Aktuelle Events
Wie KI-Technologie den modernen Arbeitsalltag revolutioniert
Die dritte Phase der Digitalisierung hat begonnen. Wir zeigen Anwendungsgebiete und Potenziale moderner KI-Technologien im Überblick.
Der moderne Büroalltag, aber auch die Unternehmensführung, die Logistik, Marketing- und Planungsprozesse aller Art sind in den vergangenen Jahrzehnten immer digitaler und rationaler geworden. Derzeit befinden wir uns mitten in einem weiteren Umbruchsprozess, der in seiner Wirkung nur mit der Einführung des PCs und der umfassenden Vernetzung durch Internet und Unternehmensnetzwerke vergleichbar sein dürfte.
Wie in Transformationsphasen üblich bringen diese entscheidende Risiken und Potenziale für etablierte Größen wie auch für Start-ups mit sich. Wer jetzt zurückbleibt, verschafft der Konkurrenz unter Umständen einen Vorsprung, der nur schwer einholbar sein kann. Umgekehrt bieten sich für frühe Anwender zahlreiche Chancen, die eigenen Prozesse zu rationalisieren, neue Dienstleistungen auf den Markt zu bringen und sich auf absehbare Zeit eine stabile Marktposition zu erobern.
Um das volle Potenzial der digitalen Revolution und insbesondere der sich rasant entwickelnden KI-Technologie ausloten zu können, sollte man sich zunächst bewusst machen, welche Bedeutung technische Revolutionen auf den Arbeits- und Unternehmensalltag haben, sich einen möglichst breiten Überblick über die verschiedenen Anwendungsmöglichkeiten der neuen Technologie verschaffen und sich abschließend fragen, wie das eigene Unternehmen oder ein vielversprechendes Businessmodell davon profitieren könnten.
Die drei Phasen der digitalen Revolution
Einfach nur von der digitalen Revolution zu sprechen, wird dem Phänomen längst nicht mehr gerecht. Eine Einteilung in drei historische Phasen zeigt einerseits, wie lange wir bereits von der computergetriebenen Entwicklung beeinflusst werden und andererseits, wie sich die Digitalisierung zunehmend in alle ökonomischen und sozialen Bereiche ausdehnt.
1. Die Ära des Personal Computers: Die Anfänge der digitalen Revolution
Die erste Phase der digitalen Revolution begann mit der Einführung des Personal Computers in den Büroalltag. Dieser technologische Durchbruch in den 1970er und 80er Jahren markierte einen Paradigmenwechsel in der Arbeitswelt. PCs ermöglichten eine effizientere Datenverarbeitung, Textverarbeitung und Tabellenkalkulation, wodurch zeitaufwendige manuelle Prozesse ersetzt wurden. Diese Entwicklung ebnete den Weg für eine produktivere und zugänglichere Arbeitsumgebung, in der Aufgaben schneller und präziser ausgeführt werden konnten.
2. Das Internetzeitalter: Vernetzung und globale Expansion
Die zweite Phase, ausgelöst durch die weite Verbreitung des Internets in den 1990er Jahren, revolutionierte die Kommunikation und Zusammenarbeit im Büro. Die Möglichkeit, in Echtzeit Informationen auszutauschen und auf eine Fülle von Online-Ressourcen zuzugreifen, eröffnete Unternehmen neue Dimensionen der globalen Vernetzung. E-Mail wurde zum Standardkommunikationsmittel, während das World Wide Web eine Plattform für unendliche Informations- und Geschäftsmöglichkeiten wurde. Diese Ära definierte die Art und Weise, wie Unternehmen operieren und interagieren, vollständig neu und leitete das Zeitalter der digitalen Wirtschaft ein.
3. KI-Technologie: Ein neues Kapitel in Produktion, Unternehmensführung, Vermarktung und Verwaltung
In der dritten und aktuellen Phase der digitalen Revolution tritt KI in den Vordergrund, indem sie die Grenzen praktisch aller unternehmerischen Prozesse und den Büroalltag von Millionen Menschen neu definiert. KI-gesteuerte Anwendungen, von automatisierten Kundendienstlösungen bis hin zu fortschrittlicher Datenanalytik, transformieren die Arbeitsweise in Unternehmen grundlegend. Sie ermöglichen nicht nur eine bisher unerreichte Automatisierung und Effizienzsteigerung, sondern auch eine personalisierte und vorausschauende Geschäftsstrategie in allen Bereichen von der Vermarktung bis zu den Lieferketten. Die Integration von KI in den modernen Unternehmensalltag stellt somit nicht nur eine Fortsetzung der Digitalisierung dar, sondern eröffnet neue Wege in Richtung intelligenter, datengesteuerter Arbeitsumgebungen in allen Unternehmensbereichen.
Potenziale und Anwendungsgebiete moderne KI-Techniken
Während die automatisierte Datenanalyse riesiger Datenmengen (Big Data) praktisch alle datengetriebenen Prozesse der Unternehmensführung, -organisation und Verwaltung betrifft, beginnt die jüngste Entwicklung sprachbegabter KI-Technologien gerade erst ihr Potenzial und ihre verschiedenen Anwendungsmöglichkeiten zu zeigen.
Verarbeitung natürlicher Sprache (NLP): KI, die uns versteht
Die Verarbeitung natürlicher Sprache (Natural Language Processing, NLP) ist ein beeindruckender technischer Durchbruch sowie ein faszinierendes und schnell wachsendes Feld der Künstlichen Intelligenz. Erstmals wird die Interaktion zwischen Computern und Menschen in natürlicher Sprache ermöglicht. Dies verschafft einer breiten Zahl von Nutzern Zugang zu Instrumenten, die zuvor nur Programmierern oder anderen Experten zur Verfügung standen. In Verbindung mit weiteren Fähigkeiten der KI lässt sich derzeit kaum eine Grenze für das Transformationspotenzial dieser Technologien erahnen. Im Kontext des modernen Büroalltags machen NLP-Anwendung beinahe täglich bedeutende Fortschritte und bieten immer vielfältigere Anwendungsmöglichkeiten, die die Arbeitsweise grundlegend verändern:
- Spracherkennung und -verarbeitung: NLP ermöglicht es Computern, gesprochene Sprache zu verstehen und zu verarbeiten. Dies erweitert die Interaktionsmöglichkeiten zwischen normalen Nutzern und KI-Anwendungen grundlegend. Eine der aktuellsten Innovationen auf diesem Gebiet ist beispielsweise Blizo, eine Software zur Transkription und übersichtlichen Zusammenfassung von Meetings. Anwendungen wie diese erlauben Mitarbeitern zudem Berichte durch Sprechen, anstatt durch Tippen zu erstellen, was Zeit spart und die Zugänglichkeit erhöht. NLP revolutioniert allgemein und umfassend die Sprachsteuerung von Geräten und Software, wobei die Entwicklung hier noch ganz am Anfang ist und die Möglichkeiten weiterer Anwendungen gerade erst am Horizont erscheinen.
- Chatbots und Virtuelle Assistenten: Im Kundenservice werden bereits seit längerer Zeit NLP-basierte Chatbots eingesetzt, um Kundenanfragen effizient zu beantworten oder vorzusortieren. Diese Systeme können natürliche Konversationen simulieren und so die Kundeninteraktion verbessern. Ebenso unterstützen virtuelle Assistenten Mitarbeiter, indem sie einfache Aufgaben wie die Terminplanung oder Informationsabfragen übernehmen. Alexa, Siri und Co. werden in Kürze wie fossile Urgesteine neben der neuesten Generation sprechender Bots aussehen und vermutlich bald selbst ein umfassendes Update bekommen.
- Sentimentanalyse: NLP-Tools können Stimmungen und Meinungen in Texten erkennen und analysieren. Dies ist besonders nützlich für Marketing- und Kundendienstabteilungen, um Kundenfeedback und Markttrends zu verstehen und darauf zu reagieren, kann beispielsweise aber auch in der Wissenschaft Anwendung finden.
- Automatische Zusammenfassungen und Berichterstattung: NLP kann genutzt werden, um lange Dokumente oder Datenmengen automatisch zu analysieren und zusammenzufassen. Dies spart Zeit bei der Informationsbeschaffung und ermöglicht es, schneller fundierte Entscheidungen zu treffen. NLP ermöglicht es Computern erstmals, menschliche Sprache in für sie prozessierbare Daten zu verwandeln.
- Sprachübersetzung: Fortgeschrittene NLP-Systeme bieten nahezu Echtzeit-Übersetzung von und in verschiedene Sprachen, was die globale Kommunikation und Zusammenarbeit erleichtert. ChatGPT etwa brachte sich selbst auf der Basis seiner Algorithmen und der englischen Sprache zahlreiche weitere Sprachen bei und kann mittlerweile für viele Sprachen auch als relativ zuverlässiges Übersetzungstool genutzt werden.
- Verbesserte Suchfunktionen: NLP verbessert Suchalgorithmen, sodass Nutzer natürliche Sprache verwenden können, um komplexe und kontextbezogene Informationen in Datenbanken oder im Internet zu finden. Dies wird die Forschung und Bildung in den nächsten Jahren transformieren und Big Data noch größer machen.
Alles kann berechnet werden: Big Data
Neben den Fortschritten bei der Sprachfähigkeit beeindrucken KI-Anwendungen vor allem durch ihre unglaublichen Analysefähigkeiten, mit denen sie in der Lage sind, verschiedenste Muster auf der Grundlage riesiger Datenmengen zu erstellen und sogar Vorhersagen über zukünftige Entwicklungen zu erstellen. Dabei speist sich die Datengrundlage, Big Data, aus unterschiedlichen Quellen von Social Media Postings bis hin zu medizinischen Statistiken und Ähnlichem.
Intelligente Algorithmen beziehungsweise Methoden des maschinellen Lernens ermöglichen eine automatisierte Analyse dieser Daten zu unterschiedlichen Zwecken. Aufgrund ihrer enormen Rechenleistung und der Fortschrittlichkeit der statistischen Analysemethoden entdecken KI-Anwendungen mittlerweile viele Muster zuverlässiger und schneller als menschliche Forscher oder Analysten. Über kurz oder lang wird ein Großteil unseres statistischen Wissens auf der automatisierten Analyse von Big Data beruhen. Zu den Hauptanwendungsgebieten dieser mächtigen Algorithmen gehören derzeit folgende Bereiche:
- Unternehmensorganisation und Entscheidungsfindung: Unternehmen nutzen Big Data, um Markttrends zu analysieren, Kundenverhalten zu verstehen und fundierte Entscheidungen bei Geschäftsstrategien, in der Produktentwicklung und bezüglich ihrer Marketingkampagnen zu treffen. Diese Analysen ermöglichen es Unternehmen, auf sich ändernde Marktdynamiken schnell zu reagieren und ihre Angebote besser auf die Kundenbedürfnisse abzustimmen.
- Personalisierte Kundenerfahrungen: Im Einzelhandel und in der Dienstleistungsbranche wird Big Data verwendet, um personalisierte Einkaufserlebnisse zu schaffen. Durch Analyse des Kaufverhaltens, Online-Interaktionen und Kundenpräferenzen können Unternehmen individuell zugeschnittene Empfehlungen und Angebote erstellen.
- Gesundheitswesen: Im Gesundheitssektor ermöglichen Big Data Analysen eine bessere Patientenversorgung durch die Analyse von Patientendaten, klinischen Studien und Forschungsergebnissen. Sie tragen zur Entwicklung personalisierter Medizin bei und helfen bei der Vorhersage von Krankheitsmustern und Epidemien.
- Finanzdienstleistungen: In der Finanzbranche wird Big Data unter anderem genutzt, um Risiken zu bewerten, Betrug zu erkennen und Investitionsentscheidungen zu optimieren. Banken und Versicherungen analysieren große Mengen an Transaktionsdaten, um ungewöhnliche Muster zu identifizieren und ihr Risikomanagement zu verbessern.
- Supply Chain Management: Big Data hilft Unternehmen, ihre Lieferketten effizienter zu gestalten. Durch die Analyse von Daten aus verschiedenen Quellen können Unternehmen Lagerbestände optimieren, Lieferzeiten verkürzen und die Reaktionsfähigkeit auf Marktveränderungen verbessern.
- Städtische Planung und Verkehr: Im öffentlichen Sektor werden Big Data Anwendungen zur Verbesserung der städtischen Infrastruktur und zur Optimierung des Verkehrsflusses eingesetzt. Städte nutzen Verkehrs- und Mobilitätsdaten, um Staus zu reduzieren und öffentliche Dienstleistungen zu verbessern.
- Energie und Umwelt: Im Energiebereich ermöglichen Big Data Analysen eine effizientere Nutzung von Ressourcen und tragen zur Entwicklung nachhaltiger Energielösungen bei. Sie werden auch zur Überwachung und zum Schutz der Umwelt eingesetzt, indem beispielsweise Emissionsdaten analysiert werden.
Fazit: Unendliche Möglichkeiten
Wie in der Übersicht deutlich geworden sein dürfte, sind die Möglichkeiten und Grenzen moderner KI-Technologien derzeit kaum absehbar. Nahezu jede Branche sowie Unternehmen aller Größen werden in den nächsten Jahren in der ein oder anderen Form durch diese neueste Phase der digitalen Revolution beeinflusst werden. Derzeit stecken viele Anwendungen zwar noch in den Kinderschuhen, aber ihr Transformations- und Rationalisierungspotenzial lässt sich bereits erahnen – und vor allem schon heute nutzen.
Jeder Jungunternehmer, Start-up-Gründer, aber auch etablierte Firmen und Manager sollten diese frühe Phase nutzen, um sich einen Vorsprung zu verschaffen, Erfahrungen zu sammeln und ihr gesamtes Geschäftsmodell daraufhin zu befragen, wo ihnen KI in Zukunft behilflich sein kann.
Diese Artikel könnten Sie auch interessieren:
NICAMA Naturkosmetik: Von der Studienidee zum nachhaltigen Erfolgsunternehmen
NICAMA Naturkosmetik feiert sein fünfjähriges Bestehen: Was mit kleinen Experimenten während des Studiums begann, ist heute ein etabliertes Naturkosmetikunternehmen mit über 600 Handelspartnern im DACH-Raum.
Was 2019 als mutige Idee von vier Studierenden begann, wurde rasch zu einem inspirierenden Beispiel für gelebte Nachhaltigkeit. In einer Zeit, in der Umweltschutz noch kein selbstverständlicher Trend war, experimentierten die Gründerinnen und Gründer mit festen Shampoos, um eine plastikfreie Alternative zu herkömmlicher Kosmetik zu schaffen. Das erste Produkt entstand mit viel Leidenschaft, Neugier und Improvisation. Damit war der Grundstein für den späteren Unternehmenserfolg gelegt.
Ein erfolgreiches Crowdfunding finanzierte 2019 die erste Produktcharge und machte den Traum vom eigenen Webshop möglich. Es folgten die ersten Partnerschaften mit Bioläden, Outdoorhändlern, Friseuren und Geschenkeläden, die an die Vision glaubten. Heute zählt NICAMA stolz über 600 Vertriebspartner und wächst weiter.
Ein entscheidender Meilenstein war die Entwicklung des 1plus1 Meeresschutz-Prinzips: Für jedes verkaufte Produkt werden 100 Gramm Plastik in Küstenregionen gesammelt. Dieses Prinzip ist transparent, messbar und von jedem/jeder Kund*in nachvollziehbar. Bis heute konnten so über 33.290 Kilogramm Plastik aus der Umwelt entfernt werden. Das entspricht mehr als 3,2 Millionen Plastikflaschen. Darüber hinaus hat das Team mehrere Elbreinigungen organisiert, unter anderem gemeinsam mit der Naturschutzjugend NAJU und Charlotte Meentzen.
Mit dem Schritt in die Upcycling Beauty wurde NICAMA zum Pionier in Deutschland. Dabei werden wertvolle Nebenprodukte aus der Lebensmittelproduktion wie Ingwertrester und Kaffeekirsche zu hochwertigen Inhaltsstoffen verarbeitet. Heute umfasst das Sortiment über 50 plastikfreie Produkte, darunter Seifen, Shampoos, Deocremes, Pflegeöle und Körperpeelings – alle minimalistisch verpackt und mit reduzierten, sorgfältig ausgewählten Rezepturen.
Die Reise war jedoch nicht ohne Herausforderungen: Die Corona Pandemie und die Inflationsfolgen des Ukraine-Krieges setzten auch NICAMA stark zu. Das einst 15-köpfige Team musste sich zwischenzeitlich deutlich verkleinern. Trotz dieser Rückschläge bewies das Unternehmen Durchhaltevermögen. Heute steht es so solide da wie nie zuvor. Seit zwei Jahren verzeichnet NICAMA wieder überdurchschnittliches Wachstum und das deutlich über dem allgemeinen Naturkosmetikmarkt in Deutschland.
Für sein Engagement und seine Innovationskraft wurde das Unternehmen mehrfach ausgezeichnet: 2021 gewann NICAMA den Sächsischen Gründerpreis und erhielt bereits viermal den eku Zukunftspreis des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft.
GreenTech – der Boom geht zu Ende
Zwar zählt Deutschland rund 3000 Start-ups aus dem GreenTech-Bereich, doch viele kämpfen mit Kapitalmangel, Fachkräftedefizit und einer überlasteten Infrastruktur. Der Boom ist vorbei – eine Einschätzung von Seriengründer und Transformationsexperte Daniel Fellhauer.
Die deutsche Wirtschaft steht vor einer ihrer größten Transformationen seit der Industrialisierung. Jahrzehntelang galten Auto- und Stahlindustrie als Rückgrat des Wohlstands. Nun rückt Nachhaltigkeit in den Mittelpunkt. Daniel Fellhauer sieht die GreenTech-Branche an einem kritischen Punkt: „GreenTech ist kein Hype, sondern Realität mit echten Herausforderungen. Die Frage ist: Wer bleibt übrig, wenn die Subventionen verschwinden?“ Seine Aussage bringt auf den Punkt, was viele Brancheninsider beschäftigt: der Übergang von gefördertem Wachstum zu marktwirtschaftlicher Reife. Jetzt entscheidet sich, welche Unternehmen Innovation und Wirtschaftlichkeit in Einklang bringen können – und wer an überzogenen Erwartungen scheitert.
Der Boom geht zu Ende
„Der Anteil grüner Gründungen ist zuletzt deutlich gesunken“, sagt Daniel Fellhauer. „Vor zwei Jahren war noch jedes dritte neue Start-up nachhaltig ausgerichtet. Heute ist es nicht einmal mehr jedes Vierte. Das ist ein deutliches Warnsignal. Der Markt sortiert sich, Kapital wird selektiver, und viele Ideen schaffen es nicht mehr über die Pilotphase hinaus.“ In den vergangenen fünf Jahren flossen zwar rund 11,7 Milliarden Euro in grüne Start-ups – etwa ein Viertel aller deutschen Risikoinvestitionen –, doch das Geld konzentriert sich zunehmend auf wenige, große Player. „Das zeigt eine Reifung, aber auch eine gefährliche Schieflage“, so Fellhauer. „Wir brauchen Breite, nicht nur Leuchttürme. Wenn die Finanzierungsströme versiegen, bevor Skalierung einsetzt, kippt der ganze Innovationspfad.“ Hinzu kommen steigende Zinsen, langwierige Genehmigungen und überlastete Netze. „Viele unterschätzen, wie stark Infrastruktur über Wachstum entscheidet“, erklärt er. „Eine Solarfirma kann heute Aufträge für 1.000 Anlagen im Jahr haben. Aber wenn der Netzanschluss neun Monate dauert, bleibt sie auf halber Strecke stehen.“
Deutschland ist längst auf dem Weg zur nachhaltigen Wirtschaft – doch der Anstieg wird steiler. Die entscheidende Frage lautet: Wird GreenTech zum Fundament der nächsten industriellen Ära, oder zur vertanen Chance einer Generation? Laut einer aktuellen Analyse fließt ein erheblicher Teil staatlicher Investitionen und Subventionen in Deutschland weiterhin in fossile Strukturen – über 60 Milliarden Euro jährlich. Da-bei hatte sich die Bundesregierung bereits 2009 gemeinsam mit anderen Industrieländern verpflichtet, ineffiziente Förderungen für fossile Energieträger bis 2025 zu beenden. Ein Ziel, das laut Fachleuten von Fraunhofer ISI, ZEW und Umweltbundesamt klar verfehlt wird. Daniel Fellhauer warnt: „Das ist kein ideologisches, sondern ein ökonomisches Problem. Solange Kapital und Fördermittel in alte Industrien gelenkt werden, anstatt in skalierbare GreenTech-Lösungen, bleibt Deutschland in der Vergangenheit verhaftet.“
Herausforderungen im deutschen GreenTech-Sektor
Trotz technologischer Fortschritte wird das Wachstum der Branche weiterhin durch strukturelle Probleme gebremst. Zu den größten Hindernissen zählen laut Fellhauer vor allem die unzureichende Netzinfrastruktur, die hohe Kapitalintensität sowie fragmentierte Märkte. Hochqualifizierte Arbeitskräfte in den Bereichen Energie, Elektronik und Software sind rar, wodurch die Entwicklung und Umsetzung neuer Technologien verlangsamt wird. Gleichzeitig behindert der schleppende Ausbau der Strom- und Wärmenetze eine schnelle Skalierung innovativer Lösungen. Daniel Fellhauer erklärt: „Hinzu kommt, dass viele GreenTech-Unternehmen aufgrund langer Entwicklungszeiten und hoher Anfangsinvestitionen auf beträchtliches Kapital angewiesen sind. Schließlich sorgen unterschiedliche Förderprogramme und komplexe regulatorische Vorgaben dafür, dass Innovationen und Markteintritte ausgebremst werden. Diese Faktoren erschweren nicht nur das Wachstum bereits bestehender Firmen, sondern machen auch den Einstieg für neue Gründerinnen und Gründer deutlich schwieriger.“
Zweite Generation der Nachhaltigkeit für mehr wirtschaftliche Tragfähigkeit
„Nur wer wirtschaftlich denkt, kann nachhaltig handeln“, sagt Daniel Fellhauer. Für ihn ist klar: Die nächste Phase der GreenTech-Bewegung entscheidet sich nicht an Visionen, sondern an Umsetzungsdisziplin. „Wir haben die Ideen, die Technologien und den gesellschaftlichen Rückhalt – jetzt geht es um Strukturen, Prozesse und betriebswirtschaftliche Fitness.“ Er spricht damit vor allem zu Gründerinnen und Gründern, die gerade überlegen, in den Markt einzusteigen. „Ich sehe viele junge Teams, die voller Energie starten – aber ohne belastbares Geschäftsmodell. Das ist gefährlich, weil GreenTech kapitalintensiv ist und die Anlaufphase oft Jahre dauert. Wer heute gründet, braucht einen klaren Plan für Cashflow, Partnerschaften und Skalierung, nicht nur für Storytelling.“
Fellhauer plädiert für eine zweite Generation der Nachhaltigkeit: weniger Ideologie, mehr Industriekompetenz. „Wir müssen wieder lernen, wie man produziert, automatisiert und skaliert, nicht nur, wie man pitcht. Nachhaltigkeit ist kein Marketingbegriff, sondern eine Frage des industriellen Könnens.“ Er empfiehlt, früh Kooperationen mit etablierten Mittelständlern oder Industriebetrieben zu suchen, um Skaleneffekte und Erfahrung zu nutzen. Statt auf Subventionen zu bauen, rät er zu robusten Wertschöpfungsmodellen, die auch ohne politische Förderung bestehen können. „Die besten Green-Tech-Firmen der nächsten Jahre werden die sein, die unabhängig funktionieren – weil sie echte Marktprobleme lösen, nicht weil sie im Förderdschungel überleben.“
Politik und Wirtschaft in gemeinsamer Verantwortung
Damit Nachhaltigkeit tatsächlich zum tragfähigen Standbein der deutschen Wirtschaft wird, braucht es planbare Rahmenbedingungen – aber auch Eigeninitiative. Fellhauer betont, dass Gründerinnen und Gründer nicht auf die perfekte Politik warten dürfen. „Wir brauchen beides: verlässliche Energie- und Förderpolitik und unternehmerischen Pragmatismus.“ Politik müsse langfristige Investitionen ermöglichen, den Kapitalzugang vereinfachen und Fachkräfte mobilisieren. Fellhauer nennt staatlich unterstützte Risikokapitalfonds und europäische GreenTech-Programme als zentrale Hebel, damit Innovationen nicht im Frühstadium scheitern. Zugleich müsse Deutschland die Infrastruktur modernisieren: Netze, Standards, Digitalisierung. „Solange ein Windpark genehmigt, aber nicht ans Netz angeschlossen werden kann, bleibt das alles Theorie“, warnt er. Sein Fazit fällt entsprechend klar aus: „GreenTech wird die neue industrielle Basis – wenn wir sie als solche behandeln. Gründer müssen rechnen, Politiker müssen liefern, und die Gesellschaft muss akzeptieren, dass Nachhaltigkeit ein Geschäftsmodell braucht, keinen Idealismuspreis.“
Daniel Fellhauer hat mehrere Unternehmen im Bereich Solar, Wärmepumpen und erneuerbare Energien erfolgreich aufgebaut. Heute ist er Chief Transformation Officer bei Thermondo und eingesetzter CEO seiner ursprünglich gegründeten Firma FEBESOL.
KI und Selbstreflexion: Was macht KI mit dir?
Wie du innovative KI-Technologie und persönliche Entwicklung strategisch geschickt kombinierst, um dein Start-up nachhaltig zu skalieren.
Künstliche Intelligenz (KI) gilt als Wachstumsbooster. Doch wer dabei nur auf Technik setzt, lässt ein entscheidendes Potenzial ungenutzt – die eigene persönliche Entwicklung. Warum es gerade die Verbindung aus KI und Selbstreflexion ist, die Gründer*innen und Start-ups langfristig erfolgreich macht, liest du hier.
Gründen bedeutet, Entscheidungen unter Unsicherheit zu treffen
Wer ein Start-up aufbaut, bewegt sich im Spannungsfeld von Vision und Verantwortung. Geschäftsmodell, Finanzierung, Teamführung, Produktentwicklung – all das passiert meist parallel und unter enormem Zeitdruck. Technologie wird dabei oft als Hebel gesehen, um schneller und effizienter zu arbeiten. Und das stimmt: Tools, die auf KI basieren, können Prozesse automatisieren, Muster erkennen, Kund*innenbeziehungen vertiefen. Doch Technik allein garantiert keinen Erfolg. Entscheidend ist, wer sie wie einsetzt. Und hier kommt ein oft unterschätzter Faktor ins Spiel: der/die Gründer*in selbst mit den Mustern seiner/ihrer Persönlichkeit.
Jede einzelne Erfahrung, die die Marke rund um eine(n) Gründer*in prägt, kann niemals von einer KI erzeugt werden. Diese kann im zweiten Schritt sachlich analysieren, wie Erlebnisse für zukünftige Prozesse genutzt werden, die dazugehörigen Werte oder Ängste aber stecken in der Person selbst als Fundament.
Markenkern, Werte und Identität – das unsichtbare Fundament des Erfolgs
Jede Marke beginnt mit einer Geschichte, und diese umfasst den Menschen als Dreh- und Angelpunkt. Die Erfahrungen, Werte und Überzeugungen der Gründer*in formen den Kern eines Start-ups weit vor dem ersten Pitchdeck. Während KI dabei helfen kann, diese Identität greifbar zu machen, zu analysieren oder in die Kommunikation zu übersetzen, erzeugen kann sie diese nicht.
Gerade in der frühen Phase entscheidet nicht nur das Produkt über den Erfolg, sondern die Haltung dahinter: Wofür steht das Unternehmen? Welche Werte prägen die Entscheidungen? Welches Bedürfnis treibt den/die Gründer*in auch jenseits der KPIs an? Eine klare Positionierung entsteht nicht im Workshop, sondern im inneren Prozess. Es ist die Fähigkeit zur Selbstreflexion, die hier als Kompass dient:
- Was ist mir wirklich wichtig?
- Was darf sich nie ändern, selbst wenn wir skalieren?
- Was wäre ein Deal, den ich nie eingehen würde – egal wie lukrativ er erscheint?
Wer diesen Markenkern kennt, trifft strategische Entscheidungen konsistenter, kommuniziert authentischer und baut Vertrauen bei Investor*innen, Mitarbeitenden und Kund*innen auf. Und erst dann lohnt sich der Einsatz von KI wirklich, um diese klare Positionierung zum Beispiel zu verstärken, nicht aber zu ersetzen.
KI – mehr als nur Effizienzmaschine
KI hat längst ihren Platz in der Start-up-Welt gefunden. Vom Recruiting über Sales bis hin zum Customer Support. KI-gestützte Tools erleichtern die Arbeit und verschaffen jungen Unternehmen echte Wettbewerbsvorteile:
- Automatisierung: Mithilfe von KI lassen sich zeitintensive Prozesse wie Terminplanung, Rechnungsstellung oder E-Mail-Korrespondenz automatisieren. Das schafft Raum für strategische Aufgaben.
- Personalisierung: Wer seine Kund*innen wirklich verstehen will, profitiert von datenbasierten Insights. KI hilft dabei, Verhalten zu analysieren, Bedürfnisse vorherzusagen und Inhalte gezielt auszuspielen.
- Recruiting: Im „War for Talents“ zählt Geschwindigkeit, ergänzend aber unbedingt auch Qualität. KI-Tools unterstützen dabei, Bewerber*innen effizient zu sichten und unbewusste Bias zu reduzieren.
Richtig eingesetzt, ermöglicht KI mehr Fokus, schnellere Iterationen und datengestützte Entscheidungen. Aber genau hier beginnt auch das Problem: Technologie kann nur das verstärken, was ohnehin vorhanden ist oder eben (noch) nicht.
Selbstreflexion – der unterschätzte Erfolgsfaktor
Gründer*innen stehen täglich vor Entscheidungen mit Tragweite. Doch unter Druck, Unsicherheit und Wachstumsschmerz wird oft reaktiv gehandelt statt reflektiert geführt. Genau hier setzt Selbstreflexion an. Wer sich seiner Stärken, Muster und blinden Flecken bewusst ist, trifft bessere Entscheidungen – für sich, das Team und das Unternehmen. Selbstreflexion ist kein esoterisches Extra, sondern ein pragmatisches Führungsinstrument. Einige wirkungsvolle Methoden:
- Regelmäßige Selbstchecks: Was hat in dieser Woche funktioniert und warum? Was nicht? Was sagt das über meine Prioritäten aus?
- Feedback aktiv einholen: nicht nur von Mitgründer*innen oder Coaches, sondern auch vom Team. Nicht defensiv reagieren, sondern neugierig auf das Feedback sein.
- Mentoring und Coaching: Externe Sparringspartner*innen helfen, Perspektiven zu erweitern und Denkfehler zu entlarven.
- Reflexionstools nutzen: vom (digitalen) Journal bis zur strukturierten Entscheidungsanalyse gibt es einfache Hilfsmittel, die Klarheit schaffen.
Wer bereit ist, sich selbst zu hinterfragen, entwickelt nicht nur sich, sondern auch sein Start-up weiter. Denn Führung beginnt nicht mit der Verantwortung für andere, sondern mit der Verantwortung für sich selbst.
Die Synergie – wenn KI auf Selbstreflexion trifft
Die wirklich erfolgreichen Gründer*innen sind nicht entweder Tech-Expert*innen oder People-Leader*innen. Sie verbinden beides. Sie nutzen KI, um operative Exzellenz zu schaffen und reflektieren gleichzeitig, wie sie führen, entscheiden, kommunizieren. Diese Kombination erzeugt eine Form von unternehmerischer Klarheit, die sowohl innovativ als auch resilient ist.
KI kann Erkenntnisse liefern. Aber nur, wer sie richtig einordnet, profitiert davon. Selbstreflexion schafft den Raum, um mit Technologie sinnvoll umzugehen. Umgekehrt kann KI helfen, Reflexionsprozesse zu unterstützen, etwa durch gezielte Feedback-Auswertung oder datengestützte Teamanalysen.
Ein Beispiel aus der Praxis: Ein Start-up im HR-Tech-Bereich nutzt KI, um Kund*innenfeedback in Echtzeit zu analysieren. Gleichzeitig reflektieren die Gründer*innen wöchentlich im Führungsteam, welche Learnings daraus für Produkt und Kommunikation folgen und welche persönlichen Muster sie bei sich selbst erkennen. Diese Kombination aus technologischem Blick nach außen und menschlichem Blick nach innen führt dazu, dass das Unternehmen nicht nur schneller wächst, sondern dabei auch klar bleibt.
Skalierung braucht Klarheit in der Technik und im Kopf
Start-ups, die skalieren wollen, müssen effizient sein, gleichzeitig aber auch fokussiert, werteorientiert und anpassungsfähig. KI ist dabei ein mächtiges Werkzeug. Doch ohne die Fähigkeit zur Selbstreflexion bleibt sie oft bloß ein weiteres Tool im Tech-Stack.
Deshalb gilt: Die Kombination aus klugem KI-Einsatz und bewusster persönlicher Entwicklung ist kein Luxus, sondern unternehmerische Notwendigkeit. Wer beides ernst nimmt, schafft ein Unternehmen, das nicht nur wächst, sondern dabei auch „gesund“ bleibt.
Die Autorin Lea Baptista ist Geschäftsführerin der GG Consulting Agency und unterstützt Unternehmer*innen, Führungskräfte und Teams dabei, ihren Führungsstil klar zu definieren, Selbstreflexion als Werkzeug zu nutzen und authentisch erfolgreich zu sein.
Code für die künstliche Intelligenz: technische Optimierung für die Ära der KI-Suche
Code für die KI: So optimierst du deine Website technisch mit strukturierten Daten und Protokollen für die besten generativen Suchergebnisse.
Die Regeln der Online-Sichtbarkeit werden neu geschrieben. Es geht nicht mehr nur darum, von einem herkömmlichen Algorithmus indiziert zu werden. Stattdessen müssen Websites so aufbereitet werden, dass sie von künstlicher Intelligenz (KI) und großen Sprachmodellen (LLMs) fehlerfrei interpretiert und verarbeitet werden können.
KI erstellt ihre Antworten, indem sie Inhalte blitzschnell liest, deren Bedeutung versteht und die wichtigsten Fakten daraus extrahiert. Wenn der technische Unterbau einer Website unsauber ist, kann die KI die Informationen entweder nicht zuverlässig finden oder sie falsch interpretieren.
Das bedeutet, die technische Seite der Website – der Code – wird zum Fundament für eine gute Platzierung in den generativen Suchergebnissen. Wer hier Nachholbedarf hat, riskiert, als vertrauenswürdige Quelle für die KI unsichtbar zu werden.
Dieser Artikel beleuchtet die entscheidenden technischen Anpassungen, die notwendig sind, um deine Website optimal für die neue Ära der KI-Suche vorzubereiten.
Kontrolle und Zugang: Die Regeln für Sprachmodelle
Der erste technische Schritt zur Optimierung für KI-Ergebnisse ist die Steuerung des Zugriffs durch die großen Sprachmodelle (LLMs). Traditionell wird der Zugang durch die robots.txt Datei geregelt, die festlegt, welche Bereiche der Website von herkömmlichen Suchmaschinen-Crawlern besucht werden dürfen.
Mit dem Aufkommen verschiedener, spezialisierter KI-Crawler (die nicht immer identisch mit dem Googlebot oder Bingbot sind) entsteht jedoch die Notwendigkeit, diesen neuen Akteuren eigene Regeln zu geben. Es geht darum, Transparenz darüber zu schaffen, welche Daten zur Generierung von Antworten verwendet werden dürfen und welche nicht.
Neue Protokolle für neue Crawler
Experten diskutieren und entwickeln neue Protokolle, um diese Unterscheidung zu ermöglichen. Ein viel diskutierter Ansatz ist die Einführung von Protokollen, die spezifisch den Umgang mit generativer KI regeln. Dies könnte die Einführung von Protokollen wie einer llms.txt Datei beinhalten. Solche spezifischen Dateien könnten festlegen, ob ein KI-Modell Inhalte zur Schulung oder zur generativen Beantwortung von Nutzeranfragen nutzen darf.
Diese Kontrollmechanismen sind entscheidend. Sie geben den Website-Betreibern die Autorität darüber zurück, wie ihre Inhalte in der KI-Ära verwendet werden. Wer hier klare Regeln setzt, schafft die technische Grundlage für eine kontrollierte und damit vertrauenswürdige Sichtbarkeit in den KI-Ergebnissen.
Strukturierte Daten als universelle KI-Sprache
Nach der Regelung des Zugangs durch Protokolle ist die Strukturierung der Inhalte der wichtigste technische Schritt. Suchmaschinen nutzen strukturierte Daten schon lange, um Rich Snippets in den klassischen Ergebnissen anzuzeigen. Für die KI sind diese Daten jedoch absolut essenziell.
Strukturierte Daten, die auf dem Vokabular von Schema.org basieren, sind im Grunde eine Übersetzungshilfe im Code, die dem Sprachmodell den Kontext des Inhalts direkt mitteilt. Sie sind die "Sprache", die die KI am schnellsten und präzisesten versteht.
Die Bedeutung für die Generierung
Wenn ein Nutzer eine Frage stellt, sucht die KI nicht nur nach Stichwörtern, sondern nach definierten Informationstypen. Mit strukturierten Daten liefert man der KI diese Informationen als fertige, fehlerfreie Bausteine.
- Fehlerfreie Extraktion: Die KI muss keine Textpassagen interpretieren, um beispielsweise ein Rezept, die Bewertung eines Produkts oder einen FAQ-Abschnitt zu identifizieren. Die korrekte Auszeichnung macht die Daten sofort nutzbar.
- Vertrauensbildung: Fehlerhafte oder inkonsistente strukturierte Daten führen zu einer falschen Interpretation und können bewirken, dass die KI deine Seite als unzuverlässig einstuft.
Die Implementierung muss fehlerfrei sein und sollte alle relevanten Inhaltstypen der Website abdecken. Nur eine saubere Schema-Implementierung garantiert, dass deine Fakten korrekt in die generativen Antworten der KI einfließen.
Ladezeit und Interaktivität als Vertrauenssignal
Die Geschwindigkeit und die Nutzbarkeit einer Website sind in der Ära der KI-Suche nicht mehr nur ein Komfortfaktor, sondern ein entscheidendes technisches Vertrauenssignal. Wenn deine Seite langsam lädt oder schlecht bedienbar ist, wird das von der KI als Indikator für mangelnde Qualität und niedrige Autorität gewertet.
Die Basis dafür sind die sogenannten Core Web Vitals (CWVs). Diese Messwerte, die sich auf das Nutzererlebnis konzentrieren, sind feste Ranking-Faktoren und haben direkten Einfluss darauf, ob eine KI deine Seite als zitierwürdig einstuft:
- LCP (Largest Contentful Paint): Misst die Zeit, bis der größte sichtbare Inhalt geladen ist.
- FID/INP (First Input Delay / Interaction to Next Paint): Misst die Zeit bis zur ersten Interaktion und die allgemeine Reaktionsfähigkeit der Seite.
- CLS (Cumulative Layout Shift): Misst die visuelle Stabilität.
Mobile Performance ist der Schlüssel
Da ein Großteil der Online-Aktivität über mobile Geräte stattfindet, legt die KI höchsten Wert auf die Optimierung der Mobilversion. Eine schlechte mobile Performance kann das gesamte Ranking negativ beeinflussen.
Die technische Anpassung muss daher darauf abzielen, die CWVs zu perfektionieren. Dies beinhaltet die Optimierung von Bildern, das Bereinigen unnötiger Code-Lasten und das Priorisieren wichtiger Ressourcen. Eine schnell ladende und reaktionsfreudige Website signalisiert nicht nur dem Nutzer, sondern auch der KI, dass die Quelle professionell und damit vertrauenswürdig ist.
Redundanz vermeiden: kanonische Klarheit
Eines der größten technischen Probleme für KI-Modelle ist die Verwirrung durch doppelte Inhalte (Duplikate). Wenn die gleiche Information unter verschiedenen URLs verfügbar ist, weiß die KI nicht, welche die Originalquelle darstellt. Dies zersplittert deine Autorität.
Der technische Schlüssel zur Lösung ist der Canonical Tag (<link rel="canonical" ...>). Dieser Tag im Code muss auf jeder Seite korrekt auf die bevorzugte, indexierbare URL zeigen. Durch die Vermeidung von Duplikaten und die korrekte Nutzung dieses Tags stellst du technisch sicher, dass die KI deine Inhalte als eindeutig und autoritär wahrnimmt und dich als zuverlässigen Faktenlieferanten zitiert.
Schlussworte
Die Zukunft der Online-Sichtbarkeit wird durch künstliche Intelligenz neu definiert. Der Erfolg hängt von einer technisch sauberen Vorbereitung ab.
Die wichtigsten Schritte in der Generative Engine Optimization (GEO) sind:
1. Zugangskontrolle durch Protokolle wie die diskutierte llms.txt Datei.
2. Die Nutzung von strukturierten Daten als unverzichtbare KI-Sprache.
3. Die Perfektionierung der Core Web Vitals als Vertrauenssignal.
4. Die Vermeidung von Duplikaten durch kanonische Klarheit.
Investiere in diese technische Qualität, um Autorität und Sichtbarkeit in der Ära der KI-generierten Antworten zu sichern.
Report: Quantencomputing
Wir sind Zeug*innen einer Transformation, die nicht nur die Tech-Branche nachhaltig beeinflussen wird: Quantencomputing und die dazugehörigen Start-ups haben das Potenzial, die Art und Weise, wie wir Daten verarbeiten und Probleme lösen, grundlegend zu verändern.
Quantencomputing (QC) ist ein hochinnovatives Feld der Informatik und Physik, das die Prinzipien der Quantenmechanik nutzt, um Datenverarbeitung und -analyse auf eine Weise zu leisten, die mit klassischen Computern nicht möglich ist. Während klassische Computer Informationen in Form von Bits verarbeiten, die entweder den Wert 0 oder 1 annehmen können, verwenden Quantencomputer Quantenbits oder Qubits. Diese Qubits können sich in einem Zustand der Überlagerung befinden, was bedeutet, dass sie gleichzeitig 0 und 1 darstellen können. Dies ermöglicht es Quantencomputern, komplexe Berechnungen viel schneller durchzuführen als ihre klassischen Pendants.
Herausforderungen
Trotz des enormen Potenzials stehen Forschende und Unternehmen vor vielen Herausforderungen. Eine der größten Hürden ist die sog. Dekohärenz, ein Phänomen, bei dem die Quanteninformation durch Wechselwirkungen mit der Umgebung verloren geht. Um stabile und fehlerfreie Quantenberechnungen durchzuführen, müssen Qubits in einem kontrollierten Zustand gehalten werden, was technisch äußerst anspruchsvoll ist.
Eine weitere Herausforderung ist die Skalierbarkeit. Während einige Prototypen von Quantencomputern bereits existieren, stellt der Bau von Systemen mit einer ausreichenden Anzahl von Qubits, um praktische Probleme zu lösen, eine erhebliche technische Herausforderung dar.
Trends
In den letzten Jahren ist ein zunehmender Fokus auf hybride Ansätze zu verzeichnen, bei denen Quantencomputer in Kombination mit klassischen Computern eingesetzt werden, um spezifische Probleme zu lösen. Diese hybriden Systeme nutzen die Stärken beider Technologien und bieten eine praktikable Lösung für viele aktuelle Herausforderungen.
Zudem ist eine wachsende Zusammenarbeit zwischen akademischen Institutionen, großen Tech-Unternehmen und Start-ups zu beobachten. Diese Partnerschaften sind entscheidend, um Wissen und Ressourcen zu bündeln und die Entwicklung von QC-Technologien voranzutreiben. Unternehmen wie IBM, Google oder Microsoft investieren erheblich in Quantenforschung und -entwicklung und bieten Plattformen für Entwickler*innen und Forschenden an, um ihre eigenen Quantenalgorithmen zu testen.
Ein weiterer Trend ist die zunehmende Verfügbarkeit von QC-Diensten über die Cloud. Unternehmen und Forschende können nun auf Quantencomputer zugreifen, ohne in teure Hardware investieren zu müssen. Dies senkt die Eintrittsbarrieren und ermöglicht es einer breiteren Palette von Nutzenden, die Möglichkeiten des QCs zu erkunden.
Die Rolle von Start-ups
Start-ups spielen hierbei mit neuen Ideen und Ansätzen eine entscheidende Rolle als Innovatoren und konzentrieren sich zumeist auf spezifische Anwendungen des QCs, sei es in der Materialwissenschaft, der Medikamentenentwicklung, der Lieferkettenlogistik oder der Optimierung komplexer Systeme u.a. in der Finanzwelt.
Die 2024 im Auftrag des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK) veröffentlichte Studie „Quantencomputing – Markt, Zugang, Perspektiven“ zeigt: Die Zahl der Start-ups zur Entwicklung von Anwendungssoftware stieg in den letzten Jahren stetig, wobei hardwarespezifische Systemsoftware vorrangig von den Hardwareentwickler*innen selbst bereitgestellt wird. Entfielen im Zeitraum von 2002 bis 2018 weltweit noch rund 58 Prozent der kumulierten Gründungen auf Software- oder Service-zentrierte Start-ups und 42 Prozent auf Hardware- bzw. Komponenten-fokussierte Start-ups, waren es im Zeitraum 2018 bis 2022 rund 74 Prozent mit Fokus auf Software und Services sowie 26 Prozent mit Fokus auf Hardware und Komponenten.
Von weltweit über 150 Start-ups fokussiert sich dabei etwa ein Drittel auf die Entwicklung von Systemsoftware und zwei Drittel auf die Entwicklung von Anwendungssoftware. Deutschland belegt dabei mit knapp 20 Start-ups im Jahr 2023 Platz drei im internationalen Vergleich, hinter den USA und Kanada. Damit hat sich Deutschland als ein Hotspot für QC-Start-ups etabliert.
Deutsche QC-Start-ups mischen ganz vorne mit
Deutsche QC-Start-ups sind oft noch in der Entwicklungsphase, die Gründer*innen kommen meist aus Forschung und Wissenschaft, und ihre Geschäftsmodelle konzentrieren sich auf die Entwicklung und den Verkauf von Hardware, Mikroskopen oder Cloud-basierten QC-Diensten.
Als weltweit erstem Unternehmen ist es dem 2018 gegründeten Start-up kiutra, einem Spin-off der Technischen Universität München, gelungen, eine dauerhafte magnetische Kühlung für Temperaturen nahe des absoluten Nullpunkts zu entwickeln. Statt auf Quantencomputer oder QC-Software, setzen die Gründer Alexander Regnat, Jan Spallek, Tomek Schulz und Christian Pfleiderer auf vollautomatische, äußerst wartungsarme und gut skalierbare Kühlungslösungen, die den Betrieb von Quantentechnologien im industriellen Maßstab ermöglichen.
Indirekter Einkauf: Versteckter Kostenfresser oder unentdeckter Goldschatz?
Im Interview sprechen wir mit Bettina Fischer, Gründerin von Hivebuy, über die Chancen und Risiken des indirekten Einkaufs und darüber, wie Unternehmen mit der richtigen Software Kosten senken und Prozesse optimieren können.
In vielen Unternehmen wird der indirekte Einkauf häufig unterschätzt – dabei liegen hier oft erhebliche Einsparpotenziale verborgen. Durch die wachsende Digitalisierung und die zunehmende Verfügbarkeit von B2B eCommerce-Plattformen bestellen Mitarbeitende Waren und Dienstleistungen immer häufiger außerhalb klassischer Einkaufsprozesse. Diese Entwicklung bringt einerseits Flexibilität und Effizienz, stellt Unternehmen aber auch vor neue Herausforderungen: Wie lassen sich Ausgaben kontrollieren und Transparenz über die gesamte Einkaufskette sicherstellen?
Die beste Einkaufssoftware für den Mittelstand adressiert genau diese Herausforderungen. Hivebuy hat sich als moderne, benutzerfreundliche Lösung etabliert, die den indirekten Einkaufsprozess von der Bestellung bis zur Rechnungsprüfung digitalisiert und automatisiert. Die Software integriert sich nahtlos in bestehende ERP-, Buchhaltungs- und Kommunikationstools wie SAP, Microsoft Dynamics, Teams oder Slack – und das ohne aufwändige technische Implementierung.
Gegründet von erfahrenen Einkaufs- und Finanzexpert*innen aus Frustration über bisherige Lösungen, verfolgt Hivebuy die Mission, versteckte Kosten sichtbar zu machen, Budgets in Echtzeit zu kontrollieren und Einkaufsprozesse effizienter zu gestalten. Mit höchsten Sicherheitsstandards, inklusive ISO/IEC 27001-Zertifizierung und DSGVO-konformer Datenhaltung in Deutschland, schafft Hivebuy Transparenz und Vertrauen entlang der gesamten Einkaufskette.
Im Interview sprechen wir mit Bettina Fischer, Gründerin von Hivebuy, über die Chancen und Risiken des indirekten Einkaufs und darüber, wie Unternehmen mit der richtigen Software Kosten senken und Prozesse optimieren können.
StartingUp: Frau Fischer, viele Unternehmen sehen im indirekten Einkauf eher einen Kostenfaktor, der schwer zu kontrollieren ist. Was macht den indirekten Einkauf aus Ihrer Sicht zu einem versteckten Kostenfresser?
Bettina Fischer: Die große Herausforderung im indirekten Einkauf liegt darin, dass die einkaufenden Personen über das gesamte Unternehmen verteilt sind – anders als im direkten Einkauf, wo spezialisierte Einkaufsabteilungen tätig sind. Das bedeutet: Jede*r Mitarbeitende, der oder die einmal etwas bestellt, wird zum Einkäufer oder zur Einkäuferin – oft ohne die notwendige Erfahrung in Einkaufsprozessen.
Dadurch entstehen typische Muster: Es wird bei bekannten Lieferanten bestellt – oft aus dem privaten Umfeld, wie etwa Amazon Business – ohne Preisvergleiche, ohne Berücksichtigung von Lieferzeiten oder bereits verhandelten Konditionen. Das führt schnell zu ineffizienten und teuren Entscheidungen.
Hinzu kommt, dass im indirekten Einkauf eine hohe Produktvielfalt auf eine extrem heterogene Lieferantenlandschaft trifft. Das erschwert es, durch Bündelung bessere Konditionen zu erzielen. Es fehlt die klare, strategische Beziehung zu bestimmten Lieferanten – und genau dort entstehen die versteckten Kosten.
StartingUp: Wie hilft Hivebuy Mittelständlern konkret dabei, diese versteckten Kosten aufzudecken und zu reduzieren?
Bettina Fischer: Hivebuy verfolgt einen ganzheitlichen Ansatz, um die Herausforderungen des indirekten Einkaufs zu lösen. Zum einen ermöglichen wir es Mitarbeitenden, direkt über integrierte Lieferanten zu bestellen. Das bedeutet: Die Bestellungen erfolgen zentral über Hivebuy – ohne Umwege über externe Plattformen oder individuelle Beschaffungswege. Die Bestellübermittlung ist automatisiert und erfolgt effizient über unser System.
Darüber hinaus bietet Hivebuy einen integrierten Preisvergleich für B2B-Webshops. So wird sichergestellt, dass stets der beste Preis und die optimalen Lieferzeiten berücksichtigt werden – ein entscheidender Hebel zur Kostensenkung.
Ein weiterer zentraler Punkt ist die Budgetkontrolle: Sobald eine Bestellanforderung erstellt wird, sehen Budgetverantwortliche sofort die Auswirkungen auf ihr Budget – in Echtzeit. Dadurch lassen sich Entscheidungen schnell, fundiert und transparent treffen.
Auch die Freigabeprozesse sind flexibel und konfigurierbar: Mitarbeitenden wird Freiheit für alltägliche Bestellungen gegeben, während bei kritischen oder kostenintensiven Vorgängen automatische Eskalationen und Genehmigungen greifen.
Nicht zuletzt ermöglicht Hivebuy dem Einkauf, sein Wissen an die Organisation weiterzugeben. Vorverhandelte Verträge, Katalogartikel oder bevorzugte Lieferanten sind direkt im System sichtbar – wie ein digitaler Einkaufsberater im Hintergrund. So treffen selbst unerfahrene Nutzer bessere Entscheidungen – ganz im Sinne von Kostenkontrolle und Prozesssicherheit.
StartingUp: Ihre Software ist bekannt für ihre Nutzerfreundlichkeit. Wie schaffen Sie es, auch nicht-einkaufserfahrene Mitarbeitende einzubinden?
Bettina Fischer: Benutzerfreundlichkeit steht bei Hivebuy an oberster Stelle. Wann immer wir eine neue Funktion entwickeln, testen wir diese gemeinsam mit unseren Nutzerinnen und Nutzern – direkt aus der Praxis. Unser Ziel ist es, dass Hivebuy genauso intuitiv bedienbar ist wie eine Online-Überweisung: Jeder soll auf Anhieb verstehen, was zu tun ist.
Mit Funktionen wie unserem B2B-Preisvergleich und dem sogenannten Guided Buying führen wir Mitarbeitende gezielt durch den Einkaufsprozess – Schritt für Schritt, ganz ohne Schulungsaufwand. So wird selbst komplexes Einkaufswissen einfach zugänglich gemacht.
Für Freigabeverantwortliche haben wir zusätzlich eine besonders komfortable Lösung geschaffen: Freigaben können direkt über Messenger-Apps wie Microsoft Teams erteilt werden – ohne sich ins System einloggen zu müssen. Die relevanten Informationen kommen automatisch dorthin, wo man ohnehin schon arbeitet – aufs Handy oder den Desktop. Das senkt die Einstiegshürden enorm und sorgt für eine breite Akzeptanz im gesamten Unternehmen.
StartingUp: Welche Rolle spielen Transparenz und Echtzeit-Reporting in der Budgetkontrolle?
Bettina Fischer: Wir sind überzeugt: Budgetkontrolle funktioniert nur in Echtzeit. Es bringt wenig, wenn Budgetübersichten nur monatlich, quartalsweise oder gar halbjährlich zur Verfügung stehen. Entscheidungen im Einkauf werden täglich getroffen – also muss auch die Budgettransparenz jederzeit aktuell sein.
Deshalb haben wir bei der Entwicklung von Hivebuy besonderen Fokus auf eine unmittelbare Budgeteinsicht gelegt. Sobald eine Bestellung angefragt wird, sieht der oder die Budgetverantwortliche sofort, wie sich diese auf das verfügbare Budget auswirkt. Diese Echtzeit-Transparenz ist ein zentrales Element unserer Software.
Gleichzeitig möchten wir Mitarbeitende befähigen, innerhalb ihrer Befugnisse selbstständig Entscheidungen zu treffen. Nicht jede Anfrage muss durch mehrere Instanzen laufen. Vielmehr setzen wir auf smarte, automatisierte Prozesse – kombiniert mit dem Vertrauen in die Souveränität der Nutzer. Das spart nicht nur Zeit, sondern steigert auch die Effizienz und Zufriedenheit im Unternehmen.
StartingUp: Die Einführung neuer Software bedeutet oft hohen Aufwand. Wie gestaltet sich die Implementierung von Hivebuy?
Bettina Fischer: Ich habe selbst über viele Jahre ERP- und Einkaufssoftwareprojekte geleitet – und ehrlich gesagt: Es war jedes Mal ein enormer Aufwand. Genau diese Erfahrungen haben mich dazu motiviert, Hivebuy so zu entwickeln, dass Implementierung eben nicht zur Belastung wird.
Unsere Lösung ist bewusst so aufgebaut, dass sie schnell, unkompliziert und ohne großen IT-Aufwand eingeführt werden kann. Neue Unternehmen können innerhalb kürzester Zeit starten – oft sogar innerhalb eines Tages mit einem eigenen Testsystem.
Die Einführung begleiten wir durch leicht verständliche Videotutorials und Onboarding-Materialien. Darüber hinaus gibt es persönliche Sessions, in denen die Nutzer befähigt werden, das System selbstständig für ihr Unternehmen zu konfigurieren. Schnittstellen zu ERP-Systemen wie SAP, Microsoft Dynamics oder DATEV richten wir in der Regel innerhalb weniger Stunden bis Tage ein.
Wenn beide Seiten fokussiert an das Projekt herangehen, können wir bei Unternehmen mit mehreren tausend Mitarbeitenden innerhalb von acht Wochen vollständig live gehen – inklusive Integration, Schulung und Rollout.
StartingUp: Wie unterstützt Hivebuy IT-Teams und technische Entscheider bei der Integration?
Bettina Fischer: Unsere größte Stärke in der Zusammenarbeit mit IT-Teams ist unsere Schnelligkeit. Bereits im ersten Kick-Off mit der IT tauschen wir alle relevanten technischen Dokumentationen aus, klären die Rahmenbedingungen und ermöglichen in kürzester Zeit die Integration in ein Testsystem. Wir verzichten bewusst auf langwierige Business-Blueprint-Phasen und setzen stattdessen auf eine praxisnahe, direkte Umsetzung.
Hivebuy verfolgt eine klare Integration-First-Strategie. Das bedeutet: Unsere Lösung ist von Grund auf so konzipiert, dass sie sich schnell und flexibel in bestehende ERP-Systeme und IT-Landschaften integrieren lässt. Für alle gängigen Systeme – ob SAP, Microsoft Dynamics, DATEV oder NetSuite – stellen wir vollständige Schnittstellen-Dokumentationen zur Verfügung.
Mein Mitgründer Stefan Kiehne bringt aus seiner Zeit bei PwC tiefes technisches Know-how mit und hat zahlreiche ERP-Implementierungen verantwortet. Dieses Wissen fließt direkt in unsere Projekte ein. Inzwischen haben wir Hivebuy in so viele verschiedene Systeme integriert, dass kaum noch Überraschungen aufkommen. Für IT-Verantwortliche bedeutet das: minimale Unsicherheiten, schnelle Umsetzung und maximale Kompatibilität.
StartingUp: Wie sieht die Zukunft des indirekten Einkaufs aus? Welche Trends beobachten Sie?
Bettina Fischer: Ich sehe im indirekten Einkauf ganz klar einen Wandel hin zu intelligenter Automatisierung und echter Transparenz. Schon heute beobachten wir den Trend in Richtung „Agent AI“ – also digitale Einkaufsassistenten, die Nutzer durch Prozesse begleiten und Entscheidungen mit datenbasierten Empfehlungen unterstützen. Das wird sich in den nächsten Jahren deutlich verstärken.
Was mich persönlich schon lange wundert: Im B2C-Bereich haben wir mit Plattformen wie Idealo längst Preis- und Konditionsvergleiche. Im B2B gibt es das kaum. Deshalb war es uns wichtig, mit Hivebuy eine Lösung zu schaffen, die genau das möglich macht – inklusive der hinterlegten, unternehmensspezifischen Konditionen. Das ist ein echter Gamechanger.
In Zukunft wird der indirekte Einkauf zunehmend automatisiert ablaufen – von der Bedarfserkennung bis hin zur Bestellung. Vergleichbar mit einem intelligenten Kühlschrank, der automatisch Milch nachbestellt, wird auch im Unternehmen vieles automatisch geschehen: Bedarfe erkennen, Angebote vergleichen, Bestellungen auslösen – ganz ohne manuelles Zutun.
Strategische Beschaffung wird dabei zur Grundlage. Das Ziel ist nicht, jede Bestellung individuell zu behandeln, sondern Prozesse zu standardisieren, auf Unternehmensziele auszurichten und individuelle Bedarfe intelligent einzubinden.
Und auch die Rückseite des Einkaufs wird sich stark verändern: Rechnungsprüfung, Buchung und Zahlungsfreigabe werden zunehmend automatisiert ablaufen. In einer idealen Zukunft brauchen wir keine manuelle Rechnungserfassung mehr – weil alles systemgestützt, regelbasiert und transparent funktioniert.
StartingUp: Vielen Dank für das Gespräch, Frau Fischer. Ihre Einblicke verdeutlichen, wie entscheidend es für Unternehmen ist, den indirekten Einkauf transparent und effizient zu gestalten. Mit Lösungen wie Hivebuy können Mittelständler versteckte Kosten sichtbar machen und ihre Beschaffungsprozesse nachhaltig optimieren. Wir wünschen Ihnen weiterhin viel Erfolg bei Ihrer Mission, Einkaufsteams bestmöglich zu unterstützen.
EU AI Act: Status quo
Recht für Gründer*innen: der EU AI Act. Wo stehen wir in Sachen Umsetzung? Was Gründer*innen und Start-ups jetzt wissen müssen.
Künstliche Intelligenz (KI) ist längst kein Zukunftsthema mehr, sondern prägt schon heute Geschäftsmodelle, Investitionsentscheidungen und die Arbeitswelt. Mit der europäischen KI-Verordnung (EU AI Act, im Folgenden AI Act) wurde im Frühjahr 2024 der weltweit erste umfassende Rechtsrahmen für den Einsatz von KI verabschiedet. Inzwischen sind die ersten Regelungen in Kraft getreten. Für Gründer*innen und Start-ups bedeutet das nicht nur zusätzliche Pflichten, sondern auch Chancen, sofern sie sich rechtzeitig vorbereiten.
Überblick: Der AI Act
Die Verordnung folgt einem risikobasierten Ansatz: Je höher das Risiko für Grundrechte oder Sicherheit, desto strenger die Anforderungen. Auf der untersten Stufe stehen KI-Systeme, die keinerlei Vorgaben erfüllen müssen, solange sie nicht in verbotene Anwendungsfälle fallen. An der Spitze der Regulierungspyramide befinden sich die sogenannten HochrisikoSysteme, also etwa Anwendungen in der medizinischen Diagnostik, in kritischer Infrastruktur oder bei biometrischen Verfahren. Viele Tools aus dem HR-Bereich fallen darunter.
Daneben bestehen besondere Pflichten für sogenannte Generative KI beziehungsweise General Purpose AI, eingeführt, also große Modelle, die viele Anwendungen treiben und „systemische Risiken“ entfalten können.
Wichtig ist zu wissen, dass die Vorgaben schrittweise gelten. Bereits seit dem 2. Februar 2025 sind bestimmte Praktiken ausdrücklich verboten – zum Beispiel das Social Scoring von Bürger*innen, die flächendeckende Emotionserkennung in Schulen oder am Arbeitsplatz sowie das unkontrollierte Sammeln biometrischer Daten. Wer damit noch experimentiert, bewegt sich schon jetzt im rechtswidrigen Raum.
Seit dem 2. August 2025 gelten außerdem die ersten Pflichten für Anbieter*innen von generativen Modellen. Sie müssen unter anderem Transparenzberichte veröffentlichen und Angaben zu den verwendeten Trainingsdaten machen. Für Modelle, die bereits vor Inkrafttreten am Markt waren, gibt es eine Übergangsfrist bis 2027. Für viele Unternehmen, die solche Modelle nutzen oder in Produkte einbetten, bedeutet das, genau hinzuschauen, welche Informationen von den Modellanbieter*innen zur Verfügung gestellt werden. Sonst können eigene Transparenzpflichten womöglich nicht erfüllt werden.
Noch weiter in der Zukunft liegen die Vorschriften für Hochrisiko-Systeme. Diese greifen ab 2. August 2026 und verlangen ein umfassendes Risikomanagement, eine strenge Qualität der Trainingsdaten, eine lückenlose Protokollierung und eine Konformitätsbewertung, bevor ein Produkt überhaupt in Verkehr gebracht werden darf. Für Hochrisiko-KI, die in ohnehin streng regulierten Produkten steckt, zum Beispiel in Medizinprodukten, gilt eine verlängerte Frist bis 2027.
Konformitätsbewertung heißt vor allem Risikobewertung, welche die Anbieter*innen oder Betreiber*innen selbst durchführen müssen. Eine solche „regulierte Selbstregulierung“ ist ein klassisches Merkmal einer solchen klassischen Produktregulierung und Marktüberwachung.
Was fehlt? Guidance und Governance
Noch herrscht allerdings an vielen Stellen Unsicherheit. Zwar hat die EU-Kommission schon erste Leitlinien veröffentlicht, etwa zur Definition von KI-Systemen oder zu den verbotenen Praktiken. Auch für Anbieter*innen generativer KI gibt es inzwischen ein detailliertes Dokumentationsmuster. Noch fehlen allerdings die angekündigten Handreichungen für die Einstufung und Risikobewertung von Hochrisiko-Systemen, die bis Februar 2026 folgen und praktische Beispiele enthalten sollen. Bis dahin bleibt nur, sich für die Bewertung an bestehenden internationalen Standards zu orientieren, zum Beispiel an den Normungsprojekten der Europäischen Komitees für Normung und für elektrotechnische Normung.
Auf Unionsebene entstehen parallel die neuen Governance-Strukturen. Das AI Office innerhalb der Kommission ist bereits aktiv und koordiniert die Umsetzung. Das AI Board, ein Gremium der Mitgliedstaaten, tagt regelmäßig und stimmt Vorgehensweisen ab. Ein wissenschaftliches Panel unabhängiger Expert*innen wurde im Frühjahr eingerichtet, und das Advisory Forum, das die Perspektive von Unternehmen und Zivilgesellschaft einbringen soll, befindet sich gerade in der Bewerbungsphase. Auch die geplante EU-Datenbank für Hochrisiko-Systeme existiert bisher nur auf dem Papier. Ab 2026 müssen Anbieter*innen ihre Systeme dort registrieren; die Plattform selbst wird jedoch gerade erst aufgebaut.
Und wo steht Deutschland?
Auch hierzulande hakt es noch etwas. Eigentlich hätten die Mitgliedstaaten bis 2. August 2025 ihre Marktüberwachungsbehörden benennen müssen. Ein Entwurf für das deutsche Umsetzungsgesetz sieht die Bundesnetzagentur als zentrale Aufsicht vor, doch die formale Benennung ist noch nicht erfolgt. Klar ist, dass die Bundesnetzagentur die Rolle der Notifizierungsbehörde übernimmt, also für die Anerkennung von Konformitätsbewertungsstellen zuständig ist. Zudem entsteht dort ein Kompetenzzentrum für KI, das die Arbeit von Bund und Ländern koordinieren soll.
Reallabore
Ein Bereich, der für KI-Entwickler*innen besonders interessant ist, sind KI-Reallabore, also sichere Testumgebungen, in denen neue Anwendungen unter Aufsicht erprobt und darauf geprüft werden können, ob sie den rechtlichen Rahmen einhalten. Bis zum Sommer 2026 müssen die Mitgliedstaaten mindestens ein solches Reallabor einrichten. Deutschland hat im Mai 2025 ein erstes Pilotprojekt in Hessen gestartet, gemeinsam mit der Bundesnetzagentur und der Bundesdatenschutzbeauftragten. Hier werden reale Unternehmensfälle durchgespielt, um Abläufe und Bedarfe besser zu verstehen. Solche Projekte können eine wertvolle Möglichkeit sein, mit den Aufsichtsbehörden auf Augenhöhe ins Gespräch zu kommen.
Reaktionen
Der AI Act wird zwar kritisch diskutiert, im Grundsatz aber breit akzeptiert. Gerichtliche Klagen direkt gegen die Verordnung gibt es bislang nicht. In der juristischen Literatur überwiegt die Zustimmung zur Zielrichtung. Kritisiert werden vor allem die Komplexität und die noch offenen Fragen bei der praktischen Umsetzung. Streitpunkte finden sich eher außerhalb der Verordnung bei der Frage, ob Trainingsdaten urheberrechtlich geschützt sind oder wie personenbezogene Daten für KI genutzt werden dürfen.
Die Industrie zeigt ein gemischtes Bild. Viele große Anbieter*innen – von Google über OpenAI bis Mistral – haben einen freiwilligen Verhaltenskodex unterzeichnet. Andere, wie etwa Meta, haben sich bewusst dagegen entschieden. Man muss sich also darauf einstellen, dass je nach Anbieter*in sehr unterschiedliche Informationen und Compliance-Nachweise verfügbar sind.
Andererseits wirkt der AI Act bereits am Markt. In öffentlichen Ausschreibungen tauchen Modellklauseln auf, die auf die KI-Verordnung Bezug nehmen. Investor*innen fragen verstärkt nach Compliance-Prozessen, und Unternehmen beginnen, interne Strukturen für Risikomanagement und Dokumentation aufzubauen.
Im Vergleich zu Europa gibt es in den USA bislang nur freiwillige Standards. Die dort bei der Entwicklung und Anwendung von KI (angeblich) vorherrschende größere Freiheit wird zwar viel gerühmt. Einzelne Bundesstaaten wie Colorado arbeiten allerdings an eigenen regulierenden Gesetzen, die ab 2026 greifen sollen. Vielleicht ist es also ein Vorteil, dass europäische Start-ups früh Erfahrungen in einem regulierten Markt sammeln können.
Fazit
Der AI Act entfaltet bereits jetzt Wirkung, auch wenn viele Details erst in den kommenden Monaten geklärt werden. Daher gilt es, nicht abzuwarten, sondern jetzt eine eigene Roadmap zu entwickeln. Wer früh Prozesse für Risikomanagement, Transparenz und Governance etabliert, wird nicht nur rechtlich auf der sicheren Seite sein, sondern auch Vertrauen bei Kund*innen und Investor*innen gewinnen.
Die EU hat ein klares Signal gesetzt: KI soll innovativ sein, aber auch sicher und vertrauenswürdig. Für Start-ups ist das eine Herausforderung – aber auch eine Chance, sich von Anfang an professionell aufzustellen und den Markt aktiv mitzugestalten.
Der Autor Dr. Daniel Michel, LL.M. ist als Rechtsanwalt im Bereich IT/IP/Technologie tätig und betreibt seit 2018 mit DATA LAW COUNSEL seine eigene Rechtsberatung im Raum München
Humanoide Roboter: Vision und Realität
Der Weltroboterverband IFR veröffentlicht sein Positionspapier zu Trends, Chancen und möglichen Grenzen rund um das Thema humanoide Roboter.
Menschenähnliche Roboter gelten als die nächste große Innovation in der Robotik: Der weltweit größte Markt für Industrieroboter, China, hat bereits konkrete Pläne für die Massenproduktion von Humanoiden festgelegt. Gleichzeitig kündigten Technologieunternehmen in den USA und Europa große Investitionsvorhaben in diesem Bereich an. Die Vision ist, Allzweckroboter zu entwickeln, die auf menschlicher Mechanik basieren. Einblicke in Trends, Chancen und mögliche Grenzen humanoider Roboter bietet das neue Positionspapier der International Federation of Robotics.
„Futuristisch anmutende humanoide Roboter, die in unserem Zuhause, in Unternehmen und in der Öffentlichkeit arbeiten, faszinieren die Menschen“, sagt Takayuki Ito, Präsident der International Federation of Robotics. „Da die Welt in der wir leben auf den menschlichen Körper zugeschnitten ist, liegt die Idee eines schnellen, universellen Helfers in der Produktion und bei Dienstleistungen auf der Hand. Ob und wann es aber zu einer massenhaften Nutzung von Humanoiden kommen wird, bleibt ungewiss. Nicht zu erwarten ist jedenfalls, dass Humanoide in Zukunft die derzeit auf dem Markt befindlichen Robotertypen ersetzen. Stattdessen werden sie bestehende Technologien ergänzen und erweitern.“
Einsatz von Humanoiden in den Regionen
In den Vereinigten Staaten arbeiten Tech-Unternehmen wie NVIDIA, Amazon und Tesla intensiv an KI- und Robotertechnologien. Neben der Finanzierung durch das Militär wird diese Entwicklung auch durch zahlreiche private Investitionen unterstützt. Das führt zu einer bedeutenden Start-up-Szene, die sich auf humanoide Roboter spezialisiert. Besonders groß ist das Interesse an Humanoiden in Branchen wie der Logistik und in der Fertigung. Dabei werden humanoide Roboter weniger als soziale Begleiter gesehen, sondern eher als Werkzeuge, die dabei helfen, Produktivität und Effizienz zu steigern. So liegt der Schwerpunkt verstärkt auf praktischen Anwendungen und weniger auf der Integration von Robotern in das tägliche soziale Leben.
In China nehmen die Humanoiden eine zentrale Stellung in der nationalen Robotik-Strategie ein. Die Regierung möchte in diesem Technologiebereich Kompetenz und globale Wettbewerbsfähigkeit unter Beweis stellen. Der Einsatzschwerpunkt liegt dabei im Dienstleistungssektor, beispielsweise für die Kundenbetreuung. Die Automatisierung von Produktionslinien in der Fertigung und der Einsatz von Humanoiden, um weniger von menschlichen Arbeitskräften abhängig zu sein, scheint nur auf zweiter Ebene wichtig zu sein. Kernelement der chinesischen Strategie ist der Aufbau einer skalierbaren Lieferkette für Schlüsselkomponenten.
Japan ist ein Pionier in der Entwicklung humanoider Roboter. Als frühes Beispiel wurde Hondas Asimo bereits im Oktober 2000 vorgestellt. Roboter werden in Japan eher als Gefährten, denn als bloße Werkzeuge gesehen. Humanoide Roboter wie Pepper und Palro sind demzufolge in erster Linie als Sozialroboter konzipiert und kommen in Bildungseinrichtungen, Geschäften und Altenpflegeeinrichtungen zum Einsatz. Diese Ausrichtung spiegelt die Nachfrage einer alternden Gesellschaft wider, mit der Japan konfrontiert ist. Ein wichtiger Schwerpunkt der Projekte liegt auf Robotern, die harmonisch mit Menschen zusammenleben können und als Teil der Gesellschaft akzeptiert sind. Führende Unternehmen wie Kawasaki entwickeln humanoide Roboter als eine Forschungsplattform.
In Europa wird auf die ethischen Implikationen von Robotik und KI besonderes viel Wert gelegt. Im Fokus stehen kollaborative Roboter, die im industriellen Umfeld mit Menschen zusammenarbeiten. Kernthemen sind die Verbesserung der Sicherheit und Effizienz und die Nachahmung menschlicher Fähigkeiten. Die Arbeitskraft von Menschen zu kompensieren, steht dagegen nicht im Fokus. Der Schwerpunkt liegt vielmehr auf einem menschenzentrierten Design und den sozialen und gesellschaftlichen Auswirkungen von Robotern. Die europäischen Unternehmen stehen dem Einsatz von Humanoiden generell eher zurückhaltend gegenüber, wenn es um die kurz- bis mittelfristigen Automatisierungsaufgaben im Fertigungs- und Dienstleistungssektor geht.
+++ Ein bahnbrechendes Robotik Start-up aus Deutschland ist NEURA-Robotics: Hier geht’s zu unserer Gründerstory von NEURA Robotics +++
Ausblick
Dank ihrer menschenähnlichen Geschicklichkeit und Anpassungsfähigkeit sind die Humanoiden prädestiniert, komplexe Aufgaben zu automatisieren, mit denen heutige Roboter durch herkömmliche Programmiermethoden Schwierigkeiten haben. Einen massenhaften Einsatz als universelle Haushaltshelfer dürfte es jedoch kurz- bis mittelfristig nicht geben.
Das POSITION PAPER Humanoid Robots - Vision and Reality von IFR gibt's hier zum freien Download
Kurz mal die Welt retten
Wie GreenTech-Start-ups aus dem DACH-Raum dazu beitragen, die Auswirkungen des Klimawandels zu mildern.
Ist es bereits zu spät, den Klimawandel aufzuhalten? Während diese Frage unablässig für hitzige Debatten sorgt, arbeiten Start-ups unermüdlich an Lösungen für die dringendsten Umweltprobleme. Die DACH-Region erlebt einen rasanten Anstieg von GreenTech-Start-ups, angetrieben durch technologische Innovationen und zunehmenden regulatorischen Druck. Dies zeigt u.a. das DACH GreenTech Software Mapping 2025 von Hi Inov und veranschaulicht, welche vielversprechenden Ansätze und Technologien die Zukunft des GreenTech-Ökosystems in Europa prägen.
Mapping der Herausforderungen und Lösungen
Das Mapping bietet einen umfassenden Überblick über die Softwarelösungen von GreenTech-Start-ups im DACH-Raum. Sie umfassen eine Vielzahl von Ansätzen, um den Anstieg der globalen Temperaturen einzudämmen und die damit einhergehenden wirtschaftlichen und gesellschaftlichen Herausforderungen zu bewältigen.
1. Messung und Optimierung des CO2-Fußabdrucks
Fortgeschrittene Techniken zur Datenerfassung und KI-gesteuerte Analysen helfen Organisationen, ihre Effizienz zu steigern und ihren CO₂-Fußabdruck zu reduzieren. Sie helfen Unternehmen, jährlich Emissionen von über 216.000 Tonnen CO₂-Äquivalenten zu vermeiden. Horizontale Plattformen bieten allgemeine Monitoring-Tools für branchenübergreifende Messdienste. Vertikale Lösungen wie die für die Immobilienbranche maßgeschneiderte ESG-Datenplattform Deepki integrieren branchenspezifische Anforderungen.
2. Beschleunigung der Energiewende
Softwarelösungen spielen eine entscheidende Rolle bei der Optimierung der Standortauswahl für die Produktion erneuerbarer Energien, der vorausschauenden Wartung von Infrastruktur und der Verbesserung der Energiespeicherung. Sie können die Schwankungen in der Stromeinspeisung erneuerbarer Energien mindern und somit die Abhängigkeit von fossilen Brennstoffen reduzieren. Das Stuttgarter Start-up metergrid ermöglicht es beispielsweise Mieter*innen in Mehrfamilienhäusern, umweltfreundlichen Solarstrom zu nutzen, der im selben Gebäude produziert wird (mehr dazu in der StartingUp 01/25).
3. Förderung der Kreislaufwirtschaft und Ressourcenoptimierung
Digitale Lösungen erleichtern die Schonung von natürlichen Ressourcen durch intelligentes Ressourcenmanagement, indem sie die Planung und Nutzung von Ressourcen verbessern. Durch den Einsatz von KI lassen sich viele Prozesse optimieren, darunter Recycling, Landwirtschaft und Wassermanagement. So reduziert das Berliner Start-up Freshflow Abfall, indem es die Nachbestellung von frischen Lebensmitteln mit Machine Learning automatisiert und optimiert. Darüber hinaus verbinden digitale Marktplätze Produzent*innen überschüssiger Ware mit potenziellen Abnehmer*innen, um Ressourcen effizierter zu nutzen.
4. Förderung von Nachhaltigkeitsinitiativen in Unternehmen
Unternehmen nutzen digitale Werkzeuge, um ihre Nachhaltigkeit über die regulatorischen Anforderungen hinaus zu verbessern. Zu den eingesetzten Lösungen zählen CO₂-Kreditbörsen, die es Organisationen ermöglichen, Emissionen durch strukturierte Märkte auszugleichen, und Mitarbeiterengagement-Plattformen, die die Teilnahme der Belegschaft an ESG-Initiativen fördern. Start-ups wie das Hamburger CarbonStack unterstützen Unternehmen bei der Erstellung von Nachhaltigkeitsberichten und dabei die relevanten Richtlinien einzuhalten.
Die Entwicklung von 2023 bis heute
Insgesamt zeigt das Mapping ein reiferes und strukturierteres GreenTech-Ökosystem, das Europas Position als Pionier in digitalen Klimaschutzlösungen stärkt. Die Entwicklung zwischen den Mappings aus den Jahren 2023 und 2025 verdeutlicht drei wichtige Trends:
1. Anstieg der Anzahl der angebotenen Softwarelösungen
Die steigende Nachfrage nach nachhaltigkeitsorientierten Innovationen in verschiedenen Branchen hat das Wachstum des GreenTech-Ökosystems beschleunigt und zu einem rasanten Anstieg der angebotenen Softwarelösungen geführt.
2. Regulatorisch getriebene Fortschritte
Aufgrund des zunehmenden regulatorischen Drucks wächst der Anteil der angebotenen Lösungen, die auf Compliance-Bedürfnisse wie CSRD, die Rückverfolgbarkeit von Produkten und transparente CO₂-Buchhaltung eingehen. Es werden zunehmend vertikalisierte Monitoring-Tools entwickelt, um spezialisierte Datensätze und branchenspezifische Algorithmen zu erstellen.
3. Einfluss von generativer KI
Der Einsatz von generativer KI nimmt zu. Neue Anwendungsfälle im Bereich Nachhaltigkeit umfassen verbesserte Datenanalyse, automatisierte Compliance-Berichterstattung, sowie die Echtzeit-Optimierung von CO₂-Fußabdrücken und Ressourcenmanagement.
Fazit: Ein florierendes Ökosystem mit starker europäischer Führung
Der Klimawandel stellt eine immense Herausforderung dar, deren Bewältigung innovative technologische Lösungen erfordert. Das GreenTech Mapping 2025 verdeutlicht die führende Rolle Europas bei der Entwicklung dieser Lösungen und zeigt ein reiferes GreenTech-Ökosystem mit großer Dynamik. Durch den Einsatz fortschrittlicher Datenanalysen, KI und Automatisierung sind Start-ups in der DACHRegion gut positioniert, um sowohl wirtschaftlichen als auch ökologischen Mehrwert zu schaffen. Sie werden Unternehmen und politischen Entscheidungsträger*innen dabei helfen, den Übergang zu einer nachhaltigeren Wirtschaft zu beschleunigen und die Folgen des Klimawandels einzudämmen.
Der Autor Dr. Wolfgang Krause leitet als Managing Partner das Deutschlandgeschäft des auf B2B-Digitallösungen spezialisierten VC-Fonds von Hi Inov.
„Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing“
Mit planqc verfolgt Dr. Alexander Glätzle die Mission, hochskalierbare Quantencomputer für wirtschaftliche Anwendungen zu bauen. Warum das Unternehmen dabei auf Standorte wie München und Innsbruck setzt und welche Rolle Österreichs Talentpool spielt, verrät er im Interview.
Dr. Alexander Glätzle ist Quantenphysiker und Mitgründer von planqc. Er studierte und promovierte an der Universität Innsbruck, forschte an renommierten Instituten wie Oxford, Harvard sowie in Singapur und war als Unternehmensberater tätig. 2022 gründete er planqc als Ausgründung aus dem Max-Planck-Institut in München.
Herr Dr. Glätzle, wie entstand die Unternehmensidee und welche Meilensteine haben Sie mit planqc bisher erreicht?
Die Idee zu planqc ist bereits während meines Studiums an der Universität Innsbruck entstanden. Dort habe ich intensiv im Bereich Quantentechnologie geforscht und das enorme Potenzial erkannt, aus diesen Erkenntnissen ein Start-up zu gründen. Bis zur Gründung hat es allerdings noch einige Jahre gedauert – nicht zuletzt, weil die technologische Entwicklung im Labor ebenfalls voranschreiten musste. 2022 sind wir dann als Ausgründung aus dem Max-Planck-Institut offiziell gestartet. Zu den wichtigsten Meilensteinen zählen zwei große öffentlich geförderte Projekte: Für das Deutsche Zentrum für Luft- und Raumfahrt bauen wir einen Quantencomputer mit einem Volumen von 30 Mio. EUR, ein weiteres Projekt mit dem Leibniz-Rechenzentrum umfasst 20 Mio. EUR, beide mit Abschluss bis Ende 2026 bzw. 2027. Dann werden an diesen beiden Standorten voll funktionsfähige Quantencomputer von planqc installiert sein.
Sie haben bereits Venture Capital mit an Bord. Wer zählt zu Ihren Investoren?
Gestartet sind wir 2022 mit einer Seed-Runde, an der unter anderem UVC Partners, Speedinvest und Apex Ventures beteiligt waren – also bereits starke Partner auch aus Österreich. Diese Basis konnten wir in der Series-A im letzten Jahr weiter ausbauen. Die CATRON Holding, ein Wiener Family Office, ist als Lead-Investor eingestiegen. Dazu kamen weitere Partner wie der DeepTech & Climate Fonds sowie Bayern Kapital. Besonders erfreulich ist, dass auch unsere Bestandsinvestoren erneut signifikant investiert haben. Damit verfügen wir über eine starke, rein mitteleuropäische, deutsch-österreichische Investorenbasis – was in unserem Sektor tatsächlich selten ist.
Ihr Headquarter befindet sich in der Nähe von München. Was hat Sie dazu bewegt, zusätzlich einen Standort in Innsbruck zu eröffnen?
Ursprünglich haben wir planqc in München gegründet – als Ausgründung aus dem Max-Planck-Institut. Doch bereits innerhalb eines Jahres haben wir ein zweites Büro in Innsbruck eröffnet. Der Grund liegt auf der Hand: Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing. Mit renommierten Instituten wie dem Institut für Quantenoptik und Quanteninformation (IQOQI) und Persönlichkeiten wie Peter Zoller und Rainer Blatt gibt es dort eine kritische Masse an international anerkannten Wissenschaftlern. Zudem ist es in der Praxis oft schwierig, hochqualifizierte Talente aus der Region nach München zu bringen. Deshalb haben wir entschieden, ihnen vor Ort ein attraktives Arbeitsumfeld zu bieten – mit einem eigenen Standort in Innsbruck.
Welche Vorteile bietet der Standort Österreich speziell für Unternehmen im Bereich Quantencomputing?
Österreich hat eine lange und starke Tradition in der Quantenphysik. Universitäten wie Innsbruck und Wien, das IQOQI und eine ganze Generation exzellenter Wissenschaftler prägen diese Landschaft. Viele bahnbrechende theoretische und experimentelle Arbeiten wurden hier in den vergangenen Jahren geleistet. Gerade für junge Start-ups bietet das Land enorme Vorteile: Der Talentpool ist außergewöhnlich – mit hervorragend ausgebildeten, dynamischen Fachkräften. Darüber hinaus ist die Nähe zu sogenannten „Industry First Movern“ gegeben, was den Standort besonders spannend macht. Und nicht zuletzt hat Österreich eine historische Verbindung zur Physik – Namen wie Schrödinger, Pauli oder Hess stehen sinnbildlich für diese wissenschaftliche Tiefe.
Welche Unterstützung erhielten Sie bei der Ansiedlung durch die Austrian Business Agency?
Die Austrian Business Agency sowie die Standortagentur Tirol haben uns außerordentlich engagiert unterstützt – sei es bei der Suche nach Büroflächen, bei der Eröffnung des ersten Bankkontos oder in bürokratischen Fragen. Sie standen uns nicht nur beratend zur Seite, sondern haben uns tatkräftig geholfen, Hürden aus dem Weg zu räumen. Genau so stelle ich mir die Zusammenarbeit mit einer lokalen Agentur vor: nah dran, lösungsorientiert und mit exzellentem Netzwerk. Wir hatten wirklich großes Glück mit der Unterstützung vor Ort.
Sie selbst sind in Österreich geboren, haben in Innsbruck promoviert und weltweit Forschungsaufenthalte absolviert – bevor Sie als Unternehmensberater und Gründer nach München gingen. Mit welchen Qualitäten punktet Österreich allgemein, auch als Arbeits- und Wohnort?
Ich habe viele Jahre im Ausland gelebt und gearbeitet – in Oxford, Singapur und Deutschland. Was Innsbruck und Tirol für mich besonders macht, ist die Kombination aus wissenschaftlicher Exzellenz und hoher Lebensqualität. Die Stadt liegt inmitten der Alpen, bietet eine hervorragende Infrastruktur und ein ausgewogenes Verhältnis zwischen Studierenden und Einwohnern. Das schafft ein inspirierendes Umfeld – zum Leben, Forschen und Arbeiten gleichermaßen.
Dr. Alexander Glätzle, vielen Dank für das Gespräch.
Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin
Was sollten Eigentümer in Bezug auf Gewerbeimmobilien beachten?
Entdecken Sie wichtige Tipps für Gewerbeimmobilien-Eigentümer. Infos und wichtige Details.
Gewerbeimmobilien stellen eine wichtige Anlageklasse dar, die sowohl attraktive Renditen als auch besondere Herausforderungen mit sich bringt. Der deutsche Gewerbeimmobilienmarkt erlebt derzeit nicht nur einen zyklischen Abschwung, sondern einen dauerhaften strukturellen Wandel durch die Zinswende. Diese Entwicklung verändert die Rahmenbedingungen für Eigentümer grundlegend und erfordert eine Anpassung der Investitionsstrategien.
Neben den klassischen Überlegungen zu Standort, Mieterstruktur und Rendite gewinnen neue Aspekte wie Nachhaltigkeit, Energieeffizienz und regulatorische Anforderungen zunehmend an Bedeutung. Eine fundierte Kenntnis aller relevanten Faktoren ist daher essentiell für erfolgreiche Gewerbeimmobilien-Investments. Die folgenden Abschnitte liefern eine praktische Übersicht.
Frühzeitig Verpflichtungen rund um das Thema Gebäude prüfen
Neben den klassischen Überlegungen zu Standort, Mieterstruktur und Rendite gewinnen auch technische und infrastrukturelle Aspekte zunehmend an Bedeutung. Insbesondere Kanalservicearbeiten, wie die Wartung und Instandhaltung der unterirdischen Versorgungsnetze, spielen eine wesentliche Rolle bei der Sicherstellung der langfristigen Werthaltigkeit von Gewerbeimmobilien.
Unter anderem liefert das Kanalservice Magazin hierzu wertvolle Informationen rund um Anbieter und Co. Regelmäßige Inspektionen und Reparaturen von Abwasser- und Entwässerungssystemen sind nicht nur aus rechtlichen und sicherheitstechnischen Gründen wichtig, sondern auch für die Betriebskosten und die Nutzungseffizienz einer Immobilie entscheidend.
Eigentümer sollten sich daher frühzeitig mit den Anforderungen an den Kanalservice auseinandersetzen und sicherstellen, dass diese regelmäßig und vorausschauend durchgeführt werden, um teure Notfalleinsätze und mögliche Wertverluste zu vermeiden.
Steuerliche Vorteile optimal nutzen: Abschreibungen und Umsatzsteuer
Gewerbeimmobilien bieten gegenüber Wohnimmobilien deutliche steuerliche Vorteile, die Eigentümer unbedingt nutzen sollten. Der wichtigste Vorteil liegt in der höheren Abschreibungsrate von 3% jährlich statt der üblichen 2% bei Wohnimmobilien. Diese zusätzliche Abschreibung reduziert die Steuerlast erheblich und verbessert die Rendite nachhaltig.
Ein weiterer bedeutender Vorteil ist die Möglichkeit der 19% Umsatzsteuer-Erstattung beim Erwerb der Immobilie. Voraussetzung hierfür ist die ordnungsgemäße Anmeldung als Unternehmer und die entsprechende Verwendung der Immobilie.
Diese Steuervorteile können die Wirtschaftlichkeit einer Gewerbeimmobilie maßgeblich beeinflussen und sollten bereits in der Planungsphase berücksichtigt werden. Eine professionelle steuerliche Beratung ist dabei unerlässlich. Besonders praktisch ist es in diesem Zusammenhang natürlich auch, dass Studien zufolge aktuell Gründungen in verschiedenen deutschen Städten generell vergleichsweise günstig sind.
Neue Heizungspflicht: Vorgaben rund um erneuerbare Energien seit 2024
Seit 2024 müssen neu installierte Heizungen zu 65% mit erneuerbaren Energien betrieben werden – eine Regelung, die erhebliche Auswirkungen auf Gewerbeimmobilien hat. Diese Vorgabe betrifft sowohl Neubauten als auch den Austausch bestehender Heizungsanlagen und erfordert eine frühzeitige Planung.
Mögliche Lösungen umfassen:
- Wärmepumpen
- Fernwärme
- Biomasseheizungen
- Hybrid-Systeme
Die Investitionskosten sind oft höher als bei konventionellen Systemen, jedoch können staatliche Förderungen einen Teil der Mehrkosten abfedern.
Langfristig ergeben sich durch niedrigere Betriebskosten und steigende CO2-Preise wirtschaftliche Vorteile. Eigentümer sollten rechtzeitig prüfen, welche Technologie für ihre Immobilie am besten geeignet ist, und entsprechende Budgets einplanen. Eine professionelle Energieberatung hilft bei der optimalen Lösung.
Photovoltaik-Potenziale: Chancen und rechtliche Hürden
Die geplante Verdreifachung des Photovoltaik-Ausbaus bis 2030 eröffnet Gewerbeimmobilien-Eigentümern interessante Chancen zur zusätzlichen Wertschöpfung. Gewerbedächer bieten oft ideale Voraussetzungen für Solaranlagen: große, unverschattete Flächen und hoher Eigenverbrauch während der Tagesstunden.
Die Eigenverbrauchsquote kann bei Gewerbeimmobilien deutlich höher liegen als bei Wohngebäuden, was die Wirtschaftlichkeit verbessert. Allerdings bestehen auch rechtliche Hürden, insbesondere bei der Direktvermarktung von Strom an Mieter. Das Mieterstromgesetz und energierechtliche Bestimmungen schaffen komplexe Rahmenbedingungen.
Trotz dieser Herausforderungen können Photovoltaik-Anlagen die Attraktivität einer Gewerbeimmobilie steigern und zusätzliche Einnahmen generieren. Eine sorgfältige Prüfung der rechtlichen und wirtschaftlichen Aspekte ist dabei unerlässlich. Der Faktor „Nachhaltigkeit“ spielt generell aber auch in vielerlei Hinsicht eine wichtige Rolle. So entscheiden sich nicht nur im privaten, sondern auch im gewerblichen Bereich viele dafür, nicht direkt neu zu kaufen, sondern zu reparieren. Ideal für alle, die den ökologischen Fußabdruck ihres Betriebes reduzieren möchten.
Erfolgreich investieren: Wichtige Erkenntnisse für Gewerbeimmobilien-Eigentümer
Erfolgreiche Gewerbeimmobilien-Investments erfordern heute mehr denn je eine ganzheitliche Betrachtung aller relevanten Faktoren. Die steuerlichen Vorteile mit 3% Abschreibung und Umsatzsteuer-Erstattung bleiben wichtige Argumente für diese Anlageklasse.
Gleichzeitig steigen die Anforderungen durch neue Regelungen wie die Heizungspflicht und ESG-Kriterien erheblich. Der strukturelle Wandel des Marktes erfordert angepasste Strategien und eine sorgfältige Auswahl der Immobilien.
Chancen ergeben sich insbesondere in zukunftsorientierten Segmenten wie Logistik und bei der Integration erneuerbarer Energien. Eine professionelle Beratung und kontinuierliche Marktbeobachtung sind unerlässlich. Das Kanalservice Magazin bietet hierfür wertvolle Unterstützung mit fundierten Informationen und praktischen Tipps für alle Aspekte des Gewerbeimmobilien-Investments.
5 Tipps für GPT-Sichtbarkeit im Netz
Warum klassisches SEO allein nicht mehr ausreicht und wie Unternehmen für die KI-Antworten der GPT-Modelle sichtbar werden.
Die Spielregeln der digitalen Sichtbarkeit werden gerade neu geschrieben – und die Unternehmen müssen sich neu aufstellen. Denn während viele Unternehmen ihre Strategien noch immer ausschließlich auf Google-Rankings und SEO-Kriterien ausrichten, verlagert sich die digitale Aufmerksamkeit längst in Richtung KI: Sprachmodelle wie ChatGPT, Claude oder Gemini ersetzen zunehmend die klassische Suche. Sie liefern keine Trefferlisten mehr, sondern direkte, aufbereitete Antworten – oft mit konkreten Empfehlungen und Verlinkungen. Für Marken, Produkte und Unternehmen wird es damit entscheidend, in diesen zusammengefassten Antworten stattzufinden. Das Stichwort hierfür ist technisches SEO für KI-Rankings.
Suchmaschinen waren gestern das führende Element in der Sortierung von Wissen im Netz und vor allem das Google-Ranking war entscheidend für die Sichtbarkeit von Informationen und Seiten. In Zukunft entscheiden dagegen Sprachmodelle darüber, welche Inhalte gesehen, zitiert und empfohlen werden. Und wer in diesen Systemen nicht genannt wird, verliert den direkten Draht zur Zielgruppe.
Diesen Paradigmenwechsel vom Google-Ranking zur Antwortlogik hat die SMAWAX, die auf Strategieberatung spezialisierte Agentur der Smarketer Group, erstmals systematisch im Rahmen eines Whitepapers analysiert (s. Link am Ende des Beitrags). Die Expert*innen erklären dabei detailliert, wie GPT-Modelle Inhalte auswählen – und welche Inhalte von den Systemen überhaupt referenziert werden dürfen. Die zentrale Erkenntnis: Suchmaschinenoptimierung nach alten Regeln greift zu kurz, ist aber weiterhin die Sichtbarkeitsgrundlage. Denn Sprachmodelle wie ChatGPT denken nicht in Keywords und Rankings, sondern in semantischen Relevanzräumen, Entitätenbeziehungen und struktureller Klarheit.
Inhalte müssen modular und semantisch präzise sein – doch das reicht nicht
Es geht nicht mehr um Top-Rankings – es geht darum, die richtige Antwort zu sein. Wir müssen SEO neu denken – als Schnittstelle zwischen Struktur, Relevanz und maschinellem Verstehen. Inhalte müssen dazu maschinenlesbar, modular aufgebaut und semantisch präzise sein. Nur dann haben Unternehmen eine Chance, in den Empfehlungslogiken von Claude, GPT & Co. aufzutauchen.
Besonders überraschend ist dabei aber, dass viele Unternehmen in GPT-Antworten zwar durchaus latent präsent, aber nicht sichtbar sind. Der Grund hierfür sind unscharfe Entitäten, fehlende „About“-Seiten, keine Verankerung in externen Quellen wie Wikidata, Trustpilot oder LinkedIn. Die Folgen wirken sich negativ auf die Marken aus und sorgen für Fehlinformationen: KI-Modelle verwechseln Marken, halluzinieren Funktionen oder verschweigen relevante Angebote. Halluzinationen sind in Wahrheit ein strategischer Hinweis auf Unsichtbarkeit. Wenn GPT ein Produkt falsch beschreibt oder dich mit einem Mitbewerber verwechselt, zeigt das: Deine Inhalte sind zwar irgendwo im Modell – aber nicht stabil genug verankert, um korrekt genannt zu werden.
Fünf konkrete Hebel für bessere GPT-Sichtbarkeit
Diese praxisnahe Handlungsempfehlungen können Unternehmen sofort umsetzen können – unabhängig davon, ob sie im B2B- oder B2C-Bereich aktiv sind.
1. Entitäten definieren: Jede Marke braucht heute eine kanonische „About“-Seite, ergänzt um ein Wikidata-Profil, semantische Markups und gleiche Namensverwendungen auf Plattformen wie LinkedIn oder Handelsregister.
2. Aktualität signalisieren: GPT-Modelle bevorzugen Inhalte mit klaren Update-Daten (z.B. dateModified). Ohne erkennbaren Pflegezustand gelten Inhalte als veraltet – und werden ausgefiltert.
3. Bing wird zum Gateway: Weil GPT seine Websuche auf Bing stützt, ist dessen Indexierung entscheidend. Wer dort nicht sauber auffindbar ist, existiert in GPT-Antworten nicht.
4. Content chunkbar machen: Inhalte sollten nicht mehr aus langen Fließtexten bestehen, sondern in modularen Blöcken mit H2-Strukturen, Listen und Zwischenfazits aufgebaut sein.
5. Externe Signale einbinden: Erwähnungen auf Trustpilot, Reddit oder in der Fachpresse stärken die semantische Autorität – und erhöhen die Chance, von Sprachmodellen zitiert zu werden.
Fazit
Die neue Sichtbarkeit entsteht durch das, was das Modell nicht selbst erzeugen kann – sie entsteht also nicht über Rankings, sondern über Relevanzräume. Wer auf Standard-Content setzt, wird paraphrasiert oder übergangen. Wer dagegen einzigartigen, strukturierten und technisch klaren Content liefert, wird empfohlen.
Zum Weiterlesen: Das Whitepaper steht zum kostenlosen Download bereit unter www.smawax.com/whitepaper-ki-sichtbarkeit
ARX Robotics: Tech for Defense
Wie die ARX-Robotics-Gründer Maximilian Wied, Marc A. Wietfeld und Stefan Röbel Europas führendes DefTech-Start-up für unbemannte autonome Landsysteme gebaut haben.
Ein Start-up aus München denkt Europas Sicherheit neu – mit modularen Robotern, digitalen Aufklärungssystemen und einem iterativen Entwicklungsansatz, der hinsichtlich Flexibilität und Geschwindigkeit in der Branche neue Maßstäbe setzt. „Wir nutzen das transformative Potenzial von Robotik und KI, um die Leistungsfähigkeit der europäischen Landstreitkräfte zu stärken“, sagt Marc A. Wietfeld, Mitgründer und CEO von ARX Robotics in München. „Mit unserem Betriebssystem Mithra OS ermöglichen wir fernoperierbare, kettenbetriebene Landfahrzeuge sowie die Digitalisierung bestehender Flotten.“
Die Roboter entstehen auf einer einheitlichen technologischen Plattform mit flexiblem, modularem Aufbau. Sie lassen sich einfach anpassen und aufrüsten, was das Einsatzspektrum enorm erweitert. „Unsere Plattform ist wie das Schweizer Taschenmesser für Militäreinsätze“, so der Gründer. Neben der Hardware und dem KI-gestützten Betriebssystem liefert das Start-up auch Schnittstellen, um bestehende analoge Rüstungstechnologie und softwaregetriebene Systeme zu integrieren.
Drei Offiziere nehmen die Entwicklung selbst in die Hand
Gegründet wurde ARX Robotics von drei ehemaligen Bundeswehroffizieren. Marcs Weg begann mit einer Schlosserlehre, bevor er 2010 für den Wehrdienst eingezogen wurde. Damals konnte er kaum glauben, wie veraltet die Technologie der Truppe war. „Eine Playstation hatte bessere Software als viele Waffensysteme, und Drohnen aus dem Elektrofachmarkt waren leistungsfähiger als die im Kampfeinsatz.“ Während Marc in New York ein militärisches Programm absolvierte, lernte er Maximilian (Max) Wied kennen, der zu dieser Zeit an der Militärakademie West Point studierte. Beide hatten den Innovationsstau jahrelang erlebt und durch ihre Zeit in der Kampftruppe die Realität von Häuser-, Wald- und Grabenkämpfen hautnah kennengelernt.
In Robotik und Automatisierung sahen sie enormes ungenutztes Potenzial, um Soldat*innen zu schützen und Einsätze effizienter zu gestalten. „Am Anfang ging es uns gar nicht darum, Roboter zu bauen“, so Marc, „sondern darum, wie wir neue Technologie schneller in die Hand der Soldatinnen und Soldaten bekommen.“ Rund zwei Jahre arbeiteten sie am Konzept und an der Umsetzung. Die ersten Prototypen entstanden in Eigenregie, finanziert aus privaten Mitteln.
Stefan Röbel stieß dazu, als klar wurde, dass aus dem Projekt ein Unternehmen werden sollte. Neben dem militärischen Hintergrund bringt er Erfahrung im Aufbau und in der Skalierung von Start-ups mit. Zuvor war Stefan bereits bei Tech-Unternehmen an Bord, darunter Amazon, ASOS und Grover, wo er den Weg von der Series-A-Finanzierung bis zum Unicorn begleitete.
Als die Ersparnisse aufgebraucht waren, erhielt das Gründungsteam Unterstützung vom Innovation Hub der Bundeswehr und der Universität der Bundeswehr in München. Ende 2022 gründeten die drei schließlich ihr Unternehmen.
Die Brücke zur vernetzten Zukunft des Militärs
ARX Robotics füllt eine kritische Lücke in der militärischen Technologielandschaft, zwischen der analogen Vergangenheit und der softwaregesteuerten Zukunft. Viele bestehende Systeme wie etwa Panzer, Transportfahrzeuge und Helikopter operieren noch weitgehend analog und damit isoliert voneinander. Doch bewaffnete Konflikte werden heute vernetzt, KI-gestützt und mithilfe unbemannter Systeme entschieden. Die militärische Ausrüstung ist in vielen Ländern Europas noch nicht auf der Höhe der Zeit. „Mit unseren Lösungen bauen wir die Brücke zwischen den beiden Welten“, sagt Marc.
ARX Robotics überträgt die moderne technologische Architektur auf bestehende Militärfahrzeuge. Die analogen Bestandssysteme werden damit robotisiert, sodass sie mit modernen Drohnen und digitalen Einheiten zusammenarbeiten können – ein entscheidender Faktor für die Digitalisierung der Landstreitkräfte und Interoperabilität. „Früher war das Militär die Technologieschmiede der Gesellschaft, doch in den 1980er-Jahren hat die zivile Forschung die Streitkräfte überholt, auch bei den sicherheitsrelevanten Anwendungen“, so Marc.
Die etablierte Verteidigungsindustrie hat sich unterdessen auf immer komplexere und schwerfällige Großsysteme konzentriert. Bei einem größeren militärischen Entwicklungsprojekt ist in der Regel der gesamte militärische Apparat involviert, mit Planungs- und Beschaffungsämtern, langen Prozessen und seitenlangen Anforderungskatalogen. Erhält ein Ausrüster den Zuschlag, bekommt dieser Steuergelder, um einen Prototyp zu bauen „Die Entwicklung neuer Plattformen dauert dadurch oft ein Jahrzehnt, und die Produktion braucht weitere fünf Jahre“, sagt Marc. Schon bei der Indienststellung ist das Material zwangsläufig technologisch veraltet. ARX Robotics will den Prozess vom Kopf auf die Füße stellen. „Wir sind davon überzeugt, dass unsere Systeme den Soldatinnen und Soldaten im Einsatz sofort Mehrwert liefern“, so Marc. „Darum übertragen wir die neuen Technologien so schnell wie möglich ins Militär.“
Zurückhaltende Investor*innen und hohe Eintrittsbarrieren
Der Weg zur ersten externen Finanzierung war jedoch alles andere als einfach. „Kaum ein Risikokapitalgeber hat sich 2022 für DefenseTech und Hardware interessiert“, sagt Marc. Unter europäischen VCs dominierte das Dogma, dass nur Software skalierbar sei, idealerweise als SaaS-Modell. „Als Start-up mit einer physischen Technologie, noch dazu geführt von drei Soldaten ohne Gründungserfahrung, passten wir nicht ins Schema“, erinnert sich Marc.
Zudem war das Thema Verteidigung als Investment noch sehr negativ behaftet. VCs wollten nicht in Systeme investieren, die potenziell im Kampfeinsatz genutzt werden können. Sie sorgten sich um das öffentliche Bild und mögliche Bedenken institutioneller Geldgeber*innen. Mitte 2023 konnte ARX Robotics dann mit dem Risikokapitalgeber Project A Ventures als Lead Investor die Seed-Finanzierungsrunde schließen.
„Die anfänglich größte Hürde für uns war, nicht als Start-up, sondern als ernstzunehmender Anbieter wahrgenommen zu werden“, so Marc. Der Rüstungsmarkt ist stark konsolidiert und protektiv. Etablierte Player wie Rheinmetall, BAE Systems oder Krauss-Maffei Wegmann arbeiten seit Jahrzehnten fest mit ihren Kund*innen zusammen und bewegen sich in gewachsenen Strukturen. „Das Vertrauen der Streitkräfte zu gewinnen und die Beteiligung an einem großen Rüstungsprojekt zu erhalten, ist eine Schallmauer, die nur sehr wenige Start-ups durchbrechen“, sagt Marc.
Iterative Entwicklung und Tests im Feld
ARX Robotics punktet im Markt unter anderem mit dem radikal nutzer*innenzentrierten Entwicklungsansatz. Das Team setzt auf schnelle Iterationen mit voll funktionsfähigen Prototypen. Diese werden von Soldat*innen zeitnah getestet, häufig direkt in der Kampfzone. Das Feedback fließt sofort in die Weiterentwicklung ein, sodass in kürzester Zeit gebrauchsfertige Systeme entstehen. Der Fokus in der Entwicklung liegt stets auf der Software. „Das Betriebssystem ist der Kern unserer Lösungen, ob es am Ende einen Roboter oder einen Panzer steuert, ist zweitrangig“, sagt Marc.
Anders als der Wettbewerb setzt ARX Robotics auf offene Schnittstellen, modulare Komponenten und flexible Integration. Die großen Rüstungsfirmen mit ihren etablierten, geschützten Ökosystemen können dieses Modell nur schwer adaptieren. Stattdessen setzen sie auf Partnerschaften.
Mit Rheinmetall zum Beispiel arbeiten die Gründer derzeit an mehreren Projekten, und Daimler nutzt die ARX-Technologie, um die gesamte militärische Fahrzeugflotte zu digitalisieren. Um sicherzustellen, dass das Know-how und die Technologie in europäischer Hand bleiben, hat das Team frühzeitig den NATO Innovation Fund mit ins Boot geholt.

