Aktuelle Events
Wie KI-Technologie den modernen Arbeitsalltag revolutioniert
Die dritte Phase der Digitalisierung hat begonnen. Wir zeigen Anwendungsgebiete und Potenziale moderner KI-Technologien im Überblick.

Der moderne Büroalltag, aber auch die Unternehmensführung, die Logistik, Marketing- und Planungsprozesse aller Art sind in den vergangenen Jahrzehnten immer digitaler und rationaler geworden. Derzeit befinden wir uns mitten in einem weiteren Umbruchsprozess, der in seiner Wirkung nur mit der Einführung des PCs und der umfassenden Vernetzung durch Internet und Unternehmensnetzwerke vergleichbar sein dürfte.
Wie in Transformationsphasen üblich bringen diese entscheidende Risiken und Potenziale für etablierte Größen wie auch für Start-ups mit sich. Wer jetzt zurückbleibt, verschafft der Konkurrenz unter Umständen einen Vorsprung, der nur schwer einholbar sein kann. Umgekehrt bieten sich für frühe Anwender zahlreiche Chancen, die eigenen Prozesse zu rationalisieren, neue Dienstleistungen auf den Markt zu bringen und sich auf absehbare Zeit eine stabile Marktposition zu erobern.
Um das volle Potenzial der digitalen Revolution und insbesondere der sich rasant entwickelnden KI-Technologie ausloten zu können, sollte man sich zunächst bewusst machen, welche Bedeutung technische Revolutionen auf den Arbeits- und Unternehmensalltag haben, sich einen möglichst breiten Überblick über die verschiedenen Anwendungsmöglichkeiten der neuen Technologie verschaffen und sich abschließend fragen, wie das eigene Unternehmen oder ein vielversprechendes Businessmodell davon profitieren könnten.
Die drei Phasen der digitalen Revolution
Einfach nur von der digitalen Revolution zu sprechen, wird dem Phänomen längst nicht mehr gerecht. Eine Einteilung in drei historische Phasen zeigt einerseits, wie lange wir bereits von der computergetriebenen Entwicklung beeinflusst werden und andererseits, wie sich die Digitalisierung zunehmend in alle ökonomischen und sozialen Bereiche ausdehnt.
1. Die Ära des Personal Computers: Die Anfänge der digitalen Revolution
Die erste Phase der digitalen Revolution begann mit der Einführung des Personal Computers in den Büroalltag. Dieser technologische Durchbruch in den 1970er und 80er Jahren markierte einen Paradigmenwechsel in der Arbeitswelt. PCs ermöglichten eine effizientere Datenverarbeitung, Textverarbeitung und Tabellenkalkulation, wodurch zeitaufwendige manuelle Prozesse ersetzt wurden. Diese Entwicklung ebnete den Weg für eine produktivere und zugänglichere Arbeitsumgebung, in der Aufgaben schneller und präziser ausgeführt werden konnten.
2. Das Internetzeitalter: Vernetzung und globale Expansion
Die zweite Phase, ausgelöst durch die weite Verbreitung des Internets in den 1990er Jahren, revolutionierte die Kommunikation und Zusammenarbeit im Büro. Die Möglichkeit, in Echtzeit Informationen auszutauschen und auf eine Fülle von Online-Ressourcen zuzugreifen, eröffnete Unternehmen neue Dimensionen der globalen Vernetzung. E-Mail wurde zum Standardkommunikationsmittel, während das World Wide Web eine Plattform für unendliche Informations- und Geschäftsmöglichkeiten wurde. Diese Ära definierte die Art und Weise, wie Unternehmen operieren und interagieren, vollständig neu und leitete das Zeitalter der digitalen Wirtschaft ein.
3. KI-Technologie: Ein neues Kapitel in Produktion, Unternehmensführung, Vermarktung und Verwaltung
In der dritten und aktuellen Phase der digitalen Revolution tritt KI in den Vordergrund, indem sie die Grenzen praktisch aller unternehmerischen Prozesse und den Büroalltag von Millionen Menschen neu definiert. KI-gesteuerte Anwendungen, von automatisierten Kundendienstlösungen bis hin zu fortschrittlicher Datenanalytik, transformieren die Arbeitsweise in Unternehmen grundlegend. Sie ermöglichen nicht nur eine bisher unerreichte Automatisierung und Effizienzsteigerung, sondern auch eine personalisierte und vorausschauende Geschäftsstrategie in allen Bereichen von der Vermarktung bis zu den Lieferketten. Die Integration von KI in den modernen Unternehmensalltag stellt somit nicht nur eine Fortsetzung der Digitalisierung dar, sondern eröffnet neue Wege in Richtung intelligenter, datengesteuerter Arbeitsumgebungen in allen Unternehmensbereichen.
Potenziale und Anwendungsgebiete moderne KI-Techniken
Während die automatisierte Datenanalyse riesiger Datenmengen (Big Data) praktisch alle datengetriebenen Prozesse der Unternehmensführung, -organisation und Verwaltung betrifft, beginnt die jüngste Entwicklung sprachbegabter KI-Technologien gerade erst ihr Potenzial und ihre verschiedenen Anwendungsmöglichkeiten zu zeigen.
Verarbeitung natürlicher Sprache (NLP): KI, die uns versteht
Die Verarbeitung natürlicher Sprache (Natural Language Processing, NLP) ist ein beeindruckender technischer Durchbruch sowie ein faszinierendes und schnell wachsendes Feld der Künstlichen Intelligenz. Erstmals wird die Interaktion zwischen Computern und Menschen in natürlicher Sprache ermöglicht. Dies verschafft einer breiten Zahl von Nutzern Zugang zu Instrumenten, die zuvor nur Programmierern oder anderen Experten zur Verfügung standen. In Verbindung mit weiteren Fähigkeiten der KI lässt sich derzeit kaum eine Grenze für das Transformationspotenzial dieser Technologien erahnen. Im Kontext des modernen Büroalltags machen NLP-Anwendung beinahe täglich bedeutende Fortschritte und bieten immer vielfältigere Anwendungsmöglichkeiten, die die Arbeitsweise grundlegend verändern:
- Spracherkennung und -verarbeitung: NLP ermöglicht es Computern, gesprochene Sprache zu verstehen und zu verarbeiten. Dies erweitert die Interaktionsmöglichkeiten zwischen normalen Nutzern und KI-Anwendungen grundlegend. Eine der aktuellsten Innovationen auf diesem Gebiet ist beispielsweise Blizo, eine Software zur Transkription und übersichtlichen Zusammenfassung von Meetings. Anwendungen wie diese erlauben Mitarbeitern zudem Berichte durch Sprechen, anstatt durch Tippen zu erstellen, was Zeit spart und die Zugänglichkeit erhöht. NLP revolutioniert allgemein und umfassend die Sprachsteuerung von Geräten und Software, wobei die Entwicklung hier noch ganz am Anfang ist und die Möglichkeiten weiterer Anwendungen gerade erst am Horizont erscheinen.
- Chatbots und Virtuelle Assistenten: Im Kundenservice werden bereits seit längerer Zeit NLP-basierte Chatbots eingesetzt, um Kundenanfragen effizient zu beantworten oder vorzusortieren. Diese Systeme können natürliche Konversationen simulieren und so die Kundeninteraktion verbessern. Ebenso unterstützen virtuelle Assistenten Mitarbeiter, indem sie einfache Aufgaben wie die Terminplanung oder Informationsabfragen übernehmen. Alexa, Siri und Co. werden in Kürze wie fossile Urgesteine neben der neuesten Generation sprechender Bots aussehen und vermutlich bald selbst ein umfassendes Update bekommen.
- Sentimentanalyse: NLP-Tools können Stimmungen und Meinungen in Texten erkennen und analysieren. Dies ist besonders nützlich für Marketing- und Kundendienstabteilungen, um Kundenfeedback und Markttrends zu verstehen und darauf zu reagieren, kann beispielsweise aber auch in der Wissenschaft Anwendung finden.
- Automatische Zusammenfassungen und Berichterstattung: NLP kann genutzt werden, um lange Dokumente oder Datenmengen automatisch zu analysieren und zusammenzufassen. Dies spart Zeit bei der Informationsbeschaffung und ermöglicht es, schneller fundierte Entscheidungen zu treffen. NLP ermöglicht es Computern erstmals, menschliche Sprache in für sie prozessierbare Daten zu verwandeln.
- Sprachübersetzung: Fortgeschrittene NLP-Systeme bieten nahezu Echtzeit-Übersetzung von und in verschiedene Sprachen, was die globale Kommunikation und Zusammenarbeit erleichtert. ChatGPT etwa brachte sich selbst auf der Basis seiner Algorithmen und der englischen Sprache zahlreiche weitere Sprachen bei und kann mittlerweile für viele Sprachen auch als relativ zuverlässiges Übersetzungstool genutzt werden.
- Verbesserte Suchfunktionen: NLP verbessert Suchalgorithmen, sodass Nutzer natürliche Sprache verwenden können, um komplexe und kontextbezogene Informationen in Datenbanken oder im Internet zu finden. Dies wird die Forschung und Bildung in den nächsten Jahren transformieren und Big Data noch größer machen.
Alles kann berechnet werden: Big Data
Neben den Fortschritten bei der Sprachfähigkeit beeindrucken KI-Anwendungen vor allem durch ihre unglaublichen Analysefähigkeiten, mit denen sie in der Lage sind, verschiedenste Muster auf der Grundlage riesiger Datenmengen zu erstellen und sogar Vorhersagen über zukünftige Entwicklungen zu erstellen. Dabei speist sich die Datengrundlage, Big Data, aus unterschiedlichen Quellen von Social Media Postings bis hin zu medizinischen Statistiken und Ähnlichem.
Intelligente Algorithmen beziehungsweise Methoden des maschinellen Lernens ermöglichen eine automatisierte Analyse dieser Daten zu unterschiedlichen Zwecken. Aufgrund ihrer enormen Rechenleistung und der Fortschrittlichkeit der statistischen Analysemethoden entdecken KI-Anwendungen mittlerweile viele Muster zuverlässiger und schneller als menschliche Forscher oder Analysten. Über kurz oder lang wird ein Großteil unseres statistischen Wissens auf der automatisierten Analyse von Big Data beruhen. Zu den Hauptanwendungsgebieten dieser mächtigen Algorithmen gehören derzeit folgende Bereiche:
- Unternehmensorganisation und Entscheidungsfindung: Unternehmen nutzen Big Data, um Markttrends zu analysieren, Kundenverhalten zu verstehen und fundierte Entscheidungen bei Geschäftsstrategien, in der Produktentwicklung und bezüglich ihrer Marketingkampagnen zu treffen. Diese Analysen ermöglichen es Unternehmen, auf sich ändernde Marktdynamiken schnell zu reagieren und ihre Angebote besser auf die Kundenbedürfnisse abzustimmen.
- Personalisierte Kundenerfahrungen: Im Einzelhandel und in der Dienstleistungsbranche wird Big Data verwendet, um personalisierte Einkaufserlebnisse zu schaffen. Durch Analyse des Kaufverhaltens, Online-Interaktionen und Kundenpräferenzen können Unternehmen individuell zugeschnittene Empfehlungen und Angebote erstellen.
- Gesundheitswesen: Im Gesundheitssektor ermöglichen Big Data Analysen eine bessere Patientenversorgung durch die Analyse von Patientendaten, klinischen Studien und Forschungsergebnissen. Sie tragen zur Entwicklung personalisierter Medizin bei und helfen bei der Vorhersage von Krankheitsmustern und Epidemien.
- Finanzdienstleistungen: In der Finanzbranche wird Big Data unter anderem genutzt, um Risiken zu bewerten, Betrug zu erkennen und Investitionsentscheidungen zu optimieren. Banken und Versicherungen analysieren große Mengen an Transaktionsdaten, um ungewöhnliche Muster zu identifizieren und ihr Risikomanagement zu verbessern.
- Supply Chain Management: Big Data hilft Unternehmen, ihre Lieferketten effizienter zu gestalten. Durch die Analyse von Daten aus verschiedenen Quellen können Unternehmen Lagerbestände optimieren, Lieferzeiten verkürzen und die Reaktionsfähigkeit auf Marktveränderungen verbessern.
- Städtische Planung und Verkehr: Im öffentlichen Sektor werden Big Data Anwendungen zur Verbesserung der städtischen Infrastruktur und zur Optimierung des Verkehrsflusses eingesetzt. Städte nutzen Verkehrs- und Mobilitätsdaten, um Staus zu reduzieren und öffentliche Dienstleistungen zu verbessern.
- Energie und Umwelt: Im Energiebereich ermöglichen Big Data Analysen eine effizientere Nutzung von Ressourcen und tragen zur Entwicklung nachhaltiger Energielösungen bei. Sie werden auch zur Überwachung und zum Schutz der Umwelt eingesetzt, indem beispielsweise Emissionsdaten analysiert werden.
Fazit: Unendliche Möglichkeiten
Wie in der Übersicht deutlich geworden sein dürfte, sind die Möglichkeiten und Grenzen moderner KI-Technologien derzeit kaum absehbar. Nahezu jede Branche sowie Unternehmen aller Größen werden in den nächsten Jahren in der ein oder anderen Form durch diese neueste Phase der digitalen Revolution beeinflusst werden. Derzeit stecken viele Anwendungen zwar noch in den Kinderschuhen, aber ihr Transformations- und Rationalisierungspotenzial lässt sich bereits erahnen – und vor allem schon heute nutzen.
Jeder Jungunternehmer, Start-up-Gründer, aber auch etablierte Firmen und Manager sollten diese frühe Phase nutzen, um sich einen Vorsprung zu verschaffen, Erfahrungen zu sammeln und ihr gesamtes Geschäftsmodell daraufhin zu befragen, wo ihnen KI in Zukunft behilflich sein kann.
Diese Artikel könnten Sie auch interessieren:
Münchner Scale-up Wemolo erreicht Break-even
Mit KI zur Profitabilität: Das 2019 gegründete Münchner Tech-Scale-up Wemolo, der "schrankenlose Parkraumspezialist", verzeichnet nach eigenen Angaben ein durchschnittliches Jahreswachstum von 280 Prozent, ist profitabel und verwaltet mehr als 255.000 Stellplätze in Europa.

Die digitale Transformation von Parkplätzen birgt großes Potenzial – vor allem, wenn sie nicht nur Schranken und Tickets eliminiert, sondern neue Geschäftsmodelle erschließt. In einem europäischen Markt für automatisierte Parksysteme, der auf 50 Milliarden Euro geschätzt wird, hat sich das Münchner Unternehmen Wemolo innerhalb kürzester Zeit in die erste Liga gearbeitet.
Mit einem Jahresumsatz von rund 40 Millionen Euro im Jahr 2024 und einer positiven EBIT-Marge im ersten Quartal 2025 hat das Scale-up trotz des signifikanten Wachstums die Gewinnzone erreicht. Die jährliche Wachstumsrate betrug seit Gründung 2019 durchschnittlich 280 Prozent (CAGR), was Wemolo laut Deloitte zu einem der am schnellsten wachsenden Tech-Unternehmen Deutschlands macht. Nach mehreren Finanzierungsrunden mit insgesamt rund 30 Millionen Euro (650.000 € Pre-Seed, 4,7 Mio. € Seed, 15 Mio. € Series A und zuletzt 10 Mio. € Growth Financing durch Partner wie die CIBC Innovation Banking) untermauert Wemolo damit die Attraktivität digitaler Parklösungen als Wachstumsbranche.
“Wir haben unsere Skalierungsphase genutzt, um parallel die Entwicklung unserer Technologie zu beschleunigen und rasch Marktanteile in fünf europäischen Ländern zu gewinnen”, sagt Wemolo-Mitgründer und CEO Dr. Yukio Iwamoto. Zu den Investor*innen zählen neben den strategischen Partnern Armira Growth und henQ auch die Flix Founders (Gründerteam des Mobilitätsanbieters Flix), wobei Jochen Engert dem Unternehmen als Beirat zur Seite steht.
"Dass sich Wemolo nach vergleichsweise kurzer Zeit ins Plus gearbeitet hat, ist das Ergebnis unseres kapitaleffizienten Wachstumskurses - mit deutlich weniger Investitionskapital als bei vergleichbaren Tech-Unternehmen. Unser KI-basiertes System liefert für Immobilieneigentümer, Asset-Manager, Einzelhandel und Kommunen nicht nur digitale Parklösungen, sondern auch wertvolle Daten für strategische Geschäftsentscheidungen", so Jochen Engert.
Vom Campus-Projekt zur Digitalplattform
Ursprünglich im Juli 2019 aus einem Projekt der UnternehmerTUM entstanden, betreibt Wemolo heute KI-basierte Kamerasysteme zur Kennzeichenerfassung und Abrechnung an über 3.000 Standorten in fünf Ländern. Täglich erfasst das Unternehmen mehr als zwei Millionen Parkvorgänge digital und wickelt diese ab. Das Unternehmen beschäftigt aktuell rund 250 Mitarbeitende und verwaltet insgesamt 255.000 Stellplätze – von Supermärkten und zentralen Parkhäusern über Krankenhäuser bis hin zu Freizeitanlagen wie Skigebieten und Badeseen.
"Unsere Profitabilität basiert nicht auf Kostendiät, sondern auf nachhaltiger Skalierung: mehr Volumen bei stabilen Fixkosten, bessere Flächenauslastung und immer wertvollere Daten-Assets für unsere Kunden", erklärt CEO und Mitgründer Jakob Bodenmüller. "Dank unserer KI-basierten Plattform können wir sehr schnell auf Marktanforderungen reagieren und unsere Lösung kontinuierlich weiterentwickeln."
Geschäftsmodell mit messbarem Mehrwert für Betreiber*innen
Das Kernprinzip: Mithilfe KI-basierter Computer Vision werden Ein- und Ausfahrten erfasst, was Schranken, Tickets, Parkscheiben und vor allem kostenintensives Personal vor Ort überflüssig macht. Wemolo bietet verschiedene Module für die Parkraumdigitalisierung - von der Überwachung kostenfreier Flächen bis zu volldigitalen Bezahlsystemen, die auf die jeweiligen Kund*innenanforderungen angepasst werden können. Die intelligente Plattform ermöglicht nicht nur die effiziente Bewirtschaftung von Parkraum und reibungslose Nutzer*innenerlebnisse, sondern liefert auch wertvolle Daten für optimierte Geschäftsentscheidungen.
“Wir liefern anonymisierte, aber hochgradig aussagekräftige Daten zur Flächennutzung”, erklärt CPTO und Mitgründer Bastian Pieper. “Ein Beispiel: Durch die effektive Vermeidung von Fremdparkern konnte einer unserer Lebensmittelkunden die Verfügbarkeit seiner Kundenparkplätze deutlich erhöhen. Das Ergebnis: Ein messbarer Anstieg des Filialumsatzes, der bei typischen Margen des Lebensmitteleinzelhandels eine Gewinnsteigerung im mittleren fünfstelligen Bereich pro Jahr ermöglicht.”
“Bei gewerblichen Immobilienprojekten ermöglichen unsere präzisen Nutzungsdaten eine optimierte Stellplatzdimensionierung, was für Investoren zu signifikanten Einsparungen bei Tiefgaragen-Investitionen führt und die Gesamtrendite der Immobilie verbessert”, ergänzt Pieper.
Wachstumsfinanzierung strategisch eingesetzt
Den Break-even wertet das Management als Bestätigung des Geschäftsmodells, aber auch als Signal des wachsenden Bedarfs am Markt. “Wir merken, dass immer mehr Unternehmen und Immobilieneigentümer aktiv nach einer unkomplizierten, verlässlichen Lösung suchen, um ihre Parkflächen zu digitalisieren – und zugleich relevante Daten zu erheben. Das Thema steht weiterhin am Anfang. Wir wollen Wemolo zum stärksten Anbieter auf dem Feld der smarten Parklösungen ausbauen”, sagt Iwamoto.
“Wir verfolgen bei unserer Technologieentwicklung einen hybriden Ansatz”, erklärt Pieper. “Die entscheidenden Komponenten – unsere custom-trainierte KI und die zentrale Softwareplattform – entwickeln wir komplett inhouse, während wir Spezialkomponenten wie Bezahlautomaten nach unserem Design in Deutschland fertigen lassen.”
“Wir setzen auf robuste Industrial-Grade-Hardware, auf der unsere speziell trainierte KI läuft, um jedes Fahrzeug unter allen Wetterbedingungen zuverlässig zu erfassen. Diese Kombination aus eigener Software-Expertise und gezielter Hardware-Integration ermöglicht uns viel schnellere Innovationszyklen als bei traditionellen Parksystembetreibern oder reinen Software-Anbietern”, führt Pieper fort. “Ähnlich wie Tech-Vorreiter aus dem Silicon Valley bringen wir neue Features und KI-Optimierungen in Wochen statt Quartalen zur Marktreife.”
Expansion und Herausforderungen des Wachstums
Wemolo ist bereits in fünf europäischen Ländern aktiv, darunter Deutschland, Österreich, Schweiz, Polen und Italien. Für 2025 plant das Unternehmen, seine digitalen Bezahllösungen in diesen und weiteren europäischen Märkten auszubauen. Dabei setzt das Scale-up auf ein Netzwerk aus strategischen Kooperationen mit Lebensmitteleinzelhändlern, Immobilienentwicklern und kommunalen Einrichtungen.
“Die klassischen Schrankenparksysteme sind in vielen Regionen noch Standard, aber der Markt wandelt sich rapide”, sagt Bodenmüller. “Unser digitales Konzept steigert den Verbraucherkomfort, die Wirtschaftlichkeit von Immobilien und erfüllt ESG-Anforderungen.”
Die größten Herausforderungen beim weiteren Wachstum sieht das Management vor allem in der unterschiedlichen Regulierung zur Kameraüberwachung in den europäischen Ländern sowie in der Akzeptanz schrankenloser Systeme bei traditionell orientierten Betreibern. “Mit unserer DSGVO-konformen Technologie und messbaren Kostenvorteilen durch den Wegfall wartungsintensiver Schranken und Ticketsysteme überzeugen wir den Markt”, betont Pieper.
Ambitionierte Ziele in einem wachsenden Markt
Vor dem Hintergrund der Profitabilität plant Wemolo nun den nächsten Wachstumsschritt. “Wir sind im digitalen Parksegment bereits Marktführer in Europa und wollen zum absolut stärksten Provider werden”, sagt Iwamoto. “Dass wir jetzt bereits profitabel sind, verschafft uns die nötige Unabhängigkeit, um in Technologie, Teams und Expansion zu investieren, ohne dabei von externem Kapital abhängig zu sein." Branchenexperten prognostizieren für den europäischen Markt digitaler Parksysteme ein anhaltend starkes Wachstum. Denn bislang gelten weniger als 25 Prozent des auf rund 50 Milliarden Euro geschätzten Gesamtmarktes als technologisch modernisiert – etwa durch kamerabasierte Zugangssysteme, automatisierte Bezahlprozesse oder intelligente Flächenanalysen.
Circunomics startet eigenes Batterie-Testlabor
Die Circunomics-Gründer Felix Wagner und Jan Born haben sich das Ziel gesetzt, eine zirkuläre Batteriewirtschaft zu etablieren, indem sie einen digitalen Marktplatz für den Second-Life-Einsatz und das Recycling gebrauchter Batterien bieten. Mit der Einrichtung des eigenen Batterie-Testlabors setzt das Start-up mit Hauptsitz Mainz seine Expansion fort.

„Die Kreislaufwirtschaft ist in Zukunft von immer größerer Bedeutung. Dies ist für uns die große Chance, mit dem digitalen Marktplatz für gebrauchte Batterien, Module und Zellen eine herausragende Position einzunehmen“, sagt Felix Wagner, Co-Founder und CEO von Circunomics. „Im Jahr 2030 werden alleine im Automobilsektor zwischen 200 und 300 Millionen Elektrofahrzeuge auf den Straßen der Welt unterwegs sein. Das bedeutet, dass dann jedes Jahr etwa sechs Millionen gebrauchte Batterien als Rückläufer aus Altfahrzeugen auf den Markt kommen. Diese wiederzuverwenden oder gezielt zu recyclen ist eine Mega-Aufgabe, die gelöst werden muss. Schließlich haben wir alle ein Ziel: Weniger CO2 zu produzieren und weniger der wertvollen, seltenen Rohstoffe zu verbrauchen.“
Battery Lifecycle Management Solution
Die Ergebnisse KI-basierter Analysen von gebrauchten Batterien, die beispielsweise in elektrischen Fahrzeugen verwendet werden, mit selbst ermittelten Laborwerten aus einer Real-Life-Simulation abgleichen, trainieren und verifizieren: Das ist die Aufgabe des neuen Batterie-Testlabors, das vom Start-up Circunomics in Roßdorf bei Darmstadt eingerichtet wurde und jetzt seinen Betrieb vollumfänglich aufgenommen hat.
Die 2019 gegründete Circunomics GmbH ist damit in der Lage, eine Datenbasis für die selbst entwickelte Software aufzubauen, die wiederum genutzt wird, um den Gesundheitszustand (State of Health) einer gebrauchten Batterie während und nach einer Erstverwendung (First Life) sehr präzise zu ermitteln. Vielmehr aber kann detailliert simuliert und hochgerechnet werden, wie sich die gebrauchte Batterie bei einer Zweitverwendung (Second Life) zum Beispiel in einem stationären Speichersystem verhält. Zudem kann eine Empfehlung ausgesprochen werden, welche Batterien für das jeweilige Projekt am besten geeignet sind.
Mit der Einrichtung des Batterie-Testlabors setzt das Start-up mit Hauptsitz Mainz seine Expansion fort, die nach einer erfolgreich durchgeführten Series-A-Finanzierungsrunde möglich ist. Zu Jahresbeginn 2025 hatte Circunomics von Investor*innen über acht Millionen Euro erhalten.
Real-Life-Simulation im Testlabor
Im neuen Batterie-Testlabor in Roßdorf können je nach Bedarf und Programm verschiedene Zellen gleichzeitig in einer sicher abgeschirmten Prüfeinrichtung untergebracht und unterschiedlichsten Belastungen ausgesetzt werden. Es erfolgt eine umfangreiche Real-Life-Simulation täglicher Batterienutzungssituationen beispielsweise in einem Elektrofahrzeug: Schnell oder langsam aufeinander folgende Ladezyklen, unterschiedliche Ladestromstärken mit bis zu 300 Ampere Gleichstrom, verschiedene Degradierungszustände der Batterie und das Ganze – wenn notwendig – bei unterschiedlichen Temperaturen. Möglich ist eine Temperaturspanne von minus 20 bis plus 60 Grad Celsius. Die jeweiligen Tests der Zellen können über einen kurzen, mittleren oder längeren Zeitraum durchgeführt werden. Das können wenige Tage, Wochen und Monate, aber auch bis zu zwei Jahre sein.
„Bisher haben wir die Zellen von einem externen Dienstleister analysieren lassen. Diese Aufgaben nehmen wir jetzt selbst in die Hand, erhöhen damit unsere Effizienz, sind schneller mit dem Abgleich von Daten, wodurch wir in der Lage sind, unsere Simulationen und Hochrechnungen für eine Verwendung im Second Life noch genauer und zuverlässiger anbieten zu können“, erklärt Jan Born, Co-Founder und CTO von Circunomics. Und ergänzt: „Wir haben einerseits Millionen von Daten, die während des First Life einer Batterie gesammelt werden und die uns zur Verfügung gestellt werden. Auf dieser Basis haben wir bisher mit der KI-unterstützten Software am Computer analysiert, was die gebrauchte Batterie noch im Stande ist, im Second Life zu leisten, bevor sie dann endgültig dem Recycling zugeführt wird. Im neuen Labor und mit den eigenen Analysen sehen wir nun, wie sich eine Zelle im simulierten Batterieleben verhält und wir können die dabei ermittelten Ergebnisse, mit denen aus der Software abgleichen und verifizieren.“
KI-Übergangsphase: Fluch und Segen
Zwischen Wundermaschine und Blackbox – Warum wir gerade in einer KI-Übergangsphase leben und was das generell für das Marketing bedeutet.

Künstliche Intelligenz (KI) verändert gerade in rasantem Tempo unsere Welt. Sie automatisiert Prozesse, entlastet Teams, liefert Analysen in Echtzeit und ermöglicht einen bisher nicht gekannten Grad an Personalisierung. Wer heute im Marketing arbeitet, kommt an KI nicht mehr vorbei – sei es beim Texten von Werbebotschaften, beim Targeting, in der Bildgenerierung oder der Erfolgsmessung.
KI verspricht Effizienz, Präzision und neue kreative Möglichkeiten. Doch die Euphorie wird zunehmend begleitet von einer neuen, ernüchternden Erfahrung: Künstliche Intelligenz kann auch Nutzererlebnisse verschlechtern, Prozesse intransparent machen – oder gar ganze Geschäftsmodelle gefährden. Der technologische Fortschritt ist zweifellos da, doch gesellschaftlich, wirtschaftlich und kulturell befinden wir uns noch mitten in einer Übergangsphase. Und das birgt Risiken – nicht nur für Plattformen, sondern auch für Unternehmen, die sie nutzen.
Beispiel Pinterest: Wenn der Algorithmus plötzlich entscheidet
Ein aktuelles Beispiel liefert Pinterest: Die visuelle Such- und Inspirationsplattform setzt verstärkt auf KI, um Inhalte effizient zu kategorisieren, Hassrede zu erkennen, urheberrechtlich geschützte Werke zu markieren oder Spam zu unterbinden. Was auf dem Papier sinnvoll und zukunftsgerichtet klingt – ein moderner „Content Safety Stack“ mit automatisierter Moderation –, hat in der Praxis zahlreiche Creator*innen und Unternehmen auf dem falschen Fuß erwischt.
Accounts wurden gelöscht, Pins blockiert oder ganze Seiten unsichtbar gemacht – oft ohne erkennbare Begründung. Was ist passiert? Die KI-Modelle bei Pinterest wurden darauf trainiert, problematische Inhalte automatisiert zu erkennen und Plattformregeln durchzusetzen. Doch wie in vielen KI-Systemen liegt der Teufel im Detail: Die Modelle sind noch nicht präzise genug, um zwischen legitimen und grenzwertigen Inhalten zuverlässig zu unterscheiden – vor allem in einem visuellen Umfeld wie Pinterest. Besonders problematisch wird es, wenn Nutzer*innen keine Möglichkeit haben, die Entscheidungen nachzuvollziehen oder effektiv dagegen vorzugehen.
Für Unternehmen, die Pinterest als Marketingplattform nutzen, ist das ein unkalkulierbares Risiko. Wer auf Sichtbarkeit und Reichweite angewiesen ist, kann es sich kaum leisten, dass automatisierte Systeme ohne Vorwarnung Inhalte sperren. Der Vertrauensschaden ist enorm.
Im Spannungsfeld der KI-Nutzung
Dieser Fall steht exemplarisch für ein zentrales Spannungsfeld der KI-Nutzung: Auf der einen Seite die große Hoffnung auf Automatisierung, Kostenersparnis und Kontrolle – auf der anderen Seite die Realität einer noch nicht vollständig ausgereiften Technologie, die häufig wie eine Blackbox agiert. Für Nutzer*innen bedeutet das: weniger Transparenz, weniger Kontrolle, mehr Frustration. Ähnliche Phänomene beobachten wir auch bei großen Social-Media-Plattformen wie Meta oder TikTok. Auch hier sorgen KI-basierte Moderationssysteme regelmäßig für Unmut – sei es durch falsch erkannte Verstöße, Einschränkungen der Reichweite oder Verzögerungen im Kundenservice, der durch automatisierte Antworten ersetzt wurde. Dabei geht es nicht um generelle Ablehnung von KI – sondern um die Art und Weise, wie sie implementiert und kommuniziert wird.
Gute KI ist unsichtbar – weil sie funktioniert
Das Marketing der Zukunft soll nicht nur effizient, sondern muss auch verantwortungsvoll sein. Es wird davon abhängen, wie gut Unternehmen die Balance finden zwischen Automatisierung und menschlicher Kontrolle. Zwischen der Verlockung, Prozesse zu beschleunigen, und der Notwendigkeit, Vertrauen zu erhalten. Gute KI ist unsichtbar – weil sie funktioniert. Sie analysiert, aber entscheidet nicht alleine. Zukunftsfähiges Marketing ist also geprägt von einer Kombination aus technologischer Intelligenz und menschlicher Relevanz. KI, Automatisierung und Datenanalyse ermöglichen eine bisher unerreichte Präzision: Zielgruppen werden individueller angesprochen, Inhalte in Echtzeit ausgespielt und Customer Journeys automatisiert optimiert. Personalisierung ist dabei kein Zusatz mehr, sondern Standard.
Gleichzeitig verändern sich die Erwartungen der Konsument*innen: Sie wollen authentische Marken, klare Haltung, Datenschutz und echte Mehrwerte – keine leeren Werbeversprechen. Deshalb wird Marketing künftig nicht nur effizient, sondern auch ethisch und wertebasiert sein müssen. Vertrauen wird zur zentralen Währung. Auch deshalb ist das Marketing der Zukunft vor allem Inhouse zu verorten. Agenturen befinden sich auf dem absteigenden Ast – sie sind teuer und liefern nicht die Ergebnisse, die Unternehmen und Marken wirklich benötigen. Zu dieser Entwicklung gehört auch, dass Inhouse-Marketing-Verantwortliche umfassend geschult werden müssen, damit sich der Einsatz von KI maximal einfach gestaltet und gleichzeitig äußerst produktiv ist.
KI ist weder Fluch noch Segen – sie ist ein mächtiges Werkzeug, das mit Bedacht eingesetzt werden muss. Wer KI einfach laufen lässt, riskiert Vertrauensverluste. Wer sie aber erklärt, einbettet und begleitet, kann gewinnen – an Effizienz, Qualität und Glaubwürdigkeit. Das Marketing der Zukunft ist nicht einfach KI-gesteuert. Es ist menschenzentriert – mit KI als starkem, aber verantwortungsbewusstem Assistenten.
Der Autor Bastian Sens gründete Sensational Marketing im Jahr 2010 – zunächst als klassische Onlinemarketing-Agentur. Im Laufe der Jahre kristallisierte sich jedoch ein alternativer Weg heraus, sodass sich das Unternehmen zu einer Onlinemarketing-Academy wandelte.
charles: DSGVO-konformer KI-Agent für WhatsApp gelauncht
Noch bevor Tech-Riesen wie Meta ihre Angebote auf den Markt bringen, bietet das Berliner Start-up charles erprobte, skalierbare und regulatorisch abgesicherte KI-Agent-Lösungen.

Während Meta LLM-gestützte Agenten auf WhatsApp für Verbraucher*innen einführt, will das Berliner Start-up charles Marken einen entscheidenden Vorsprung verschaffen. Mit der Einführung seines AI Agent Squad will sich charles als führender europäischer Anbieter markensicherer, hochspezialisierter KI-Agenten auf WhatsApp mit integrierter Sicherheit und Compliance etablieren – und damit den weltweit meistgenutzten Messenger in einen echten Handels- und Servicekanal transformieren.
Die KI-Agenten von charles nutzen WhatsApps Interaktivität, proprietäres Markenwissen und die Leistungsfähigkeit moderner KI, um Kund*innen direkt in WhatsApp anzusprechen - kontextbezogen, personalisiert und autonom. Von intelligenten Produktempfehlungen bis zu Support soll die Interaktion Kund*innen ein äußerst persönliches Gefühl vermitteln.
„Unsere KI-Agenten übernehmen echte Aufgaben wie Produktempfehlungen, Beantwortung von Fragen oder Reklamationsbearbeitung. Sie agieren wie echte Mitarbeiter: Man weist ihnen eine echte Aufgabe zu und gibt alle Mittel an die Hand, die sie benötigen, um diese Aufgabe zu erfüllen – sei es durch Zugriff auf Daten oder klare Vorgaben geben“, sagt Andreas Tussing, CEO von charles. “So ermöglichen wir Gespräche, die heute aufgrund von Ressourcen noch nicht möglich sind, und bieten gleichzeitig ein personalisiertes und innovatives Kundenerlebnis.“
WhatsApps native Interaktivität trifft auf markensichere KI
Mit den Berliner KI-Agenten soll WhatsApp zur leistungsstärksten Plattform für Kundenbeziehungen werden - und die Herausforderungen von Marken in Bezug auf Konversion und Kundenbindung lösen, ohne Authentizitätsverlust. Durch die Kombination der hohen Engagement-Raten von WhatsApp mit KI-gesteuerter Automatisierung und Personalisierung sollen Marken gleichzeitig Kundenzufriedenheit und Umsätze steigern sowie Betriebskosten senken können.
Fokus auf markenspezifisches Know-how, Security und Compliance
Der AI Agent Squad nutzt modernste KI-Technologien und verbindet generative Sprachmodelle mit markenspezifischen Datenquellen wie Produktkatalogen, CRM-Systemen und Kundenpräferenzen. Integrierte Schutzvorkehrungen und Tonalitätskontrollen gewährleisten Markensicherheit, während alle Daten auf europäischen Servern verarbeitet werden, ohne externe API-Aufrufe oder Datenextraktion - DSGVO-konform und markensicher.
What's next? Der Wettlauf um eigene Messaging-KI
Mit der Einführung von Memory durch OpenAI und Meta‘s Llama-basierte Agenten auf WhatsApp, heizt sich der Markt für personalisierte, generative Kundenkommunikation auf. Der EU AI Act und das aktuelle Handelsklima erhöhen die Dringlichkeit – Lösungen mit starker Data Governance und Auditierbarkeit sind daher unerlässlich. Charles will sich vor diesem Hintergrund als skalierbare, europäische Alternative zu generischen LLM-Lösungen positionieren – in Europa entwickelt und gehostet.
Robotik-Start-up Ottonomy startet Pilotprojekt im Münchner Flughafen
Der Lufthansa Innovation Hub und der Munich Airport kooperieren zur Förderung von Innovation in der Luftfahrt: Pilotprojekte mit Start-ups sind vor diesem Hintergrund wichtige Hebel zur Implementierung innovativer Lösungen.

Die Luftfahrtbranche steht vor einer Vielzahl von Herausforderungen, sowohl auf Kund*innenseite als auch in geschäftlichen Prozessen. Innovation spielt eine entscheidende Rolle bei der Bewältigung dieser Herausforderungen, indem sie Möglichkeiten zur Digitalisierung, Automatisierung, Optimierung und Neuerfindung schafft.
Vor diesem Hintergrund haben der Lufthansa Innovation Hub, die Berliner Innovationseinheit der Lufthansa Group, und die Terminal 2 Gesellschaft des Flughafens München eine Absichtserklärung (MoU) unterzeichnet. Mit der Unterzeichnung bekunden beide ihre Absicht, durch gemeinsame Initiativen die Innovation in der Luftfahrtbranche voranzutreiben.
“Innovation in der Reiseindustrie ist eine gemeinschaftliche Aufgabe, die dem gesamten Ökosystem zukommt”, sagt Dr. Stefan Nothelfer, Senior Director und Leiter Corporate Venturing & Strategic Growth beim Lufthansa Innovation Hub. “Wir freuen uns darauf, mit der Terminal 2 Gesellschaft des Flughafens München zusammenzuarbeiten, um das Kundenerlebnis gemeinsam zu verbessern und den gesamten Reiseprozess zu optimieren.”
Robotik-Einsatz im Terminal 2 des Flughafens München
Ein konkretes Beispiel für das Vorantreiben von Innovation im Flughafenbetrieb durch Pilotprojekte ist die Zusammenarbeit mit dem Robotik-Start-up Ottonomy.
Seit dieser Woche sind zwei autonome Service-Roboter in den Bereichen der Gates und Gepäckausgabe im Terminal 2 des Flughafens München im Einsatz. Die Roboter sind darauf ausgelegt, verschiedene Aufgaben zu übernehmen, um reibungslose Kund*inneninteraktionen zu ermöglichen. Sie unterstützen Passagier*innen mit Informationen und bewerben die Dienstleistungen von Lufthansa Airlines.
Durch das Scannen eines QR-Codes auf dem Roboter mit ihrem Smartphone gelangen Reisende zu Chat-Assistenten für Self-Service-Optionen. Dort können sie Fluginformationen abrufen und Prozesse wie Umbuchungen oder Erstattungen eigenständig verwalten. Die Roboter liefern zudem wichtige Informationen zu flughafenbezogenen Themen wie Tax Refund und Lost and Found. Dank integrierter Behälter können die Roboter auch für den Warentransport eingesetzt werden – etwa künftig für die Verteilung von Wasserflaschen an Passagier*innen.

“Unser Ziel ist es, unseren Gästen das beste Reiseerlebnis in Europa zu bieten”, sagt Marcus Schnabel, Vice President Ground Operations Hub Munich. “Die Nutzung digitaler Lösungen ist für dieses Vorhaben von entscheidender Bedeutung, und wir freuen uns, als Pilotstandort für wegweisende Innovationen zu dienen.”
Ottonomy setzt seine Roboter weltweit an Flughäfen, in Krankenhäusern und für Auslieferungen auf der letzten Strecke zum/zur Kund*in ein. “Unsere Roboter, die mit Contextual AI arbeiten, ermöglichen es Unternehmenskunden, Innovationen voranzutreiben, bessere Kundenerlebnisse zu schaffen und die betriebliche Effizienz in der Luftfahrt zu steigern“, sagte Ritukar Vijay, CEO von Ottonomy. „Eine Partnerschaft mit zukunftsorientierten Branchengrößen wie der Lufthansa bringt diese Vision der Realität ein großes Stück näher.“
Das Pilotprojekt mit Ottonomy entstand im Rahmen von Startup Gate, der Venture-Clienting-Initiative der Lufthansa Group. Startup Gate verbindet Teams der Lufthansa Group mit hochmodernen Start-ups, um deren Technologien schnell zu adaptieren und schlanke sowie kosteneffiziente Kooperationen zu ermöglichen.
In fünf Schritten zu rankingfähigen KI-Texten
Das aktuelle Whitepaper von eology beleuchtet das Potenzial und die Grenzen von KI-gestütztem Content im Hinblick auf SEO. Hier gibt’s Tipps rund um das Thema rankingfähige KI-Texte.

Die auf Suchmaschinenmarketing spezialisierte Online-Marketing-Agentur eology zeigt in ihrem Whitepaper „KI-Texte und Google-Rankings: Wie gut ranken KI-Inhalte?“, wie KI-Inhalte auf Google ranken, welche Herausforderungen sie mit sich bringen und welche Schritte erforderlich sind, um sie rankingfähig zu machen. Zudem wird auch auf spezifische technische, strategische und kreative Aspekte eingegangen, die für die Erstellung hochwertiger Inhalte entscheidend sind.
Gewusst wie: rankingfähige KI-Teste
Was zweifelsfrei erwiesen ist: Nach dem SEO-Qualitätsstandard erstellte KI-Texte sind rankingfähig und können die Sichtbarkeit einer Domain genauso unterstützen wie menschliche Inhalte. Allerdings ist die Erstellung solcher Texte nicht damit getan, einfach einen Prompt einzugeben und das Ergebnis online zu stellen. Es bedarf menschlicher Zuarbeit und Kontrolle.
Di Expert*innen von eology haben aus ihrer Studie heraus Best Practices ermittelt, um zu rankingfähigen Texten zu kommen. In fünf Schritten kannst du das auch:
1. Schritt: Chatbot briefen
Bei ChatGPT einen CustomGPT anlegen mit allen notwendigen Projektinstruktionen. Auf diese greift die KI immer zurück, ihr müsst sie daher nicht immer wieder neu eingeben. Das spart Zeit und sorgt langfristig für besseren Output. Bei Claude geht das nicht. Hier kopiert ihr die Projektinstruktionen einfach in den Chat. Die KI meldet dann, dass sie die Aufgabe verstanden hat und fasst diese noch einmal zusammen.
Folgende Instruktionen sind wichtig:
• Keywordset
• Infos zur Verwendung der Keywords (Verteilung, Häufigkeit, Positionierung im Text)
• Textlänge
• Zielgruppe und Leseransprache
• Stil, Tonalität und weitere Infos zum Wording
• Formaler Textaufbau (Überschriften, Aufzählungen, Tabellen)
• Inhaltlicher Textaufbau, ggf. Gliederung
2. Schritt: Chatbot testen
Prompt erstellen mit allen für den einzelnen Text relevanten Informationen (Thema, Keywordset). Da ihr alle Projektinstruktionen bereits an den Chatbot übermittelt habt, braucht ihr in den Prompt nur noch die Infos für den einzelnen Text reinschreiben. Er lautet dann: „Hallo GPT, erstellst Du mir bitte einen Text zum Thema „XY“ mit diesen Keywords: Hauptkeyword=Thema: [Hauptkeyword] Nebenkeywords: [Nebenkeywords] W-Fragen: [W-Fragen]. Danke.“
3. Schritt: Output prüfen
Output prüfen auf alle Projektanforderungen: SEO, Keywords, Wording, Rechtschreibung sowie Inhalt.
4. Schritt: Anpassungen vornehmen
Wenn der Output nicht passt, gebt der KI Anweisungen für Änderungen, passt die Projektinstruktionen an oder optimiert den Prompt. Ladet Beispieltexte hoch mit eurem gewünschten Stil, lasst die KI den Stil beschreiben und packt die Stilbeschreibung in die Projektinstruktionen. Wenn der Chatbot wiederholt zu wenig Text liefert, kann es Sinn machen, dass ihr diese Information doch in den Prompt eingeben müsst, selbst wenn diese in den Instruktionen steht. Insbesondere ChatGPT neigt dazu, zu wenig Text zu liefern und muss immer wieder daran erinnert werden.
5. Schritt: Bilder generieren
Instruktionen für die Bilderstellung in den Projektinstruktionen hinterlegen. Bei einem CustomGPT hinterlegt ihr auch den Stil für die Bilder, denn dann habt ihr eine Chance auf einen einheitlichen Stil. Allerdings ist ChatGPT mit der Schnittstelle zu DALL-E nicht die beste Bild-KI. Daher funktioniert nicht alles reibungs- los. Für eine hochwertige und professionelle Bildgenerierung nutzt besser eine spezielle Bild-KI wie Midjourney.
Nach dem KI-Hype: Diese vier Trends bleiben
KI entwickelt sich rasant weiter. Doch welche Trends bleiben und setzen sich wirklich durch? Diese Entwicklungen sollten Unternehmen 2025 weiterhin im Blick behalten.

Die vergangenen zwei Jahre haben einen regelrechten KI-Boom erlebt. Insbesondere generative Modelle (GenAI) haben sich rasant weiterentwickelt und etablieren sich zunehmend als feste Größe in den Arbeitsprozessen von Organisationen weltweit. Angesichts dieser Dynamik fragen sich nun viele Unternehmen, welche Entwicklungen das Jahr 2025 bestimmen werden und welche Potenziale sich daraus ergeben. Diese vier wichtigen KI-Trends werden uns 2025 maßgeblich begleiten.
Ob automatisierte Textproduktion, interaktive Chatbots oder KI-gestützte Analysen für Logistik und Finanzen: KIist längst im Tagesgeschäft angekommen. Diese Dynamik setzt sich 2025 fort. Dabei verschieben sich die Schwerpunkte zunehmend hin zu spezialisierten, effizienteren und flexibleren KI-Anwendungen.
Modular AI: Kleine Bausteine, große Wirkung
Modulare KI-Systeme werden zum Schlüssel für Unternehmen, die domänenspezifische Lösungen benötigen. Diese spezialisierten KI-Module sind genau auf einzelne Aufgabenbereiche zugeschnitten, etwa auf den Kundenservice oder auf Betrugserkennung im Bankwesen. Plug-and-Play-Architekturen beschleunigen hierbei die Implementierung: Statt monolithische Modelle einzuführen, integrieren Unternehmen bedarfsgerecht nur jene Module, die sie wirklich benötigen. Auf diese Weise lässt sich der zeitliche und finanzielle Aufwand für die Implementierung in Organisationen erheblich senken. Damit das Zusammenspiel verschiedener Module funktioniert, treiben Hersteller*innen und Standardisierungsgremien die Entwicklung einheitlicher APIs und Kommunikationsprotokolle weiter voran. Diese Interoperabilität ebnet den Weg für dynamische KI-Systeme, die sich je nach Anforderung in bestehende IT-Landschaften integrieren lassen.
Edge AI und On-Device Intelligence: Schneller zum Ergebnis
Während KI-Anwendungen bislang oft auf starke Cloud-Infrastrukturen angewiesen waren, verlagert sich die Intelligenz nun zunehmend an den Netzwerkrand. Dadurch können Daten in Echtzeit analysiert werden, um schnell fundierte Entscheidungen zu treffen. Gerade in sensiblen Bereichen wie der medizinischen Bildgebung oder in Branchen mit hoher Zeitkritikalität, beispielsweise bei autonomen Fahrzeugen, minimiert eine Edge-basierte KI-Analyse Latenzzeiten und ist somit wettbewerbsentscheidend. Parallel dazu treten neue, energieeffiziente KI-Chips wie neuromorphe Prozessoren oder TPUs (Tensor Processing Units) auf den Plan. Sie ermöglichen leistungsstarke KI-Anwendungen in Systemen mit begrenztem Platz oder Energiebudget – ein wichtiger Fortschritt für Wearables und sogar Satelliten.
Foundation Models: Optimieren statt komplett neu trainieren
Große KI-Basismodelle, sogenannte Foundation Models, haben 2024 ihren Nutzen in zahlreichen Branchen bewiesen. 2025 rücken jedoch kosten- und ressourcenschonende Optimierungen stärker in den Vordergrund. Verfahren wie Parameter-effizientes Tuning oder LoRA (Low-Rank Adaptation) ermöglichen es, aus umfassenden Basismodellen spezialisierte Teilmodelle zu erzeugen, ohne sie von Grund auf neu trainieren zu müssen. Kleinere, spezialisierte Modelle behalten die Leistungsfähigkeit der großen Systeme oft zu einem Bruchteil der nötigen Rechenleistung. Das senkt nicht nur die Kosten, sondern trägt auch zur Nachhaltigkeit bei, da der Energieverbrauch bei Training und Einsatz von KI zunehmend kritisch hinterfragt wird. Darüber hinaus entstehen lokalisierte Modelle, die speziell auf bestimmte Regionen oder Sprachen zugeschnitten sind und dadurch genauere Ergebnisse liefern.
Fortschrittliche KI-Agenten: Mehr Kontext, mehr Kollaboration
KI-Agenten erreichen 2025 eine neue Evolutionsstufe und können nuancierte Kontexte immer besser erfassen. Das steigert die Personalisierung von Interaktionen im Kund*innenservice, Gesundheitswesen oder Bildungsbereich. Zugleich werden Self-Improving Agents immer wichtiger: Sie enthalten eingebaute Feedbackschleifen, lernen aus ihren Erfahrungen und optimieren ihre Fähigkeiten – ganz ohne Eingreifen von außen. Darüber hinaus setzt sich das Konzept der Multi-Agent Collaboration durch. Hierbei übernehmen verschiedene KI-Agenten jeweils Spezialaufgaben und koordinieren sich untereinander, um komplexe Probleme wie logistische Planungen oder den Ablauf bei Großschadenslagen effizient zu lösen.
Fazit
Das laufende Jahr wird wie das letzte – und vermutlich wie noch viele kommende Jahre – von künstlicher Intelligenz geprägt sein. Zwar müssen wir bei Aspekten wie Datensicherheit, Transparenz und dem Schutz persönlicher Informationen weiterhin aufmerksam bleiben, doch gleichzeitig eröffnen sich durch KI ganz neue Chancen für Innovation, Effizienz und Wachstum. Schon jetzt arbeiten Unternehmen, Regierungen und Forschungseinrichtungen verstärkt Hand in Hand, um Standards zu definieren und verantwortungsvolle Lösungen zu entwickeln. Damit können wir das enorme Potenzial dieser Technologie nutzen und zugleich sicherstellen, dass Fortschritt und Vertrauen im Einklang stehen.
Der Autor Ramprakash Ramamoorthy ist Director of AI Research bei Zoho.
KI als Erfolgsfaktor für Mikro- und Kleinunternehmen
Wie Start-ups und Kleinunternehmen mit smarten KI-Tools Zeit und Ressourcen sparen.

Zeit ist die wertvollste Ressource für Unternehmer*innen. Zwischen wichtigen Aufgaben, wie Kund*innenmanagement, Buchhaltung und Marketing bleibt oft wenig Zeit für strategische Weiterentwicklung. Hier eröffnet künstliche Intelligenz (KI) neue Chancen und Potenziale: KI kann Prozesse automatisieren, die Effizienz steigern und Unternehmer:innen wertvolle Stunden zurückgeben. Laut der GoDaddy Global Entrepreneurship Survey 2025 sparen Start-ups und Kleinunternehmen durch den Einsatz von KI-Tools durchschnittlich zehn Stunden pro Woche. Doch nicht nur die Zeitersparnis ist entscheidend: KI bietet zudem Wettbewerbsvorteile und ermöglicht es Kleinunternehmen, auf Augenhöhe mit größeren Playern zu agieren.
Zahlen, die überzeugen: Warum Start-ups und Kleinunternehmen auf KI setzen
Die Studie zeigt, dass Kleinunternehmen und Start-ups durch den Einsatz von KI bedeutende Vorteile erzielen können. Besonders hervorzuheben: 82 % der Kleinunternehmen geben an, dass KI ihnen hilft, mit größeren Organisationen besser zu konkurrieren. Auch in der Zeitersparnis liegt ein großer Vorteil: Unternehmer:innen gewinnen durchschnittlich 10 Stunden pro Woche, die sie in strategische Aufgaben investieren können.
Langfristig zeigt sich zudem ein klarer positiver Geschäftsausblick: 69 % der Unternehmen, die KI nutzen, erwarten in den nächsten drei bis fünf Jahren Wachstum – deutlich mehr als die 45 % unter den Nicht-Nutzer*innen. Ein deutliches Signal, dass KI längst nicht mehr nur eine Zukunftsvision ist, sondern bereits heute den Unternehmensalltag revolutioniert.
Praxisbeispiele: Wie kleine Unternehmen KI erfolgreich einsetzen
Die Anwendungsmöglichkeiten von KI-Tools sind besonders für Gründer:innen und Kleinunternehmen von Bedeutung, da sie ihnen helfen können, Prozesse zu automatisieren, Ressourcen effizienter zu nutzen und mit größeren Wettbewerbern Schritt zu halten:
- Logo-Erstellung: Der Aufbau einer überzeugenden visuellen Identität ist für jedes Unternehmen essenziell, kann aber zeit- und kostenintensiv sein. KI-gestützte Tools ermöglichen es Unternehmer:innen, innerhalb weniger Minuten einzigartige Logos zu generieren und so ein professionelles Markenbild zu etablieren.
- Website-Entwicklung in wenigen Minuten: Moderne KI-Technologien ermöglichen es, komplette Websites mit wenigen Klicks zu generieren. Ohne technische Vorkenntnisse können Unternehmer:innen innerhalb kürzester Zeit eine funktionale Website mit personalisierten Inhalten veröffentlichen.
- Automatisierte Suchmaschinenoptimierung (SEO): KI kann Unternehmen dabei unterstützen, ihr Suchmaschinenranking zu verbessern. Durch gezielte Keyword-Analysen und Optimierungsvorschläge wird die Sichtbarkeit in den Suchergebnissen erhöht, was letztlich zu mehr Kund*innen führen kann.
- Professionelle E-Mail-Dienste: Eine E-Mail-Adresse mit eigener Domain schafft nicht nur Vertrauen bei Kund:innen, sondern trägt auch zur Markenbildung bei. Zusätzlich sorgt KI-gestützte Technologie für den Schutz des Mailverkehrs, inklusive Funktionen wie Backups, Archivierung und nahtloser Migration.
Der gezielte Einsatz von KI-gestützten Tools kann nicht nur wertvolle Zeitressourcen freisetzen, sondern auch dazu beitragen, die digitale Präsenz und Professionalität eines Unternehmens nachhaltig zu optimieren.
Wachstum mit Stolpersteinen?
Die Nutzung von KI kann Unternehmen enorme Vorteile bieten, stellt sie aber auch vor einige Herausforderungen. Durch den Einsatz von KI lassen sich Geschäftsprozesse skalieren, Kosten senken und datengetriebene Entscheidungen treffen, was mehr Raum für Kreativität und strategische Entwicklung schafft. Gleichzeitig müssen sich Unternehmen mit Themen wie Datenschutz, Implementierungskosten und der Einarbeitung in neue Technologien auseinandersetzen. Besonders für Gründer*innen ist es entscheidend, diese Herausforderungen frühzeitig anzugehen, um langfristig wettbewerbsfähig zu bleiben.
Fazit
Die Ergebnisse der GoDaddy-Studie belegen, dass künstliche Intelligenz nicht nur eine technologische Spielerei ist, sondern Gründer*innen und Kleinunternehmer*innen echte Vorteile bringt. Wer heute in KI investiert, sichert sich entscheidende Vorteile für die Zukunft. Jetzt ist die perfekte Zeit, die Potenziale von KI zu erkunden und für den eigenen Geschäftserfolg zu nutzen.
Die Autorin Alexandra Anderson ist Marketing Director Germany bei GoDaddy und seit mehr als zehn Jahren als Marketingexpertin in der IT-Branche tätig. Ein besonderes Anliegen ist ihr die Digitalisierung von Mikro- und Kleinunternehmer*innen.
heart job: Werte als strategischer Erfolgsfaktor
Das 2024 gegründete deutsch-österreichische Start-up heart job nutzt künstliche Intelligenz, um öffentlich verfügbare Daten zu analysieren und zu bewerten.

Werte als strategischer Erfolgsfaktor. Studien belegen, dass Unternehmen, die ihre Werte konsequent leben, von höherer Mitarbeitendenbindung, gesteigerter Innovationskraft und langfristigem wirtschaftlichem Erfolg profitieren. In der Praxis zeigt sich jedoch häufig eine Diskrepanz zwischen kommunizierten Werten und der tatsächlichen Wahrnehmung.
„Unternehmenswerte sind mehr als bloße Worte – sie sind das Fundament nachhaltigen Erfolgs. Entscheidend ist jedoch, ihre Authentizität zu gewährleisten“, erklärt Sarah Brauns, Mitgründerin von heart job. „Viele Unternehmen verlassen sich auf ihr Bauchgefühl. Eine objektive Analyse gibt ihnen nun erstmals eine klare Grundlage, um zu erkennen, wie ihre Werte tatsächlich wahrgenommen werden.“
Mitgründer Simon Rutar ergänzt: „Unsere KI-Technologie liefert innerhalb von 48 Stunden eine datenbasierte Auswertung der Unternehmenswerte. Damit unterstützen wir Unternehmen dabei, ihre Werte nicht nur sichtbar zu machen, sondern gezielt für strategische Ziele wie Mitarbeiterbindung, Kundenbeziehungen und wirtschaftliches Wachstum einzusetzen.“
KI für mehr Transparenz und Authentizität
Die KI von heart job wertet öffentlich zugängliche Quellen wie soziale Medien, Foren, Blogs und Presseberichte aus und gibt Unternehmen eine datenbasierte Einschätzung darüber, mit welchen Werten sie in der öffentlichen Wahrnehmung assoziiert werden. Diese Analyse kann durch direktes Feedback von Mitarbeitenden, Kund*innen und Geschäftspartner*innen ergänzt werden. Online-Umfragen erfassen zusätzlich die interne Wahrnehmung, sodass Stärken und Verbesserungspotenziale identifiziert werden können. „Unsere Lösung kombiniert externe Wahrnehmung mit optionaler interner Werteanalyse und schafft damit eine fundierte Grundlage für strategische Entscheidungen“, so Brauns.
In Zeiten, in denen Authentizität und klare Werteorientierung immer wichtiger werden, bietet das Start-up Unternehmen präzise Analysen und konkrete Handlungsempfehlungen. Führungskräfte erhalten damit ein strategisches Instrument, um ihre Unternehmenskultur nachhaltig zu stärken. „Unsere Berichte gehen über reine Datenanalysen hinaus – sie sind ein strategischer Leitfaden für die Zukunft“, betont Rutar. „Wir helfen Unternehmen nicht nur, ihre Werte zu verstehen, sondern sie auch aktiv für Wachstum und Innovation einzusetzen.“
Erfolgreiche Testphase und DACH-Marktstart
Die Technologie von heart job wurde in einer Testphase mit Unternehmen unterschiedlicher Größen erprobt. Dabei trat in vielen Fällen ein deutlicher Kontrast zwischen internen Unternehmenswerten und der öffentlichen Wahrnehmung zutage. Erste Kund*innen nutzen die gewonnenen Erkenntnisse bereits, um ihre Werte gezielt zu schärfen und ihre Kommunikation zu optimieren. Mit dem offiziellen Marktstart ist die KI-gestützte Analyse von heart job nun für Unternehmen in Deutschland, Österreich und der Schweiz verfügbar.
Aussichten der eSIM-Technologien: Was die Zukunft für uns bereithält
Start-ups und Technikfans kennen das Phänomen eSIM bereits – diese Technologie ersetz seit 2019 die herkömmlichen SIM-Karten nach und nach. Die aktuellen Möglichkeiten und Trends von eSIM sind jedoch noch unbekannt. Lesen Sie weiter, wenn Sie sich für diese innovative Art der Mobilfunkverbindung interessieren. Erfahren Sie, wie die Yesim-App die globale Abdeckung revolutioniert hat und welche Möglichkeiten Sie erwarten können.

Das eSIM-Phänomen: Geschichte und Herausforderungen
Im Jahr 2025 verblüffen eingebettete SIMs durch ihre Funktionalität. Nutzer können zwischen einer Ein-Länder-Verbindung, einem Pay-As-You-Go-eSIM-Datenplan mit mobilen Daten aus 140 Ländern, unbegrenzten Verbindungsoptionen, kostenlosem VPN und vielen weiteren Zusatzfunktionen wählen. Ständige Herausforderungen stehen hinter dem aktuellen Trend.
2010er: Das Konzept taucht auf
In den 2010er Jahren war das Konzept der eSIM mit dem Bereich des Internets der Dinge verbunden. Die Idee war einfach: „Was wäre, wenn wir SIM-Chips direkt in Geräte einbauen könnten, anstatt SIM-Karten zu kaufen?“
In der Tat ist eine eingebettete SIM-Karte ein winziger Chip, der in das Gerät eingesetzt wird und wie herkömmliche SIM-Karten eine Verbindung zu den Mobilfunkmasten herstellen kann. Die Idee wurde vom Global System for Mobile Communications genehmigt.
2011-2015: Die ersten Implementierungen
Bekannt ist, dass eSIM als Technologie für Industriegeräte begann. Auto-Telematik und Industriegeräte nutzten bereits eSIM-Chips für eine einfachere Internetverbindung und Datenüberwachung. Die Öffentlichkeit war jedoch nicht so sehr an dem Konzept interessiert.
2017: Das erste eSIM-Smartphone
2017 brachte Google das Google Pixel 2 heraus — das erste Smartphone mit eSIM-Kompatibilität. Google als innovativer Hersteller bemühte sich darum, der erste Hersteller mit einer revolutionären Verbindungsmethode zu sein.
2018 und folgende Jahre: Breitere Implementierung
Im Jahr 2018 veröffentlichte Apple die iPhones XR und XS — die ersten iOS-Geräte mit eSIM-Unterstützung. Seitdem haben sich eingebettete SIMs zu einem weltweiten Trend entwickelt und die Öffentlichkeit angezogen. Seitdem und seit 2025 wird die Technologie erweitert und bietet immer mehr Funktionen.

Was können wir von der eSIM-Branche in den nächsten Jahren erwarten?
Es wird erwartet, dass der weltweite eSIM-Markt im Jahr 2032 ein Volumen von 6,2 Milliarden USD erreichen wird. Nordamerika ist zwar die größte Industrieregion, aber auch in der Europäischen Union werden eingebettete SIMs immer beliebter. Sehen wir uns die weiteren Prognosen und zu erwartenden Merkmale an.
Der wachsende Markt für internationale eSIMs
Virtuelle SIM-Karten für ein einzelnes Land sind zweifelsohne bequemer als herkömmliche SIM-Karten. Dennoch schöpfen sie nicht das gesamte Potenzial der Technologie aus.
Der globale Anbieter Yesim hat bereits 10 regionale und 5 globale eSIM-Pläne eingeführt. Diese eingebetteten SIM-Karten können automatisch zwischen Mobilfunkanbietern in mehreren Regionen (bis zu 148 Ländern) wechseln. Der Nutzer kauft und aktiviert den Tarif einmal, und der Anbieter stellt die Internetverbindung in allen ausgewählten Ländern her. Dieser Ansatz ist kostengünstig und viel bequemer, da die Nutzer nicht zwischen den eSIM-Tarifen wechseln müssen.
Die Beliebtheit des „Pay-as-You-Go“-Formats
Ein weiterer Ansatz, der sich bei allen Anbietern durchsetzt, ist das Preismodell „Pay-as-You-Go“. Anstelle von Prepaid-Tarifen mit einem bestimmten Datenvolumen funktioniert dieses Format ständig und verbindet die Nutzer in mehreren Regionen mit dem Internet. Im Grunde lädt der Kunde sein Guthaben auf, und der Anbieter schaltet das Internet im Ausland entsprechend dem lokalen Preis frei. Auf diese Weise zahlen die Kunden nur für das, was sie nutzen.
Die Technologie ist noch nicht so weit verbreitet, da ihre Umsetzung kompliziert ist. Dennoch setzen mehrere Anbieter sie bereits 2025 ein.
Vorherrschaft der eSIM gegenüber herkömmlichen Verbindungsformen
Eingebettete SIMs ersetzen schon jetzt herkömmliche SIM-Karten und der Trend wird immer größer. Studien aus Nordamerika zeigen, dass sich die Zahl der Geräte mit eSIM-Anschluss von 2023 bis 2024 fast verdoppelt hat (310 Millionen auf 598 Millionen). SIM-Karten werden zweifelsohne auch 2025 die wichtigste Verbindungsmethode bleiben. Gewohnheit und Beliebtheit sind die Hauptgründe dafür, wobei es Menschen gibt, die sich generell nicht sehr für Technik interessieren, und deshalb finden sie das Thema eSIM oft kompliziert.
Der Anstieg der eSIM-Nutzer zeigt jedoch, dass sich die Situation ändert. In den 2030er Jahren könnten virtuelle SIM-Karten die Hauptmethode der Datennutzung in Mobiltelefonen werden.
Eingebettete SIMs im IoT
Im Jahr 2025 sind eingebettete SIM-Karten nicht nur auf Smartphones und Tablets beschränkt. Smartwatches, die nach 2020 hergestellt werden, unterstützen diese Technologie bereits. Außerdem unterstützen mehrere Autos, darunter die Audi A- (3, 4, 5) und Q- (2 und 7) Serien, virtuelle SIMs.
Dies deutet auf eine breitere Nutzung der Technologie hin. Höchstwahrscheinlich wird die eSIM ein primäres Mittel zur Verwaltung von intelligenten Haushalten und Geräten, städtischen Technologien und Industrieanlagen sein.
Zunehmender Wettbewerb
Da die Zahl der Anbieter steigt, brauchen die Unternehmen dauerhafte Weiterentwicklungen und Innovationen. Das Angebot von Prepaid-eSIMs reicht nicht aus, um im Wettbewerb zu bleiben. Viele Anbieter wie Yesim bieten mehrere Funktionen an:
- unbegrenztes Internet
- kostenloser VPN-Zugang für Kunden
- Treueprogramme
- regionale und globale SIM-Karten
- Datensparende Browser und Anwendungen
- virtuelle Nummern auf Anfrage
- automatische eSIM-Aktivierung in Anwendungen
Dies ist nur ein Teil der zusätzlichen Funktionen, die von modernen Anbietern angeboten werden. Der Wettbewerb ist ein positives Merkmal, da die Branche dank der eSIM-Unternehmen expandiert.
Fazit
Der beste Weg, alle Möglichkeiten zu erkunden, ist, die Technologie selbst auszuprobieren. Mit einem Schnuppertarif für 0,50 € können Sie bereits jetzt 500 MB für internationale Verbindungen nutzen. Entscheiden Sie sich für eSIM bei Ihrer nächste Reise ins Ausland und halten Sie sich über die neuesten Trends in der virtuellen SIM-Branche auf dem Laufenden.
LegalTech-Trends 2025
Der Legal-Markt steht an einem Wendepunkt: Innovative, KI-basierte Tools transformieren die Branche und eröffnen neue Möglichkeiten. Diese sechs Trends werden die Branche verändern und prägen.

1. „Agentic AI“ für Legal Workflows
Künstliche Intelligenz (KI) ist das Herzstück der LegalTech-Zukunft. Anwendungen unterstützen schon heute Kanzleien und Unternehmen dabei, Dokumente zu analysieren und komplexe rechtliche Fragestellungen mit automatischer Prüfung von Gerichtsurteilen zu bearbeiten. KI ist dabei jedoch nur ein einzelnes Feature einer ganzheitlichen Legal-Workflow-Plattform. Aber ein wichtiges. Mit KI werden zeitintensive Aufgaben automatisiert, sodass Anwält*innen mehr Zeit für strategische Tätigkeiten haben und Legal Assistants von administrativen Aufgaben entlastet werden.
Gleichzeitig entstehen durch KI neue Herausforderungen. Digitale Souveränität, Datenschutz, Bias in Algorithmen und die Qualität der automatisierten Entscheidungsprozesse sind Themen, die sowohl Kanzleien, Rechtsabteilungen als auch Gesetzgeber beschäftigen werden. Da Datenschutz und Privacy i.d.R. bei europäischen und deutschen LegalTech-Anbieter*innen ein stärkerer Teil der Software-Anbieter DNA sind, haben sie einen Vorteil gegenüber US-amerikanischen Hersteller*innen.
2. Unified Contract Management & Enterprise Legal Management
Beim Contract & Matter Management zeichnet sich eine große Veränderung ab – hin zu modernen, flexiblen, cloudbasierten Contract- und Matter-Management-Tools. Durch höhere Anforderungen der Fachbereiche hinsichtlich der Geschwindigkeit bei der Bearbeitung von Rechtsfällen, nimmt die Bedeutung von Unternehmensjuristen weiter zu. Während sie früher primär als Berater agierten, übernehmen sie mittlerweile eine zunehmend strategische Rolle. Hierbei helfen ihnen ganzheitliche Enterprise Legal Management Software Lösungen die sowohl bei der Anfrage, Annahme und effizienten Durchführung von Rechtsfällen unterstützen. Die neue Rolle der Inhouse-Jurist*innen erfordert nicht nur technologische Kompetenz, sondern auch betriebswirtschaftliches Verständnis und die Fähigkeit, mit anderen Unternehmensbereichen zusammenzuarbeiten.
3. Legal Front-Door & Self-Service Legal Tools
In der IT wird seit vielen Jahren das „Shift to left“ Prinzip verfolgt. Jetzt wird es verstärkt auch in Legal Prozessen genutzt. Das Prinzip zielt darauf ab, die Effizienz über Self-Service Möglichkeiten zu steigern, Reaktionszeiten zu verkürzen und Kosten zu senken, indem Probleme näher an ihrer Quelle – also dem Mandanten, Anwender bzw. dem Fachbereich gelöst werden. Eine Legal Front Door ist im Grunde eine digitale Rezeption, eine zentrale Plattform, die es den Mitarbeitenden eines Unternehmens oder Mandant*innen einer Kanzlei ermöglicht, auf rechtliche, standardisierte Dienstleistungen wie NDA-Erstellung, Digitale Mandatsannahme, Compliance Anleitungen und Legal Ressourcen zuzugreifen.
4. Compliance Analytics: Risiken in rechtlichen Dokumenten erkennen und beheben
Die Analyse von Verträgen und Schriftgut ist zentraler Bestandteil der modernen Rechtspraxis. Compliance Analytics ermöglicht es Jurist*innen Risiken in Verträgen und Dokumenten zu analysieren, vorherzusagen und Verstöße proaktiv und automatisiert zu korrigieren. Durch datenbasierte Analysen können potenzielle Verstöße gegenüber Unternehmensrichtlinien wie Haftungsgrenzen, AGB-Compliance identifiziert und über automatisierbare Workflows angepasst bzw. Compliance-Verstöße automatisch behoben werden. Diese präventive Herangehensweise bietet nicht nur einen finanziellen Mehrwert, sondern reduziert auch Haftungsrisiken und stärkt die Wettbewerbsfähigkeit von Kanzleien und Rechtsabteilungen.
5. Von der/vom Jurist*in zum/zur LegalTech-Expert*in
Die Automatisierung repetitiver Aufgaben, wie die Überprüfung von Dokumenten oder Durchführen von Recherchen, hat tiefgreifende Auswirkungen auf die Arbeitsweise von Jurist*innen. Während Junior-Anwält*innen früher oft mit derartigen Tätigkeiten betraut wurden, können sie sich heute dank moderner Technologien auf strategischere Aufgaben konzentrieren. Das beschleunigt ihre berufliche Entwicklung und verändert traditionelle Karrieremodelle. Dabei sollte jedoch sichergestellt sein, dass die notwendigen praktischen Erfahrungen gesammelt werden können, denn nur so lässt sich eine fundierte Expertise aufbauen. Zwar bleibt das juristische Wissen weiterhin wichtig, aber die Fähigkeit die richtigen juristischen Fragen zu entwickeln und zu stellen wird in Zukunft wichtiger sein als „nur“ juristisches Wissen and geeignete Antworten zu haben. Auch die juristische Ausbildung verändert sich, inkl. der Nutzung moderner KI-basierten LegalTech-Tools zur Recherche, Analyse und Erstellung von Dokumenten. Universitäten und Kanzleien passen ihre Ausbildungsprogramme an, um die nächste Generation von Jurist*innen auf die Anforderungen des digitalen Zeitalters vorzubereiten.
6. Investitionen in LegalTech
Laut einer aktuellen Umfrage von JP Morgan unter Unternehmensjurist*innen haben bei 71 Prozent der Rechtsabteilungen die Investition in LegalTech-Tools eine hohe bis sehr hohe Bedeutung. Aber nur 32 Prozent der Rechtsabteilungen haben LegalTech-Tools in ihren Budgets berücksichtigt. 80 Prozent gaben an, KI-LegalTech-Tools im laufenden Jahr einführen zu wollen – wollen dafür aber nur durchschnittlich 13 Prozent des gesamten Legal Budget ausgeben. Das belegt, dass die Investitionen in LegalTech-Tools zwar weiter zunehmen, die Diskrepanz zwischen KI-Ambitionen und Finanzierung jedoch bleibt. Die Legal-Innovationsfähigkeit ist also abhängig von der Legal-Investitionsfähigkeit.
Fazit
Die LegalTech-Trends zeigen, wie Technologie die juristische Arbeit verändert. Da generative KI trotz heutiger multi-modaler Fähigkeiten wie Text, Bild und Audio vor allem die Analyse und Erstellung von Text hervorragend beherrscht, hat der Legal-Bereich quasi eine Pionierstellung in der modernen KI-Bewegung. Der Rechtsmarkt ist eine „Text First“-Industrie und hervorragend geeignet, um die Innovationen von generativer KI zu beschleunigen. Von KI-gestützter Effizienzsteigerung über datenbasierte Risikoanalysen bis hin zur Automatisierung von Routineaufgaben: Der Legal-Markt wird nicht nur digitaler, sondern auch dynamischer. Für Kanzleien und Unternehmensjurist*innen bringt das einerseits neue Möglichkeiten mit sich, andererseits aber auch die Notwendigkeit, sich weiterzuentwickeln. Die Herausforderungen sind vielfältig, doch eines steht fest: Die Zukunft des Rechtsmarkts gehört denen, die technologische Innovationen nicht nur akzeptieren, sondern aktiv mitgestalten.
Der Autor Oliver Bendig ist CEO des LegalTech-Anbieters stp.one
Initiative "KI für Deutschland" startet Aktionsplan
Die Initiative "KI für Deutschland" wurde Ende 2024 von privaten Akteur*innen aus dem KI-Ökosystem ins Leben gerufen, um hierzulande eine zukunftsorientierte Strategie für die KI-Nutzung als Schlüsseltechnologie des 21. Jhs. zu etablieren.

Die Initiative "KI für Deutschland" wurde Ende 2024 von privaten Akteur*innen aus dem KI-Ökosystem ins Leben gerufen. Ziel ist es, einen praxisnahen und unternehmerisch getriebenen Impuls zu setzen, um in dieser Phase der politischen und gesellschaftlichen Neuorientierung Eckpfeiler zu definieren, wie KI zum Wohle und unter Beteiligung aller in Deutschland, effektiv genutzt werden kann.
Zu den Initiator*innen von "KI für Deutschland" gehören maßgeblich die AI.GROUP, der AI.FUND, sowie die Rise of AI Conference - insbesondere die Unternehmer*innen und KI-Expert*innen Dr. Hauke Hansen, Fabian Westerheide, Ragnar Kruse, Petra Vorsteher, Dr. John Lange und Ingo Hoffmann. Unterstützt wird die Initiative von namhaften Institutionen wie dem KI-Bundesverband.
Die Initiative ist deutschlandweit, interdisziplinär und holistisch ausgerichtet. Sie ist offen für den Input und die Unterstützung aller relevanten gesellschaftlichen Gruppen und Persönlichkeiten.
Aufbruchssignal in Zeiten des Umbruchs
Mitinitiator Dr. Hauke Hansen: “Die Initiative KI für Deutschland ist ein Aufbruchssignal in Zeiten des Umbruchs. Mit unseren 11 Impulsen machen wir greifbare und umsetzbare Vorschläge, wie Deutschland die KI nutzen kann, um den gesellschaftlichen Stillstand zu durchbrechen und Wege aus der wirtschaftlichen Rezession zu finden. Wir richten uns damit an alle gesellschaftlichen Akteure, die Wirtschaft ebenso wie die Politik. Wir brauchen eine zukunftsweisende und konsequente Industriepolitik und unternehmerisches Handeln, um die KI am Standort Deutschland zur Chefsache zu machen und damit das Bruttosozialprodukt nachhaltig zu steigern. Stellen wir gemeinsam die Weichen für innovatives und wirtschaftlich erfolgreiches Deutschland von morgen.”
Diese elf Impulse will die Initiative "KI für Deutschland" zur Nutzung künstlicher Intelligenz in Deutschland in Form eines KI-Aktionsplans setzen:
Impuls 1: Einrichtung eines Digitalministeriums auf Bundesebene
Die Digitalisierung in Deutschland hat wirtschaftliche und politische Priorität. Um eine konsequente Digitalisierung der Gesellschaft, Wirtschaft und Verwaltung zu erreichen, ist ein dediziertes Bundesministerium für Digitales mit dem Schwerpunkt KI notwendig.
Impuls 2: Förderung von KI-Forschung und -Innovationen
Deutschland muss die jährlichen Investitionen in KI-Forschung und -Entwicklung bis 2030 auf mindestens 5,0 Mrd. € pro Jahr aufstocken, um international wettbewerbsfähig zu bleiben.
Impuls 3: Bereitstellung von KI-Wagniskapital für KI-Start-ups und -Innovationen
Deutschland benötigt ein KI-Wagniskapitalprogramm ausgestattet mit 10 Mrd. € über 5 Jahre, um KI-Startups zu fördern. Staatliche Fund-of-Funds sollten dazu genutzt werden, Mittel zielgenau und effektiv zu platzieren.
Impuls 4: Aufbau von KI-Clustern zur Förderung von Innovationen und Exzellenz in regionalen Ökosystemen
Deutschland sollte regionale KI-Cluster fördern, die räumliche Nähe mit technischer und wirtschaftlicher Exzellenz verbinden, um Innovationskraft zu maximieren und international Talente anzuziehen.
Impuls 5: Aufbau einer leistungsfähigen und souveränen digitalen Infrastruktur zur Stärkung der KI
Eine flächendeckende digitale Infrastruktur ist essenziell, um KI für Bürger und Unternehmen in der Breite nutzbar zu machen. Wir setzen uns dafür ein, GPU-Megacluster für Forschung und Industrie in Deutschland zu etablieren.
Impuls 6: Förderung der Anwendung von KI in Unternehmen
Bis 2030 sollten mindestens 80% aller deutschen Unternehmen KI-Anwendungen aktiv nutzen, um ihre Geschäfte zu optimieren und auszubauen.
Impuls 7: KI für den öffentlichen Sektor – Effizienzsteigerung und weniger Bürokratie
Bis 2029 sollte der Einsatz von KI in allen wesentlichen Behörden auf Bundes-, Landes- und Regionalebene etabliert werden, um Prozesse zu optimieren, Bürokratie abzubauen und Bürgerdienste zu verbessern.
Impuls 8: KI und Nachhaltigkeit – erschwingliche und saubere Energie für Deutschland
Deutschland sollte KI gezielt einsetzen, um die Energiewende zu unterstützen und die CO2-Emissionen im Energiesektor bis 2035 um mehr als 15% zu senken. Unser Land braucht eine sichere und bezahlbare Energieversorgung als Grundlage für technologiebasiertes Wachstum.
Impuls 9: Eine KI-Bildungsinitiative als Grundlage einer zukunftsfähigen Gesellschaft
Bis 2030 sollten mehr als 80% der Arbeitskräfte in Deutschland grundlegende KI-Kompetenzen besitzen, um den digitalen Wandel aktiv mitzugestalten.
Impuls 10: Ein klarer und sicherer rechtlicher Rahmen für KI und ein KI-Gütesiegel
Deutschland sollte bis 2026 einen flexiblen Rechtsrahmen für KI schaffen, der Innovation fördert, aber Missbrauch verhindert, und ein KI-Gütesiegel zur Förderung ethischer und transparenter KI einführen.
Impuls 11: Schaffung eines europaweiten KI-Ökosystems mit Deutschland als Schrittmacher
Deutschland sollte eine gestaltende Rolle beim Aufbau eines europäischen KI-Ökosystems übernehmen, um eine wettbewerbsfähige Alternative zu den USA und China zu etablieren.
Hier gibt’s mehr Infos zur Initiative "KI für Deutschland"
Nachhaltigkeit: Sinnorientierung statt Image-PR und Greenwashing
Im Interview: Co-Gründer Günther Reifer vom Terra Institute.

Als Experten mit langjähriger Erfahrung und Kompetenz in der Beratungstätigkeit gründeten Evelyn Oberleiter und Günther Reifer vor 10 Jahren gemeinsam das Terra Institute: Ein Beratungsunternehmen mit Schwerpunkt in Geschäftsmodellinnovation, Nachhaltigkeitsmanagement, Produktentwicklung, Kreislaufwirtschaft und sinnorientiertem, transformativem Leadership. Das Terra Institute hat heute 25 Mitarbeiter in Deutschland, Österreich und Italien.
Im Interview zum Thema Nachhaltiges Wirtschaften: Terra Institute-Co-Gründer Günther Reifer.
Heutzutage macht das Thema Nachhaltigkeit einen großen Teil vom Image eines Unternehmens aus. Wer nicht nachhaltig ist, geht nicht mit dem Puls der Zeit. Doch was ist überhaupt mit Nachhaltigkeit gemeint und wie kann sie in einem Unternehmen umgesetzt werden?
Nachhaltigkeit hat verschiedene Definitionen. Die gängigste besagt: „Nachhaltigkeit gewährleistet, dass zukünftige Generationen nicht schlechter gestellt sind, ihre Bedürfnisse auf der Erde zu befriedigen als die gegenwärtig lebende Generation.“ Für ein produzierendes Unternehmen bedeutet das konkret: Die Verwendung von nachwachsenden Rohstoffen, ressourcenschonende Produktion, Vermeidung von Müll, ein möglichst geringer CO2-Ausstoß und im besten Fall ein recyclebares Endprodukt. Wenn ein Produkt all diese Kriterien erfüllt, kann es sich ökologisch nachhaltig nennen.
Ein Beispiel: Ein T-Shirt aus 100 Prozent Bio-Baumwolle, dessen Aufdruck jedoch giftige Chemikalien enthält, ist keineswegs nachhaltig. Es ist wichtig, dass wir den gesamten Produktionsprozess betrachten – vom Design zum finalen Produkt bis zur Rückführung in den Wertstoffkreislauf.
Wenn ein Unternehmen ein ökologisch nachhaltiges Produkt herstellt, ist dann das gesamte Unternehmen nachhaltig?
Noch lange nicht. Nachhaltigkeit steht nämlich auf drei Standbeinen: Umwelt, Gesellschaft und Wirtschaft. Neben den ökologischen Aspekten bestimmen also noch soziale und ökonomische Faktoren, inwieweit ein Unternehmen nachhaltig ist. Die soziale Komponente widmet sich dabei in erster Linie dem Wohlergehen von Mensch und Gesellschaft. Für Mitarbeiter des Unternehmens bedeutet das zum Beispiel ein fairer Lohn, geregelte Arbeitszeiten und Pausen sowie die Möglichkeit auf persönliche und berufliche Weiterentwicklung. Insbesondere der Aspekt Schulungen spielt wiederum eine wichtige Rolle für die ökologische Nachhaltigkeit des Unternehmens.
Um ökologische Nachhaltigkeit ganzheitlich im Unternehmen zu etablieren, muss zunächst ein gemeinsames Bewusstsein dafür geschaffen werden. Bei Führungskräften genauso wie bei allen Mitarbeitern. Durch regelmäßige Coachings der Mitarbeiter – sei es persönlich oder digital – werden Nachhaltigkeit und Klimaschutz zur Angelegenheit des gesamten Unternehmens. Alle sind auf dem neuesten Stand und ziehen am selben Strang.
Was sind die ökonomischen Faktoren, die ein Unternehmen nachhaltig machen? Und stehen diese nicht im Konflikt mit den ökologischen Aspekten der Nachhaltigkeit?
Die meisten denken wahrscheinlich, dass sich Umwelt und Wirtschaft von vorneherein ausschließen. Das stimmt so jedoch nicht. Fakt ist: Nur ein Unternehmen, was auch ökonomisch nachhaltig ist, wird langfristig bestehen bleiben und so seinen Beitrag für eine bessere Zukunft leisten können. Die Umstellung auf eine ökologisch nachhaltige Produktion ist dabei kein Verlustgeschäft. Wenn Sie zum Beispiel alles regional produzieren statt einzelne Produktionsprozesse ins Ausland zu verlagern, dann sind auch Ihre Lieferketten kürzer. Das spart erhebliche Transportkosten und CO2. Zudem sind regionale Lieferketten transparenter und daher leichter zu managen.
Auch im Fall einer globalen Krise wie der Corona-Pandemie ist das Risiko einer Produktionsunterbrechung deutlich reduziert. In innovative und verbesserte Fertigungstechnologien zu investieren, zahlt sich auch aus. Material-, Wasser- und Energieverbrauch werden so reduziert und anfallende Abfallprodukte können recycelt werden. Nachhaltigkeit ist also nicht teurer, sondern langfristig gesehen sogar lukrativ.
Was sind die ersten Schritte für ein Unternehmen, um nachhaltig zu werden?
Die Bereitschaft für Veränderung ist immer der erste Schritt. Das gesamte Unternehmen – Führungskräfte wie Mitarbeiter – muss eine neue Sinnorientierung erfahren. Dafür werden zunächst die aktuellen sozioökonomischen Megatrends intensiv analysiert. Mit den gewonnenen Erkenntnissen wird anschließend der gesamte Betrieb durchleuchtet und aufgeräumt. Gemeinsam wird ermittelt, welche Kompetenzen Führungskräfte und Mitarbeiter mitbringen, was noch verbesserungswürdig ist und wie sich zukunftsrelevante Themen aus Nachhaltigkeit, Gesellschaft und Wirtschaft in das Unternehmen integrieren lassen. Dabei ist es wichtig, bestehende Strukturen zu überdenken, von alten Gewohnheiten loszulassen und sich neue Ziele zu setzen.
Natürlich ist so eine Neuorientierung, bei der alle drei Dimensionen der Nachhaltigkeit berücksichtigt werden, ein sehr komplexer Prozess, der für viele Unternehmen eine Herausforderung darstellt. Wir vom Terra Institute möchten Unternehmen in ihrem Umdenken bestärken und ihren Transformationsprozess tatkräftig unterstützen!
#noFilter
Fake News statt Fakten auf Social Media: Beginnt jetzt das Zeitalter der Liveblogs? Eine Einschätzung samt Tipps und To-do's von Naomi Owusu, CEO sowie Mitbegründerin von Tickaroo.

Mark Zuckerberg verkündete erst vor Kurzem, dass Meta in Zukunft ohne Fact-Checking auskommen soll. Stattdessen werden schon bald die Nutzer*innen über den Wahrheitsgehalt der Inhalte bestimmen – in einem Zeitalter von Bots und KI ist allerdings schon jetzt abzusehen, dass das nicht funktionieren wird und vermutlich auch gar nicht funktionieren soll. Die Instanzen, die bisher die Echtheit der Aussagen geprüft haben, seien nach Auffassung des Facebook-Gründers jedoch politisch nicht neutral. Fast zur selben Zeit von Zuckerbergs Ankündigung, führte ein politisch motivierter und unberechenbarer Milliardär auf seiner eigenen Plattform X ein Live-Interview mit der AfD-Vorsitzenden Alice Weidel, die in dem Gespräch zahlreiche Falschbehauptungen machte.
Diese Entwicklungen zwingen Medienschaffende sowie Leser*innen, sich 2025 ernsthaft mit den Alternativen zu Social Media zu befassen. Denn die gibt es!
1. Fakten statt Fame – Echtzeit Nachrichten durch Live-Blogs
Das schwindende Vertrauen in die klassischen Medien sorgte in der Vergangenheit dafür, dass sich Leser*innen über Facebook, Twitter und Co. informierten. Doch die zunehmende Verbreitung von Fake News in den sozialen Netzwerken fordert andere Kanäle, die genauso schnell und persönlich informieren, aber gleichzeitig den Wahrheitsgehalt sicherstellen. Live-Blogs sind für Journalist*innen ein ebenso unmittelbarer Weg zu ihrer Zielgruppe. Hier können sie sich transparent und menschlich präsentieren, indem sie ihr Publikum näher in den Entstehungsprozess der Geschichten hinter den Schlagzeilen einbeziehen. Durch Dialoge und Engagement können sie eine Bindung zur Leserschaft aufbauen. Videos, die ihre Arbeit zeigen, machen sie nahbarer und vertrauenswürdiger. Transparenz, etwa durch Erklärungen zur Quellenprüfung oder zur Verifizierung von Informationen, baut Glaubwürdigkeit auf, bekämpft Desinformation und stärkt das Verhältnis zwischen Medien und Öffentlichkeit – und gerade das wird in 2025 entscheidend sein.
2. Entertainment im Micro-Content für Macro-Erfolg
Kurzvideos sind nicht erst seit der Einführung von TikTok beliebt, doch die Plattform hat den Trend weiter angefacht und ihre Popularität ist ungebrochen. Nachrichtenportale müssen in 2025 verstärkt auf dieses Format setzen, um insbesondere junge Leser*innen als treue Konsument*innen zu gewinnen. Allerdings können Medienschaffende noch einen Schritt weiter denken, hin zu interaktiven Mikro-Inhalten, die den Bedürfnissen nach Inspiration, Ablenkung und Verbindung gerecht werden. Dynamische Live-Blog-Formate wie Q&As, Umfragen, Kommentare und Reaktionen ermöglichen Echtzeit-Interaktionen. Sie können mit Live-Updates kombiniert und in den sozialen Netzwerken geteilt werden. Dadurch gewinnen Nachrichtenorganisationen die Aufmerksamkeit der Nutzer*innen und bleiben im Wettbewerb mit Social Media konkurrenzfähig.
3. Video Killed the Radio Star und Mobile das TV!
Fernsehen ist so 90er-Jahre! Die Mehrheit der Konsument*innen liest ihre Nachrichten über das Smartphone. Eine Ausrichtung auf mobile, responsive Designs ist also auch in 2025 entscheidend. Wer darüber hinaus ein „Second-Screen-Erlebnis“ ermöglicht, bietet durch Echtzeit-Statistiken, Analysen oder Hintergrundberichte ein immersives Erlebnis für Nutzer*innen und damit einen Mehrwert für ihr Seherlebnis. Gerade für Nachrichtenformate, Event- und Sportberichterstattung wird dieses Feature immer wichtiger.
4. KI im Newsroom: Zwischen Skepsis und Effizienz
Das Thema künstliche Intelligenz (KI) ist noch lange nicht erledigt, doch gerade Journalist*innen haben Bedenken hinsichtlich der Nutzung. Während KI-generierte Inhalte für viele Medienschaffende und ihr Publikum noch außerhalb der Komfortzone liegen, wird die Technologie zunehmend in Bereichen wie Übersetzungen, Überschriften- und Social-Media-Zusammenfassungen sowie Datenanalysen eingesetzt. Denn sie kann Lücken in Geschichten identifizieren, Verbesserungen vorschlagen, Texte korrekturlesen und den Tonfall an verschiedene Zielgruppen anpassen. In Kombination mit Tracking-Funktionen kann KI zudem den optimalen Veröffentlichungszeitpunkt und relevante Themen oder Formate bestimmen. Damit wird sie die Arbeitsprozesse in Nachrichtenredaktionen effizienter gestalten und Redakteur*innen den Freiraum geben, sich auf die Erstellung authentischer, leserzentrierter Inhalte zu fokussieren.
5. Näher dran durch hyperlokale Inhalte
In einem wettbewerbsintensiven Umfeld ist das Verständnis für die eigene Zielgruppe essenziell. Durch maßgeschneiderte Inhalte können Medienorganisationen stärkere Bindungen aufbauen und gleichzeitig ihre Reichweite vergrößern. Lokale Zeitungen haben es in der digitalen Ära schwer, da sie Werbekunden an Plattformen wie Google oder Facebook verlieren und ihr Publikum zunehmend auf Nischenangebote umsteigt. Dennoch wird die Nachfrage nach hyperlokalen Inhalten weiter wachsen, da die Meldungen die Menschen vor Ort einbeziehen und dem Publikum das Gefühl geben, gesehen zu werden. Insbesondere die Sportberichterstattung ist ein strategisches Asset für Medienschaffende, da sie die starke Verbindung der Fans zu heimischen Teams nutzt, um persönliche Beziehungen zu Leser*innen aufzubauen. Die so geschaffenen Inhalte können das Vertrauen der Leserschaft zurückgewinnen und lokale Bindungen stärken. Dieser Ansatz gilt allerdings nicht nur für Sport. Medien, die gezielt kleinere, spezifische Gruppen ansprechen und deren Leben sowie Begeisterung widerspiegeln, können ihre Reichweite erhöhen und Abonnementmodelle fördern. Während aktuelle Nachrichten ein breites Publikum anziehen, sorgen Nischeninhalte für langfristiges Interesse.
Die Nachrichten der Zukunft sind transparent
In einer Zeit, in der Falschinformationen auf Social Media den Diskurs prägen, gewinnen alternative Nachrichtenformate an Bedeutung. Live-Blogs sind schon lange, aber insbesondere in 2025, eine Alternative, um Echtzeit-News mit Transparenz und Nähe zu verbinden. Sie ermöglichen es Journalist*innen, authentisch zu berichten, den Entstehungsprozess ihrer Inhalte nachvollziehbar zu machen und ihre Leserschaft aktiv einzubeziehen. Durch Dialog und Interaktion können Medienhäuser ihre Glaubwürdigkeit stärken und Loyalität aufbauen. Statt Likes und viralen Trends stehen hier Fakten, Vertrauen und die Nähe zum Publikum im Mittelpunkt – und genau das braucht ein moderner Journalismus.
Die Autorin Naomi Owusu ist CEO und Co-Founder von Tickaroo, eine Live Blog-Plattform für Text- und Multimedia-Inhalte. Seit der Gründung 2011 setzt sich die studierte Psychologin mit ihrem Team für den Ausbau des Produktportfolios und die Optimierung des Live-Content-Tools ein.