KI-Tools: ChatGPT ist cool, aber hast du diese Tools schon ausprobiert?

Autor: Cigdem Elikci
44 likes

Im aktuellen Wettkampf um den Titel der beliebtesten KI-Lösung haben wir eine Liste von KI-Tools erstellt, die dir bei deiner Arbeit helfen können.

Vor mehr als sieben Monaten launchte OpenAI ChatGPT. Seitdem sind die Menschen überwältigt von den schier unendlichen Möglichkeiten, die künstliche Intelligenz (KI) bietet. Jeden Tag scheint eine neue Technologie oder ein neues Tool auf den Markt zu kommen, das noch schneller, besser und innovativer ist. Dem Wettlauf rund um die KI-Entwicklung haben sich bereits viele Großunternehmen angeschlossen. Jene, die noch nicht auf den KI-Zug aufgesprungen sind, haben mit sehr großer Wahrscheinlichkeit bereits ihre Chance verpasst.

Google Bard und Microsoft Bing haben sich bereits als KI-gesteuerte Suchmaschinen etabliert – auch wenn erstere in Europa noch nicht verfügbar ist. Dennoch dominiert OpenAI's ChatGPT den Markt für generative KI-Lösungen. Aber die Eigenschaften vieler anderer KI-Tools gehen über die Funktionen des bekanntesten Chatbots hinaus. Anlässlich des aktuellen KI-Hypes rund um ChatGPT und Co. hat der brutkasten eine Liste mit weiteren KI-Tools zusammengestellt, die bei der Umsetzung verschiedener Aufgaben helfen können.

Fireflies.ai

Wer kennt ihn nicht, den Stress des ewigen Notizenmachens während einer wichtigen Besprechung. Während man sich auf den Inhalt und das Gespräch konzentrieren möchte, verpasst man ungewollt wichtige Informationen, weil man noch dabei ist, die letzten wichtigen Sätze zu tippen. Dazu kommt noch der Aufwand von Meeting-Zusammenfassungen, die man seinen Gesprächspartner*innen zukommen lassen möchte. Um dieses Problem ein für alle Mal aus der Welt zu schaffen, hat das Startup Fireflies.ai aus San Francisco ein KI-Tool entwickelt, das eigenständig Notizen von virtuellen Gesprächen anfertigt. Der Meeting-Assistent namens “Fred” läuft dabei im Hintergrund mit und zeichnet Meetings auf.

Innerhalb kurzer Zeit nach Ende des Austauschs erhalten die Meetingteilnehmer*innen so die mit künstlicher Intelligenz generierten Besprechungsnotizen. Zudem macht Fireflies.ai die Notizen durchsuchbar und transkribiert auf Wunsch auch das Gespräch. Kompatibel mit den gängigsten Webkonferenz-Anbietern wie beispielsweise Google Meet, Zoom oder Microsoft Team, sendet das Tool knapp eine Stunde vor dem Termin Teilnehmer*innen eine E-Mail, um sie darüber zu informieren, dass das Gespräch für Notizzwecke aufgezeichnet wird.

Gegründet im Jahr 2016 von Krish Ramineni, Co-Founder und CEO von Fireflies.ai, verfolgt die als kostenlose Version verfügbare Plattform das Ziel, Angestellte dabei zu unterstützen, sowohl Zeit zu sparen, als auch den Workflow unter Teams zu stärken.

DeepL Write

Viele Menschen können sich den DeepL Translator aus der Arbeitswelt nicht mehr wegdenken. Das im Jahr 2017 gegründete Kölner Start-up hat erst Anfang des Jahres nach einer Finanzierungsrunde den Unicorn-Status erreicht. Kaum eine Woche später verkündete DeepL die Neuigkeiten über ein neues Feature. DeepL Write heißt der neue Helfer, der Nutzer:innen Unterstützung beim Schreiben anbietet. Neben Grammatik-, Zeichensetzungs- und Stilprüfung bietet DeepL Write auch alternative Formulierungsvorschläge an.

Vorbei sind damit die Zeiten, in denen wichtige E-Mails mit Rechtschreib- oder Grammatikfehlern verschickt wurden. Das neue KI-gesteuerte Feature scannt Texte, E-Mails und Reports auf Fehler. Mit dem neuen Launch möchte das Start-up nicht nur sein Portfolio erweitern, sondern auch User*innen bei der Textgenerierung unterstützen.

Pi

Kaum sind die Nachrichten über die Schwierigkeiten von ChatGPT mit den Mental-Health-Empfehlungen bekannt, kündigt nun ein ehemaliger DeepMind-Gründer, Mustafa Suleyman, den Launch von Pi an. Entwickelt von Inflection AI mit Sitz in Palo Alto im Silicon Valley, ist Pi ein freundlicher Chatbot, der aktiv zuhört und gesprächiger ist als andere Chatbots. Obwohl Pi Ähnlichkeiten mit ChatGPT aufweist, ist das Modell laut Suleyman, CEO und Co-Founder von Inflection AI, persönlicher und ein “echter KI-basierter persönlicher Assistent”. Der Name Pi stehe dabei für “persönliche Intelligenz”, erklärt der CEO in einem Interview mit Forbes. “Ich denke, das ist genau das, was eine KI ist. Es ist eine neue Klasse von verschiedenen Funktionen, die Coach, Vertrauter und Berater ist, ein digitaler persönlicher Assistent, alles in einem", sagt Suleyman.

Anders als andere Chatbots sei Pi in der Lage, sich 100 Gespräche mit registrierten Nutzer*innen zu merken und sei über verschiedene Plattformen wie die eigene Website, die iOS-App sowie über SMS-, WhatsApp- und Instagram-Nachrichten kontaktierbar. So sei Pi auch in der Lage, in einem weiteren Gespräch nachzufragen, wie die Party vor ein paar Tagen gelaufen sei. Die vorerst kostenlose Plattform bietet Funktionen wie die Vorbereitung auf ein wichtiges Gespräch, Planungshilfe und virtuelle Spielpartner an. Es gibt aber auch Funktionen, die sich mit dem Thema Mental Health beschäftigen, indem Pi mit einfühlsamen Fragen behutsam nach den Gefühlen der Nutzer*innen fragt. Suleyman versichert, dass als gefährdet eingestufte Gesprächspartner*innen, die sich offensichtlich in einer psychischen Krise befinden, an eine psychologische Fachkraft verwiesen werden.

Auto-GPT

Wie die Entwickler*innen von Auto-GPT auf ihrer Website verkünden, “ist Auto-GPT eine experimentelle Open-Source-Anwendung, die die Fähigkeiten des GPT-4-Sprachmodells demonstriert. Nach der Eingabe eines Prompts verarbeitet das Tool die Ergebnisse wiederholt und verwendet seinen eigenen Output als Input, um die Ergebnisse kontinuierlich zu verbessern. Auto-GPT entscheidet selbstständig, was als nächstes mit dem gelieferten Output geschehen soll. Diese KI-Lösung gilt als eine der ersten vollständig autonomen künstlichen Intelligenzen, die in der Lage ist, zunehmend komplexere Aufgaben ganz alleine zu lösen.

Auto-GPT ist zudem ein Open-Source-Programm und somit ein Tool, das von einer Gemeinschaft von Developers entwickelt wird. Jede Person mit Programmierkenntnissen kann die KI-Lösung verbessern und um weitere Funktionen ergänzen. Erst im März dieses Jahres gestartet, hat Auto-GPT bereits 306 Mitwirkende. Da es sich bei Auto-GPT um einen Code-Skript und nicht um eine mobile Anwendung handelt, sind grundlegende Programmierkenntnisse erforderlich, um das Tool auf dem eigenen Computer zu nutzen.

Github Copilot

Github Copilot ist eine KI-Lösung, die User*innen auf ihrer Reise der Code-Erstellung begleitet und hauptsächlich auf Programmierer*innen und Entwickler*innen abzielt. Copilot wurde von Github, einem der führenden Unternehmen auf dem Markt für Open-Source-Code-Repository-Software, entwickelt und kürzlich von Microsoft übernommen. Man hört oft, dass Programmierer*innen und Entwickler*innen einen Großteil ihrer Zeit mit der Behebung von Problemen und Bugs verbringen, anstatt tatsächlich Code zu schreiben. Während das Generieren von neuem Code nicht unbedingt die spannendste Aufgabe sein kann, stellt das Erstellen von sauberem Code, der keine Probleme für Benutzer*innen verursacht, eine ziemlich große Herausforderung dar. Normalerweise kann es Stunden oder sogar Tage dauern, bis bestimmte Probleme gelöst sind.

Aus diesem Grund dient Github Copilot als Unterstützung für Entwickler*innen, die im Code-Editor ihre Probleme und Wünsche, wie ihr Code laufen sollte, schildern. Das Programm generiert daraufhin ein neues Code-Snippet oder geht über einen bestehenden Code-Abschnitt und modifiziert ihn so, dass das Problem gelöst wird. Dank seiner großen Zeichenkapazität kann es in Sekunden den Entwicklungsprozess von Tagen auf Stunden reduzieren. Copilot scannt auch vorhandenen Code auf gängige Schwachstellen und macht den Developer*innen Vorschläge, wie diese auf sichere Weise behoben werden können.

Runway

Das in New York ansässige Start-up Runway war bereits an der Entwicklung des bekannten Text-to-Image-Generators von Stable Diffusion AI beteiligt. Kürzlich hat Runway ein weiteres KI-Modell auf den Markt gebracht, das innerhalb von Sekunden ein Video auf Basis von Text-to-Video generiert. Von Text-to-Video, über Text- and-Image-to-Video bis hin zu Image-to-Video verfügt das Startup über ein breites Portfolio an KI-Modellen.

Runway hat eines der ersten Text-to-Video-Modelle auf den Markt gebracht und gezeigt, was mit einer einfachen Textaufforderung möglich ist. Über seine App bietet Runway auch die Möglichkeit, mit der Smartphone-Kamera aus selbst aufgenommenen Videos KI-modifizierte Clips zu erstellen.

Diese Artikel könnten Sie auch interessieren:

Robotik-Start-up Ottonomy startet Pilotprojekt im Münchner Flughafen

Der Lufthansa Innovation Hub und der Munich Airport kooperieren zur Förderung von Innovation in der Luftfahrt: Pilotprojekte mit Start-ups sind vor diesem Hintergrund wichtige Hebel zur Implementierung innovativer Lösungen.

Die Luftfahrtbranche steht vor einer Vielzahl von Herausforderungen, sowohl auf Kund*innenseite als auch in geschäftlichen Prozessen. Innovation spielt eine entscheidende Rolle bei der Bewältigung dieser Herausforderungen, indem sie Möglichkeiten zur Digitalisierung, Automatisierung, Optimierung und Neuerfindung schafft.

Vor diesem Hintergrund haben der Lufthansa Innovation Hub, die Berliner Innovationseinheit der Lufthansa Group, und die Terminal 2 Gesellschaft des Flughafens München eine Absichtserklärung (MoU) unterzeichnet. Mit der Unterzeichnung bekunden beide ihre Absicht, durch gemeinsame Initiativen die Innovation in der Luftfahrtbranche voranzutreiben.

“Innovation in der Reiseindustrie ist eine gemeinschaftliche Aufgabe, die dem gesamten Ökosystem zukommt”, sagt Dr. Stefan Nothelfer, Senior Director und Leiter Corporate Venturing & Strategic Growth beim Lufthansa Innovation Hub. “Wir freuen uns darauf, mit der Terminal 2 Gesellschaft des Flughafens München zusammenzuarbeiten, um das Kundenerlebnis gemeinsam zu verbessern und den gesamten Reiseprozess zu optimieren.”

Robotik-Einsatz im Terminal 2 des Flughafens München

Ein konkretes Beispiel für das Vorantreiben von Innovation im Flughafenbetrieb durch Pilotprojekte ist die Zusammenarbeit mit dem Robotik-Start-up Ottonomy.

Seit dieser Woche sind zwei autonome Service-Roboter in den Bereichen der Gates und Gepäckausgabe im Terminal 2 des Flughafens München im Einsatz. Die Roboter sind darauf ausgelegt, verschiedene Aufgaben zu übernehmen, um reibungslose Kund*inneninteraktionen zu ermöglichen. Sie unterstützen Passagier*innen mit Informationen und bewerben die Dienstleistungen von Lufthansa Airlines.

Durch das Scannen eines QR-Codes auf dem Roboter mit ihrem Smartphone gelangen Reisende zu Chat-Assistenten für Self-Service-Optionen. Dort können sie Fluginformationen abrufen und Prozesse wie Umbuchungen oder Erstattungen eigenständig verwalten. Die Roboter liefern zudem wichtige Informationen zu flughafenbezogenen Themen wie Tax Refund und Lost and Found. Dank integrierter Behälter können die Roboter auch für den Warentransport eingesetzt werden – etwa künftig für die Verteilung von Wasserflaschen an Passagier*innen.

“Unser Ziel ist es, unseren Gästen das beste Reiseerlebnis in Europa zu bieten”, sagt Marcus Schnabel, Vice President Ground Operations Hub Munich. “Die Nutzung digitaler Lösungen ist für dieses Vorhaben von entscheidender Bedeutung, und wir freuen uns, als Pilotstandort für wegweisende Innovationen zu dienen.”

Ottonomy setzt seine Roboter weltweit an Flughäfen, in Krankenhäusern und für Auslieferungen auf der letzten Strecke zum/zur Kund*in ein. “Unsere Roboter, die mit Contextual AI arbeiten, ermöglichen es Unternehmenskunden, Innovationen voranzutreiben, bessere Kundenerlebnisse zu schaffen und die betriebliche Effizienz in der Luftfahrt zu steigern“, sagte Ritukar Vijay, CEO von Ottonomy. „Eine Partnerschaft mit zukunftsorientierten Branchengrößen wie der Lufthansa bringt diese Vision der Realität ein großes Stück näher.“

Das Pilotprojekt mit Ottonomy entstand im Rahmen von Startup Gate, der Venture-Clienting-Initiative der Lufthansa Group. Startup Gate verbindet Teams der Lufthansa Group mit hochmodernen Start-ups, um deren Technologien schnell zu adaptieren und schlanke sowie kosteneffiziente Kooperationen zu ermöglichen.

Schweiz und Deutschland: So unterschiedlich sind sie beim Online Glücksspiel

Was ist erlaubt, wo sind Grenzen gesetzt: Gut zu wissen für alle, die sich grenzüberschreitend mit dem Thema Online Glücksspiel befassen wollen.

Obwohl das Online Glücksspiel seit Jahren streng reguliert wird, wächst der Markt in Deutschland und in der Schweiz munter weiter. So haben die lizenzierten Anbieter in Deutschland im Jahr 2023 Bruttospielerträge von 4,2 Milliarden Euro erzielt. Im selben Jahr lagen die Umsätze aus Lotterien und Sportwetten in der Schweiz bei 3,76 Milliarden Schweizer Franken. Setzt Deutschland auf strenge Einzahlungslimits und geringe Maximaleinsätze, so reguliert die Schweiz den Markt durch Lizenzbeschränkungen und Netzsperren, wenn es sich um einen nicht genehmigten Anbieter handelt. Die Regeln sind also in beiden Ländern klar, aber sie sind unterschiedlich, doch am Ende lukrativ für beide.

Glücksspiel unterliegt in beiden Ländern strikten Regeln

Es gibt strikte Regeln, die bestimmen, wer in Deutschland und in der Schweiz das Online Glücksspiel anbieten darf.

In Deutschland bildet der deutsche Glücksspielstaatsvertrag die Grundlage. Dieser ist seit dem Jahr 2021 in Kraft und sorgt für eine einheitliche Regulierung, mit der auch klare Grenzen gesetzt werden. Die Konzessionen sind begrenzt, zudem sind die Anforderungen sehr hoch. Jeder Anbieter muss zudem eine Lizenz der Gemeinsamen Glücksspielbehörde der Länder - GGL - vorweisen können. Der Markt wird zudem durch strenge Vorschriften geprägt: monatliches Einzahlungslimit, geringer Maximaleinsatz, 5 Sekunden-Regel, Verbot von Live Casino, keine Kryptowährungen als Einzahlungsmethode.

Wer auf der Suche nach den Top Online Casinos für Schweizer Spieler ist, wird überrascht sein, dass nur landbasierte Casinos eine Online Konzession beantragen würden, weil es kein offenes Lizenzierungsmodell für internationale Betreiber gibt. Der Markt ist somit geschlossen und schützt daher staatliche Einnahmen und reguliert den Wettbewerb. Ein Anbieter, der keine Genehmigung hat, kann seine Dienste nicht anbieten - Netzsperren blockieren unlizenzierte Plattformen.

Während also Deutschland privaten Betreibern aus den unterschiedlichsten Bereichen Lizenzen erteilt, sind in der Schweiz nur schon etablierte Casinohäuser in der Lage bzw. berechtigt, eine Lizenz zu bekommen. Das mag zwar in Deutschland für mehr Vielfalt sorgen, jedoch auch für schärfere Kontrollen. In der Schweiz hingegen bleibt das Glücksspielgeschäft in der Hand weniger Unternehmen.

Wie sieht es bei den Sportwetten aus?

In der Schweiz und in Deutschland wird das Spielangebot von gesetzlichen Vorgaben bestimmt, was natürlich einen direkten Einfluss auf die Vielfalt und auch auf die Zugangsmöglichkeiten hat. In beiden Ländern finden sich regulierte Plattformen, damit das Glück am Online Spielautomat getestet werden kann. Jedoch finden sich verschiedene Einschränkungen:

In Deutschland sind viele Anbieter lizenziert, die aber strenge Vorschriften zu den Einsatzlimits sowie Spielmechaniken beachten müssen. In der Schweiz bleibt das Angebot vorwiegend den landbasierten Casinos mit Online Lizenz vorbehalten, sodass nur eine begrenzte Auswahl geboten wird.

Ein vergleichbares Bild lässt sich mit Blick auf die Sportwetten erkennen: Sind in Deutschland nur private Wettanbieter aktiv, die strikte Werbe- und Einsatzlimits befolgen müssen, bleibt der Bereich in der Schweiz aber unter staatlicher Kontrolle. Der private Betreiber erhält hier gar keinen Marktzugang.

Beide Glücksspielmärkte werden durch technologische Entwicklungen geprägt, weil internationale Entwickler moderne Slots mit neuen Mechaniken liefern. Jedoch können in der Schweiz nur lizenzierte Casinos auf diese Innovationen zugreifen. In Deutschland hingegen besteht ein regulierter Markt, wobei hier jedoch strengere Vorgaben zu erfüllen sind.

Sicherheitsmechanismen stehen im Vordergrund

Ein Schweizer Casino setzt auf kontrollierte Abläufe sowie auf geprüfte Anbieter, damit dem Spieler ein sicheres Spielerlebnis geboten werden kann. Gesetzliche Vorgaben bestimmen den Rahmen, innerhalb dessen dann die Spielplattform operieren darf. Damit die unbefugten Nutzer keinen Zugang erhalten, müssen im Vorfeld Identitätsprüfungen durchgeführt werden. Des Weiteren müssen die Betreiber auch Maßnahmen ergreifen, damit ein problematisches Spielverhalten frühzeitig erkannt und gegebenenfalls eingedämmt werden kann.

In beiden Ländern spielen Sicherheitsmechanismen eine große Rolle: In Deutschland gibt es etwa ein festes Einzahlungslimit von 1.000 Euro pro Monat (plattformübergreifend) sowie einen Maximaleinsatz von 1 Euro pro Runde. In der Schweiz gibt es keine einheitliche Einzahlungsgrenze, aber die lizenzierten Anbieter setzen hier auf individuelle Schutzmaßnahmen, sodass das verantwortungsbewusste Spiel gefördert werden kann.

In Deutschland dürfen die Glücksspielanbieter nicht uneingeschränkt werben, sondern nur zu bestimmten Zeiten. In der Schweiz wird eine vergleichbare Strategie angewendet: Die Werbung darf nur legale Angebote enthalten, während Anreize für das übermäßige Spiel untersagt sind.

Beide Länder gehen auch unterschiedlich vor, wenn es um unregulierte Plattformen geht: Deutschland setzt auf Überwachung und Sanktionen, während die Schweiz hingegen Anbieter, die keine Schweizer Lizenz haben, per Netzsperren ausgeschlossen werden.

Wie handhaben Deutschland und die Schweiz Poker?

In der Schweiz und in Deutschland ist Poker ein Sonderfall: Auch hier vergibt Deutschland Lizenzen für private Anbieter, während die Schweizer ebenfalls nur staatlich konzessionierten Casinos erlaubt, Online Poker anbieten zu dürfen. Mit dieser Herangehensweise wird nicht nur das Spielangebot geprägt, sondern auch die Möglichkeiten für Cash Games, internationale Wettbewerbe und Turniere.

In Deutschland ist Online Poker erlaubt, jedoch gibt es klar definierte Regeln: Der lizenzierte Anbieter muss sich an feste Einzahlungslimits halten, zudem gibt es Turniere und Cash Games nur unter sehr strengen Auflagen. Die Anbieter werden von der GGL überwacht und greift sofort bei Verstößen ein. In der Schweiz unterliegt das Pokerspiel noch engeren Regulierungen: Cash Games und Turniere gibt es nur über lizenzierte landbasierte Casinos, die eine Online Konzession haben. Der private Anbieter hat keinen Zugang zum Markt.

Generative KI – Chancen für Startups

Wie Startups mit drei Tipps die Kosten und Performance für ihren KI-Case optimieren können.

Das deutsche KI-Startup-Ökosystem befindet sich 2025 weiter im Gründungsboom. Nie gab es mehr KI-Gründer in Deutschland und alleine im vergangenen Jahr wuchs die Zahl der KI-Startups um 35 Prozent. Auch für Investoren bleibt KI eines der vielversprechendsten Themen. Sie investierten 2024 fast 200 Millionen mehr in deutsche KI-Jungunternehmen als im Vorjahr. Vor allem deutsche KI-Startups im B2B-Bereich mit branchenspezifischen Lösungen für die Fertigung, Logistik und das Gesundheitswesen haben aktuell ausgezeichnete Wachstumschancen. Sie können von einer engen Vernetzung mit dem Mittelstand und führenden Forschungseinrichtungen in Deutschland profitieren. Typische KI-Anwendungsfelder von aufstrebenden deutschen Startups wie BlueAvenir, PlanA, Smart Reporting oder nnamu liegen dabei u.a. in der Softwareentwicklung, Sprach- und Bilderkennung oder datenbasierten Analyseverfahren zur Entscheidungsunterstützung.

KI-Chancen und die häufigsten Hürden

Während die Gesamtfinanzierung für KI-Projekte wächst, scheitern in der Praxis vielversprechende Ideen von Startups aber auch immer wieder am konkreten Business Case. Langfristig können sich insbesondere unterschätzte Kosten und eine schwache Performance der Anwendungen wie ein Bremsklotz auswirken. Die Nutzung von Sprachmodellen ist dank API-basierten Diensten sehr einfach geworden, dennoch können sich hier bei großen Volumina und ungeschickter Modell-Wahl schnell höhere Kosten aufsummieren. Gleichzeitig spielt die Performance des KI-Systems eine wichtige Rolle für eine langfristige Profitabilität. So führen besonders hohe Latenzzeiten bei der Model-Inference zu trägeren Systemen, die Nutzeranfragen nicht schnell genug verbreiten und die Attraktivität der Anwendung erheblich mindern.

Gerade Startups setzen oft auf die Cloud, da sie unabhängig vom technischen Hintergrund einfachen Zugang zu KI und die nötige Flexibilität ermöglicht. Drei innovative Methoden erweisen sich in der Cloud als besonders hilfreich, um eine optimale Balance zwischen Leistungsfähigkeit, Kosten und Nutzerfreundlichkeit für die Umsetzung des eigenen KI-Anwendungsfalls zu finden. So kann jeder Gründer seine KI-Ideen schnell, kosteneffizient und sicher umsetzen.

KI-Modellauswahl: Kleiner, aber schneller

Für Startups ist es entscheidend, das richtige KI-Modell für ihren Anwendungsfall zu wählen, um Kosten und Leistung optimal auszubalancieren. Anbieter wie Anthropic, AI21 Labs, Meta, Cohere, Mistral und Amazon bieten Modelle in verschiedenen Größen an – kleinere Varianten sind oft günstiger und reagieren mit kürzerer Antwortzeit. Nach einer ersten Validierung mit einem leistungsstarken Modell können Startups Tools wie Amazon Bedrock Evaluations nutzen, um herauszufinden, welches Modell in welcher Größe ähnliche Ergebnisse bei geringeren Kosten oder höherer Geschwindigkeit liefert. Diese Evaluierungen helfen dabei, die Leistungsfähigkeit und Effizienz zu beurteilen, indem Metriken wie semantische Robustheit und Genauigkeit bei der Informationsabfrage analysiert werden. Durch eine Kombination aus automatisierten Bewertungen mit Large Language Models (LLMs) und menschlicher Prüfung können Startups die beste Balance zwischen Leistung, Kosten und Geschwindigkeit für ihre individuellen Bedürfnisse finden.

Prompt Caching: Zwischenspeicherung für wiederkehrende Anfragen

Eine weitere smarte Methode, um die Antwortzeiten von KI-Modellen zu verkürzen und Kosten zu senken, ist das Prompt-Caching. Wenn ein digitaler Assistent sich bei jeder Frage immer wieder die gleichen Grundinformationen durchlesen müsste, dann wäre das extrem ineffizient. Genau hier setzt das Prompt-Caching an und speichert feste Teile des Prompts, wie grundlegende Anweisungen für das LLM, direkt in der Inferenz-Hardware zwischen. Nur die variablen, nutzerspezifischen Daten, die sich von Aufruf zu Aufruf verändern, werden bei jeder Anfrage neu übermittelt. Das spart nicht nur Rechenleistung, sondern sorgt auch für schnellere Antworten – ideal für Anwendungen wie Chatbots oder personalisierte KI-Assistenten, die häufig wiederkehrende Anfragen verarbeiten. Mit Amazon Bedrock lässt sich diese Technik einfach nutzen, indem das Caching und das Setzen von Cache-Checkpoints automatisch verwaltet werden können. Sobald das Caching aktiviert ist, übernimmt der Service das gesamte Cache-Management automatisch. So lassen sich bis zu 90 Prozent kosteneffiziente KI-Anwendungen mit minimalem Konfigurationsaufwand realisieren.

Model Distillation: KI-Wissen auf das Wesentliche fokussieren

Eine dritte bewährte Option ist Model Distillation. Das Prinzip ist einfach und kann vereinfacht als ein intelligenter Wissenstransfer in der Welt der KI beschrieben werden. Also so, als ob ein erfahrener Lehrer (ein großes, leistungsstarkes KI-Modell) seinem Schüler (einem kleineren, schnelleren Modell) die wichtigsten Konzepte beibringt. Dabei nutzt dieser Prozess synthetische Trainingsdaten, die auf realen Anwendungsbeispielen basieren. Das Ergebnis ist ein kompakteres Modell, das für einen spezifischen Anwendungsfall ähnlich gute Ergebnisse liefert wie das größere Modell, dabei aber deutlich schneller und kostengünstiger arbeitet. Destillierte Modelle in Amazon Bedrock können bis zu fünfmal schneller arbeiten und die Kosten um bis zu 75 Prozent senken im Vergleich zu den Originalmodellen – bei Genauigkeitsverlust von weniger als zwei Prozent.

Fazit

Erfolgreiche KI-Lösungen können mit der Cloud kosteneffizienter und performanter umgesetzt werden. Das erfordert zwar ein wenig technisches Know-how, aber die Cloud reduziert die Einstiegshürden erheblich und ermöglicht es auch kleineren Unternehmen, mit drei bewährten Methoden das KI-Potenzial effektiver auszuschöpfen. Startups haben mit der Cloud die maximale Flexibilität, um entweder von den leistungsfähigsten vortrainierten LLMs zu profitieren oder alternativ eigene LLMs mit maßgeschneiderter Infrastruktur zu entwickeln bzw. auf fertige Dienste mit integrierter generativer KI zuzugreifen.

Der Autor Constantin Gonzalez ist Principal Solutions Architect bei Amazon Web Services (AWS) in München.
Die Autorin 
Jennifer Grün ist Senior Specialist - Machine Learning bei AWS in München.

KI als Erfolgsfaktor für Mikro- und Kleinunternehmen

Wie Start-ups und Kleinunternehmen mit smarten KI-Tools Zeit und Ressourcen sparen.

Zeit ist die wertvollste Ressource für Unternehmer*innen. Zwischen wichtigen Aufgaben, wie Kund*innenmanagement, Buchhaltung und Marketing bleibt oft wenig Zeit für strategische Weiterentwicklung. Hier eröffnet künstliche Intelligenz (KI) neue Chancen und Potenziale: KI kann Prozesse automatisieren, die Effizienz steigern und Unternehmer:innen wertvolle Stunden zurückgeben. Laut der GoDaddy Global Entrepreneurship Survey 2025 sparen Start-ups und Kleinunternehmen durch den Einsatz von KI-Tools durchschnittlich zehn Stunden pro Woche. Doch nicht nur die Zeitersparnis ist entscheidend: KI bietet zudem Wettbewerbsvorteile und ermöglicht es Kleinunternehmen, auf Augenhöhe mit größeren Playern zu agieren.

Zahlen, die überzeugen: Warum Start-ups und Kleinunternehmen auf KI setzen

Die Studie zeigt, dass Kleinunternehmen und Start-ups durch den Einsatz von KI bedeutende Vorteile erzielen können. Besonders hervorzuheben: 82 % der Kleinunternehmen geben an, dass KI ihnen hilft, mit größeren Organisationen besser zu konkurrieren. Auch in der Zeitersparnis liegt ein großer Vorteil: Unternehmer:innen gewinnen durchschnittlich 10 Stunden pro Woche, die sie in strategische Aufgaben investieren können.

Langfristig zeigt sich zudem ein klarer positiver Geschäftsausblick: 69 % der Unternehmen, die KI nutzen, erwarten in den nächsten drei bis fünf Jahren Wachstum – deutlich mehr als die 45 % unter den Nicht-Nutzer*innen. Ein deutliches Signal, dass KI längst nicht mehr nur eine Zukunftsvision ist, sondern bereits heute den Unternehmensalltag revolutioniert.

Praxisbeispiele: Wie kleine Unternehmen KI erfolgreich einsetzen

Die Anwendungsmöglichkeiten von KI-Tools sind besonders für Gründer:innen und Kleinunternehmen von Bedeutung, da sie ihnen helfen können, Prozesse zu automatisieren, Ressourcen effizienter zu nutzen und mit größeren Wettbewerbern Schritt zu halten:

  • Logo-Erstellung: Der Aufbau einer überzeugenden visuellen Identität ist für jedes Unternehmen essenziell, kann aber zeit- und kostenintensiv sein. KI-gestützte Tools ermöglichen es Unternehmer:innen, innerhalb weniger Minuten einzigartige Logos zu generieren und so ein professionelles Markenbild zu etablieren.
  • Website-Entwicklung in wenigen Minuten: Moderne KI-Technologien ermöglichen es, komplette Websites mit wenigen Klicks zu generieren. Ohne technische Vorkenntnisse können Unternehmer:innen innerhalb kürzester Zeit eine funktionale Website mit personalisierten Inhalten veröffentlichen.
  • Automatisierte Suchmaschinenoptimierung (SEO): KI kann Unternehmen dabei unterstützen, ihr Suchmaschinenranking zu verbessern. Durch gezielte Keyword-Analysen und Optimierungsvorschläge wird die Sichtbarkeit in den Suchergebnissen erhöht, was letztlich zu mehr Kund*innen führen kann.
  • Professionelle E-Mail-Dienste: Eine E-Mail-Adresse mit eigener Domain schafft nicht nur Vertrauen bei Kund:innen, sondern trägt auch zur Markenbildung bei. Zusätzlich sorgt KI-gestützte Technologie für den Schutz des Mailverkehrs, inklusive Funktionen wie Backups, Archivierung und nahtloser Migration.

Der gezielte Einsatz von KI-gestützten Tools kann nicht nur wertvolle Zeitressourcen freisetzen, sondern auch dazu beitragen, die digitale Präsenz und Professionalität eines Unternehmens nachhaltig zu optimieren.

Wachstum mit Stolpersteinen?

Die Nutzung von KI kann Unternehmen enorme Vorteile bieten, stellt sie aber auch vor einige Herausforderungen. Durch den Einsatz von KI lassen sich Geschäftsprozesse skalieren, Kosten senken und datengetriebene Entscheidungen treffen, was mehr Raum für Kreativität und strategische Entwicklung schafft. Gleichzeitig müssen sich Unternehmen mit Themen wie Datenschutz, Implementierungskosten und der Einarbeitung in neue Technologien auseinandersetzen. Besonders für Gründer*innen ist es entscheidend, diese Herausforderungen frühzeitig anzugehen, um langfristig wettbewerbsfähig zu bleiben.

Fazit

Die Ergebnisse der GoDaddy-Studie belegen, dass künstliche Intelligenz nicht nur eine technologische Spielerei ist, sondern Gründer*innen und Kleinunternehmer*innen echte Vorteile bringt. Wer heute in KI investiert, sichert sich entscheidende Vorteile für die Zukunft. Jetzt ist die perfekte Zeit, die Potenziale von KI zu erkunden und für den eigenen Geschäftserfolg zu nutzen.

Die Autorin Alexandra Anderson ist Marketing Director Germany bei GoDaddy und seit mehr als zehn Jahren als Marketingexpertin in der IT-Branche tätig. Ein besonderes Anliegen ist ihr die Digitalisierung von Mikro- und Kleinunternehmer*innen.

KI-Integration: Chancen und Impact für Startups

Im Interview mit Dennis Lehmeier, Startup Segment Leader Germany & Europe Central bei Amazon Web Services (AWS): Wie Startups generative KI effizient nutzen können, um zu skalieren und ihre Innovationen schneller voranzutreiben.

Herr Lehmeier – das aktuell alles überschattende Thema ist künstliche Intelligenz (KI) bzw. die Frage, wie Startups bestmöglich davon profitieren können. Welchen positiven Impact von KI sehen Sie für Startups?
KI ist fest in der deutschen Startup-Szene angekommen und die Zahl der KI-Neugründungen in Deutschland steigt, insbesondere vor dem Hintergrund neuer Einsatzmöglichkeiten. Vor allem Startups im Bereich Softwareprogrammierung, Datenanalyse, Gesundheit und Nachhaltigkeit setzen in Deutschland stark auf KI und nutzen die Technologie als Innovationsturbo.

Typische KI-Anwendungsfelder sind beispielsweise die Spracherkennung, Bildanalysen und Verfahren zur Entscheidungsunterstützung. So kann KI heute schon in den Biowissenschaften die klinische Entwicklung von Wirkstoffen erheblich beschleunigen und in der Industrie sowohl das Lieferkettenmanagement als auch die gesamten Produktionsabläufe deutlich effizienter gestalten. Die Cloud kann dabei helfen, KI-Tools schnell und effizient einzusetzen. Eine KI-Studie von AWS zeigte zuletzt, dass 7 von 10 deutschen Startups bereits aktiv KI einsetzen – Tendenz stark steigend. Die Adaptionsrate unter Startups ist dabei deutlich höher als in anderen Branchen. Gleichzeitig profitieren bereits 74 Prozent durch die Nutzung von KI und verzeichnen durch den Einsatz einen direkten Wertzuwachs. Unternehmen jeder Branche können von KI profitieren.

Was sind die aus Ihrer Sicht aktuell bedeutendsten KI-Trends für Startups?
Mit der zunehmenden Verbreitung generativer KI und Grundlagenmodelle (Foundation Models, FMs) verschiebt sich der Wettbewerbsfokus für Startups. Statt selbst leistungsstarke KI-Modelle von Grund auf zu entwickeln, können junge Unternehmen über die Cloud auf verschiedene extrem leistungsstarke Modelle wie Amazon Nova zugreifen und diese für ihre individuellen Anforderungen anpassen. Dadurch wird generative KI einfacher zugänglich und für Unternehmen jeder Größe und mit unterschiedlichen IT-Fähigkeiten leicht nutzbar.

Da viele Akteure auf dieselben technologischen Grundlagen zurückgreifen können, verlagert sich der Differenzierungsfaktor zunehmend auf die kundenspezifische Wertschöpfung. Der Erfolg hängt davon ab, wie nahtlos KI-Lösungen in bestehende Arbeitsprozesse und Systemlandschaften integriert werden können. Ähnlich wie bei SaaS-Modellen geht es darum, eine intuitive Benutzeroberfläche und ein klares Nutzenversprechen für eine definierte Zielgruppe zu schaffen. Der Mehrwert entsteht durch die intelligente, kontextbezogene Anwendung.

Unser Ziel ist es, Startups maximale Flexibilität zu bieten: sie können eigene FMs mit maßgeschneiderter Infrastruktur entwickeln, bestehende vortrainierte Modelle nutzen oder auf Dienste mit integrierter generativer KI wie Amazon Q zurückgreifen. So kann jeder Gründer ein KI-Startup aufbauen und es ergeben sich vielfältige Anwendungsfelder durch cloudbasierte KI-Lösungen: von der automatisierten Kundenbetreuung über die intelligente Datenanalyse bis hin zur Entwicklung völlig neuer Produkte.

KI als Innovations-Booster birgt somit ein riesiges Potenzial. Doch wo Licht ist, ist auch Schatten: KI ist kein Selbstläufer – gefragt sind praxistaugliche Regeln, die eine vertrauensvolle Nutzung ermöglichen, ohne Innovationen zu blockieren. Wie stehen Sie vor diesem Hintergrund zum aktuellen AI-Act?
Als einer der weltweit führenden Entwickler und Anbieter von KI-Tools und -Diensten setzen wir uns für eine sichere, geschützte und verantwortungsvolle Entwicklung von KI-Technologie ein. Wir arbeiten eng mit Regierungen und Industrien zusammen, um dies zu gewährleisten. Unser Ziel ist es, Innovationen im Interesse unserer Kunden und der Verbraucher voranzutreiben und gleichzeitig notwendige Schutzmaßnahmen zu etablieren und umzusetzen. Dafür bieten wir auch diverse Services und Tools. Beispielsweise bieten wir mit Amazon Bedrock Guardrails Unterstützung für die Implementierung von Sicherheitsvorkehrungen, die auf die jeweiligen generativen KI-Anwendungen des Startups zugeschnitten sind, damit Halluzinationen besser verhindert und schädliche Inhalte blockiert werden können.

Ich bin überzeugt, dass KI enorme Fortschritte in essenziellen Bereichen wie Gesundheit und Bildung ermöglichen wird. Die Technologie hilft uns, komplexe Probleme zu lösen, die zuvor als unüberwindbar galten. Die Vorteile überwiegen bei verantwortungsvollem Einsatz deutlich die Risiken. Gleichzeitig sollte jeder, der KI nutzt, ethische Aspekte von Anfang an immer mitbedenken und angemessene Sicherheitsvorkehrungen zum verantwortungsvollen Einsatz treffen.

Sie unterstützen Startups umfassend dabei, generative KI in AWS auszubauen. Welche Maßnahmen bzw. Angebote stehen Startups dabei konkret zur Verfügung?
Weltweit setzen über 280.000 Startups und 80 Prozent aller Unicorns auf AWS, um mit Hilfe der Cloud zu wachsen und ihr Geschäft zu skalieren. Auch deutsche Unternehmen wie About You, Delivery Hero und FlixBus haben ihre Erfolgsgeschichte mit der Cloud gestartet. Um Startups gezielt beim Aufbau generativer KI-Lösungen zu unterstützen, bieten wir eine Vielzahl maßgeschneiderter Programme.

Mit AWS Activate haben wir seit der Gründung bereits über 6 Milliarden Dollar an AWS Guthaben für Startups bereitgestellt. Dieses können ausgewählte Gründer nutzen, um unsere leistungsstarken KI-Dienste zu testen und schon in frühen Phasen mit neuen Technologien zu experimentieren. Zusätzlich haben wir zuletzt 230 Millionen Dollar für Startups zugesagt, die die Entwicklung generativer KI aktiv vorantreiben, etwa durch die Entwicklung von Grundlagenmodellen oder KI-Tools. Neben technologischen Ressourcen bietet AWS Activate auch umfassende Unterstützung in Form von Fundraising-Hilfen, rechtlicher Beratung, technischem Coaching und Zugang zu einem globalen Netzwerk aus Experten, Investoren und Partnern. Außerdem haben wir den Generative AI Accelerator ins Leben gerufen – ein 10-wöchiges Förderprogramm für 80 Startups weltweit, das maßgeschneiderte Go-to-Market-Strategien bietet und ausgewählten Unternehmen bis zu einer Million Dollar an AWS Guthaben ermöglicht. Auch das Münchner Softwareunternehmen DQC ist Teil des Programms.

Mit solchen Maßnahmen geben wir Startups die notwendigen Werkzeuge an die Hand, um generative KI effizient zu skalieren und Innovationen schneller voranzutreiben.

Beim AWS GenAI Loft Berlin dreht sich vom 24. Februar bis zum 7. März 2025 alles rund um KI bzw. GenAI. An wen adressieren Sie das Event und was erwartet die Teilnehmenden?
Das AWS GenAI Loft findet erstmalig in Berlin statt. Das Event im Mitosis LAB in der Sonnenallee 67 richtet sich an Startups, Entwickler, Investoren, KI-Experten und alle, die sich mit den neuesten Entwicklungen im Bereich Generative AI befassen möchten. Die Veranstaltung bietet jeden Tag eine Mischung aus praxisnahen Workshops, technischen Deep Dives und Networking-Möglichkeiten, bei denen die Teilnehmer mit führenden Experten von AWS, NVIDIA, DoiT, Storm Reply und Automat-it in Kontakt treten können. Neben zahlreichen Vorträgen, spannenden KI-Demos und Hands-on Sessions mit AWS Solutions Architects können die Teilnehmer von kostenlosem Coaching profitieren und von der Möglichkeit, sich mit anderen innovativen deutschen Startups vor Ort auszutauschen. Unter dem Motto „Learn, Build, Connect“ steht der praktische Umgang mit modernsten KI-Technologien wie Amazon Q oder Amazon Bedrock im Fokus. Das Event ist zudem kostenfrei und eine Registrierung ist vorab online möglich. 

Alles dreht sich somit letztlich darum, KI-Projekte voranzutreiben und (Startup-)Innovationen schnell auf den Markt zu bringen. Was muss aus Ihrer Sicht an welcher Stelle geschehen, damit unsere Startups beim Thema KI global mithalten können – sowohl als Nutzende wie auch als KI-Entwickler?
Wir sehen in zahlreichen Studien deutlich, dass Unternehmen, die KI einsetzen, nachweislich von höherer Effizienz und Innovationskraft profitieren. Eine Bitkom-Untersuchung aus 2024 zeigt beispielsweise auch, dass drei Viertel der deutschen Startups, die KI in ihre Produkte oder Dienstleistungen integrieren, leichter an Finanzierung gelangen. Kosteneinsparungen und Effizienzsteigerungen sind dabei oft starke Treiber für die KI-Implementierung.

Um dieses Momentum zu nutzen und das KI-Potenzial auszuschöpfen, sehe ich drei Schlüsselherausforderungen in Deutschland.

Erstens muss die digitale Kompetenzlücke geschlossen werden. KI-Kenntnisse werden in nahezu allen Bereichen essenziell sein, weshalb verstärkt in Aus- und Weiterbildungsprogramme investiert werden muss.

Zweitens muss der Zugang zu Kapital für Startups durch stärkere Finanzierungsmöglichkeiten und Unterstützungsprogramme verbessert werden, um die nachhaltige Wettbewerbsfähigkeit und Skalierung von KI-Startups zu fördern.

Drittens ist es wichtig, die regulatorischen Standards für KI möglichst länderübergreifend zu harmonisieren, um Unternehmen mehr Planungssicherheit zu bieten und gleichzeitig einen verantwortungsvollen Einsatz von KI-Technologien zu gewährleisten.

Ganz praktisch sollten Startups zunächst übergeordnet ihre langfristigen Ziele definieren – sei es in zwei oder drei Jahren, um daraus abzuleiten, welche Schritte einen Beitrag zur Erreichung dieser Ziele leisten. Diese Herangehensweise zwingt Startups und Gründer, fokussiert zu bleiben und in der Gegenwart strategische Entscheidungen zu treffen, um sich für die nächste KI-Entwicklungsphase zu positionieren.

Herr Lehmeier, danke für das Gespräch!

Europäisches KI-Gesetz in Kraft getreten

Der AI Act ist am 2. Februar 2025 in Kraft getreten und gilt für alle Unternehmen und Organisationen mit Angestellten, die KI im Auftrag des Unternehmens nutzen. Bei Nichteinhaltung drohen Geldbußen.

Künstliche Intelligenz (KI) entwickelt sich rasant und findet in immer mehr Bereichen, auch in Unternehmen, Anwendung. Deshalb schafft Europa mit dem AI Act einen einheitlichen Rechtsrahmen, den alle europäischen Unternehmen einhalten müssen.

Nicht allen Arbeitgebenden ist bewusst, dass die europäische Verordnung bereits in Kraft getreten ist. Sie gilt für jede Organisation – unabhängig von ihrer Größe – und ist verbindlich. Das Gesetz betrifft somit alle Unternehmen und Organisationen mit Angestellten, die KI im Auftrag des Unternehmens nutzen, unabhängig vom Beschäftigungsverhältnis. Europa überlässt einen Teil der Durchführung und Umsetzung des KI-Gesetzes den Mitgliedstaaten selbst – ebenso wie die Verhängung von Geldbußen bei Nichteinhaltung. Die konkrete Höhe dieser Bußgelder wird erst am 2. August 2025 feststehen. Dennoch sollten Unternehmen ab dem 2. Februar lieber gut aufgestellt sein, da die Bußgelder auch rückwirkend in Kraft treten können.

Verbindliche KI-Policy und adäquate KI-Kompetenzen

Unternehmen sind dafür verantwortlich, dass ihre Belegschaft über ausreichende KI-Kenntnisse verfügt. Dabei ist es nicht erforderlich, dass jeder Mitarbeitende umfassendes Wissen über KI besitzt. Es muss sichergestellt werden, dass alle Mitarbeitenden, die mit KI-Systemen arbeiten, über die notwendigen Kenntnisse und Fähigkeiten verfügen. So können sie informierte Entscheidungen treffen und potenzielle Risiken erkennen. Dazu gehören alle Mitarbeiter*innen, die mit KI-Systemen arbeiten – vom Anbietenden bis zum/zur Endnutzer*in – und erstreckt sich also nicht nur auf IKT-Fachleute in Unternehmen.

Das KI-Gesetz legt nicht genau fest, welche Maßnahmen Arbeitgebende ergreifen müssen, damit alle beteiligten Personen ausreichende KI-Kenntnisse erwerben. Arbeitgebende sollten daher nicht nur die technischen Kenntnisse, Erfahrungen, Ausbildungen und Fortbildungen der Mitarbeitenden berücksichtigen, sondern auch den Kontext, in dem die KI-Systeme genutzt werden, sowie die betroffenen Personen oder Personengruppe.

Arbeitgebende können selbst entscheiden, welche Kenntnisse und Fähigkeiten ihre Mitarbeitenden benötigen und wie sie diese angeeignet werden können. Mögliche Maßnahmen sind allgemeine KI-Schulungen, die Grundkenntnisse vermitteln und auf verschiedene Zielgruppen zugeschnitten sein können. Dabei kann es sich um spezifische Schulungen handeln, die sich auf bestimmte Tools und Anwendungen konzentrieren, aber auch um die Zusammenarbeit zwischen juristischen und technischen Teams.

Arbeitgebenden wird empfohlen, eine KI-Policy mit klaren Richtlinien für den Einsatz von KI im Unternehmen zu erstellen. Darin kann festgehalten werden, welche Anwendungen von wem und auf welche Weise genutzt werden dürfen. In dieser Richtlinie kann der Arbeitgebende auch Hinweise darauf geben, wie die Mitarbeitenden ausreichend mit KI vertraut bleiben können. Wie wird zum Beispiel vorgegangen, wenn sich im Unternehmen oder bei den Tools etwas ändert? KI-Kompetenz ist schließlich nichts Statisches. Wenn ein(e) Mitarbeiter*in die Rolle wechselt, oder wenn die eingesetzten Tools sich ändern, muss der Arbeitgebende sicherstellen, dass die betreffende Person weiterhin über ausreichende KI-Kenntnisse verfügt.

Verbotene bestimmter KI-Systeme

Zum anderen verbietet der AI Act ab dem 2. Februar 2025 den Einsatz von KI-Systemen, die gegen europäische Normen und Grundwerte verstoßen, indem sie beispielsweise Grundrechte missachten. Darunter fallen auch KI-Systeme für Social Scoring, die Menschen aufgrund ihres sozialen Verhaltens oder persönlicher Eigenschaften bewerten, oder KI-Systeme zur Emotionserkennung am Arbeitsplatz oder im Bildungsbereich. Arbeitgeber sollten daher die eingesetzten KI-Systeme im Hinblick auf die Identifizierung verbotener Systeme und die Einstellung ihrer Nutzung überprüfen.

Ab August 2025 drohen Geldbußen - auch rückwirkend

Ab dem 2. August 2025 drohen Unternehmen und Organisationen, die verbotene KI entwickeln oder einsetzen, hohe Geldbußen. Die Überwachung und die Festlegung der Höhe der Strafen liegen vollständig in der Verantwortung der EU. Die Höhe der Geldbußen sowie die Aufsicht hierüber liegen vollständig in der Verantwortung der EU. Bis zu 35 Millionen Euro Strafe oder sieben Prozent des weltweiten Jahresumsatzes des vorangegangenen Geschäftsjahres – je nachdem, welcher Betrag höher ist – können verhängt werden.

Der Autor Sander Runkel ist Fachanwalt für Arbeitsrecht und Manager Tax & Legal bei SD Worx Deutschland

Wahlprogramme 2025: Innovationsförderung, Quo vadis?

So plant die Politik die Zukunft der Innovationsförderung. Eine Analyse von Efe Duran Sarikaya, CEO der Fördermittelberatung EPSA Deutschland.

Mit den Bundestagswahlen 2025 steht Deutschland vor wegweisenden Entscheidungen. Fördermittel, ein zentrales Instrument für Innovation, Nachhaltigkeit und Unternehmensentwicklung, stehen im Fokus der Parteiprogramme. Doch wie gestalten die Parteien die Zukunft der Förderpolitik, und welche Schwerpunkte setzen sie?

Efe Duran Sarikaya, CEO der Fördermittelberatung EPSA Deutschland, liefert einen Überblick über die Pläne der politischen Parteien zur Zukunft der Förderpolitik.

Dabei werden nicht nur die Unterschiede beleuchtet, sondern auch, welche Auswirkungen die jeweiligen Wahlprogramme auf die Unternehmen und den Wirtschaftsstandort Deutschland haben können.

Initiative "KI für Deutschland" startet Aktionsplan

Die Initiative "KI für Deutschland" wurde Ende 2024 von privaten Akteur*innen aus dem KI-Ökosystem ins Leben gerufen, um hierzulande eine zukunftsorientierte Strategie für die KI-Nutzung als Schlüsseltechnologie des 21. Jhs. zu etablieren.

Die Initiative "KI für Deutschland" wurde Ende 2024 von privaten Akteur*innen aus dem KI-Ökosystem ins Leben gerufen. Ziel ist es, einen praxisnahen und unternehmerisch getriebenen Impuls zu setzen, um in dieser Phase der politischen und gesellschaftlichen Neuorientierung Eckpfeiler zu definieren, wie KI zum Wohle und unter Beteiligung aller in Deutschland, effektiv genutzt werden kann.

Zu den Initiator*innen von "KI für Deutschland" gehören maßgeblich die AI.GROUP, der AI.FUND, sowie die Rise of AI Conference - insbesondere die Unternehmer*innen und KI-Expert*innen Dr. Hauke Hansen, Fabian Westerheide, Ragnar Kruse, Petra Vorsteher, Dr. John Lange und Ingo Hoffmann. Unterstützt wird die Initiative von namhaften Institutionen wie dem KI-Bundesverband.

Die Initiative ist deutschlandweit, interdisziplinär und holistisch ausgerichtet. Sie ist offen für den Input und die Unterstützung aller relevanten gesellschaftlichen Gruppen und Persönlichkeiten.

Aufbruchssignal in Zeiten des Umbruchs

Mitinitiator Dr. Hauke Hansen: “Die Initiative KI für Deutschland ist ein Aufbruchssignal in Zeiten des Umbruchs. Mit unseren 11 Impulsen machen wir greifbare und umsetzbare Vorschläge, wie Deutschland die KI nutzen kann, um den gesellschaftlichen Stillstand zu durchbrechen und Wege aus der wirtschaftlichen Rezession zu finden. Wir richten uns damit an alle gesellschaftlichen Akteure, die Wirtschaft ebenso wie die Politik. Wir brauchen eine zukunftsweisende und konsequente Industriepolitik und unternehmerisches Handeln, um die KI am Standort Deutschland zur Chefsache zu machen und damit das Bruttosozialprodukt nachhaltig zu steigern. Stellen wir gemeinsam die Weichen für innovatives und wirtschaftlich erfolgreiches Deutschland von morgen.”

Diese elf Impulse will die Initiative "KI für Deutschland" zur Nutzung künstlicher Intelligenz in Deutschland in Form eines KI-Aktionsplans setzen:

Impuls 1: Einrichtung eines Digitalministeriums auf Bundesebene

Die Digitalisierung in Deutschland hat wirtschaftliche und politische Priorität. Um eine konsequente Digitalisierung der Gesellschaft, Wirtschaft und Verwaltung zu erreichen, ist ein dediziertes Bundesministerium für Digitales mit dem Schwerpunkt KI notwendig.

Impuls 2: Förderung von KI-Forschung und -Innovationen

Deutschland muss die jährlichen Investitionen in KI-Forschung und -Entwicklung bis 2030 auf mindestens 5,0 Mrd. € pro Jahr aufstocken, um international wettbewerbsfähig zu bleiben.

Impuls 3: Bereitstellung von KI-Wagniskapital für KI-Start-ups und -Innovationen

Deutschland benötigt ein KI-Wagniskapitalprogramm ausgestattet mit 10 Mrd. € über 5 Jahre, um KI-Startups zu fördern. Staatliche Fund-of-Funds sollten dazu genutzt werden, Mittel zielgenau und effektiv zu platzieren.

Impuls 4: Aufbau von KI-Clustern zur Förderung von Innovationen und Exzellenz in regionalen Ökosystemen

Deutschland sollte regionale KI-Cluster fördern, die räumliche Nähe mit technischer und wirtschaftlicher Exzellenz verbinden, um Innovationskraft zu maximieren und international Talente anzuziehen.

Impuls 5: Aufbau einer leistungsfähigen und souveränen digitalen Infrastruktur zur Stärkung der KI

Eine flächendeckende digitale Infrastruktur ist essenziell, um KI für Bürger und Unternehmen in der Breite nutzbar zu machen. Wir setzen uns dafür ein, GPU-Megacluster für Forschung und Industrie in Deutschland zu etablieren.

Impuls 6: Förderung der Anwendung von KI in Unternehmen

Bis 2030 sollten mindestens 80% aller deutschen Unternehmen KI-Anwendungen aktiv nutzen, um ihre Geschäfte zu optimieren und auszubauen.

Impuls 7: KI für den öffentlichen Sektor – Effizienzsteigerung und weniger Bürokratie

Bis 2029 sollte der Einsatz von KI in allen wesentlichen Behörden auf Bundes-, Landes- und Regionalebene etabliert werden, um Prozesse zu optimieren, Bürokratie abzubauen und Bürgerdienste zu verbessern.

Impuls 8: KI und Nachhaltigkeit – erschwingliche und saubere Energie für Deutschland

Deutschland sollte KI gezielt einsetzen, um die Energiewende zu unterstützen und die CO2-Emissionen im Energiesektor bis 2035 um mehr als 15% zu senken. Unser Land braucht eine sichere und bezahlbare Energieversorgung als Grundlage für technologiebasiertes Wachstum.

Impuls 9: Eine KI-Bildungsinitiative als Grundlage einer zukunftsfähigen Gesellschaft

Bis 2030 sollten mehr als 80% der Arbeitskräfte in Deutschland grundlegende KI-Kompetenzen besitzen, um den digitalen Wandel aktiv mitzugestalten.

Impuls 10: Ein klarer und sicherer rechtlicher Rahmen für KI und ein KI-Gütesiegel

Deutschland sollte bis 2026 einen flexiblen Rechtsrahmen für KI schaffen, der Innovation fördert, aber Missbrauch verhindert, und ein KI-Gütesiegel zur Förderung ethischer und transparenter KI einführen.

Impuls 11: Schaffung eines europaweiten KI-Ökosystems mit Deutschland als Schrittmacher

Deutschland sollte eine gestaltende Rolle beim Aufbau eines europäischen KI-Ökosystems übernehmen, um eine wettbewerbsfähige Alternative zu den USA und China zu etablieren.

Hier gibt’s mehr Infos zur Initiative "KI für Deutschland"

Fünf globale Robotik-Trends 2025

Das sind die wichtigsten Trends, die die Robotik und Automation im Jahr 2025 weltweit prägen werden. Gut zu wissen nicht nur für Robotik-Start-ups und -Gründer*innen.

Der Marktwert installierter Industrie-Roboter hat mit 16,5 Mrd. US-Dollar weltweit einen historischen Höchststand erreicht. Die künftige Nachfrage wird durch technologische Innovationen, neue Marktentwicklungen und die Erschließung neuer Geschäftsfelder angetrieben. Die International Federation of Robotics (IFR) – 1987 als nicht gewinnorientierte Organisation gegründet –, berichtet über die wichtigsten Trends, die die Robotik und Automation im Jahr 2025 prägen werden.

1. Künstliche Intelligenz – Physisch, analytisch, generativ

Der Trend zum verstärkten Einsatz künstlicher Intelligenz (KI) setzt sich fort: In der Robotik helfen verschiedene KI-Technologien dabei, ein breites Spektrum von Aufgaben effizienter auszuführen: Mit analytischer KI lassen sich große Datenmengen verarbeiten und analysieren, die von der Roboter-Sensorik erfasst werden. Dies hilft dabei, auf unvorhersehbare Situationen oder wechselnde Bedingungen in öffentlichen Räumen oder bei der Produktion von „High-Mix-Low-Volume-Aufgaben“ zu reagieren. Mit Bildverarbeitungssystemen ausgerüstete Roboter analysieren ihre Arbeitsschritte, um Muster zu erkennen und Arbeitsabläufe zu optimieren. Ziel ist beispielsweise, Tempo und Präzision zu steigern.

Roboter- und Chip-Hersteller*innen investieren aktuell in die Entwicklung spezieller Hard- und Software, die Umgebungen aus der realen Welt simulieren. Diese sogenannte physische KI ermöglicht es Robotern, sich selbst in solchen virtuellen Umgebungen zu trainieren. Dabei gemachte Erfahrungen treten an die Stelle traditioneller Programmierung. Solche generativen KI-Projekte zielen darauf ab, einen „ChatGPT-Moment“ für physische KI zu schaffen.

KI-gesteuerte Simulationstechnologie für Roboter dürfte sich sowohl in typischen industriellen Umgebungen als auch in Anwendungen der Servicerobotik durchsetzen.

2. Humanoide

Roboter in menschlicher Gestalt erregen große mediale Aufmerksamkeit. Die Vision: Roboter werden zu Allzweckwerkzeugen, die selbständig eine Spülmaschine beladen und gleichermaßen anderswo am Fließband arbeiten können. Robotik-Start-ups arbeiten an diesen humanoiden Alleskönnern.

Industrielle Hersteller*innen konzentrieren sich dagegen auf Humanoide, die zunächst individuelle Einzelaufgaben bewerkstelligen. Die meisten dieser Pilotprojekte laufen in der Automobilindustrie. Diese Branche spielt seit jeher eine Pionierrolle bei der Entwicklung von Roboteranwendungen. Das gilt sowohl für die Industrie-Robotik als auch für die Logistik und Lagerhaltung. Aus heutiger Sicht bleibt jedoch abzuwarten, ob humanoide Roboter einen wirtschaftlich tragfähigen und skalierbaren Business-Case für die breite industrielle Anwendung darstellen werden, insbesondere im Vergleich zu bereits bestehenden Lösungen.

Nichtsdestotrotz gibt es zahlreiche Anwendungen, die von der humanoiden Form profitieren könnten und Marktpotenzial für die Robotik bieten, beispielsweise in der Logistik und Lagerhaltung.

3. Nachhaltigkeit und Energieeffizienz

Die Erfüllung der nachhaltigen Entwicklungsziele der Vereinten Nationen (UN) und damit korrespondierender Regularien weltweit wird zu einer wichtigen Voraussetzung sich als Lieferant*in zu qualifizieren. Roboter spielen für Hersteller*innen eine Schlüsselrolle, wenn es darum geht, diese Ziele zu erreichen.

Grundsätzlich verringert Robotik mit ihrer Präzisionsarbeit die Verschwendung von Material und verbessert das Output zu Input-Verhältnis in Fertigungsprozessen. Diese automatisierten Systeme gewährleisten zudem eine gleichbleibende Qualität, die für Produkte mit langer Lebensdauer und minimalem Wartungsaufwand unerlässlich ist. Bei der Herstellung umweltfreundlicher Energietechnologien wie Solarzellen, Batterien für Elektroautos oder Recyclinganlagen sind Roboter für eine kosteneffiziente Produktion von entscheidender Bedeutung. Sie ermöglichen es Hersteller*innen, ihre Produktion schnell zu skalieren, um eine wachsende Nachfrage der Kund*innen zu befriedigen, ohne Kompromisse bei der Qualität oder Nachhaltigkeit einzugehen.

Darüber hinaus wird die Robotertechnologie dahingehend verbessert, Maschinen energieeffizienter zu machen: Die Leichtbauweise beweglicher Roboterkomponenten senkt beispielsweise deren Energieverbrauch, ebenso neue Standby-Modi, die die Hardware in eine energiesparende Parkposition bringen. In der Greifer-Technologie gibt es Fortschritte bei der Anwendung bionischer Lösungen, um z.B. eine starke Greifkraft bei sehr geringem Energieverbrauch zu erreichen.

4. Neue Geschäftsfelder und Kund*innenbranchen für die Robotik

In der Fertigungsindustrie gibt es insgesamt noch viel Potenzial für die Automation mit Robotern. Die meisten Betriebe im produzierenden Gewerbe zählen zu den kleineren und mittelgroßen Unternehmen (KMU). Aktuell stellen hohe Anfangsinvestitionen und Gesamtbetriebskosten für KMU jedoch eine Hürde für den Einsatz von Industrie-Robotern dar. Geschäftsmodelle wie Robot-as-a-Service (RaaS) sollen es Unternehmen erleichtern, von der Roboterautomatisierung zu profitieren, ohne eine festgelegte Kapitalsumme investieren zu müssen. RaaS-Anbietende, die sich auf bestimmte Branchen oder Anwendungen spezialisiert haben, können schnell anspruchsvolle Lösungen liefern. Darüber hinaus bietet die Low-Cost-Robotik Lösungen für potenzielle Kund*innen, für die ein Hochleistungsroboter überdimensioniert wäre. Viele Anwendungen haben geringe Anforderungen an Präzision, Traglast und Lebensdauer. Die Low-Cost-Robotik adressiert dieses neue „good enough“-Segment.

Abseits des produzierenden Gewerbes gehören Bauwirtschaft, Laborautomation und Lagerhaltung zu interessanten neuen Kund*innensegmenten. Branchenübergreifend wird die Nachfrage darüber hinaus von einem Ausbau inländischer Produktionskapazitäten in strategisch wichtigen Branchen angetrieben, deren Bedeutung aufgrund der jüngsten Krisen ins politische Bewusstsein gerückt ist. Die Automatisierung ermöglicht Hersteller*innen eine Rückverlagerung von Produktionskapazitäten näher zum/zur Kund*in ohne Einbußen bei der Kosteneffizienz.

5. Roboter gegen den Arbeitskräftemangel

Nach Angaben der Internationalen Arbeitsorganisation (ILO) leidet das verarbeitende Gewerbe weltweit weiterhin unter Arbeitskräftemangel. Einer der Hauptgründe dafür ist der demografische Wandel, der die Arbeitsmärkte in führenden Volkswirtschaften wie den Vereinigten Staaten, Japan, China, der Republik Korea und Deutschland belastet. Die konkreten Effekte sind zwar von Land zu Land unterschiedlich, aber in der Summe überall in der Lieferkette ein Grund zur Besorgnis.

Der Einsatz von Robotern verringert die Auswirkungen des Arbeitskräftemangels in der Fertigung deutlich. Mit der Automation von gefährlichen, schmutzigen oder repetitiven Tätigkeiten, können sich menschliche Arbeitskräfte auf interessantere und höherwertige Aufgaben konzentrieren. Roboter übernehmen Arbeiten wie ermüdende visuelle Qualitätskontrollen, gesundheitsschädliche Lackierarbeiten oder schweres Heben von Lasten. Technologische Innovationen wie einfache Bedienbarkeit, kollaborierende Roboter oder sogenannte mobile Manipulatoren helfen Lücken im Arbeitsprozess zu füllen, wann und wo immer sie benötigt werden.

Ausblick: KI und die Digitalwirtschaft

KI, politische Turbulenzen und Cookie-Fragezeichen: Die Digitalbranche wird auch 2025 vor herausfordernden Aufgaben stehen. Wie sie diesen begegnen kann, erläutern Swen Büttner und Christoph Schwarzmann von MGID Deutschland.

Das neue Jahr hat begonnen und noch sind alle Fragen offen: Welche neuen Chancen und Herausforderungen wird KI 2025 für die Digitalwirtschaft bereithalten? Wie geht es weiter rund um Cookies und Datenschutz? Und welche Auswirkungen werden die politischen Umwälzungen in Deutschland und den USA auf die Strategien und Erfolgsaussichten von Advertisern und Publishern haben? Hier fünf Thesen, welche Entwicklungen die Branche in diesem Jahr bewegen werden.

1. Mehrwert: KI geht 2025 endgültig über die Generierung von Creatives hinaus

Generative KI für die Erstellung von Creatives zu nutzen, hat sich fest etabliert und spart Zeit und Geld. Sowohl Advertiser als auch Publisher erkennen aber zunehmend, welche Möglichkeiten sich ihnen darüber hinaus eröffnen. Datengetriebene Ansätze, fundierte Analysen und die Prognose der Performance einzelner Kampagnen sind dabei nur die ersten Schritte. Zunehmend sind KI-Tools verfügbar, die nahezu das komplette Kampagnen-Management und den Media-Einkauf automatisieren und dadurch wesentlich schneller, kostengünstiger und effizienter gestalten. Gerade auch speziell für kleinere Brands werden sich – etwa im Bereich programmatischer Kampagnen – durch KI Möglichkeiten bieten, die bislang als zu komplex galten.

2. Turbulenzen: Politik bestimmt das erste Quartal

Der Amtsantritt von Donald Trump in den USA, Neuwahlen in Deutschland: 2025 beginnt politisch äußerst turbulent. Davon wird auch die Werbebranche nicht unberührt bleiben. Vorstellbar ist, dass Konsumenten angesichts unklarer Zukunftsaussichten erst einmal zurückhaltend agieren. Branding-Kampagnen könnten vor diesem Hintergrund von Kürzungen betroffen sein, während die Budgets für Performance-Kampagnen tendenziell stabiler bleiben dürften. Für Advertiser kann dies bedeuten, sich noch stärker auf eine exakte Zielgruppenauswahl zu konzentrieren und Ergebnisse genau zu evaluieren, um ihre Budgets optimal zu nutzen. In Deutschland könnten Verschiebungen im politischen Spektrum zudem dazu führen, dass rechtskonservative Medien und Narrative – von vielen Brands bislang strikt gemieden – höhere Akzeptanz finden. Dadurch können sich zwar zusätzliche Möglichkeiten ergeben, für Advertiser kann sich dies 2025 allerdings auch zu einer Frage der Moral entwickeln.

3. KI-Schattenseiten: Noch mehr Fake News, noch mehr Made-for-Advertising-Seiten

Neben den vielen Vorteilen der KI wird diese 2025 leider auch negative Trends weiter befeuern. So ist davon auszugehen, dass die Zahl so genannter MFA-Seiten – „Made for Advertising“, also dubiose, rein für Werbeschaltungen konzipierte Websites mit niedriger inhaltlicher Qualität – nochmals steigen wird. Gleiches gilt für die Verbreitung von Fake News. Der Grund dahinter ist simpel: Per KI lassen sich komplette MFA-Seiten, die zumindest auf den ersten Blick kaum noch von seriösen, legitimen Publishern zu unterscheiden sind, abstruseste Fake News und Verschwörungstheorien noch schneller und einfacher erstellen und monetarisieren. Ein Qualitätsproblem, dem sich auch in diesem Jahr die gesamte Werbebranche stellen muss.

4. Monetarisierung: Publisher müssen sich noch breiter aufstellen

Die Zeiten, in denen sich Publisher auf einige wenige Einnahmequellen beschränken konnten, sind definitiv vorbei. 2025 wird vielfach von einer weiteren Diversifizierung geprägt sein. Hier können beispielsweise Optionen wie direkte Partnerschaften, Abo-Modelle oder auch native Ads für viele Publisher eine stärkere Rolle spielen. Dies sorgt nicht nur für mehr Sicherheit und Stabilität, sondern kann gleichzeitig auch dazu beitragen, die Abhängigkeit von einzelnen großen Playern wie Google oder Facebook zu verringern. Selbst plötzliche Änderungen an Algorithmen oder der Infrastruktur dieser BigTech-Giganten treffen gut aufgestellte Publisher nicht so hart.

5. Cookies & Co.: Flexibilität ist Trumpf, First-Party-Daten stehen im Fokus

Das Hin und Her beim „Cookie-Aus“ wird vermutlich auch 2025 erst einmal weitergehen. Brands ziehen daraus jedoch zunehmend ihre Konsequenzen und setzen vermehrt auf einen Mix aus Cookie-basierten und Cookie-losen Strategien. Dadurch bleiben sie einerseits flexibel und tragen andererseits dem Datenschutz Rechnung, der noch weiter an Bedeutung gewinnen wird. Für Publisher steht weiter das Thema First-Party-Daten im Fokus. Sie müssen sich damit beschäftigen, ihre Daten auf clevere Weise zu sammeln, aufzubereiten und gewinnbringend zu nutzen. Positiver Nebeneffekt: Auf diese Weise können sie gleichzeitig engere Verbindungen zu ihren Partnern auf Advertiser-Seite aufbauen.

Was gehört in eine KI-Policy?

Recht für Gründer*innen: Über den verantwortungsvollen Umgang mit KI.

Künstliche Intelligenz (KI) ist längst Teil unseres Alltags und hält in Unternehmen auch zunehmend Einzug. Ob beim Erstellen von Texten, in der Datenanalyse oder bei der Automatisierung von Routine­aufgaben – KI ist ein starkes Werkzeug, das Unternehmen viele Vorteile bieten kann. Doch mit diesen Vorteilen kommen auch Verantwortung und Risiken, die eine klare und durchdachte KI-Policy erfordern.

Diese Einleitung zu einem Artikel über KI-Policies ist KI-generiert. Es ist so schön bequem und schnell gemacht: eines der gängigen LLM-Systeme online aufrufen, beispielsweise ChatGPT, und binnen Sekunden ist der Artikel fertig.

Ihr kennt das im Privaten, vor allem aber auch im Arbeitsumfeld. KI-Tools sind aus der Arbeitswelt nicht mehr wegzudenken. Die Nutzung von KI – insbesondere für berufliche Aufgaben – birgt jedoch Risiken. Manche KI neigt, falsch trainiert, zu diskriminierenden Entscheidungen, was z.B. im HR-Bereich gefährlich ist. Unbedacht erstellte Prompts können den Schutz von Geschäftsgeheimnissen aufs Spiel setzen. Die Datenschutzgrundsätze sind wie immer einzuhalten.

Generative KI schert sich, wenn wir als Nutzer*innen nicht da­rauf Acht geben, nicht um die Urheberrechte derer, deren Werke wir – ob bewusst oder unbewusst – verwenden oder verletzen. Zudem ist seit August 2024 die KI-Verordnung in der EU in Kraft und stellt an Unternehmen, die KI-Systeme und -Modelle entwickeln, anbieten oder betreiben, umfangreiche Anforderungen. Auch die mit KI einhergehenden Risiken sind nicht außer Acht zu lassen.

Seid ihr als Gründer*innen oder in sonst verantwortlicher Position in einem Unternehmen mit mehreren Mitarbeiter*innen tätig, müsst ihr euch Gedanken darüber machen, wie solche Risiken zu fassen und zu begrenzen sind. Tut ihr das nicht, drohen aus diversen Rechtsgrundlagen z.B. Schadensersatzforderungen, Bußgelder oder der Verlust an Assets – Dinge, die allerspätestens bei der nächsten Finanzierungsrunde negativ bewertet werden. In Bezug auf eure Belegschaft müsst ihr also Awareness für diese Themen schaffen und konkrete Vorgaben machen.

Denn eines ist klar: KI wird in eurem Unternehmen genutzt werden, ob mit oder ohne euer Wissen. Und bevor die Mitarbeiter*innen auf privaten Geräten sensible berufliche Aufgaben nicht reglementiert mittels ChatGPT & Co. lösen, beschreibt lieber beizeiten Dos and Don’ts, um sicherstellen, dass KI verantwortungsvoll, sicher und rechtskonform im Unternehmen eingesetzt wird.

Dazu dient eine die Belegschaft informierende und verpflichtende KI-Policy. Im Folgenden findest du einen Überblick darüber, welche Aspekte in eine solche Policy gehören.

1. Richtlinien für den Einsatz generativer KI am Arbeitsplatz

Generative KI-Modelle wie ChatGPT, DALL-E und andere erstellen Inhalte nach Maßgabe der Eingaben der Nutzenden. Bei diesen Prompts und bei der Verwendung der generierten Ergebnisse ist auf Folgendes zu achten:

  • Schutz sensibler Daten: Die Eingabe vertraulicher Informationen in KI-Modelle stellt ein erhebliches Risiko dar, da generative KI-Systeme auf großen Datenmengen trainiert sind und Informationen potenziell unkontrolliert verarbeiten und speichern. Die KI-Policy sollte explizit verbieten, sensible oder vertrauliche Informationen in generative KI-Systeme einzugeben, insbesondere, wenn diese extern betrieben werden. Die Policy sollte beschreiben wie mit sensiblen Daten umzugehen ist und welche Daten für die Verarbeitung durch KI-Systeme ungeeignet sind.
  • Einhaltung des Datenschutzes: Die KI-Policy sollte klarstellen, dass der Einsatz generativer KI-Tools den Anforderungen der Datenschutzgesetze (DSGVO, BDSG) entsprechen muss. Dazu gehören Vorgaben, wie personenbezogene Daten rechtssicher zu handhaben sind und welche dieser Daten überhaupt für den Einsatz von KI-Modellen geeignet sind. Zudem bedarf es Vorgaben zur Anonymisierung und Pseudonymisierung der Daten, daneben Transparenzvorgaben, um betroffene Personen über die Nutzung ihrer Daten zu informieren. Personenbezogene Daten in öffentlichen KI-Systemen einzusetzen, sollte möglichst untersagt werden.
  • Umgang mit geistigem Eigentum: Die Nutzung generativer KI-Modelle kann zu Problemen führen, wenn die KI auf geschütztem Material trainiert wurde, von dem/der Nutzenden urheberrechtlich geschützte Werke in den Prompt einbezogen werden oder die KI Werke erstellt, die bestehende Urheber- oder sonstige Schutzrechte verletzen. Die KI-Policy sollte ein Verbot der Verwendung von Werken enthalten, an denen nicht die für die Bearbeitung erforderlichen Rechte bestehen. Und sie kann Regelungen zur Überprüfung und Genehmigung von KI-erstellten Inhalten festlegen, etwa durch eine Rechtsabteilung oder eine speziell dafür zuständige Stelle.
  • Transparenz und Kennzeichnung: Die KI-Policy sollte festlegen, dass Inhalte, die mithilfe von generativer KI erstellt wurden, transparent gekennzeichnet werden. Dies trägt dazu bei, Missverständnisse zu vermeiden und sicherzustellen, dass die Herkunft von Texten und Bildern klar erkennbar ist. Diese Kennzeichnungspflicht sollte insbesondere dann gelten, wenn KI-generierte Inhalte veröffentlicht werden, aber auch im internen Gebrauch.
  • Positivliste erlaubter KI-Systeme: Um die Mitarbeiter*innen mit der Anwendung dieser Vorgaben auf einzelne am Markt angebotene KI-Systeme nicht allein zu lassen, kann eine KI-Policy auch eine Auflistung der vom Unternehmen freigegebenen Systeme enthalten. Voraussetzung ist dafür natürlich, dass diese Systeme vorab entsprechend fachlich geprüft wurden. Das kann schwierig sein, weil sich Anbieter*innen meist nicht in die Karten schauen lassen.


2. Richtlinien für die Entwicklung und Implementierung von KI

Auch wenn ihr in eurem Unternehmen KI-Systeme entwickeln oder implementieren wollt, sind ethische, rechtliche und technische Anforderungen in einer KI-Policy zu adressieren.

  • Fairness, Transparenz und Nichtdiskriminierung: KI-Systeme können, wenn sie auf verzerrten Datensätzen trainiert werden, Diskriminierung oder Vorurteile reproduzieren. Eine KI-Policy sollte deshalb klare ethische Richtlinien fest­legen, die sicherstellen, dass die entwickelten Modelle fair, transparent und frei von Diskriminierung sind. Ein mögliches Vorgehen ist, regelmäßige Audits und Bias-Tests durchzuführen und in der Policy verpflichtend vorzusehen, um Verzerrungen frühzeitig zu erkennen und zu beheben.
  • Datenschutz und Datensicherheit: Der verantwortungsvolle Umgang mit Nutzer*innendaten ist eine der wichtigsten Anforderungen in der KI-Entwicklung. Die KI-Policy sollte festlegen, dass bei der Verarbeitung personenbezogener Daten durch die KI strenge Schutzanforderungen, am besten strenge Begrenzungen, gelten. Rein automatisierte Entscheidungen sind schon laut DSGVO verboten. Es sollten nur die für die jeweilige Anwendung notwendigen Daten erhoben und verarbeitet werden, und diese Daten sollten weitestgehend anonymisiert oder pseudonymisiert werden. Regelungen für den Zugang zu diesen Daten sowie Maßnahmen zur Datensicherheit (wie Verschlüsselung und Zugriffskontrollen) sollten ebenfalls Bestandteil der Policy sein.
  • Überprüfung auf Halluzinationen und Fehlinterpretationen: Generative KI-Modelle neigen dazu, Informationen zu „halluzinieren“, also falsche oder ungenaue Inhalte zu erstellen. In der KI-Policy sollte festgelegt sein, dass entwickelte KI-Modelle regelmäßig auf ihre Genauigkeit und Zuverlässigkeit überprüft werden. Dies kann durch vorgeschriebene Tests und Simulationen geschehen, bei denen die KI in verschiedenen Szenarien eingesetzt und auf ihre Fähigkeit, korrekte Ergebnisse zu liefern, geprüft wird. Es sollten auch definiert werden, wie Fehler erkannt und behoben werden können.
  • Erklärbarkeit und Nutzer*infreundlichkeit: Komplexe KI-Modelle sind oft schwer verständlich und wirken wie eine Black Box, deren Entscheidungen für Außenstehende kaum nachvollziehbar sind. Die KI-Policy sollte daher sicherstellen, dass die KI so gestaltet ist, dass ihre Funktionsweise für Nutzer*innen transparent und nachvollziehbar ist. Dies ist insbesondere dort wichtig, wo KI-Entscheidungen schwerwiegende Auswirkungen haben können. Ihr solltet sicherstellen, dass für Nutzer*innen eine verständliche Erläuterung darüber bereitgestellt wird, wie und warum die KI zu einem bestimmten Ergebnis gelangt ist. Das ist Voraussetzung für Kontrolle und rechtskonformen Betrieb der KI.
  • Gesetzeskonformität gemäß KI-Verordnung: Nicht zuletzt hat die Europäische Union die KI-Verordnung in Kraft gesetzt, die strenge Anforderungen an die Entwicklung und Nutzung von KI stellt. Die KI-Verordnung dient der Produktsicherheit und verlangt zunächst eine Risikoeinschätzung für die KI-Systeme. Die Maßgaben für eine solche Einschätzung sollten in der Policy angerissen und No-Gos für die Entwicklung von Funktionalitäten, die zu den laut KI-Verordnung verbotenen KI-Anwendungen gehören, ausgesprochen werden. Für sogenannte Hochrisiko-­KI-Systeme gelten besondere Anforderungen, die bei einer Entwicklung mitgedacht werden müssen, wofür eine KI-Policy zumindest sensibilisieren sollte. Die im Einzelfall geforderte Überprüfung und Einstufung des jeweiligen Systems oder Modells kann eine Policy nicht leisten. Die initialen und regelmäßigen Überprüfungen sowie Risikobewertungen sollte sie aber fordern.
  • Regelmäßige Überwachung und Wartung der KI-Modelle: KI-Modelle entwickeln sich weiter und benötigen regelmäßige Überwachung und Wartung, um die Leistung zu optimieren und mögliche Fehler zu minimieren. Die KI-Policy sollte eine solche sich wiederholende Maintenance festlegen, etwa die schon erwähnten regelmäßigen Aktualisierungen, Fehler­behebungen und Performance-Überprüfungen, damit die KI-Systeme immer den aktuellen Standards und Anforderungen entsprechen.


3. Übergreifende Ziele und Vorgaben einer KI-Policy

Eine KI-Policy sollte nicht nur detaillierte Vorgaben zur Nutzung und Entwicklung von KI enthalten, sondern auch allgemeine Leitlinien und Prinzipien für den Einsatz von KI im Unternehmen, um ein Bewusstsein für die Potenziale und Risiken der Technologie zu schaffen.

  • Regelmäßige Überprüfung und Anpassung: Da sich KI-Technologien und gesetzliche Anforderungen stetig weiterentwickeln, sollte auch die KI-Policy regelmäßig überprüft und aktualisiert werden. Dies hilft sicherzustellen, dass das Unternehmen stets auf dem neuesten Stand ist und seine KI-Systeme konform mit den aktuellen gesetzlichen, ethischen und technischen Standards sind. Es ist empfehlenswert, regelmäßige Audits durchzuführen und die Policy an neue Entwicklungen in der KI-Forschung und Gesetzgebung sowie an die Marktanforderungen anzupassen.
  • Unternehmenskultur in Bezug auf KI: Eine KI-Policy sollte dazu dienen, den transparenten und offenen Umgang mit KI in allen Unternehmensbereichen und damit die Akzeptanz für KI-Systeme sowohl innerhalb des Unternehmens als auch bei Kund*innen und Partner*innen zu fördern. Dazu gehört auch, dass das Unternehmen offenlegt, in welchen Bereichen KI eingesetzt wird und welche Entscheidungen die Technologie beeinflusst. Letztendlich ist die KI-Policy ein Ins­trument zur Förderung einer verantwortungsvollen und ethischen Unternehmenskultur in Bezug auf KI. Das schützt letztlich auch die Integrität und die Werte des Unternehmens.
  • Schulungen und Sensibilisierungsmaßnahmen: Um einen solchen kompetenten und verantwortungsvollen Umgang mit KI zu erreichen, sind regelmäßige Schulungen und Sensibilisierungsmaßnahmen für die Mitarbeiter*innen zu den hier genannten Aspekten vorzusehen.

Fazit

Dieser Artikel kann nur einen groben Überblick und Rahmen geben. Die konkreten Inhalte einer auf eure Belange und Nutzungsformen passenden Policy müsst ihr in Anschauung der Spezifika der eingesetzten oder zu entwickelnden KI-Systeme erarbeiten. Das kann auch schlecht an KI delegiert werden: Der Rest des eingangs erwähnten KI-generierten Artikels war nicht wirklich brauchbar, ebenso die testweise mit KI erstellten Policies. Dafür braucht es professionelle Unterstützung.

Der Autor Dr. Daniel Michel, LL.M. ist seit 2004 als Rechtsanwalt im Bereich IT/IP/Technologie tätig. Nach Stationen in spezialisierten und Großkanzleien betreibt er seit 2018 seine eigene Rechtsberatung im Raum München, www.datalawcounsel.com

Wie Online Casinos Zahlungsinnovationen nutzen, um Auszahlungen zu beschleunigen

Warum eine schnelle Zahlungsabwicklung für Online Casinos heute so wichtig ist wie nie zuvor und wie sie die Zufriedenheit von Spielern sowie das Geschäftswachstum steigern kann.

In der dynamischen Branche der Online Casinos ist eine reibungslose und effiziente Zahlungsabwicklung von größter Bedeutung. Spieler in allen Ländern verlangen schnelle, sichere und problemfreie Transaktionen. Eine unkomplizierte Zahlungsabwicklung ist dementsprechend ein entscheidender Faktor für den Erfolg von Anbietern von Online-Glücksspiel. Wir untersuchen, wieso genau eine schnelle Zahlungsabwicklung für Online Casinos heute so wichtig ist wie nie zuvor und wie sie die Zufriedenheit von Spielern sowie das Geschäftswachstum steigern kann.

Vorteile schneller Auszahlungen

Um in einem konstant wachsenden und kompetitiven Markt die Bedürfnisse von Glücksspielfans zu erfüllen, müssen sich Anbieter mit neuen Technologien bekannt machen. Im besten Fall ziehen diese nämlich noch mehr Spieler an. Doch was genau bringen schnellere Auszahlungen den Anbietern? Eine dieser Verbesserungen sind schnelle Auszahlungen, von denen sowohl Spieler als auch Casinos profitieren. CasinoTopsOnline.com, eine führende Ressource für Spieler in Deutschland, betont, wie wichtig es ist, Plattformen zu wählen, die schnelle Auszahlungen bevorzugen. Hier ist, warum schnelle Auszahlungen vorteilhaft sind:

  • Mehr Vertrauen: Schnelle Auszahlungen erhöhen das Vertrauen eines Spielers in die Plattform erheblich. Ein Glücksspielanbieter beweist seine Zuverlässigkeit, wenn er Auszahlungen regelmäßig und umgehend bearbeitet. Für Spieler ist das unabdingbar, um sich auf der Webseite sicher zu fühlen.
  • Besseres Geldmanagement: Spieler können ihr Geld effektiver verwalten, wenn sie nicht lange darauf warten müssen. Anstatt Guthaben im System des Casinos liegen zu haben, können Spieler ihre Gewinne umgehend auf ihre Bankkonten oder E-Wallets überweisen. Dieser schnelle Zugriff ermöglicht eine bessere Budgetierung, insbesondere für diejenigen, die regelmäßig spielen.
  • Verbessertes Spielerlebnis: Das allgemeine Spielerlebnis wird verbessert, wenn Spieler keine langen Wartezeiten bei Auszahlungen haben. Dadurch können sie sich vollkommen auf das Spielen konzentrieren. Diese Seelenruhe führt zu einem angenehmeren und stressfreien Spielerlebnis.
  • Fördert verantwortungsbewusstes Spielen: Schnelle Zahlungen können ebenso verantwortungsbewusstes Spielen fördern. Spieler verspielen ihr Guthaben seltener, wenn sie leicht auf ihre Gewinne zugreifen und diese auf ihr Konto überweisen können.

Immer mehr innovative Zahlungssysteme in Online Casinos

Aufgrund der vielfältigen Bedürfnisse der Spieler, arbeiten viele Anbieter schon heute mit neuen und schnelleren Technologien. Die neuen Methoden basieren nicht auf traditionellen Bankgeschäftsmodellen. Sie bieten jedoch mehr Sicherheit, Geschwindigkeit und Komfort. Zu den wichtigsten fortschrittlichen Zahlungsmethoden gehören:

Kryptowährungen

Kryptowährungen wie Bitcoin, Ether und Litecoin haben die Branche der Online Casinos revolutioniert. Die digitalen Währungen bieten Spielern Anonymität, schnelle Transaktionen und niedrige Gebühren. Liegt Spielern ihre Privatsphäre am Herzen, bieten Kryptowährungen ein hohes Sicherheitsmaß. Herkömmliche Zahlungsmethoden können das nicht leisten. Darüber hinaus ist durch die Blockchain-Technologie Transparenz und Fairness bei jeder Transaktion gewährleistet.

Mobile Zahlungen

Zusammen mit der zunehmenden Beliebtheit des mobilen Glücksspiels sind mobile Zahlungsmethoden wie Apple Pay, Google Pay und Pay by Phone mittlerweile breit akzeptiert. Das ermöglicht schnelle Einzahlungen direkt vom Smartphone. Spieler können ihre Spielkonten mit mobilen Zahlungen aufladen, immer und überall.

E-Wallets

Für alle, die häufig Online Casinos besuchen, sind E-Wallets geläufige Zahlungsmöglichkeiten. E-Wallets, die in derselben Liga wie PayPal, Skrill und Neteller spielen, gewannen bei zahlreichen Glücksspielfans im Laufe der Jahre an Beliebtheit.

Prepaid-Karten

Ein weiteres beliebtes Mittel für Transaktionen in Online Casinos sind Prepaid-Karten wie die Paysafecard. Die Karten enthalten einen festgelegten Geldbetrag, den man vorab bezahlt, wenn man sie kauft. So behalten Spieler den Überblick über ihre Ausgaben und überschreiten ihre eigenen Limits nicht. Das Guthaben ist normalerweise sofort auf dem Casino-Konto verfügbar. Einziger Nachteil der Karten? Die Auszahlung muss auf ein anderes Zahlungsmittel erfolgen.

Technologische Fortschritte, die sofortige Auszahlungen ermöglichen

Letztendlich ist es zahlreichen technologischen Innovationen zu verdanken, dass sofortige Auszahlungen heute möglich sind:

  • KI und maschinelles Lernen: Künstliche Intelligenz und Algorithmen für maschinelles Lernen erleichtern die Verifizierungsverfahren, die normalerweise bei Auszahlungen die längste Zeit in Anspruch nehmen. Durch automatische Systeme zur Betrugserkennung und automatisierte Identitätsprüfung verkürzen die Technologien die Zeit, die für eine Auszahlung nötig ist.
  • Blockchain-Technologie: Kryptowährungen und Blockchain-Technologie beeinflussen den Sektor des Online-Glücksspiels immer mehr. Blockchain-Transaktionen sind schnell vollbracht und für Spieler, die Kryptowährungen wie Bitcoin, Ether und Monero verwenden, sicher. Die Dezentralisierung ermöglicht zudem weniger Abhängigkeit von traditionellen Banksystemen, von denen die meisten in puncto Transaktionen nicht die schnellsten sind.
  • Verbesserte Zahlungsgateways: Diese sind ein Plug-in-Zahlungskit für sofortige Zahlungsformen wie E-Wallets, Prepaid-Karten und direkte Bank-zu-Bank-Zahlungen. Ausgestattet mit hochentwickelten Betrugserkennungs- und Sicherheitsfunktionen sorgen die Gateways für zusätzliche Schnelligkeit und Sicherheit bei jeder Transaktion.
  • Mobile Technologie: Die weit verbreitete Nutzung von Smartphones und mobilen Banking-Apps ermöglichte sofortige Auszahlungen überall und jederzeit. Spieler können Zahlungen direkt auf dem Mobilgerät beantragen und empfangen, was das Nutzererlebnis erheblich verbessert.

Herausforderungen: Zurechtfinden im Regulierungslabyrinth

Was ist die größte Herausforderung für Zahlungslösungen in Online Casinos? Die Regulierung. Wenn neue Technologien wie Kryptowährungen und Blockchain den Markt stürmen, versuchen die Regulierungsbehörden mitzuhalten. In verschiedenen Ländern gelten unterschiedliche Gesetze, was es für Online Casinos schwierig macht, weltweit ein einheitliches Erlebnis zu gewährleisten.

Außerdem ist es eine Herausforderung, sicherzustellen, dass all diese Innovationen den Vorschriften zur Geldwäschebekämpfung (AML) und zur Kundenidentität (KYC) entsprechen.

Was man in Zukunft erwarten kann

Auch wenn es so wirkt, als wären wir am Höhepunkt moderner Technologien angelangt, ist all das erst der Anfang. User können noch folgende Trends in den nächsten Jahren erwarten:

  • Smart Contracts
    Smart Contracts sind Verträge, die in Zukunft automatisch ausgeführt werden. Weil sie auf der Blockchain programmiert sind, brauchen sie keine manuellen Prüfungen.
  • Künstliche Intelligenz (KI)
    Doch die Technologie soll noch weiter ausgebaut werden. Mit neuen Updates wird die Betrugserkennung und -prävention weiter verbessert werden.
  • Zentralbank-Digitalwährungen (CBDCs)
    Wenn es um grenzüberschreitende Transaktionen geht, würde mit der Einführung von CBDCs eine neue Phase schneller und unkomplizierter Überweisungen eingeläutet werden.

Fazit

Die Zukunft des Online-Glücksspiels liegt zweifellos in sofortigen Auszahlungen. Angesichts der technologischen Entwicklung, die die Branche weiterhin auf Trab hält, ist es für die Glücksspielanbieter von entscheidender Bedeutung, den Wünschen der Nutzer immer einen Schritt voraus zu sein.

Durch die Einführung von Innovationen, die auf Blockchain-Technologie sowie künstlicher Intelligenz und funktionaler Mobiltechnologie basieren, können Online Casinos nahtloses Gameplay in einem sicheren Rahmen ermöglichen. Jedoch müssen sich die Betreiber dafür oft durch einen regulatorischen Dschungel kämpfen.

Marketing-Trends 2025

Führende Marketing-Expert*innen geben Einblick in Perspektiven, Hoffnungen und Strategien für das kommende Jahr.

Marketing und Kommunikation müssen konstant weitergedacht werden. Gründe dafür gibt es genug – ob Digitalisierung und KI oder ein zunehmender Wettbewerb in wirtschaftlich unsicheren Zeiten. Gründer*innen, CEOs und Kommunikationsprofis von ToolTime, kollex, Creditsafe, good healthcare group, puzzleYOU und Mashup Communications zeigen, welche Trends Fach- und Führungskräfte 2025 erwarten.

Visuelles Storytelling mit Ecken und Kanten statt KI-Perfektion

In einer Zeit, in der uns KI-optimierte, makellose Visuals eine glattgebügelte Welt präsentieren, setzt sich 2025 ein gegenläufiger Trend durch: Echtheit. Sie wird zur Währung, um sich inmitten der perfektionierten Bilderflut abzuheben. Marken, die im digitalen Raum Nähe schaffen wollen, werden sich bewusst von der sterilen Hochglanz-Ästhetik der KI lösen. Das heißt: Statt in dämlich-hübschen KI-Avataren à la Emma von der Deutschen Zentrale für Tourismus liegt die Zukunft in realen Geschichten und echten Menschen mit Ecken und Kanten. Eine bewusst ungeschliffene Brand mit Charakter schafft mehr Nähe und Vertrauen als ein aufpoliertes oder ganz und gar Fake-Visual. 2025 gilt es, die Chance des visuellen Storytellings zu nutzen, statt bloß technischer Perfektion nachzueifern.