Digitalisierer und Disruptoren: Diese 5 Start-ups sind auf der Überholspur


44 likes

Die Welt dreht sich gefühlt immer schneller und wird digitaler. Für junge Start-ups eröffnen sich damit auch in etablierten Märkten ungeahnte neue Chancen. Fünf Start-ups, die auf dem Sprung sind, ihre Branchen zu disruptiveren, zeigt dieser Beitrag.

„Was haben der Motorsport, die Energiebranche, das Personalwesen und das Versicherungsgeschäft gemeinsam?“ Bei allen branchenspezifischen Unterschieden eint sie das Tempo, mit dem sich die jeweilige Branche gerade neu erfindet. Der zentrale Treiber ist dafür in allen Fällen die Digitalisierung. Jahrzehntealte, bis dato erfolgreiche Geschäftsmodelle stoßen an ihre natürlichen Grenzen. Durch die vielfältigen Chancen eröffnen sich im gleichen Maße neue Medien, neue Kanäle, neue Plattformen und neue Prozesse – sowie neue Kundengruppen, die sich auf diesen Wegen erreichen lassen. An dieser Stelle lohnt sich der Blick auf fünf aufstrebende Start-ups aus verschiedenen Branchen, die eines verbindet: die ungebremste Lust auf Neues.

OnGrid: Der Motorsport wird elektrisch – und digital

Norman Simon gewann 1991 den Titel in der deutschen Junior-Kart-Meisterschaft. Später lieferte sich der Wiesbadener als Rennfahrer in der Formel 3 spannende Duelle etwa mit Nick Heidfeld oder Timo Schneider.

Als Unternehmer ist Simon heute mindestens so rasant unterwegs wie einst hinter dem Lenkrad. Und er verfolgt dabei eine Mission: Simon will den Rennsport, der sich gerade vom Benzin befreit und elektrisiert, auch digital auf eine neue Ebene heben. Die Verwaltungsprozesse in der Branche haben mit dem Tempo, mit dem sich etwa die Antriebe der Boliden verändern, nicht Schritt halten können. Simons Antwort lautet: onGRID. Dahinter verbirgt sich die erste voll digitale Plattform für alle Arten des Motorsports. Simon: „Mit onGRID haben wir eine bislang einzigartige Plattform entwickelt, die es Rennveranstaltern und Teilnehmern unabhängig vom Einsatzgebiet nach einmaliger Anmeldung und Registrierung ermöglicht, immer wieder ihren gesamten Verwaltungs- und Organisationsprozess mithilfe modernster Technologie digital und sicher abzuwickeln."

Rennfahrer legen auf der Plattform ihre Profile einschließlich ihrer Fahrerlizenzen an. Die Rennsportteams wiederum listen dort ihren gesamten Fuhrpark mit allen Wagenpässen, die Veranstalter der Rennen im Amateur- und Profibereich schließlich all ihre Events inklusive der Ausschreibungen und rechtlichen Dokumente. Die Prozesse im Hintergrund werden somit massiv entbürokratisiert. Simon: „Wir vereinfachen die Registrierungsprozesse – und das DSVGO-konform. onGRID validiert jeden einzelnen Schritt und minimiert damit den manuellen Kontrollaufwand für Veranstalter, die über ein spezielles Dashboard einfach den Überblick behalten."

Zukünftig wird onGRIDs Plattform noch weitere Features bereithalten und über die klassische Organisation zum Scouting und Vernetzen zwischen Teams, Fahrern und Veranstaltern dienen. Ein Messenger wird darüber hinaus die Kommunikation zwischen Organisatoren und Teams weiterentwickeln und die Abstimmung auch während laufenden Rennen vereinfachen.

Performance Recruiting: Smarte Talentsucher in sozialen Medien

Die Performance Recruiting GmbH wurde 2019 gegründet und gehört heute zu den Treibern in Deutschland für die Personalsuche und -akquise über soziale Medien. Das Unternehmen aus Hamburg hat viel früher als andere erkannt, dass das klassische Bewerbungsverfahren an sein Ende gekommen ist. Im Zeitalter des zunehmenden Fachkräftemangels müssen sich nicht länger Bewerberinnen und Bewerber bei Unternehmen bewerben – sondern exakt umgekehrt. Und das nicht mehr über die aussterbende Stellenanzeige in örtlichen oder überregionalen Zeitungen, sondern via Targeting auf LinkedIn, Facebook und Co.

Performance Recruiting bringt Unternehmen dank der Unterstützung von künstlicher Intelligenz binnen weniger Tage mit geeigneten Talenten zusammen. Dabei werden digitaler Service und persönlicher Kontakt in einem hybriden Beratungsansatz miteinander vereint. Zu den mittlerweile über 250 Kunden zählen Unternehmen jeder Größe und aus allen Branchen. Wichtig ist: Qualität kommt vor Quantität.

„Unsere Mission ist es, einen schnellen und effizienten Match von Traumarbeitgebern mit Traumarbeitnehmern zu ermöglichen“, sagt Gründer und Geschäftsführer Nicolas Kreyenkamp. Und fährt fort: „Es reicht nicht aus, beim Recruiting ein bisschen Onlinewerbung zu schalten. Es braucht viel Verständnis für die Zielgruppen, um im Performance Marketing erfolgreich zu sein.“

E.ON One: Digitale Lösungen für die Energiebranche von morgen

Wohl kaum eine Branche ist medial derzeit so präsent und so wichtig wie die Energiebranche. Dabei stehen die Fragen nach der Zukunft, der Sicherheit und der Bezahlbarkeit der Energieversorgung im Fokus. Doch bei allem Verständnis für die Dringlichkeit dieser Themen – die wahre Zukunft der Energieversorgung liegt in der Digitalisierung. So werden nach Berechnungen von McKinsey in Europa bis zum Jahr 2030 3,4 Millionen öffentlich betriebsbereite Ladepunkte für Elektroautos benötigt.

Im Bereich der Digitalisierung der Energiebranche gibt es noch eine Menge Innovationspotenzial, das entdeckt, entwickelt und gehoben werden kann – und muss. Genau damit beschäftigt sich E.ON One. Das Corporate Venture von E.ON wurde 2022 gegründet.

E.ON One hat es sich zur Aufgabe gemacht, digitale Lösungen für die Energiewende bereitzustellen. Erklärtes Ziel ist es, ein umfassendes digitales Produktangebot zu etablieren, das einen Beitrag in allen Bereichen des Energieökosystems leistet:  von der Erzeugung über den Transport bis zum Verbrauch. Auf der Website heißt es: „Unser digitales Lösungsportfolio wurde von Energie- und Software-Experten aus der ganzen Welt entwickelt und wird nicht nur von E.ON intern genutzt, sondern auch von vielen anderen Unternehmen, Kommunen und Privatpersonen.“

Ziel ist es, die Kunden dabei zu unterstützen, die neuartigen Herausforderungen an das Stromnetz erfolgreich zu meistern, Prozesse zu digitalisieren, Netze zu „smartifizieren“ und die Energiewende zu meistern.

envelio: Mit Grips und Grid die Energiewende bewältigen

Dass die RWTH Aachen einen guten Ruf in der Ausbildung von Ingenieurinnen und Ingenieuren hat, ist seit Jahrzehnten bekannt. In jüngster Zeit machen auch immer mehr Ausgründungen von sich reden, die an dieser Hochschule im äußersten Westen der Republik ihren Ursprung haben. Envelio aus Köln ist ein Paradefall für ein solches Spin-off. Los ging es 2017. Heute stellt das Unternehmen Software für Netzbetreiber zur Verfügung.

Mit seiner selbst entwickelten „Intelligent Grid Platform“ ermöglicht das junge Unternehmen seinen Kunden einen transparenten Einblick in die tatsächlichen Vorgänge im Energienetz. Beispielsweise ist auf einen Blick die aktuelle Netzauslastung an bestimmten Standorten ersichtlich. Der digitale Zwilling ermöglicht es den Netzbetreibern, Prozesse zu optimieren, zu automatisieren und zu digitalisieren. Flexibilitäten im Netz werden frühzeitig erkannt und können intelligent genutzt werden. Indem die Intelligent Grid Platform (IGP) die Netzplanung erleichtert, schafft das Unternehmen zudem die Basis für einen bedarfsgerechten Ausbau der Verteilnetze und den Aufbau flexibler Smart Grids. Nach dem erfolgreichen Marktstart in Deutschland will Envelio nun auch international expandieren. Damit die aus Klimaschutzgründen unverhandelbare Energiewende gelingt, braucht es intelligente digitale Lösungen wie die von envelio.

apinity: Digitalisierung als kundenzentrierter Erneuerungsprozess

apinity ist ein in München ansässiges Technologieunternehmen, Tochter der großen Munich Re und Experte für API-Marktplatz- und API-Plattformlösungen in der Versicherungsbranche. API, was bitte?

In der Welt der IT dreht sich sehr viel um APIs: Das Kürzel steht für „Application Programming Interface“. APIs sind Mechanismen, die es zwei Software-Komponenten ermöglichen, miteinander zu kommunizieren und Daten auszutauschen. 

Auch in der Versicherungsbranche sind APIs tägliches Business – doch in der Praxis funktionieren gerade die Schnittstellen nicht immer reibungsfrei. „We think API first“ verspricht apinity. Torsten Jeworrek, Mitglied des Vorstands Munich Re, sagte im Oktober 2022 anlässlich der Übernahme: „apinity ist ein InsurTech, das branchenspezifische Services abdeckt und zugleich das Potential hat, andere Industrien in das API-Ökosystem der Versicherungsindustrie zu integrieren.“

Dank der Plattform können Versicherer auch API-Services von Dritten nutzen. Anna-Carina Häusler, Managing Director von apinity, schwört die jahrzehntelang sehr zurückhaltende Assekuranzbranche auf eine neue Denkhaltung ein: „Die Digitalisierung muss als kundenzentrierter Erneuerungsprozess verstanden werden. In diesem Prozess werden bestehende Systeme, Produkte und Dienstleistungen nachhaltig und skalierbar verbessert und gleichzeitig die individuellen Bedürfnisse der Kunden in den Fokus gerückt.”

Diese Artikel könnten Sie auch interessieren:

KI-Hype: mittel- bis langfristiger Weg zur Monetarisierung noch unklar

Aktueller Marktkommentar zum KI-Hype und den möglichen Folgen von Justin Thomson, Head Investment Institute and CIO bei T. Rowe Price.

Die Investitionsausgaben für künstliche Intelligenz (KI) haben ein erstaunliches Niveau erreicht, aber der Weg zur Monetarisierung bleibt unklar. Der Markt-Hype schaukelt sich selbst hoch, und die Tech-Giganten greifen nun zu Krediten, um ihre Expansion zu finanzieren. Blasen sind nicht immer schädlich und können zu erheblichen Produktivitätssteigerungen führen, aber Überkapazitäten sind ein reales Risiko, das beobachtet werden sollte.

Während eines hochkarätigen Finanzgipfels, an dem ich kürzlich in Hongkong teilgenommen habe, sagte der CEO einer führenden Vermögensverwaltungsgesellschaft, der es eigentlich besser wissen müsste: „Im Kontext der Ausstattung von Hyperscalern sind 2,5 Billionen US-Dollar [für Investitionen] über fünf Jahre keine große Summe.“ Ich war über diese Bemerkung erstaunt. In welchem Paralleluniversum sind 2,5 Billionen US-Dollar eine unbedeutende Summe? Antwort: in einem, in dem Nvidia innerhalb von drei Monaten eine Marktkapitalisierung von 1 Billion US-Dollar erreichen kann. Aber wie erzielt man eine Rendite auf Investitionen in Höhe von 2,5 Billionen US-Dollar, wenn der mittel- bis langfristige Weg zur Monetarisierung der KI noch unklar ist?

Dies deutet auf zwei verschiedene AI-Investitionsbooms hin: einen relativ kurzfristigen, der durch eine erkennbare tatsächliche Nachfrage gestützt wird, und einen längerfristigen spekulativen Boom, der mit einem quasi-religiösen Glauben an exponentielles Wachstum verbunden ist.

Betrachten wir zunächst einige beeindruckende Zahlen. Die Ausgaben für KI erreichten gerade 1 % des US-Bruttoinlandsprodukts (BIP) in einer Wirtschaft mit 1,8 % Wachstum – das ist mehr als die Hälfte der gesamten neuen Nachfrage. Allein Nividia erreichte Ende Oktober einen Wert von 5 Billionen US-Dollar, was 15 % der gesamten US-Wirtschaft entspricht. Zum Vergleich: Als Cisco im Jahr 2000 als weltweit größtes Unternehmen seinen Höhepunkt erreichte, betrug sein Anteil am BIP nur 5,5 %. Während viel Aufsehen um den 3 Milliarden US-Dollar teuren Hauptsitz von JP Morgan in Manhattan gemacht wurde, werden in Texas still und leise 40 Milliarden US-Dollar teure Rechenzentrumsprojekte gestartet. Niemand scheint sich dafür zu interessieren.

Sind wir also in einer Blase? Es gibt sicherlich eine Blase von Menschen, die über Blasen sprechen – werfen Sie einfach einen Blick auf Google Trends.

Unterdessen gibt es diejenigen, die glauben, dass wir uns gerade deshalb nicht in einer Blase befinden können, weil wir über eine solche sprechen. Meiner Meinung nach gibt es drei Schlüsselwörter in den jüngsten Marktentwicklungen, die Beachtung verdienen: Reflexivität, Zirkularität und Verschuldung. Reflexivität besagt, dass Preise tatsächlich die Fundamentaldaten beeinflussen und dass diese neu beeinflussten Fundamentaldaten dann die Erwartungen verändern und somit die Preise beeinflussen. Dieser Prozess setzt sich in einem sich selbst verstärkenden Muster fort. Die lebhafte Reaktion des Marktes auf die jüngsten KI-Megadeals ist ein Beispiel für einen solchen Feedback-Kreislauf. Hinzu kommt der zirkuläre Charakter dieser Deals. Im Wesentlichen investieren die Anbieter von Recheninfrastruktur in native KI-Akteure, die sich in einer Investitionsphase befinden. In der Dotcom-Ära war dies als „Vendor Financing” bekannt und wurde zu einer Art Schimpfwort.

Schließlich gibt es noch die Verschuldung. Bislang haben die finanzstarken Tech-Giganten diesen KI-Boom mit ihren eigenen tiefen Taschen und Eigenkapitalfinanzierungen finanziert. Aber jetzt treten wir in die Kreditphase ein – Unternehmen wenden sich den Schuldenmärkten zu, oft außerhalb der Bilanz, und die Kreditaufnahme wird sich wahrscheinlich beschleunigen. Wir wissen, dass wir mit generativer KI und später mit künstlicher Superintelligenz vor einem neuen technologischen Paradigma stehen – und möglicherweise vor einem massiven Produktivitätssprung. Das sind alles großartige Dinge, und es ist leicht zu verstehen, dass man der Versuchung erliegt, weiter auf der lukrativen KI-Welle zu reiten, die mit der Einführung von ChatGPT im November 2022 begann. Angesichts der aktuellen Indexkonzentration würde es in der Tat Mut erfordern, auszusteigen.

Schnelles Wachstum kann zu einem Überschuss führen

Eine wichtige Lehre aus der Geschichte ist, dass es zu Blasen kommt, wenn wir schöne Dinge erfinden. Aber nicht alle Blasen sind gleich. Es gibt „schlechte“ Blasen (Tulpen, Gold, Grundstücke), und wenn schlechte Blasen durch Schulden finanziert werden, kann dies ein systemisches Risiko für die Wirtschaft darstellen. Es gibt auch „gute“ Blasen, die zu Überkapazitäten bei Produktionsmitteln führen – man denke an die Eisenbahnen im goldenen Zeitalter der Expansion der USA zwischen 1870 und 1900, die Elektrizität in den frühen 1900er Jahren und den Dotcom-Boom Ende der 1990er Jahre. Letztendlich wurde in jedem Fall Wohlstand geschaffen, aber die frühen Investoren verloren viel Geld.

Es ist noch zu früh, um vorherzusagen, zu welcher Art von Blase sich der AI-Investitionsboom entwickeln wird. Die langfristigen Auswirkungen werden davon abhängen, ob die heutigen massiven Investitionen letztendlich die Grundlage für dauerhafte Produktivitätssteigerungen schaffen oder ob sie zu Überkapazitäten führen, die keine nachhaltigen Renditen erzielen. Wenn die Kapazitäten so schnell wachsen, ist es immer wahrscheinlich, dass sich das Ungleichgewicht zwischen Angebot und Nachfrage von einem Mangel zu einem Überschuss umkehrt. In der Dotcom-Ära verloren Investoren viel Geld mit Glasfaserkabeln und Switches, die in den Boden verlegt wurden, und etwas Ähnliches könnte mit KI passieren, wenn durch Überbauung riesige Kapitalmengen in Anlagen gebunden werden, die möglicherweise nicht annähernd mit voller Effizienz betrieben werden können – oder noch schlimmer, wenn die Schnelllebigkeit des Chip-Zyklus die Rechenleistung obsolet macht.

Erschwerend kommt hinzu, dass die Anreize für Infrastrukturanbieter („Picks and Shovels”-Akteure) und Entwickler von KI-Anwendungen nicht aufeinander abgestimmt sind. Während Infrastrukturunternehmen von einer kontinuierlichen Expansion und Investitionen profitieren, konzentrieren sich Anwendungsentwickler auf die Verbesserung der Effizienz und die Senkung der Kosten. Um den Kommentar des Dodos nach dem Caucus-Rennen in Lewis Carrolls Alice im Wunderland umzukehren: „Nicht jeder kann gewinnen, und nicht jeder kann einen Preis bekommen.” Die optimistischen Prognosen für die KI-Infrastruktur zeigen, wie viel Hype in den heutigen Bewertungen der Hyperscaler steckt. Es ist ironisch, dass Rechenzentrumsprojekte nach den griechischen Titanen Prometheus und Hyperion benannt werden. In der griechischen Mythologie folgt auf Hybris immer Nemesis. Um noch ein bisschen Latein mit einzubringen: caveat emptor.

KI & Bewertungen: Sichtbarkeit in einer neuen Suchrealität

Tipps und To-dos: Wie du dein Bewertungsmanagement strategisch aufsetzt und Sichtbarkeit und Vertrauen im KI-Zeitalter steigerst.

Generative Antworten in Suchmaschinen und Assistenten verändern die Spielregeln der Online-Sichtbarkeit. Nicht mehr nur klassische Rankings entscheiden, sondern die Frage, wem die KI genug vertraut, um es überhaupt zu nennen. Aktuelle, glaubwürdige und inhaltlich konkrete Bewertungen werden dabei zum Schlüsselsignal. Für kleine und mittlere Unternehmen bedeutet das: Bewertungsmanagement ist kein Nice-to-have mehr, sondern ein Pflichtprogramm, das Auffindbarkeit, Auswahl und Conversion spürbar beeinflusst. Im Folgenden erfährst du, wie du dein Bewertungsmanagement strategisch aufsetzen solltest, um Sichtbarkeit und Vertrauen im KI-Zeitalter zu steigern.

Warum Bewertungen jetzt geschäftskritisch sind

KI-Modelle zerlegen Rezensionen in viele kleine Bedeutungseinheiten und ziehen daraus ein konsistentes Bild. Welche Leistung wurde erbracht, an welchem Ort, mit welcher Qualität und für welchen Anlass. Aus den einzelnen Stimmen entsteht so ein Vertrauensprofil, das über bloße Sternesummen hinausgeht. Entscheidend ist nicht die bloße Menge, sondern die Frische und die inhaltliche Dichte der Aussagen. Eine Rezension wie „Schnell geholfen am Sonntag, sehr kompetente Beratung zu Reiseimpfungen“ liefert gleich mehrere Signale. Zeitliche Verfügbarkeit, thematische Expertise und konkreter Nutzen. Genau solche Details erhöhen die Wahrscheinlichkeit, in generativen Antworten aufzutauchen, wenn Menschen in ihrer Nähe nach einer Lösung suchen. Wer regelmäßig neue, authentische und präzise Bewertungen erhält, verschafft der KI verlässliche Hinweise und sichert sich dadurch mehr Sichtbarkeit in genau den Momenten, in denen Entscheidungen vorbereitet werden.

Bewertungsmanagement als Prozess, nicht als Aktion

Wirksam wird Bewertungsarbeit, wenn sie selbstverständlich Teil der täglichen Abläufe ist. Nach dem Kontakt freundlich um Feedback bitten, den Weg zur passenden Plattform so kurz wie möglich machen, interne Zuständigkeiten klar regeln und Reaktionszeiten verbindlich festlegen. Aus diesen scheinbar kleinen Schritten entsteht ein stabiler Rhythmus, der kontinuierlich neue Kund*innenstimmen hervorbringt und der KI immer wieder frische Kontexte liefert. Ein solcher Prozess ist robuster als jede einmalige Kampagne, weil er verlässlich Vertrauen aufbaut und saisonale Schwankungen abfedert. Teams profitieren, wenn sie Zielkorridore definieren, etwa eine bestimmte Zahl neuer Rezensionen pro Woche und wenn sie Fortschritte sichtbar machen. So wird aus gutem Vorsatz ein gelebter Ablauf, der die gesamte Organisation stärkt.

Sprache der Kund*innen wirkt wie natürliches SEO

KI versteht Alltagssprache deutlich besser als Listen isolierter Schlagwörter. Unternehmen gewinnen, wenn sie um freie, aber konkrete Formulierungen bitten, ohne Vorgabetexte und ohne Druck. Eine höfliche Bitte wie: „Wenn es für Sie passt, nennen Sie gern, was Ihnen besonders geholfen hat“ öffnet den Raum für präzise Hinweise auf Leistungen, Erreichbarkeit, Barrierefreiheit oder Schnelligkeit. Solche natürlich entstandenen Details sind für Menschen überzeugend und zugleich für Maschinen gut interpretierbar. Sie zeigen, wofür ein Betrieb tatsächlich steht, und verankern die passenden Begriffe in einem echten Nutzungskontext. Das Ergebnis ist eine Sprache, die Vertrauen schafft und die Auffindbarkeit stärkt, ohne künstlich zu wirken.

Antworten trainieren Vertrauen für Menschen und Maschinen

Jede Reaktion auf eine Bewertung ist ein sichtbares Zeichen von Serviceorientierung und zugleich zusätzlicher Kontext für die KI. Gute Antworten bedanken sich aufrichtig, beziehen sich konkret auf das Erlebte und bieten einen klaren nächsten Schritt an. Bei Kritik zählt ein professioneller Umgang. Das Anliegen nachvollziehen, Verantwortung übernehmen, eine realistische Lösung anbieten und einen direkten Kontaktweg nennen. So entsteht ein Bild von Verlässlichkeit, das Hemmschwellen senkt und Wiederbesuche wahrscheinlicher macht. Die KI erkennt diesen Umgang ebenso und ordnet das Unternehmen eher als vertrauenswürdig ein. Mit der Zeit entsteht ein stabiler Kreislauf aus guter Erfahrung, konstruktiver Reaktion und wachsendem Vertrauen.

Lokaler Content und Social Proof gehören zusammen

Bewertungen entfalten ihre volle Wirkung, wenn sie auf eine solide Informationsbasis treffen. Konsistente Unternehmensdaten, vollständige Leistungsseiten pro Standort, klare Öffnungszeiten inklusive Ausnahmen und eine schnelle, mobil optimierte Webseite erleichtern die Einordnung für Nutzer*innen und Maschine. Wenn ausgewählte Zitate oder Bewertungsschnipsel an relevanten Stellen sichtbar werden, etwa auf der Startseite, in der Buchungsstrecke oder in den häufigen Fragen, entsteht ein schlüssiges Gesamtbild. Der lokale Bezug bleibt klar erkennbar, die Erwartungen sind gut gesetzt, und die nächsten Schritte sind ohne Umwege möglich. So wird aus Social Proof ein handfester Conversion Hebel.

Vom Feedback zur Verbesserungsschleife

Rezensionen sind fortlaufende Marktforschung aus erster Hand. Wer wiederkehrende Themen auswertet, etwa Wartezeiten, Erreichbarkeit oder Bezahloptionen, erkennt schnell die Stellschrauben mit der größten Wirkung. Wichtig ist, die daraus abgeleiteten Verbesserungen konsequent umzusetzen und sichtbar zu machen. Informieren, handeln, erneut um Rückmeldung bitten. Dieser offene Kreislauf wirkt nach innen und nach außen. Mitarbeitende erleben, dass Feedback Veränderungen anstößt, Kund*innen erleben, dass ihre Hinweise ernst genommen werden, und die KI registriert die fortlaufende Pflege der Qualität. Mit jeder Runde werden Erlebnisse besser und Bewertungen stärker, was die Sichtbarkeit weiter erhöht.

Fazit

Sichtbarkeit entsteht heute dort, wo Menschen nach konkreten Lösungen fragen und wo KIs verlässliche Hinweise zu Qualität und Relevanz finden. Unternehmen, die Bewertungen als strategischen, kontinuierlichen Prozess verstehen, erhöhen ihre Chance, in generativen Antworten genannt zu werden und gewinnen genau in den entscheidenden Momenten an Präsenz. Vieles davon ist eine Frage kluger Organisation und klarer Abläufe. Der finanzielle Aufwand bleibt überschaubar, der Nutzen für Auffindbarkeit, Vertrauen und Umsatz ist deutlich spürbar.

Die Autorin Franziska Ortner ist Produktmanagerin bei SELLWERK

NICAMA Naturkosmetik: Von der Studienidee zum nachhaltigen Erfolgsunternehmen

NICAMA Naturkosmetik feiert sein fünfjähriges Bestehen: Was mit kleinen Experimenten während des Studiums begann, ist heute ein etabliertes Naturkosmetikunternehmen mit über 600 Handelspartnern im DACH-Raum.

Was 2019 als mutige Idee von vier Studierenden begann, wurde rasch zu einem inspirierenden Beispiel für gelebte Nachhaltigkeit. In einer Zeit, in der Umweltschutz noch kein selbstverständlicher Trend war, experimentierten die Gründerinnen und Gründer mit festen Shampoos, um eine plastikfreie Alternative zu herkömmlicher Kosmetik zu schaffen. Das erste Produkt entstand mit viel Leidenschaft, Neugier und Improvisation. Damit war der Grundstein für den späteren Unternehmenserfolg gelegt.

Ein erfolgreiches Crowdfunding finanzierte 2019 die erste Produktcharge und machte den Traum vom eigenen Webshop möglich. Es folgten die ersten Partnerschaften mit Bioläden, Outdoorhändlern, Friseuren und Geschenkeläden, die an die Vision glaubten. Heute zählt NICAMA stolz über 600 Vertriebspartner und wächst weiter.

Ein entscheidender Meilenstein war die Entwicklung des 1plus1 Meeresschutz-Prinzips: Für jedes verkaufte Produkt werden 100 Gramm Plastik in Küstenregionen gesammelt. Dieses Prinzip ist transparent, messbar und von jedem/jeder Kund*in nachvollziehbar. Bis heute konnten so über 33.290 Kilogramm Plastik aus der Umwelt entfernt werden. Das entspricht mehr als 3,2 Millionen Plastikflaschen. Darüber hinaus hat das Team mehrere Elbreinigungen organisiert, unter anderem gemeinsam mit der Naturschutzjugend NAJU und Charlotte Meentzen.

Mit dem Schritt in die Upcycling Beauty wurde NICAMA zum Pionier in Deutschland. Dabei werden wertvolle Nebenprodukte aus der Lebensmittelproduktion wie Ingwertrester und Kaffeekirsche zu hochwertigen Inhaltsstoffen verarbeitet. Heute umfasst das Sortiment über 50 plastikfreie Produkte, darunter Seifen, Shampoos, Deocremes, Pflegeöle und Körperpeelings – alle minimalistisch verpackt und mit reduzierten, sorgfältig ausgewählten Rezepturen.

Die Reise war jedoch nicht ohne Herausforderungen: Die Corona Pandemie und die Inflationsfolgen des Ukraine-Krieges setzten auch NICAMA stark zu. Das einst 15-köpfige Team musste sich zwischenzeitlich deutlich verkleinern. Trotz dieser Rückschläge bewies das Unternehmen Durchhaltevermögen. Heute steht es so solide da wie nie zuvor. Seit zwei Jahren verzeichnet NICAMA wieder überdurchschnittliches Wachstum und das deutlich über dem allgemeinen Naturkosmetikmarkt in Deutschland.

Für sein Engagement und seine Innovationskraft wurde das Unternehmen mehrfach ausgezeichnet: 2021 gewann NICAMA den Sächsischen Gründerpreis und erhielt bereits viermal den eku Zukunftspreis des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft.

Die Top 10 Grafikdesigntrends 2026

Grafikdesign setzt Impulse, um dein Branding aufzufrischen, deine Marke gekonnt zu inszenieren oder deine Zielgruppe persönlich und emotional anzusprechen. Daher gut zu wissen: Diese zehn Grafikdesigntrends werden von den Profis aktuell favorisiert.

2026 wird das Jahr, in dem Grafikdesign Menschlichkeit betont. Während KI im Alltag eine immer größere Rolle spielt, wächst die Sehnsucht nach Echtheit – nach Entwürfen, die berühren. Zu diesem Schluss kommt das Expert*innen-Team von VistaPrint auf Basis der umfassenden Beobachtungen seiner internationalen Freelancer-Community auf 99designs by Vista.

Die zentrale Erkenntnis: Grafikdesign wird wieder deutlich persönlicher. Es zeichnet sich ab, dass sich die Trends weg vom Glatten, hin zum Echten entwickeln. Marken wollen bei ihren Zielgruppen Gefühle wecken und setzen deshalb auf Geschichten statt Marketingbotschaften. So wird Design zur Bühne für Individualität und damit zum wirksamsten Werkzeug, um echte Verbindungen aufzubauen.

„Kleine Unternehmen haben den entscheidenden Vorteil, mutig, eigenwillig und authentisch auftreten zu können – großen Marken fällt das oft schwer,“ weiß Patrick Llewellyn, VP of Digital and Design Services bei VistaPrint. „In unserer laut und unpersönlich gewordenen Welt wirken unperfekte Designs ehrlich. Genau das macht sie so kraftvoll.“

Die Designtrends 2026 holen das Handgemachte ins Digitale, erzählen von kultureller Identität, feiern Unvollkommenheit und lassen Gefühle sichtbar werden. Nicht der Algorithmus, sondern der Mensch steht im Mittelpunkt.

Die Designtrends 2026 im Überblick:

Elemental Folk

Tradition trifft moderne Gestaltung: Inspiriert von regionaler Handwerkskunst und kulturellem Erbe, entstehen warme, ausdrucksstarke Designs mit floralen Mustern, ornamentalen Details und kräftigen Farben. Die Gestaltung wirkt vertraut und zeitgemäß zugleich. Elemental Folk ist ein visueller Rückgriff auf das Ursprüngliche, der die Identität und Herkunft feiert.

Hyper-Individualism

Dieser Trend bringt frischen Wind ins Design. Er setzt auf surreale Bildwelten, spielt mit verzerrten Formen und bricht ganz bewusst mit Konventionen. Die Darstellungen wirken mal verspielt, mal provokant, aber immer individuell. Während viele ihre Gestaltungsprozesse komplett von der künstlichen Intelligenz erledigen lassen, begeistert dieser Stil mit der kreativen Handschrift der Menschen.

Tactile Craft

Stickerei, Stoffstrukturen und handgemachte Details finden ihren Weg zurück ins digitale Design. Was dabei entsteht, fühlt sich fast schon greifbar an: Die visuellen Oberflächen erzeugen eine besondere Tiefe, die den BetrachterInnen Wärme spendet. Zwischen DIY-Charme und nostalgischer Anmutung generiert dieser Trend – als Gegenentwurf zur glatten, oft distanzierten Ästhetik der digitalen Welt – eine emotionale Nähe.

Distorted Cut

Wenn Gestaltung zum Widerstand wird, entstehen visuelle Statements mit Ecken und Kanten. Klassische Collage-Techniken werden neu interpretiert, indem Bilder zerschnitten, Schichten überlagert und Formen fragmentiert werden. Das Ergebnis wirkt roh, rebellisch und voller Energie. Fest steht: Dieser Designstil will nicht gefallen – es geht darum, Haltung zu zeigen.

Candid Camera Roll

Kreative bringen mit diesem Trend das Echte zurück ins Visuelle. Unperfekte Schnappschüsse, Filmkorn, Blitzlicht und spontane Momente wirken persönlich und nahbar. Im Zusammenspiel mit reduzierter Typografie entstehen Designs, die mit ihrer Ehrlichkeit wirken und berühren.

Hyper-Bloom

Manchmal braucht es einen visuellen Rückzugsort – einen Ort zum Durchatmen. Sanfte Verläufe, zarte Blumenmotive und pudrige Pastelltöne entführen in eine Welt zwischen Traum und Realität. Der Stil wirkt wie ein Gegenpol zum hektischen Alltag und öffnet Raum für Leichtigkeit, Optimismus und ein bisschen Tagträumerei.

Digit-Cute

Die Ästhetik bewegt sich zwischen Nostalgie und digitaler Verspieltheit und sorgt vom ersten Moment an für richtig gute Laune. Klare Strukturen treffen auf bunte Pixelgrafiken, niedliche Figuren und kräftige Farben. Der Look versprüht den Charme der frühen Computerspiele und Popkultur. Gerade weil er so verspielt wirkt, ist er gestalterisch besonders raffiniert.

Micro-Industrial

Was früher rein funktional war, wird jetzt zum Gestaltungskonzept. Inspiriert von Verpackungen, technischen Etiketten und Informationsgrafiken bildet sich ein Designstil, der Klarheit feiert. Der gezielte Einsatz von Elementen wie Barcodes, QR-Codes und Rasterstrukturen verleiht den Entwürfen eine rohe, sachliche und zugleich moderne Ästhetik.

Neon Noir

Dunkel, intensiv und voller Spannung – der Stil erinnert an Szenen aus einem Neo-Noir-Film. Knallige Farben, wie elektrisches Rot, treffen auf tiefes Schwarz, kombiniert mit Bewegungsunschärfen und rauen Texturen. Der urbane, energiegeladene Look fällt sofort ins Auge und bleibt lange im Kopf.

Frutiger Aero Revival

Ein Hauch von Zukunft, so wie man sie sich früher vorgestellt hat: Glänzende Oberflächen, sanfte Farbverläufe und fließende Formen knüpfen an die Tech-Ästhetik der frühen 2000er an. Elemente wie Wasser, Himmel oder digitale Pflanzenwelten verleihen den Designs eine fast träumerische Leichtigkeit. Der Stil ist eine liebevolle Rückschau in eine Zeit, in der Technologie noch als Versprechen galt.

Fazit

Design darf wieder fühlen, Haltung zeigen und Ecken haben. Um als Marke aufzufallen, braucht man nicht mehr das glatteste Logo oder das perfekteste Bild, sondern Persönlichkeit, Mut und eine klare Botschaft. 2026 wird das Jahr, in dem Echtheit zählt. Das Beste daran: Es wird kreativ, lebendig und überraschend schön.

Vorsicht vor diesen KI-Versuchungen

Allzu großes Vertrauen in GenAI ist fahrlässig, dennoch prüfen nur rund ein Viertel der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit. Das sind die größten Gefahren und effektivsten Gegenmaßnahmen.

Die Leistung und die Zuverlässigkeit von KI-Assistenten nehmen gefühlt weiter zu. Doch wer in den letzten Wochen intensives Prompting bei ChatGPT, Perplexity und Co. betrieben und die Ergebnisse eingehend analysiert hat, fühlte sich in diesem Gefühl nicht bestätigt. Im Gegenteil: Die Qualität der generierten Antworten lässt neuerdings öfter zu wünschen übrig. Auf YouTube gibt es zahlreiche Videos zu diesem Phänomen, das sich offenbar auch die Herstellenden nicht so ganz erklären können, aber auch klassische Medien berichten darüber. In Anbetracht der Tatsache, wie abhängig sich viele Menschen im Berufsleben schon heute von GenAI-Tools gemacht haben, ist dieser Trend erschreckend und ernüchternd. Ein blindes Vertrauen in die digitalen Helfer aus der Familie generativer KI birgt zudem großes Schadenspotenzial, etwa dann, wenn sich Ärzt*innen bei der Diagnose auf sie stützen oder Entwickler*innen von der KI vorgeschlagene Frameworks ohne Sicherheitscheck implementieren.

Völliges Vertrauen in GenAI ist also, zurückhaltend formuliert, mindestens gewagt. Die Situation ist ernst und erfordert von GenAI-Anbietenden ein Mindestmaß an Qualitätssicherung – offenbar kein einfaches Unterfangen. Bis dahin ist es wichtig, eigene Maßnahmen zu ergreifen, um nicht in die Falle der folgenden vier Qualitätskiller zu geraten.

1. Halluzinationen

KI-Assistenten wie ChatGPT und Co. wurde die Aufgabe erteilt, Antworten zu liefern – koste es, was es wolle. Wenn die Wissensbibliothek nicht ausreicht, um komplexe Sachverhalte zu beantworten, fängt generative KI an, sich etwas auszudenken. Die von solchen Halluzinationen ausgehende Gefahr ist bekannt. Umso bedrückender ist die Tatsache, dass laut einer aktuellen Studie nur rund ein Viertel (27 %) der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit prüfen. Das sind zwar immerhin sieben Prozentpunkte mehr als bei gewöhnlichen Inhalten aus dem Internet, wie eine Studie des PR-COM Re­search Lab belegt, aber noch immer viel zu wenige.

Gegenmaßnahmen: Wer GenAI nutzt, sollte ausnahmslos alle von ihr produzierten Inhalte überprüfen. Dazu sollten User*innen insbesondere die von der KI verwendeten Primärquellen checken oder – wenn möglich – Expert*innen zur Prüfung der Korrektheit der Antworten zurate ziehen.

2. Bias

Die Anbieter*innen aktueller KI-Assistenten haben sehr viel Arbeit in ihre Produkte gesteckt, um den Bias, also die Voreingenommenheit ihrer Modelle auszumerzen und sie zur Vorurteilsfreiheit zu erziehen.

Verlassen sollten sich User*innen auf die moralische und ethische Unantastbarkeit ihrer Modelle dennoch nicht. Zwar ist es unwahrscheinlich, dass Produkte großer Hersteller*innen noch rassistische, sexistische oder sonstige ethisch fragwürdige Ansichten vertreten, aber komplett ausgeschlossen ist es eben nicht. Noch relativ hoch ist die Gefahr zudem bei der Nutzung von kostenlosen GenAI-Assistenten oder Nischen-Tools.

Gegenmaßnahmen: Auch im Zusammenhang mit Bias gilt es, die Ergebnisse einer KI-Befragung immer genauestens zu checken und mit geltenden Gesetzen und den vorherrschenden Wertevorstellungen unserer Gesellschaft abzugleichen. Wer dubiose KI-Tools meidet, kann sich zudem viel Ärger ersparen.

3. Content-Kannibalisierung

Immer mehr KI-generierter Content flutet das Internet – die logische Folge der zunehmenden Nutzung von GenAI-Assistenten. Leider trainieren KI-Entwickler*innen ihre Chatbots und deren zugrunde liegende Sprachmodelle unter anderem mit genau diesen Inhalten. Und schlimmer noch: Der exponentiell steigende KI-Inhalt ist darüber hinaus auch der Wissensschatz, auf den die KI für ihre Antworten zurückgreift. Dadurch entsteht ein Teufelskreis aus KI, die sich irgendwann nur noch mit von ihr selbst generierten Inhalten trainiert und auch nur noch von ihr produzierten Content als Basiswissen verwendet. Der Mensch wird aus dieser Gleichung immer weiter herausgekürzt. Die Qualität der Ergebnisse von Anfragen an die KI wird somit zunehmend abnehmen. Hinzu kommt, dass alle User*­innen irgendwann die gleichen Ergebnisse abrufen, nutzen und veröffentlichen.

Gegenmaßnahmen: Es ergibt Sinn, hin und wieder auch ohne KI zu agieren und Content zu produzieren, der frei von KI-generierten Inhalten ist und das Qualitätsmerkmal „Made in a human brain“ trägt.

4. Wissensoligopol

Der KI-Markt ist derzeit auf einige wenige Big Player geschrumpft, die sich die enormen Rechenressourcen und Entwicklungskosten für generative KI leisten können. Dadurch entsteht zunehmend ein Wissensoligopol, in dem die großen Anbieter*innen wie OpenAI, Google, Microsoft und DeepSeek zukünftig die Art und Weise bestimmen, welche Informationen überhaupt noch zugänglich sind. Schon jetzt gehen Suchanfragen auf den traditionellen Suchmaschinen deutlich zurück, die Ergebnisse zwar nach Algorithmen ranken, aber selten Treffer komplett ausblenden. Viel restriktiver agieren GenAI-Tools, deren implementierte Filter die freiheitliche Verbreitung von Wissen einzuschränken drohen: Was nicht mit den politischen und moralischen Ideen der Hersteller übereinstimmt, wird automatisch unterdrückt. Das erinnert ein wenig an das Wahrheitsministerium aus Orwells „1984“.

Gegenmaßnahmen: Es ist wichtig, dass Unternehmen und offizielle Stellen auch unabhängige Projekte fördern und deren Nutzer*innen- sowie Supporter*innen-Basis wächst. Gleichzeitig sollten User*innen es dringend verinnerlichen, dass KI- Assistenten nicht der Wahrheit letzter Schluss sind. Das Nutzen möglichst vieler Quellen, um das eigene Wissen aufzubauen, ist immer besser als ein vermeintlicher „Single Point of Truth“.

Fazit

Wir sind noch lange nicht so weit, dass ein blindes Vertrauen in generative KI zu rechtfertigen ist. Es ist zwar logisch, dass wir eine vermeintlich arbeitserleichternde Technologie erst einmal ungern hinterfragen – doch dieser Bequemlichkeit wohnt, je nach Einsatzzweck, ein erhebliches Schadenspotenzial inne. Zum jetzigen Zeitpunkt lautet also die Maxime, restlos jede von GenAI generierte Antwort genauestens auf den Prüfstand zu stellen.

Der Autor Alain Blaes ist CEO der Münchner Kommunikationsagentur PR-COM (mit Fokus auf High-tech- und IT-Industrie im B2B-Umfeld).

Code für die künstliche Intelligenz: technische Optimierung für die Ära der KI-Suche

Code für die KI: So optimierst du deine Website technisch mit strukturierten Daten und Protokollen für die besten generativen Suchergebnisse.

Die Regeln der Online-Sichtbarkeit werden neu geschrieben. Es geht nicht mehr nur darum, von einem herkömmlichen Algorithmus indiziert zu werden. Stattdessen müssen Websites so aufbereitet werden, dass sie von künstlicher Intelligenz (KI) und großen Sprachmodellen (LLMs) fehlerfrei interpretiert und verarbeitet werden können.

KI erstellt ihre Antworten, indem sie Inhalte blitzschnell liest, deren Bedeutung versteht und die wichtigsten Fakten daraus extrahiert. Wenn der technische Unterbau einer Website unsauber ist, kann die KI die Informationen entweder nicht zuverlässig finden oder sie falsch interpretieren.

Das bedeutet, die technische Seite der Website – der Code – wird zum Fundament für eine gute Platzierung in den generativen Suchergebnissen. Wer hier Nachholbedarf hat, riskiert, als vertrauenswürdige Quelle für die KI unsichtbar zu werden.

Dieser Artikel beleuchtet die entscheidenden technischen Anpassungen, die notwendig sind, um deine Website optimal für die neue Ära der KI-Suche vorzubereiten.

Kontrolle und Zugang: Die Regeln für Sprachmodelle

Der erste technische Schritt zur Optimierung für KI-Ergebnisse ist die Steuerung des Zugriffs durch die großen Sprachmodelle (LLMs). Traditionell wird der Zugang durch die robots.txt Datei geregelt, die festlegt, welche Bereiche der Website von herkömmlichen Suchmaschinen-Crawlern besucht werden dürfen.

Mit dem Aufkommen verschiedener, spezialisierter KI-Crawler (die nicht immer identisch mit dem Googlebot oder Bingbot sind) entsteht jedoch die Notwendigkeit, diesen neuen Akteuren eigene Regeln zu geben. Es geht darum, Transparenz darüber zu schaffen, welche Daten zur Generierung von Antworten verwendet werden dürfen und welche nicht.

Neue Protokolle für neue Crawler

Experten diskutieren und entwickeln neue Protokolle, um diese Unterscheidung zu ermöglichen. Ein viel diskutierter Ansatz ist die Einführung von Protokollen, die spezifisch den Umgang mit generativer KI regeln. Dies könnte die Einführung von Protokollen wie einer llms.txt Datei beinhalten. Solche spezifischen Dateien könnten festlegen, ob ein KI-Modell Inhalte zur Schulung oder zur generativen Beantwortung von Nutzeranfragen nutzen darf.

Diese Kontrollmechanismen sind entscheidend. Sie geben den Website-Betreibern die Autorität darüber zurück, wie ihre Inhalte in der KI-Ära verwendet werden. Wer hier klare Regeln setzt, schafft die technische Grundlage für eine kontrollierte und damit vertrauenswürdige Sichtbarkeit in den KI-Ergebnissen.

Strukturierte Daten als universelle KI-Sprache

Nach der Regelung des Zugangs durch Protokolle ist die Strukturierung der Inhalte der wichtigste technische Schritt. Suchmaschinen nutzen strukturierte Daten schon lange, um Rich Snippets in den klassischen Ergebnissen anzuzeigen. Für die KI sind diese Daten jedoch absolut essenziell.

Strukturierte Daten, die auf dem Vokabular von Schema.org basieren, sind im Grunde eine Übersetzungshilfe im Code, die dem Sprachmodell den Kontext des Inhalts direkt mitteilt. Sie sind die "Sprache", die die KI am schnellsten und präzisesten versteht.

Die Bedeutung für die Generierung

Wenn ein Nutzer eine Frage stellt, sucht die KI nicht nur nach Stichwörtern, sondern nach definierten Informationstypen. Mit strukturierten Daten liefert man der KI diese Informationen als fertige, fehlerfreie Bausteine.

  • Fehlerfreie Extraktion: Die KI muss keine Textpassagen interpretieren, um beispielsweise ein Rezept, die Bewertung eines Produkts oder einen FAQ-Abschnitt zu identifizieren. Die korrekte Auszeichnung macht die Daten sofort nutzbar.
  • Vertrauensbildung: Fehlerhafte oder inkonsistente strukturierte Daten führen zu einer falschen Interpretation und können bewirken, dass die KI deine Seite als unzuverlässig einstuft.

Die Implementierung muss fehlerfrei sein und sollte alle relevanten Inhaltstypen der Website abdecken. Nur eine saubere Schema-Implementierung garantiert, dass deine Fakten korrekt in die generativen Antworten der KI einfließen.

Ladezeit und Interaktivität als Vertrauenssignal

Die Geschwindigkeit und die Nutzbarkeit einer Website sind in der Ära der KI-Suche nicht mehr nur ein Komfortfaktor, sondern ein entscheidendes technisches Vertrauenssignal. Wenn deine Seite langsam lädt oder schlecht bedienbar ist, wird das von der KI als Indikator für mangelnde Qualität und niedrige Autorität gewertet.

Die Basis dafür sind die sogenannten Core Web Vitals (CWVs). Diese Messwerte, die sich auf das Nutzererlebnis konzentrieren, sind feste Ranking-Faktoren und haben direkten Einfluss darauf, ob eine KI deine Seite als zitierwürdig einstuft:

  • LCP (Largest Contentful Paint): Misst die Zeit, bis der größte sichtbare Inhalt geladen ist.
  • FID/INP (First Input Delay / Interaction to Next Paint): Misst die Zeit bis zur ersten Interaktion und die allgemeine Reaktionsfähigkeit der Seite.
  • CLS (Cumulative Layout Shift): Misst die visuelle Stabilität.

Mobile Performance ist der Schlüssel

Da ein Großteil der Online-Aktivität über mobile Geräte stattfindet, legt die KI höchsten Wert auf die Optimierung der Mobilversion. Eine schlechte mobile Performance kann das gesamte Ranking negativ beeinflussen.

Die technische Anpassung muss daher darauf abzielen, die CWVs zu perfektionieren. Dies beinhaltet die Optimierung von Bildern, das Bereinigen unnötiger Code-Lasten und das Priorisieren wichtiger Ressourcen. Eine schnell ladende und reaktionsfreudige Website signalisiert nicht nur dem Nutzer, sondern auch der KI, dass die Quelle professionell und damit vertrauenswürdig ist.

Redundanz vermeiden: kanonische Klarheit

Eines der größten technischen Probleme für KI-Modelle ist die Verwirrung durch doppelte Inhalte (Duplikate). Wenn die gleiche Information unter verschiedenen URLs verfügbar ist, weiß die KI nicht, welche die Originalquelle darstellt. Dies zersplittert deine Autorität.

Der technische Schlüssel zur Lösung ist der Canonical Tag (<link rel="canonical" ...>). Dieser Tag im Code muss auf jeder Seite korrekt auf die bevorzugte, indexierbare URL zeigen. Durch die Vermeidung von Duplikaten und die korrekte Nutzung dieses Tags stellst du technisch sicher, dass die KI deine Inhalte als eindeutig und autoritär wahrnimmt und dich als zuverlässigen Faktenlieferanten zitiert.

Schlussworte

Die Zukunft der Online-Sichtbarkeit wird durch künstliche Intelligenz neu definiert. Der Erfolg hängt von einer technisch sauberen Vorbereitung ab.

Die wichtigsten Schritte in der Generative Engine Optimization (GEO) sind:

1. Zugangskontrolle durch Protokolle wie die diskutierte llms.txt Datei.

2. Die Nutzung von strukturierten Daten als unverzichtbare KI-Sprache.

3. Die Perfektionierung der Core Web Vitals als Vertrauenssignal.

4. Die Vermeidung von Duplikaten durch kanonische Klarheit.

Investiere in diese technische Qualität, um Autorität und Sichtbarkeit in der Ära der KI-generierten Antworten zu sichern.

eleQtron: It's MAGIC

In nur fünf Jahren vom Laborgerät zum 24/7-betriebenen Quantencomputer: Wie das 2020 von Jan Leisse, Christof Wunderlich und Michael Johanning gegründete eleQtron mit seiner MAGIC-Technologie neue Wege ebnet.

Was ihr da macht, ist der Wahnsinn – und genau deswegen bin ich dabei.“ Mit diesen Worten beschreibt Jan Leisse, einer der Gründer von eleQtron, die Anfänge des Unternehmens. Das erste Treffen mit dem Physiker Christof Wunderlich war geprägt von einer Mischung aus Skepsis und Begeisterung. Der Wissenschaftler hatte an der Universität Siegen einen Quantencomputer gebaut – mitten in der deutschen Provinz und ohne das Millionenbudget, das Konzernen wie Google oder IBM zur Verfügung steht. Doch genau das reizte Leisse: „Hier wurde nicht einfach nachgemacht, was andere tun. Hier wurde Neuland betreten.“

Es war ein ungewöhnlicher Ort für eine bahnbrechende

Innovation in der Quantentechnologie. Siegen, eine Mittelstadt im Süden Nordrhein-Westfalens, ist nicht gerade als Hotspot für Hochtechnologie bekannt. Doch manchmal entstehen die Top-Innovationen fernab der etablierten Zentren; die Universität Siegen hatte über Jahre hinweg eine bemerkenswerte Expertise in der Quantenphysik aufgebaut, ohne große mediale Aufmerksamkeit.

Von der Universität ...

Im Jahr 2020, als das globale Interesse an Quantentechnolo­gien exponentiell zunahm, erwuchs aus dieser mutigen Pionierarbeit das Start-up eleQtron – als Spin-off der Universität Siegen. Die Gründer – Jan Leisse, Christof Wunderlich und Michael Johanning – verbindet eine Vision: Quantencomputer für industrielle Anwendungen nutzbar zu machen.

Die Anfangsjahre waren geprägt von Experimentierfreude, Improvisation und dem festen Glauben an die eigene technologische Innovationskraft. Während Tech-Giganten wie IBM, Google und Amazon Milliarden Euro in ihre Quanten­programme investierten und viele Start-ups auf bekannte Technologien setzten, wagte eleQtron den Schritt in eine völlig neue Richtung.

In den Laboren der Gründer entstand die sogenannte MAGIC-Technologie (Magnetic Gradient Induced Coupling), eine Methode, Qubits (das Quantencomputing-Äquivalent zum klassischen Bit in der Digitaltechnik) nicht wie bislang üblich mit Lasern, sondern mit Mikrowellen zu steuern.

... zum technologischen Durchbruch

Die MAGIC-Technologie basiert auf einem raffinierten Zusammenspiel physikalischer Prinzipien: Magnetische Gradienten (räumliche Veränderungen der Magnetfeldstärke) ermöglichen es als lokale Felder, einzelne Ionen in einer so­genannten Falle selektiv anzusprechen. Die technischen Vorteile sind beeindruckend: Die Fidelity (Genauigkeit) bei Operationen an einzelnen Qubits liegt bei etwa 99,95 Prozent, die Gate-Zeiten (Gate-Zeit steht für die Dauer, die ein Quanten-Gate benötigt, um eine Operation auf einem Qubit auszuführen) betragen nur wenige Mikrosekunden. Gleichzeitig ermöglicht die Technologie eine bessere Skalierbarkeit, da sich Mikro­wellenfelder einfacher erzeugen und verteilen lassen als komplexe Lasersysteme. „Der Vorteil liegt nicht nur in der höheren Präzision, sondern auch in der deutlich geringeren Komplexität der Systeme“, erklärt Johanning. „Wir brauchen keine aufwändigen Optiken oder ultrastabile Umgebungen. Unsere Technologie funktioniert auch unter realen Bedingungen.“

Früh erkannten die drei Forscher das große Potenzial ihrer Technologie für praktische Anwendungen. „Durch das gezielte Ersetzen sensibler High-End-Komponenten – insbesondere Lasertechnologie – durch bewährte Mikrowellentechnik und Elektronik, vermeiden wir unnötige Komplexität, minimieren Aufwand und senken die Kosten“, fasst es Leisse zusammen.

Wachstumsschub und strategische Entwicklung

2022 gelang eleQtron ein entscheidender Schritt: Durch Earlybird und den Siegerlandfonds als Investoren sowie das vom BMBF geförderte Projekt „MAGIC App“ sicherte sich das Start-up eine Finanzierung in Höhe von 16 Millionen Euro. Diese Finanzierungsrunde war ein Wendepunkt für das Unternehmen und signalisierte das Vertrauen der Investor*innen in die MAGIC-Technologie.

„Mit diesem Kapitalschub konnten wir von einer reinen Forschungsorganisation zu einem echten Technologieunternehmen werden“, erklärt Leisse. Die Mittel flossen in den Ausbau der Produktionskapazitäten, die Vergrößerung des Teams und die Weiterentwicklung der Technologie-Roadmap. Auch die Mitwirkung von Infineon im Rahmen von MAGIC App war strategisch von Bedeutung: „Die Zusammenarbeit mit Infineon hat uns die Augen für die Realitäten des Industriemarkts geöffnet“, erklärt Leisse.

EU KI-Gesetz wird scharf gestellt

Diese Strafen für KI-Verstöße drohen ab dem 2. August 2025 – was Personalverantwortliche und Arbeitnehmende jetzt wissen und beachten müssen.

Das KI-Gesetz der Europäischen Union, die weltweit erste umfassende KI-Verordnung, erreicht am 2. August 2025 einen entscheidenden Meilenstein. Ab diesem Stichtag gelten für Unternehmen, Behörden und KI-Anbieter*innen in der EU zahlreiche zentrale Verpflichtungen, bei deren Nichteinhaltung Strafmaßnahmen eingeleitet und verhängt werden können. Was das für Unternehmen und ihre Mitarbeitenden bedeutet, erfährst du hier.

Der AI Act, der am 2. Februar dieses Jahres in Kraft getreten ist, schafft einen einheitlichen Rechtsrahmen für Künstliche Intelligenz (KI) in der EU. Zwar werden viele Regelungen erst 2026 wirksam, doch bereits am 2. August 2025 beginnt eine neue Phase, die sich auf drei Bereiche fokussiert:

  • Strafmaßnahmen bei Nichteinhaltung
  • Verpflichtungen für allgemeine General-Purpose-AI-Modelle (GPAI)
  • Aufbau von Aufsicht und Governance auf nationaler und europäischer Ebene

Strafen bis zu 35 Millionen Euro

Seit dem 2. Februar dieses Jahres sind KI-Systeme mit unannehmbaren Risiken verboten. Ab dem 2. August 2025 können zusätzlich nun Geldbußen für Verstöße gegen bereits bestehende Verpflichtungen verhängt werden, die bis zu 35 Millionen Euro oder 7 Prozent ihres gesamten Jahresumsatzes betragen können. Unternehmen müssen dazu beispielsweise sicherstellen, dass ihre Mitarbeitenden über KI-Kenntnisse verfügen. Die Europäische Union erwartet von ihren Mitgliedstaaten, dass sie eigene wirksame, verhältnismäßige und abschreckende Strafmaßnahmen festlegen. Dabei sollen die besonderen Umstände von KMUs und Start-ups berücksichtigt werden, um deren wirtschaftliche Lebensfähigkeit nicht zu gefährden.

Neue Verpflichtungen für Anbieter*innen von GPAI-Modellen

GPAI-Modelle, die ab dem 2. August 2025 in der Europäischen Union vermarktet werden, unterliegen gesetzlichen Verpflichtungen. Das Europäische Amt für Künstliche Intelligenz hat dazu am 10. Juli 2025 die endgültige Fassung der Verhaltenskodizes veröffentlicht. Anbieter*innen solcher GPAI-Modelle müssen unter anderem technische Dokumentationen erstellen, Urheberrechte beachten und Transparenz über die verwendeten Trainingsdaten sicherstellen.

GPAI-Modelle sind KI-Systeme mit besonders breitem Einsatzspektrum und sind darauf ausgelegt, eine Vielzahl von Aufgaben zu erfüllen. Sie werden mit riesigen Datenmengen trainiert und sind entsprechend vielseitig einsetzbar. Das bekannteste Beispiel sind große Sprachmodelle (Large Language Models, LLM), etwa das generative Sprachmodell GPT-4o, das in ChatGPT integriert ist. Für GPAI-Modelle, die bereits vor dem 2. August 2025 in der Europäischen Union auf dem Markt waren, gilt eine Übergangsfirst bis zum 2. August 2027.

Aufsicht und Governance

Die KI-Verordnung schafft einen Rahmen mit Durchführungs- und Durchsetzungsbefugnissen auf zwei Ebenen.

Auf nationaler Ebene muss jeder EU-Mitgliedstaat bis zum 2. August 2025 mindestens eine Marktüberwachungsbehörde sowie eine notifizierende Behörde benennen. Erstere ist für die Überwachung von KI-Systemen zuständig, letztere für die Notifizierung unabhängiger Konformitätsbewertungsstellen. Die Mitgliedstaaten müssen bis dem Stichtag Informationen zu den nationalen Behörden und deren Kontaktdaten veröffentlichen.

Auf EU-Ebene koordinieren das Europäische Amt für KI und der Europäische KI-Ausschuss die Aufsicht. Zusätzlich werden ein Beratungsforum und ein wissenschaftlicher Ausschuss aus unabhängigen Experten eingerichtet.

Was bedeutet das für Personalabteilungen und Arbeitnehmende?

Das KI-Gesetz hat direkte Auswirkungen darauf, wie KI in den Bereichen Rekrutierung, Performance-Management, Personalanalyse und Mitarbeitenden-Monitoring eingesetzt wird. Personalverantwortliche müssen sicherstellen, dass KI-Tools in diesen Bereichen transparent, fair und konform sind.

  • Fairness und Antidiskriminierung: KI-Systeme, die bei Einstellungs- oder Beförderungsentscheidungen eingesetzt werden, müssen nachvollziehbar und frei von Bias sein. Personalabteilungen sollten ihre Tools und Anbieter*innen regelmäßig überprüfen, um die Einhaltung der Vorschriften sicherzustellen.
  • Vertrauen und Transparenz: Mitarbeitende erhalten einen besseren Einblick, wie KI-Systeme ihre Arbeit beeinflussen, zum Beispiel bei der Einsatzplanung, Leistungsbewertung oder bei der Arbeitssicherheit. Personalabteilung können Vertrauen schaffen, indem sie offen kommunizieren, wie KI eingesetzt wird und wie die Daten der Mitarbeitenden geschützt werden.
  • Verantwortlichkeit von Drittanbieter*innen: Werden KI-Tools von Drittanbieter*innen genutzt, müssen Personalabteilungen sicherstellen, dass diese Anbieter*innen die Anforderungen an Transparenz und Dokumentation erfüllen. Verträge und Beschaffungsprozesse sollten entsprechend angepasst werden.
  • Training und Change Management: Mit stärkeren Regulierungen von KI wird die Personalabteilung eine Schlüsselrolle bei der Schulung von Führungskräften und Mitarbeitenden übernehmen. Ziel ist es, einen verantwortungsvollen Umgang mit KI zu fördern und ethische Standards in der Unternehmenskultur zu verankern.

Fazit

Anbieter*innen von GPAI-Modellen, die bereits vor dem 2. August 2025 auf dem Markt waren, haben bis zum 2. August 2027 Zeit, die neuen Vorschriften vollständig umzusetzen. Weitere Verpflichtungen für KI-Systeme mit hohem Risiko werden 2026 und 2027 folgen. Dieser Meilenstein spiegelt das Bestreben der EU wider, Innovationen zu fördern und gleichzeitig sicherzustellen, dass KI sicher, transparent und mit den europäischen Werten im Einklang steht. Damit rückt die Personalabteilung in den Mittelpunkt einer verantwortungsvollen Einführung von KI am Arbeitsplatz.

Der Autor Tom Saeys ist Chief Operations Officer bei SD Worx, einem international tätigen Dienstleistungsunternehmen im HR-Bereich.

Careertune: Vergleichsplattform für Weiterbildungsangebote gestartet

Das 2025 von Felix Hüsgen und Finn Prietzel in Mannheim gegründete Start-up Careertune hat eine Vergleichsplattform für staatlich geförderte Weiterbildungen gestartet. Ziel ist es, Arbeitssuchenden den Zugang zu passenden Kursen zu erleichtern – und so den Weg in zukunftssichere Jobs zu ebnen.

Erst vor wenigen Tagen ging durch die Medien: Die Zahl der Arbeitslosen in Deutschland ist zum ersten Mal seit 2015 wieder auf über 3 Millionen gestiegen. Gleichzeitig verändert sich der Arbeitsmarkt rasant: Automatisierung und künstliche Intelligenz lassen traditionelle Tätigkeiten verschwinden, während neue Berufsbilder wie etwa „Prompt Engineer“ entstehen.

Allein 2024 nutzten über 200.000 Menschen einen Bildungsgutschein der Bundesagentur für Arbeit, um sich für neue Jobs zu qualifizieren. Doch bisher mussten Arbeitssuchende geeignete Kurse mühsam selbst recherchieren – Erfahrungsberichte sind oft unübersichtlich, Bewertungen fehlen, und die Vielzahl an Bildungsträgern erschwert die Entscheidung.

Careertune: Mit wenigen Klicks zum passenden Kurs

Genau hier setzt Careertune an: Nutzer*innen geben ihre Interessen, Vorerfahrungen, den gewünschten Zeitrahmen und Standort an. Ein Algorithmus schlägt daraufhin passende, geförderte Weiterbildungen vor. Anbietende und Kurse können anschließend transparent nach Inhalten, Dauer, Lernform (Präsenz oder Online) sowie Bewertungen verglichen werden.

Zum Start sind bereits über 20 Bildungsträger mit mehr als 500 Kursen auf der Plattform vertreten – von IT-Weiterbildungen über kaufmännische Angebote bis hin zu Pflege- und Handwerksqualifikationen.

„Bislang mussten Arbeitslose stundenlang Kurse recherchieren – wir wollen, dass sie mit wenigen Klicks den passenden Weg in ihre berufliche Zukunft finden“, erklärt Mitgründer Felix Hüsgen.

Die Plattform ist für Nutzer*innen kostenlos. Careertune vermittelt lediglich die Kursanfragen an die Bildungsträger.

Mehr Transparenz in der Weiterbildung schaffen

Careertune wurde im April 2025 von Felix Hüsgen und Finn Prietzel in Mannheim gegründet. Nach ersten Erfahrungen als Gründer und App-Entwickler entwickelten die beiden ihre Idee gemeinsam mit Arbeitslosen und Bildungsträgern.

„Wir brennen für das, was wir beruflich machen“, sagt Finn Prietzel. „Genau das wünschen wir uns auch für unsere Nutzer: eine Weiterbildung, die wirklich passt – und die Chance auf einen Job, für den sie selbst brennen.“

Neben Arbeitslosen sollen auch Mitarbeitende von Jobcentern und Arbeitsagenturen profitieren: Die Plattform soll sie bei der zeitaufwändigen Beratung entlasten. Langfristig plant das Start-up, zusätzlich die Vermittlung in passende Jobs aufzubauen.

Warum KI bei Förderanträgen versagt

Fünf Gründe, warum Unternehmen auf menschliche Intelligenz setzen sollten.

Ob steuerliche Forschungszulage, Investitionsförderung oder EU-Programme. Künstliche Intelligenz (KI) wie ChatGPT liefert in Sekundenschnelle eine Vielzahl möglicher Förderprogramme. Doch zwischen der reinen Information und der tatsächlichen Erschließung von Fördermitteln liegt ein erheblicher Unterschied. Hier gilt es, Unternehmen zu sensibilisieren.

Fördermittel sind heute ein strategischer Bestandteil moderner Unternehmensfinanzierung. Es reicht daher nicht, die Programme zu kennen. Entscheidend ist, sie rechtssicher, vollständig und förderlogisch aufeinander abgestimmt umzusetzen, um die vollen Förderpotenziale zu heben. Genau hier beginnt die Arbeit von Fördermittelexpert*innen.

Fünf Gründe, warum KI-Tools nicht als Fördermittelberater funktionieren

1. KI erkennt die wahren Förderpotenziale nicht

ChatGPT kann erklären, was ein Förderprogramm leistet. Doch welche Kosten eines konkreten Vorhabens tatsächlich und wie hoch förderfähig sind, lässt sich so nicht beurteilen. Gerade bei komplexen Programmen wie der steuerlichen Forschungszulage sind Erfahrung, Struktur und rechtssichere Abgrenzung entscheidend. Eine gute Fördermittelberatung prüft jedes Vorhaben systematisch: von der Förderfähigkeit nach dem Forschungszulagengesetz (FZulG), AGVO oder De-minimis-Verordnung bis hin zur klaren Trennung förderfähiger und nicht förderfähiger Aufwände.

2. KI kann keine Förderstrategien entwickeln

Eine Liste von Förderprogrammen ersetzt keine Strategie. KI kann nur Optionen nennen, aber keine Strategien zur Umsetzung im Unternehmen entwickeln. Eine gute Fördermittelberatung integriert die Forschungszulage sinnvoll in laufende Projekte und strukturiert Innovations- sowie Investitionsprozesse auf Bundes-, Landes- und EU-Ebene. So entstehen nicht nur Optionen, sondern belastbare, wirtschaftlich wirksame Lösungen.

3. KI kann nicht mit Menschen kommunizieren

Ein Antrag ist mehr als ein Formular. Er muss Anforderungen erfüllen und überzeugen. KI liefert Textbausteine, aber führt keine Gespräche und reagiert nicht auf Rückfragen mit der notwendigen Erfahrung in der Verwaltungspraxis der verschiedenen Förderprogramme. Eine gute Fördermittelberatung übernimmt die gesamte Kommunikation mit Förderstellen, koordiniert mit Bescheinigungsstellen und entwickelt formal korrekte und überzeugende Argumentationen.

4. KI endet beim Prompt – Fördermittelberatung bei der erfolgreichen Projektprüfung

Nach dem Antrag geht die Arbeit oft erst richtig los. Rückfragen, Prüfungen, Nachweise. KI kann Unternehmen dabei nicht unterstützen und keine Verantwortung übernehmen. Eine gute Fördermittelberatung hingegen begleitet die Kund*innen durch den gesamten Förderzyklus mit sauberer Dokumentation, revisionssicherer Aufbereitung und Unterstützung bei Audits und Außenprüfungen.

5. KI zeigt nur den Dschungel – Förderexperten finden den Schatz

Datenbanken geben einen Überblick, aber keine Richtung. Eine gute Fördermittelberatung bewertet alle denkbar möglichen Förderprogramme im konkreten Unternehmenskontext und entwickelt daraus konkrete Maßnahmen, um das Maximum an Fördermöglichkeiten für die Kund*innen rauszuholen. Eine gute Fördermittelberatung schafft so echte wirtschaftliche Vorteile statt der bloßen Auflistung von Fördermöglichkeiten.

Der Autor Efe Duran Sarikaya ist CEO der Fördermittelberatung EPSA Deutschland.

Kurz mal die Welt retten

Wie GreenTech-Start-ups aus dem DACH-Raum dazu beitragen, die Auswirkungen des Klimawandels zu mildern.

Ist es bereits zu spät, den Klimawandel aufzuhalten? Während diese Frage unablässig für hitzige Debatten sorgt, arbeiten Start-ups unermüdlich an Lösungen für die dringendsten Umweltprobleme. Die DACH-Region erlebt einen rasanten Anstieg von GreenTech-Start-ups, angetrieben durch technologische Innovationen und zunehmenden regulatorischen Druck. Dies zeigt u.a. das DACH GreenTech Software Mapping 2025 von Hi Inov und veranschaulicht, welche vielversprechenden Ansätze und Technologien die Zukunft des GreenTech-Ökosystems in Europa prägen.

Mapping der Herausforderungen und Lösungen

Das Mapping bietet einen umfassenden Überblick über die Softwarelösungen von GreenTech-Start-ups im DACH-Raum. Sie umfassen eine Vielzahl von Ansätzen, um den Anstieg der globalen Temperaturen einzudämmen und die damit einhergehenden wirtschaftlichen und gesellschaftlichen Herausforderungen zu bewältigen.

1. Messung und Optimierung des CO2-Fußabdrucks

Fortgeschrittene Techniken zur Datenerfassung und KI-gesteuerte Analysen helfen Organisationen, ihre Effizienz zu steigern und ihren CO-Fußabdruck zu reduzieren. Sie helfen Unternehmen, jährlich Emissionen von über 216.000 Tonnen CO-Äquivalenten zu vermeiden. Horizon­tale Plattformen bieten allgemeine Monitoring-Tools für branchen­übergreifende Messdienste. Vertikale Lösungen wie die für die Immobilienbranche maßgeschneiderte ESG-Datenplattform Deepki integrieren branchenspezifische Anforderungen.

2. Beschleunigung der Energiewende

Softwarelösungen spielen eine entscheidende Rolle bei der Optimierung der Standortauswahl für die Produktion erneuerbarer Energien, der vorausschauenden Wartung von Infrastruktur und der Verbesserung der Energiespeicherung. Sie können die Schwankungen in der Stromeinspeisung erneuerbarer Energien mindern und somit die Abhängigkeit von fossilen Brennstoffen reduzieren. Das Stuttgarter Start-up metergrid ermöglicht es beispielsweise Mieter*innen in Mehrfamilienhäusern, umweltfreundlichen Solarstrom zu nutzen, der im selben Gebäude produziert wird (mehr dazu in der StartingUp 01/25).

3. Förderung der Kreislaufwirtschaft und Ressourcenoptimierung

Digitale Lösungen erleichtern die Schonung von natürlichen Ressourcen durch intelligentes Ressourcenmanagement, indem sie die Planung und Nutzung von Ressourcen verbessern. Durch den Einsatz von KI lassen sich viele Prozesse optimieren, darunter Recycling, Landwirtschaft und Wassermanagement. So reduziert das Berliner Start-up Freshflow Abfall, indem es die Nachbestellung von frischen Lebensmitteln mit Machine Learning automatisiert und optimiert. Darüber hinaus verbinden digitale Markt­plätze Produzent*innen überschüssiger Ware mit potenziellen Abnehmer*innen, um Ressourcen effizierter zu nutzen.

4. Förderung von Nachhaltigkeitsinitiativen in Unternehmen

Unternehmen nutzen digitale Werkzeuge, um ihre Nachhaltigkeit über die regulatorischen Anforderungen hinaus zu verbessern. Zu den eingesetzten Lösungen zählen CO-Kreditbörsen, die es Organisationen ermöglichen, Emissionen durch strukturierte Märkte auszugleichen, und Mitarbeiterengagement-Plattformen, die die Teilnahme der Belegschaft an ESG-Initiativen fördern. Start-ups wie das Hamburger CarbonStack unterstützen Unternehmen bei der Erstellung von Nachhaltigkeitsberichten und dabei die relevanten Richtlinien einzuhalten.

Die Entwicklung von 2023 bis heute

Insgesamt zeigt das Mapping ein reiferes und strukturierteres GreenTech-Ökosystem, das Europas Position als Pionier in digitalen Klimaschutzlösungen stärkt. Die Entwicklung zwischen den Mappings aus den Jahren 2023 und 2025 verdeutlicht drei wichtige Trends:

1. Anstieg der Anzahl der angebotenen Softwarelösungen

Die steigende Nachfrage nach nachhaltigkeitsorientierten Innovationen in verschiedenen Branchen hat das Wachstum des GreenTech-Ökosystems beschleunigt und zu einem rasanten Anstieg der angebotenen Softwarelösungen geführt.

2. Regulatorisch getriebene Fortschritte

Aufgrund des zunehmenden regulatorischen Drucks wächst der Anteil der angebotenen Lösungen, die auf Compliance-Bedürfnisse wie CSRD, die Rückverfolgbarkeit von Produkten und transparente CO-Buchhaltung eingehen. Es werden zunehmend vertika­lisierte Monitoring-Tools entwickelt, um spezialisierte Datensätze und branchenspezifische Algorithmen zu erstellen.

3. Einfluss von generativer KI

Der Einsatz von generativer KI nimmt zu. Neue Anwendungsfälle im Bereich Nachhaltigkeit umfassen verbesserte Datenanalyse, automatisierte Com­pliance-Berichterstattung, sowie die Echtzeit-Optimierung von CO-Fußabdrücken und Ressourcenmanagement.

Fazit: Ein florierendes Ökosystem mit starker europäischer Führung

Der Klimawandel stellt eine immense Herausforderung dar, deren Bewältigung innovative technologische Lösungen erfordert. Das GreenTech Mapping 2025 verdeutlicht die führende Rolle Europas bei der Entwicklung dieser Lösungen und zeigt ein reiferes GreenTech-Ökosystem mit großer Dynamik. Durch den Einsatz fortschrittlicher Datenana­lysen, KI und Automatisierung sind Start-ups in der DACH­Region gut positioniert, um sowohl wirtschaftlichen als auch ökologischen Mehrwert zu schaffen. Sie werden Unternehmen und politischen Entscheidungsträger*innen dabei helfen, den Übergang zu einer nachhaltigeren Wirtschaft zu beschleunigen und die Folgen des Klimawandels einzudämmen.

Der Autor Dr. Wolfgang Krause leitet als Managing Partner das Deutschlandgeschäft des auf B2B-Digital­lösungen spezialisierten VC-Fonds von Hi Inov.

„Österreich hat einen langen Atem – und das zahlt sich im Bereich Applied AI aus“

Als führende Standorte in Sachen Künstliche Intelligenz liegen die USA und Asien auf der Hand, doch auch in Österreich gibt es eine vielfältige AI-Landschaft. Welche Vorteile der Standort für künstliche Intelligenz mit sich bringt und welche Rolle dabei Applied AI spielt, weiß Clemens Wasner, Gründer von AI Austria und CEO der EnliteAI.

Clemens Wasner ist Gründer des österreichischen Verbandes für Künstliche Intelligenz, AI Austria und CEO des Wiener Venture Studios EnliteAI. Der studierte Informatiker arbeitete über ein Jahrzehnt in Asien, bevor er 2017 EnliteAI gründete.

Herr Wasner, Sie kennen die AI-Szene aus erster Hand. Wie gut ist Österreich im internationalen Vergleich aktuell aufgestellt, wenn es um Applied AI geht?

Gemessen an seiner Größe steht Österreich erstaunlich gut da. Unsere AI–Landscape verzeichnet mittlerweile über 450 Unternehmen, die aktiv mit KI arbeiten – nicht nur Start-ups, sondern auch klassische Industrieunternehmen, Dienstleister und der öffentliche Sektor. Gerade im Bereich der industriellen Anwendungen ist Österreich breit aufgestellt: Es gibt zahlreiche Corporates, die eigene Competence Center gegründet, Ausgründungen vorgenommen oder Lizenzmodelle für KI aufgebaut haben. Auch die Zahl der Inkubatoren und Corporate Venture Capitalisten ist beachtlich. Das Thema ist in der Realwirtschaft angekommen – und das nicht erst seit gestern. Bereits 2018 gab es hierzulande einen deutlichen Aufschwung. Im Bereich der Spitzenforschung sind wir ebenfalls stark: Mit drei sogenannten ELLIS-Hubs –  European Laboratory for Learning and Intelligent Systems – gehören wir zur europäischen Spitze, gemessen an der Größe des Landes.

Sie sprechen beim Blick auf Österreich oftmals vom „AI-Standort mit langem Atem“. Was genau meinen Sie damit und was macht aus Ihrer Sicht einen exzellenten Standort für AI-Start-ups aus?

Der „lange Atem“ ist positiv gemeint und beschreibt das, was Österreich im Bereich Forschung & Entwicklung auszeichnet: kontinuierliche Investitionen, strategischer Weitblick und langfristige Förderstrukturen. Die Steiermark war lange OECD-Spitzenreiter bei F&E-Ausgaben, Wien verfügt über eine dichte Forschungslandschaft. Das sind keine kurzfristigen Hypes, sondern über Jahrzehnte gewachsene Strukturen. Österreich verfügt zudem über eine differenzierte Förderarchitektur, die alle TRL-Stufen abdeckt – von der Grundlagenforschung bis zur Markteintrittsunterstützung. Auch Clusterstrukturen spielen eine Rolle: In Life Sciences etwa gibt es in Wien und Graz funktionierende Ökosysteme, in denen zunehmend auch KI eine Rolle spielt. Diese Verankerung ermöglicht Planbarkeit, die gerade in technologieintensiven Bereichen entscheidend ist.

Zu den Schlüsselfaktoren einen erfolgreichen Standorts zählen Infrastruktur, Talent Pool und Anwendungsmöglichkeiten. Wo sehen Sie hier derzeit die größten Hebel – und auch die größten Defizite – in Österreich?

Ein klarer Vorteil liegt in der Verfügbarkeit von Talenten: Wien zieht seit Jahren hochqualifizierte Developer aus dem osteuropäischen Raum an. Der AI-Fachkräftemangel ist hier weniger ausgeprägt als in anderen europäischen Hauptstädten. Hinzu kommt: Österreich bildet mehr AI-Absolventen aus, als die Wirtschaft derzeit absorbieren kann. Das schafft einen Bewerbermarkt, der gerade für Start-ups günstig ist. Auch Standortfaktoren wie Lebensqualität und erschwingliche Mieten machen zum Beispiel die Hauptstadt Wien attraktiv. Als Besonderheit sehe ich zudem den aktiven Zugang der Stadt: Wien versteht sich als First Client für KI-Anwendungen, etwa in der Analyse von Geodaten, IoT oder der Digitalisierung von Baueinreichprozessen. Hier ist wesentlich mehr Offenheit für politische Vergabe zu finden als in anderen Ländern. Weniger stark ist Wien in der Spitzenforschung vertreten, hier liegt Linz mit der JKU vorn. Aber man kann als kleines Land nicht alles abdecken – und sollte dort Schwerpunkte setzen, wo bestehende Stärken ausbaubar sind.

Was war der Gründungsimpuls für EnliteAI und wie ist Ihr Venture Studio heute aufgestellt?

Ich kam 2016 nach zehn Jahren in Asien zurück nach Österreich. In China und Japan war KI allgegenwärtig, ein regelrechter Hype. Zurück in Europa herrschte Funkstille – das war ein Kulturschock. Ich wollte dem Thema hierzulande Schub geben: 2017 gründete ich den Verband AI Austria und kurz darauf EnliteAI. Unsere Erkenntnis aus früheren Projekten zeigte, dass viele Unternehmen gute Ideen, aber keine Ressourcen zur Umsetzung hatten. Daraus entstand das Venture Studio: Wir entwickeln Prototypen gemeinsam mit Unternehmen und gründen darauf spezialisierte Start-ups. Aktuell sind wir 20 Personen und verfolgen zwei Themen – Detekt, das sich auf den Bereich Mobile Mapping spezialisiert hat, und ein weiteres im Stromnetzmanagement. Mit EnliteAI möchten wir künftig weitere Projekte unterstützen und bereiten dafür eine Dual-Entity-Struktur mit einem eigenen Fonds vor. Ziel ist es, das Modell professionell zu skalieren und Investoren direkt in die Spin-outs zu bringen.

Rechenleistung zählen zu den Schlüsselressourcen in der AI. Was braucht es aus Ihrer Sicht, damit europäische Standorte hier nicht dauerhaft in Abhängigkeit geraten?

Realistisch betrachtet: Die Abhängigkeit besteht bereits. Die großen Hyperscaler sind US-dominiert, ebenso Chips, Kommunikationstools, Social Networks. Europa muss in die digitale Souveränität investieren. Erste Schritte wie AI Factories sind wichtig, aber nicht ausreichend. Wir brauchen europäische Cloud-Anbieter, Chipproduktion auf europäischem Boden und eine nachhaltige Energiepolitik. Frankreichs KI-Boom basiert auf Atomstrom – weil er langfristig planbar ist. Diese Planbarkeit fehlt in vielen europäischen Ländern derzeit. Ohne Strom gibt es keine KI. Auch das zeigen Stimmen von Sam Altman, Elon Musk und anderen. Hier ist ein strategischer Paradigmenwechsel notwendig.

Sie sprachen bereits die vielfältige Landschaft von kleinen und mittleren Unternehmen in Österreich an, die offen für KI sind. Wie gut funktioniert das Matching zwischen Start-ups und klassischen Industrieunternehmen?

Österreich macht hier sehr viel richtig. Es gibt ein breites Netz an Förderinstrumenten – von der Österreichischen Forschungsförderungsgesellschaft FFG über die Austria Wirtschaftsservice bis hin zu regionalen Wirtschaftskammern. Zudem bietet Österreich eine Forschungsförderungsprämie an, bei der 14 Prozent der F&E-Ausgaben quasi mit einem Blankoschein gefördert werden können. Zudem organisieren viele Institutionen aktiv Matchmaking-Events, etwa im Rahmen von PreSeed-, AI-Adoption- oder Innovationsprogrammen. Hinzu kommt der Industry-Startup-Marktplatz mit mehreren Tausend registrierten Unternehmen. Auch Pitchings werden gefördert. Das Ziel ist stets, AI nicht nur in der Theorie zu belassen, sondern in die Realwirtschaft zu bringen. Trotzdem: Viele Unternehmen wissen noch immer nichts davon. Hier braucht es also noch mehr Aufklärung.

Welcher KI-Standort – in Österreich und darüber hinaus – hat Sie zuletzt positiv überrascht?

In Österreich ist Linz für mich der Hotspot schlechthin – die Kombination aus Spitzenforschung und erfolgreichem Technologietransfer ist dort besonders gut gelungen. International beeindruckt mich Twente in den Niederlanden: kein großer Name, aber mit klarer Strategie. Sie haben das Spin-out-Modell von Oxford und Cambridge adaptiert und konsequent umgesetzt – mit IP-Offices, Gründungsberatung und Infrastruktur für Start-ups. Ein weiteres Vorbild ist Heilbronn mit den Campus Founders: Sie haben, unterstützt durch die Dieter Schwarz Stiftung, einen Ort für Unternehmertum und Innovationen geschaffen und könnten Vorbild für viele europäische Regionen werden. Viele Stiftungen schaffen Parks oder Schlösser, aber wesentlich gewinnbringender wäre die Förderung von Entrepreneurship wie es in Heilbronn passiert statt Museumsstiftung. Europa braucht diese neue Denkweise.

Clemens Wasner, vielen Dank für das Gespräch.

Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin

Was sollten Eigentümer in Bezug auf Gewerbeimmobilien beachten?

Entdecken Sie wichtige Tipps für Gewerbeimmobilien-Eigentümer. Infos und wichtige Details.

Gewerbeimmobilien stellen eine wichtige Anlageklasse dar, die sowohl attraktive Renditen als auch besondere Herausforderungen mit sich bringt. Der deutsche Gewerbeimmobilienmarkt erlebt derzeit nicht nur einen zyklischen Abschwung, sondern einen dauerhaften strukturellen Wandel durch die Zinswende. Diese Entwicklung verändert die Rahmenbedingungen für Eigentümer grundlegend und erfordert eine Anpassung der Investitionsstrategien.

Neben den klassischen Überlegungen zu Standort, Mieterstruktur und Rendite gewinnen neue Aspekte wie Nachhaltigkeit, Energieeffizienz und regulatorische Anforderungen zunehmend an Bedeutung. Eine fundierte Kenntnis aller relevanten Faktoren ist daher essentiell für erfolgreiche Gewerbeimmobilien-Investments. Die folgenden Abschnitte liefern eine praktische Übersicht.

Frühzeitig Verpflichtungen rund um das Thema Gebäude prüfen

Neben den klassischen Überlegungen zu Standort, Mieterstruktur und Rendite gewinnen auch technische und infrastrukturelle Aspekte zunehmend an Bedeutung. Insbesondere Kanalservicearbeiten, wie die Wartung und Instandhaltung der unterirdischen Versorgungsnetze, spielen eine wesentliche Rolle bei der Sicherstellung der langfristigen Werthaltigkeit von Gewerbeimmobilien.

Unter anderem liefert das Kanalservice Magazin hierzu wertvolle Informationen rund um Anbieter und Co. Regelmäßige Inspektionen und Reparaturen von Abwasser- und Entwässerungssystemen sind nicht nur aus rechtlichen und sicherheitstechnischen Gründen wichtig, sondern auch für die Betriebskosten und die Nutzungseffizienz einer Immobilie entscheidend.

Eigentümer sollten sich daher frühzeitig mit den Anforderungen an den Kanalservice auseinandersetzen und sicherstellen, dass diese regelmäßig und vorausschauend durchgeführt werden, um teure Notfalleinsätze und mögliche Wertverluste zu vermeiden.

Steuerliche Vorteile optimal nutzen: Abschreibungen und Umsatzsteuer

Gewerbeimmobilien bieten gegenüber Wohnimmobilien deutliche steuerliche Vorteile, die Eigentümer unbedingt nutzen sollten. Der wichtigste Vorteil liegt in der höheren Abschreibungsrate von 3% jährlich statt der üblichen 2% bei Wohnimmobilien. Diese zusätzliche Abschreibung reduziert die Steuerlast erheblich und verbessert die Rendite nachhaltig.

Ein weiterer bedeutender Vorteil ist die Möglichkeit der 19% Umsatzsteuer-Erstattung beim Erwerb der Immobilie. Voraussetzung hierfür ist die ordnungsgemäße Anmeldung als Unternehmer und die entsprechende Verwendung der Immobilie.

Diese Steuervorteile können die Wirtschaftlichkeit einer Gewerbeimmobilie maßgeblich beeinflussen und sollten bereits in der Planungsphase berücksichtigt werden. Eine professionelle steuerliche Beratung ist dabei unerlässlich. Besonders praktisch ist es in diesem Zusammenhang natürlich auch, dass Studien zufolge aktuell Gründungen in verschiedenen deutschen Städten generell vergleichsweise günstig sind.

Neue Heizungspflicht: Vorgaben rund um erneuerbare Energien seit 2024

Seit 2024 müssen neu installierte Heizungen zu 65% mit erneuerbaren Energien betrieben werden – eine Regelung, die erhebliche Auswirkungen auf Gewerbeimmobilien hat. Diese Vorgabe betrifft sowohl Neubauten als auch den Austausch bestehender Heizungsanlagen und erfordert eine frühzeitige Planung.

Mögliche Lösungen umfassen:

  • Wärmepumpen
  • Fernwärme
  • Biomasseheizungen
  • Hybrid-Systeme

Die Investitionskosten sind oft höher als bei konventionellen Systemen, jedoch können staatliche Förderungen einen Teil der Mehrkosten abfedern.

Langfristig ergeben sich durch niedrigere Betriebskosten und steigende CO2-Preise wirtschaftliche Vorteile. Eigentümer sollten rechtzeitig prüfen, welche Technologie für ihre Immobilie am besten geeignet ist, und entsprechende Budgets einplanen. Eine professionelle Energieberatung hilft bei der optimalen Lösung.

Photovoltaik-Potenziale: Chancen und rechtliche Hürden

Die geplante Verdreifachung des Photovoltaik-Ausbaus bis 2030 eröffnet Gewerbeimmobilien-Eigentümern interessante Chancen zur zusätzlichen Wertschöpfung. Gewerbedächer bieten oft ideale Voraussetzungen für Solaranlagen: große, unverschattete Flächen und hoher Eigenverbrauch während der Tagesstunden.

Die Eigenverbrauchsquote kann bei Gewerbeimmobilien deutlich höher liegen als bei Wohngebäuden, was die Wirtschaftlichkeit verbessert. Allerdings bestehen auch rechtliche Hürden, insbesondere bei der Direktvermarktung von Strom an Mieter. Das Mieterstromgesetz und energierechtliche Bestimmungen schaffen komplexe Rahmenbedingungen.

Trotz dieser Herausforderungen können Photovoltaik-Anlagen die Attraktivität einer Gewerbeimmobilie steigern und zusätzliche Einnahmen generieren. Eine sorgfältige Prüfung der rechtlichen und wirtschaftlichen Aspekte ist dabei unerlässlich. Der Faktor „Nachhaltigkeit“ spielt generell aber auch in vielerlei Hinsicht eine wichtige Rolle. So entscheiden sich nicht nur im privaten, sondern auch im gewerblichen Bereich viele dafür, nicht direkt neu zu kaufen, sondern zu reparieren. Ideal für alle, die den ökologischen Fußabdruck ihres Betriebes reduzieren möchten.

Erfolgreich investieren: Wichtige Erkenntnisse für Gewerbeimmobilien-Eigentümer

Erfolgreiche Gewerbeimmobilien-Investments erfordern heute mehr denn je eine ganzheitliche Betrachtung aller relevanten Faktoren. Die steuerlichen Vorteile mit 3% Abschreibung und Umsatzsteuer-Erstattung bleiben wichtige Argumente für diese Anlageklasse.

Gleichzeitig steigen die Anforderungen durch neue Regelungen wie die Heizungspflicht und ESG-Kriterien erheblich. Der strukturelle Wandel des Marktes erfordert angepasste Strategien und eine sorgfältige Auswahl der Immobilien.

Chancen ergeben sich insbesondere in zukunftsorientierten Segmenten wie Logistik und bei der Integration erneuerbarer Energien. Eine professionelle Beratung und kontinuierliche Marktbeobachtung sind unerlässlich. Das Kanalservice Magazin bietet hierfür wertvolle Unterstützung mit fundierten Informationen und praktischen Tipps für alle Aspekte des Gewerbeimmobilien-Investments.