Nährstoff-Versorgung der Pflanzen. Mitgründer Tim Paulke zufolge wandelt die firmeneigene Anlage „innerhalb eines 24-Stunden-Zyklus‘ mit einem rein biologischen Verfahren Gülle zu einem Düngemittel mit höherer Nährstoffnutzungseffizienz und deutlich geringeren Treibhausgas-Emissionen um.“

Astronautik-Technologie für eine breite Anwendung

Als Ausgründung aus dem Deutschen Zentrum für Luft- und Raumfahrt (DLR) optimiert das Nunos-Team eine in der Astronautik entwickelte Technologie für eine breite Anwendung in der Landwirtschaft. Paulke: „Das zugrundeliegende System wurde ursprünglich zur Aufbereitung von menschlichem Urin als Düngemittel für den erdfreien Anbau in Gewächshäusern auf Raumstationen entwickelt.“ Bei der neuen Anwendung werde die Gülle in der bei den Betrieben errichteten Anlage mithilfe von Mikroorganismen weiterverarbeitet. „Es entstehen ein dünnflüssiges, geruchsloses Düngemittel und eine geringe Menge eines nährstoffreichen Feststoffs,“ so Paulke.

Ernte-Mehrertrag von 20 Prozent erwartet

Bei der Güllelagerung unter dem Stallboden reagieren die Ausscheidungen und setzen schädliche Gase frei. Paulke: „Um die Ausgasung von Methan und Ammoniak zu vermeiden, wird die Gülle möglichst schnell aus den Ställen in die Aufbereitungsanlage geleitet.“ Das zügige Entfernen erhöht nach seinen Worten auch das Tierwohl. Außerdem „werden die Nährstoffe in dem Düngemittel so aufbereitet, dass sie direkt für die Pflanzen verfügbar sind“, so der Nunos-Mitgründer. Diese Nährstoffe kämen schneller als beim herkömmlichen Ausbringen der Gülle bei den Pflanzen an. Auswaschungen aus dem Boden würden so deutlich verringert. „Nach ersten Pflanzversuchen rechnen wir bei der Ernte mit einem Mehrertrag von bis zu 20 Prozent, was wir in 2026 auf zwei landwirtschaftlichen Betrieben in Feldversuchen validieren möchten“, prognostiziert Paulke

Nunos-Dünger auch für den Hausgebrauch

Neben den Gülle-Aufbereitungsanlagen stellt das Start-up nach eigenen Angaben kleinere Mengen des Düngemittels für den Hausgebrauch her. „Der Dünger wirkt auch für den heimischen Tomatenanbau oder Zimmerpflanzen wie ein Multivitamin-Drink“, so Paulke. Der Vertrieb erfolge über das Internet. Das Verfahren zur Umwandlung der Gülle in den effizienten Dünger sei über das DLR patentiert und von Nunos exklusiv lizensiert.

Die Deutsche Bundesstiftung Umwelt (DBU) fördert das Unternehmen mit 125.000 Euro. Paulke: „Aktuell arbeiten wir hauptsächlich mit Rindergülle und Gärresten aus Biogasanlagen. Durch die DBU-Förderung bekommen wir die Möglichkeit, das Verfahren ausführlicher auf seine Umweltauswirkungen zu testen, anstatt nur wirtschaftliche Faktoren zu betrachten.“ Außerdem geplant seien neue Feldversuche, die die zusätzlichen Erträge durch den Dünger weiter verifizieren und Optimierungsmöglichkeiten finden.

Mehr Effektivität und wirtschaftliche Effizienz für die Landwirtschaft

DBU-Referentin Dr. Susanne Wiese-Willmaring sieht großen Bedarf in der Landwirtschaft für Konzepte wie das von Nunos: „Die Bäuerinnen und Bauern wissen von den Auswirkungen der bei ihrer Arbeit entstehenden Treibhausgase. Oft wollen Sie etwas verändern und müssen es aufgrund gesetzlicher Vorgaben teils auch.“ Die hohen Treibhausgas-Emissionen brächten der Landwirtschaft einen Misskredit ein, der durch innovative Lösungen behoben werden könne. Wiese-Willmaring weiter: „Für die Betriebe müssen dabei Effektivität und wirtschaftliche Effizienz stimmen – Herausforderungen, die Nunos beide aktiv angeht.“

Gaming & digitale Medien – eine Perspektive für Start-ups?

Diese Voraussetzungen sollten Gründerinnen und Gründer von Start-ups in der Gamingbranche oder der Gestaltung digitaler Medien mitbringen, um erfolgreich zu sein.

Digitale Start-ups verbinden attraktive Zukunftsperspektiven mit einem geringen Startkapital. Für die digitale Generation aktueller Schul- und Universitätsabgänger stellt sich die Frage, ob ein Einstieg in die Gamingbranche oder die Gestaltung digitaler Medien für die Gründung eines Start-ups ausreichen kann. Solche Perspektiven sind gegeben, die neben ausreichend Kreativität eine fundierte Ausbildung in Computertechnik und Business gleichermaßen voraussetzen.

Indie-Games – eine Perspektive für Entwickler?

Noch vor einigen Jahren war die Gamingbranche als Perspektive für Gründer eher unattraktiv. Die großen, internationalen Studios dominierten die Szene, wobei für Triple-A-Titel längst Tausende von Entwicklern an unterschiedlichen Standorten benötigt wurden. Unter dem Zeit- und Kostengrund vieler Studios sowie der Entlassungswelle der letzten Jahre ist es für immer mehr Developer uninteressant, auf die Anstellung in einem der großen Softwarehäuser zu hoffen.

Die unabhängige Entwicklung von digitalen Medien oder Spielen bleibt jedoch beliebt und kann zur Basis eines Start-ups werden. Immer mehr Gamer wenden sich von den überteuerten, großen Marken der Szene ab und vertrauen auf kleinere Entwickler mit mehr Freiheiten bei der Umsetzung. Selbst die großen Gaming-Plattformen halten regelmäßig eine Auswahl beliebter und neuer Indie-Games für Millionen Nutzer bereit.

Unabhängig von Größe und Art eines Studios bleibt die Gamingbranche international und setzt verschiedene Skills vom Development bis zum erfolgreichen Marketing voraus. Dies alles lässt sich längst in speziell abgestimmten Studiengängen erlernen.

Spielentwicklung der neuesten Generation als Studiengang

Studiengänge wie Games & Immersive Media an der Hochschule Furtwangen erlauben es, einen Bachelor im Gaming-Umfeld zu erlangen und alle relevanten Fähigkeiten für den zukünftigen Berufsweg zu gewinnen. Neben Computer Science und Anwendungen im spielerischen Bereich nehmen Business, Design und Medien als zweiter Bereich einen wesentlichen Stellenwert im Studium ein.

Diese Kombination des bilingualen Studiengangs ergibt Sinn. Schließlich ist nicht jeder kreative Programmierer und Spieleentwickler ein Geschäftsmann, genauso wenig wie Marketer gerne stundenlang mit Quellcode arbeiten. Moderne Studiengänge wie dieser führen beide Welten zusammen und sorgen für eine fundierte Ausbildung, um tiefe Einblicke in beide relevanten Arbeitsfelder zu gewinnen.

Starke Unterstützung für zukünftige Start-ups

Die Hochschule Furtwangen geht mit ihrer Unterstützung weit über den reinen Studiengang hinaus. Bewusst wird angehenden Start-ups unter die Arme gegriffen, die ihre ersten Schritte ins Gaming-Business mit kreativen Spielen und Studienprojekten gehen möchten.

Neben einer umfassenden Beratung auf dem Weg zum eigenen Business werden ein Support für Fördermittel sowie Räumlichkeiten für das gemeinschaftliche Arbeiten an Spielen oder digitalen Medien geboten. Viele Formalitäten und Unsicherheiten, die sich bei Start-ups unabhängig von Branche und Geschäftsfeld ergeben, werden so seitens der Hochschule kompetent und professionell unterstützt.

Für den Einstieg sind Kenntnisse im Gaming-Bereich ideal, die über die reine „Freude am Zocken“ hinausgehen. Kreativität in der Planung und Umsetzung eigener Projekte sollte nachgewiesen werden – anders als die zwingende Notwendigkeit, eine Programmiersprache zu beherrschen.

Sichtbarkeit im digitalen Umfeld entscheidend

Wie bei allen Produkten entscheidet weniger die tatsächliche Qualität, sondern die Sichtbarkeit und eine wirkungsvolle Werbung über Erfolg von Misserfolg von Games. Gerade das Marketing für digitale Produkte ist wegen der hohen Konkurrenz und einer Fülle an Informationen in der digitalen Welt eine immense Herausforderung. Hier eine fachkundige Unterstützung von Anfang an zu erhalten, bewahrt Entwickler und kreative Köpfe davor, grundlegende Fehler zu begehen und frühzeitig den Traum vom Gaming-Job zu begraben.

KI-Trends 2026: Reifer, realer, relevanter

2026 tritt KI in eine neue Phase ein: weniger Hype, mehr Haltung. Expert*innen aus Technologie, Kommunikation und Mittelstand zeigen, wie künstliche Intelligenz Prozesse transformiert, Entscheidungen präziser macht und Marken stärkt – aber auch neue Risiken schafft, von Voice-Cloning bis Abhängigkeiten großer Plattformen. Klar wird: KI entfaltet ihr Potenzial dort, wo Unternehmen sie verantwortungsvoll einsetzen, Transparenz schaffen und menschliche Kompetenz stärken.

Zwischen Dynamik und Verantwortung: KI braucht gemeinsame Sichtweisen

„KI schafft keine perfekten Lösungen auf Knopfdruck, sondern eröffnet neue Wege, Herausforderungen besser zu bewältigen. Die größten Chancen liegen darin, Wissensverlust zu vermeiden, Reibungsverluste zu reduzieren und individueller auf Menschen einzugehen – im Gesundheitswesen genauso wie in HR, Bildung und Produktion. Gleichzeitig besteht die größte Herausforderung darin, eine gemeinsame Sichtweise auf KI zu entwickeln: Alle reden darüber, aber oft über völlig Unterschiedliches. Das gelingt nur über kleine Schritte, viel Kommunikation und eine Annäherung auf Augenhöhe. Zugleich zeichnet sich ein klarer Trend ab: die Fragmentarisierung der KI-Landschaft und eine problematische Abhängigkeit von US-Anbietern, die neue, eigene Handlungswege erfordert. Wer diese Dynamik versteht und verantwortungsvoll gestaltet, erschließt das Potenzial von KI von automatisierten medizinischen Leistungen über effizientere Produktionsprozesse bis hin zu deutlich schnelleren Innovationszyklen.“

KI-Hype: mittel- bis langfristiger Weg zur Monetarisierung noch unklar

Aktueller Marktkommentar zum KI-Hype und den möglichen Folgen von Justin Thomson, Head Investment Institute and CIO bei T. Rowe Price.

Die Investitionsausgaben für künstliche Intelligenz (KI) haben ein erstaunliches Niveau erreicht, aber der Weg zur Monetarisierung bleibt unklar. Der Markt-Hype schaukelt sich selbst hoch, und die Tech-Giganten greifen nun zu Krediten, um ihre Expansion zu finanzieren. Blasen sind nicht immer schädlich und können zu erheblichen Produktivitätssteigerungen führen, aber Überkapazitäten sind ein reales Risiko, das beobachtet werden sollte.

Während eines hochkarätigen Finanzgipfels, an dem ich kürzlich in Hongkong teilgenommen habe, sagte der CEO einer führenden Vermögensverwaltungsgesellschaft, der es eigentlich besser wissen müsste: „Im Kontext der Ausstattung von Hyperscalern sind 2,5 Billionen US-Dollar [für Investitionen] über fünf Jahre keine große Summe.“ Ich war über diese Bemerkung erstaunt. In welchem Paralleluniversum sind 2,5 Billionen US-Dollar eine unbedeutende Summe? Antwort: in einem, in dem Nvidia innerhalb von drei Monaten eine Marktkapitalisierung von 1 Billion US-Dollar erreichen kann. Aber wie erzielt man eine Rendite auf Investitionen in Höhe von 2,5 Billionen US-Dollar, wenn der mittel- bis langfristige Weg zur Monetarisierung der KI noch unklar ist?

Dies deutet auf zwei verschiedene AI-Investitionsbooms hin: einen relativ kurzfristigen, der durch eine erkennbare tatsächliche Nachfrage gestützt wird, und einen längerfristigen spekulativen Boom, der mit einem quasi-religiösen Glauben an exponentielles Wachstum verbunden ist.

Betrachten wir zunächst einige beeindruckende Zahlen. Die Ausgaben für KI erreichten gerade 1 % des US-Bruttoinlandsprodukts (BIP) in einer Wirtschaft mit 1,8 % Wachstum – das ist mehr als die Hälfte der gesamten neuen Nachfrage. Allein Nividia erreichte Ende Oktober einen Wert von 5 Billionen US-Dollar, was 15 % der gesamten US-Wirtschaft entspricht. Zum Vergleich: Als Cisco im Jahr 2000 als weltweit größtes Unternehmen seinen Höhepunkt erreichte, betrug sein Anteil am BIP nur 5,5 %. Während viel Aufsehen um den 3 Milliarden US-Dollar teuren Hauptsitz von JP Morgan in Manhattan gemacht wurde, werden in Texas still und leise 40 Milliarden US-Dollar teure Rechenzentrumsprojekte gestartet. Niemand scheint sich dafür zu interessieren.

Sind wir also in einer Blase? Es gibt sicherlich eine Blase von Menschen, die über Blasen sprechen – werfen Sie einfach einen Blick auf Google Trends.

Unterdessen gibt es diejenigen, die glauben, dass wir uns gerade deshalb nicht in einer Blase befinden können, weil wir über eine solche sprechen. Meiner Meinung nach gibt es drei Schlüsselwörter in den jüngsten Marktentwicklungen, die Beachtung verdienen: Reflexivität, Zirkularität und Verschuldung. Reflexivität besagt, dass Preise tatsächlich die Fundamentaldaten beeinflussen und dass diese neu beeinflussten Fundamentaldaten dann die Erwartungen verändern und somit die Preise beeinflussen. Dieser Prozess setzt sich in einem sich selbst verstärkenden Muster fort. Die lebhafte Reaktion des Marktes auf die jüngsten KI-Megadeals ist ein Beispiel für einen solchen Feedback-Kreislauf. Hinzu kommt der zirkuläre Charakter dieser Deals. Im Wesentlichen investieren die Anbieter von Recheninfrastruktur in native KI-Akteure, die sich in einer Investitionsphase befinden. In der Dotcom-Ära war dies als „Vendor Financing” bekannt und wurde zu einer Art Schimpfwort.

Schließlich gibt es noch die Verschuldung. Bislang haben die finanzstarken Tech-Giganten diesen KI-Boom mit ihren eigenen tiefen Taschen und Eigenkapitalfinanzierungen finanziert. Aber jetzt treten wir in die Kreditphase ein – Unternehmen wenden sich den Schuldenmärkten zu, oft außerhalb der Bilanz, und die Kreditaufnahme wird sich wahrscheinlich beschleunigen. Wir wissen, dass wir mit generativer KI und später mit künstlicher Superintelligenz vor einem neuen technologischen Paradigma stehen – und möglicherweise vor einem massiven Produktivitätssprung. Das sind alles großartige Dinge, und es ist leicht zu verstehen, dass man der Versuchung erliegt, weiter auf der lukrativen KI-Welle zu reiten, die mit der Einführung von ChatGPT im November 2022 begann. Angesichts der aktuellen Indexkonzentration würde es in der Tat Mut erfordern, auszusteigen.

Schnelles Wachstum kann zu einem Überschuss führen

Eine wichtige Lehre aus der Geschichte ist, dass es zu Blasen kommt, wenn wir schöne Dinge erfinden. Aber nicht alle Blasen sind gleich. Es gibt „schlechte“ Blasen (Tulpen, Gold, Grundstücke), und wenn schlechte Blasen durch Schulden finanziert werden, kann dies ein systemisches Risiko für die Wirtschaft darstellen. Es gibt auch „gute“ Blasen, die zu Überkapazitäten bei Produktionsmitteln führen – man denke an die Eisenbahnen im goldenen Zeitalter der Expansion der USA zwischen 1870 und 1900, die Elektrizität in den frühen 1900er Jahren und den Dotcom-Boom Ende der 1990er Jahre. Letztendlich wurde in jedem Fall Wohlstand geschaffen, aber die frühen Investoren verloren viel Geld.

Es ist noch zu früh, um vorherzusagen, zu welcher Art von Blase sich der AI-Investitionsboom entwickeln wird. Die langfristigen Auswirkungen werden davon abhängen, ob die heutigen massiven Investitionen letztendlich die Grundlage für dauerhafte Produktivitätssteigerungen schaffen oder ob sie zu Überkapazitäten führen, die keine nachhaltigen Renditen erzielen. Wenn die Kapazitäten so schnell wachsen, ist es immer wahrscheinlich, dass sich das Ungleichgewicht zwischen Angebot und Nachfrage von einem Mangel zu einem Überschuss umkehrt. In der Dotcom-Ära verloren Investoren viel Geld mit Glasfaserkabeln und Switches, die in den Boden verlegt wurden, und etwas Ähnliches könnte mit KI passieren, wenn durch Überbauung riesige Kapitalmengen in Anlagen gebunden werden, die möglicherweise nicht annähernd mit voller Effizienz betrieben werden können – oder noch schlimmer, wenn die Schnelllebigkeit des Chip-Zyklus die Rechenleistung obsolet macht.

Erschwerend kommt hinzu, dass die Anreize für Infrastrukturanbieter („Picks and Shovels”-Akteure) und Entwickler von KI-Anwendungen nicht aufeinander abgestimmt sind. Während Infrastrukturunternehmen von einer kontinuierlichen Expansion und Investitionen profitieren, konzentrieren sich Anwendungsentwickler auf die Verbesserung der Effizienz und die Senkung der Kosten. Um den Kommentar des Dodos nach dem Caucus-Rennen in Lewis Carrolls Alice im Wunderland umzukehren: „Nicht jeder kann gewinnen, und nicht jeder kann einen Preis bekommen.” Die optimistischen Prognosen für die KI-Infrastruktur zeigen, wie viel Hype in den heutigen Bewertungen der Hyperscaler steckt. Es ist ironisch, dass Rechenzentrumsprojekte nach den griechischen Titanen Prometheus und Hyperion benannt werden. In der griechischen Mythologie folgt auf Hybris immer Nemesis. Um noch ein bisschen Latein mit einzubringen: caveat emptor.

KI & Bewertungen: Sichtbarkeit in einer neuen Suchrealität

Tipps und To-dos: Wie du dein Bewertungsmanagement strategisch aufsetzt und Sichtbarkeit und Vertrauen im KI-Zeitalter steigerst.

Generative Antworten in Suchmaschinen und Assistenten verändern die Spielregeln der Online-Sichtbarkeit. Nicht mehr nur klassische Rankings entscheiden, sondern die Frage, wem die KI genug vertraut, um es überhaupt zu nennen. Aktuelle, glaubwürdige und inhaltlich konkrete Bewertungen werden dabei zum Schlüsselsignal. Für kleine und mittlere Unternehmen bedeutet das: Bewertungsmanagement ist kein Nice-to-have mehr, sondern ein Pflichtprogramm, das Auffindbarkeit, Auswahl und Conversion spürbar beeinflusst. Im Folgenden erfährst du, wie du dein Bewertungsmanagement strategisch aufsetzen solltest, um Sichtbarkeit und Vertrauen im KI-Zeitalter zu steigern.

Warum Bewertungen jetzt geschäftskritisch sind

KI-Modelle zerlegen Rezensionen in viele kleine Bedeutungseinheiten und ziehen daraus ein konsistentes Bild. Welche Leistung wurde erbracht, an welchem Ort, mit welcher Qualität und für welchen Anlass. Aus den einzelnen Stimmen entsteht so ein Vertrauensprofil, das über bloße Sternesummen hinausgeht. Entscheidend ist nicht die bloße Menge, sondern die Frische und die inhaltliche Dichte der Aussagen. Eine Rezension wie „Schnell geholfen am Sonntag, sehr kompetente Beratung zu Reiseimpfungen“ liefert gleich mehrere Signale. Zeitliche Verfügbarkeit, thematische Expertise und konkreter Nutzen. Genau solche Details erhöhen die Wahrscheinlichkeit, in generativen Antworten aufzutauchen, wenn Menschen in ihrer Nähe nach einer Lösung suchen. Wer regelmäßig neue, authentische und präzise Bewertungen erhält, verschafft der KI verlässliche Hinweise und sichert sich dadurch mehr Sichtbarkeit in genau den Momenten, in denen Entscheidungen vorbereitet werden.

Bewertungsmanagement als Prozess, nicht als Aktion

Wirksam wird Bewertungsarbeit, wenn sie selbstverständlich Teil der täglichen Abläufe ist. Nach dem Kontakt freundlich um Feedback bitten, den Weg zur passenden Plattform so kurz wie möglich machen, interne Zuständigkeiten klar regeln und Reaktionszeiten verbindlich festlegen. Aus diesen scheinbar kleinen Schritten entsteht ein stabiler Rhythmus, der kontinuierlich neue Kund*innenstimmen hervorbringt und der KI immer wieder frische Kontexte liefert. Ein solcher Prozess ist robuster als jede einmalige Kampagne, weil er verlässlich Vertrauen aufbaut und saisonale Schwankungen abfedert. Teams profitieren, wenn sie Zielkorridore definieren, etwa eine bestimmte Zahl neuer Rezensionen pro Woche und wenn sie Fortschritte sichtbar machen. So wird aus gutem Vorsatz ein gelebter Ablauf, der die gesamte Organisation stärkt.

Sprache der Kund*innen wirkt wie natürliches SEO

KI versteht Alltagssprache deutlich besser als Listen isolierter Schlagwörter. Unternehmen gewinnen, wenn sie um freie, aber konkrete Formulierungen bitten, ohne Vorgabetexte und ohne Druck. Eine höfliche Bitte wie: „Wenn es für Sie passt, nennen Sie gern, was Ihnen besonders geholfen hat“ öffnet den Raum für präzise Hinweise auf Leistungen, Erreichbarkeit, Barrierefreiheit oder Schnelligkeit. Solche natürlich entstandenen Details sind für Menschen überzeugend und zugleich für Maschinen gut interpretierbar. Sie zeigen, wofür ein Betrieb tatsächlich steht, und verankern die passenden Begriffe in einem echten Nutzungskontext. Das Ergebnis ist eine Sprache, die Vertrauen schafft und die Auffindbarkeit stärkt, ohne künstlich zu wirken.

Antworten trainieren Vertrauen für Menschen und Maschinen

Jede Reaktion auf eine Bewertung ist ein sichtbares Zeichen von Serviceorientierung und zugleich zusätzlicher Kontext für die KI. Gute Antworten bedanken sich aufrichtig, beziehen sich konkret auf das Erlebte und bieten einen klaren nächsten Schritt an. Bei Kritik zählt ein professioneller Umgang. Das Anliegen nachvollziehen, Verantwortung übernehmen, eine realistische Lösung anbieten und einen direkten Kontaktweg nennen. So entsteht ein Bild von Verlässlichkeit, das Hemmschwellen senkt und Wiederbesuche wahrscheinlicher macht. Die KI erkennt diesen Umgang ebenso und ordnet das Unternehmen eher als vertrauenswürdig ein. Mit der Zeit entsteht ein stabiler Kreislauf aus guter Erfahrung, konstruktiver Reaktion und wachsendem Vertrauen.

Lokaler Content und Social Proof gehören zusammen

Bewertungen entfalten ihre volle Wirkung, wenn sie auf eine solide Informationsbasis treffen. Konsistente Unternehmensdaten, vollständige Leistungsseiten pro Standort, klare Öffnungszeiten inklusive Ausnahmen und eine schnelle, mobil optimierte Webseite erleichtern die Einordnung für Nutzer*innen und Maschine. Wenn ausgewählte Zitate oder Bewertungsschnipsel an relevanten Stellen sichtbar werden, etwa auf der Startseite, in der Buchungsstrecke oder in den häufigen Fragen, entsteht ein schlüssiges Gesamtbild. Der lokale Bezug bleibt klar erkennbar, die Erwartungen sind gut gesetzt, und die nächsten Schritte sind ohne Umwege möglich. So wird aus Social Proof ein handfester Conversion Hebel.

Vom Feedback zur Verbesserungsschleife

Rezensionen sind fortlaufende Marktforschung aus erster Hand. Wer wiederkehrende Themen auswertet, etwa Wartezeiten, Erreichbarkeit oder Bezahloptionen, erkennt schnell die Stellschrauben mit der größten Wirkung. Wichtig ist, die daraus abgeleiteten Verbesserungen konsequent umzusetzen und sichtbar zu machen. Informieren, handeln, erneut um Rückmeldung bitten. Dieser offene Kreislauf wirkt nach innen und nach außen. Mitarbeitende erleben, dass Feedback Veränderungen anstößt, Kund*innen erleben, dass ihre Hinweise ernst genommen werden, und die KI registriert die fortlaufende Pflege der Qualität. Mit jeder Runde werden Erlebnisse besser und Bewertungen stärker, was die Sichtbarkeit weiter erhöht.

Fazit

Sichtbarkeit entsteht heute dort, wo Menschen nach konkreten Lösungen fragen und wo KIs verlässliche Hinweise zu Qualität und Relevanz finden. Unternehmen, die Bewertungen als strategischen, kontinuierlichen Prozess verstehen, erhöhen ihre Chance, in generativen Antworten genannt zu werden und gewinnen genau in den entscheidenden Momenten an Präsenz. Vieles davon ist eine Frage kluger Organisation und klarer Abläufe. Der finanzielle Aufwand bleibt überschaubar, der Nutzen für Auffindbarkeit, Vertrauen und Umsatz ist deutlich spürbar.

Die Autorin Franziska Ortner ist Produktmanagerin bei SELLWERK