Aktuelle Events
KI und Kommunikation: Das sind die Einsatzfelder
Eine Studie zeigt, welche Chancen und Risiken der Einsatz künstlicher Intelligenz mit sich bringt und welche Pläne es bei deutschen Marketingverantwortlichen gibt, KI konkret einzusetzen.
Künstliche Intelligenz soll Kommunikator*innen künftig vor allem bei Routinearbeiten entlasten und helfen, die Kosten zu senken. Derzeit testet bereits ein gutes Zehntel der Befragten aus Marketing, Kommunikation und Medien die KI bei der Produktion von Content oder bei der Suchmaschinenoptimierung. Der Großteil der Kommunikator*innen ist allerdings noch abwartend oder skeptisch, was den konkreten Einsatz von KI im eigenen Unternehmen betrifft. Das sind erste Ergebnisse einer repräsentativen Online-umfrage, die Civey im Auftrag der DMEXCO im Zeitraum vom 26. Januar bis 20. Februar 2023 durchgeführt hat. Befragt wurden insgesamt 500 Erwerbstätige in Kommunikation, PR, Medien und Marketing.
Schon im Jahr 2015 prognostizierten führende KI-Forscher*innen der künstlichen Intelligenz einen rasanten Siegeszug: Laut der Meinung der damals 352 befragten Expert*innen sei KI beispielsweise bereits 2028 in der Lage, einen Pop-Song für die Charts zu komponieren. Und 2031 könnte sie bereits Verkaufspersonal im Handel ersetzen.
Mit den neuen Versionen von ChatGPT & Co. zeigt sich, dass mit der zunehmenden Nutzung der KI die Rolle des Menschen auch in der Marketing- und Kommunikationsbranche neu definiert wird. Welche Chancen und Risiken der Einsatz künstlicher Intelligenz mit sich bringt und welche Pläne es bei deutschen Marketingverantwortlichen gibt, KI konkret einzusetzen, hat Civey im Auftrag der DMEXCO bei 500 Erwerbstätigen in Marketing, Kommunikation und Medien in Deutschland online abgefragt.
KI soll für Entlastung bei Routinearbeiten sorgen
Das größte Potenzial (45 Prozent) der KI sehen die befragten Kommunikationsexpert*innen dabei in der Möglichkeit, Routinearbeiten zu automatisieren. Für 27 Prozent birgt KI die Chance, die Kosten zu senken. Fast ein Viertel der Befragten (23 Prozent) traut der KI sogar zu, Impulse bei der Entwicklung innovativer Tools zu setzen. 15 Prozent gehen davon aus, dass der Dialog mit Kund*innen durch künstliche Intelligenz verbessert werden kann. Nur 13 Prozent glauben hingegen, dass KI dazu beitragen kann, den Fachkräftemangel zu kompensieren.
KI steckt zwar nicht mehr in den Kinderschuhen, allerdings zeigen die Umfrageergebnisse auch, dass erst eine Minderheit in diesem Jahr konkrete Pläne für den Einsatz von Künstlicher Intelligenz im eigenen Unternehmen hat. So will rund jeder Zehnte (11 Prozent) KI im Bereich Content-Produktion nutzen, 12 Prozent beabsichtigen dies im Bereich Suchmaschinenoptimierung (SEO). Knapp 10 Prozent der Befragten wollen KI im Bereich Service- und Kundendialog einsetzen. Das Gros der befragten Kommunikator*innen ist eher abwartend oder skeptisch: 16 Prozent der Marketer gaben an, erstmal auf weitere Entwicklungen zu warten und rund ein Drittel (32 Prozent) sieht sogar überhaupt keinen Bedarf für den Einsatz von KI. 25 Prozent der Befragten sind noch unentschlossen.
Nur eine Minderheit glaubt, dass KI Arbeitsplätze bedroht
Trotz der Einsatzmöglichkeiten und Potenziale sehen viele Kommunikationsexpert*innen auch Risiken beim Einsatz von künstlicher Intelligenz. Die größte Sorge der Befragten: 48 Prozent glauben, dass die Möglichkeiten von KI überschätzt werden. Für 45 Prozent ist die Qualität der Ergebnisse, die KI-Technologien aufgrund mangelnder Ausgereiftheit liefern, ein Risiko. Ihre Einzigartigkeit und Kreativität sehen 44 Prozent gefährdet. Dass die KI zu einem Abbau von Arbeitsplätzen führt, glauben nur 30 Prozent. Lediglich eine Minderheit von 13 Prozent sieht die Lage rundum optimistisch und keine Risiken beim Einsatz von KI in ihrem beruflichen Alltag.
„Dass wir neuen Technologien zu Anfang eher kritisch gegenüberstehen, scheint ein typischer deutscher Reflex zu sein. Auch wenn ein Teil der Marketing- und Kommunikationsbranche noch mit einer gewissen Skepsis auf künstliche Intelligenz blickt, so zeigen die vielfältigen Einsatzpläne in den Unternehmen bereits die Dimensionen und Möglichkeiten für unterschiedlichste Geschäftsfelder”, sagt Prof. Dr. Dominik Matyka, Chief Advisor der DMEXCO.
„Die stark wachsende Bedeutung von künstlicher Intelligenz für das Digitale Marketing und das E-Commerce wird ein Top-Thema unseres Konferenzprogramms 2023. Zahlreiche internationale Expert*innen werden zeigen, was heute schon erfolgreich geht und vor allem, was in den Monaten nach der DMEXCO möglich werden wird”, ergänzt Thomas Mosch, Director Conference der DMEXCO.
Diese Artikel könnten Sie auch interessieren:
revel8: Mit Human Firewalls gegen KI-Angriffe
Wie die revel8-Gründer Robert Seilbeck, Tom Müller und Julius Muth KI-gestützte Cyberattacken mithilfe „menschlicher Schutzschilde“ abwehren und Unternehmen zu mehr Cyberresilienz verhelfen.
Das Ingenieurbüro Arup wurde im vergangenen Jahr Opfer eines spektakulären Deepfake-Betrugs. Ein Mitarbeiter aus Hongkong betrat eine Videokonferenz mit vermeintlichen Mitgliedern des Managements – tatsächlich handelte es sich um täuschend echte KI-Imitationen der Führungskräfte, die eine scheinbar legitime, vertrauliche M&A-Transaktion diskutierten. Der arglose Mitarbeiter überwies den Betrügern 25 Millionen US-Dollar. „Der Fall ist ein typisches Beispiel für sogenanntes Social Engineering und eine neue Ära von Cyberangriffen“, sagt Julius Muth, Co-Founder und CEO von revel8 in Berlin.
Das 2024 gegründete Start-up betreibt eine Software-Plattform, um Menschen und damit auch Unternehmen gegen solche Bedrohungen zu schützen. „Kriminelle nutzen heute die neuesten KI-Technologien für konzertierte Angriffe“, so Julius. Aus frei verfügbaren Datenquellen identifizieren sie Schwachstellen und nutzen diese mit realistisch wirkenden Deepfake-Audios oder -Videos gnadenlos aus. Sie erzeugen damit eine Illusion von Authentizität, welche die klassischer Phishing-E-Mails bei Weitem übersteigt – und kein Unternehmen ist davor sicher.
Jede(r) Mitarbeitende ist eine potenzielle Schwachstelle
Mitunter können die Schäden noch höher ausfallen und Unternehmen aller Größen in Existenznot bringen. Am 31. August 2025 musste beispielsweise der Automobilhersteller Jaguar Land Rover nach einem Cyberangriff alle IT-Systeme herunterfahren. Die Produktion stand wochenlang still. Der Schaden beläuft sich bislang auf über zwei Milliarden Euro, das Unternehmen erhielt sogar staatliche Hilfe. Doch selbst das ist nur die Spitze des Eisbergs, denn laut Expert*innen waren von dem Angriff über 5000 Organisationen betroffen – wer hinter der Attacke steckt, ist nach wie vor unklar. Viele Unternehmen möchten solche Angriffe aus Imagegründen nicht offenlegen, die Dunkelziffer ist entsprechend hoch. Die Einfallstore für solche Attacken sind meistens die Mitarbeitenden. „Chief Information Security Officers (CISOs) betrachten bei der IT-Sicherheit typischerweise die Dimensionen Technologie, Prozesse und Menschen“, so Julius. „Der Mensch ist dabei von zentraler Bedeutung. Denn mit der richtigen Unterstützung können Mitarbeitende zum wichtigsten Resilienzfaktor im Unternehmen werden.“
Klassische E-Learning-Ansätze seien nicht geeignet, um Mitarbeitende angemessen für die Gefahren zu sensibilisieren und ihnen effektiv Kompetenzen im Umgang damit zu vermitteln. Standardisierte Phishing-E-Mails und konventionelle Trainingsformate können weder aktuelle Angriffsformen abbilden noch zuverlässig die nötigen Lerninhalte vermitteln. Hier setzt revel8 an und trainiert Mitarbeiter realitätsnah mit Replika tatsächlicher Angriffe, wie zum Beispiel Voice Phishing mit der Stimme eines bekannten Kollegen“, so Julius. Besonders die automatische Anreicherung mit öffentlich verfügbarem Kontext (OSINT) erhöhe die Relevanz und den Lerneffekt. So hilft revel8 Unternehmen dabei, die Widerstandsfähigkeit gegen Cyberbedrohungen zu stärken und darüber hinaus auch einschlägige Compliance-Anforderungen wie NIS2 und ISO 27001 zu erfüllen.
Individuelle Playlists mit neuesten Cyberattacken
„Wir setzen Menschen gezielt den aktuellen Angriffsmustern aus, sodass sie im Ernstfall richtig handeln können“, so Julius. Ein aktuell häufig zu beobachtender Angriff ist die Clickfix-Attacke. Dabei wird der/die Nutzer*in über eine täuschend echte Phishing-E-Mail auf eine gefälschte CAPTCHA-Seite gelotst. Sobald der/die Nutzer*in sich verifiziert, wird unbemerkt ein Schadcode in die Zwischenablage kopiert. Viele Ahnungslose fügen diesen Code später unbewusst zum Beispiel im Terminal ein und aktivieren damit den Angriff. Der/die Nutzer*in bemerkt den Schaden erst, wenn es schon zu spät ist.
Damit das nicht passiert, spielt revel8 zu Trainingszwecken genau solche Attacken aus. Tappt jemand die Falle, folgt sofort eine detaillierte Auswertung. Die Person erfährt, worauf sie hätte achten sollen, welche Hinweise es gab, und wie sich solche Vorfälle künftig vermeiden lassen. Da die Cyberkriminellen zunehmend sehr gezielt und hochgradig personalisiert angreifen, lassen sich auch die Trainingsinhalte bis ins Detail auf die User*innen zuschneiden. „Jeder Nutzer erhält von uns eine individuell auf seine Rolle zugeschnittene Playlist von Cyberattacken“, so Julius.
Praxisnahe Angriffssimulationen im Unternehmensalltag
Revel8 unterscheidet zwischen Nutzer*innen mit einem geringen Risiko und Hochrisikonutzer*innen, etwa im Management oder in der Finanzabteilung, und allgemein solchen Personen, die Zugang zu kritischen Daten haben. Julius beobachtet, dass die ohnehin stark gefährdeten Hochrisikonutzer*innen aktuell noch mehr ins Visier geraten. Ob SMS, WhatsApp, Teams oder LinkedIn – die Angreifenden orchestrieren ihre Attacken perfekt über mehrere Plattformen hinweg. „Zuerst ruft ein täuschend echter Stimmklon an, danach kommt die passende E-Mail“, sagt Julius. „Oder jemand schreibt dir auf LinkedIn, macht dir ein Jobangebot und schickt dir dann noch das Gehaltsangebot – da klickt man natürlich gern drauf.“
Um stets auf der Höhe der Zeit zu sein, kooperiert revel8 eng mit seinen Kund*innen. Das Training basiert auf echten Vorfällen aus deren Systemen. Jede erkannte Attacke wird kategorisiert, realistisch nachgebaut und gezielt ausgespielt. Trifft zum Beispiel eine Clickfix-Attacke Software Developer mit einem Mac in der Slowakei, fließt sie direkt in die Trainings-Playlist der betroffenen Zielgruppe ein. Das Ziel ist kontinuierliches Lernen, ohne zu überfordern. „Es ist wichtig, dass wir die Menschen nicht nerven“, erklärt Julius, „und wer gut reagiert, wird auch belohnt.“ Gamification-Elemente, wie zum Beispiel firmeninterne Rankings, halten das Training spielerisch und die Motivation hoch.
Keimzelle Celonis
Julius’ Karriere begann nach seinem Mathematikstudium in Darmstadt, bevor ihn sein Weg nach München zu Celonis führte. Das Unternehmen ist spezialisiert auf die Optimierung von Unternehmensprozessen und aktuell das wertvollste deutsche Start-up-Unicorn. Sein Job startete in Madrid, wo er zunächst ganz allein im Office saß. Doch das Team wuchs rasant, nach nur drei Jahren arbeiteten 500 Menschen am Standort. In dieser Zeit lernte er seine späteren Mitgründer kennen. Tom Müller ist gelernter Maschinenbauer, Robert Seilbeck war als Software-Engineer von Anfang an bei Celonis dabei. „Diese unglaubliche Dynamik, die wir in Madrid erlebt haben, hat uns motiviert, etwas eigenes aufzubauen“, erinnert sich Julius.
Markttests und Durchbruch mit Stihl
Bevor sich die Gründer auf Cybersecurity fokussierten, überprüften sie abends und an Wochenenden unterschiedliche Märkte auf ihr Potenzial. Jeden Monat testeten sie eine neue Branche mit jeweils 100 persönlichen Briefen. Die Rücklaufquote lag in der Regel bei ein bis zwei Prozent und bestand überwiegend aus Absagen. „Beim Thema Cybersicherheit hatten wir plötzlich zehn Rückmeldungen – und eine Firma lud uns direkt nach München ein“, so Julius. Am folgenden Wochenende entwickelte das Team eine vorläufige Produktversion und handelte drei Monate Zeit heraus, bis das Projekt starten sollte. Es war der inoffizielle Startschuss für revel8.
Im Februar 2024 bezog Julius die erste Bürofläche in Berlin, Tom folgte im Mai. Zu diesem Zeitpunkt hatte revel8 bereits erste zahlende Kund*innen. „Weil Kunden im Softwarebereich typischerweise jährlich und im Voraus zahlen, konnten wir erste Freelancer engagieren – wir selbst haben auf Gehalt verzichtet und von unserem Ersparten gelebt“, sagt Julius. Das Team testete Ansätze mit kleineren Unternehmen. Einige sicher geglaubte Kund*innen sprangen trotz mündlicher Zusage wieder ab, sodass eingeplante Umsätze plötzlich wegfielen. „Für ein Start-up ist sowas Gift“, so Julius, „und das war für uns eine echte Herausforderung.“ Der Durchbruch kam mit dem Unternehmen Stihl. Der damalige CISO war sofort begeistert und unterstützte das Team nach Kräften. In enger Zusammenarbeit mit dem Werkzeughersteller entstand das heutige Konzept, Mitarbeitende realitätsnah auf digitale Angriffsszenarien vorzubereiten. Im Oktober stieß Robert nach zehn Jahren bei Celonis fest zum revel8-Team dazu.
Dies ist ein Ausschnitt aus der Coverstory der StartingUp-Ausgabe 04/25. Den vollständigen Beitrag liest du im Printmagazin oder ePaper – hier bequem online bestellbar
KI & Bewertungen: Sichtbarkeit in einer neuen Suchrealität
Tipps und To-dos: Wie du dein Bewertungsmanagement strategisch aufsetzt und Sichtbarkeit und Vertrauen im KI-Zeitalter steigerst.
Generative Antworten in Suchmaschinen und Assistenten verändern die Spielregeln der Online-Sichtbarkeit. Nicht mehr nur klassische Rankings entscheiden, sondern die Frage, wem die KI genug vertraut, um es überhaupt zu nennen. Aktuelle, glaubwürdige und inhaltlich konkrete Bewertungen werden dabei zum Schlüsselsignal. Für kleine und mittlere Unternehmen bedeutet das: Bewertungsmanagement ist kein Nice-to-have mehr, sondern ein Pflichtprogramm, das Auffindbarkeit, Auswahl und Conversion spürbar beeinflusst. Im Folgenden erfährst du, wie du dein Bewertungsmanagement strategisch aufsetzen solltest, um Sichtbarkeit und Vertrauen im KI-Zeitalter zu steigern.
Warum Bewertungen jetzt geschäftskritisch sind
KI-Modelle zerlegen Rezensionen in viele kleine Bedeutungseinheiten und ziehen daraus ein konsistentes Bild. Welche Leistung wurde erbracht, an welchem Ort, mit welcher Qualität und für welchen Anlass. Aus den einzelnen Stimmen entsteht so ein Vertrauensprofil, das über bloße Sternesummen hinausgeht. Entscheidend ist nicht die bloße Menge, sondern die Frische und die inhaltliche Dichte der Aussagen. Eine Rezension wie „Schnell geholfen am Sonntag, sehr kompetente Beratung zu Reiseimpfungen“ liefert gleich mehrere Signale. Zeitliche Verfügbarkeit, thematische Expertise und konkreter Nutzen. Genau solche Details erhöhen die Wahrscheinlichkeit, in generativen Antworten aufzutauchen, wenn Menschen in ihrer Nähe nach einer Lösung suchen. Wer regelmäßig neue, authentische und präzise Bewertungen erhält, verschafft der KI verlässliche Hinweise und sichert sich dadurch mehr Sichtbarkeit in genau den Momenten, in denen Entscheidungen vorbereitet werden.
Bewertungsmanagement als Prozess, nicht als Aktion
Wirksam wird Bewertungsarbeit, wenn sie selbstverständlich Teil der täglichen Abläufe ist. Nach dem Kontakt freundlich um Feedback bitten, den Weg zur passenden Plattform so kurz wie möglich machen, interne Zuständigkeiten klar regeln und Reaktionszeiten verbindlich festlegen. Aus diesen scheinbar kleinen Schritten entsteht ein stabiler Rhythmus, der kontinuierlich neue Kund*innenstimmen hervorbringt und der KI immer wieder frische Kontexte liefert. Ein solcher Prozess ist robuster als jede einmalige Kampagne, weil er verlässlich Vertrauen aufbaut und saisonale Schwankungen abfedert. Teams profitieren, wenn sie Zielkorridore definieren, etwa eine bestimmte Zahl neuer Rezensionen pro Woche und wenn sie Fortschritte sichtbar machen. So wird aus gutem Vorsatz ein gelebter Ablauf, der die gesamte Organisation stärkt.
Sprache der Kund*innen wirkt wie natürliches SEO
KI versteht Alltagssprache deutlich besser als Listen isolierter Schlagwörter. Unternehmen gewinnen, wenn sie um freie, aber konkrete Formulierungen bitten, ohne Vorgabetexte und ohne Druck. Eine höfliche Bitte wie: „Wenn es für Sie passt, nennen Sie gern, was Ihnen besonders geholfen hat“ öffnet den Raum für präzise Hinweise auf Leistungen, Erreichbarkeit, Barrierefreiheit oder Schnelligkeit. Solche natürlich entstandenen Details sind für Menschen überzeugend und zugleich für Maschinen gut interpretierbar. Sie zeigen, wofür ein Betrieb tatsächlich steht, und verankern die passenden Begriffe in einem echten Nutzungskontext. Das Ergebnis ist eine Sprache, die Vertrauen schafft und die Auffindbarkeit stärkt, ohne künstlich zu wirken.
Antworten trainieren Vertrauen für Menschen und Maschinen
Jede Reaktion auf eine Bewertung ist ein sichtbares Zeichen von Serviceorientierung und zugleich zusätzlicher Kontext für die KI. Gute Antworten bedanken sich aufrichtig, beziehen sich konkret auf das Erlebte und bieten einen klaren nächsten Schritt an. Bei Kritik zählt ein professioneller Umgang. Das Anliegen nachvollziehen, Verantwortung übernehmen, eine realistische Lösung anbieten und einen direkten Kontaktweg nennen. So entsteht ein Bild von Verlässlichkeit, das Hemmschwellen senkt und Wiederbesuche wahrscheinlicher macht. Die KI erkennt diesen Umgang ebenso und ordnet das Unternehmen eher als vertrauenswürdig ein. Mit der Zeit entsteht ein stabiler Kreislauf aus guter Erfahrung, konstruktiver Reaktion und wachsendem Vertrauen.
Lokaler Content und Social Proof gehören zusammen
Bewertungen entfalten ihre volle Wirkung, wenn sie auf eine solide Informationsbasis treffen. Konsistente Unternehmensdaten, vollständige Leistungsseiten pro Standort, klare Öffnungszeiten inklusive Ausnahmen und eine schnelle, mobil optimierte Webseite erleichtern die Einordnung für Nutzer*innen und Maschine. Wenn ausgewählte Zitate oder Bewertungsschnipsel an relevanten Stellen sichtbar werden, etwa auf der Startseite, in der Buchungsstrecke oder in den häufigen Fragen, entsteht ein schlüssiges Gesamtbild. Der lokale Bezug bleibt klar erkennbar, die Erwartungen sind gut gesetzt, und die nächsten Schritte sind ohne Umwege möglich. So wird aus Social Proof ein handfester Conversion Hebel.
Vom Feedback zur Verbesserungsschleife
Rezensionen sind fortlaufende Marktforschung aus erster Hand. Wer wiederkehrende Themen auswertet, etwa Wartezeiten, Erreichbarkeit oder Bezahloptionen, erkennt schnell die Stellschrauben mit der größten Wirkung. Wichtig ist, die daraus abgeleiteten Verbesserungen konsequent umzusetzen und sichtbar zu machen. Informieren, handeln, erneut um Rückmeldung bitten. Dieser offene Kreislauf wirkt nach innen und nach außen. Mitarbeitende erleben, dass Feedback Veränderungen anstößt, Kund*innen erleben, dass ihre Hinweise ernst genommen werden, und die KI registriert die fortlaufende Pflege der Qualität. Mit jeder Runde werden Erlebnisse besser und Bewertungen stärker, was die Sichtbarkeit weiter erhöht.
Fazit
Sichtbarkeit entsteht heute dort, wo Menschen nach konkreten Lösungen fragen und wo KIs verlässliche Hinweise zu Qualität und Relevanz finden. Unternehmen, die Bewertungen als strategischen, kontinuierlichen Prozess verstehen, erhöhen ihre Chance, in generativen Antworten genannt zu werden und gewinnen genau in den entscheidenden Momenten an Präsenz. Vieles davon ist eine Frage kluger Organisation und klarer Abläufe. Der finanzielle Aufwand bleibt überschaubar, der Nutzen für Auffindbarkeit, Vertrauen und Umsatz ist deutlich spürbar.
Die Autorin Franziska Ortner ist Produktmanagerin bei SELLWERK
GreenTech – der Boom geht zu Ende
Zwar zählt Deutschland rund 3000 Start-ups aus dem GreenTech-Bereich, doch viele kämpfen mit Kapitalmangel, Fachkräftedefizit und einer überlasteten Infrastruktur. Der Boom ist vorbei – eine Einschätzung von Seriengründer und Transformationsexperte Daniel Fellhauer.
Die deutsche Wirtschaft steht vor einer ihrer größten Transformationen seit der Industrialisierung. Jahrzehntelang galten Auto- und Stahlindustrie als Rückgrat des Wohlstands. Nun rückt Nachhaltigkeit in den Mittelpunkt. Daniel Fellhauer sieht die GreenTech-Branche an einem kritischen Punkt: „GreenTech ist kein Hype, sondern Realität mit echten Herausforderungen. Die Frage ist: Wer bleibt übrig, wenn die Subventionen verschwinden?“ Seine Aussage bringt auf den Punkt, was viele Brancheninsider beschäftigt: der Übergang von gefördertem Wachstum zu marktwirtschaftlicher Reife. Jetzt entscheidet sich, welche Unternehmen Innovation und Wirtschaftlichkeit in Einklang bringen können – und wer an überzogenen Erwartungen scheitert.
Der Boom geht zu Ende
„Der Anteil grüner Gründungen ist zuletzt deutlich gesunken“, sagt Daniel Fellhauer. „Vor zwei Jahren war noch jedes dritte neue Start-up nachhaltig ausgerichtet. Heute ist es nicht einmal mehr jedes Vierte. Das ist ein deutliches Warnsignal. Der Markt sortiert sich, Kapital wird selektiver, und viele Ideen schaffen es nicht mehr über die Pilotphase hinaus.“ In den vergangenen fünf Jahren flossen zwar rund 11,7 Milliarden Euro in grüne Start-ups – etwa ein Viertel aller deutschen Risikoinvestitionen –, doch das Geld konzentriert sich zunehmend auf wenige, große Player. „Das zeigt eine Reifung, aber auch eine gefährliche Schieflage“, so Fellhauer. „Wir brauchen Breite, nicht nur Leuchttürme. Wenn die Finanzierungsströme versiegen, bevor Skalierung einsetzt, kippt der ganze Innovationspfad.“ Hinzu kommen steigende Zinsen, langwierige Genehmigungen und überlastete Netze. „Viele unterschätzen, wie stark Infrastruktur über Wachstum entscheidet“, erklärt er. „Eine Solarfirma kann heute Aufträge für 1.000 Anlagen im Jahr haben. Aber wenn der Netzanschluss neun Monate dauert, bleibt sie auf halber Strecke stehen.“
Deutschland ist längst auf dem Weg zur nachhaltigen Wirtschaft – doch der Anstieg wird steiler. Die entscheidende Frage lautet: Wird GreenTech zum Fundament der nächsten industriellen Ära, oder zur vertanen Chance einer Generation? Laut einer aktuellen Analyse fließt ein erheblicher Teil staatlicher Investitionen und Subventionen in Deutschland weiterhin in fossile Strukturen – über 60 Milliarden Euro jährlich. Da-bei hatte sich die Bundesregierung bereits 2009 gemeinsam mit anderen Industrieländern verpflichtet, ineffiziente Förderungen für fossile Energieträger bis 2025 zu beenden. Ein Ziel, das laut Fachleuten von Fraunhofer ISI, ZEW und Umweltbundesamt klar verfehlt wird. Daniel Fellhauer warnt: „Das ist kein ideologisches, sondern ein ökonomisches Problem. Solange Kapital und Fördermittel in alte Industrien gelenkt werden, anstatt in skalierbare GreenTech-Lösungen, bleibt Deutschland in der Vergangenheit verhaftet.“
Herausforderungen im deutschen GreenTech-Sektor
Trotz technologischer Fortschritte wird das Wachstum der Branche weiterhin durch strukturelle Probleme gebremst. Zu den größten Hindernissen zählen laut Fellhauer vor allem die unzureichende Netzinfrastruktur, die hohe Kapitalintensität sowie fragmentierte Märkte. Hochqualifizierte Arbeitskräfte in den Bereichen Energie, Elektronik und Software sind rar, wodurch die Entwicklung und Umsetzung neuer Technologien verlangsamt wird. Gleichzeitig behindert der schleppende Ausbau der Strom- und Wärmenetze eine schnelle Skalierung innovativer Lösungen. Daniel Fellhauer erklärt: „Hinzu kommt, dass viele GreenTech-Unternehmen aufgrund langer Entwicklungszeiten und hoher Anfangsinvestitionen auf beträchtliches Kapital angewiesen sind. Schließlich sorgen unterschiedliche Förderprogramme und komplexe regulatorische Vorgaben dafür, dass Innovationen und Markteintritte ausgebremst werden. Diese Faktoren erschweren nicht nur das Wachstum bereits bestehender Firmen, sondern machen auch den Einstieg für neue Gründerinnen und Gründer deutlich schwieriger.“
Zweite Generation der Nachhaltigkeit für mehr wirtschaftliche Tragfähigkeit
„Nur wer wirtschaftlich denkt, kann nachhaltig handeln“, sagt Daniel Fellhauer. Für ihn ist klar: Die nächste Phase der GreenTech-Bewegung entscheidet sich nicht an Visionen, sondern an Umsetzungsdisziplin. „Wir haben die Ideen, die Technologien und den gesellschaftlichen Rückhalt – jetzt geht es um Strukturen, Prozesse und betriebswirtschaftliche Fitness.“ Er spricht damit vor allem zu Gründerinnen und Gründern, die gerade überlegen, in den Markt einzusteigen. „Ich sehe viele junge Teams, die voller Energie starten – aber ohne belastbares Geschäftsmodell. Das ist gefährlich, weil GreenTech kapitalintensiv ist und die Anlaufphase oft Jahre dauert. Wer heute gründet, braucht einen klaren Plan für Cashflow, Partnerschaften und Skalierung, nicht nur für Storytelling.“
Fellhauer plädiert für eine zweite Generation der Nachhaltigkeit: weniger Ideologie, mehr Industriekompetenz. „Wir müssen wieder lernen, wie man produziert, automatisiert und skaliert, nicht nur, wie man pitcht. Nachhaltigkeit ist kein Marketingbegriff, sondern eine Frage des industriellen Könnens.“ Er empfiehlt, früh Kooperationen mit etablierten Mittelständlern oder Industriebetrieben zu suchen, um Skaleneffekte und Erfahrung zu nutzen. Statt auf Subventionen zu bauen, rät er zu robusten Wertschöpfungsmodellen, die auch ohne politische Förderung bestehen können. „Die besten Green-Tech-Firmen der nächsten Jahre werden die sein, die unabhängig funktionieren – weil sie echte Marktprobleme lösen, nicht weil sie im Förderdschungel überleben.“
Politik und Wirtschaft in gemeinsamer Verantwortung
Damit Nachhaltigkeit tatsächlich zum tragfähigen Standbein der deutschen Wirtschaft wird, braucht es planbare Rahmenbedingungen – aber auch Eigeninitiative. Fellhauer betont, dass Gründerinnen und Gründer nicht auf die perfekte Politik warten dürfen. „Wir brauchen beides: verlässliche Energie- und Förderpolitik und unternehmerischen Pragmatismus.“ Politik müsse langfristige Investitionen ermöglichen, den Kapitalzugang vereinfachen und Fachkräfte mobilisieren. Fellhauer nennt staatlich unterstützte Risikokapitalfonds und europäische GreenTech-Programme als zentrale Hebel, damit Innovationen nicht im Frühstadium scheitern. Zugleich müsse Deutschland die Infrastruktur modernisieren: Netze, Standards, Digitalisierung. „Solange ein Windpark genehmigt, aber nicht ans Netz angeschlossen werden kann, bleibt das alles Theorie“, warnt er. Sein Fazit fällt entsprechend klar aus: „GreenTech wird die neue industrielle Basis – wenn wir sie als solche behandeln. Gründer müssen rechnen, Politiker müssen liefern, und die Gesellschaft muss akzeptieren, dass Nachhaltigkeit ein Geschäftsmodell braucht, keinen Idealismuspreis.“
Daniel Fellhauer hat mehrere Unternehmen im Bereich Solar, Wärmepumpen und erneuerbare Energien erfolgreich aufgebaut. Heute ist er Chief Transformation Officer bei Thermondo und eingesetzter CEO seiner ursprünglich gegründeten Firma FEBESOL.
Happy Homeoffice Club gestartet
Gründerin Caterina Hirt startet ein digitales Netzwerk als kollaborative Kommunikationsplattform für selbständige Mütter im Homeoffice.
Mit dem Start des Happy Homeoffice Clubs entsteht ein neues digitales Angebot für selbständige Mütter – mit Liveformaten, Co-Working, einer innovativen Softwareplattform und vielen nützlichen Business-Hacks. Die Gründerin Caterina Hirt bringt damit ein strukturiertes, unterstützendes Netzwerk an den Start, das den oft isolierten Homeoffice-Alltag in einen Ort der Verbindung, Motivation und echten Weiterentwicklung verwandelt. „Ich habe selbst erlebt, wie herausfordernd es ist, Beruf, Familie und Selbstverwirklichung unter einen Hut zu bringen – vor allem im Homeoffice. Mit dem Happy Homeoffice Club möchte ich Frauen zeigen, dass sie nicht alleine sind“, so die Gründerin. Caterina Hirt ist Unternehmerin, Autorin, systemische Coachin und Mutter von zwei Kindern. Mit ihrem Agenturbackground und über zehn Jahren Erfahrung im Homeoffice weiß die Marketingspezialistin aus erster Hand, welche Chancen – aber auch welche Herausforderungen – dieser Arbeitsalltag birgt.
Kern der Zusammenarbeit ist eine kollaborative Kommunikationsplattform, über die die Mütter dauerhaft in einem echten Netzwerk verbunden sind. Dazu setzt das Angebot auf Livecalls, Community-Austausch, Expertenvorträge und snackable Businesstipps, die den Workflow im Homeoffice effizienter machen. Das Angebot richtet sich explizit an selbständige Frauen oder Mütter im Homeoffice. „Bei uns fühlt sich keine Teilnehmerin mehr allein. Hier treffen sich Frauen, die genau wissen, wie es ist, mit Laptop, Kaffee, Kind und manchmal ein bisschen Chaos zu jonglieren. Sie arbeiten, lachen, tauschen sich aus und motivieren sich gegenseitig. So modern, vernetzt und unterstützend, wie man es sich als Selbstständige immer gewünscht hat “, sagt Caterina Hirt.
Die zugrundeliegende Softwarelösung bietet eine hochmoderne Nutzeroberfläche, Chats, Calls in einer geschützten Umgebung sowie Daten- und Wissensaustausch an. So gibt es zum Beispiel den Monday Motivation Call mit allen Teilnehmerinnen oder eine interaktive Kaffeeküche, in der man sich einfach mal über alle Themen abseits des Business interaktiv austauschen kann. Die Plattform wird jeder Teilnehmerin zur Verfügung gestellt, die Nutzung ist in der monatlichen Mitgliedsgebühr von 49 Euro (Einführungspreis) enthalten. Interessentinnen können die Community inklusive aller Angebote zwei Wochen kostenlos testen.
Vorsicht vor diesen KI-Versuchungen
Allzu großes Vertrauen in GenAI ist fahrlässig, dennoch prüfen nur rund ein Viertel der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit. Das sind die größten Gefahren und effektivsten Gegenmaßnahmen.
Die Leistung und die Zuverlässigkeit von KI-Assistenten nehmen gefühlt weiter zu. Doch wer in den letzten Wochen intensives Prompting bei ChatGPT, Perplexity und Co. betrieben und die Ergebnisse eingehend analysiert hat, fühlte sich in diesem Gefühl nicht bestätigt. Im Gegenteil: Die Qualität der generierten Antworten lässt neuerdings öfter zu wünschen übrig. Auf YouTube gibt es zahlreiche Videos zu diesem Phänomen, das sich offenbar auch die Herstellenden nicht so ganz erklären können, aber auch klassische Medien berichten darüber. In Anbetracht der Tatsache, wie abhängig sich viele Menschen im Berufsleben schon heute von GenAI-Tools gemacht haben, ist dieser Trend erschreckend und ernüchternd. Ein blindes Vertrauen in die digitalen Helfer aus der Familie generativer KI birgt zudem großes Schadenspotenzial, etwa dann, wenn sich Ärzt*innen bei der Diagnose auf sie stützen oder Entwickler*innen von der KI vorgeschlagene Frameworks ohne Sicherheitscheck implementieren.
Völliges Vertrauen in GenAI ist also, zurückhaltend formuliert, mindestens gewagt. Die Situation ist ernst und erfordert von GenAI-Anbietenden ein Mindestmaß an Qualitätssicherung – offenbar kein einfaches Unterfangen. Bis dahin ist es wichtig, eigene Maßnahmen zu ergreifen, um nicht in die Falle der folgenden vier Qualitätskiller zu geraten.
1. Halluzinationen
KI-Assistenten wie ChatGPT und Co. wurde die Aufgabe erteilt, Antworten zu liefern – koste es, was es wolle. Wenn die Wissensbibliothek nicht ausreicht, um komplexe Sachverhalte zu beantworten, fängt generative KI an, sich etwas auszudenken. Die von solchen Halluzinationen ausgehende Gefahr ist bekannt. Umso bedrückender ist die Tatsache, dass laut einer aktuellen Studie nur rund ein Viertel (27 %) der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit prüfen. Das sind zwar immerhin sieben Prozentpunkte mehr als bei gewöhnlichen Inhalten aus dem Internet, wie eine Studie des PR-COM Research Lab belegt, aber noch immer viel zu wenige.
Gegenmaßnahmen: Wer GenAI nutzt, sollte ausnahmslos alle von ihr produzierten Inhalte überprüfen. Dazu sollten User*innen insbesondere die von der KI verwendeten Primärquellen checken oder – wenn möglich – Expert*innen zur Prüfung der Korrektheit der Antworten zurate ziehen.
2. Bias
Die Anbieter*innen aktueller KI-Assistenten haben sehr viel Arbeit in ihre Produkte gesteckt, um den Bias, also die Voreingenommenheit ihrer Modelle auszumerzen und sie zur Vorurteilsfreiheit zu erziehen.
Verlassen sollten sich User*innen auf die moralische und ethische Unantastbarkeit ihrer Modelle dennoch nicht. Zwar ist es unwahrscheinlich, dass Produkte großer Hersteller*innen noch rassistische, sexistische oder sonstige ethisch fragwürdige Ansichten vertreten, aber komplett ausgeschlossen ist es eben nicht. Noch relativ hoch ist die Gefahr zudem bei der Nutzung von kostenlosen GenAI-Assistenten oder Nischen-Tools.
Gegenmaßnahmen: Auch im Zusammenhang mit Bias gilt es, die Ergebnisse einer KI-Befragung immer genauestens zu checken und mit geltenden Gesetzen und den vorherrschenden Wertevorstellungen unserer Gesellschaft abzugleichen. Wer dubiose KI-Tools meidet, kann sich zudem viel Ärger ersparen.
3. Content-Kannibalisierung
Immer mehr KI-generierter Content flutet das Internet – die logische Folge der zunehmenden Nutzung von GenAI-Assistenten. Leider trainieren KI-Entwickler*innen ihre Chatbots und deren zugrunde liegende Sprachmodelle unter anderem mit genau diesen Inhalten. Und schlimmer noch: Der exponentiell steigende KI-Inhalt ist darüber hinaus auch der Wissensschatz, auf den die KI für ihre Antworten zurückgreift. Dadurch entsteht ein Teufelskreis aus KI, die sich irgendwann nur noch mit von ihr selbst generierten Inhalten trainiert und auch nur noch von ihr produzierten Content als Basiswissen verwendet. Der Mensch wird aus dieser Gleichung immer weiter herausgekürzt. Die Qualität der Ergebnisse von Anfragen an die KI wird somit zunehmend abnehmen. Hinzu kommt, dass alle User*innen irgendwann die gleichen Ergebnisse abrufen, nutzen und veröffentlichen.
Gegenmaßnahmen: Es ergibt Sinn, hin und wieder auch ohne KI zu agieren und Content zu produzieren, der frei von KI-generierten Inhalten ist und das Qualitätsmerkmal „Made in a human brain“ trägt.
4. Wissensoligopol
Der KI-Markt ist derzeit auf einige wenige Big Player geschrumpft, die sich die enormen Rechenressourcen und Entwicklungskosten für generative KI leisten können. Dadurch entsteht zunehmend ein Wissensoligopol, in dem die großen Anbieter*innen wie OpenAI, Google, Microsoft und DeepSeek zukünftig die Art und Weise bestimmen, welche Informationen überhaupt noch zugänglich sind. Schon jetzt gehen Suchanfragen auf den traditionellen Suchmaschinen deutlich zurück, die Ergebnisse zwar nach Algorithmen ranken, aber selten Treffer komplett ausblenden. Viel restriktiver agieren GenAI-Tools, deren implementierte Filter die freiheitliche Verbreitung von Wissen einzuschränken drohen: Was nicht mit den politischen und moralischen Ideen der Hersteller übereinstimmt, wird automatisch unterdrückt. Das erinnert ein wenig an das Wahrheitsministerium aus Orwells „1984“.
Gegenmaßnahmen: Es ist wichtig, dass Unternehmen und offizielle Stellen auch unabhängige Projekte fördern und deren Nutzer*innen- sowie Supporter*innen-Basis wächst. Gleichzeitig sollten User*innen es dringend verinnerlichen, dass KI- Assistenten nicht der Wahrheit letzter Schluss sind. Das Nutzen möglichst vieler Quellen, um das eigene Wissen aufzubauen, ist immer besser als ein vermeintlicher „Single Point of Truth“.
Fazit
Wir sind noch lange nicht so weit, dass ein blindes Vertrauen in generative KI zu rechtfertigen ist. Es ist zwar logisch, dass wir eine vermeintlich arbeitserleichternde Technologie erst einmal ungern hinterfragen – doch dieser Bequemlichkeit wohnt, je nach Einsatzzweck, ein erhebliches Schadenspotenzial inne. Zum jetzigen Zeitpunkt lautet also die Maxime, restlos jede von GenAI generierte Antwort genauestens auf den Prüfstand zu stellen.
Der Autor Alain Blaes ist CEO der Münchner Kommunikationsagentur PR-COM (mit Fokus auf High-tech- und IT-Industrie im B2B-Umfeld).
Code für die künstliche Intelligenz: technische Optimierung für die Ära der KI-Suche
Code für die KI: So optimierst du deine Website technisch mit strukturierten Daten und Protokollen für die besten generativen Suchergebnisse.
Die Regeln der Online-Sichtbarkeit werden neu geschrieben. Es geht nicht mehr nur darum, von einem herkömmlichen Algorithmus indiziert zu werden. Stattdessen müssen Websites so aufbereitet werden, dass sie von künstlicher Intelligenz (KI) und großen Sprachmodellen (LLMs) fehlerfrei interpretiert und verarbeitet werden können.
KI erstellt ihre Antworten, indem sie Inhalte blitzschnell liest, deren Bedeutung versteht und die wichtigsten Fakten daraus extrahiert. Wenn der technische Unterbau einer Website unsauber ist, kann die KI die Informationen entweder nicht zuverlässig finden oder sie falsch interpretieren.
Das bedeutet, die technische Seite der Website – der Code – wird zum Fundament für eine gute Platzierung in den generativen Suchergebnissen. Wer hier Nachholbedarf hat, riskiert, als vertrauenswürdige Quelle für die KI unsichtbar zu werden.
Dieser Artikel beleuchtet die entscheidenden technischen Anpassungen, die notwendig sind, um deine Website optimal für die neue Ära der KI-Suche vorzubereiten.
Kontrolle und Zugang: Die Regeln für Sprachmodelle
Der erste technische Schritt zur Optimierung für KI-Ergebnisse ist die Steuerung des Zugriffs durch die großen Sprachmodelle (LLMs). Traditionell wird der Zugang durch die robots.txt Datei geregelt, die festlegt, welche Bereiche der Website von herkömmlichen Suchmaschinen-Crawlern besucht werden dürfen.
Mit dem Aufkommen verschiedener, spezialisierter KI-Crawler (die nicht immer identisch mit dem Googlebot oder Bingbot sind) entsteht jedoch die Notwendigkeit, diesen neuen Akteuren eigene Regeln zu geben. Es geht darum, Transparenz darüber zu schaffen, welche Daten zur Generierung von Antworten verwendet werden dürfen und welche nicht.
Neue Protokolle für neue Crawler
Experten diskutieren und entwickeln neue Protokolle, um diese Unterscheidung zu ermöglichen. Ein viel diskutierter Ansatz ist die Einführung von Protokollen, die spezifisch den Umgang mit generativer KI regeln. Dies könnte die Einführung von Protokollen wie einer llms.txt Datei beinhalten. Solche spezifischen Dateien könnten festlegen, ob ein KI-Modell Inhalte zur Schulung oder zur generativen Beantwortung von Nutzeranfragen nutzen darf.
Diese Kontrollmechanismen sind entscheidend. Sie geben den Website-Betreibern die Autorität darüber zurück, wie ihre Inhalte in der KI-Ära verwendet werden. Wer hier klare Regeln setzt, schafft die technische Grundlage für eine kontrollierte und damit vertrauenswürdige Sichtbarkeit in den KI-Ergebnissen.
Strukturierte Daten als universelle KI-Sprache
Nach der Regelung des Zugangs durch Protokolle ist die Strukturierung der Inhalte der wichtigste technische Schritt. Suchmaschinen nutzen strukturierte Daten schon lange, um Rich Snippets in den klassischen Ergebnissen anzuzeigen. Für die KI sind diese Daten jedoch absolut essenziell.
Strukturierte Daten, die auf dem Vokabular von Schema.org basieren, sind im Grunde eine Übersetzungshilfe im Code, die dem Sprachmodell den Kontext des Inhalts direkt mitteilt. Sie sind die "Sprache", die die KI am schnellsten und präzisesten versteht.
Die Bedeutung für die Generierung
Wenn ein Nutzer eine Frage stellt, sucht die KI nicht nur nach Stichwörtern, sondern nach definierten Informationstypen. Mit strukturierten Daten liefert man der KI diese Informationen als fertige, fehlerfreie Bausteine.
- Fehlerfreie Extraktion: Die KI muss keine Textpassagen interpretieren, um beispielsweise ein Rezept, die Bewertung eines Produkts oder einen FAQ-Abschnitt zu identifizieren. Die korrekte Auszeichnung macht die Daten sofort nutzbar.
- Vertrauensbildung: Fehlerhafte oder inkonsistente strukturierte Daten führen zu einer falschen Interpretation und können bewirken, dass die KI deine Seite als unzuverlässig einstuft.
Die Implementierung muss fehlerfrei sein und sollte alle relevanten Inhaltstypen der Website abdecken. Nur eine saubere Schema-Implementierung garantiert, dass deine Fakten korrekt in die generativen Antworten der KI einfließen.
Ladezeit und Interaktivität als Vertrauenssignal
Die Geschwindigkeit und die Nutzbarkeit einer Website sind in der Ära der KI-Suche nicht mehr nur ein Komfortfaktor, sondern ein entscheidendes technisches Vertrauenssignal. Wenn deine Seite langsam lädt oder schlecht bedienbar ist, wird das von der KI als Indikator für mangelnde Qualität und niedrige Autorität gewertet.
Die Basis dafür sind die sogenannten Core Web Vitals (CWVs). Diese Messwerte, die sich auf das Nutzererlebnis konzentrieren, sind feste Ranking-Faktoren und haben direkten Einfluss darauf, ob eine KI deine Seite als zitierwürdig einstuft:
- LCP (Largest Contentful Paint): Misst die Zeit, bis der größte sichtbare Inhalt geladen ist.
- FID/INP (First Input Delay / Interaction to Next Paint): Misst die Zeit bis zur ersten Interaktion und die allgemeine Reaktionsfähigkeit der Seite.
- CLS (Cumulative Layout Shift): Misst die visuelle Stabilität.
Mobile Performance ist der Schlüssel
Da ein Großteil der Online-Aktivität über mobile Geräte stattfindet, legt die KI höchsten Wert auf die Optimierung der Mobilversion. Eine schlechte mobile Performance kann das gesamte Ranking negativ beeinflussen.
Die technische Anpassung muss daher darauf abzielen, die CWVs zu perfektionieren. Dies beinhaltet die Optimierung von Bildern, das Bereinigen unnötiger Code-Lasten und das Priorisieren wichtiger Ressourcen. Eine schnell ladende und reaktionsfreudige Website signalisiert nicht nur dem Nutzer, sondern auch der KI, dass die Quelle professionell und damit vertrauenswürdig ist.
Redundanz vermeiden: kanonische Klarheit
Eines der größten technischen Probleme für KI-Modelle ist die Verwirrung durch doppelte Inhalte (Duplikate). Wenn die gleiche Information unter verschiedenen URLs verfügbar ist, weiß die KI nicht, welche die Originalquelle darstellt. Dies zersplittert deine Autorität.
Der technische Schlüssel zur Lösung ist der Canonical Tag (<link rel="canonical" ...>). Dieser Tag im Code muss auf jeder Seite korrekt auf die bevorzugte, indexierbare URL zeigen. Durch die Vermeidung von Duplikaten und die korrekte Nutzung dieses Tags stellst du technisch sicher, dass die KI deine Inhalte als eindeutig und autoritär wahrnimmt und dich als zuverlässigen Faktenlieferanten zitiert.
Schlussworte
Die Zukunft der Online-Sichtbarkeit wird durch künstliche Intelligenz neu definiert. Der Erfolg hängt von einer technisch sauberen Vorbereitung ab.
Die wichtigsten Schritte in der Generative Engine Optimization (GEO) sind:
1. Zugangskontrolle durch Protokolle wie die diskutierte llms.txt Datei.
2. Die Nutzung von strukturierten Daten als unverzichtbare KI-Sprache.
3. Die Perfektionierung der Core Web Vitals als Vertrauenssignal.
4. Die Vermeidung von Duplikaten durch kanonische Klarheit.
Investiere in diese technische Qualität, um Autorität und Sichtbarkeit in der Ära der KI-generierten Antworten zu sichern.
eleQtron: It's MAGIC
In nur fünf Jahren vom Laborgerät zum 24/7-betriebenen Quantencomputer: Wie das 2020 von Jan Leisse, Christof Wunderlich und Michael Johanning gegründete eleQtron mit seiner MAGIC-Technologie neue Wege ebnet.
Was ihr da macht, ist der Wahnsinn – und genau deswegen bin ich dabei.“ Mit diesen Worten beschreibt Jan Leisse, einer der Gründer von eleQtron, die Anfänge des Unternehmens. Das erste Treffen mit dem Physiker Christof Wunderlich war geprägt von einer Mischung aus Skepsis und Begeisterung. Der Wissenschaftler hatte an der Universität Siegen einen Quantencomputer gebaut – mitten in der deutschen Provinz und ohne das Millionenbudget, das Konzernen wie Google oder IBM zur Verfügung steht. Doch genau das reizte Leisse: „Hier wurde nicht einfach nachgemacht, was andere tun. Hier wurde Neuland betreten.“
Es war ein ungewöhnlicher Ort für eine bahnbrechende
Innovation in der Quantentechnologie. Siegen, eine Mittelstadt im Süden Nordrhein-Westfalens, ist nicht gerade als Hotspot für Hochtechnologie bekannt. Doch manchmal entstehen die Top-Innovationen fernab der etablierten Zentren; die Universität Siegen hatte über Jahre hinweg eine bemerkenswerte Expertise in der Quantenphysik aufgebaut, ohne große mediale Aufmerksamkeit.
Von der Universität ...
Im Jahr 2020, als das globale Interesse an Quantentechnologien exponentiell zunahm, erwuchs aus dieser mutigen Pionierarbeit das Start-up eleQtron – als Spin-off der Universität Siegen. Die Gründer – Jan Leisse, Christof Wunderlich und Michael Johanning – verbindet eine Vision: Quantencomputer für industrielle Anwendungen nutzbar zu machen.
Die Anfangsjahre waren geprägt von Experimentierfreude, Improvisation und dem festen Glauben an die eigene technologische Innovationskraft. Während Tech-Giganten wie IBM, Google und Amazon Milliarden Euro in ihre Quantenprogramme investierten und viele Start-ups auf bekannte Technologien setzten, wagte eleQtron den Schritt in eine völlig neue Richtung.
In den Laboren der Gründer entstand die sogenannte MAGIC-Technologie (Magnetic Gradient Induced Coupling), eine Methode, Qubits (das Quantencomputing-Äquivalent zum klassischen Bit in der Digitaltechnik) nicht wie bislang üblich mit Lasern, sondern mit Mikrowellen zu steuern.
... zum technologischen Durchbruch
Die MAGIC-Technologie basiert auf einem raffinierten Zusammenspiel physikalischer Prinzipien: Magnetische Gradienten (räumliche Veränderungen der Magnetfeldstärke) ermöglichen es als lokale Felder, einzelne Ionen in einer sogenannten Falle selektiv anzusprechen. Die technischen Vorteile sind beeindruckend: Die Fidelity (Genauigkeit) bei Operationen an einzelnen Qubits liegt bei etwa 99,95 Prozent, die Gate-Zeiten (Gate-Zeit steht für die Dauer, die ein Quanten-Gate benötigt, um eine Operation auf einem Qubit auszuführen) betragen nur wenige Mikrosekunden. Gleichzeitig ermöglicht die Technologie eine bessere Skalierbarkeit, da sich Mikrowellenfelder einfacher erzeugen und verteilen lassen als komplexe Lasersysteme. „Der Vorteil liegt nicht nur in der höheren Präzision, sondern auch in der deutlich geringeren Komplexität der Systeme“, erklärt Johanning. „Wir brauchen keine aufwändigen Optiken oder ultrastabile Umgebungen. Unsere Technologie funktioniert auch unter realen Bedingungen.“
Früh erkannten die drei Forscher das große Potenzial ihrer Technologie für praktische Anwendungen. „Durch das gezielte Ersetzen sensibler High-End-Komponenten – insbesondere Lasertechnologie – durch bewährte Mikrowellentechnik und Elektronik, vermeiden wir unnötige Komplexität, minimieren Aufwand und senken die Kosten“, fasst es Leisse zusammen.
Wachstumsschub und strategische Entwicklung
2022 gelang eleQtron ein entscheidender Schritt: Durch Earlybird und den Siegerlandfonds als Investoren sowie das vom BMBF geförderte Projekt „MAGIC App“ sicherte sich das Start-up eine Finanzierung in Höhe von 16 Millionen Euro. Diese Finanzierungsrunde war ein Wendepunkt für das Unternehmen und signalisierte das Vertrauen der Investor*innen in die MAGIC-Technologie.
„Mit diesem Kapitalschub konnten wir von einer reinen Forschungsorganisation zu einem echten Technologieunternehmen werden“, erklärt Leisse. Die Mittel flossen in den Ausbau der Produktionskapazitäten, die Vergrößerung des Teams und die Weiterentwicklung der Technologie-Roadmap. Auch die Mitwirkung von Infineon im Rahmen von MAGIC App war strategisch von Bedeutung: „Die Zusammenarbeit mit Infineon hat uns die Augen für die Realitäten des Industriemarkts geöffnet“, erklärt Leisse.
EU KI-Gesetz wird scharf gestellt
Diese Strafen für KI-Verstöße drohen ab dem 2. August 2025 – was Personalverantwortliche und Arbeitnehmende jetzt wissen und beachten müssen.
Das KI-Gesetz der Europäischen Union, die weltweit erste umfassende KI-Verordnung, erreicht am 2. August 2025 einen entscheidenden Meilenstein. Ab diesem Stichtag gelten für Unternehmen, Behörden und KI-Anbieter*innen in der EU zahlreiche zentrale Verpflichtungen, bei deren Nichteinhaltung Strafmaßnahmen eingeleitet und verhängt werden können. Was das für Unternehmen und ihre Mitarbeitenden bedeutet, erfährst du hier.
Der AI Act, der am 2. Februar dieses Jahres in Kraft getreten ist, schafft einen einheitlichen Rechtsrahmen für Künstliche Intelligenz (KI) in der EU. Zwar werden viele Regelungen erst 2026 wirksam, doch bereits am 2. August 2025 beginnt eine neue Phase, die sich auf drei Bereiche fokussiert:
- Strafmaßnahmen bei Nichteinhaltung
- Verpflichtungen für allgemeine General-Purpose-AI-Modelle (GPAI)
- Aufbau von Aufsicht und Governance auf nationaler und europäischer Ebene
Strafen bis zu 35 Millionen Euro
Seit dem 2. Februar dieses Jahres sind KI-Systeme mit unannehmbaren Risiken verboten. Ab dem 2. August 2025 können zusätzlich nun Geldbußen für Verstöße gegen bereits bestehende Verpflichtungen verhängt werden, die bis zu 35 Millionen Euro oder 7 Prozent ihres gesamten Jahresumsatzes betragen können. Unternehmen müssen dazu beispielsweise sicherstellen, dass ihre Mitarbeitenden über KI-Kenntnisse verfügen. Die Europäische Union erwartet von ihren Mitgliedstaaten, dass sie eigene wirksame, verhältnismäßige und abschreckende Strafmaßnahmen festlegen. Dabei sollen die besonderen Umstände von KMUs und Start-ups berücksichtigt werden, um deren wirtschaftliche Lebensfähigkeit nicht zu gefährden.
Neue Verpflichtungen für Anbieter*innen von GPAI-Modellen
GPAI-Modelle, die ab dem 2. August 2025 in der Europäischen Union vermarktet werden, unterliegen gesetzlichen Verpflichtungen. Das Europäische Amt für Künstliche Intelligenz hat dazu am 10. Juli 2025 die endgültige Fassung der Verhaltenskodizes veröffentlicht. Anbieter*innen solcher GPAI-Modelle müssen unter anderem technische Dokumentationen erstellen, Urheberrechte beachten und Transparenz über die verwendeten Trainingsdaten sicherstellen.
GPAI-Modelle sind KI-Systeme mit besonders breitem Einsatzspektrum und sind darauf ausgelegt, eine Vielzahl von Aufgaben zu erfüllen. Sie werden mit riesigen Datenmengen trainiert und sind entsprechend vielseitig einsetzbar. Das bekannteste Beispiel sind große Sprachmodelle (Large Language Models, LLM), etwa das generative Sprachmodell GPT-4o, das in ChatGPT integriert ist. Für GPAI-Modelle, die bereits vor dem 2. August 2025 in der Europäischen Union auf dem Markt waren, gilt eine Übergangsfirst bis zum 2. August 2027.
Aufsicht und Governance
Die KI-Verordnung schafft einen Rahmen mit Durchführungs- und Durchsetzungsbefugnissen auf zwei Ebenen.
Auf nationaler Ebene muss jeder EU-Mitgliedstaat bis zum 2. August 2025 mindestens eine Marktüberwachungsbehörde sowie eine notifizierende Behörde benennen. Erstere ist für die Überwachung von KI-Systemen zuständig, letztere für die Notifizierung unabhängiger Konformitätsbewertungsstellen. Die Mitgliedstaaten müssen bis dem Stichtag Informationen zu den nationalen Behörden und deren Kontaktdaten veröffentlichen.
Auf EU-Ebene koordinieren das Europäische Amt für KI und der Europäische KI-Ausschuss die Aufsicht. Zusätzlich werden ein Beratungsforum und ein wissenschaftlicher Ausschuss aus unabhängigen Experten eingerichtet.
Was bedeutet das für Personalabteilungen und Arbeitnehmende?
Das KI-Gesetz hat direkte Auswirkungen darauf, wie KI in den Bereichen Rekrutierung, Performance-Management, Personalanalyse und Mitarbeitenden-Monitoring eingesetzt wird. Personalverantwortliche müssen sicherstellen, dass KI-Tools in diesen Bereichen transparent, fair und konform sind.
- Fairness und Antidiskriminierung: KI-Systeme, die bei Einstellungs- oder Beförderungsentscheidungen eingesetzt werden, müssen nachvollziehbar und frei von Bias sein. Personalabteilungen sollten ihre Tools und Anbieter*innen regelmäßig überprüfen, um die Einhaltung der Vorschriften sicherzustellen.
- Vertrauen und Transparenz: Mitarbeitende erhalten einen besseren Einblick, wie KI-Systeme ihre Arbeit beeinflussen, zum Beispiel bei der Einsatzplanung, Leistungsbewertung oder bei der Arbeitssicherheit. Personalabteilung können Vertrauen schaffen, indem sie offen kommunizieren, wie KI eingesetzt wird und wie die Daten der Mitarbeitenden geschützt werden.
- Verantwortlichkeit von Drittanbieter*innen: Werden KI-Tools von Drittanbieter*innen genutzt, müssen Personalabteilungen sicherstellen, dass diese Anbieter*innen die Anforderungen an Transparenz und Dokumentation erfüllen. Verträge und Beschaffungsprozesse sollten entsprechend angepasst werden.
- Training und Change Management: Mit stärkeren Regulierungen von KI wird die Personalabteilung eine Schlüsselrolle bei der Schulung von Führungskräften und Mitarbeitenden übernehmen. Ziel ist es, einen verantwortungsvollen Umgang mit KI zu fördern und ethische Standards in der Unternehmenskultur zu verankern.
Fazit
Anbieter*innen von GPAI-Modellen, die bereits vor dem 2. August 2025 auf dem Markt waren, haben bis zum 2. August 2027 Zeit, die neuen Vorschriften vollständig umzusetzen. Weitere Verpflichtungen für KI-Systeme mit hohem Risiko werden 2026 und 2027 folgen. Dieser Meilenstein spiegelt das Bestreben der EU wider, Innovationen zu fördern und gleichzeitig sicherzustellen, dass KI sicher, transparent und mit den europäischen Werten im Einklang steht. Damit rückt die Personalabteilung in den Mittelpunkt einer verantwortungsvollen Einführung von KI am Arbeitsplatz.
Der Autor Tom Saeys ist Chief Operations Officer bei SD Worx, einem international tätigen Dienstleistungsunternehmen im HR-Bereich.
EU AI Act: Status quo
Recht für Gründer*innen: der EU AI Act. Wo stehen wir in Sachen Umsetzung? Was Gründer*innen und Start-ups jetzt wissen müssen.
Künstliche Intelligenz (KI) ist längst kein Zukunftsthema mehr, sondern prägt schon heute Geschäftsmodelle, Investitionsentscheidungen und die Arbeitswelt. Mit der europäischen KI-Verordnung (EU AI Act, im Folgenden AI Act) wurde im Frühjahr 2024 der weltweit erste umfassende Rechtsrahmen für den Einsatz von KI verabschiedet. Inzwischen sind die ersten Regelungen in Kraft getreten. Für Gründer*innen und Start-ups bedeutet das nicht nur zusätzliche Pflichten, sondern auch Chancen, sofern sie sich rechtzeitig vorbereiten.
Überblick: Der AI Act
Die Verordnung folgt einem risikobasierten Ansatz: Je höher das Risiko für Grundrechte oder Sicherheit, desto strenger die Anforderungen. Auf der untersten Stufe stehen KI-Systeme, die keinerlei Vorgaben erfüllen müssen, solange sie nicht in verbotene Anwendungsfälle fallen. An der Spitze der Regulierungspyramide befinden sich die sogenannten HochrisikoSysteme, also etwa Anwendungen in der medizinischen Diagnostik, in kritischer Infrastruktur oder bei biometrischen Verfahren. Viele Tools aus dem HR-Bereich fallen darunter.
Daneben bestehen besondere Pflichten für sogenannte Generative KI beziehungsweise General Purpose AI, eingeführt, also große Modelle, die viele Anwendungen treiben und „systemische Risiken“ entfalten können.
Wichtig ist zu wissen, dass die Vorgaben schrittweise gelten. Bereits seit dem 2. Februar 2025 sind bestimmte Praktiken ausdrücklich verboten – zum Beispiel das Social Scoring von Bürger*innen, die flächendeckende Emotionserkennung in Schulen oder am Arbeitsplatz sowie das unkontrollierte Sammeln biometrischer Daten. Wer damit noch experimentiert, bewegt sich schon jetzt im rechtswidrigen Raum.
Seit dem 2. August 2025 gelten außerdem die ersten Pflichten für Anbieter*innen von generativen Modellen. Sie müssen unter anderem Transparenzberichte veröffentlichen und Angaben zu den verwendeten Trainingsdaten machen. Für Modelle, die bereits vor Inkrafttreten am Markt waren, gibt es eine Übergangsfrist bis 2027. Für viele Unternehmen, die solche Modelle nutzen oder in Produkte einbetten, bedeutet das, genau hinzuschauen, welche Informationen von den Modellanbieter*innen zur Verfügung gestellt werden. Sonst können eigene Transparenzpflichten womöglich nicht erfüllt werden.
Noch weiter in der Zukunft liegen die Vorschriften für Hochrisiko-Systeme. Diese greifen ab 2. August 2026 und verlangen ein umfassendes Risikomanagement, eine strenge Qualität der Trainingsdaten, eine lückenlose Protokollierung und eine Konformitätsbewertung, bevor ein Produkt überhaupt in Verkehr gebracht werden darf. Für Hochrisiko-KI, die in ohnehin streng regulierten Produkten steckt, zum Beispiel in Medizinprodukten, gilt eine verlängerte Frist bis 2027.
Konformitätsbewertung heißt vor allem Risikobewertung, welche die Anbieter*innen oder Betreiber*innen selbst durchführen müssen. Eine solche „regulierte Selbstregulierung“ ist ein klassisches Merkmal einer solchen klassischen Produktregulierung und Marktüberwachung.
Was fehlt? Guidance und Governance
Noch herrscht allerdings an vielen Stellen Unsicherheit. Zwar hat die EU-Kommission schon erste Leitlinien veröffentlicht, etwa zur Definition von KI-Systemen oder zu den verbotenen Praktiken. Auch für Anbieter*innen generativer KI gibt es inzwischen ein detailliertes Dokumentationsmuster. Noch fehlen allerdings die angekündigten Handreichungen für die Einstufung und Risikobewertung von Hochrisiko-Systemen, die bis Februar 2026 folgen und praktische Beispiele enthalten sollen. Bis dahin bleibt nur, sich für die Bewertung an bestehenden internationalen Standards zu orientieren, zum Beispiel an den Normungsprojekten der Europäischen Komitees für Normung und für elektrotechnische Normung.
Auf Unionsebene entstehen parallel die neuen Governance-Strukturen. Das AI Office innerhalb der Kommission ist bereits aktiv und koordiniert die Umsetzung. Das AI Board, ein Gremium der Mitgliedstaaten, tagt regelmäßig und stimmt Vorgehensweisen ab. Ein wissenschaftliches Panel unabhängiger Expert*innen wurde im Frühjahr eingerichtet, und das Advisory Forum, das die Perspektive von Unternehmen und Zivilgesellschaft einbringen soll, befindet sich gerade in der Bewerbungsphase. Auch die geplante EU-Datenbank für Hochrisiko-Systeme existiert bisher nur auf dem Papier. Ab 2026 müssen Anbieter*innen ihre Systeme dort registrieren; die Plattform selbst wird jedoch gerade erst aufgebaut.
Und wo steht Deutschland?
Auch hierzulande hakt es noch etwas. Eigentlich hätten die Mitgliedstaaten bis 2. August 2025 ihre Marktüberwachungsbehörden benennen müssen. Ein Entwurf für das deutsche Umsetzungsgesetz sieht die Bundesnetzagentur als zentrale Aufsicht vor, doch die formale Benennung ist noch nicht erfolgt. Klar ist, dass die Bundesnetzagentur die Rolle der Notifizierungsbehörde übernimmt, also für die Anerkennung von Konformitätsbewertungsstellen zuständig ist. Zudem entsteht dort ein Kompetenzzentrum für KI, das die Arbeit von Bund und Ländern koordinieren soll.
Reallabore
Ein Bereich, der für KI-Entwickler*innen besonders interessant ist, sind KI-Reallabore, also sichere Testumgebungen, in denen neue Anwendungen unter Aufsicht erprobt und darauf geprüft werden können, ob sie den rechtlichen Rahmen einhalten. Bis zum Sommer 2026 müssen die Mitgliedstaaten mindestens ein solches Reallabor einrichten. Deutschland hat im Mai 2025 ein erstes Pilotprojekt in Hessen gestartet, gemeinsam mit der Bundesnetzagentur und der Bundesdatenschutzbeauftragten. Hier werden reale Unternehmensfälle durchgespielt, um Abläufe und Bedarfe besser zu verstehen. Solche Projekte können eine wertvolle Möglichkeit sein, mit den Aufsichtsbehörden auf Augenhöhe ins Gespräch zu kommen.
Reaktionen
Der AI Act wird zwar kritisch diskutiert, im Grundsatz aber breit akzeptiert. Gerichtliche Klagen direkt gegen die Verordnung gibt es bislang nicht. In der juristischen Literatur überwiegt die Zustimmung zur Zielrichtung. Kritisiert werden vor allem die Komplexität und die noch offenen Fragen bei der praktischen Umsetzung. Streitpunkte finden sich eher außerhalb der Verordnung bei der Frage, ob Trainingsdaten urheberrechtlich geschützt sind oder wie personenbezogene Daten für KI genutzt werden dürfen.
Die Industrie zeigt ein gemischtes Bild. Viele große Anbieter*innen – von Google über OpenAI bis Mistral – haben einen freiwilligen Verhaltenskodex unterzeichnet. Andere, wie etwa Meta, haben sich bewusst dagegen entschieden. Man muss sich also darauf einstellen, dass je nach Anbieter*in sehr unterschiedliche Informationen und Compliance-Nachweise verfügbar sind.
Andererseits wirkt der AI Act bereits am Markt. In öffentlichen Ausschreibungen tauchen Modellklauseln auf, die auf die KI-Verordnung Bezug nehmen. Investor*innen fragen verstärkt nach Compliance-Prozessen, und Unternehmen beginnen, interne Strukturen für Risikomanagement und Dokumentation aufzubauen.
Im Vergleich zu Europa gibt es in den USA bislang nur freiwillige Standards. Die dort bei der Entwicklung und Anwendung von KI (angeblich) vorherrschende größere Freiheit wird zwar viel gerühmt. Einzelne Bundesstaaten wie Colorado arbeiten allerdings an eigenen regulierenden Gesetzen, die ab 2026 greifen sollen. Vielleicht ist es also ein Vorteil, dass europäische Start-ups früh Erfahrungen in einem regulierten Markt sammeln können.
Fazit
Der AI Act entfaltet bereits jetzt Wirkung, auch wenn viele Details erst in den kommenden Monaten geklärt werden. Daher gilt es, nicht abzuwarten, sondern jetzt eine eigene Roadmap zu entwickeln. Wer früh Prozesse für Risikomanagement, Transparenz und Governance etabliert, wird nicht nur rechtlich auf der sicheren Seite sein, sondern auch Vertrauen bei Kund*innen und Investor*innen gewinnen.
Die EU hat ein klares Signal gesetzt: KI soll innovativ sein, aber auch sicher und vertrauenswürdig. Für Start-ups ist das eine Herausforderung – aber auch eine Chance, sich von Anfang an professionell aufzustellen und den Markt aktiv mitzugestalten.
Der Autor Dr. Daniel Michel, LL.M. ist als Rechtsanwalt im Bereich IT/IP/Technologie tätig und betreibt seit 2018 mit DATA LAW COUNSEL seine eigene Rechtsberatung im Raum München
Warum KI bei Förderanträgen versagt
Fünf Gründe, warum Unternehmen auf menschliche Intelligenz setzen sollten.
Ob steuerliche Forschungszulage, Investitionsförderung oder EU-Programme. Künstliche Intelligenz (KI) wie ChatGPT liefert in Sekundenschnelle eine Vielzahl möglicher Förderprogramme. Doch zwischen der reinen Information und der tatsächlichen Erschließung von Fördermitteln liegt ein erheblicher Unterschied. Hier gilt es, Unternehmen zu sensibilisieren.
Fördermittel sind heute ein strategischer Bestandteil moderner Unternehmensfinanzierung. Es reicht daher nicht, die Programme zu kennen. Entscheidend ist, sie rechtssicher, vollständig und förderlogisch aufeinander abgestimmt umzusetzen, um die vollen Förderpotenziale zu heben. Genau hier beginnt die Arbeit von Fördermittelexpert*innen.
Fünf Gründe, warum KI-Tools nicht als Fördermittelberater funktionieren
1. KI erkennt die wahren Förderpotenziale nicht
ChatGPT kann erklären, was ein Förderprogramm leistet. Doch welche Kosten eines konkreten Vorhabens tatsächlich und wie hoch förderfähig sind, lässt sich so nicht beurteilen. Gerade bei komplexen Programmen wie der steuerlichen Forschungszulage sind Erfahrung, Struktur und rechtssichere Abgrenzung entscheidend. Eine gute Fördermittelberatung prüft jedes Vorhaben systematisch: von der Förderfähigkeit nach dem Forschungszulagengesetz (FZulG), AGVO oder De-minimis-Verordnung bis hin zur klaren Trennung förderfähiger und nicht förderfähiger Aufwände.
2. KI kann keine Förderstrategien entwickeln
Eine Liste von Förderprogrammen ersetzt keine Strategie. KI kann nur Optionen nennen, aber keine Strategien zur Umsetzung im Unternehmen entwickeln. Eine gute Fördermittelberatung integriert die Forschungszulage sinnvoll in laufende Projekte und strukturiert Innovations- sowie Investitionsprozesse auf Bundes-, Landes- und EU-Ebene. So entstehen nicht nur Optionen, sondern belastbare, wirtschaftlich wirksame Lösungen.
3. KI kann nicht mit Menschen kommunizieren
Ein Antrag ist mehr als ein Formular. Er muss Anforderungen erfüllen und überzeugen. KI liefert Textbausteine, aber führt keine Gespräche und reagiert nicht auf Rückfragen mit der notwendigen Erfahrung in der Verwaltungspraxis der verschiedenen Förderprogramme. Eine gute Fördermittelberatung übernimmt die gesamte Kommunikation mit Förderstellen, koordiniert mit Bescheinigungsstellen und entwickelt formal korrekte und überzeugende Argumentationen.
4. KI endet beim Prompt – Fördermittelberatung bei der erfolgreichen Projektprüfung
Nach dem Antrag geht die Arbeit oft erst richtig los. Rückfragen, Prüfungen, Nachweise. KI kann Unternehmen dabei nicht unterstützen und keine Verantwortung übernehmen. Eine gute Fördermittelberatung hingegen begleitet die Kund*innen durch den gesamten Förderzyklus mit sauberer Dokumentation, revisionssicherer Aufbereitung und Unterstützung bei Audits und Außenprüfungen.
5. KI zeigt nur den Dschungel – Förderexperten finden den Schatz
Datenbanken geben einen Überblick, aber keine Richtung. Eine gute Fördermittelberatung bewertet alle denkbar möglichen Förderprogramme im konkreten Unternehmenskontext und entwickelt daraus konkrete Maßnahmen, um das Maximum an Fördermöglichkeiten für die Kund*innen rauszuholen. Eine gute Fördermittelberatung schafft so echte wirtschaftliche Vorteile statt der bloßen Auflistung von Fördermöglichkeiten.
Der Autor Efe Duran Sarikaya ist CEO der Fördermittelberatung EPSA Deutschland.
Kurz mal die Welt retten
Wie GreenTech-Start-ups aus dem DACH-Raum dazu beitragen, die Auswirkungen des Klimawandels zu mildern.
Ist es bereits zu spät, den Klimawandel aufzuhalten? Während diese Frage unablässig für hitzige Debatten sorgt, arbeiten Start-ups unermüdlich an Lösungen für die dringendsten Umweltprobleme. Die DACH-Region erlebt einen rasanten Anstieg von GreenTech-Start-ups, angetrieben durch technologische Innovationen und zunehmenden regulatorischen Druck. Dies zeigt u.a. das DACH GreenTech Software Mapping 2025 von Hi Inov und veranschaulicht, welche vielversprechenden Ansätze und Technologien die Zukunft des GreenTech-Ökosystems in Europa prägen.
Mapping der Herausforderungen und Lösungen
Das Mapping bietet einen umfassenden Überblick über die Softwarelösungen von GreenTech-Start-ups im DACH-Raum. Sie umfassen eine Vielzahl von Ansätzen, um den Anstieg der globalen Temperaturen einzudämmen und die damit einhergehenden wirtschaftlichen und gesellschaftlichen Herausforderungen zu bewältigen.
1. Messung und Optimierung des CO2-Fußabdrucks
Fortgeschrittene Techniken zur Datenerfassung und KI-gesteuerte Analysen helfen Organisationen, ihre Effizienz zu steigern und ihren CO₂-Fußabdruck zu reduzieren. Sie helfen Unternehmen, jährlich Emissionen von über 216.000 Tonnen CO₂-Äquivalenten zu vermeiden. Horizontale Plattformen bieten allgemeine Monitoring-Tools für branchenübergreifende Messdienste. Vertikale Lösungen wie die für die Immobilienbranche maßgeschneiderte ESG-Datenplattform Deepki integrieren branchenspezifische Anforderungen.
2. Beschleunigung der Energiewende
Softwarelösungen spielen eine entscheidende Rolle bei der Optimierung der Standortauswahl für die Produktion erneuerbarer Energien, der vorausschauenden Wartung von Infrastruktur und der Verbesserung der Energiespeicherung. Sie können die Schwankungen in der Stromeinspeisung erneuerbarer Energien mindern und somit die Abhängigkeit von fossilen Brennstoffen reduzieren. Das Stuttgarter Start-up metergrid ermöglicht es beispielsweise Mieter*innen in Mehrfamilienhäusern, umweltfreundlichen Solarstrom zu nutzen, der im selben Gebäude produziert wird (mehr dazu in der StartingUp 01/25).
3. Förderung der Kreislaufwirtschaft und Ressourcenoptimierung
Digitale Lösungen erleichtern die Schonung von natürlichen Ressourcen durch intelligentes Ressourcenmanagement, indem sie die Planung und Nutzung von Ressourcen verbessern. Durch den Einsatz von KI lassen sich viele Prozesse optimieren, darunter Recycling, Landwirtschaft und Wassermanagement. So reduziert das Berliner Start-up Freshflow Abfall, indem es die Nachbestellung von frischen Lebensmitteln mit Machine Learning automatisiert und optimiert. Darüber hinaus verbinden digitale Marktplätze Produzent*innen überschüssiger Ware mit potenziellen Abnehmer*innen, um Ressourcen effizierter zu nutzen.
4. Förderung von Nachhaltigkeitsinitiativen in Unternehmen
Unternehmen nutzen digitale Werkzeuge, um ihre Nachhaltigkeit über die regulatorischen Anforderungen hinaus zu verbessern. Zu den eingesetzten Lösungen zählen CO₂-Kreditbörsen, die es Organisationen ermöglichen, Emissionen durch strukturierte Märkte auszugleichen, und Mitarbeiterengagement-Plattformen, die die Teilnahme der Belegschaft an ESG-Initiativen fördern. Start-ups wie das Hamburger CarbonStack unterstützen Unternehmen bei der Erstellung von Nachhaltigkeitsberichten und dabei die relevanten Richtlinien einzuhalten.
Die Entwicklung von 2023 bis heute
Insgesamt zeigt das Mapping ein reiferes und strukturierteres GreenTech-Ökosystem, das Europas Position als Pionier in digitalen Klimaschutzlösungen stärkt. Die Entwicklung zwischen den Mappings aus den Jahren 2023 und 2025 verdeutlicht drei wichtige Trends:
1. Anstieg der Anzahl der angebotenen Softwarelösungen
Die steigende Nachfrage nach nachhaltigkeitsorientierten Innovationen in verschiedenen Branchen hat das Wachstum des GreenTech-Ökosystems beschleunigt und zu einem rasanten Anstieg der angebotenen Softwarelösungen geführt.
2. Regulatorisch getriebene Fortschritte
Aufgrund des zunehmenden regulatorischen Drucks wächst der Anteil der angebotenen Lösungen, die auf Compliance-Bedürfnisse wie CSRD, die Rückverfolgbarkeit von Produkten und transparente CO₂-Buchhaltung eingehen. Es werden zunehmend vertikalisierte Monitoring-Tools entwickelt, um spezialisierte Datensätze und branchenspezifische Algorithmen zu erstellen.
3. Einfluss von generativer KI
Der Einsatz von generativer KI nimmt zu. Neue Anwendungsfälle im Bereich Nachhaltigkeit umfassen verbesserte Datenanalyse, automatisierte Compliance-Berichterstattung, sowie die Echtzeit-Optimierung von CO₂-Fußabdrücken und Ressourcenmanagement.
Fazit: Ein florierendes Ökosystem mit starker europäischer Führung
Der Klimawandel stellt eine immense Herausforderung dar, deren Bewältigung innovative technologische Lösungen erfordert. Das GreenTech Mapping 2025 verdeutlicht die führende Rolle Europas bei der Entwicklung dieser Lösungen und zeigt ein reiferes GreenTech-Ökosystem mit großer Dynamik. Durch den Einsatz fortschrittlicher Datenanalysen, KI und Automatisierung sind Start-ups in der DACHRegion gut positioniert, um sowohl wirtschaftlichen als auch ökologischen Mehrwert zu schaffen. Sie werden Unternehmen und politischen Entscheidungsträger*innen dabei helfen, den Übergang zu einer nachhaltigeren Wirtschaft zu beschleunigen und die Folgen des Klimawandels einzudämmen.
Der Autor Dr. Wolfgang Krause leitet als Managing Partner das Deutschlandgeschäft des auf B2B-Digitallösungen spezialisierten VC-Fonds von Hi Inov.
„Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing“
Mit planqc verfolgt Dr. Alexander Glätzle die Mission, hochskalierbare Quantencomputer für wirtschaftliche Anwendungen zu bauen. Warum das Unternehmen dabei auf Standorte wie München und Innsbruck setzt und welche Rolle Österreichs Talentpool spielt, verrät er im Interview.
Dr. Alexander Glätzle ist Quantenphysiker und Mitgründer von planqc. Er studierte und promovierte an der Universität Innsbruck, forschte an renommierten Instituten wie Oxford, Harvard sowie in Singapur und war als Unternehmensberater tätig. 2022 gründete er planqc als Ausgründung aus dem Max-Planck-Institut in München.
Herr Dr. Glätzle, wie entstand die Unternehmensidee und welche Meilensteine haben Sie mit planqc bisher erreicht?
Die Idee zu planqc ist bereits während meines Studiums an der Universität Innsbruck entstanden. Dort habe ich intensiv im Bereich Quantentechnologie geforscht und das enorme Potenzial erkannt, aus diesen Erkenntnissen ein Start-up zu gründen. Bis zur Gründung hat es allerdings noch einige Jahre gedauert – nicht zuletzt, weil die technologische Entwicklung im Labor ebenfalls voranschreiten musste. 2022 sind wir dann als Ausgründung aus dem Max-Planck-Institut offiziell gestartet. Zu den wichtigsten Meilensteinen zählen zwei große öffentlich geförderte Projekte: Für das Deutsche Zentrum für Luft- und Raumfahrt bauen wir einen Quantencomputer mit einem Volumen von 30 Mio. EUR, ein weiteres Projekt mit dem Leibniz-Rechenzentrum umfasst 20 Mio. EUR, beide mit Abschluss bis Ende 2026 bzw. 2027. Dann werden an diesen beiden Standorten voll funktionsfähige Quantencomputer von planqc installiert sein.
Sie haben bereits Venture Capital mit an Bord. Wer zählt zu Ihren Investoren?
Gestartet sind wir 2022 mit einer Seed-Runde, an der unter anderem UVC Partners, Speedinvest und Apex Ventures beteiligt waren – also bereits starke Partner auch aus Österreich. Diese Basis konnten wir in der Series-A im letzten Jahr weiter ausbauen. Die CATRON Holding, ein Wiener Family Office, ist als Lead-Investor eingestiegen. Dazu kamen weitere Partner wie der DeepTech & Climate Fonds sowie Bayern Kapital. Besonders erfreulich ist, dass auch unsere Bestandsinvestoren erneut signifikant investiert haben. Damit verfügen wir über eine starke, rein mitteleuropäische, deutsch-österreichische Investorenbasis – was in unserem Sektor tatsächlich selten ist.
Ihr Headquarter befindet sich in der Nähe von München. Was hat Sie dazu bewegt, zusätzlich einen Standort in Innsbruck zu eröffnen?
Ursprünglich haben wir planqc in München gegründet – als Ausgründung aus dem Max-Planck-Institut. Doch bereits innerhalb eines Jahres haben wir ein zweites Büro in Innsbruck eröffnet. Der Grund liegt auf der Hand: Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing. Mit renommierten Instituten wie dem Institut für Quantenoptik und Quanteninformation (IQOQI) und Persönlichkeiten wie Peter Zoller und Rainer Blatt gibt es dort eine kritische Masse an international anerkannten Wissenschaftlern. Zudem ist es in der Praxis oft schwierig, hochqualifizierte Talente aus der Region nach München zu bringen. Deshalb haben wir entschieden, ihnen vor Ort ein attraktives Arbeitsumfeld zu bieten – mit einem eigenen Standort in Innsbruck.
Welche Vorteile bietet der Standort Österreich speziell für Unternehmen im Bereich Quantencomputing?
Österreich hat eine lange und starke Tradition in der Quantenphysik. Universitäten wie Innsbruck und Wien, das IQOQI und eine ganze Generation exzellenter Wissenschaftler prägen diese Landschaft. Viele bahnbrechende theoretische und experimentelle Arbeiten wurden hier in den vergangenen Jahren geleistet. Gerade für junge Start-ups bietet das Land enorme Vorteile: Der Talentpool ist außergewöhnlich – mit hervorragend ausgebildeten, dynamischen Fachkräften. Darüber hinaus ist die Nähe zu sogenannten „Industry First Movern“ gegeben, was den Standort besonders spannend macht. Und nicht zuletzt hat Österreich eine historische Verbindung zur Physik – Namen wie Schrödinger, Pauli oder Hess stehen sinnbildlich für diese wissenschaftliche Tiefe.
Welche Unterstützung erhielten Sie bei der Ansiedlung durch die Austrian Business Agency?
Die Austrian Business Agency sowie die Standortagentur Tirol haben uns außerordentlich engagiert unterstützt – sei es bei der Suche nach Büroflächen, bei der Eröffnung des ersten Bankkontos oder in bürokratischen Fragen. Sie standen uns nicht nur beratend zur Seite, sondern haben uns tatkräftig geholfen, Hürden aus dem Weg zu räumen. Genau so stelle ich mir die Zusammenarbeit mit einer lokalen Agentur vor: nah dran, lösungsorientiert und mit exzellentem Netzwerk. Wir hatten wirklich großes Glück mit der Unterstützung vor Ort.
Sie selbst sind in Österreich geboren, haben in Innsbruck promoviert und weltweit Forschungsaufenthalte absolviert – bevor Sie als Unternehmensberater und Gründer nach München gingen. Mit welchen Qualitäten punktet Österreich allgemein, auch als Arbeits- und Wohnort?
Ich habe viele Jahre im Ausland gelebt und gearbeitet – in Oxford, Singapur und Deutschland. Was Innsbruck und Tirol für mich besonders macht, ist die Kombination aus wissenschaftlicher Exzellenz und hoher Lebensqualität. Die Stadt liegt inmitten der Alpen, bietet eine hervorragende Infrastruktur und ein ausgewogenes Verhältnis zwischen Studierenden und Einwohnern. Das schafft ein inspirierendes Umfeld – zum Leben, Forschen und Arbeiten gleichermaßen.
Dr. Alexander Glätzle, vielen Dank für das Gespräch.
Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin
“Digitalisierung ist kein Nice-to-have mehr, sondern strukturelle Voraussetzung für Wettbewerbsfähigkeit”
„Made in Steel. Built on Data.“ Mit diesem Leitsatz positioniert sich die EMR Dynamics GmbH als strategische Antwort auf die zunehmende Komplexität globaler Lieferketten – und auf die wachsenden Anforderungen an Geschwindigkeit, Transparenz und Resilienz in industriellen Wertschöpfungsnetzwerken.
Unter der Leitung von Emrullah Görsoy geht EMR Dynamics aus einem Berliner Familienunternehmen hervor, das seit 2005 als verlässlicher Partner für mechanische Komponenten in Europa etabliert ist. Nun markiert das Unternehmen den nächsten Entwicklungssprung der Unternehmensgeschichte: von der Fertigung zur Plattform.
Fragen dazu an Emrullah Görsoy, Managing Director at EMR:
Seit mehr als 20 Jahren seid ihr mit EMR am Markt. Man könnte sagen, ihr macht vieles richtig – Wie lautet euer Erfolgsrezept?
Unser Erfolgsrezept liegt in der konsequenten Weiterentwicklung. Wir haben uns nie auf bestehenden Strukturen ausgeruht, sondern das Unternehmen immer wieder neu gedacht – operativ, strategisch und technologisch. Besonders in Zeiten des Wandels war unser pragmatischer Unternehmergeist entscheidend. Dabei kombinieren wir mittelständische Robustheit mit einer agilen Denkweise – anpassungsfähig, resilient und wachstumsorientiert.
Zeitnah startet ihr mit eurer Neugründung EMR Dynamics am Markt. Was steckt dahinter?
EMR Dynamics ist unsere Antwort auf ein fragmentiertes Marktumfeld und wachsende Anforderungen an Geschwindigkeit, Transparenz und Resilienz in industriellen Lieferketten. Wir verbinden vertikal integrierte Fertigungskompetenz mit einer digitalen Prozessarchitektur – eine B2B-Plattform für die intelligente Steuerung und Vermittlung industrieller Produktions- und Beschaffungsprozesse. Das Ziel: maximale Skalierbarkeit, reduzierte Time-to-Market und durchgängige Prozesssicherheit für unsere Kunden.
Damit schlagen wir die Brücke zwischen Mittelstand und digitaler Ökonomie – resilient, effizient und kundennah. Wir wollen EMR Dynamics als Plattformmarke im industriellen Mittelstand etablieren – mit eigener Fertigung, digitalem Backbone und strategischer Nähe zum Kunden.
An wen richtet sich euer Angebot?
Unsere Zielgruppen sind OEMs, Tier-1-Zulieferer und Systempartner aus hoch regulierten und qualitätskritischen Industrien – etwa Rail, Aerospace, Defense oder Industrial Tech. Wir liefern nicht nur Komponenten, sondern vernetzen Prozesse, sichern Supply Chains ab und schaffen Plattformlösungen für beschleunigte Wertschöpfung – alles aus einer Hand.
Wie unterscheidet sich euer Angebot von klassischen Fertigungsdienstleistern?
Wir sind kein reiner Teilelieferant. Wir verstehen uns als Lösungsanbieter entlang der industriellen Wertschöpfung – von Co-Engineering und Prototyping über skalierbare Serienfertigung bis hin zur integrierten Lieferkette. Durch die Plattformlogik können wir unsere Prozesse mit denen unserer Kunden synchronisieren und so Time-to-Market und Lieferperformance signifikant verbessern – gerade für komplexe und hochqualifizierte Baugruppen.
Seit mehreren Jahren bist du Geschäftsführer des Unternehmens EMR Industrial. Wie fühlt es sich an, als Young Professional bereits in einer solchen verantwortungsvollen Rolle zu sein?
Herausfordernd, aber erfüllend. Ich hatte das Privileg, früh Verantwortung zu übernehmen – besonders während der Transformation von EMR in der Pandemie. Die Krise 2020 hat uns gezwungen, unser gesamtes Geschäftsmodell zu pivotieren. Diese Erfahrung hat mich geprägt: Strategisch zu denken, unternehmerisch zu handeln und nie den Kontakt zur operativen Realität zu verlieren.
Welche Bedeutung hat die Digitalisierung aus deiner Sicht für den Mittelstand und was können sich Mittelständler von Start-ups abschauen?
Digitalisierung ist kein Nice-to-have mehr, sondern strukturelle Voraussetzung für Wettbewerbsfähigkeit. Der Mittelstand kann von Start-ups besonders eines lernen: den Mut, Prozesse radikal neu zu denken – und den Fokus auf Geschwindigkeit, Automatisierung und User Experience.
Emrullah Görsoy, Danke für die Insights
ARX Robotics: Tech for Defense
Wie die ARX-Robotics-Gründer Maximilian Wied, Marc A. Wietfeld und Stefan Röbel Europas führendes DefTech-Start-up für unbemannte autonome Landsysteme gebaut haben.
Ein Start-up aus München denkt Europas Sicherheit neu – mit modularen Robotern, digitalen Aufklärungssystemen und einem iterativen Entwicklungsansatz, der hinsichtlich Flexibilität und Geschwindigkeit in der Branche neue Maßstäbe setzt. „Wir nutzen das transformative Potenzial von Robotik und KI, um die Leistungsfähigkeit der europäischen Landstreitkräfte zu stärken“, sagt Marc A. Wietfeld, Mitgründer und CEO von ARX Robotics in München. „Mit unserem Betriebssystem Mithra OS ermöglichen wir fernoperierbare, kettenbetriebene Landfahrzeuge sowie die Digitalisierung bestehender Flotten.“
Die Roboter entstehen auf einer einheitlichen technologischen Plattform mit flexiblem, modularem Aufbau. Sie lassen sich einfach anpassen und aufrüsten, was das Einsatzspektrum enorm erweitert. „Unsere Plattform ist wie das Schweizer Taschenmesser für Militäreinsätze“, so der Gründer. Neben der Hardware und dem KI-gestützten Betriebssystem liefert das Start-up auch Schnittstellen, um bestehende analoge Rüstungstechnologie und softwaregetriebene Systeme zu integrieren.
Drei Offiziere nehmen die Entwicklung selbst in die Hand
Gegründet wurde ARX Robotics von drei ehemaligen Bundeswehroffizieren. Marcs Weg begann mit einer Schlosserlehre, bevor er 2010 für den Wehrdienst eingezogen wurde. Damals konnte er kaum glauben, wie veraltet die Technologie der Truppe war. „Eine Playstation hatte bessere Software als viele Waffensysteme, und Drohnen aus dem Elektrofachmarkt waren leistungsfähiger als die im Kampfeinsatz.“ Während Marc in New York ein militärisches Programm absolvierte, lernte er Maximilian (Max) Wied kennen, der zu dieser Zeit an der Militärakademie West Point studierte. Beide hatten den Innovationsstau jahrelang erlebt und durch ihre Zeit in der Kampftruppe die Realität von Häuser-, Wald- und Grabenkämpfen hautnah kennengelernt.
In Robotik und Automatisierung sahen sie enormes ungenutztes Potenzial, um Soldat*innen zu schützen und Einsätze effizienter zu gestalten. „Am Anfang ging es uns gar nicht darum, Roboter zu bauen“, so Marc, „sondern darum, wie wir neue Technologie schneller in die Hand der Soldatinnen und Soldaten bekommen.“ Rund zwei Jahre arbeiteten sie am Konzept und an der Umsetzung. Die ersten Prototypen entstanden in Eigenregie, finanziert aus privaten Mitteln.
Stefan Röbel stieß dazu, als klar wurde, dass aus dem Projekt ein Unternehmen werden sollte. Neben dem militärischen Hintergrund bringt er Erfahrung im Aufbau und in der Skalierung von Start-ups mit. Zuvor war Stefan bereits bei Tech-Unternehmen an Bord, darunter Amazon, ASOS und Grover, wo er den Weg von der Series-A-Finanzierung bis zum Unicorn begleitete.
Als die Ersparnisse aufgebraucht waren, erhielt das Gründungsteam Unterstützung vom Innovation Hub der Bundeswehr und der Universität der Bundeswehr in München. Ende 2022 gründeten die drei schließlich ihr Unternehmen.
Die Brücke zur vernetzten Zukunft des Militärs
ARX Robotics füllt eine kritische Lücke in der militärischen Technologielandschaft, zwischen der analogen Vergangenheit und der softwaregesteuerten Zukunft. Viele bestehende Systeme wie etwa Panzer, Transportfahrzeuge und Helikopter operieren noch weitgehend analog und damit isoliert voneinander. Doch bewaffnete Konflikte werden heute vernetzt, KI-gestützt und mithilfe unbemannter Systeme entschieden. Die militärische Ausrüstung ist in vielen Ländern Europas noch nicht auf der Höhe der Zeit. „Mit unseren Lösungen bauen wir die Brücke zwischen den beiden Welten“, sagt Marc.
ARX Robotics überträgt die moderne technologische Architektur auf bestehende Militärfahrzeuge. Die analogen Bestandssysteme werden damit robotisiert, sodass sie mit modernen Drohnen und digitalen Einheiten zusammenarbeiten können – ein entscheidender Faktor für die Digitalisierung der Landstreitkräfte und Interoperabilität. „Früher war das Militär die Technologieschmiede der Gesellschaft, doch in den 1980er-Jahren hat die zivile Forschung die Streitkräfte überholt, auch bei den sicherheitsrelevanten Anwendungen“, so Marc.
Die etablierte Verteidigungsindustrie hat sich unterdessen auf immer komplexere und schwerfällige Großsysteme konzentriert. Bei einem größeren militärischen Entwicklungsprojekt ist in der Regel der gesamte militärische Apparat involviert, mit Planungs- und Beschaffungsämtern, langen Prozessen und seitenlangen Anforderungskatalogen. Erhält ein Ausrüster den Zuschlag, bekommt dieser Steuergelder, um einen Prototyp zu bauen „Die Entwicklung neuer Plattformen dauert dadurch oft ein Jahrzehnt, und die Produktion braucht weitere fünf Jahre“, sagt Marc. Schon bei der Indienststellung ist das Material zwangsläufig technologisch veraltet. ARX Robotics will den Prozess vom Kopf auf die Füße stellen. „Wir sind davon überzeugt, dass unsere Systeme den Soldatinnen und Soldaten im Einsatz sofort Mehrwert liefern“, so Marc. „Darum übertragen wir die neuen Technologien so schnell wie möglich ins Militär.“
Zurückhaltende Investor*innen und hohe Eintrittsbarrieren
Der Weg zur ersten externen Finanzierung war jedoch alles andere als einfach. „Kaum ein Risikokapitalgeber hat sich 2022 für DefenseTech und Hardware interessiert“, sagt Marc. Unter europäischen VCs dominierte das Dogma, dass nur Software skalierbar sei, idealerweise als SaaS-Modell. „Als Start-up mit einer physischen Technologie, noch dazu geführt von drei Soldaten ohne Gründungserfahrung, passten wir nicht ins Schema“, erinnert sich Marc.
Zudem war das Thema Verteidigung als Investment noch sehr negativ behaftet. VCs wollten nicht in Systeme investieren, die potenziell im Kampfeinsatz genutzt werden können. Sie sorgten sich um das öffentliche Bild und mögliche Bedenken institutioneller Geldgeber*innen. Mitte 2023 konnte ARX Robotics dann mit dem Risikokapitalgeber Project A Ventures als Lead Investor die Seed-Finanzierungsrunde schließen.
„Die anfänglich größte Hürde für uns war, nicht als Start-up, sondern als ernstzunehmender Anbieter wahrgenommen zu werden“, so Marc. Der Rüstungsmarkt ist stark konsolidiert und protektiv. Etablierte Player wie Rheinmetall, BAE Systems oder Krauss-Maffei Wegmann arbeiten seit Jahrzehnten fest mit ihren Kund*innen zusammen und bewegen sich in gewachsenen Strukturen. „Das Vertrauen der Streitkräfte zu gewinnen und die Beteiligung an einem großen Rüstungsprojekt zu erhalten, ist eine Schallmauer, die nur sehr wenige Start-ups durchbrechen“, sagt Marc.
Iterative Entwicklung und Tests im Feld
ARX Robotics punktet im Markt unter anderem mit dem radikal nutzer*innenzentrierten Entwicklungsansatz. Das Team setzt auf schnelle Iterationen mit voll funktionsfähigen Prototypen. Diese werden von Soldat*innen zeitnah getestet, häufig direkt in der Kampfzone. Das Feedback fließt sofort in die Weiterentwicklung ein, sodass in kürzester Zeit gebrauchsfertige Systeme entstehen. Der Fokus in der Entwicklung liegt stets auf der Software. „Das Betriebssystem ist der Kern unserer Lösungen, ob es am Ende einen Roboter oder einen Panzer steuert, ist zweitrangig“, sagt Marc.
Anders als der Wettbewerb setzt ARX Robotics auf offene Schnittstellen, modulare Komponenten und flexible Integration. Die großen Rüstungsfirmen mit ihren etablierten, geschützten Ökosystemen können dieses Modell nur schwer adaptieren. Stattdessen setzen sie auf Partnerschaften.
Mit Rheinmetall zum Beispiel arbeiten die Gründer derzeit an mehreren Projekten, und Daimler nutzt die ARX-Technologie, um die gesamte militärische Fahrzeugflotte zu digitalisieren. Um sicherzustellen, dass das Know-how und die Technologie in europäischer Hand bleiben, hat das Team frühzeitig den NATO Innovation Fund mit ins Boot geholt.

