Aktuelle Events
Home of Unvernunft: Sakrileg als höchste Maxime
Die vier Gründer der Home of Unvernunft UG sind angetreten, um den Markt der Biermixgetränke „narrisch“ aufzumischen.

Mit ihren drei Sorten „Ingwer Narrisch“, „Blaubeer Narrisch“ und „Rosmarin Narrisch“ haben die vier Münchner Gründer Matthias, Siggi, Alex und Konsti neue Geschmacksprofile kreiert, die weit über das klassische Radler hinausgehen.
Sakrileg als höchste Maxime
Schon der Name ihres Start-ups verrät, dass sie mit dem nötigen Spaß an die Sache herangehen: Home of Unvernunft. Name ist hier Programm. Als Grundprinzip für ihre Geschäftsidee führen die befreundeten Unternehmer drei Worte an: „Wir panschen Bier!“
Sigurd Gabriel, geschäftsführender Gesellschafter des Unternehmens: „Was in Bayern als Sakrileg gilt, ist unsere höchste Maxime. Mischen, experimentieren, neue Wege gehen – wenn das Resultat so gut schmeckt, muss das erlaubt sein. Durch den hohen Märzenbiergehalt haben all unsere Sorten übrigens saftige 4,6 % Alkohol.“

Pappsüß war gestern
Der Getränketechnologe weiß, wovon er spricht – er kommt aus einer Brauerei-Familie im Norden Deutschlands. Die Bierherstellung begleitet ihn somit schon sein ganzes Leben. Gerade deshalb ist ihm ein hoher Biergehalt von 84 Prozent ebenso wichtig, wie die Qualität der hinzugefügten Säfte. Bei der Narrenfreiheit Kollektion verzichten Gabriel und sein Team komplett auf „E’s“ und künstliche Aromastoffe.
Während der Entwicklung der drei Rezepturen war der Zuckergehalt ein zentrales Diskussionsthema. Die vier Gründer waren sich schnell einig: So wenig wie möglich. „Wer zwei oder drei handelsübliche Radler hintereinander getrunken hat, der weiß, dass einem danach der Mund zusammenpappt“, sagt Alexander Inderst, geschäftsführender Gesellschafter von Home of Unvernunft. „Wir haben unsere Getränke daher so entwickelt, dass genau das nicht passiert – und man getrost auch mal ein oder zwei Flaschen mehr davon genießen kann.“
Die Narrenfreiheit Kollektion ist im Online Shop des jungen Unternehmens und im gut sortierten Getränkefachhandel erhältlich.
Diese Artikel könnten Sie auch interessieren:
Vom Elevator Pitch zum echten Kontakt: So bleibst du auf Events in Erinnerung
Events sind voll, laut und schnell. Viele Pitches klingen gleich. Was bleibt, sind oft die Zweifel, ob jemand zuhört und ob die Story hängen bleibt. Hier ist ein klarer Plan, mit dem du als Gründer*in nicht nur sprichst, sondern auch lange in Erinnerung bleibst.

Welche Events für Start-ups wichtig sind
Nicht jedes Event bringt dir Reichweite. Große Messen sind gut, um Trends zu sehen und zufällig Investor*innen zu treffen. Kleine Meetups sind oft besser, um echte Gespräche zu führen. Pitch-Wettbewerbe helfen, deine Story zu testen und Sichtbarkeit zu bekommen. Branchenevents bringen dich nah an Kund*innen, die deine Lösung wirklich gebrauchen können. Und dann gibt es noch Netzwerktreffen von Acceleratoren oder Coworking-Spaces - da findest du oft Mentor*innen oder erste Geschäftspartner*innen. Überlege dir vorher: Willst du Investor*innen, Kund*innen oder Sparringspartner*innen treffen? Danach entscheidest du, wo du hingehst.
Vor dem Event: Ziele setzen, Fokus halten
Ein Event ist keine Bühne für endlose Pitches. Es ist ein Spielfeld für Beziehungen. Wer ohne Plan kommt, wirkt schnell beliebig. Deshalb gilt: Vorbereitung ist deine größte Stärke.
Strategische To-dos
1. Definiere dein Ziel: Willst du Investor*innen ansprechen, Kund*innen gewinnen oder Geschäftspartner*innen finden? Du kannst nicht alles gleichzeitig schaffen. Konzentriere dich auf maximal zwei Ziele. So weißt du, wen du ansprechen solltest und wen nicht.
2. Recherchiere die Gästeliste: Viele Events veröffentlichen Speaker*innen oder Sponsor*innen vorab. Schau dir an, wer interessant für dich ist. Markiere drei bis fünf Personen, die du wirklich treffen willst. Bereite eine kurze, persönliche Anknüpfung für jede Person vor. So bist du nicht eine/r von vielen, sondern jemand, die/der sich Mühe gibt.
3. Arbeite an deinem Auftritt: Damit ist nicht nur dein Pitch gemeint. Denk an dein Gesamtbild: Kleidung, Körpersprache, wie du dich vorstellst. Professionell wirkt nicht steif, sondern klar. Auch kleine Dinge zählen, zum Beispiel, ob du leicht erklärst, was dein Startup macht, oder ob du dich in Fachjargon verstrickst.
4. Trainiere deinen Pitch – aber nicht auswendig: Du brauchst keine perfekte Rede. Besser ist, wenn du deine Kernbotschaft so verinnerlicht hast, dass du sie flexibel rüberbringen kannst. Drei klare Punkte reichen: Problem - Lösung - Nutzen. Wenn du das frei variieren kannst, wirkst du authentisch und nicht einstudiert.
5. Plane deinen Erinnerungsanker: Menschen erinnern sich an kleine, konkrete Dinge. Das kann eine Zahl sein, eine kurze Story oder ein visueller Anker wie ein ungewöhnliches Beispiel. Überlege dir vorher, was du nutzen willst, damit dein Gegenüber dich später noch zuordnen kann.
6. Bereite dein Material vor: Visitenkarten wirken altmodisch, sind aber praktisch. Smarter wird es mit einem QR-Code: der führt direkt zu deiner Webseite, deinem Kalender oder einer One-Pager-Landingpage. Wenn du kleine Giveaways einsetzt, dann nur Dinge, die wirklich nützlich sind, z. B. Kugelschreiber oder Notizbücher. Weitere Inspiration findest du hier.
Auf dem Event: Präsenz zeigen, Kontakte knüpfen
Ein Event ist kein Marathon, bei dem du möglichst viele Visitenkarten einsammeln musst. Es geht darum, wie du dich präsentierst, wie du zuhörst und ob andere dich in Erinnerung behalten. Qualität schlägt Quantität – drei gute Kontakte bringen dir mehr als dreißig flüchtige Gespräche.
Sichtbar sein, ohne zu nerven
Stell dich nicht in die Ecke und warte darauf, dass dich jemand anspricht. Such dir bewusst Momente, um auf Leute zuzugehen. Gleichzeitig: niemand mag aufdringliche Monologe oder aggressive Visitenkartenverteilung. Halte die Balance zwischen aktiv und angenehm.
- Stell dich in die Nähe des Buffets oder der Kaffeemaschine. Dort entstehen oft spontane Gespräche.
- Lieber fragen „Kann ich mich kurz dazu stellen?“ als ungefragt in eine Gruppe platzen.
Mit einfachen Fragen starten
Small Talk ist nicht belanglos, er ist der Türöffner. Eine einfache Frage reicht, um ins Gespräch zu kommen: „Was hat dich heute hergebracht?“ oder „Welche Session war für dich bisher die spannendste?“. So entsteht ein natürlicher Einstieg, ohne dass du sofort pitchen musst.
Den Pitch flexibel einsetzen
Dein Kurzpitch bleibt wichtig, aber er sollte sich an die Situation anpassen. Investor*innen wollen etwas anderes hören als potenzielle Kund*innen oder Mentor*innen. Die Grundstruktur ist immer gleich – Problem, Lösung, Ergebnis - aber die Betonung wählst du passend zur Person.
- Beispiel für Investor*innen: „Wir adressieren einen Markt von 2,5 Mrd. € und wachsen aktuell 20% pro Monat.“
- Beispiel für Kund*innen: „Du verlierst weniger Zeit mit Bestandsplanung, weil alles automatisch läuft.“
- Beispiel für Mentor*innen: „Wir haben es geschafft, unser MVP in 6 Wochen zu launchen - aber das Onboarding ist noch unser Schwachpunkt.“
Geschichten bleiben hängen
Zahlen sind nützlich, aber Geschichten prägen sich ein. Ein Beispiel aus dem Alltag deiner Nutzer*innen macht dich viel greifbarer als jede Statistik. „Eine Bäckerei, die wir betreuen, musste keine Kund*innen mehr wegschicken, weil die Croissants nie mehr ausgingen.“ Solche Bilder bleiben im Kopf.
Gespräche klar beenden
Viele Gründer*innen wissen nicht, wann sie ein Gespräch beenden sollen. Aber genau das macht dich professionell: Bedanke dich kurz, kündige an, dass du dich meldest, und geh den nächsten Schritt. Zum Beispiel: „Schön, dich kennenzulernen. Ich schicke dir morgen den Link, wie besprochen.“ oder „Ich will dich nicht länger aufhalten, lass uns gern später weiterreden.”. Das zeigt Respekt und macht den Weg frei für ein Follow-up.
Nach dem Event: Dranbleiben statt abtauchen
Das Wichtigste passiert oft erst nach dem Event. Melde dich innerhalb von ein bis zwei Tagen, solange ihr euch beide noch erinnert. Halte deine Zusagen ein und mach es konkret: ein Link, eine Case Study oder ein Termin. Schreib persönlich und nicht generisch. Ein kurzer Bezug zum Gespräch reicht. Und bleib locker: Nicht jede Begegnung führt sofort zu einem Deal, aber wer sich verlässlich meldet, bleibt im Kopf. So machst du aus einem ersten Pitch eine echte Verbindung, die weit über das Event hinausgeht.
Warum KI bei Förderanträgen versagt
Fünf Gründe, warum Unternehmen auf menschliche Intelligenz setzen sollten.

Ob steuerliche Forschungszulage, Investitionsförderung oder EU-Programme. Künstliche Intelligenz (KI) wie ChatGPT liefert in Sekundenschnelle eine Vielzahl möglicher Förderprogramme. Doch zwischen der reinen Information und der tatsächlichen Erschließung von Fördermitteln liegt ein erheblicher Unterschied. Hier gilt es, Unternehmen zu sensibilisieren.
Fördermittel sind heute ein strategischer Bestandteil moderner Unternehmensfinanzierung. Es reicht daher nicht, die Programme zu kennen. Entscheidend ist, sie rechtssicher, vollständig und förderlogisch aufeinander abgestimmt umzusetzen, um die vollen Förderpotenziale zu heben. Genau hier beginnt die Arbeit von Fördermittelexpert*innen.
Fünf Gründe, warum KI-Tools nicht als Fördermittelberater funktionieren
1. KI erkennt die wahren Förderpotenziale nicht
ChatGPT kann erklären, was ein Förderprogramm leistet. Doch welche Kosten eines konkreten Vorhabens tatsächlich und wie hoch förderfähig sind, lässt sich so nicht beurteilen. Gerade bei komplexen Programmen wie der steuerlichen Forschungszulage sind Erfahrung, Struktur und rechtssichere Abgrenzung entscheidend. Eine gute Fördermittelberatung prüft jedes Vorhaben systematisch: von der Förderfähigkeit nach dem Forschungszulagengesetz (FZulG), AGVO oder De-minimis-Verordnung bis hin zur klaren Trennung förderfähiger und nicht förderfähiger Aufwände.
2. KI kann keine Förderstrategien entwickeln
Eine Liste von Förderprogrammen ersetzt keine Strategie. KI kann nur Optionen nennen, aber keine Strategien zur Umsetzung im Unternehmen entwickeln. Eine gute Fördermittelberatung integriert die Forschungszulage sinnvoll in laufende Projekte und strukturiert Innovations- sowie Investitionsprozesse auf Bundes-, Landes- und EU-Ebene. So entstehen nicht nur Optionen, sondern belastbare, wirtschaftlich wirksame Lösungen.
3. KI kann nicht mit Menschen kommunizieren
Ein Antrag ist mehr als ein Formular. Er muss Anforderungen erfüllen und überzeugen. KI liefert Textbausteine, aber führt keine Gespräche und reagiert nicht auf Rückfragen mit der notwendigen Erfahrung in der Verwaltungspraxis der verschiedenen Förderprogramme. Eine gute Fördermittelberatung übernimmt die gesamte Kommunikation mit Förderstellen, koordiniert mit Bescheinigungsstellen und entwickelt formal korrekte und überzeugende Argumentationen.
4. KI endet beim Prompt – Fördermittelberatung bei der erfolgreichen Projektprüfung
Nach dem Antrag geht die Arbeit oft erst richtig los. Rückfragen, Prüfungen, Nachweise. KI kann Unternehmen dabei nicht unterstützen und keine Verantwortung übernehmen. Eine gute Fördermittelberatung hingegen begleitet die Kund*innen durch den gesamten Förderzyklus mit sauberer Dokumentation, revisionssicherer Aufbereitung und Unterstützung bei Audits und Außenprüfungen.
5. KI zeigt nur den Dschungel – Förderexperten finden den Schatz
Datenbanken geben einen Überblick, aber keine Richtung. Eine gute Fördermittelberatung bewertet alle denkbar möglichen Förderprogramme im konkreten Unternehmenskontext und entwickelt daraus konkrete Maßnahmen, um das Maximum an Fördermöglichkeiten für die Kund*innen rauszuholen. Eine gute Fördermittelberatung schafft so echte wirtschaftliche Vorteile statt der bloßen Auflistung von Fördermöglichkeiten.
Der Autor Efe Duran Sarikaya ist CEO der Fördermittelberatung EPSA Deutschland.
EU KI-Gesetz wird scharf gestellt
Diese Strafen für KI-Verstöße drohen ab dem 2. August 2025 – was Personalverantwortliche und Arbeitnehmende jetzt wissen und beachten müssen.

Das KI-Gesetz der Europäischen Union, die weltweit erste umfassende KI-Verordnung, erreicht am 2. August 2025 einen entscheidenden Meilenstein. Ab diesem Stichtag gelten für Unternehmen, Behörden und KI-Anbieter*innen in der EU zahlreiche zentrale Verpflichtungen, bei deren Nichteinhaltung Strafmaßnahmen eingeleitet und verhängt werden können. Was das für Unternehmen und ihre Mitarbeitenden bedeutet, erfährst du hier.
Der AI Act, der am 2. Februar dieses Jahres in Kraft getreten ist, schafft einen einheitlichen Rechtsrahmen für Künstliche Intelligenz (KI) in der EU. Zwar werden viele Regelungen erst 2026 wirksam, doch bereits am 2. August 2025 beginnt eine neue Phase, die sich auf drei Bereiche fokussiert:
- Strafmaßnahmen bei Nichteinhaltung
- Verpflichtungen für allgemeine General-Purpose-AI-Modelle (GPAI)
- Aufbau von Aufsicht und Governance auf nationaler und europäischer Ebene
Strafen bis zu 35 Millionen Euro
Seit dem 2. Februar dieses Jahres sind KI-Systeme mit unannehmbaren Risiken verboten. Ab dem 2. August 2025 können zusätzlich nun Geldbußen für Verstöße gegen bereits bestehende Verpflichtungen verhängt werden, die bis zu 35 Millionen Euro oder 7 Prozent ihres gesamten Jahresumsatzes betragen können. Unternehmen müssen dazu beispielsweise sicherstellen, dass ihre Mitarbeitenden über KI-Kenntnisse verfügen. Die Europäische Union erwartet von ihren Mitgliedstaaten, dass sie eigene wirksame, verhältnismäßige und abschreckende Strafmaßnahmen festlegen. Dabei sollen die besonderen Umstände von KMUs und Start-ups berücksichtigt werden, um deren wirtschaftliche Lebensfähigkeit nicht zu gefährden.
Neue Verpflichtungen für Anbieter*innen von GPAI-Modellen
GPAI-Modelle, die ab dem 2. August 2025 in der Europäischen Union vermarktet werden, unterliegen gesetzlichen Verpflichtungen. Das Europäische Amt für Künstliche Intelligenz hat dazu am 10. Juli 2025 die endgültige Fassung der Verhaltenskodizes veröffentlicht. Anbieter*innen solcher GPAI-Modelle müssen unter anderem technische Dokumentationen erstellen, Urheberrechte beachten und Transparenz über die verwendeten Trainingsdaten sicherstellen.
GPAI-Modelle sind KI-Systeme mit besonders breitem Einsatzspektrum und sind darauf ausgelegt, eine Vielzahl von Aufgaben zu erfüllen. Sie werden mit riesigen Datenmengen trainiert und sind entsprechend vielseitig einsetzbar. Das bekannteste Beispiel sind große Sprachmodelle (Large Language Models, LLM), etwa das generative Sprachmodell GPT-4o, das in ChatGPT integriert ist. Für GPAI-Modelle, die bereits vor dem 2. August 2025 in der Europäischen Union auf dem Markt waren, gilt eine Übergangsfirst bis zum 2. August 2027.
Aufsicht und Governance
Die KI-Verordnung schafft einen Rahmen mit Durchführungs- und Durchsetzungsbefugnissen auf zwei Ebenen.
Auf nationaler Ebene muss jeder EU-Mitgliedstaat bis zum 2. August 2025 mindestens eine Marktüberwachungsbehörde sowie eine notifizierende Behörde benennen. Erstere ist für die Überwachung von KI-Systemen zuständig, letztere für die Notifizierung unabhängiger Konformitätsbewertungsstellen. Die Mitgliedstaaten müssen bis dem Stichtag Informationen zu den nationalen Behörden und deren Kontaktdaten veröffentlichen.
Auf EU-Ebene koordinieren das Europäische Amt für KI und der Europäische KI-Ausschuss die Aufsicht. Zusätzlich werden ein Beratungsforum und ein wissenschaftlicher Ausschuss aus unabhängigen Experten eingerichtet.
Was bedeutet das für Personalabteilungen und Arbeitnehmende?
Das KI-Gesetz hat direkte Auswirkungen darauf, wie KI in den Bereichen Rekrutierung, Performance-Management, Personalanalyse und Mitarbeitenden-Monitoring eingesetzt wird. Personalverantwortliche müssen sicherstellen, dass KI-Tools in diesen Bereichen transparent, fair und konform sind.
- Fairness und Antidiskriminierung: KI-Systeme, die bei Einstellungs- oder Beförderungsentscheidungen eingesetzt werden, müssen nachvollziehbar und frei von Bias sein. Personalabteilungen sollten ihre Tools und Anbieter*innen regelmäßig überprüfen, um die Einhaltung der Vorschriften sicherzustellen.
- Vertrauen und Transparenz: Mitarbeitende erhalten einen besseren Einblick, wie KI-Systeme ihre Arbeit beeinflussen, zum Beispiel bei der Einsatzplanung, Leistungsbewertung oder bei der Arbeitssicherheit. Personalabteilung können Vertrauen schaffen, indem sie offen kommunizieren, wie KI eingesetzt wird und wie die Daten der Mitarbeitenden geschützt werden.
- Verantwortlichkeit von Drittanbieter*innen: Werden KI-Tools von Drittanbieter*innen genutzt, müssen Personalabteilungen sicherstellen, dass diese Anbieter*innen die Anforderungen an Transparenz und Dokumentation erfüllen. Verträge und Beschaffungsprozesse sollten entsprechend angepasst werden.
- Training und Change Management: Mit stärkeren Regulierungen von KI wird die Personalabteilung eine Schlüsselrolle bei der Schulung von Führungskräften und Mitarbeitenden übernehmen. Ziel ist es, einen verantwortungsvollen Umgang mit KI zu fördern und ethische Standards in der Unternehmenskultur zu verankern.
Fazit
Anbieter*innen von GPAI-Modellen, die bereits vor dem 2. August 2025 auf dem Markt waren, haben bis zum 2. August 2027 Zeit, die neuen Vorschriften vollständig umzusetzen. Weitere Verpflichtungen für KI-Systeme mit hohem Risiko werden 2026 und 2027 folgen. Dieser Meilenstein spiegelt das Bestreben der EU wider, Innovationen zu fördern und gleichzeitig sicherzustellen, dass KI sicher, transparent und mit den europäischen Werten im Einklang steht. Damit rückt die Personalabteilung in den Mittelpunkt einer verantwortungsvollen Einführung von KI am Arbeitsplatz.
Der Autor Tom Saeys ist Chief Operations Officer bei SD Worx, einem international tätigen Dienstleistungsunternehmen im HR-Bereich.
„Österreich hat einen langen Atem – und das zahlt sich im Bereich Applied AI aus“
Als führende Standorte in Sachen Künstliche Intelligenz liegen die USA und Asien auf der Hand, doch auch in Österreich gibt es eine vielfältige AI-Landschaft. Welche Vorteile der Standort für künstliche Intelligenz mit sich bringt und welche Rolle dabei Applied AI spielt, weiß Clemens Wasner, Gründer von AI Austria und CEO der EnliteAI.

Clemens Wasner ist Gründer des österreichischen Verbandes für Künstliche Intelligenz, AI Austria und CEO des Wiener Venture Studios EnliteAI. Der studierte Informatiker arbeitete über ein Jahrzehnt in Asien, bevor er 2017 EnliteAI gründete.
Herr Wasner, Sie kennen die AI-Szene aus erster Hand. Wie gut ist Österreich im internationalen Vergleich aktuell aufgestellt, wenn es um Applied AI geht?
Gemessen an seiner Größe steht Österreich erstaunlich gut da. Unsere AI–Landscape verzeichnet mittlerweile über 450 Unternehmen, die aktiv mit KI arbeiten – nicht nur Start-ups, sondern auch klassische Industrieunternehmen, Dienstleister und der öffentliche Sektor. Gerade im Bereich der industriellen Anwendungen ist Österreich breit aufgestellt: Es gibt zahlreiche Corporates, die eigene Competence Center gegründet, Ausgründungen vorgenommen oder Lizenzmodelle für KI aufgebaut haben. Auch die Zahl der Inkubatoren und Corporate Venture Capitalisten ist beachtlich. Das Thema ist in der Realwirtschaft angekommen – und das nicht erst seit gestern. Bereits 2018 gab es hierzulande einen deutlichen Aufschwung. Im Bereich der Spitzenforschung sind wir ebenfalls stark: Mit drei sogenannten ELLIS-Hubs – European Laboratory for Learning and Intelligent Systems – gehören wir zur europäischen Spitze, gemessen an der Größe des Landes.
Sie sprechen beim Blick auf Österreich oftmals vom „AI-Standort mit langem Atem“. Was genau meinen Sie damit und was macht aus Ihrer Sicht einen exzellenten Standort für AI-Start-ups aus?
Der „lange Atem“ ist positiv gemeint und beschreibt das, was Österreich im Bereich Forschung & Entwicklung auszeichnet: kontinuierliche Investitionen, strategischer Weitblick und langfristige Förderstrukturen. Die Steiermark war lange OECD-Spitzenreiter bei F&E-Ausgaben, Wien verfügt über eine dichte Forschungslandschaft. Das sind keine kurzfristigen Hypes, sondern über Jahrzehnte gewachsene Strukturen. Österreich verfügt zudem über eine differenzierte Förderarchitektur, die alle TRL-Stufen abdeckt – von der Grundlagenforschung bis zur Markteintrittsunterstützung. Auch Clusterstrukturen spielen eine Rolle: In Life Sciences etwa gibt es in Wien und Graz funktionierende Ökosysteme, in denen zunehmend auch KI eine Rolle spielt. Diese Verankerung ermöglicht Planbarkeit, die gerade in technologieintensiven Bereichen entscheidend ist.
Zu den Schlüsselfaktoren einen erfolgreichen Standorts zählen Infrastruktur, Talent Pool und Anwendungsmöglichkeiten. Wo sehen Sie hier derzeit die größten Hebel – und auch die größten Defizite – in Österreich?
Ein klarer Vorteil liegt in der Verfügbarkeit von Talenten: Wien zieht seit Jahren hochqualifizierte Developer aus dem osteuropäischen Raum an. Der AI-Fachkräftemangel ist hier weniger ausgeprägt als in anderen europäischen Hauptstädten. Hinzu kommt: Österreich bildet mehr AI-Absolventen aus, als die Wirtschaft derzeit absorbieren kann. Das schafft einen Bewerbermarkt, der gerade für Start-ups günstig ist. Auch Standortfaktoren wie Lebensqualität und erschwingliche Mieten machen zum Beispiel die Hauptstadt Wien attraktiv. Als Besonderheit sehe ich zudem den aktiven Zugang der Stadt: Wien versteht sich als First Client für KI-Anwendungen, etwa in der Analyse von Geodaten, IoT oder der Digitalisierung von Baueinreichprozessen. Hier ist wesentlich mehr Offenheit für politische Vergabe zu finden als in anderen Ländern. Weniger stark ist Wien in der Spitzenforschung vertreten, hier liegt Linz mit der JKU vorn. Aber man kann als kleines Land nicht alles abdecken – und sollte dort Schwerpunkte setzen, wo bestehende Stärken ausbaubar sind.
Was war der Gründungsimpuls für EnliteAI und wie ist Ihr Venture Studio heute aufgestellt?
Ich kam 2016 nach zehn Jahren in Asien zurück nach Österreich. In China und Japan war KI allgegenwärtig, ein regelrechter Hype. Zurück in Europa herrschte Funkstille – das war ein Kulturschock. Ich wollte dem Thema hierzulande Schub geben: 2017 gründete ich den Verband AI Austria und kurz darauf EnliteAI. Unsere Erkenntnis aus früheren Projekten zeigte, dass viele Unternehmen gute Ideen, aber keine Ressourcen zur Umsetzung hatten. Daraus entstand das Venture Studio: Wir entwickeln Prototypen gemeinsam mit Unternehmen und gründen darauf spezialisierte Start-ups. Aktuell sind wir 20 Personen und verfolgen zwei Themen – Detekt, das sich auf den Bereich Mobile Mapping spezialisiert hat, und ein weiteres im Stromnetzmanagement. Mit EnliteAI möchten wir künftig weitere Projekte unterstützen und bereiten dafür eine Dual-Entity-Struktur mit einem eigenen Fonds vor. Ziel ist es, das Modell professionell zu skalieren und Investoren direkt in die Spin-outs zu bringen.
Rechenleistung zählen zu den Schlüsselressourcen in der AI. Was braucht es aus Ihrer Sicht, damit europäische Standorte hier nicht dauerhaft in Abhängigkeit geraten?
Realistisch betrachtet: Die Abhängigkeit besteht bereits. Die großen Hyperscaler sind US-dominiert, ebenso Chips, Kommunikationstools, Social Networks. Europa muss in die digitale Souveränität investieren. Erste Schritte wie AI Factories sind wichtig, aber nicht ausreichend. Wir brauchen europäische Cloud-Anbieter, Chipproduktion auf europäischem Boden und eine nachhaltige Energiepolitik. Frankreichs KI-Boom basiert auf Atomstrom – weil er langfristig planbar ist. Diese Planbarkeit fehlt in vielen europäischen Ländern derzeit. Ohne Strom gibt es keine KI. Auch das zeigen Stimmen von Sam Altman, Elon Musk und anderen. Hier ist ein strategischer Paradigmenwechsel notwendig.
Sie sprachen bereits die vielfältige Landschaft von kleinen und mittleren Unternehmen in Österreich an, die offen für KI sind. Wie gut funktioniert das Matching zwischen Start-ups und klassischen Industrieunternehmen?
Österreich macht hier sehr viel richtig. Es gibt ein breites Netz an Förderinstrumenten – von der Österreichischen Forschungsförderungsgesellschaft FFG über die Austria Wirtschaftsservice bis hin zu regionalen Wirtschaftskammern. Zudem bietet Österreich eine Forschungsförderungsprämie an, bei der 14 Prozent der F&E-Ausgaben quasi mit einem Blankoschein gefördert werden können. Zudem organisieren viele Institutionen aktiv Matchmaking-Events, etwa im Rahmen von PreSeed-, AI-Adoption- oder Innovationsprogrammen. Hinzu kommt der Industry-Startup-Marktplatz mit mehreren Tausend registrierten Unternehmen. Auch Pitchings werden gefördert. Das Ziel ist stets, AI nicht nur in der Theorie zu belassen, sondern in die Realwirtschaft zu bringen. Trotzdem: Viele Unternehmen wissen noch immer nichts davon. Hier braucht es also noch mehr Aufklärung.
Welcher KI-Standort – in Österreich und darüber hinaus – hat Sie zuletzt positiv überrascht?
In Österreich ist Linz für mich der Hotspot schlechthin – die Kombination aus Spitzenforschung und erfolgreichem Technologietransfer ist dort besonders gut gelungen. International beeindruckt mich Twente in den Niederlanden: kein großer Name, aber mit klarer Strategie. Sie haben das Spin-out-Modell von Oxford und Cambridge adaptiert und konsequent umgesetzt – mit IP-Offices, Gründungsberatung und Infrastruktur für Start-ups. Ein weiteres Vorbild ist Heilbronn mit den Campus Founders: Sie haben, unterstützt durch die Dieter Schwarz Stiftung, einen Ort für Unternehmertum und Innovationen geschaffen und könnten Vorbild für viele europäische Regionen werden. Viele Stiftungen schaffen Parks oder Schlösser, aber wesentlich gewinnbringender wäre die Förderung von Entrepreneurship wie es in Heilbronn passiert statt Museumsstiftung. Europa braucht diese neue Denkweise.
Clemens Wasner, vielen Dank für das Gespräch.
Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin
Was Unternehmen über KI-Agenten wissen müssen
Künstliche Intelligenz in Form autonomer Agenten gewinnt rasant an Bedeutung. Doch wie arbeiten diese KI-Agenten? Was ist bei der Umsetzung zu beachten? Hier gibt's die Antworten.

Die Idee, dass autonome Systeme eng mit Menschen zusammenarbeiten und sie gezielt unterstützen, ist keine Vision mehr, sondern Realität. Während bisher eine umfassende Problemlösungskompetenz im Hintergrund fehlte, bringen KI-Agenten genau diese Fähigkeit mit und übernehmen zunehmend vielfältige Aufgaben in der Arbeitswelt. Wir erklären, was Unternehmen über KI-Agenten wissen müssen.
Was sind KI-Agenten und auf welcher Technologie basieren sie?
KI-Agenten sind Softwaresysteme, die eigenständig Aufgaben ausführen, aus Erfahrungen lernen und dynamisch mit ihrer Umgebung interagieren. Ihr Ziel ist es, Aufgaben autonom zu lösen, ohne dass ein kontinuierliches menschliches Eingreifen notwendig ist. Im Unterschied zu herkömmlichen Automatisierungslösungen bewältigen KI-Agenten selbst komplexe Anforderungen, indem sie sich an neue Bedingungen anpassen. Auch werden sie im Gegensatz zu universellen LLMs in der Regel fein abgestimmt, um Relevanz und Datenschutz zu gewährleisten. Sinnvoll ist eine kontextbezogene Architektur, die kausale KI, Document AI und multimodale Logik kombiniert und damit optimal auf geschäftliche Anwendungsfälle zugeschnitten ist.
In welchen Bereichen der Arbeitswelt entfalten KI-Agenten ihr Potenzial?
KI-Agenten finden in nahezu allen Unternehmensbereichen Einsatzmöglichkeiten – von der Beantwortung einfacher Anfragen bis hin zur Steuerung komplexer Prozesse. Eingebettet in CRM-Plattformen analysieren sie riesige Datenmengen, die Unternehmen manuell nicht mehr auswerten können. Anstatt die Ergebnisse lediglich zu präsentieren oder Kontakte nach Prioritäten zu sortieren, qualifizieren KI-Agenten auch noch automatisch Leads, schlagen passende Angebote vor und beantworten Kundenanfragen. Oder anders formuliert: Während herkömmliche Tools in der Regel auf statischen Wenn-dann-Regeln basieren, führt die neue Generation hyperpersonalisierte Aktionen nahezu in Echtzeit aus. Diese Entwicklung entlastet Mitarbeiter von Routineaufgaben und gibt ihnen Raum, sich auf strategisch wichtige Aufgaben zu konzentrieren. Unternehmen wiederum können ohne großen Aufwand Tausende von Kunden individuell betreuen.
Werden KI-Agenten den Arbeitsmarkt verändern?
Diese Frage lässt sich nicht pauschal beantworten. Es entstehen durch den verstärkten Einsatz von KI-Lösungen neue Berufsfelder – insbesondere bei der Entwicklung, Integration und Wartung solcher Agentensysteme werden qualifizierte Fachkräfte benötigt. Gleichzeitig stellt sich die Herausforderung, bestehende Mitarbeitende gezielt im Umgang mit diesen Technologien weiterzubilden und deren digitale Kompetenzen auszubauen. Eines muss klar sein: Das Ziel von KI-Agenten ist es nicht, menschliche Arbeitskraft zu ersetzen, sondern deren Fähigkeiten zu erweitern. Mitarbeitende können sich somit stärker auf komplexe Kundeninteraktionen oder die Entwicklung innovativer Kampagnen konzentrieren, während ihnen die KI zur Hand geht.
Worauf müssen Unternehmen bei der Auswahl von KI-Agenten-Lösungen achten?
In erster Linie benötigen sie eine digital ausgereifte Umgebung mit einheitlichen Datenformaten, optimierten Prozessen und regelbasierten Automatisierungen, um den ROI steigern zu können. Anschließend müssen sie sicherstellen, dass ihre KI-Systeme den geltenden Datenschutzbestimmungen entsprechen und sensible Kund*innendaten optimal geschützt sind. Transparenz und Nachvollziehbarkeit der KI-Entscheidungen sind ebenfalls essenziell, um das Vertrauen von Kunden und Mitarbeitenden nicht zu gefährden. Auf technischer Seite ist eine interoperable Lösung notwendig, die sich so nahtlos wie möglich in die bestehende IT-Umgebung integrieren lässt. Zu den weiteren Aspekten zählen die Priorisierung der kontextuellen Abstimmung, da Agenten geschäftsspezifische Arbeitsabläufe und Datenformate verstehen müssen, sowie die Nutzung eines Federated-Model-Ansatzes statt einheitlicher LLM-Frameworks, um Effizienz, Erklärbarkeit und Kosten zu optimieren.
Wie binden Unternehmen ihre Mitarbeitenden am besten ein?
Zunächst einmal ist ein grundlegendes Change Management erforderlich. Die Mitarbeiterinnen und Mitarbeiter müssen verstehen, dass die KI ihnen nicht die Arbeit wegnimmt, sondern sie unterstützen soll. Sinnvoll ist auch ein Low-Code-Ansatz: Maßgeschneiderte KI-Applikationen und automatisierte Workflows steigern die Arbeitseffizienz in Abteilungen um ein Vielfaches – sogar Mini-Anwendungen, die lediglich einfache Aufgaben übernehmen. Jedoch können zentrale IT-Abteilungen, die mit Entwicklungsanfragen aus verschiedenen Abteilungen überhäuft werden, diese kaum bewältigen. Mit einer Low-Code-Application-Plattform (LCAP) können auch Mitarbeiter ohne Programmierkenntnisse einfache KI-Anwendungen selbst erstellen. Möglich machen das einfache Drag-and-Drop-Optionen und vorgebaute Module, die je nach Wunsch kombinierbar sind.
Fazit
KI-Agenten sind als kollaborative Partner zu verstehen, nicht als Ersatz für den Menschen. Künftig werden wir eine Multi-Agent Collaboration sehen. Hierbei übernehmen verschiedene KI-Agenten jeweils Spezialaufgaben und koordinieren sich untereinander, um selbst die komplexesten Herausforderungen effizient zu lösen.
Der Autor Sridhar Iyengar ist Managing Director von Zoho Europe.
5 Tipps für GPT-Sichtbarkeit im Netz
Warum klassisches SEO allein nicht mehr ausreicht und wie Unternehmen für die KI-Antworten der GPT-Modelle sichtbar werden.

Die Spielregeln der digitalen Sichtbarkeit werden gerade neu geschrieben – und die Unternehmen müssen sich neu aufstellen. Denn während viele Unternehmen ihre Strategien noch immer ausschließlich auf Google-Rankings und SEO-Kriterien ausrichten, verlagert sich die digitale Aufmerksamkeit längst in Richtung KI: Sprachmodelle wie ChatGPT, Claude oder Gemini ersetzen zunehmend die klassische Suche. Sie liefern keine Trefferlisten mehr, sondern direkte, aufbereitete Antworten – oft mit konkreten Empfehlungen und Verlinkungen. Für Marken, Produkte und Unternehmen wird es damit entscheidend, in diesen zusammengefassten Antworten stattzufinden.
Suchmaschinen waren gestern das führende Element in der Sortierung von Wissen im Netz und vor allem das Google-Ranking war entscheidend für die Sichtbarkeit von Informationen und Seiten. In Zukunft entscheiden dagegen Sprachmodelle darüber, welche Inhalte gesehen, zitiert und empfohlen werden. Und wer in diesen Systemen nicht genannt wird, verliert den direkten Draht zur Zielgruppe.
Diesen Paradigmenwechsel vom Google-Ranking zur Antwortlogik hat die SMAWAX, die auf Strategieberatung spezialisierte Agentur der Smarketer Group, erstmals systematisch im Rahmen eines Whitepapers analysiert (s. Link am Ende des Beitrags). Die Expert*innen erklären dabei detailliert, wie GPT-Modelle Inhalte auswählen – und welche Inhalte von den Systemen überhaupt referenziert werden dürfen. Die zentrale Erkenntnis: Suchmaschinenoptimierung nach alten Regeln greift zu kurz, ist aber weiterhin die Sichtbarkeitsgrundlage. Denn Sprachmodelle wie ChatGPT denken nicht in Keywords und Rankings, sondern in semantischen Relevanzräumen, Entitätenbeziehungen und struktureller Klarheit.
Inhalte müssen modular und semantisch präzise sein – doch das reicht nicht
Es geht nicht mehr um Top-Rankings – es geht darum, die richtige Antwort zu sein. Wir müssen SEO neu denken – als Schnittstelle zwischen Struktur, Relevanz und maschinellem Verstehen. Inhalte müssen dazu maschinenlesbar, modular aufgebaut und semantisch präzise sein. Nur dann haben Unternehmen eine Chance, in den Empfehlungslogiken von Claude, GPT & Co. aufzutauchen.
Besonders überraschend ist dabei aber, dass viele Unternehmen in GPT-Antworten zwar durchaus latent präsent, aber nicht sichtbar sind. Der Grund hierfür sind unscharfe Entitäten, fehlende „About“-Seiten, keine Verankerung in externen Quellen wie Wikidata, Trustpilot oder LinkedIn. Die Folgen wirken sich negativ auf die Marken aus und sorgen für Fehlinformationen: KI-Modelle verwechseln Marken, halluzinieren Funktionen oder verschweigen relevante Angebote. Halluzinationen sind in Wahrheit ein strategischer Hinweis auf Unsichtbarkeit. Wenn GPT ein Produkt falsch beschreibt oder dich mit einem Mitbewerber verwechselt, zeigt das: Deine Inhalte sind zwar irgendwo im Modell – aber nicht stabil genug verankert, um korrekt genannt zu werden.
Fünf konkrete Hebel für bessere GPT-Sichtbarkeit
Diese praxisnahe Handlungsempfehlungen können Unternehmen sofort umsetzen können – unabhängig davon, ob sie im B2B- oder B2C-Bereich aktiv sind.
1. Entitäten definieren: Jede Marke braucht heute eine kanonische „About“-Seite, ergänzt um ein Wikidata-Profil, semantische Markups und gleiche Namensverwendungen auf Plattformen wie LinkedIn oder Handelsregister.
2. Aktualität signalisieren: GPT-Modelle bevorzugen Inhalte mit klaren Update-Daten (z.B. dateModified). Ohne erkennbaren Pflegezustand gelten Inhalte als veraltet – und werden ausgefiltert.
3. Bing wird zum Gateway: Weil GPT seine Websuche auf Bing stützt, ist dessen Indexierung entscheidend. Wer dort nicht sauber auffindbar ist, existiert in GPT-Antworten nicht.
4. Content chunkbar machen: Inhalte sollten nicht mehr aus langen Fließtexten bestehen, sondern in modularen Blöcken mit H2-Strukturen, Listen und Zwischenfazits aufgebaut sein.
5. Externe Signale einbinden: Erwähnungen auf Trustpilot, Reddit oder in der Fachpresse stärken die semantische Autorität – und erhöhen die Chance, von Sprachmodellen zitiert zu werden.
Fazit
Die neue Sichtbarkeit entsteht durch das, was das Modell nicht selbst erzeugen kann – sie entsteht also nicht über Rankings, sondern über Relevanzräume. Wer auf Standard-Content setzt, wird paraphrasiert oder übergangen. Wer dagegen einzigartigen, strukturierten und technisch klaren Content liefert, wird empfohlen.
Zum Weiterlesen: Das Whitepaper steht zum kostenlosen Download bereit unter www.smawax.com/whitepaper-ki-sichtbarkeit
EU AI Act: Bürokratisch, unpraktisch, schlecht
Ein Kommentar von Dominik Mohilo, Redakteur und IT-Experte bei der auf High-Tech spezialisierten Münchner PR- und Kommunikationsagentur PR-COM.

Die Luft auf dem hohen moralischen Ross, auf dem Deutschland vorreitet und Europa folgt, wird dünner und dünner. Ja, der EU AI Act ist eine Errungenschaft. Und ja, ethische Grundsätze sollten wir keinesfalls missachten, wenn es darum geht, künstliche Intelligenz zu entwickeln, zu betreiben und zu verwenden. Fair enough. Doch darf’s vielleicht trotzdem ein bisschen weniger Bürokratie sein, liebe EU? Artikel 5 des KI-Regelwerks der EU besagt beispielsweise, dass die folgende KI-Praktik verboten ist: „Das Inverkehrbringen, die Inbetriebnahme oder die Verwendung eines KI-Systems, das unterschwellige Techniken, die sich dem Bewusstsein einer Person entziehen, oder absichtlich manipulative oder täuschende Techniken einsetzt, mit dem Ziel oder der Wirkung, das Verhalten einer Person oder einer Personengruppe dadurch wesentlich zu beeinflussen, dass ihre Fähigkeit, eine sachkundige Entscheidung zu treffen, spürbar beeinträchtigt wird, wodurch sie veranlasst wird, eine Entscheidung zu treffen, die sie andernfalls nicht getroffen hätte, und zwar in einer Weise, die dieser Person, einer anderen Person oder einer Personengruppe einen erheblichen Schaden zufügt oder mit hinreichender Wahrscheinlichkeit zufügen wird.“ (Kapitel II, Artikel 5, 1a)
Sperrig und überregulatorisch
Verstanden worum es geht? Ich auch nicht. Ähnlich sperrig und überregulatorisch ist der Abschnitt über sogenannte Hochrisiko-KI-Systeme formuliert. Gemeint sind damit jene KI-Anwendungen, die etwa im Gesundheitswesen, in der Bildung oder kritischen Infrastrukturen eingesetzt werden sollen – also genau den Bereichen, wo sie dringend benötigte Verbesserungen und Entlastungen für die in diesen Bereichen arbeitenden Menschen mit sich bringen könnten. Was genau mit Hochrisiko gemeint ist, ist allerdings wieder nicht glasklar definiert: was hat denn nun „erheblichen Einfluss auf Grundrechte“? Diese Unsicherheit im Hinblick auf die rechtliche Grundlage ist oft Grund genug für potenzielle Investoren, sich nach anderen Gelegenheiten umzusehen. Wer will schon exorbitante Kosten für juristische Verfahren locker machen und Zertifizierungen noch und nöcher erwerben, nur um am Ende dann möglicherweise doch gegen geltende Gesetze zu verstoßen? Eben.
Start-ups sind von Hürden überproportional heftig betroffen
Gerade kleine und mittelständische Unternehmen (KMU) sowie Start-ups sind von diesen Hürden überproportional heftig betroffen, sodass viele gute und wegweisende Ideen nicht oder zumindest nicht hier in der EU auf den Weg gebracht werden. Wirtschaftlich ist das fatal – das auch noch in diesen schwierigen Zeiten. In diesen Zeiten wäre es eigentlich wichtig, die Wirtschaft voranzutreiben, insbesondere in zukunftsweisenden Bereichen wie dem KI-Markt. Eine gute Möglichkeit wäre, die Technologie hierzulande staatlich zu subventionieren, wie das in den USA und in China bereits in großem Stil passiert. Stattdessen werfen wir uns selbst Stöcke in die Speichen unserer Räder – unter anderem mit Regulierung und ethischen Grundsätzen, sondern insbesondere durch schwammige Gesetzestexte und Undurchsichtigkeit von Compliance-Vorschriften.
Zusammenfassend ist festzustellen, dass die alte Forderung „rebellischer“ (mancher würde sagen: „vernünftiger“) Politiker, Bürokratie abzubauen, selten so eine hohe Relevanz wie aktuell hatte. Europa geht es wirtschaftlich schlecht, gleichzeitig verlassen High-Tech-Unternehmen scharenweise unsere Breitengerade, da das Regulierungskorsett so eng geschnürt ist, dass Innovation keine Luft mehr zum Atmen hat. Es gilt also, Maßnahmen zu ergreifen, um wettbewerbsfähig zu werden.
Was könnte die EU nun machen, da das Regulations-Kind in den Brunnen gefallen ist?
Zunächst einmal wäre es hilfreich, aus unserem Elfenbeinturm herauszukommen. Ethik ist wichtig, aber kein Altar, auf dem wir unsere Wirtschaft opfern sollten. Haben wir das verinnerlicht, braucht der EU AI Act eine Überarbeitung die Unklarheiten auflöst und die Hürden (gerade für Start-ups und KMU) verringert. Sinnvoll wäre zudem, wenn die EU KI-Sandboxes zur Prüfung von innovativen Technologien bereitstellen würde, in denen Unternehmen ihre Entwicklungen testen können, ohne gegen Gesetze zu verstoßen. Zudem muss die EU-Gelder und Mittel zur Verfügung stellen, Zertifizierungsverfahren deutlich zu beschleunigen. Auch eine Zentralisierung dieser Verfahren würde Sinn ergeben. Die entsprechende ISO-Norm (ISO/IEC 42001) gibt es bereits, was fehlt sind offizielle Tools, um die Konformität der eigenen Anwendung zu checken.
Ziel muss es sein, Europa als attraktives Umfeld für den Einsatz und die Entwicklung von KI-Anwendungen zu positionieren. KI wird in den kommenden Jahren über wirtschaftlichen Erfolg nicht nur von Unternehmen, sondern von Staaten avancieren. Wenn wir nicht die gleichen Katastrophen wie aus der Schwerindustrie und der Automobilbranche erleben, sondern wieder vorne mitspielen wollen, dürfen wir uns nicht selbst behindern. Das Gebot der Stunde ist also Bürokratieabbau und Mut zu moderaterer Ethik – so werden wir vielleicht irgendwann doch wieder Exportweltmeister.
Circunomics startet eigenes Batterie-Testlabor
Die Circunomics-Gründer Felix Wagner und Jan Born haben sich das Ziel gesetzt, eine zirkuläre Batteriewirtschaft zu etablieren, indem sie einen digitalen Marktplatz für den Second-Life-Einsatz und das Recycling gebrauchter Batterien bieten. Mit der Einrichtung des eigenen Batterie-Testlabors setzt das Start-up mit Hauptsitz Mainz seine Expansion fort.

„Die Kreislaufwirtschaft ist in Zukunft von immer größerer Bedeutung. Dies ist für uns die große Chance, mit dem digitalen Marktplatz für gebrauchte Batterien, Module und Zellen eine herausragende Position einzunehmen“, sagt Felix Wagner, Co-Founder und CEO von Circunomics. „Im Jahr 2030 werden alleine im Automobilsektor zwischen 200 und 300 Millionen Elektrofahrzeuge auf den Straßen der Welt unterwegs sein. Das bedeutet, dass dann jedes Jahr etwa sechs Millionen gebrauchte Batterien als Rückläufer aus Altfahrzeugen auf den Markt kommen. Diese wiederzuverwenden oder gezielt zu recyclen ist eine Mega-Aufgabe, die gelöst werden muss. Schließlich haben wir alle ein Ziel: Weniger CO2 zu produzieren und weniger der wertvollen, seltenen Rohstoffe zu verbrauchen.“
Battery Lifecycle Management Solution
Die Ergebnisse KI-basierter Analysen von gebrauchten Batterien, die beispielsweise in elektrischen Fahrzeugen verwendet werden, mit selbst ermittelten Laborwerten aus einer Real-Life-Simulation abgleichen, trainieren und verifizieren: Das ist die Aufgabe des neuen Batterie-Testlabors, das vom Start-up Circunomics in Roßdorf bei Darmstadt eingerichtet wurde und jetzt seinen Betrieb vollumfänglich aufgenommen hat.
Die 2019 gegründete Circunomics GmbH ist damit in der Lage, eine Datenbasis für die selbst entwickelte Software aufzubauen, die wiederum genutzt wird, um den Gesundheitszustand (State of Health) einer gebrauchten Batterie während und nach einer Erstverwendung (First Life) sehr präzise zu ermitteln. Vielmehr aber kann detailliert simuliert und hochgerechnet werden, wie sich die gebrauchte Batterie bei einer Zweitverwendung (Second Life) zum Beispiel in einem stationären Speichersystem verhält. Zudem kann eine Empfehlung ausgesprochen werden, welche Batterien für das jeweilige Projekt am besten geeignet sind.
Mit der Einrichtung des Batterie-Testlabors setzt das Start-up mit Hauptsitz Mainz seine Expansion fort, die nach einer erfolgreich durchgeführten Series-A-Finanzierungsrunde möglich ist. Zu Jahresbeginn 2025 hatte Circunomics von Investor*innen über acht Millionen Euro erhalten.
Real-Life-Simulation im Testlabor
Im neuen Batterie-Testlabor in Roßdorf können je nach Bedarf und Programm verschiedene Zellen gleichzeitig in einer sicher abgeschirmten Prüfeinrichtung untergebracht und unterschiedlichsten Belastungen ausgesetzt werden. Es erfolgt eine umfangreiche Real-Life-Simulation täglicher Batterienutzungssituationen beispielsweise in einem Elektrofahrzeug: Schnell oder langsam aufeinander folgende Ladezyklen, unterschiedliche Ladestromstärken mit bis zu 300 Ampere Gleichstrom, verschiedene Degradierungszustände der Batterie und das Ganze – wenn notwendig – bei unterschiedlichen Temperaturen. Möglich ist eine Temperaturspanne von minus 20 bis plus 60 Grad Celsius. Die jeweiligen Tests der Zellen können über einen kurzen, mittleren oder längeren Zeitraum durchgeführt werden. Das können wenige Tage, Wochen und Monate, aber auch bis zu zwei Jahre sein.
„Bisher haben wir die Zellen von einem externen Dienstleister analysieren lassen. Diese Aufgaben nehmen wir jetzt selbst in die Hand, erhöhen damit unsere Effizienz, sind schneller mit dem Abgleich von Daten, wodurch wir in der Lage sind, unsere Simulationen und Hochrechnungen für eine Verwendung im Second Life noch genauer und zuverlässiger anbieten zu können“, erklärt Jan Born, Co-Founder und CTO von Circunomics. Und ergänzt: „Wir haben einerseits Millionen von Daten, die während des First Life einer Batterie gesammelt werden und die uns zur Verfügung gestellt werden. Auf dieser Basis haben wir bisher mit der KI-unterstützten Software am Computer analysiert, was die gebrauchte Batterie noch im Stande ist, im Second Life zu leisten, bevor sie dann endgültig dem Recycling zugeführt wird. Im neuen Labor und mit den eigenen Analysen sehen wir nun, wie sich eine Zelle im simulierten Batterieleben verhält und wir können die dabei ermittelten Ergebnisse, mit denen aus der Software abgleichen und verifizieren.“
Neue Start-up-Landkarte für die Circular Economy
Die aktuelle Circular-Economy-Start-up-Landscape von CIRCULAR REPUBLIC stellt die größte datenbasierte Analyse europäischer zirkulärer Start-ups dar und zielt darauf ab, jungen wie etablierten Unternehmen die Innovationspotenziale zirkulären Wirtschaftens aufzuzeigen, Kollaboration zu stärken und gemeinsam Projekte zu initiieren.
CIRCULAR REPUBLIC, die Initiative für Kreislaufwirtschaft von UnternehmerTUM, präsentiert ihre neue Start-up Landscape für den Bereich Circular Economy. Die Datenerhebung geht in diesem Jahr über Deutschland hinaus und stellt als größte datenbasierte Analyse europäischer zirkulärer Start-ups eine Übersicht über Finanzierungstrends und Chancen zur Verfügung.
Die größte datenbasierte Analyse europäischer zirkulärer Start-ups
Über 2.500 Start-ups der Kreislaufwirtschaft florieren in ganz Europa. Großbritannien, Deutschland und Frankreich führen anhand Gründungszahlen und Investitionsvolumen: im Vereinigten Königreich sind es 528 Start-ups und 7,2 Milliarden Euro Kapital, gefolgt von Deutschland mit 499 Start-ups die 5,7 Milliarden Euro erhielten sowie 306 Start-ups finanziert von 2,2 Milliarden Euro in Frankreich.
Ein Grund für die gute Entwicklung in diesen Ländern, sind reife Innovationsökosysteme. Sie bündeln die Kräfte zwischen weltklasse Forschungsinstituten, führenden Industrievertretern und Gründungszentren als Brücken. Dazu zählen Berlin, London, München, Paris, aber auch Barcelona und Stockholm. Die Kreislaufwirtschaft zieht zudem diverse Gründungsteams an, der Frauenanteil liegt mit 30 % deutlich über dem Durchschnitt. Auch gilt der Bereich als attraktiv für abwandernde Top-Talente aus den USA.
Starke Finanzierung trotz Investitionskrise
Während die Finanzierung europäischer Start-ups seit 2021 zurückgeht, erreichen Start-ups im Bereich der Kreislaufwirtschaft 2023 mit über 9 Milliarden US-Dollar eingenommen Kapitals einen neuen Höchststand. Die Finanzierung für Circular Economy Start-ups ist seit 2015 kontinuierlich gewachsen – trotz weltweiter Krisen wie der COVID-19-Pandemie oder dem Angriffskrieg auf die Ukraine. Besonders Neugründungen, die zirkuläre Lösungen für kritische Rohstoffe in Bereichen wie Energie und Batterien anbieten, profitieren von wenig Konkurrenz und ziehen viel Kapital an. Demgegenüber erhalten Start-ups, die bestehende Produkte reparieren oder aufbereiten, nach wie vor am wenigsten Geld.
„Am Gründungs- und Investmentverhalten zeigt sich klar, dass die Circular Economy die Nachhaltigkeitsdomäne verlassen hat und als wichtiger Garant für resiliente Lieferketten erkannt wurde”, sagt Dr. Matthias Ballweg, Mitgründer und Director von CIRCULAR REPUBLIC. „Ein starkes Zeichen für die europäische Souveränität.”
Leonhard Teichert, Projektleiter bei CIRCULAR REPUBLIC, ergänzt: „Investments in Europas Circular Economy-Start-ups nehmen stetig zu – trotz aller Krisen. Das zeigt: Der europäische Markt erkennt zirkuläre Geschäftsmodelle nicht nur als ökologisch sinnvoll, sondern auch als einen Schlüssel zur Resilienz von Lieferketten. Wer in die Circular Economy investiert, investiert in Zukunftssicherheit.“
Potenziale der Kreislaufwirtschaft
Die Untersuchung zeigt noch unberücksichtigte Bereiche der Kreislaufwirtschaft auf. So sind die Gründungszahlen entlang des Stoffkreislaufes ungleich verteilt. 27 % der Start-ups entwickeln Produkte aus nachwachsenden oder recycelten Materialien, dagegen entwerfen nur weniger als ein Prozent der Unternehmen Lösungen zur Verfeinerung oder Demontage von Materialien. Damit Stoffkreisläufe jedoch nachhaltig und vollständig geschlossen werden, bräuchte es in diesen Bereichen ausreichend Angebote. Zudem nutzen gerade vier Prozent aller erfassten Start-ups Künstliche Intelligenz (KI). 31 % davon sitzen in Deutschland - so viel, wie in keinem anderen Land in Europa. Hier könnte sich Deutschland weiter hervortun und einen strategischen Fokus auf die Entwicklung KI-basierter Lösungen der Kreislaufwirtschaft setzen.
Wer wird in der Start-up-Landkarte gelistet?
Um Teil der Übersicht zu sein, müssen Start-ups mindestens einen der folgenden Aspekte im Geschäftsmodell verankert haben: Sie stellen Produkte aus nachwachsenden oder recycelten Materialien zur Verfügung (z.B. das Start-up Traceless), sie setzen auf „Product-as-a-Service” (z.B. everphone), dienen Nutzerinnen und Nutzern als Sharing-Plattform (z.B. Recup), tragen zur Verlängerung der Lebenszeit eines Produkts bei (z.B. STABL), setzen auf Rückgewinnung von Materialien aus Produkten am Ende ihrer Lebenszeit (z.B. Radical Dot) oder sie unterstützen Unternehmen dabei, zirkuläre Wertschöpfungsketten zu etablieren (z.B. Resourcify). Unternehmen, die eine Zusammenarbeit mit Start-ups in verschiedenen Phasen der Circular Economy anstreben, können Matching-Dienstleistungen wie die von EasyMatch beanspruchen.
Hier geht’s zur größeren Ansicht der Start-up Landscape
CampfireFM: Social-Audio-App feiert Launch auf dem OMR Festival
CampfireFM – die Plattform, die Podcasts zu einem interaktiven Community-Erlebnis machen will –, startet mit prominenten Gründer*innen und Podcaster*innen.

Vor rund 7.000 Besucher*innen des OMR Festivals in Hamburg wurde heute (7.Mai 2025) die Social-Audio-App CampfireFM gestartet. Mit CampfireFM sollen Podcasts social werden, etwa so, wie Instagram es für Fotos und YouTube für Videos vorgemacht hat. CampfireFM soll der bisher schmerzlich vermisste Ort werden, wo sich die Community eines Podcasts trifft und diskutiert.
In der App für iOS und Android werden Podcasts dadurch zu einem interaktiven Hörerlebnis, bei dem sich Nutzer*innen mit anderen Fans direkt in ihrem Lieblings-Podcast austauschen können und exklusiven Zusatz-Content erhalten – auch von den Podcast-Hosts selbst. Neue Podcast-Episoden werden Startpunkte für Gespräche, Reaktionen und Emotionen. Zwischen den Episoden entsteht eine Timeline mit Begleitmaterialien, kurzen Sprachnachrichten, Umfragen oder Community-Diskussionen. Um Podcasts herum sollen auf CampfireFM so Communities entstehen.
Künstliche Intelligenz wird eine Reihe von Funktionen ermöglichen, mit denen auf CampfireFM zum Beispiel automatisch die besten Podcast-Zitate erkannt und mit einem Klick in sozialen Medien geshared werden können.
Über das CampfireFM-Gründungsteam
Hinter CampfireFM stehen Tobias Bauckhage, Benjamin Kubota und Jon Handschin (Gründer der größten deutschen Film-Community Moviepilot und Mitgründer von Studio Bummens, einem der größten unabhängigen Podcast-Publisher in Deutschland), Autor, Unternehmer und Podcaster Sascha Lobo und ein Team von ehemaligen Soundcloud Entwicklern und Produktleuten. Das Team wird unterstützt von einer Reihe von Podcaster*innen und Angel-Investor*innen wie Toni und Felix Kroos, Klaas Heufer-Umlauf, Jakob Lundt, Thomas Schmitt, Micky Beisenherz, Oliver Merkel (Ex Flink), Kai Bolik (GameDuell) oder David Fischer (Highsnobiety).
Zum Launch der neuen App sind einige der reichweitenstärksten Podcasts in Deutschland mit dabei: der Unterhaltungs-Podcast „Baywatch Berlin“ mit Klaas Heufer-Umlauf, Jakob Lundt und Thomas Schmitt, der Fußball-Podcast „Einfach mal Luppen“ mit Toni und Felix Kroos, der Nachrichten-Podcast „Apokalypse & Filterkaffee – Presseklub“ mit Micky Beisenherz und Markus Feldenkirchen, der Business-Podcast „OMR Podcast“ mit Philipp Westermeyer, der History-Podcast „Geschichten aus der Geschichte“ mit Daniel Meßner und Richard Hemmer und der Talk-Podcast „Dudes“ mit Niklas van Lipzig und David Martin.
Weitere Shows sollen in den nächsten Wochen folgen: u.a. die Interview-Podcasts „Hotel Matze“ und „Alles gesagt“ oder der Nachrichten-Podcast „Table Today“.
Eine Plattform für Nutzer*innen, Podcaster*innen und Werbetreibende
CampfireFM ist nicht nur eine neue Plattform für Nutzer*innen, sondern auch für Podcaster*innen und Werbetreibende: Bisher nicht vernetzte, passive Hörer*innen werden zu einer aktiven und wertvollen Community, die Feedback und echte Emotionen hinterlässt. Statt einer wöchentlichen Podcast-Veröffentlichung ohne Feedback-Möglichkeit entsteht bei CampfireFM für jeden Podcast ein kontinuierlicher, täglicher Stream an Interaktionen und Diskussionen. Dadurch bleibt die Podcast-Community aktiv und die Podcasts wachsen organisch. Eine lebendige Community schafft auch neue Vermarktungsmöglichkeiten: Ob Tickets, Merchandise oder exklusive Inhalte – alles kann direkt und effektiv über die App promotet werden. Auf CampfireFM werden Fans direkt und ungefiltert erreicht, die Abhängigkeit von den Algorithmen der großen Podcast-Plattformen sinkt.
Toni Kroos, Investor bei CampfireFM:„Ich glaube sehr an die Kraft der Community – was wären Fußballvereine ohne ihre Fans? Unser EM-Testlauf mit CampfireFM letztes Jahr war ein Volltreffer. Wir freuen uns, dass es jetzt richtig losgeht.”
Tobias Bauckhage, Co-Gründer von CampfireFM, Studio Bummens und Moviepilot: „CampfireFM bringt endlich Community und soziale Interaktionen in die Welt des Podcasting. Wir machen Podcasts zu aktiven, gemeinschaftlichen Erlebnissen, erzeugen das Gefühl von Gleichzeitigkeit und schaffen einen Raum, in dem sich Hörer:innen begegnen und austauschen können.”
Sascha Lobo, Co-Gründer von CampfireFM: „Ich caste seit vielen Jahren begeistert pod – aber vermisse dabei oft die wichtigste Erfindung unseres Social-Media-Jahrhunderts: den Rückkanal, den einen Ort, wo man nachschauen kann, worüber die Community diskutiert. Der Grund übrigens, warum es das bisher nicht gibt: Es geht nur mit generativer Künstlicher Intelligenz. ”
Die Betaversion der App ist ab sofort für iOS und Android verfügbar. Weitere Infos auf www.joincampfire.fm
PropTech-Report 2025
Wir zeigen, welche Chancen die Transformation der Bau- und Immobilienbranche Gründer*innen und Start-ups bietet.

Die Bau- und Immobilienwirtschaft ist einer der bedeutendsten Wirtschaftssektoren Deutschlands. Mit mehr als 800.000 Unternehmen, zehn Prozent aller Beschäftigten und einer Wertschöpfung von 730 Milliarden Euro im Jahr 2023 bildet sie ein entscheidendes Rückgrat unserer Gesamtwirtschaft. Gleichzeitig ist sie das Schlusslicht der Digitalisierung.
Doch die Branche befindet sich in einer Zeit der Transformation, in der PropTechs digitale Lösungen entwickeln, um sie an die Anforderungen des 21. Jahrhunderts anzupassen. Aber wohin geht die Reise?
Eine neue Ära eint Bau- und Immobilienwirtschaft
PropTechs beschreibt Unternehmen, die digitale Lösungen für sämtliche Phasen des Immobilienlebenszyklus entwickeln. Ob z.B. Projektentwicklung und Smart City, Planen und BIM, Neubau oder Sanieren im Bestand, Finanzieren und Bewerten: Seit 2014 treiben PropTechs die Branche voran, schaffen Produktinnovationen und neue Geschäftsmodelle. Mit 1264 Start-ups in Deutschland ist PropTech von einem der jüngsten zu einem der größten Tech-Sektoren gewachsen. Regelmäßige Studien wie der PropTech Germany Report zeigen mit 196 Gründungen im Jahr 2024 das große Wachstumspotenzial.
Doch die Herausforderungen sind groß: lange Sales-Zyklen, ein fragmentierter Markt und konservative Branchenstrukturen voller Silos, in denen sich Bau- und Immobilienwirtschaft nur langsam als Teile des gemeinsamen Ganzen begreifen. Wer erfolgreich sein will, muss sich exzellent vernetzen, klug positionieren und die richtigen Entscheider*innen erreichen.
In der jüngst veröffentlichten Langzeit-Marktforschungsbeobachtung Game Changer Report 2025, werden die Veränderungstreiber deutlich, die insbesondere auch Auslöser für den Aufstieg und Erfolg des Sektors sind:
- Sinkende Margen und ineffiziente Prozesse: Wo Renditen lange sanken, schaffen Automatisierung und Digitalisierung Effizienz.
- Fachkräftemangel: Digitale Lösungen ersetzen repetitive Tätigkeiten.
- Technologie, KI und neue Geschäftsmodelle: Während alte Geschäftsmodelle langsam scheitern, eröffnen Innovationen neue Möglichkeiten.
- ESG-Regulatorik: Nachhaltigkeit ist keine Option mehr, sondern Pflicht. Die EU ist die Top eins Veränderungstreiberin, die Transparenz erzwingt, Daten fordert und Unternehmen zu neuer Verantwortung verpflichtet.
- Wachstum und Wagniskapital: Während Jahrzehnte ausschließlich in Immobilien und Fonds investiert wurde, spekulieren seit 2018 erstmals zunehmend Venture-Capital-Investor*innen im Sektor in nachhaltige und skalierbare Geschäftsmodelle.
- Steigende Stakeholder-Erwartungen: Lange waren Nutzer*innen, Mieter*innen oder auch Auftraggebende beliebig austauschbar. In einer gewandelten Welt werden alle Prozesse und Services hinterfragt.
- Klimawandel und Energiepreise: Einer der schmutzigsten Sektoren überhaupt steht endlich im Fokus – nachhaltige Lösungen werden zunehmend wirtschaftliche Erfolgsfaktoren.
Die Bau- und Immobilienbranche hat jahrzehntelang an ineffizienten Prozessen festgehalten. Erst seit den 2000ern steigt der Druck, erst seit rund zehn Jahren wirken überhaupt messbar relevante Veränderungstreiber*innen auf die Branche ein. PropTechs adressieren diese zentralen Herausforderungen. Während die Branche ein Sanierungsfall ist, sind PropTechs der Schlüssel zur Lösung.
Wagniskapital in der PropTech-Szene
International sind rund 80 Prozent aller ClimateTech-Investments in PropTechs geflossen. Trotz eines herausfordernden wirtschaftlichen Umfelds erhielten 2024 deutsche PropTech-Start-ups über eine Milliarde Euro. Einige der höchsten Finanzierungsrunden des Jahres 2024 gingen an deutsche Start-ups wie Ampeers Energy, apaleo, Cloover, Cognigy, Envira, Hero, MYNE, neoshare, Purpose Green oder Reonic. Besonders gefragt: Lösungen zur Energieeffizienz, die über 81 Prozent des Finanzierungsvolumens abgriffen. Investor*innen erkennen zunehmend das Potenzial des Sekors, darunter die aktivsten Wagniskapitalgeber*innen 2024, wie beispielsweise der HTGF, 468 Capital, BitStone Capital, Norrsken VC, PT1, Speedinvest oder Superangels Management.
Doch der Zugang zu Kapital bleibt selektiv: 47 Prozent der Start-ups erhielten 2024 keine Finanzierung und die Fundraisingdauer ist gestiegen. Je reifer ein PropTech, desto wahrscheinlicher die Einsammlung höherer Finanzierungsvolumina. Wer überzeugen will, muss neben Technologie und Skalierbarkeit auch ein tiefes Verständnis für die Herausforderungen der Immobilienwirtschaft mitbringen.
Während im Jahr 2024 35 Prozent der PropTechs Wagniskapitalgeber*innen eine gesunkene Investment-Bereitschaft attestierten, ist die Zahl aktiver Wagniskapitalgeber*innen um 56 Prozent auf 325 gestiegen. Trotz selektiven Zugangs zum Kapital steigt die Zahl aktiver Investor*innen.
Warum PropTechs jetzt gründen sollten
Der Markt bietet derzeit gute Chancen für Neugründungen:
- Reifung des Markts: PropTechs haben sich von einer Randerscheinung zur Forschungs- und Entwicklungseinheit einer Branche entwickelt, die traditionell versäumt hat, selbst in Innovation zu investieren.
- Erfolgsmodelle sind sichtbar: Immer mehr PropTechs erreichen Millionenumsätze. Selbst große Brand-Value-Studien erfassen das Thema.
- Netzwerkeffekte nehmen zu: Der Zugang zu Entscheider*innen und potenziellen Kund*innen wird durch entstandene Angebote bei großen Verbänden, auf Veranstaltungen der Branche oder durch das Branchen-Ökosystem blackprint immer einfacher.
- Regulatorischer Rückenwind: Die ESG-Vorgaben und Nachhaltigkeitsziele treiben die Nachfrage nach innovativen Lösungen an.
Erfolgsfaktoren für PropTech-Start-ups
Was macht den Sektor erfolgreich? Die PropTech Germany Studie zeigt folgende Erfolgsfaktoren:
- Zugang zu den richtigen Ansprechpartner*innen und Entscheider*innen.
- Tiefes Verständnis für die tatsächlichen Probleme der Branche.
- Passendes Go-to-Market-Modell.
- Harter Wachstums-KPI-Fokus gepaart mit der Erkenntnis, wie diese zu treiben sind.
- Starkes Netzwerk in der Branche.
- Gutes Storytelling und Positionierung für steigende Bekanntheit.
Die Gamechanger der Immobilienbranche
Der Bau- und Immobiliensektor trägt rund 40 Prozent zum CO2-Ausstoß und fast 60 Prozent zum Müllaufkommen bei – unfassbar viel mehr als andere Branchen. Gleichzeitig sind Immobilien für jedes Unternehmen gleich welcher Branche relevante Wirtschaftsfaktoren. Und sie sind gesamtgesellschaftlich relevant, da wir 90 Prozent unserer Zeit in den schützenden Hüllen unseres Zuhauses und unserer Arbeits-, Lern-, Pflege- oder Entertainment-Stätten verbringen. PropTech entwickelt sich von Einzellösungen hin zu integrierten Plattformen und Standards. 92 Prozent sehen wohl auch deshalb steigendes Neugeschäft in den nächsten drei Jahren auf sie zukommen.
Die Branche steht vor Veränderungen, doch viele große Unternehmen kämpfen noch mit widersprüchlichen Herausforderungen: Sie wollen zwar handeln, wissen aber oft nicht wie. Sie wünschen sich perfekte Lösungen, sind aber nur zögerlich bei der Finanzierung.
Es braucht Investitionen – in Zeit, Geld und Nerven, in IT, Dateninfrastruktur, den Wandel von Mindset und Unternehmenskultur sowie in zukunftsfähige Prozesse. Die PropTech-Branche steht vor dem nächsten Entwicklungsschritt: weg von unzähligen Einzellösungen hin zu vernetzten Tech-Plattformen und Ökosystemen. Das Ziel: Standardisierung, Automatisierung und die Weiterentwicklung des Bau- und Immobiliensektors hin zu einer echten Industrie.
Die Autorin Sarah Maria Schlesinger ist Geschäftsführende Gesellschafterin bei blackprint, dem 2021 gegründeten Innovations-Hub der deutschen Bau- & Immobilienwirtschaft.
Zum Weiterarbeiten
Konkrete Hilfestellungen und wertvolle Tipps für PropTech-Gründer*innen findest du hier: https://t1p.de/uanm5
Mode als Ausdruck von Selbstbewusstsein: Empowerment durch Stil
Mode als Werkzeug für Body Positivity und Female Empowerment – wie der richtige Style das Selbstbewusstsein stärkt und neue Maßstäbe setzt.

In der heutigen Zeit ist Mode viel mehr als nur das, was wir tragen. Sie ist ein Ausdruck von Individualität, einem Lebensstil und vor allem – Selbstbewusstsein. Besonders in einer Welt, in der gesellschaftliche Normen zunehmend infrage gestellt werden, wird Mode zu einem mächtigen Werkzeug, das uns hilft, uns selbst zu definieren und unser wahres Ich zu leben. Doch was passiert, wenn Mode über bloßen Stil hinausgeht und tatsächlich zum Vehikel für Empowerment und Body Positivity wird? Es ist eine Entwicklung, die immer mehr Menschen in ihren Bann zieht und dazu beiträgt, den eigenen Körper zu schätzen und zu lieben.
Female Empowerment und Body Positivity: Ein wachsender Trend
Der gesellschaftliche Wandel hin zu mehr Akzeptanz und Vielfalt ist auch in der Modeindustrie angekommen. In den letzten Jahren hat der Fokus auf Female Empowerment und Body Positivity an Bedeutung gewonnen. Immer mehr Marken setzen auf inklusivere und realistischere Darstellungen von Körpern und bieten eine breite Palette von Größen und Designs an. Dieser Trend geht über die bloße Anpassung der Modeindustrie an den Markt hinaus – es geht darum, Frauen in ihrem Selbstbewusstsein zu stärken und die Idee zu fördern, dass jede Frau ihren eigenen Körper lieben sollte, unabhängig von Konventionen und gesellschaftlichen Erwartungen.
Mode ist ein kraftvolles Tool, das dazu beiträgt, dieses Selbstbewusstsein zu stärken. Sie ermöglicht es, sich in der eigenen Haut wohlzufühlen und den eigenen Körper so zu akzeptieren, wie er ist. Der Fokus verschiebt sich immer mehr von der „perfekten“ Körperform hin zu einem authentischen Ausdruck des individuellen Stils, der zu einem positiven Körperbild beiträgt.
Wie Mode das Selbstbewusstsein stärkt
Mode kann das Selbstwertgefühl erheblich beeinflussen. Die Wahl der richtigen Kleidung hat eine direkte Auswirkung auf unsere Stimmung und auf die Art, wie wir uns selbst sehen. Besonders gut designte Kleidungsstücke, die die eigenen Stärken betonen und den persönlichen Stil widerspiegeln, können das Vertrauen in den eigenen Körper stärken. Wenn Frauen sich gut fühlen, in dem, was sie tragen, kann das einen enormen Einfluss auf ihre Selbstwahrnehmung und ihr Auftreten haben.
Ein sehr praktisches Beispiel ist die Auswahl von Kleidung, die sowohl komfortabel als auch stilvoll ist. Die BH's von creamy fabrics bieten nicht nur Unterstützung, sondern vermitteln auch ein Gefühl von Selbstbewusstsein, das jede Frau stärkt. Wer sich in seiner Kleidung gut fühlt, wirkt selbstbewusster und kann das Leben in vollen Zügen genießen.
Die Bedeutung von Vielfalt in der Mode
Vielfalt ist ein wesentlicher Bestandteil des Body Positivity-Trends, und auch die Modeindustrie hat diese Tatsache erkannt. Marken und Designer erweitern ihre Auswahl an Größen, um Frauen aus allen Gesellschaftsschichten und allen Körperformen gerecht zu werden. Das bedeutet nicht nur, dass die Mode für alle zugänglich wird, sondern auch, dass mehr Menschen die Möglichkeit haben, sich in ihrer Kleidung selbst zu verwirklichen und ihren eigenen Stil zu finden.
Eine Mode, die auf Vielfalt setzt, signalisiert eine neue Ära der Inklusion. Es wird ein Raum geschaffen, in dem jeder Körper gefeiert wird und Frauen sich unabhängig von ihrer Form oder Größe selbstbewusst in ihrer Kleidung fühlen können. Dieser Trend hat auch Auswirkungen auf die Gesellschaft: Frauen sehen, dass sie sich nicht an unrealistische Schönheitsideale anpassen müssen, sondern dass wahre Schönheit in der Authentizität und Vielfalt liegt.
Warum Vielfalt in der Mode die Gesellschaft verändert
Die Veränderung, die durch Body Positivity und Female Empowerment angestoßen wird, hat nicht nur Auswirkungen auf die Modeindustrie, sondern auch auf die Gesellschaft als Ganzes. Wenn Frauen sich selbst lieben und stolz auf ihre Körper sind, verändert sich nicht nur ihre Wahrnehmung von sich selbst, sondern auch die Art und Weise, wie sie miteinander umgehen und wie sie sich in der Welt bewegen. Sie fühlen sich ermächtigt, ihre Meinungen zu äußern, Entscheidungen zu treffen und das zu tun, was sie glücklich macht.
In dieser neuen Ära geht es nicht mehr nur darum, was wir tragen, sondern warum wir es tragen. Es geht darum, unsere Individualität zu feiern, uns von gesellschaftlichen Normen zu befreien und die Mode als Ausdruck unseres Selbst zu nutzen. Ein stilvolles Outfit, das die eigene Persönlichkeit widerspiegelt, kann ein Statement für Selbstliebe und Empowerment sein.
Fazit: Mode als Ausdruck von Individualität und Empowerment
Mode hat sich in den letzten Jahren von einem bloßen Konsumgut zu einem Werkzeug für Selbstbewusstsein und Body Positivity entwickelt. Sie hilft nicht nur dabei, den eigenen Körper zu schätzen, sondern stärkt auch das Selbstbewusstsein und fördert den individuellen Ausdruck. Marken wie Creamy Fabrics bieten eine große Auswahl an Designs, die sowohl komfortabel als auch stilvoll sind und Frauen die Möglichkeit geben, sich in ihrer Kleidung zu verwirklichen.
Body Positivity und Female Empowerment sind nicht nur gesellschaftliche Trends, sondern eine Bewegung, die Mode als mächtiges Instrument nutzt, um positive Veränderungen in der Wahrnehmung von Körpern und der eigenen Identität herbeizuführen.
In fünf Schritten zu rankingfähigen KI-Texten
Das aktuelle Whitepaper von eology beleuchtet das Potenzial und die Grenzen von KI-gestütztem Content im Hinblick auf SEO. Hier gibt’s Tipps rund um das Thema rankingfähige KI-Texte.

Die auf Suchmaschinenmarketing spezialisierte Online-Marketing-Agentur eology zeigt in ihrem Whitepaper „KI-Texte und Google-Rankings: Wie gut ranken KI-Inhalte?“, wie KI-Inhalte auf Google ranken, welche Herausforderungen sie mit sich bringen und welche Schritte erforderlich sind, um sie rankingfähig zu machen. Zudem wird auch auf spezifische technische, strategische und kreative Aspekte eingegangen, die für die Erstellung hochwertiger Inhalte entscheidend sind.
Gewusst wie: rankingfähige KI-Teste
Was zweifelsfrei erwiesen ist: Nach dem SEO-Qualitätsstandard erstellte KI-Texte sind rankingfähig und können die Sichtbarkeit einer Domain genauso unterstützen wie menschliche Inhalte. Allerdings ist die Erstellung solcher Texte nicht damit getan, einfach einen Prompt einzugeben und das Ergebnis online zu stellen. Es bedarf menschlicher Zuarbeit und Kontrolle.
Di Expert*innen von eology haben aus ihrer Studie heraus Best Practices ermittelt, um zu rankingfähigen Texten zu kommen. In fünf Schritten kannst du das auch:
1. Schritt: Chatbot briefen
Bei ChatGPT einen CustomGPT anlegen mit allen notwendigen Projektinstruktionen. Auf diese greift die KI immer zurück, ihr müsst sie daher nicht immer wieder neu eingeben. Das spart Zeit und sorgt langfristig für besseren Output. Bei Claude geht das nicht. Hier kopiert ihr die Projektinstruktionen einfach in den Chat. Die KI meldet dann, dass sie die Aufgabe verstanden hat und fasst diese noch einmal zusammen.
Folgende Instruktionen sind wichtig:
• Keywordset
• Infos zur Verwendung der Keywords (Verteilung, Häufigkeit, Positionierung im Text)
• Textlänge
• Zielgruppe und Leseransprache
• Stil, Tonalität und weitere Infos zum Wording
• Formaler Textaufbau (Überschriften, Aufzählungen, Tabellen)
• Inhaltlicher Textaufbau, ggf. Gliederung
2. Schritt: Chatbot testen
Prompt erstellen mit allen für den einzelnen Text relevanten Informationen (Thema, Keywordset). Da ihr alle Projektinstruktionen bereits an den Chatbot übermittelt habt, braucht ihr in den Prompt nur noch die Infos für den einzelnen Text reinschreiben. Er lautet dann: „Hallo GPT, erstellst Du mir bitte einen Text zum Thema „XY“ mit diesen Keywords: Hauptkeyword=Thema: [Hauptkeyword] Nebenkeywords: [Nebenkeywords] W-Fragen: [W-Fragen]. Danke.“
3. Schritt: Output prüfen
Output prüfen auf alle Projektanforderungen: SEO, Keywords, Wording, Rechtschreibung sowie Inhalt.
4. Schritt: Anpassungen vornehmen
Wenn der Output nicht passt, gebt der KI Anweisungen für Änderungen, passt die Projektinstruktionen an oder optimiert den Prompt. Ladet Beispieltexte hoch mit eurem gewünschten Stil, lasst die KI den Stil beschreiben und packt die Stilbeschreibung in die Projektinstruktionen. Wenn der Chatbot wiederholt zu wenig Text liefert, kann es Sinn machen, dass ihr diese Information doch in den Prompt eingeben müsst, selbst wenn diese in den Instruktionen steht. Insbesondere ChatGPT neigt dazu, zu wenig Text zu liefern und muss immer wieder daran erinnert werden.
5. Schritt: Bilder generieren
Instruktionen für die Bilderstellung in den Projektinstruktionen hinterlegen. Bei einem CustomGPT hinterlegt ihr auch den Stil für die Bilder, denn dann habt ihr eine Chance auf einen einheitlichen Stil. Allerdings ist ChatGPT mit der Schnittstelle zu DALL-E nicht die beste Bild-KI. Daher funktioniert nicht alles reibungs- los. Für eine hochwertige und professionelle Bildgenerierung nutzt besser eine spezielle Bild-KI wie Midjourney.
Generative KI – Chancen für Startups
Wie Startups mit drei Tipps die Kosten und Performance für ihren KI-Case optimieren können.

Das deutsche KI-Startup-Ökosystem befindet sich 2025 weiter im Gründungsboom. Nie gab es mehr KI-Gründer in Deutschland und alleine im vergangenen Jahr wuchs die Zahl der KI-Startups um 35 Prozent. Auch für Investoren bleibt KI eines der vielversprechendsten Themen. Sie investierten 2024 fast 200 Millionen mehr in deutsche KI-Jungunternehmen als im Vorjahr. Vor allem deutsche KI-Startups im B2B-Bereich mit branchenspezifischen Lösungen für die Fertigung, Logistik und das Gesundheitswesen haben aktuell ausgezeichnete Wachstumschancen. Sie können von einer engen Vernetzung mit dem Mittelstand und führenden Forschungseinrichtungen in Deutschland profitieren. Typische KI-Anwendungsfelder von aufstrebenden deutschen Startups wie BlueAvenir, PlanA, Smart Reporting oder nnamu liegen dabei u.a. in der Softwareentwicklung, Sprach- und Bilderkennung oder datenbasierten Analyseverfahren zur Entscheidungsunterstützung.
KI-Chancen und die häufigsten Hürden
Während die Gesamtfinanzierung für KI-Projekte wächst, scheitern in der Praxis vielversprechende Ideen von Startups aber auch immer wieder am konkreten Business Case. Langfristig können sich insbesondere unterschätzte Kosten und eine schwache Performance der Anwendungen wie ein Bremsklotz auswirken. Die Nutzung von Sprachmodellen ist dank API-basierten Diensten sehr einfach geworden, dennoch können sich hier bei großen Volumina und ungeschickter Modell-Wahl schnell höhere Kosten aufsummieren. Gleichzeitig spielt die Performance des KI-Systems eine wichtige Rolle für eine langfristige Profitabilität. So führen besonders hohe Latenzzeiten bei der Model-Inference zu trägeren Systemen, die Nutzeranfragen nicht schnell genug verbreiten und die Attraktivität der Anwendung erheblich mindern.
Gerade Startups setzen oft auf die Cloud, da sie unabhängig vom technischen Hintergrund einfachen Zugang zu KI und die nötige Flexibilität ermöglicht. Drei innovative Methoden erweisen sich in der Cloud als besonders hilfreich, um eine optimale Balance zwischen Leistungsfähigkeit, Kosten und Nutzerfreundlichkeit für die Umsetzung des eigenen KI-Anwendungsfalls zu finden. So kann jeder Gründer seine KI-Ideen schnell, kosteneffizient und sicher umsetzen.
KI-Modellauswahl: Kleiner, aber schneller
Für Startups ist es entscheidend, das richtige KI-Modell für ihren Anwendungsfall zu wählen, um Kosten und Leistung optimal auszubalancieren. Anbieter wie Anthropic, AI21 Labs, Meta, Cohere, Mistral und Amazon bieten Modelle in verschiedenen Größen an – kleinere Varianten sind oft günstiger und reagieren mit kürzerer Antwortzeit. Nach einer ersten Validierung mit einem leistungsstarken Modell können Startups Tools wie Amazon Bedrock Evaluations nutzen, um herauszufinden, welches Modell in welcher Größe ähnliche Ergebnisse bei geringeren Kosten oder höherer Geschwindigkeit liefert. Diese Evaluierungen helfen dabei, die Leistungsfähigkeit und Effizienz zu beurteilen, indem Metriken wie semantische Robustheit und Genauigkeit bei der Informationsabfrage analysiert werden. Durch eine Kombination aus automatisierten Bewertungen mit Large Language Models (LLMs) und menschlicher Prüfung können Startups die beste Balance zwischen Leistung, Kosten und Geschwindigkeit für ihre individuellen Bedürfnisse finden.
Prompt Caching: Zwischenspeicherung für wiederkehrende Anfragen
Eine weitere smarte Methode, um die Antwortzeiten von KI-Modellen zu verkürzen und Kosten zu senken, ist das Prompt-Caching. Wenn ein digitaler Assistent sich bei jeder Frage immer wieder die gleichen Grundinformationen durchlesen müsste, dann wäre das extrem ineffizient. Genau hier setzt das Prompt-Caching an und speichert feste Teile des Prompts, wie grundlegende Anweisungen für das LLM, direkt in der Inferenz-Hardware zwischen. Nur die variablen, nutzerspezifischen Daten, die sich von Aufruf zu Aufruf verändern, werden bei jeder Anfrage neu übermittelt. Das spart nicht nur Rechenleistung, sondern sorgt auch für schnellere Antworten – ideal für Anwendungen wie Chatbots oder personalisierte KI-Assistenten, die häufig wiederkehrende Anfragen verarbeiten. Mit Amazon Bedrock lässt sich diese Technik einfach nutzen, indem das Caching und das Setzen von Cache-Checkpoints automatisch verwaltet werden können. Sobald das Caching aktiviert ist, übernimmt der Service das gesamte Cache-Management automatisch. So lassen sich bis zu 90 Prozent kosteneffiziente KI-Anwendungen mit minimalem Konfigurationsaufwand realisieren.
Model Distillation: KI-Wissen auf das Wesentliche fokussieren
Eine dritte bewährte Option ist Model Distillation. Das Prinzip ist einfach und kann vereinfacht als ein intelligenter Wissenstransfer in der Welt der KI beschrieben werden. Also so, als ob ein erfahrener Lehrer (ein großes, leistungsstarkes KI-Modell) seinem Schüler (einem kleineren, schnelleren Modell) die wichtigsten Konzepte beibringt. Dabei nutzt dieser Prozess synthetische Trainingsdaten, die auf realen Anwendungsbeispielen basieren. Das Ergebnis ist ein kompakteres Modell, das für einen spezifischen Anwendungsfall ähnlich gute Ergebnisse liefert wie das größere Modell, dabei aber deutlich schneller und kostengünstiger arbeitet. Destillierte Modelle in Amazon Bedrock können bis zu fünfmal schneller arbeiten und die Kosten um bis zu 75 Prozent senken im Vergleich zu den Originalmodellen – bei Genauigkeitsverlust von weniger als zwei Prozent.
Fazit
Erfolgreiche KI-Lösungen können mit der Cloud kosteneffizienter und performanter umgesetzt werden. Das erfordert zwar ein wenig technisches Know-how, aber die Cloud reduziert die Einstiegshürden erheblich und ermöglicht es auch kleineren Unternehmen, mit drei bewährten Methoden das KI-Potenzial effektiver auszuschöpfen. Startups haben mit der Cloud die maximale Flexibilität, um entweder von den leistungsfähigsten vortrainierten LLMs zu profitieren oder alternativ eigene LLMs mit maßgeschneiderter Infrastruktur zu entwickeln bzw. auf fertige Dienste mit integrierter generativer KI zuzugreifen.
Der Autor Constantin Gonzalez ist Principal Solutions Architect bei Amazon Web Services (AWS) in München.
Die Autorin Jennifer Grün ist Senior Specialist - Machine Learning bei AWS in München.