Aktuelle Events
Warum Fleisch, wenn es auch Sonnenblumen gibt?
Langsam, aber stetig entscheiden sich immer mehr Deutsche für weniger oder sogar gar keinen Fleischkonsum. Doch fleischlose Alternativen etwa auf Sojabasis haben keine reine Klimaweste. Das Münchner Start-up Planty Of Meat setzt daher auf Sonnenblumen und verspricht echten Fleischgeschmack.
Der Oktober 2022 war der wärmste seit Beginn der Wetteraufzeichnungen in Deutschland. Die hiesigen Sommer eilen seit Jahren von einem Temperaturrekord zum nächsten – während viele Ackerflächen, Waldböden und private Rasenflächen regelrecht verdorren. Es ist nicht mehr von der Hand zu weisen: Der Klimawandel ist im vollen Gange und verändert das Wetter hierzulande dramatisch.
Vor dem Hintergrund dieser Entwicklungen fragen sich mehr und mehr Deutsche nach der eigenen Rolle, dem eigenen Klima-Fußabdruck und ihrer persönlichen Verantwortung: Die Zahl der Menschen, die zumindest häufiger als früher vom Auto aufs Fahrrad umsteigen, nimmt zu. Und auch bei den Ess- und Verbrauchsgewohnheiten der Konsumentinnen und Konsumenten zeigt sich ein Umdenken. So geht der Fleischkonsum – wenn auch im internationalen Vergleich nach wie vor auf sehr hoher Basis – leicht zurück.
Fleischkonsum der Deutschen: Umdenken hat eingesetzt
Im Jahr 2021 summierte sich der menschliche Verzehr von Fleisch hier in Deutschland auf rund 55 kg pro Kopf, ist bei Statista nachzulesen. Weiter heißt es dort: „Der Gesamtverbrauch, in dem der Verbrauch von Tierfutter, die industrielle Verwertung sowie die Produktverluste berücksichtigt sind, summierte sich auf etwa 81,7 kg. Die in Deutschland am meisten konsumierte Fleischsorte ist Schweinefleisch. Es folgen Geflügel mit rund 13,1 kg sowie Rindfleisch mit etwa 9,4 kg pro Kopf. Die tendenziell sinkende Konsummenge von Fleisch in Deutschland ist vor allem auf die Zurückhaltung gegenüber dem Schweinefleisch zu erklären. Der durchschnittliche Gesamtverbrauch von Schweinefleisch sank seit dem Jahr 1991 um rund acht Kilogramm.“
Wesentliche Gründe für den Rückgang sind die zahlreichen Tierzuchtskandale der jüngeren Vergangenheit, Berichte über teils katastrophale Bedingungen bei der Haltung und dem Schlachten der Tiere, aber eben auch das steigende Bewusstsein über die immens hohen direkten und indirekten Kohlendioxid- und Methanemissionen bei der Nutztierzucht, die das Weltklima stark belasten.
Die Einsicht und der Wille zur fleischärmeren bis gar zur fleischlosen Ernährung ist bei vielen Menschen da. Wäre da nicht die Sorge, auf den dem Menschen regelrecht angeborenen Fleischgeschmack verzichten zu müssen.
Fleischersatz mit vollem Fleischgeschmack
Diese Sorge hatte auch Johannes Biel, als er 2019 das Unternehmen Planty Of Meat in Garching gründete: „Wir möchten natürlich konsumieren, gleichzeitig wollen wir unseren Kindern aber auch eine intakte Umwelt übergeben und nicht ohne Rücksicht auf Verluste leben.“ Als sich Johannes Biel mit dem Gedanken trug, eine „fleischlose Firma“ zu gründen, hatte er bereits als Fleischimporteur Karriere in der klassischen Industrie gemacht. Wie passt das zusammen? Seine Antwort: „Sicherlich sind wir ein Traditionsunternehmen, auf was wir sehr stolz sind. Dennoch möchten wir uns aber dem Zeitgeist nicht verwehren und auf aktuelle Trends eingehen. Folglich ist Planty Of Meat unsere Auflösung dieses Konflikts.“ Als Fleischimporteur kennt Biel die Bedürfnisse der Deutschen bestens – und will daher auch beim Geschmack keine großen Abstriche machen. Sein Motto: Was nach Fleisch schmeckt, muss kein Fleisch enthalten. Dabei will er aber keinen Zwang ausüben, sondern Optionen aufzeigen: mal mit, mal ohne Fleisch, je nach Lebenseinstellung, Lust und Laune.
Wettbewerber am Markt für fleischlose Produkte gibt es zahlreich. Als Fleischersatz bieten sich viele Dinge an: Tofu, Seitan, Soja. Tatsächlich enthalten Seitan und Soja beinahe genauso viel Eiweiß wie Fleisch, unverarbeitet aber kaum Fett und keine Harnsäure. Doch die gesunden Inhalte aus Soja und Weizen wie Vitamine, Mineralstoffe und Ballaststoffe werden bei der Eiweißgewinnung herausgelöst.
Planty Of Meat: Sonnenblumen mit weißerer Weste als Soja
Hinzu kommt auf der Negativbilanz: Das sehr proteinreiche und damit begehrte Soja erreicht mit keiner wirklich reinen Weste die deutschen Supermärkte und später die Teller der Verbraucherinnen und Verbraucher hierzulande. Für die Ausweitung der Ackerfläche werden etwa in Südamerika riesige Wald- und Savannenflächen umgewandelt. Auf diese Weise gehen einzigartige Lebensräume für Pflanzen und Tiere verloren, fruchtbarer Boden wird zerstört und Wasser verseucht.
Planty Of Meat dagegen setzt auf Fleischersatzprodukte auf Basis von Sonnenblumen und Weizen. Diese stammen nicht aus fernen Regionen und haben dadurch keine langen Transportwege hinter sich. Produziert wird in den Niederlanden.
Diese Artikel könnten Sie auch interessieren:
Jakob Koenen: Mit 18 zum LegalTech-Start-up-Gründer
Die Sovereign AI Betriebs GmbH – 2025 von Jakob Koenen und seinem Vater Prof. Dr. Andreas Koenen mit Sitz in Berlin gegründet – entwickelt spezialisierte KI-Plattformen für die juristische Praxis.
Ein Technologie-begeisterter Abiturient, der schon mit 15 Jahren Jura-Vorlesungen besucht, gründet ein LegalTech-Start-up. Partnerschaftlich an seiner Seite agiert sein Vater, ein renommierter Professor für Baurecht. Das ist das Fundament der Sovereign AI Betriebs GmbH, die in Berlin antritt, das Rechtswissen ganzer Berufs-Generationen in eine juristisch kuratierte KI zu überführen. Herzstück des Unternehmens ist Sovereign Legal AI. Die Plattform bereitet juristische Fragen systematisch, verständlich und nachvollziehbar auf.
„Wir wollen das Recht aus der Blackbox holen“, sagt Jakob Koenen, Gründer und Geschäftsführer der Sovereign AI Betriebs GmbH. „Unsere KI soll kein Ersatz für Anwältinnen und Anwälte sein, sondern ein intelligentes Werkzeug, das Wissen strukturiert, Orientierung gibt und den Zugang zum Recht demokratisiert.“
Rechtspraxis-Know-how, digitalisiert für den Alltag
Die Idee zu Sovereign Legal AI entstand in einem Generationenprojekt. Prof. Dr. Andreas Koenen, Kanzleiinhaber, Fachanwalt und Herausgeber zahlreicher Werke zum Bau- und Architektenrecht, hat über Jahrzehnte beobachtet, wie Rechtswissen in der Praxis verloren geht, weil es zu spät, zu komplex oder zu exklusiv vermittelt wird.
„Das Recht wird beim Bauen oft erst dann herangezogen, wenn es knallt“, sagt Koenen. „Juristinnen und Juristen gelten als Ausputzer, nicht als Geburtshelfer. Sovereign Legal AI will das ändern. "Wir liefern Projektbeteiligten vom Architekten, Planer bis zum Bauherrn einen Kompass, der schon vor Konflikten Orientierung bietet; mit juristisch fundierter Systematik, aber barrierefrei zugänglich“, so Koenen weiter.
Die Wissensbasis der Sovereign Legal AI umfasst unter anderem kommentierte Urteile, systematisch aufbereitete Rechtsinformationen sowie Fachbeiträge von Anwältinnen und Anwälten zu typischen Praxisproblemen. Alle Inhalte sind mit Originalquellen aus Gesetz, Rechtsprechung und Literatur belegt, was den entscheidenden Unterschied zu generativen „Blackbox-Systemen“ markiert.
Neue Plattform für juristische Teilhabe
Sovereign Legal AI entstand in Zusammenarbeit mit den Anwältinnen und Anwälten der Kanzlei Koenen Bauanwälte. Die künstliche Intelligenz (KI) wurde entlang echter Fallarbeit trainiert und in einer Beta-Phase getestet. Dabei versteht sich die KI als Community-Projekt: Nutzende geben Feedback, benennen Lücken und tragen so zur Weiterentwicklung bei. Auf diese Weise wächst die KI mit der Praxis. Im Wissens-Ökosystem von Sovereign befinden sich auch die Austausch-Plattform Sovereign Community und der stationäre Sovereign Store in Münster. Beide sind Teil derselben Markenfamilie und werden von der Sovereign GmbH betrieben. Partner-, Lizenz- und Servicemodelle finanzieren das Projekt. „Wir schaffen eine KI-Plattform, die juristisches Wissen lebendig hält“, so Jakob Koenen. „Das ist Unternehmensnachfolge im besten Sinne. Das Wissen einer Generation wird nicht vererbt, sondern transformiert.“
Junger Gründer mit Tech-DNA
Dass Jakob Koenen früh Verantwortung übernimmt, überrascht kaum. Mit 11 wollte er bereits eine Web-Agentur gründen, erschuf in diesem Zuge den Digitalauftritt eines Handwerksunternehmens. Mit 15 hat er mit Unterstützung seiner Eltern beantragt, frühzeitig als geschäftsfähig erklärt zu werden und gründete nach der Bewilligung sein erstes Unternehmen. Heute ist er Gründer, App-Entwickler und Geschäftsführer des Berliner LegalTech-Unternehmens. Er arbeitet mit einem Netzwerk aus externen Entwicklerinnen und Entwicklern sowie Fachleuten an der technischen Weiterentwicklung von Sovereign Legal AI. Aktuell suchen er und sein Vater als Herausgeber der Inhalte nach Co-Autor*innen und Partner*innen, die weitere juristische Rechtsbereiche wie Energierecht oder IT-Recht innerhalb der KI für sich erschließen.
Vorsicht vor diesen KI-Versuchungen
Allzu großes Vertrauen in GenAI ist fahrlässig, dennoch prüfen nur rund ein Viertel der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit. Das sind die größten Gefahren und effektivsten Gegenmaßnahmen.
Die Leistung und die Zuverlässigkeit von KI-Assistenten nehmen gefühlt weiter zu. Doch wer in den letzten Wochen intensives Prompting bei ChatGPT, Perplexity und Co. betrieben und die Ergebnisse eingehend analysiert hat, fühlte sich in diesem Gefühl nicht bestätigt. Im Gegenteil: Die Qualität der generierten Antworten lässt neuerdings öfter zu wünschen übrig. Auf YouTube gibt es zahlreiche Videos zu diesem Phänomen, das sich offenbar auch die Herstellenden nicht so ganz erklären können, aber auch klassische Medien berichten darüber. In Anbetracht der Tatsache, wie abhängig sich viele Menschen im Berufsleben schon heute von GenAI-Tools gemacht haben, ist dieser Trend erschreckend und ernüchternd. Ein blindes Vertrauen in die digitalen Helfer aus der Familie generativer KI birgt zudem großes Schadenspotenzial, etwa dann, wenn sich Ärzt*innen bei der Diagnose auf sie stützen oder Entwickler*innen von der KI vorgeschlagene Frameworks ohne Sicherheitscheck implementieren.
Völliges Vertrauen in GenAI ist also, zurückhaltend formuliert, mindestens gewagt. Die Situation ist ernst und erfordert von GenAI-Anbietenden ein Mindestmaß an Qualitätssicherung – offenbar kein einfaches Unterfangen. Bis dahin ist es wichtig, eigene Maßnahmen zu ergreifen, um nicht in die Falle der folgenden vier Qualitätskiller zu geraten.
1. Halluzinationen
KI-Assistenten wie ChatGPT und Co. wurde die Aufgabe erteilt, Antworten zu liefern – koste es, was es wolle. Wenn die Wissensbibliothek nicht ausreicht, um komplexe Sachverhalte zu beantworten, fängt generative KI an, sich etwas auszudenken. Die von solchen Halluzinationen ausgehende Gefahr ist bekannt. Umso bedrückender ist die Tatsache, dass laut einer aktuellen Studie nur rund ein Viertel (27 %) der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit prüfen. Das sind zwar immerhin sieben Prozentpunkte mehr als bei gewöhnlichen Inhalten aus dem Internet, wie eine Studie des PR-COM Research Lab belegt, aber noch immer viel zu wenige.
Gegenmaßnahmen: Wer GenAI nutzt, sollte ausnahmslos alle von ihr produzierten Inhalte überprüfen. Dazu sollten User*innen insbesondere die von der KI verwendeten Primärquellen checken oder – wenn möglich – Expert*innen zur Prüfung der Korrektheit der Antworten zurate ziehen.
2. Bias
Die Anbieter*innen aktueller KI-Assistenten haben sehr viel Arbeit in ihre Produkte gesteckt, um den Bias, also die Voreingenommenheit ihrer Modelle auszumerzen und sie zur Vorurteilsfreiheit zu erziehen.
Verlassen sollten sich User*innen auf die moralische und ethische Unantastbarkeit ihrer Modelle dennoch nicht. Zwar ist es unwahrscheinlich, dass Produkte großer Hersteller*innen noch rassistische, sexistische oder sonstige ethisch fragwürdige Ansichten vertreten, aber komplett ausgeschlossen ist es eben nicht. Noch relativ hoch ist die Gefahr zudem bei der Nutzung von kostenlosen GenAI-Assistenten oder Nischen-Tools.
Gegenmaßnahmen: Auch im Zusammenhang mit Bias gilt es, die Ergebnisse einer KI-Befragung immer genauestens zu checken und mit geltenden Gesetzen und den vorherrschenden Wertevorstellungen unserer Gesellschaft abzugleichen. Wer dubiose KI-Tools meidet, kann sich zudem viel Ärger ersparen.
3. Content-Kannibalisierung
Immer mehr KI-generierter Content flutet das Internet – die logische Folge der zunehmenden Nutzung von GenAI-Assistenten. Leider trainieren KI-Entwickler*innen ihre Chatbots und deren zugrunde liegende Sprachmodelle unter anderem mit genau diesen Inhalten. Und schlimmer noch: Der exponentiell steigende KI-Inhalt ist darüber hinaus auch der Wissensschatz, auf den die KI für ihre Antworten zurückgreift. Dadurch entsteht ein Teufelskreis aus KI, die sich irgendwann nur noch mit von ihr selbst generierten Inhalten trainiert und auch nur noch von ihr produzierten Content als Basiswissen verwendet. Der Mensch wird aus dieser Gleichung immer weiter herausgekürzt. Die Qualität der Ergebnisse von Anfragen an die KI wird somit zunehmend abnehmen. Hinzu kommt, dass alle User*innen irgendwann die gleichen Ergebnisse abrufen, nutzen und veröffentlichen.
Gegenmaßnahmen: Es ergibt Sinn, hin und wieder auch ohne KI zu agieren und Content zu produzieren, der frei von KI-generierten Inhalten ist und das Qualitätsmerkmal „Made in a human brain“ trägt.
4. Wissensoligopol
Der KI-Markt ist derzeit auf einige wenige Big Player geschrumpft, die sich die enormen Rechenressourcen und Entwicklungskosten für generative KI leisten können. Dadurch entsteht zunehmend ein Wissensoligopol, in dem die großen Anbieter*innen wie OpenAI, Google, Microsoft und DeepSeek zukünftig die Art und Weise bestimmen, welche Informationen überhaupt noch zugänglich sind. Schon jetzt gehen Suchanfragen auf den traditionellen Suchmaschinen deutlich zurück, die Ergebnisse zwar nach Algorithmen ranken, aber selten Treffer komplett ausblenden. Viel restriktiver agieren GenAI-Tools, deren implementierte Filter die freiheitliche Verbreitung von Wissen einzuschränken drohen: Was nicht mit den politischen und moralischen Ideen der Hersteller übereinstimmt, wird automatisch unterdrückt. Das erinnert ein wenig an das Wahrheitsministerium aus Orwells „1984“.
Gegenmaßnahmen: Es ist wichtig, dass Unternehmen und offizielle Stellen auch unabhängige Projekte fördern und deren Nutzer*innen- sowie Supporter*innen-Basis wächst. Gleichzeitig sollten User*innen es dringend verinnerlichen, dass KI- Assistenten nicht der Wahrheit letzter Schluss sind. Das Nutzen möglichst vieler Quellen, um das eigene Wissen aufzubauen, ist immer besser als ein vermeintlicher „Single Point of Truth“.
Fazit
Wir sind noch lange nicht so weit, dass ein blindes Vertrauen in generative KI zu rechtfertigen ist. Es ist zwar logisch, dass wir eine vermeintlich arbeitserleichternde Technologie erst einmal ungern hinterfragen – doch dieser Bequemlichkeit wohnt, je nach Einsatzzweck, ein erhebliches Schadenspotenzial inne. Zum jetzigen Zeitpunkt lautet also die Maxime, restlos jede von GenAI generierte Antwort genauestens auf den Prüfstand zu stellen.
Der Autor Alain Blaes ist CEO der Münchner Kommunikationsagentur PR-COM (mit Fokus auf High-tech- und IT-Industrie im B2B-Umfeld).
Report: Quantencomputing
Wir sind Zeug*innen einer Transformation, die nicht nur die Tech-Branche nachhaltig beeinflussen wird: Quantencomputing und die dazugehörigen Start-ups haben das Potenzial, die Art und Weise, wie wir Daten verarbeiten und Probleme lösen, grundlegend zu verändern.
Quantencomputing (QC) ist ein hochinnovatives Feld der Informatik und Physik, das die Prinzipien der Quantenmechanik nutzt, um Datenverarbeitung und -analyse auf eine Weise zu leisten, die mit klassischen Computern nicht möglich ist. Während klassische Computer Informationen in Form von Bits verarbeiten, die entweder den Wert 0 oder 1 annehmen können, verwenden Quantencomputer Quantenbits oder Qubits. Diese Qubits können sich in einem Zustand der Überlagerung befinden, was bedeutet, dass sie gleichzeitig 0 und 1 darstellen können. Dies ermöglicht es Quantencomputern, komplexe Berechnungen viel schneller durchzuführen als ihre klassischen Pendants.
Herausforderungen
Trotz des enormen Potenzials stehen Forschende und Unternehmen vor vielen Herausforderungen. Eine der größten Hürden ist die sog. Dekohärenz, ein Phänomen, bei dem die Quanteninformation durch Wechselwirkungen mit der Umgebung verloren geht. Um stabile und fehlerfreie Quantenberechnungen durchzuführen, müssen Qubits in einem kontrollierten Zustand gehalten werden, was technisch äußerst anspruchsvoll ist.
Eine weitere Herausforderung ist die Skalierbarkeit. Während einige Prototypen von Quantencomputern bereits existieren, stellt der Bau von Systemen mit einer ausreichenden Anzahl von Qubits, um praktische Probleme zu lösen, eine erhebliche technische Herausforderung dar.
Trends
In den letzten Jahren ist ein zunehmender Fokus auf hybride Ansätze zu verzeichnen, bei denen Quantencomputer in Kombination mit klassischen Computern eingesetzt werden, um spezifische Probleme zu lösen. Diese hybriden Systeme nutzen die Stärken beider Technologien und bieten eine praktikable Lösung für viele aktuelle Herausforderungen.
Zudem ist eine wachsende Zusammenarbeit zwischen akademischen Institutionen, großen Tech-Unternehmen und Start-ups zu beobachten. Diese Partnerschaften sind entscheidend, um Wissen und Ressourcen zu bündeln und die Entwicklung von QC-Technologien voranzutreiben. Unternehmen wie IBM, Google oder Microsoft investieren erheblich in Quantenforschung und -entwicklung und bieten Plattformen für Entwickler*innen und Forschenden an, um ihre eigenen Quantenalgorithmen zu testen.
Ein weiterer Trend ist die zunehmende Verfügbarkeit von QC-Diensten über die Cloud. Unternehmen und Forschende können nun auf Quantencomputer zugreifen, ohne in teure Hardware investieren zu müssen. Dies senkt die Eintrittsbarrieren und ermöglicht es einer breiteren Palette von Nutzenden, die Möglichkeiten des QCs zu erkunden.
Die Rolle von Start-ups
Start-ups spielen hierbei mit neuen Ideen und Ansätzen eine entscheidende Rolle als Innovatoren und konzentrieren sich zumeist auf spezifische Anwendungen des QCs, sei es in der Materialwissenschaft, der Medikamentenentwicklung, der Lieferkettenlogistik oder der Optimierung komplexer Systeme u.a. in der Finanzwelt.
Die 2024 im Auftrag des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK) veröffentlichte Studie „Quantencomputing – Markt, Zugang, Perspektiven“ zeigt: Die Zahl der Start-ups zur Entwicklung von Anwendungssoftware stieg in den letzten Jahren stetig, wobei hardwarespezifische Systemsoftware vorrangig von den Hardwareentwickler*innen selbst bereitgestellt wird. Entfielen im Zeitraum von 2002 bis 2018 weltweit noch rund 58 Prozent der kumulierten Gründungen auf Software- oder Service-zentrierte Start-ups und 42 Prozent auf Hardware- bzw. Komponenten-fokussierte Start-ups, waren es im Zeitraum 2018 bis 2022 rund 74 Prozent mit Fokus auf Software und Services sowie 26 Prozent mit Fokus auf Hardware und Komponenten.
Von weltweit über 150 Start-ups fokussiert sich dabei etwa ein Drittel auf die Entwicklung von Systemsoftware und zwei Drittel auf die Entwicklung von Anwendungssoftware. Deutschland belegt dabei mit knapp 20 Start-ups im Jahr 2023 Platz drei im internationalen Vergleich, hinter den USA und Kanada. Damit hat sich Deutschland als ein Hotspot für QC-Start-ups etabliert.
Deutsche QC-Start-ups mischen ganz vorne mit
Deutsche QC-Start-ups sind oft noch in der Entwicklungsphase, die Gründer*innen kommen meist aus Forschung und Wissenschaft, und ihre Geschäftsmodelle konzentrieren sich auf die Entwicklung und den Verkauf von Hardware, Mikroskopen oder Cloud-basierten QC-Diensten.
Als weltweit erstem Unternehmen ist es dem 2018 gegründeten Start-up kiutra, einem Spin-off der Technischen Universität München, gelungen, eine dauerhafte magnetische Kühlung für Temperaturen nahe des absoluten Nullpunkts zu entwickeln. Statt auf Quantencomputer oder QC-Software, setzen die Gründer Alexander Regnat, Jan Spallek, Tomek Schulz und Christian Pfleiderer auf vollautomatische, äußerst wartungsarme und gut skalierbare Kühlungslösungen, die den Betrieb von Quantentechnologien im industriellen Maßstab ermöglichen.
eleQtron: It's MAGIC
In nur fünf Jahren vom Laborgerät zum 24/7-betriebenen Quantencomputer: Wie das 2020 von Jan Leisse, Christof Wunderlich und Michael Johanning gegründete eleQtron mit seiner MAGIC-Technologie neue Wege ebnet.
Was ihr da macht, ist der Wahnsinn – und genau deswegen bin ich dabei.“ Mit diesen Worten beschreibt Jan Leisse, einer der Gründer von eleQtron, die Anfänge des Unternehmens. Das erste Treffen mit dem Physiker Christof Wunderlich war geprägt von einer Mischung aus Skepsis und Begeisterung. Der Wissenschaftler hatte an der Universität Siegen einen Quantencomputer gebaut – mitten in der deutschen Provinz und ohne das Millionenbudget, das Konzernen wie Google oder IBM zur Verfügung steht. Doch genau das reizte Leisse: „Hier wurde nicht einfach nachgemacht, was andere tun. Hier wurde Neuland betreten.“
Es war ein ungewöhnlicher Ort für eine bahnbrechende
Innovation in der Quantentechnologie. Siegen, eine Mittelstadt im Süden Nordrhein-Westfalens, ist nicht gerade als Hotspot für Hochtechnologie bekannt. Doch manchmal entstehen die Top-Innovationen fernab der etablierten Zentren; die Universität Siegen hatte über Jahre hinweg eine bemerkenswerte Expertise in der Quantenphysik aufgebaut, ohne große mediale Aufmerksamkeit.
Von der Universität ...
Im Jahr 2020, als das globale Interesse an Quantentechnologien exponentiell zunahm, erwuchs aus dieser mutigen Pionierarbeit das Start-up eleQtron – als Spin-off der Universität Siegen. Die Gründer – Jan Leisse, Christof Wunderlich und Michael Johanning – verbindet eine Vision: Quantencomputer für industrielle Anwendungen nutzbar zu machen.
Die Anfangsjahre waren geprägt von Experimentierfreude, Improvisation und dem festen Glauben an die eigene technologische Innovationskraft. Während Tech-Giganten wie IBM, Google und Amazon Milliarden Euro in ihre Quantenprogramme investierten und viele Start-ups auf bekannte Technologien setzten, wagte eleQtron den Schritt in eine völlig neue Richtung.
In den Laboren der Gründer entstand die sogenannte MAGIC-Technologie (Magnetic Gradient Induced Coupling), eine Methode, Qubits (das Quantencomputing-Äquivalent zum klassischen Bit in der Digitaltechnik) nicht wie bislang üblich mit Lasern, sondern mit Mikrowellen zu steuern.
... zum technologischen Durchbruch
Die MAGIC-Technologie basiert auf einem raffinierten Zusammenspiel physikalischer Prinzipien: Magnetische Gradienten (räumliche Veränderungen der Magnetfeldstärke) ermöglichen es als lokale Felder, einzelne Ionen in einer sogenannten Falle selektiv anzusprechen. Die technischen Vorteile sind beeindruckend: Die Fidelity (Genauigkeit) bei Operationen an einzelnen Qubits liegt bei etwa 99,95 Prozent, die Gate-Zeiten (Gate-Zeit steht für die Dauer, die ein Quanten-Gate benötigt, um eine Operation auf einem Qubit auszuführen) betragen nur wenige Mikrosekunden. Gleichzeitig ermöglicht die Technologie eine bessere Skalierbarkeit, da sich Mikrowellenfelder einfacher erzeugen und verteilen lassen als komplexe Lasersysteme. „Der Vorteil liegt nicht nur in der höheren Präzision, sondern auch in der deutlich geringeren Komplexität der Systeme“, erklärt Johanning. „Wir brauchen keine aufwändigen Optiken oder ultrastabile Umgebungen. Unsere Technologie funktioniert auch unter realen Bedingungen.“
Früh erkannten die drei Forscher das große Potenzial ihrer Technologie für praktische Anwendungen. „Durch das gezielte Ersetzen sensibler High-End-Komponenten – insbesondere Lasertechnologie – durch bewährte Mikrowellentechnik und Elektronik, vermeiden wir unnötige Komplexität, minimieren Aufwand und senken die Kosten“, fasst es Leisse zusammen.
Wachstumsschub und strategische Entwicklung
2022 gelang eleQtron ein entscheidender Schritt: Durch Earlybird und den Siegerlandfonds als Investoren sowie das vom BMBF geförderte Projekt „MAGIC App“ sicherte sich das Start-up eine Finanzierung in Höhe von 16 Millionen Euro. Diese Finanzierungsrunde war ein Wendepunkt für das Unternehmen und signalisierte das Vertrauen der Investor*innen in die MAGIC-Technologie.
„Mit diesem Kapitalschub konnten wir von einer reinen Forschungsorganisation zu einem echten Technologieunternehmen werden“, erklärt Leisse. Die Mittel flossen in den Ausbau der Produktionskapazitäten, die Vergrößerung des Teams und die Weiterentwicklung der Technologie-Roadmap. Auch die Mitwirkung von Infineon im Rahmen von MAGIC App war strategisch von Bedeutung: „Die Zusammenarbeit mit Infineon hat uns die Augen für die Realitäten des Industriemarkts geöffnet“, erklärt Leisse.
EU AI Act: Status quo
Recht für Gründer*innen: der EU AI Act. Wo stehen wir in Sachen Umsetzung? Was Gründer*innen und Start-ups jetzt wissen müssen.
Künstliche Intelligenz (KI) ist längst kein Zukunftsthema mehr, sondern prägt schon heute Geschäftsmodelle, Investitionsentscheidungen und die Arbeitswelt. Mit der europäischen KI-Verordnung (EU AI Act, im Folgenden AI Act) wurde im Frühjahr 2024 der weltweit erste umfassende Rechtsrahmen für den Einsatz von KI verabschiedet. Inzwischen sind die ersten Regelungen in Kraft getreten. Für Gründer*innen und Start-ups bedeutet das nicht nur zusätzliche Pflichten, sondern auch Chancen, sofern sie sich rechtzeitig vorbereiten.
Überblick: Der AI Act
Die Verordnung folgt einem risikobasierten Ansatz: Je höher das Risiko für Grundrechte oder Sicherheit, desto strenger die Anforderungen. Auf der untersten Stufe stehen KI-Systeme, die keinerlei Vorgaben erfüllen müssen, solange sie nicht in verbotene Anwendungsfälle fallen. An der Spitze der Regulierungspyramide befinden sich die sogenannten HochrisikoSysteme, also etwa Anwendungen in der medizinischen Diagnostik, in kritischer Infrastruktur oder bei biometrischen Verfahren. Viele Tools aus dem HR-Bereich fallen darunter.
Daneben bestehen besondere Pflichten für sogenannte Generative KI beziehungsweise General Purpose AI, eingeführt, also große Modelle, die viele Anwendungen treiben und „systemische Risiken“ entfalten können.
Wichtig ist zu wissen, dass die Vorgaben schrittweise gelten. Bereits seit dem 2. Februar 2025 sind bestimmte Praktiken ausdrücklich verboten – zum Beispiel das Social Scoring von Bürger*innen, die flächendeckende Emotionserkennung in Schulen oder am Arbeitsplatz sowie das unkontrollierte Sammeln biometrischer Daten. Wer damit noch experimentiert, bewegt sich schon jetzt im rechtswidrigen Raum.
Seit dem 2. August 2025 gelten außerdem die ersten Pflichten für Anbieter*innen von generativen Modellen. Sie müssen unter anderem Transparenzberichte veröffentlichen und Angaben zu den verwendeten Trainingsdaten machen. Für Modelle, die bereits vor Inkrafttreten am Markt waren, gibt es eine Übergangsfrist bis 2027. Für viele Unternehmen, die solche Modelle nutzen oder in Produkte einbetten, bedeutet das, genau hinzuschauen, welche Informationen von den Modellanbieter*innen zur Verfügung gestellt werden. Sonst können eigene Transparenzpflichten womöglich nicht erfüllt werden.
Noch weiter in der Zukunft liegen die Vorschriften für Hochrisiko-Systeme. Diese greifen ab 2. August 2026 und verlangen ein umfassendes Risikomanagement, eine strenge Qualität der Trainingsdaten, eine lückenlose Protokollierung und eine Konformitätsbewertung, bevor ein Produkt überhaupt in Verkehr gebracht werden darf. Für Hochrisiko-KI, die in ohnehin streng regulierten Produkten steckt, zum Beispiel in Medizinprodukten, gilt eine verlängerte Frist bis 2027.
Konformitätsbewertung heißt vor allem Risikobewertung, welche die Anbieter*innen oder Betreiber*innen selbst durchführen müssen. Eine solche „regulierte Selbstregulierung“ ist ein klassisches Merkmal einer solchen klassischen Produktregulierung und Marktüberwachung.
Was fehlt? Guidance und Governance
Noch herrscht allerdings an vielen Stellen Unsicherheit. Zwar hat die EU-Kommission schon erste Leitlinien veröffentlicht, etwa zur Definition von KI-Systemen oder zu den verbotenen Praktiken. Auch für Anbieter*innen generativer KI gibt es inzwischen ein detailliertes Dokumentationsmuster. Noch fehlen allerdings die angekündigten Handreichungen für die Einstufung und Risikobewertung von Hochrisiko-Systemen, die bis Februar 2026 folgen und praktische Beispiele enthalten sollen. Bis dahin bleibt nur, sich für die Bewertung an bestehenden internationalen Standards zu orientieren, zum Beispiel an den Normungsprojekten der Europäischen Komitees für Normung und für elektrotechnische Normung.
Auf Unionsebene entstehen parallel die neuen Governance-Strukturen. Das AI Office innerhalb der Kommission ist bereits aktiv und koordiniert die Umsetzung. Das AI Board, ein Gremium der Mitgliedstaaten, tagt regelmäßig und stimmt Vorgehensweisen ab. Ein wissenschaftliches Panel unabhängiger Expert*innen wurde im Frühjahr eingerichtet, und das Advisory Forum, das die Perspektive von Unternehmen und Zivilgesellschaft einbringen soll, befindet sich gerade in der Bewerbungsphase. Auch die geplante EU-Datenbank für Hochrisiko-Systeme existiert bisher nur auf dem Papier. Ab 2026 müssen Anbieter*innen ihre Systeme dort registrieren; die Plattform selbst wird jedoch gerade erst aufgebaut.
Und wo steht Deutschland?
Auch hierzulande hakt es noch etwas. Eigentlich hätten die Mitgliedstaaten bis 2. August 2025 ihre Marktüberwachungsbehörden benennen müssen. Ein Entwurf für das deutsche Umsetzungsgesetz sieht die Bundesnetzagentur als zentrale Aufsicht vor, doch die formale Benennung ist noch nicht erfolgt. Klar ist, dass die Bundesnetzagentur die Rolle der Notifizierungsbehörde übernimmt, also für die Anerkennung von Konformitätsbewertungsstellen zuständig ist. Zudem entsteht dort ein Kompetenzzentrum für KI, das die Arbeit von Bund und Ländern koordinieren soll.
Reallabore
Ein Bereich, der für KI-Entwickler*innen besonders interessant ist, sind KI-Reallabore, also sichere Testumgebungen, in denen neue Anwendungen unter Aufsicht erprobt und darauf geprüft werden können, ob sie den rechtlichen Rahmen einhalten. Bis zum Sommer 2026 müssen die Mitgliedstaaten mindestens ein solches Reallabor einrichten. Deutschland hat im Mai 2025 ein erstes Pilotprojekt in Hessen gestartet, gemeinsam mit der Bundesnetzagentur und der Bundesdatenschutzbeauftragten. Hier werden reale Unternehmensfälle durchgespielt, um Abläufe und Bedarfe besser zu verstehen. Solche Projekte können eine wertvolle Möglichkeit sein, mit den Aufsichtsbehörden auf Augenhöhe ins Gespräch zu kommen.
Reaktionen
Der AI Act wird zwar kritisch diskutiert, im Grundsatz aber breit akzeptiert. Gerichtliche Klagen direkt gegen die Verordnung gibt es bislang nicht. In der juristischen Literatur überwiegt die Zustimmung zur Zielrichtung. Kritisiert werden vor allem die Komplexität und die noch offenen Fragen bei der praktischen Umsetzung. Streitpunkte finden sich eher außerhalb der Verordnung bei der Frage, ob Trainingsdaten urheberrechtlich geschützt sind oder wie personenbezogene Daten für KI genutzt werden dürfen.
Die Industrie zeigt ein gemischtes Bild. Viele große Anbieter*innen – von Google über OpenAI bis Mistral – haben einen freiwilligen Verhaltenskodex unterzeichnet. Andere, wie etwa Meta, haben sich bewusst dagegen entschieden. Man muss sich also darauf einstellen, dass je nach Anbieter*in sehr unterschiedliche Informationen und Compliance-Nachweise verfügbar sind.
Andererseits wirkt der AI Act bereits am Markt. In öffentlichen Ausschreibungen tauchen Modellklauseln auf, die auf die KI-Verordnung Bezug nehmen. Investor*innen fragen verstärkt nach Compliance-Prozessen, und Unternehmen beginnen, interne Strukturen für Risikomanagement und Dokumentation aufzubauen.
Im Vergleich zu Europa gibt es in den USA bislang nur freiwillige Standards. Die dort bei der Entwicklung und Anwendung von KI (angeblich) vorherrschende größere Freiheit wird zwar viel gerühmt. Einzelne Bundesstaaten wie Colorado arbeiten allerdings an eigenen regulierenden Gesetzen, die ab 2026 greifen sollen. Vielleicht ist es also ein Vorteil, dass europäische Start-ups früh Erfahrungen in einem regulierten Markt sammeln können.
Fazit
Der AI Act entfaltet bereits jetzt Wirkung, auch wenn viele Details erst in den kommenden Monaten geklärt werden. Daher gilt es, nicht abzuwarten, sondern jetzt eine eigene Roadmap zu entwickeln. Wer früh Prozesse für Risikomanagement, Transparenz und Governance etabliert, wird nicht nur rechtlich auf der sicheren Seite sein, sondern auch Vertrauen bei Kund*innen und Investor*innen gewinnen.
Die EU hat ein klares Signal gesetzt: KI soll innovativ sein, aber auch sicher und vertrauenswürdig. Für Start-ups ist das eine Herausforderung – aber auch eine Chance, sich von Anfang an professionell aufzustellen und den Markt aktiv mitzugestalten.
Der Autor Dr. Daniel Michel, LL.M. ist als Rechtsanwalt im Bereich IT/IP/Technologie tätig und betreibt seit 2018 mit DATA LAW COUNSEL seine eigene Rechtsberatung im Raum München
Luxusuhren: Darum ist es sinnvoll, Preise zu vergleichen
Entdecken Sie, warum sich der Preisvergleich bei Luxusuhren lohnt. Sparen Sie beim Online-Kauf.
Preisvergleiche bei Luxusuhren lohnen sich durch erhebliche Preisdifferenzen zwischen verschiedenen Händlern, die mehrere hundert bis tausend Euro betragen können. Diese Unterschiede entstehen hauptsächlich durch verschiedene Kostenberechnungen und unterschiedliche Margenstrategien der Anbieter. Während manche Händler auf Premium-Service setzen, bieten andere günstigere Preise durch schlankere Betriebsstrukturen. Besonders bei begehrten Modellen von Rolex, Patek Philippe oder Audemars Piguet variieren die Preise stark zwischen den Anbietern. Ein gründlicher Preisvergleich kann daher zu beträchtlichen Einsparungen von bis zu 30 Prozent führen. Gleichzeitig hilft er dabei, den tatsächlichen Marktwert einer Luxusuhr präzise zu ermitteln. Die Investition in eine hochwertige Armbanduhr rechtfertigt den Aufwand für einen detaillierten Vergleich verschiedener Anbieter vollständig. Die folgenden Abschnitte zeigen, worauf man achten sollte.
Zwischen den einzelnen Händlern existieren teilweise deutliche Preisunterschiede
Konkrete Beispiele verdeutlichen das Sparpotenzial beim Uhrenkauf: Spezialisierte Händler bieten permanent Armbanduhren mit Rabatten von mehreren tausend Euro unter dem Neupreis an. Diese deutlichen Preisvorteile entstehen durch unterschiedliche Beschaffungswege, Lagerbestände und Verkaufsstrategien der Anbieter. Plattformen wie Watchy24.de ermöglichen es, diese Preisunterschiede transparent zu vergleichen und das beste Angebot zu identifizieren. Während Boutiquen oft Listenpreise verlangen, können autorisierte Händler erhebliche Rabatte gewähren. Online-Händler profitieren von geringeren Betriebskosten und geben diese Kostenvorteile häufig an Kunden weiter.
Besonders bei limitierten Editionen oder seltenen aktuellen Modellen können die Preisunterschiede zwischen verschiedenen Anbietern deutlich ausfallen und eine sorgfältige Recherche rechtfertigen.
Internationale Preisunterschiede und Währungseffekte: Worauf sollte man achten?
Länderspezifische Preisdifferenzen bei Luxusuhren ergeben sich aus verschiedenen wirtschaftlichen Faktoren. Währungsschwankungen beeinflussen die Preisgestaltung deutlich, besonders bei hochwertigen Herstellern aus der Schweiz, die – ebenso wie viele Start-Ups – verstärkt darauf achten, ein hohes Maß an Markenschutz zu gewährleisten. Die unterschiedlichen Mehrwertsteuersätze zwischen den Ländern wirken sich direkt auf die Listenpreise aus. So liegt die Mehrwertsteuer in Deutschland bei 19 Prozent, während sie in der Schweiz und in einigen anderen Ländern deutlich niedriger ist.
Außereuropäische Märkte wie Hongkong oder Singapur bieten teilweise deutlich günstigere Preise, wobei Import- und Zollbestimmungen unbedingt zu beachten sind. Ein internationaler Preisvergleich kann erhebliche Kostenvorteile offenbaren, setzt jedoch Kenntnisse über Garantie- und Servicebedingungen voraus.
Lohnt es sich, auf dem Gebrauchtmarkt Ausschau zu halten?
Der Gebrauchtmarkt für Luxusuhren bietet Einsparpotenziale von bis zu 30 Prozent bei meist stabiler Wertentwicklung. Hochwertige Marken behalten auch als gebrauchte Modelle eine hohe Werterhaltungsrate von durchschnittlich 70 bis 80 Prozent. Plattformen für den Second-Hand-Handel verfügen über umfangreiche Bestände mit detaillierten Zustandsbeschreibungen.
Gebrauchte Luxusuhren werden häufig professionell aufbereitet und einer Qualitätsprüfung durch Fachbetriebe unterzogen. Die Wertstabilität macht den Gebrauchtmarkt zu einer attraktiven Investitionsmöglichkeit für Sammler. Seltene oder nicht mehr produzierte Modelle können sogar an Wert gewinnen. Die transparente Preisgestaltung ermöglicht fundierte Vergleiche und realistische Einschätzungen bei deutlich geringeren Anschaffungskosten.
Expertise als wichtiger Faktor für den Kauf einer Luxusuhr
So gut wie jeder hat individuelle Vorstellungen davon, was er sich gönnen möchte. Manche träumen davon, als digitaler Nomade die Welt zu sehen, andere möchten sich irgendwann eine Luxusuhr leisten können.
Daher ist es wichtig, sich zunächst über die eigenen Ansprüche klar zu werden. Falls die Wahl auf die Luxusuhr fällt, gilt: Die Authentizitätsprüfung bildet die Grundlage für sichere Transaktionen im Luxusuhrenmarkt und beeinflusst maßgeblich die Preisgestaltung. Erfahrene Fachhändler verfügen über spezialisierte Prüfverfahren wie Seriennummern-Checks, Analyse von Werkscodes und Materialuntersuchungen.
Zertifikate, Originalverpackungen und Servicedokumente erhöhen die Glaubwürdigkeit und den Wert einer Uhr erheblich. Experten bewerten den Zustand des Uhrwerks, die Originalität der Komponenten sowie die historische Bedeutung. Die Zusammenarbeit mit erfahrenen Uhrmachern minimiert Risiken beim Kauf hochwertiger Zeitmesser.
Seriöse Händler bieten Echtheitsgarantien und übernehmen die Haftung für die Authentizität ihrer Angebote.
Ein Ausblick auf die (mögliche) langfristige Wertentwicklung
Ein fundierter Preisvergleich bei Luxusuhren zahlt sich oft langfristig über einen Zeitraum von fünf bis zehn Jahren durch bessere Investitionsentscheidungen aus. Die Analyse großer Mengen weltweiter Angebote ermöglicht realistische Markteinschätzungen und das Erkennen von Trends bei renommierten Marken. Erfolgreiche Sammler berücksichtigen sowohl aktuelle Preise als auch die historische Wertentwicklung ihrer Wunschmodelle.
Die Nutzung professioneller Vergleichsplattformen und eine regelmäßige Marktbeobachtung helfen, Risiken zu minimieren und das Preis-Leistungs-Verhältnis zu maximieren. Internationale Preisunterschiede sowie der Gebrauchtmarkt bieten zusätzliche Einsparpotenziale für informierte Käufer. Langfristig profitieren Sammler von fundiertem Markt-Know-how bei zukünftigen Käufen und Verkäufen ihrer Luxusuhren-Kollektion.
Warum KI bei Förderanträgen versagt
Fünf Gründe, warum Unternehmen auf menschliche Intelligenz setzen sollten.
Ob steuerliche Forschungszulage, Investitionsförderung oder EU-Programme. Künstliche Intelligenz (KI) wie ChatGPT liefert in Sekundenschnelle eine Vielzahl möglicher Förderprogramme. Doch zwischen der reinen Information und der tatsächlichen Erschließung von Fördermitteln liegt ein erheblicher Unterschied. Hier gilt es, Unternehmen zu sensibilisieren.
Fördermittel sind heute ein strategischer Bestandteil moderner Unternehmensfinanzierung. Es reicht daher nicht, die Programme zu kennen. Entscheidend ist, sie rechtssicher, vollständig und förderlogisch aufeinander abgestimmt umzusetzen, um die vollen Förderpotenziale zu heben. Genau hier beginnt die Arbeit von Fördermittelexpert*innen.
Fünf Gründe, warum KI-Tools nicht als Fördermittelberater funktionieren
1. KI erkennt die wahren Förderpotenziale nicht
ChatGPT kann erklären, was ein Förderprogramm leistet. Doch welche Kosten eines konkreten Vorhabens tatsächlich und wie hoch förderfähig sind, lässt sich so nicht beurteilen. Gerade bei komplexen Programmen wie der steuerlichen Forschungszulage sind Erfahrung, Struktur und rechtssichere Abgrenzung entscheidend. Eine gute Fördermittelberatung prüft jedes Vorhaben systematisch: von der Förderfähigkeit nach dem Forschungszulagengesetz (FZulG), AGVO oder De-minimis-Verordnung bis hin zur klaren Trennung förderfähiger und nicht förderfähiger Aufwände.
2. KI kann keine Förderstrategien entwickeln
Eine Liste von Förderprogrammen ersetzt keine Strategie. KI kann nur Optionen nennen, aber keine Strategien zur Umsetzung im Unternehmen entwickeln. Eine gute Fördermittelberatung integriert die Forschungszulage sinnvoll in laufende Projekte und strukturiert Innovations- sowie Investitionsprozesse auf Bundes-, Landes- und EU-Ebene. So entstehen nicht nur Optionen, sondern belastbare, wirtschaftlich wirksame Lösungen.
3. KI kann nicht mit Menschen kommunizieren
Ein Antrag ist mehr als ein Formular. Er muss Anforderungen erfüllen und überzeugen. KI liefert Textbausteine, aber führt keine Gespräche und reagiert nicht auf Rückfragen mit der notwendigen Erfahrung in der Verwaltungspraxis der verschiedenen Förderprogramme. Eine gute Fördermittelberatung übernimmt die gesamte Kommunikation mit Förderstellen, koordiniert mit Bescheinigungsstellen und entwickelt formal korrekte und überzeugende Argumentationen.
4. KI endet beim Prompt – Fördermittelberatung bei der erfolgreichen Projektprüfung
Nach dem Antrag geht die Arbeit oft erst richtig los. Rückfragen, Prüfungen, Nachweise. KI kann Unternehmen dabei nicht unterstützen und keine Verantwortung übernehmen. Eine gute Fördermittelberatung hingegen begleitet die Kund*innen durch den gesamten Förderzyklus mit sauberer Dokumentation, revisionssicherer Aufbereitung und Unterstützung bei Audits und Außenprüfungen.
5. KI zeigt nur den Dschungel – Förderexperten finden den Schatz
Datenbanken geben einen Überblick, aber keine Richtung. Eine gute Fördermittelberatung bewertet alle denkbar möglichen Förderprogramme im konkreten Unternehmenskontext und entwickelt daraus konkrete Maßnahmen, um das Maximum an Fördermöglichkeiten für die Kund*innen rauszuholen. Eine gute Fördermittelberatung schafft so echte wirtschaftliche Vorteile statt der bloßen Auflistung von Fördermöglichkeiten.
Der Autor Efe Duran Sarikaya ist CEO der Fördermittelberatung EPSA Deutschland.
„Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing“
Mit planqc verfolgt Dr. Alexander Glätzle die Mission, hochskalierbare Quantencomputer für wirtschaftliche Anwendungen zu bauen. Warum das Unternehmen dabei auf Standorte wie München und Innsbruck setzt und welche Rolle Österreichs Talentpool spielt, verrät er im Interview.
Dr. Alexander Glätzle ist Quantenphysiker und Mitgründer von planqc. Er studierte und promovierte an der Universität Innsbruck, forschte an renommierten Instituten wie Oxford, Harvard sowie in Singapur und war als Unternehmensberater tätig. 2022 gründete er planqc als Ausgründung aus dem Max-Planck-Institut in München.
Herr Dr. Glätzle, wie entstand die Unternehmensidee und welche Meilensteine haben Sie mit planqc bisher erreicht?
Die Idee zu planqc ist bereits während meines Studiums an der Universität Innsbruck entstanden. Dort habe ich intensiv im Bereich Quantentechnologie geforscht und das enorme Potenzial erkannt, aus diesen Erkenntnissen ein Start-up zu gründen. Bis zur Gründung hat es allerdings noch einige Jahre gedauert – nicht zuletzt, weil die technologische Entwicklung im Labor ebenfalls voranschreiten musste. 2022 sind wir dann als Ausgründung aus dem Max-Planck-Institut offiziell gestartet. Zu den wichtigsten Meilensteinen zählen zwei große öffentlich geförderte Projekte: Für das Deutsche Zentrum für Luft- und Raumfahrt bauen wir einen Quantencomputer mit einem Volumen von 30 Mio. EUR, ein weiteres Projekt mit dem Leibniz-Rechenzentrum umfasst 20 Mio. EUR, beide mit Abschluss bis Ende 2026 bzw. 2027. Dann werden an diesen beiden Standorten voll funktionsfähige Quantencomputer von planqc installiert sein.
Sie haben bereits Venture Capital mit an Bord. Wer zählt zu Ihren Investoren?
Gestartet sind wir 2022 mit einer Seed-Runde, an der unter anderem UVC Partners, Speedinvest und Apex Ventures beteiligt waren – also bereits starke Partner auch aus Österreich. Diese Basis konnten wir in der Series-A im letzten Jahr weiter ausbauen. Die CATRON Holding, ein Wiener Family Office, ist als Lead-Investor eingestiegen. Dazu kamen weitere Partner wie der DeepTech & Climate Fonds sowie Bayern Kapital. Besonders erfreulich ist, dass auch unsere Bestandsinvestoren erneut signifikant investiert haben. Damit verfügen wir über eine starke, rein mitteleuropäische, deutsch-österreichische Investorenbasis – was in unserem Sektor tatsächlich selten ist.
Ihr Headquarter befindet sich in der Nähe von München. Was hat Sie dazu bewegt, zusätzlich einen Standort in Innsbruck zu eröffnen?
Ursprünglich haben wir planqc in München gegründet – als Ausgründung aus dem Max-Planck-Institut. Doch bereits innerhalb eines Jahres haben wir ein zweites Büro in Innsbruck eröffnet. Der Grund liegt auf der Hand: Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing. Mit renommierten Instituten wie dem Institut für Quantenoptik und Quanteninformation (IQOQI) und Persönlichkeiten wie Peter Zoller und Rainer Blatt gibt es dort eine kritische Masse an international anerkannten Wissenschaftlern. Zudem ist es in der Praxis oft schwierig, hochqualifizierte Talente aus der Region nach München zu bringen. Deshalb haben wir entschieden, ihnen vor Ort ein attraktives Arbeitsumfeld zu bieten – mit einem eigenen Standort in Innsbruck.
Welche Vorteile bietet der Standort Österreich speziell für Unternehmen im Bereich Quantencomputing?
Österreich hat eine lange und starke Tradition in der Quantenphysik. Universitäten wie Innsbruck und Wien, das IQOQI und eine ganze Generation exzellenter Wissenschaftler prägen diese Landschaft. Viele bahnbrechende theoretische und experimentelle Arbeiten wurden hier in den vergangenen Jahren geleistet. Gerade für junge Start-ups bietet das Land enorme Vorteile: Der Talentpool ist außergewöhnlich – mit hervorragend ausgebildeten, dynamischen Fachkräften. Darüber hinaus ist die Nähe zu sogenannten „Industry First Movern“ gegeben, was den Standort besonders spannend macht. Und nicht zuletzt hat Österreich eine historische Verbindung zur Physik – Namen wie Schrödinger, Pauli oder Hess stehen sinnbildlich für diese wissenschaftliche Tiefe.
Welche Unterstützung erhielten Sie bei der Ansiedlung durch die Austrian Business Agency?
Die Austrian Business Agency sowie die Standortagentur Tirol haben uns außerordentlich engagiert unterstützt – sei es bei der Suche nach Büroflächen, bei der Eröffnung des ersten Bankkontos oder in bürokratischen Fragen. Sie standen uns nicht nur beratend zur Seite, sondern haben uns tatkräftig geholfen, Hürden aus dem Weg zu räumen. Genau so stelle ich mir die Zusammenarbeit mit einer lokalen Agentur vor: nah dran, lösungsorientiert und mit exzellentem Netzwerk. Wir hatten wirklich großes Glück mit der Unterstützung vor Ort.
Sie selbst sind in Österreich geboren, haben in Innsbruck promoviert und weltweit Forschungsaufenthalte absolviert – bevor Sie als Unternehmensberater und Gründer nach München gingen. Mit welchen Qualitäten punktet Österreich allgemein, auch als Arbeits- und Wohnort?
Ich habe viele Jahre im Ausland gelebt und gearbeitet – in Oxford, Singapur und Deutschland. Was Innsbruck und Tirol für mich besonders macht, ist die Kombination aus wissenschaftlicher Exzellenz und hoher Lebensqualität. Die Stadt liegt inmitten der Alpen, bietet eine hervorragende Infrastruktur und ein ausgewogenes Verhältnis zwischen Studierenden und Einwohnern. Das schafft ein inspirierendes Umfeld – zum Leben, Forschen und Arbeiten gleichermaßen.
Dr. Alexander Glätzle, vielen Dank für das Gespräch.
Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin
„Österreich hat einen langen Atem – und das zahlt sich im Bereich Applied AI aus“
Als führende Standorte in Sachen Künstliche Intelligenz liegen die USA und Asien auf der Hand, doch auch in Österreich gibt es eine vielfältige AI-Landschaft. Welche Vorteile der Standort für künstliche Intelligenz mit sich bringt und welche Rolle dabei Applied AI spielt, weiß Clemens Wasner, Gründer von AI Austria und CEO der EnliteAI.
Clemens Wasner ist Gründer des österreichischen Verbandes für Künstliche Intelligenz, AI Austria und CEO des Wiener Venture Studios EnliteAI. Der studierte Informatiker arbeitete über ein Jahrzehnt in Asien, bevor er 2017 EnliteAI gründete.
Herr Wasner, Sie kennen die AI-Szene aus erster Hand. Wie gut ist Österreich im internationalen Vergleich aktuell aufgestellt, wenn es um Applied AI geht?
Gemessen an seiner Größe steht Österreich erstaunlich gut da. Unsere AI–Landscape verzeichnet mittlerweile über 450 Unternehmen, die aktiv mit KI arbeiten – nicht nur Start-ups, sondern auch klassische Industrieunternehmen, Dienstleister und der öffentliche Sektor. Gerade im Bereich der industriellen Anwendungen ist Österreich breit aufgestellt: Es gibt zahlreiche Corporates, die eigene Competence Center gegründet, Ausgründungen vorgenommen oder Lizenzmodelle für KI aufgebaut haben. Auch die Zahl der Inkubatoren und Corporate Venture Capitalisten ist beachtlich. Das Thema ist in der Realwirtschaft angekommen – und das nicht erst seit gestern. Bereits 2018 gab es hierzulande einen deutlichen Aufschwung. Im Bereich der Spitzenforschung sind wir ebenfalls stark: Mit drei sogenannten ELLIS-Hubs – European Laboratory for Learning and Intelligent Systems – gehören wir zur europäischen Spitze, gemessen an der Größe des Landes.
Sie sprechen beim Blick auf Österreich oftmals vom „AI-Standort mit langem Atem“. Was genau meinen Sie damit und was macht aus Ihrer Sicht einen exzellenten Standort für AI-Start-ups aus?
Der „lange Atem“ ist positiv gemeint und beschreibt das, was Österreich im Bereich Forschung & Entwicklung auszeichnet: kontinuierliche Investitionen, strategischer Weitblick und langfristige Förderstrukturen. Die Steiermark war lange OECD-Spitzenreiter bei F&E-Ausgaben, Wien verfügt über eine dichte Forschungslandschaft. Das sind keine kurzfristigen Hypes, sondern über Jahrzehnte gewachsene Strukturen. Österreich verfügt zudem über eine differenzierte Förderarchitektur, die alle TRL-Stufen abdeckt – von der Grundlagenforschung bis zur Markteintrittsunterstützung. Auch Clusterstrukturen spielen eine Rolle: In Life Sciences etwa gibt es in Wien und Graz funktionierende Ökosysteme, in denen zunehmend auch KI eine Rolle spielt. Diese Verankerung ermöglicht Planbarkeit, die gerade in technologieintensiven Bereichen entscheidend ist.
Zu den Schlüsselfaktoren einen erfolgreichen Standorts zählen Infrastruktur, Talent Pool und Anwendungsmöglichkeiten. Wo sehen Sie hier derzeit die größten Hebel – und auch die größten Defizite – in Österreich?
Ein klarer Vorteil liegt in der Verfügbarkeit von Talenten: Wien zieht seit Jahren hochqualifizierte Developer aus dem osteuropäischen Raum an. Der AI-Fachkräftemangel ist hier weniger ausgeprägt als in anderen europäischen Hauptstädten. Hinzu kommt: Österreich bildet mehr AI-Absolventen aus, als die Wirtschaft derzeit absorbieren kann. Das schafft einen Bewerbermarkt, der gerade für Start-ups günstig ist. Auch Standortfaktoren wie Lebensqualität und erschwingliche Mieten machen zum Beispiel die Hauptstadt Wien attraktiv. Als Besonderheit sehe ich zudem den aktiven Zugang der Stadt: Wien versteht sich als First Client für KI-Anwendungen, etwa in der Analyse von Geodaten, IoT oder der Digitalisierung von Baueinreichprozessen. Hier ist wesentlich mehr Offenheit für politische Vergabe zu finden als in anderen Ländern. Weniger stark ist Wien in der Spitzenforschung vertreten, hier liegt Linz mit der JKU vorn. Aber man kann als kleines Land nicht alles abdecken – und sollte dort Schwerpunkte setzen, wo bestehende Stärken ausbaubar sind.
Was war der Gründungsimpuls für EnliteAI und wie ist Ihr Venture Studio heute aufgestellt?
Ich kam 2016 nach zehn Jahren in Asien zurück nach Österreich. In China und Japan war KI allgegenwärtig, ein regelrechter Hype. Zurück in Europa herrschte Funkstille – das war ein Kulturschock. Ich wollte dem Thema hierzulande Schub geben: 2017 gründete ich den Verband AI Austria und kurz darauf EnliteAI. Unsere Erkenntnis aus früheren Projekten zeigte, dass viele Unternehmen gute Ideen, aber keine Ressourcen zur Umsetzung hatten. Daraus entstand das Venture Studio: Wir entwickeln Prototypen gemeinsam mit Unternehmen und gründen darauf spezialisierte Start-ups. Aktuell sind wir 20 Personen und verfolgen zwei Themen – Detekt, das sich auf den Bereich Mobile Mapping spezialisiert hat, und ein weiteres im Stromnetzmanagement. Mit EnliteAI möchten wir künftig weitere Projekte unterstützen und bereiten dafür eine Dual-Entity-Struktur mit einem eigenen Fonds vor. Ziel ist es, das Modell professionell zu skalieren und Investoren direkt in die Spin-outs zu bringen.
Rechenleistung zählen zu den Schlüsselressourcen in der AI. Was braucht es aus Ihrer Sicht, damit europäische Standorte hier nicht dauerhaft in Abhängigkeit geraten?
Realistisch betrachtet: Die Abhängigkeit besteht bereits. Die großen Hyperscaler sind US-dominiert, ebenso Chips, Kommunikationstools, Social Networks. Europa muss in die digitale Souveränität investieren. Erste Schritte wie AI Factories sind wichtig, aber nicht ausreichend. Wir brauchen europäische Cloud-Anbieter, Chipproduktion auf europäischem Boden und eine nachhaltige Energiepolitik. Frankreichs KI-Boom basiert auf Atomstrom – weil er langfristig planbar ist. Diese Planbarkeit fehlt in vielen europäischen Ländern derzeit. Ohne Strom gibt es keine KI. Auch das zeigen Stimmen von Sam Altman, Elon Musk und anderen. Hier ist ein strategischer Paradigmenwechsel notwendig.
Sie sprachen bereits die vielfältige Landschaft von kleinen und mittleren Unternehmen in Österreich an, die offen für KI sind. Wie gut funktioniert das Matching zwischen Start-ups und klassischen Industrieunternehmen?
Österreich macht hier sehr viel richtig. Es gibt ein breites Netz an Förderinstrumenten – von der Österreichischen Forschungsförderungsgesellschaft FFG über die Austria Wirtschaftsservice bis hin zu regionalen Wirtschaftskammern. Zudem bietet Österreich eine Forschungsförderungsprämie an, bei der 14 Prozent der F&E-Ausgaben quasi mit einem Blankoschein gefördert werden können. Zudem organisieren viele Institutionen aktiv Matchmaking-Events, etwa im Rahmen von PreSeed-, AI-Adoption- oder Innovationsprogrammen. Hinzu kommt der Industry-Startup-Marktplatz mit mehreren Tausend registrierten Unternehmen. Auch Pitchings werden gefördert. Das Ziel ist stets, AI nicht nur in der Theorie zu belassen, sondern in die Realwirtschaft zu bringen. Trotzdem: Viele Unternehmen wissen noch immer nichts davon. Hier braucht es also noch mehr Aufklärung.
Welcher KI-Standort – in Österreich und darüber hinaus – hat Sie zuletzt positiv überrascht?
In Österreich ist Linz für mich der Hotspot schlechthin – die Kombination aus Spitzenforschung und erfolgreichem Technologietransfer ist dort besonders gut gelungen. International beeindruckt mich Twente in den Niederlanden: kein großer Name, aber mit klarer Strategie. Sie haben das Spin-out-Modell von Oxford und Cambridge adaptiert und konsequent umgesetzt – mit IP-Offices, Gründungsberatung und Infrastruktur für Start-ups. Ein weiteres Vorbild ist Heilbronn mit den Campus Founders: Sie haben, unterstützt durch die Dieter Schwarz Stiftung, einen Ort für Unternehmertum und Innovationen geschaffen und könnten Vorbild für viele europäische Regionen werden. Viele Stiftungen schaffen Parks oder Schlösser, aber wesentlich gewinnbringender wäre die Förderung von Entrepreneurship wie es in Heilbronn passiert statt Museumsstiftung. Europa braucht diese neue Denkweise.
Clemens Wasner, vielen Dank für das Gespräch.
Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin
DefenseTech-Report 2025
Noch vor wenigen Jahren galt Rüstungs-IT bei vielen Investor*innen als Tabu, ähnlich wie „Sündenbranchen“ à la Glückspiel und Pornografie; dieser Stigma-Effekt ist nun einer neuen Dringlichkeit, die ukrainische Verteidigung zu unterstützen, gewichen. Wie DefTech-Start-ups Sicherheit und Verteidigung durch Innovationskraft, Agilität und Flexibilität revolutionieren.
Der russische Überfall auf die Ukraine im Februar 2022 markierte einen Wendepunkt für die deutsche Verteidigungspolitik. Der Bundeskanzler rief die „Zeitenwende“ aus – einen Kurswechsel, der u.a. ein Sondervermögen von 100 Mrd. Euro für die Bundeswehr einschloss. Seither rücken technologische Innovationen für die Verteidigung verstärkt in den Fokus. DefenseTech-Start-ups (auch DefTechs genannt) – also junge Technologieunternehmen mit rein militärischen oder Dual-Use-Anwendungen (zivil und militärisch) – erleben seitdem einen Aufschwung. Die USA haben deutlich signalisiert, dass ihre Bereitschaft, als Arsenal der Demokratie unbegrenzt westliche Verteidigung zu finanzieren, nachlässt. Europa, Deutschland im Besonderen, muss also eigene Innovationskraft mobilisieren, um wirksam abschrecken zu können.
Start-ups im Gefechtsfeld der Zukunft: Lehren aus dem Ukraine-Krieg
Der russische Angriffskrieg offenbart, welche Technologien und Akteur*innen auf dem Gefechtsfeld der Zukunft dominieren werden. Auffällig ist, wie ein verteidigungsnahes Innovationsökosystem aus Tech-Start-ups und Dual-Use-Technologien in der Ukraine binnen kurzer Zeit Lösungen hervorbrachte, die Russlands konventionelle Überlegenheit teilweise neutralisierten.
Die ukrainischen Streitkräfte setzen neue Taktiken und Waffensysteme zudem mit einer Agilität ein, die westliche Armeen – mit ihren oft jahrelangen Beschaffungszyklen – nicht erreichen.
Im Ukraine-Krieg haben sich vor allem Drohnen als Gamechanger erwiesen. First-Person-View-(FPV)-Drohnen fungieren gleichsam als „Infanterie“ der Drohnenkriegsführung – sie sind zu einer tragenden Säule von Kiews Kriegsanstrengungen geworden und verursachen Schätzungen zufolge bis zu 80 Prozent der russischen Verluste auf dem Gefechtsfeld.
Ukrainische Herstellende – vielfach kleine Firmen – produzieren aktuell rund 200.000 FPV-Drohnen pro Monat und ersetzen zunehmend importierte Bauteile durch eigene Entwicklungen. Solche billigen Mini-Drohnen können aber Panzer oder Radaranlagen im Wert von Millionen zerstören – ein eklatantes Kosten-Nutzen-Missverhältnis zu Ungunsten klassischer Wehrtechnik. Daneben prägen Loitering Munitions (umherschweifende „Kamikaze-Drohnen“) den Konflikt.
Überhaupt redefiniert die Ukraine den Drohneneinsatz: Wie Forbes berichtete, wurde entlang der Front ein rund 25 km breiter „Kill-Zone“-Streifen eingerichtet, patrouilliert von Schwärmen kleiner Drohnen, der feindliche Truppenansammlungen nahezu unmöglich macht – die NATO erwägt bereits eine ähnliche „Drone Wall“ zum Schutz ihrer Ostflanke. Die Allgegenwart von Drohnen rief freilich elektronische Gegenmaßnahmen auf den Plan: Beide Seiten überziehen sich mit immer neuen Electronic-Warfare-Taktiken, vom Stören und Spoofen von GPS- und Funkverbindungen bis hin zu improvisierten physischen Schutzgittern („cope cages“) an Fahrzeugen. Im Gegenzug werden jetzt verstärkt per Glasfaser ferngelenkte Drohnen entwickelt, die gegen Funk-Jamming immun sind. Auch im Cyber-Raum tobt der Schlagabtausch, der jedoch trotz einzelner schwerer Angriffe offenbar bislang keine strategisch entscheidenden Wirkungen erzielte.
Den größten Wert haben Cyber-Operationen daher bislang für Aufklärung und Störung gegnerischer Kommunikation. Insgesamt gilt dieser Krieg auch als erster großer Konflikt, in dem kommerzielle Technik so umfassend militärisch genutzt wird, dass Beobachtende bereits vom ersten „kommerziellen Raumfahrtkrieg“ sprechen. Private Satelliten liefern der Ukraine rund um die Uhr Geodaten und Aufklärung, während tausende Starlink-Terminals ein robustes Kommunikationsnetz auf dem Gefechtsfeld sicherstellen. Ebenso werden zivil verfügbare Drohnen, handelsübliche 3D-Drucker und KI-Software in militärische Anwendungen überführt. Mit erschwinglichen Geräten und Software lässt sich realisieren, was früher teuren Spezialkräften vorbehalten war. Die Kehrseite ist, dass die Trennung zwischen zivilem und militärischem Bereich zunehmend verschwimmt, was ethische und sicherheitspolitische Fragen aufwirft.
Die Rolle von Start-ups
Viele dieser Innovationen wurden nicht von Rüstungsriesen ersonnen, sondern von kleinen, agilen Akteur*innen. In der Ukraine stützt man sich auf eine lebhafte Tech-Start-up-Szene und eine flexible Rüstungsindustrie, um Russlands zahlenmäßige Vorteile auszugleichen. Die Iterationsgeschwindigkeit ist beeindruckend: Die Entwicklungszyklen für neue Lösungen sind von Jahren auf Monate, Wochen oder gar Tage geschrumpft. Agile Start-ups und Entwickler*innen-Teams an der Front reagieren in Echtzeit auf Bedrohungen. Sie fügen ständig neue Gegenmaßnahmen und Verbesserungen hinzu, um der Gegenseite immer einen Schritt voraus zu sein.
Dieser direkte Innovationsloop vom Gefechtsfeld in die Werkstatt und zurück beschleunigt den Fortschritt enorm. So schießen etwa ukrainische Drohnen-Workshops buchstäblich in Kellern und umfunktionierten Supermärkten aus dem Boden, um Produktion und Entwicklung selbst unter Beschuss aufrechtzuerhalten. Start-ups bringen eine Kultur der schnellen Iteration ein, die klassische Rüstungsbetriebe so nicht kennen. Das Ergebnis: 500-US-Dollar-Drohnen werden im Feld per Trial-and-Error optimiert und können anschließend einen 5-Mio.-US-Dollar-Panzer ausschalten.
Gründungs-Boom im Verteidigungssektor
Auch außerhalb der Ukraine hat der Krieg einen Gründungs-Boom ausgelöst. Wagniskapital fließt so stark wie nie in europäische Verteidigungs- und Sicherheits-Technologie: 2024 wurden in diesem Sektor 5,2 Mrd. US-Dollar investiert – ein Allzeithoch. Noch vor wenigen Jahren galt Rüstungs-IT bei vielen Investor*innen als Tabu, ähnlich wie „Sündenbranchen“ à la Glückspiel und Pornografie; dieser Stigma-Effekt ist nun einer neuen Dringlichkeit, die ukrainische Verteidigung zu unterstützen, gewichen. Einige staatlich unterstützte VC-Fonds in Europa, wie z.B. SmartCap aus Estland, fördern mittlerweile explizit Rüstungsinvestments. Zwar ist die europäische VC-Branche aufgrund vertraglicher Bindungen insgesamt noch zögerlich, doch die Zurückhaltung wirkt 2025 überholt. Schließlich zeigt der Ukraine-Krieg, dass technologische Innovation das Kriegsgeschehen entscheidend beeinflusst – eine Wahrheit, die in den vergangenen Friedensdekaden in Vergessenheit geriet.
Auch in Deutschland entsteht ein dynamisches Ökosystem, das viele Technologiefelder abdeckt. Die wichtigsten sind künstliche Intelligenz und autonome Systeme, Quantentechnologien, Human Enhancement, Hyperschalltechnologien, neuartige Materialien und Fertigungsverfahren, Raumfahrttechnologien, Advanced Manufacturing sowie resiliente Energiesysteme. Die Bitkom befragte kürzlich 44 deutsche DefTech- und Dual-Use-Start-ups, aber die Dunkelziffer dürfte höher liegen, da inzwischen viele DeepTech-Start-ups mit dem Verteidigungsmarkt liebäugeln.
So hat das Digital Hub Security & Defense BASED während der letzten Münchner Sicherheitskonferenz 80 DefTech-Start-ups auf dem „Sicherheitsfrühstück“ einer fast ebenso großen Zahl an Investor*innen vorgestellt. BASED hat sich auf die Fahnen geschrieben, DefTech-Start-ups „investment ready“ zu machen. Und viele Gründer*innen und Talente entscheiden sich angesichts der Bedrohungslage auch „mission driven“ für die Verteidigung, um einen Beitrag zum Schutz unserer Demokratie zu leisten.
Ein Beispiel für ein erfolgreiches europäisches VerteidigungsStart-ups ist neben ARX Robotics (mehr dazu liest du hier in der Coverstory unserer Magazin-Ausgabe 02/25) oder Quantum Systems aus München auch das Unicorn Helsing, das den HX-2-Drohnenjäger entwickelte und Produktionskapazitäten in Deutschland aufbaut, um monatlich vierstellige Stückzahlen zu liefern. Solche Newcomer zeigen, wie Innovationskraft, Tempo und Skalierung im Ernstfall aussehen können – und dass Start-ups mit unkonventionellen Ansätzen binnen kurzer Zeit Fähigkeiten bereitstellen könnten, für deren Entwicklung traditionelle Rüstungsprogramme in der Vergangenheit Jahrzehnte gebraucht haben. Nicht zuletzt hat der Krieg die Produktionslogik verändert: Entscheidend ist nicht mehr, ein Waffensystem mit allen erdenklichen Sonderwünschen als „Goldrandlösung“ zu perfektionieren, sondern es schnell und robust in großen Stückzahlen bereitzustellen. Auch deutsche Rüstungsfirmen wie Hensoldt sprechen von einem Paradigmenwechsel: weg von der früheren „Boutique“-Fertigung hin zur Massenproduktion. Geschwindigkeit schlägt Sonderanfertigung: Statt monatelanger Feintuning-Schleifen gilt nun, was an der Front sofort wirkt.
Lehren für den Westen und Deutschland
Was bedeuten diese Erfahrungen für die Bundeswehr und ihre Partner*innen? Zunächst, dass Beschaffungsbürokratien und veraltete Prozesse zum Sicherheitsrisiko werden. In der Ukraine hat sich der traditionell träge Militärapparat unter existenziellem Druck rasant gewandelt. Westliche Länder müssen diese Lektionen proaktiv aufgreifen. Im Schnitt dauern Rüstungsprojekte in Deutschland sechs bis sieben Jahre – eine so lange Durststrecke überlebt kein Start-up in der schnelllebigen Tech-Welt. In der Vergangenheit haben sich talentierte Gründer*innen und Investor*innen daher lukrativeren Branchen zugewandt, statt jahrelang auf einen Durchbruch im Verteidigungssektor zu hoffen. Wollen staatliche Stellen die Innovationskraft der Start-up-Welt nutzen, müssen sie nun zu verlässlichen und schnelleren Kund*innen werden. Dazu gehört, Vergabeverfahren radikal zu verschlanken, mehr Wettbewerb und Transparenz zu schaffen und nicht-traditionelle Anbieter*innen aktiv einzubinden.
Die Politik hat dies erkannt: In Berlin hat sich die neue Koalition vorgenommen, die langsamen Beschaffungsabläufe grundlegend zu reformieren. Eine Analyse des Wirtschaftsministeriums (BMWK) identifizierte bereits 2023 Bremsklötze: übermäßige parlamentarische Einmischung bei jedem Auftrag über 25 Mio. Euro, komplizierte Regulierung sowie zu enge Grenzen bei der Forschungsförderung. Diese Hürden führen dazu, dass Innovationen im „Tal des Todes“ versickern – dem Übergang von Prototypen in die Serienbeschaffung. Durch bürokratische Verzögerungen verliert neue Technik dort kritische Zeit und Schwung, bisweilen verschwindet sie ganz. Um das zu verhindern, muss es strukturelle Änderungen geben: von der Verstetigung von Innovationsbudgets über beschleunigte Genehmigungswege bis hin zur besseren Verzahnung von zivilen Talenten mit militärischen Bedarfsträger*innen. Kurz: Die Streitkräfte dürfen nicht länger in Friedensroutine verharren.
Zugleich müssen Produktionskapazitäten hochgefahren werden. Der Krieg lehrt, dass eine industriell-logistische Mobilmachung nötig ist, um im Ernstfall genug Material bereitstellen zu können – seien es Munition, Drohnen oder Ersatzteile. Dafür braucht es auch neue Geschäftsmodelle und modulare „Factories“ in Europa, die bei Bedarf binnen kürzester Zeit die Ausstoßzahlen hochskalieren können. Auch Abhängigkeiten von langen und störanfälligen Lieferketten im Bereich der Rohstoffe und Komponenten müssen reduziert werden.
Generell sollten westliche Regierungen verstärkt Kapital in junge Verteidigungsfirmen lenken – etwa durch Wagniskapitalfonds oder Innovationsprogramme – und verhindern, dass große Rüstungskonzerne vielversprechende Neulinge bloß aufkaufen, um deren Technologien vom Markt zu nehmen. Die Innovationsökosysteme rund um Verteidigung müssen sorgfältig kultiviert werden, damit die aktuelle Aufbruchsstimmung nicht abrupt endet. Dazu gehört auch ein Mentalitätswandel bei Investor*innen: Die Jahrzehnte währende Scheu vor Wehrtechnik-Investments ist nicht mehr zeitgemäß – letztlich hängt die Sicherheit Europas von unserer technologischen Stärke ab.
Fazit
Der Ukraine-Krieg führt vor Augen, wie künftig Kriege entschieden werden: durch Geschwindigkeit und Innovationskraft. Günstige, flexibel einsetzbare Technologien – oft entwickelt von neuen Akteur*innen – können hochgerüstete Gegner*innen ins Wanken bringen. Start-ups avancieren hierbei zum strategischen Faktor. Sie liefern Agilität, frische Ideen und die Fähigkeit, sich im Kriegsverlauf iterativ anzupassen.
Die Autorin Prof. Dr. Rafaela Kraus ist Professorin für Unternehmens- und Personalführung soeir ehem. Vizepräsidentin der Universität der Bundeswehr München und hat dort u.a. das Entrepreneurship-Center founders@unibw ins Leben gerufen. Als Defense-Innovation-Expertin ist sie Initiatorin von BASED, dem Münchner Digital Hub Security & Defense
5 Tipps für GPT-Sichtbarkeit im Netz
Warum klassisches SEO allein nicht mehr ausreicht und wie Unternehmen für die KI-Antworten der GPT-Modelle sichtbar werden.
Die Spielregeln der digitalen Sichtbarkeit werden gerade neu geschrieben – und die Unternehmen müssen sich neu aufstellen. Denn während viele Unternehmen ihre Strategien noch immer ausschließlich auf Google-Rankings und SEO-Kriterien ausrichten, verlagert sich die digitale Aufmerksamkeit längst in Richtung KI: Sprachmodelle wie ChatGPT, Claude oder Gemini ersetzen zunehmend die klassische Suche. Sie liefern keine Trefferlisten mehr, sondern direkte, aufbereitete Antworten – oft mit konkreten Empfehlungen und Verlinkungen. Für Marken, Produkte und Unternehmen wird es damit entscheidend, in diesen zusammengefassten Antworten stattzufinden. Das Stichwort hierfür ist technisches SEO für KI-Rankings.
Suchmaschinen waren gestern das führende Element in der Sortierung von Wissen im Netz und vor allem das Google-Ranking war entscheidend für die Sichtbarkeit von Informationen und Seiten. In Zukunft entscheiden dagegen Sprachmodelle darüber, welche Inhalte gesehen, zitiert und empfohlen werden. Und wer in diesen Systemen nicht genannt wird, verliert den direkten Draht zur Zielgruppe.
Diesen Paradigmenwechsel vom Google-Ranking zur Antwortlogik hat die SMAWAX, die auf Strategieberatung spezialisierte Agentur der Smarketer Group, erstmals systematisch im Rahmen eines Whitepapers analysiert (s. Link am Ende des Beitrags). Die Expert*innen erklären dabei detailliert, wie GPT-Modelle Inhalte auswählen – und welche Inhalte von den Systemen überhaupt referenziert werden dürfen. Die zentrale Erkenntnis: Suchmaschinenoptimierung nach alten Regeln greift zu kurz, ist aber weiterhin die Sichtbarkeitsgrundlage. Denn Sprachmodelle wie ChatGPT denken nicht in Keywords und Rankings, sondern in semantischen Relevanzräumen, Entitätenbeziehungen und struktureller Klarheit.
Inhalte müssen modular und semantisch präzise sein – doch das reicht nicht
Es geht nicht mehr um Top-Rankings – es geht darum, die richtige Antwort zu sein. Wir müssen SEO neu denken – als Schnittstelle zwischen Struktur, Relevanz und maschinellem Verstehen. Inhalte müssen dazu maschinenlesbar, modular aufgebaut und semantisch präzise sein. Nur dann haben Unternehmen eine Chance, in den Empfehlungslogiken von Claude, GPT & Co. aufzutauchen.
Besonders überraschend ist dabei aber, dass viele Unternehmen in GPT-Antworten zwar durchaus latent präsent, aber nicht sichtbar sind. Der Grund hierfür sind unscharfe Entitäten, fehlende „About“-Seiten, keine Verankerung in externen Quellen wie Wikidata, Trustpilot oder LinkedIn. Die Folgen wirken sich negativ auf die Marken aus und sorgen für Fehlinformationen: KI-Modelle verwechseln Marken, halluzinieren Funktionen oder verschweigen relevante Angebote. Halluzinationen sind in Wahrheit ein strategischer Hinweis auf Unsichtbarkeit. Wenn GPT ein Produkt falsch beschreibt oder dich mit einem Mitbewerber verwechselt, zeigt das: Deine Inhalte sind zwar irgendwo im Modell – aber nicht stabil genug verankert, um korrekt genannt zu werden.
Fünf konkrete Hebel für bessere GPT-Sichtbarkeit
Diese praxisnahe Handlungsempfehlungen können Unternehmen sofort umsetzen können – unabhängig davon, ob sie im B2B- oder B2C-Bereich aktiv sind.
1. Entitäten definieren: Jede Marke braucht heute eine kanonische „About“-Seite, ergänzt um ein Wikidata-Profil, semantische Markups und gleiche Namensverwendungen auf Plattformen wie LinkedIn oder Handelsregister.
2. Aktualität signalisieren: GPT-Modelle bevorzugen Inhalte mit klaren Update-Daten (z.B. dateModified). Ohne erkennbaren Pflegezustand gelten Inhalte als veraltet – und werden ausgefiltert.
3. Bing wird zum Gateway: Weil GPT seine Websuche auf Bing stützt, ist dessen Indexierung entscheidend. Wer dort nicht sauber auffindbar ist, existiert in GPT-Antworten nicht.
4. Content chunkbar machen: Inhalte sollten nicht mehr aus langen Fließtexten bestehen, sondern in modularen Blöcken mit H2-Strukturen, Listen und Zwischenfazits aufgebaut sein.
5. Externe Signale einbinden: Erwähnungen auf Trustpilot, Reddit oder in der Fachpresse stärken die semantische Autorität – und erhöhen die Chance, von Sprachmodellen zitiert zu werden.
Fazit
Die neue Sichtbarkeit entsteht durch das, was das Modell nicht selbst erzeugen kann – sie entsteht also nicht über Rankings, sondern über Relevanzräume. Wer auf Standard-Content setzt, wird paraphrasiert oder übergangen. Wer dagegen einzigartigen, strukturierten und technisch klaren Content liefert, wird empfohlen.
Zum Weiterlesen: Das Whitepaper steht zum kostenlosen Download bereit unter www.smawax.com/whitepaper-ki-sichtbarkeit
EU AI Act: Bürokratisch, unpraktisch, schlecht
Ein Kommentar von Dominik Mohilo, Redakteur und IT-Experte bei der auf High-Tech spezialisierten Münchner PR- und Kommunikationsagentur PR-COM.
Die Luft auf dem hohen moralischen Ross, auf dem Deutschland vorreitet und Europa folgt, wird dünner und dünner. Ja, der EU AI Act ist eine Errungenschaft. Und ja, ethische Grundsätze sollten wir keinesfalls missachten, wenn es darum geht, künstliche Intelligenz zu entwickeln, zu betreiben und zu verwenden. Fair enough. Doch darf’s vielleicht trotzdem ein bisschen weniger Bürokratie sein, liebe EU? Artikel 5 des KI-Regelwerks der EU besagt beispielsweise, dass die folgende KI-Praktik verboten ist: „Das Inverkehrbringen, die Inbetriebnahme oder die Verwendung eines KI-Systems, das unterschwellige Techniken, die sich dem Bewusstsein einer Person entziehen, oder absichtlich manipulative oder täuschende Techniken einsetzt, mit dem Ziel oder der Wirkung, das Verhalten einer Person oder einer Personengruppe dadurch wesentlich zu beeinflussen, dass ihre Fähigkeit, eine sachkundige Entscheidung zu treffen, spürbar beeinträchtigt wird, wodurch sie veranlasst wird, eine Entscheidung zu treffen, die sie andernfalls nicht getroffen hätte, und zwar in einer Weise, die dieser Person, einer anderen Person oder einer Personengruppe einen erheblichen Schaden zufügt oder mit hinreichender Wahrscheinlichkeit zufügen wird.“ (Kapitel II, Artikel 5, 1a)
Sperrig und überregulatorisch
Verstanden worum es geht? Ich auch nicht. Ähnlich sperrig und überregulatorisch ist der Abschnitt über sogenannte Hochrisiko-KI-Systeme formuliert. Gemeint sind damit jene KI-Anwendungen, die etwa im Gesundheitswesen, in der Bildung oder kritischen Infrastrukturen eingesetzt werden sollen – also genau den Bereichen, wo sie dringend benötigte Verbesserungen und Entlastungen für die in diesen Bereichen arbeitenden Menschen mit sich bringen könnten. Was genau mit Hochrisiko gemeint ist, ist allerdings wieder nicht glasklar definiert: was hat denn nun „erheblichen Einfluss auf Grundrechte“? Diese Unsicherheit im Hinblick auf die rechtliche Grundlage ist oft Grund genug für potenzielle Investoren, sich nach anderen Gelegenheiten umzusehen. Wer will schon exorbitante Kosten für juristische Verfahren locker machen und Zertifizierungen noch und nöcher erwerben, nur um am Ende dann möglicherweise doch gegen geltende Gesetze zu verstoßen? Eben.
Start-ups sind von Hürden überproportional heftig betroffen
Gerade kleine und mittelständische Unternehmen (KMU) sowie Start-ups sind von diesen Hürden überproportional heftig betroffen, sodass viele gute und wegweisende Ideen nicht oder zumindest nicht hier in der EU auf den Weg gebracht werden. Wirtschaftlich ist das fatal – das auch noch in diesen schwierigen Zeiten. In diesen Zeiten wäre es eigentlich wichtig, die Wirtschaft voranzutreiben, insbesondere in zukunftsweisenden Bereichen wie dem KI-Markt. Eine gute Möglichkeit wäre, die Technologie hierzulande staatlich zu subventionieren, wie das in den USA und in China bereits in großem Stil passiert. Stattdessen werfen wir uns selbst Stöcke in die Speichen unserer Räder – unter anderem mit Regulierung und ethischen Grundsätzen, sondern insbesondere durch schwammige Gesetzestexte und Undurchsichtigkeit von Compliance-Vorschriften.
Zusammenfassend ist festzustellen, dass die alte Forderung „rebellischer“ (mancher würde sagen: „vernünftiger“) Politiker, Bürokratie abzubauen, selten so eine hohe Relevanz wie aktuell hatte. Europa geht es wirtschaftlich schlecht, gleichzeitig verlassen High-Tech-Unternehmen scharenweise unsere Breitengerade, da das Regulierungskorsett so eng geschnürt ist, dass Innovation keine Luft mehr zum Atmen hat. Es gilt also, Maßnahmen zu ergreifen, um wettbewerbsfähig zu werden.
Was könnte die EU nun machen, da das Regulations-Kind in den Brunnen gefallen ist?
Zunächst einmal wäre es hilfreich, aus unserem Elfenbeinturm herauszukommen. Ethik ist wichtig, aber kein Altar, auf dem wir unsere Wirtschaft opfern sollten. Haben wir das verinnerlicht, braucht der EU AI Act eine Überarbeitung die Unklarheiten auflöst und die Hürden (gerade für Start-ups und KMU) verringert. Sinnvoll wäre zudem, wenn die EU KI-Sandboxes zur Prüfung von innovativen Technologien bereitstellen würde, in denen Unternehmen ihre Entwicklungen testen können, ohne gegen Gesetze zu verstoßen. Zudem muss die EU-Gelder und Mittel zur Verfügung stellen, Zertifizierungsverfahren deutlich zu beschleunigen. Auch eine Zentralisierung dieser Verfahren würde Sinn ergeben. Die entsprechende ISO-Norm (ISO/IEC 42001) gibt es bereits, was fehlt sind offizielle Tools, um die Konformität der eigenen Anwendung zu checken.
Ziel muss es sein, Europa als attraktives Umfeld für den Einsatz und die Entwicklung von KI-Anwendungen zu positionieren. KI wird in den kommenden Jahren über wirtschaftlichen Erfolg nicht nur von Unternehmen, sondern von Staaten avancieren. Wenn wir nicht die gleichen Katastrophen wie aus der Schwerindustrie und der Automobilbranche erleben, sondern wieder vorne mitspielen wollen, dürfen wir uns nicht selbst behindern. Das Gebot der Stunde ist also Bürokratieabbau und Mut zu moderaterer Ethik – so werden wir vielleicht irgendwann doch wieder Exportweltmeister.
Münchner Scale-up Wemolo erreicht Break-even
Mit KI zur Profitabilität: Das 2019 gegründete Münchner Tech-Scale-up Wemolo, der "schrankenlose Parkraumspezialist", verzeichnet nach eigenen Angaben ein durchschnittliches Jahreswachstum von 280 Prozent, ist profitabel und verwaltet mehr als 255.000 Stellplätze in Europa.
Die digitale Transformation von Parkplätzen birgt großes Potenzial – vor allem, wenn sie nicht nur Schranken und Tickets eliminiert, sondern neue Geschäftsmodelle erschließt. In einem europäischen Markt für automatisierte Parksysteme, der auf 50 Milliarden Euro geschätzt wird, hat sich das Münchner Unternehmen Wemolo innerhalb kürzester Zeit in die erste Liga gearbeitet.
Mit einem Jahresumsatz von rund 40 Millionen Euro im Jahr 2024 und einer positiven EBIT-Marge im ersten Quartal 2025 hat das Scale-up trotz des signifikanten Wachstums die Gewinnzone erreicht. Die jährliche Wachstumsrate betrug seit Gründung 2019 durchschnittlich 280 Prozent (CAGR), was Wemolo laut Deloitte zu einem der am schnellsten wachsenden Tech-Unternehmen Deutschlands macht. Nach mehreren Finanzierungsrunden mit insgesamt rund 30 Millionen Euro (650.000 € Pre-Seed, 4,7 Mio. € Seed, 15 Mio. € Series A und zuletzt 10 Mio. € Growth Financing durch Partner wie die CIBC Innovation Banking) untermauert Wemolo damit die Attraktivität digitaler Parklösungen als Wachstumsbranche.
“Wir haben unsere Skalierungsphase genutzt, um parallel die Entwicklung unserer Technologie zu beschleunigen und rasch Marktanteile in fünf europäischen Ländern zu gewinnen”, sagt Wemolo-Mitgründer und CEO Dr. Yukio Iwamoto. Zu den Investor*innen zählen neben den strategischen Partnern Armira Growth und henQ auch die Flix Founders (Gründerteam des Mobilitätsanbieters Flix), wobei Jochen Engert dem Unternehmen als Beirat zur Seite steht.
"Dass sich Wemolo nach vergleichsweise kurzer Zeit ins Plus gearbeitet hat, ist das Ergebnis unseres kapitaleffizienten Wachstumskurses - mit deutlich weniger Investitionskapital als bei vergleichbaren Tech-Unternehmen. Unser KI-basiertes System liefert für Immobilieneigentümer, Asset-Manager, Einzelhandel und Kommunen nicht nur digitale Parklösungen, sondern auch wertvolle Daten für strategische Geschäftsentscheidungen", so Jochen Engert.
Vom Campus-Projekt zur Digitalplattform
Ursprünglich im Juli 2019 aus einem Projekt der UnternehmerTUM entstanden, betreibt Wemolo heute KI-basierte Kamerasysteme zur Kennzeichenerfassung und Abrechnung an über 3.000 Standorten in fünf Ländern. Täglich erfasst das Unternehmen mehr als zwei Millionen Parkvorgänge digital und wickelt diese ab. Das Unternehmen beschäftigt aktuell rund 250 Mitarbeitende und verwaltet insgesamt 255.000 Stellplätze – von Supermärkten und zentralen Parkhäusern über Krankenhäuser bis hin zu Freizeitanlagen wie Skigebieten und Badeseen.
"Unsere Profitabilität basiert nicht auf Kostendiät, sondern auf nachhaltiger Skalierung: mehr Volumen bei stabilen Fixkosten, bessere Flächenauslastung und immer wertvollere Daten-Assets für unsere Kunden", erklärt CEO und Mitgründer Jakob Bodenmüller. "Dank unserer KI-basierten Plattform können wir sehr schnell auf Marktanforderungen reagieren und unsere Lösung kontinuierlich weiterentwickeln."
Geschäftsmodell mit messbarem Mehrwert für Betreiber*innen
Das Kernprinzip: Mithilfe KI-basierter Computer Vision werden Ein- und Ausfahrten erfasst, was Schranken, Tickets, Parkscheiben und vor allem kostenintensives Personal vor Ort überflüssig macht. Wemolo bietet verschiedene Module für die Parkraumdigitalisierung - von der Überwachung kostenfreier Flächen bis zu volldigitalen Bezahlsystemen, die auf die jeweiligen Kund*innenanforderungen angepasst werden können. Die intelligente Plattform ermöglicht nicht nur die effiziente Bewirtschaftung von Parkraum und reibungslose Nutzer*innenerlebnisse, sondern liefert auch wertvolle Daten für optimierte Geschäftsentscheidungen.
“Wir liefern anonymisierte, aber hochgradig aussagekräftige Daten zur Flächennutzung”, erklärt CPTO und Mitgründer Bastian Pieper. “Ein Beispiel: Durch die effektive Vermeidung von Fremdparkern konnte einer unserer Lebensmittelkunden die Verfügbarkeit seiner Kundenparkplätze deutlich erhöhen. Das Ergebnis: Ein messbarer Anstieg des Filialumsatzes, der bei typischen Margen des Lebensmitteleinzelhandels eine Gewinnsteigerung im mittleren fünfstelligen Bereich pro Jahr ermöglicht.”
“Bei gewerblichen Immobilienprojekten ermöglichen unsere präzisen Nutzungsdaten eine optimierte Stellplatzdimensionierung, was für Investoren zu signifikanten Einsparungen bei Tiefgaragen-Investitionen führt und die Gesamtrendite der Immobilie verbessert”, ergänzt Pieper.
Wachstumsfinanzierung strategisch eingesetzt
Den Break-even wertet das Management als Bestätigung des Geschäftsmodells, aber auch als Signal des wachsenden Bedarfs am Markt. “Wir merken, dass immer mehr Unternehmen und Immobilieneigentümer aktiv nach einer unkomplizierten, verlässlichen Lösung suchen, um ihre Parkflächen zu digitalisieren – und zugleich relevante Daten zu erheben. Das Thema steht weiterhin am Anfang. Wir wollen Wemolo zum stärksten Anbieter auf dem Feld der smarten Parklösungen ausbauen”, sagt Iwamoto.
“Wir verfolgen bei unserer Technologieentwicklung einen hybriden Ansatz”, erklärt Pieper. “Die entscheidenden Komponenten – unsere custom-trainierte KI und die zentrale Softwareplattform – entwickeln wir komplett inhouse, während wir Spezialkomponenten wie Bezahlautomaten nach unserem Design in Deutschland fertigen lassen.”
“Wir setzen auf robuste Industrial-Grade-Hardware, auf der unsere speziell trainierte KI läuft, um jedes Fahrzeug unter allen Wetterbedingungen zuverlässig zu erfassen. Diese Kombination aus eigener Software-Expertise und gezielter Hardware-Integration ermöglicht uns viel schnellere Innovationszyklen als bei traditionellen Parksystembetreibern oder reinen Software-Anbietern”, führt Pieper fort. “Ähnlich wie Tech-Vorreiter aus dem Silicon Valley bringen wir neue Features und KI-Optimierungen in Wochen statt Quartalen zur Marktreife.”
Expansion und Herausforderungen des Wachstums
Wemolo ist bereits in fünf europäischen Ländern aktiv, darunter Deutschland, Österreich, Schweiz, Polen und Italien. Für 2025 plant das Unternehmen, seine digitalen Bezahllösungen in diesen und weiteren europäischen Märkten auszubauen. Dabei setzt das Scale-up auf ein Netzwerk aus strategischen Kooperationen mit Lebensmitteleinzelhändlern, Immobilienentwicklern und kommunalen Einrichtungen.
“Die klassischen Schrankenparksysteme sind in vielen Regionen noch Standard, aber der Markt wandelt sich rapide”, sagt Bodenmüller. “Unser digitales Konzept steigert den Verbraucherkomfort, die Wirtschaftlichkeit von Immobilien und erfüllt ESG-Anforderungen.”
Die größten Herausforderungen beim weiteren Wachstum sieht das Management vor allem in der unterschiedlichen Regulierung zur Kameraüberwachung in den europäischen Ländern sowie in der Akzeptanz schrankenloser Systeme bei traditionell orientierten Betreibern. “Mit unserer DSGVO-konformen Technologie und messbaren Kostenvorteilen durch den Wegfall wartungsintensiver Schranken und Ticketsysteme überzeugen wir den Markt”, betont Pieper.
Ambitionierte Ziele in einem wachsenden Markt
Vor dem Hintergrund der Profitabilität plant Wemolo nun den nächsten Wachstumsschritt. “Wir sind im digitalen Parksegment bereits Marktführer in Europa und wollen zum absolut stärksten Provider werden”, sagt Iwamoto. “Dass wir jetzt bereits profitabel sind, verschafft uns die nötige Unabhängigkeit, um in Technologie, Teams und Expansion zu investieren, ohne dabei von externem Kapital abhängig zu sein." Branchenexperten prognostizieren für den europäischen Markt digitaler Parksysteme ein anhaltend starkes Wachstum. Denn bislang gelten weniger als 25 Prozent des auf rund 50 Milliarden Euro geschätzten Gesamtmarktes als technologisch modernisiert – etwa durch kamerabasierte Zugangssysteme, automatisierte Bezahlprozesse oder intelligente Flächenanalysen.
Podcast: Die Peter Thiel Story
Tipp der Redaktion: Ab 28. Mai 2025 in der Deutschlandfunk App verfügbar – der sechsteilige Podcast „Die Peter Thiel Story“.
Peter Thiel ist mit PayPal und Facebook reich geworden und hat die Gedankenwelt des Silicon Valleys wie kaum ein zweiter geprägt. Der Tech-Milliardär ist ein Architekt des neuen rechten Amerikas, ist Strippenzieher und bestens vernetzt im radikalkonservativen und -libertären Amerika.
Mit dem sechsteiligen Podcast „Die Peter Thiel Story“ beleuchtet der Deutschlandfunk jetzt die Hintergründe des geheimnisvollen Investors, der trotz seines enormen Einflusses vielen kaum bekannt ist.
Host und Autor Fritz Espenlaub zeichnet nach, wie ein in Deutschland geborener Philosophiestudent im Silicon Valley aufstieg. Er zeigt das intellektuelle Fundament – geprägt von Carl Schmitt, René Girard und Ayn Rand – sowie das Netzwerk, das heute Schlüsselpositionen in Wirtschaft und Politik besetzt.
Die Serie dokumentiert dabei auch Thiels Visionen: Die Errichtung schwimmender libertärer Städte, die Entwicklung fortschrittlicher Überwachungstechnologie und seine Suche nach dem ewigen Leben.
„Die Peter Thiel Story“ bietet Einblicke in das Leben des Mannes, der ewig leben und alles verändern will.
Die Peter Thiel Story
Sechsteilige Erzählserie jeweils ca. 30 Minuten
ab 28. Mai 2025 in der Deutschlandfunk App

