Aktuelle Events
Digitale Zettelwirtschaft: Gefahren durch Tool-Hoarding
Warum Unternehmen die Gefahren des sog. Tool-Hoardings nicht unterschätzen sollten und wie sie dem Problem effizient und effektiv vorbeugen können.
In einer zunehmend digitalisierten Geschäftswelt ist der Einsatz spezialisierter Software zu einer Selbstverständlichkeit geworden. Für nahezu jede betriebliche Aufgabe gibt es mittlerweile ein passendes Tool, das verspricht, die Effizienz und Produktivität zu steigern. Dabei kann jedoch die Ansammlung von zu vielen verschiedenen Anwendungen, das sogenannte Tool-Hoarding, Risiken mit sich bringen, die häufig übersehen werden. Diese digitale Zettelwirtschaft führt nicht nur zu Ineffizienz und höheren Kosten, sondern kann auch die Datenqualität und -sicherheit gefährden. Ein bewusster Umgang mit Tools und eine kluge Integration sind daher notwendig, um die eigentlichen Ziele der Digitalisierung – nämlich Prozessoptimierung und Effizienzsteigerung – zu erreichen. Doch was ist zu tun, um die Gefahren des Tool-Hoardings nicht zu unterschätzen bzw. dem Phänomen vorzubeugen?
Das Phänomen des Tool-Hoardings
Unter Tool-Hoarding versteht man die unkontrollierte Ansammlung verschiedener spezialisierter Softwarelösungen, die oft ohne eine ganzheitliche Strategie implementiert werden. In vielen Fällen beginnt das Phänomen dabei unauffällig und schleichend: Ein Unternehmen führt ein Tool für die Buchhaltung ein, ein weiteres für die Projektverwaltung, dann ein separates System für das Kundenmanagement und schließlich eine Lösung für die interne Kommunikation. Jedes dieser Tools ist für sich genommen sinnvoll, erfüllt eine spezifische Aufgabe und soll Arbeitsprozesse vereinfachen. Doch wenn immer mehr spezialisierte Anwendungen hinzugefügt werden, ohne dass sie effizient miteinander integriert sind, entstehen unerwartete Herausforderungen.
Die Gründe für das Entstehen von Tool-Hoarding sind dabei vielschichtig. Allem voran steht häufig jedoch der Wunsch, für jede Herausforderung das „beste“ oder „modernste“ Tool zu verwenden. Unternehmen möchten ihre Mitarbeitenden mit den neuesten technischen Lösungen unterstützen, in der Hoffnung, dass diese den Arbeitsalltag vereinfachen und die Produktivität erhöhen. Doch oft wird dabei übersehen, dass zu viele separate Systeme am Ende eher das Gegenteil bewirken können oder es fehlt generell an der kompletten Übersicht. Die Verwaltung einer Vielzahl von Tools kann dann sogar zur Belastung werden, insbesondere wenn die Systeme nicht miteinander kommunizieren oder Daten manuell übertragen werden müssen. Ein weiteres Problem ist die fragmentierte Datenhaltung, die zu Fehlern und Inkonsistenzen führt. Im schlimmsten Fall hat dann die zuerst gut gemeinte Anschaffung sogar einen gegenteiligen Effekt: Denn je mehr Tools ein Unternehmen im Einsatz hat, desto geringer ist die Wahrscheinlichkeit, dass sie tatsächlich genutzt werden.
Die versteckten Kosten des Tool-Hoardings
Neben der offensichtlichen organisatorischen Komplexität birgt Tool-Hoarding auch finanzielle Risiken, die oft nicht sofort ersichtlich sind. Denn jede Softwarelösung bringt nicht nur Lizenzkosten mit sich, sondern erfordert auch regelmäßige Wartung, Updates und Schulungen für die Mitarbeitenden. Diese Kosten summieren sich schnell, insbesondere in Unternehmen, die für unterschiedliche Aufgaben verschiedene Tools einsetzen.
Darüber hinaus können versteckte Kosten entstehen, die auf den ersten Blick nicht offensichtlich sind. Beispielsweise wird der Zeitaufwand für die Pflege mehrerer Systeme oft unterschätzt. Mitarbeitende müssen sich in jedes Tool einarbeiten, Daten zwischen verschiedenen Anwendungen synchronisieren und bei Problemen den IT-Support kontaktieren. Dies führt zu einem erheblichen administrativen Aufwand und Unkosten, die den eigentlichen Nutzen der Tools schnell übersteigen kann.
Sicherheits- und Datenschutzrisiken
Neben den organisatorischen und finanziellen Aspekten bringt Tool-Hoarding auch Sicherheitsrisiken mit sich. Je mehr Tools ein Unternehmen verwendet, desto größer ist die Angriffsfläche für Cyberkriminelle. Insbesondere in Branchen, in denen mit sensiblen Daten gearbeitet wird, wie im Personalwesen oder im Finanzsektor, stellt dies ein erhebliches Risiko dar. Jedes zusätzliche Tool bedeutet ein weiteres Einfallstor für potenzielle Angriffe. Unzureichende Passwortsicherheit, veraltete Softwareversionen oder mangelhafte Zugangskontrollen können dann dazu führen, dass sensible Daten ungeschützt bleiben.
Ein weiteres Sicherheitsproblem entsteht wiederum durch die Fragmentierung der Daten. Wenn verschiedene Tools nicht optimal integriert sind, besteht die Gefahr, dass wichtige Informationen in unterschiedlichen Systemen gespeichert werden, ohne dass diese ausreichend gesichert oder synchronisiert sind. Dies kann nicht nur zu Datenverlusten führen, sondern auch die Einhaltung von Datenschutzbestimmungen erschweren. Insbesondere in Zeiten strengerer Datenschutzgesetze, wie der DSGVO, ist es für Unternehmen von entscheidender Bedeutung, den Überblick über ihre Daten zu behalten und sicherzustellen, dass diese jederzeit geschützt sind.
HR-Software als Beispiel für die Auswirkungen von Tool-Hoarding: Fluch oder Segen?
Ein besonders anschauliches Beispiel für das Problem bietet aktuell in vielen Firmen der HR-Bereich. Viele Unternehmen setzen insbesondere hier noch auf verschiedene Einzellösungen für Recruiting, Personalverwaltung, Schichtplanung, Zeiterfassung und Lohnabrechnung. Während jedes dieser Tools für sich genommen seine Funktion erfüllt, führt die parallele Nutzung oft zu den bereits genannten Herausforderungen. Beispielsweise müssen Personalabteilungen Daten manuell in verschiedene Systeme eingeben, da diese nicht ausreichend miteinander vernetzt sind. Das Ergebnis: Zeitverschwendung, höhere Fehleranfälligkeit und Frustration bei den Mitarbeitenden. HR-Verantwortliche tun also gut daran, sich vor der schlussendlichen Auswahl eines Tools einige Fragen zu stellen und vorhandene System zu hinterfragen: Werden die Daten der Zeiterfassung nahtlos in die Lohnabrechnungssoftware übertragen? Werden Urlaubs- und Krankheitsanfragen in der Schichtplanung berücksichtigt?
Gerade für Unternehmen, deren Mitarbeitende nicht klassisch am Schreibtisch zu finden sind, stellt zudem die Mobilfähigkeit der genutzten Software ein absolutes Muss dar. Denn oftmals haben Mitarbeitende in diesen Branchen nur über mobile Endgeräte wie Smartphones Zugang zu den Tools, sodass nicht mobil-optimierte Anwendungen schlichtweg nicht genutzt werden. Die Folge: Die erhoffte Effizienzsteigerung durch die Einführung der digitalen Lösungen bleibt ganz einfach aus.
Der Weg aus der Tool-Harding-Falle: Integration und Automatisierung
Unternehmen sollten demnach ihre Softwarelandschaft regelmäßig überprüfen und rationalisieren, um den negativen Auswirkungen des Tool-Hoardings zu entgehen. Anstatt für jede Aufgabe ein separates Tool zu verwenden, ist es oft sinnvoller, eine integrierte Lösung zu wählen, die mehrere Funktionen abdeckt. Dies reduziert nicht nur die Anzahl der verwendeten Tools, sondern erleichtert auch die Datenverwaltung und sorgt für eine einheitliche Benutzererfahrung.
Sind wiederum schon Tools vorhanden, auf die es aufzubauen gilt, ist dann wiederum ein zentraler Punkt die Integration neuer Lösungen in die vorhandenen Systeme. Eine nahtlose Datenübertragung zwischen den Tools und eine zentrale Verwaltung der Informationen sind entscheidend, um den administrativen Aufwand zu minimieren und gleichzeitig die Datensicherheit zu erhöhen. Unternehmen, die auf integrierte Plattformen setzen, profitieren von einem besseren Überblick über ihre Prozesse und können schneller auf Veränderungen reagieren. Generell gilt jedoch: Wenn zwei Tools durch eines ersetzt werden könnten, lohnt es sich oft, diese Möglichkeit zu prüfen.
Schlussendlich spielt dann auch die Automatisierung von Prozessen eine immer größere Rolle bei der Reduzierung des Tool-Hoardings. Mithilfe von künstlicher Intelligenz (KI) können Routineaufgaben wie die Dateneingabe oder die Verwaltung von Benutzerzugängen automatisiert werden, sodass weniger manuelle Eingriffe erforderlich sind. Dies entlastet nicht nur die Mitarbeitenden, sondern verringert auch die Notwendigkeit zusätzlicher Tools.
Fazit: Klasse statt Masse
Tool-Hoarding ist eine der unterschätzten Herausforderungen der digitalen Transformation. Unternehmen, die eine Vielzahl spezialisierter Softwarelösungen anhäufen, riskieren, dass die vermeintliche Effizienzsteigerung durch diese Tools in einem unübersichtlichen, ineffizienten Softwaredschungel verpufft. Um diesem Problem entgegenzuwirken, ist es wichtig, die eingesetzten Tools regelmäßig zu evaluieren und sicherzustellen, dass diese optimal integriert sind. Weniger ist hier oft mehr: Eine konsolidierte Softwarelandschaft, die alle wichtigen Funktionen abdeckt, sorgt dann nicht nur für eine bessere Übersicht, sondern senkt auch die Kosten und erhöht die Sicherheit. Unternehmen, die also frühzeitig auf integrierte, benutzerfreundliche Plattformen setzen, können die Effizienz ihrer Prozesse nachhaltig steigern und die Gefahren des Tool-Hoardings vermeiden. Denn letztendlich geht es bei der Digitalisierung nicht darum, möglichst viele Tools zu verwenden, sondern eben die richtigen.
Der Autor David Padilla ist Gründer und CEO von Kenjo, Anbieter einer HR-Software für Arbeitskräfte bzw. Mitarbeitende in Unternehmen, die nicht an einen Schreibtisch gebunden sind und New Work effizient praktizieren wollen.
Agentic AI als Erfolgsgrundlage für Start-ups
KI befeuert den aktuellen Gründungsboom, doch für eine erfolgreiche Skalierung braucht es mehr. Warum Agentic AI auf Basis einer soliden Datenarchitektur zum entscheidenden Erfolgsfaktor für Start-ups wird.
Das Jahr startete für Start-ups mit einer Rekordmeldung: In Deutschland wurden im vergangenen Jahr fast ein Drittel mehr Gründungen verzeichnet. In absoluten Zahlen wurden 2025 insgesamt 3.568 neue Firmen geschaffen – ein neuer Höchststand, wie der Start-up-Verband im Januar verkündete. Dies ist auch der künstlichen Intelligenz (KI) zu verdanken, wie sich beim genauen Hinschauen herausstellt. 853 dieser neuen Unternehmen kommen aus dem Bereich Software. Doch nicht nur sie verwenden KI; bei einer Umfrage gab ein Drittel aller Gründer und Gründerinnen an, dass sie mit KI arbeiten. Dementsprechend sehen die Sprecher des Verbands in der Technologie auch die treibende Kraft hinter dem Start-up-Rekord.
Wirft man einen Blick über den Tellerrand hinaus, so lässt sich feststellen, dass die Start-up-Szene in Europa insgesamt floriert. Der „State of European Tech 2025“-Report im Auftrag von Atomico und anderen schätzt, dass im letzten Jahr Investitionen in Höhe von 44 Milliarden US-Dollar (umgerechnet ca. 38 Mrd. EUR) in diesen Sektor geflossen sind. Geldgeber erwarten inzwischen, dass Start-ups mit KI und Deep Tech arbeiten, so der Report. Demnach flossen auch 36 Prozent der europäischen Start-up-Investitionen in genau diese beiden Felder.
Das Gründungsumfeld könnte also kaum besser sein. Doch ein Rekord an Start-ups und steigende Investitionssummen bedeuten nicht zwangsläufig auch eine einfache Skalierung der Geschäftsmodelle. Viele – zu viele – Start-ups scheitern nach erfolgreichen ersten Jahren an der Weiterentwicklung ihres Geschäfts. Neben einer Reihe üblicher Herausforderungen stehen vor allem Bürokratie, Fragen zur Datenhoheit und ein Betrieb über Landesgrenzen und Wirtschaftszonen hinweg im Vordergrund. Start-ups müssen nachweisen, dass ihre Nutzung von KI auf soliden, regulierten Datenfundamenten basiert und den Compliance-Vorgaben entspricht.
Hier kommt Agentic AI ins Spiel. Die Einbettung von KI-Agenten in den Kern der Betriebsabläufe ist die Antwort auf viele dieser Herausforderungen und wird für das Wachstum im Jahr 2026 von entscheidender Bedeutung sein.
Solide Datenbasis vor KI-Einsatz
Start-ups, die dies erreichen wollen, sollten sich darauf konzentrieren, ihre KI-Nutzung auf einer soliden Datenbasis aufzubauen, deren Fundament eine einheitliche Datenarchitektur ist. Sie tun sich deutlich leichter damit, die dafür nötigen Architekturentscheidungen zu treffen, als etablierte Unternehmen mit entsprechender Legacy-IT. Gründer und Gründerinnen sollten daher von Beginn an darüber nachdenken, wie sie eine starke Datenarchitektur aufsetzen, Silos abbauen und KI als Herzstück ihrer Prozesse einbetten.
Diese Grundlage hilft bei der Einführung von KI-Agenten, damit deren Output auch die Erwartungen erfüllt: Geschäftsprozesse effizienter zu strukturieren und zu optimieren sowie die Entscheidungsfindung zu beschleunigen. Start-ups, die dies umsetzen, werden sich gegen ihre Konkurrenten durchsetzen und letztlich erfolgreich sein.
KI-Agenten als Innovationsbeschleuniger
Indem Start-ups KI-Agenten von Beginn an in den Kern ihrer Geschäftsabläufe integrieren, skalieren sie schneller als mit dem Einsatz von nur einem reinen Large Language Model (LLM). Der Grund dafür liegt in der Standardisierung der Daten, die für KI-Agenten notwendig ist. Auf dieser Grundlage können die Agenten ihre einzigartigen, autonomen Fähigkeiten ausspielen, da sie mit unternehmenseigenen Daten trainiert werden. Vor allem bei Start-ups können Potenziale schnell gehoben werden: Wenn Agenten für bestimmte Aufgaben entwickelt werden, können sie diese auch lösen – egal wie komplex und fachspezifisch sie sein mögen. Stimmt die Datenbasis, lassen sich auch mehrere Agenten miteinander verknüpfen, um sogar noch komplexere Herausforderungen zu bewältigen.
Ein Beispiel dafür ist die mögliche Kooperation zwischen einem Kundensupport-Agenten und einem Prognose-Agenten. Wenn ein Kunde einen Support-Fall auslöst, kann der andere Agent sogleich die Kosten berechnen, was die Kundenzufriedenheit durch eine schnellere Reaktion steigern kann. Für die Skalierung von Start-ups ist ein enges Zusammenspiel der Abteilungen wichtig, um die Geschäftsbeziehungen zu zufriedenen Kunden weiter ausbauen zu können. Der Einsatz von KI-Agenten kann, gepaart mit dem menschlichen Element, begrenzte personelle Ressourcen ausgleichen und eine bessere Serviceleistung ermöglichen, was für ein schnelles Wachstum unabdingbar ist.
Doch nicht nur der Kundenkontakt lässt sich automatisieren, sondern auch eine ganze Reihe von Routinevorgängen in der internen Verwaltung der Firmen selbst. Dies ermöglicht nicht nur dem Management, sondern auch den Investoren, schnell einen fundierten Überblick über Liquidität, Umsatz, Einnahmen und Gewinn zu erhalten. Die Erkenntnisse in Echtzeit führen zu schnellen und datenbasierten Entscheidungen, was für junge Unternehmen Gold wert ist und es ihnen ermöglicht, flexibel zu bleiben.
Die Datenbasis muss stimmen
Für Start-ups sind Probleme beim Datenzugriff ein kritisches Risiko für den Geschäftserfolg. Eine einheitliche, moderne Datenarchitektur ermöglicht die Demokratisierung des Datenzugriffs und löst Datensilos auf. Der Vorteil liegt auf der Hand: Schneller Datenzugriff schafft Transparenz gegenüber Kunden und Aufsichtsbehörden. Darüber hinaus erhöht dies auch das Vertrauen der Mitarbeitenden und schafft ein Gefühl des Zusammenhalts.
Governance ist auch bei der Verwendung von KI-Agenten von entscheidender Bedeutung. Der Druck zur Einhaltung von Vorschriften sollte daher als Vorteil betrachtet werden.
Der Dreiklang aus Datenherkunft, Versionierung und automatisierter Auswertung der Ergebnisse hilft jungen Unternehmen dabei, Governance auf einem soliden Fundament aufzubauen. Die Teams erhalten direkte Transparenz darüber, wie sich die KI-Agenten verhalten, auf welchen Daten sie basieren und wie sie ihre Ergebnisse im Laufe der Zeit verändern. Laufende Bewertungen tragen dazu bei, dass KI-Agenten präziser werden, um genau jene hochwertigen Ergebnisse zu liefern, die Start-ups für die Skalierung ihrer Geschäftsmodelle benötigen. Dies ist besonders wichtig, wenn proprietäre KI-Modelle entwickelt und von der Testphase in die Produktion überführt werden, wobei gesetzliche Vorschriften wie die DSGVO oder der EU AI Act zwingend einzuhalten sind.
Parloa, ein deutsches Start-up-Unternehmen mit einer Bewertung von drei Milliarden US-Dollar, ist ein hervorragendes Beispiel dafür, wie dieser Ansatz in der Praxis aussehen kann: Das Unternehmen hat KI-Agenten zum Kern seines Kundenservice gemacht und gleichzeitig eine einheitliche, kontrollierte Datenbasis aufgebaut, die vollständig mit der DSGVO und dem EU AI Act konform ist. Seine Plattform folgt den Prinzipien des „Privacy by Design“, sodass sensible Kundendaten ohne Kontrollverlust verwendet werden können. Durch die Verwaltung des gesamten Lebenszyklus von KI-Agenten macht Parloa Governance zu etwas Greifbarem und gibt den Teams Klarheit darüber, welche Daten verwendet wurden, wie sich die Agenten verhalten haben und wie sich die Ergebnisse im Laufe der Zeit entwickelt haben. Diese Kombination aus moderner Architektur und starker Governance ermöglicht es den Kunden von Parloa, Zugang zu hochwertigen Daten zu erhalten und die Transparenz für Regulierungsbehörden sowie Endnutzer zu erhöhen – und dennoch KI-gesteuerte Kundeninteraktionen in Umgebungen zu skalieren, in denen Fehler oder Missbrauch inakzeptabel sind.
Fazit
KI-Agenten bieten europäischen Start-ups eine einmalige Gelegenheit, schnell zu wachsen und gleichzeitig Investoren anzuziehen, die bekanntermaßen ihr Geld bevorzugt in Unternehmen investieren, die Wert auf Datenverwaltung, Genauigkeit, Qualität und die Schaffung von echtem Mehrwert durch Technologie legen. Es ist jedoch ein Fehler, sich ohne sorgfältige Überlegungen auf die Einführung von Agenten zu stürzen. Start-ups, die KI-Agenten einsetzen, ohne zuvor eine einheitliche Datenbasis aufzubauen und eine solide Verwaltung sowie Bewertung sicherzustellen, riskieren, mehr Komplexität als Mehrwert zu schaffen. Letztlich werden jene Gründer und Gründerinnen erfolgreich sein, die ihre Geschäftsmodelle branchen- und länderübergreifend skalieren können – hierbei spielt der Einsatz von KI-Agenten bereits jetzt eine entscheidende Rolle.
Der Autor Nico Gaviola ist VP Digital Natives & Emerging Enterprise bei Databricks EMEA.
Series A: 6,5 Mio. Euro für den „KI-Mitarbeiter“ von happyhotel
Das 2019 gegründete TravelTech happyhotel wandelt sich vom reinen Software-Anbieter zum Entwickler von KI-Agenten. Doch der Schritt zum autonomen „Hotel-Autopiloten“ birgt auch technische und psychologische Hürden.
Wer heute ein mittelständisches Hotel führt, hat oft zwei Probleme: Die Kosten steigen, und für komplexe Aufgaben wie die dynamische Preisgestaltung (Revenue Management) fehlt schlicht das Personal. Genau hier setzt die 2019 gegründete happyhotel GmbH an, die nun den Abschluss ihrer Series-A-Finanzierungsrunde über 6,5 Millionen Euro bekanntgegeben hat.
Angeführt wird die Runde vom VC Reimann Investors, unterstützt von den Bestandsinvestoren wie dem Start-up BW Innovation Fonds (MBG), seed + speed Ventures und dem Family Office Wecken & Cie.
Der USP: Autopilot statt Cockpit
Der Markt für Revenue-Management-Software ist voll: Platzhirsche wie IDeaS oder Duetto bedienen die großen Ketten, Herausforderer wie RoomPriceGenie buhlen um die Kleinen. Doch happyhotel will sich mit einem radikalen Versprechen abheben: Weg vom „Tool“, das bedient werden muss, hin zum autonomen KI-Agenten.
„Wir bauen unser System nicht für den Revenue Manager – wir automatisieren die Aufgaben eines Revenue Managers“, erklärt CEO Rafael Weißmüller. Für unabhängige Hotels, die sich keine teuren Spezialisten leisten können, wird die Software so quasi zum digitalen Mitarbeiter, der Preise in Echtzeit anpasst – ein Ansatz, der in Zeiten des Personalmangels bei Investor*innen extrem gut verfängt.
Gründer-Team mit „Stallgeruch“ und Exit-Erfahrung
Dass die Runde in einem schwierigen Marktumfeld zustande kam, dürfte auch am Setup des Gründerteams liegen, das die klassische Branchen-Expertise mit Skalierungswissen vereint:
- Sebastian Kuhnhardt kommt selbst aus einer Hoteliersfamilie und entwickelte die Ur-Idee aus dem Frust über die Zettelwirtschaft im elterlichen Betrieb.
- Rafael Weißmüller bringt die SaaS-Erfahrung mit: Er war früherer Mitarbeiter bei sevDesk, dem Offenburger Vorzeige-Start-up, das zeigte, wie man Büro-Software für KMUs massentauglich macht.
- Marius Müller liefert als Wirtschaftsinformatiker das technische Fundament.
Expansion und Realitätscheck
Aktuell steuert das System bereits über 50.000 Hotelzimmer in 12 Ländern und optimiert nach eigenen Angaben ein Umsatzvolumen von über einer Milliarde Euro. Mit dem frischen Kapital soll nun die Expansion in Europa forciert werden.
Dennoch bleiben Herausforderungen: Der Markt der Hotel-Technologie ist berüchtigt für seine fragmentierte Landschaft aus veralteten Verwaltungssystemen (PMS). Der Erfolg des KI-Agenten wird maßgeblich davon abhängen, wie reibungslos happyhotel die Schnittstellen zu diesen Altsystemen managt. Zudem müssen die Gründer eine psychologische Hürde nehmen: Hoteliers dazu zu bringen, die Kontrolle über ihre wichtigste Stellschraube – den Preis – vollends an eine „Black Box“ abzugeben, erfordert großes Vertrauen.
Dass dieses Vertrauen noch wachsen muss, zeigt auch das aktuelle Modell: Noch agiert die KI nicht völlig allein. Ein internes Team aus menschlichen Revenue-Expert*innen unterstützt das System weiterhin bei strategischen Fragen – der Weg vom Copiloten zum echten Autopiloten ist also auch bei happyhotel ein schrittweiser Prozess.
Milliarden-Coup für Dresdner BioTech: Seamless Therapeutics gewinnt Pharma-Riese Eli Lilly als Partner
Das 2022 gegründete TU-Dresden-Spin-off Seamless Therapeutics hat eine Plattform entwickelt, um das „Genome Editing“ auf einpräzises und flexibles Niveau zu bringen, um die Technologie für eine Vielzahl von Indikationen anwendbar zu machen. Jetzt hat das BioTech eine Forschungskooperation mit dem US-Pharmakonzern Eli Lilly vereinbart. Das Gesamtvolumen des Deals beläuft sich auf bis zu 1,12 Milliarden US-Dollar – wir erklären, was hinter der Summe und der Technologie steckt.
Dass universitäre Spitzenforschung der Treibstoff für wirtschaftlichen Erfolg sein kann, beweist aktuell eine Meldung aus Dresden. Die Seamless Therapeutics GmbH, eine erst 2022 gegründete Ausgründung der Technischen Universität Dresden (TUD), spielt ab sofort in der Champions League der Biotechnologie mit. Mit Eli Lilly konnte eines der weltweit forschungsstärksten Pharmaunternehmen – bekannt u.a. für Durchbrüche in der Diabetes- und Adipositas-Behandlung – als strategischer Partner gewonnen werden.
Der Deal: Mehr als nur eine Schlagzeile
Die Dimensionen der Vereinbarung lassen aufhorchen: Der Kooperationsvertrag beziffert sich auf einen Wert von bis zu 1,12 Milliarden US-Dollar. Doch wie ist eine solche Summe für ein junges Start-up einzuordnen?
In der BioTech-Branche sind solche Verträge oft als sogenannte Bio-Bucks strukturiert. Das bedeutet: Die Milliarde liegt nicht sofort als Koffer voller Geld auf dem Tisch. Der Deal setzt sich in der Regel aus einer substanziellen Sofortzahlung (Upfront Payment) zum Start der Forschung und weiteren, weitaus größeren Teilzahlungen zusammen. Diese fließen erfolgsabhängig, sobald das Startup definierte Meilensteine erreicht – etwa den erfolgreichen Abschluss klinischer Studienphasen oder die Marktzulassung.
Die Technik: Warum Lilly so früh einsteigt
Dass ein Gigant wie Eli Lilly so früh in ein Start-up investiert, liegt an der disruptiven Technologie der Dresdner. Seamless Therapeutics hat eine Plattform entwickelt, um das „Genome Editing“ auf einpräzises und flexibles Niveau zu bringen, um die Technologie für eine Vielzahl von Indikationen anwendbar zu machen.
Während bekannte Verfahren wie die „Genschere“ CRISPR-Cas oft darauf basieren, die DNA-Stränge komplett zu durchtrennen (Doppelstrangbruch) – was zu ungewollten Fehlern bei der zelleigenen Reparatur führen kann –, gehen die Dresdner einen anderen Weg. Sie nutzen sogenannte Designer-Rekombinasen.
Vereinfacht gesagt arbeitet ihre Technologie nicht wie eine grobe Schere, sondern wie ein präzises „Suchen & Ersetzen“-Werkzeug. Sie können genetische „Schreibfehler“ direkt im Erbgut korrigieren, ohne die riskanten Brüche in der Doppelhelix zu erzeugen. Dieser Ansatz ist namensgebend („Seamless“ = nahtlos) und gilt als deutlich sicherer für die Anwendung am Menschen. Ein erstes konkretes Ziel der Kooperation ist die Bekämpfung von genetisch bedingtem Hörverlust.
Die Köpfe: Ein Team auf Expansionskurs
Hinter diesem technologischen Durchbruch steht kein anonymes Labor, sondern ein jahrelang eingespieltes Gründerteam aus der TUD. Den wissenschaftlichen Nukleus bildete die Forschungsgruppe von Prof. Frank Buchholz (Professor für Medizinische Systembiologie). Zusammen mit ihm trieben vor allem Dr. Felix Lansing, der heute als Chief Scientific Officer (CSO) die technologische Vision verantwortet, und Dr. Anne-Kristin Heninger (Head of Operations) die Entwicklung zur Marktreife voran. Komplettiert wurde das Gründungsteam durch Dr. Teresa Rojo Romanos und Dr. Maciej Paszkowski-Rogacz.
Dass Seamless Therapeutics den globalen Durchbruch ernst meint, zeigt auch eine strategische Personalie aus dem April 2024: Um die Brücke in den entscheidenden US-Markt zu schlagen, holte man den Branchenveteranen Dr. Albert Seymour als neuen CEO an Bord. Während Seymour die internationale Skalierung vorantreibt, sichern die Gründer weiterhin die technologische DNA des Unternehmens. „Die Zusammenarbeit mit Eli Lilly ist eine Bestätigung für unsere Gen-Editierungsplattform und ihr krankheitsmodifizierendes Potenzial“, erklärt Prof. Buchholz.
Der Standort: Wie aus Forschung Business wird
Der Erfolg fällt nicht vom Himmel, sondern ist das Ergebnis eines funktionierenden Transfer-Ökosystems. Das Startup wurde seit den frühen Phasen intensiv unterstützt durch TUD|excite, das Excellence Center for Innovation der TU Dresden, sowie durch SaxoCell, das sächsische Zukunftscluster für Präzisionstherapie. Prof. Ursula M. Staudinger, Rektorin der TUD, sieht in dem Deal eine Blaupause für den deutschen Innovationsstandort: „Das Investitionsvolumen unterstreicht eindrucksvoll das Potenzial dieser Technologie [...] Zugleich zeigt dieser Meilenstein, wie konsequent und erfolgreich die TUD den Transfergedanken lebt.“
Für Seamless Therapeutics beginnt nun die Arbeit, die rekombinase-basierte Technologie gemeinsam mit Eli Lilly durch die anspruchsvollen Phasen der Medikamentenentwicklung zu bringen – mit einem Team, das wissenschaftliche Exzellenz nun mit internationaler Management-Erfahrung verbindet.
ChatGPT schreibt Texte. R3 Robotics zerlegt Batterien
Es gibt Probleme, die man mit Software lösen kann, und es gibt Probleme, für die man sich die Hände schmutzig machen muss – oder besser: Roboterhände nutzt. Antoine Welter und Dr. Xavier Kohll haben mit Circu Li-ion begonnen, um Batterien zu retten. Jetzt, unter dem neuen Namen R3 Robotics und mit 20 Millionen Euro frischem Kapital im Rücken, treten sie an, um den wohl größten Flaschenhals der kommenden Mobilitätswende zu beseitigen. Ihr Ansatz: Keine teuren Spezialmaschinen, sondern intelligente Standard-Roboter, die sehen, verstehen und sicher zupacken.
Wenn in den Vorstandsetagen der Automobilhersteller über die Zukunft gesprochen wird, geht es meist um Reichweiten und Software-Defined Vehicles. Doch am anderen Ende der Wertschöpfungskette braut sich ein Sturm zusammen. Millionen von Elektrofahrzeugen werden in den kommenden Jahren ihr Lebensende erreichen. Die derzeitige Realität in vielen Recyclinghöfen wirkt dagegen fast archaisch: Menschen, die mit Handwerkzeugen komplexe Systeme auseinanderschrauben. Das ist nicht nur teuer und schwer skalierbar, sondern bei Hochvolt-Systemen auch lebensgefährlich.
Genau hier setzen Antoine Welter und Xavier Kohll an. Die Nachricht, die das deutsch-luxemburgische Unternehmen Anfang Februar 2026 verkündete, ist mehr als nur eine Finanzierungsrunde. Die 20 Millionen Euro – aufgeteilt in 14 Millionen Euro Series-A-Kapital und 6 Millionen Euro öffentliche Fördergelder – heben die Gesamtfinanzierung des Unternehmens auf ein neues Level. Angeführt wird die Runde von HG Ventures und Suma Capital, unterstützt von Co-Investoren wie der Oetker Collection und dem EIC Fund.
Doch das Geld ist nur der Treibstoff für eine strategische Evolution. Aus Circu Li-ion wird R3 Robotics. Der neue Name ist Programm: Repair, Reuse, Recycle. Antoine Welter erklärt die Motivation hinter der Umbenennung pragmatisch: „Circu Li-ion hat beschrieben, wo wir angefangen haben. R3 Robotics beschreibt, was wir aufbauen: industrielle Robotik, die Demontage skalierbar, sicher und kosteneffizient macht.“
Wenn der Roboter Augen bekommt
Die größte Hürde im Recycling ist nicht die Chemie, sondern die Variabilität. Kein Batteriepack gleicht dem anderen, E-Motoren sind unterschiedlich verbaut, Schrauben sind korrodiert. Starre Fertigungsstraßen scheitern hier. R3 Robotics löst dies mit einer Plattform, die Computer Vision, künstliche Intelligenz und Robotik verschmilzt.
Das System fungiert dabei fast wie ein „ChatGPT für die physische Welt“: Anstatt Text zu generieren, plant die KI physische Handlungen. Sensoren scannen das Bauteil, die KI erkennt den Zustand und promptet den Roboterarm dynamisch durch den Demontageprozess. Der entscheidende Vorteil: Der Mensch wird aus der Gefahrenzone der Hochspannung genommen, während der Roboter Aufgaben erledigt, die für klassische Automatisierung zu komplex wären.
Angesprochen auf den Vergleich mit Generative AI und die Frage, wie die Roboter tatsächlich „sehen“ und „entscheiden“, bestätigt Welter die Parallele: „Der Vergleich mit Generative AI passt gut: Das Modell bekommt einen Input – keinen Text, sondern einen Scan des Bauteils – und generiert daraus eine Handlungssequenz.“ Es gehe darum zu erkennen, um welches Modell es sich handelt, wie der Zustand ist und wo die Verbindungspunkte liegen. „Das klingt simpel, ist es aber nicht – kein Pack ist identisch“, so Welter. Die eigentliche Herausforderung liege jedoch in der Entscheidung davor: „Welche Reihenfolge ist sicher? Ein falscher Griff an ein Hochvoltsystem kann tödlich sein. Unser System sieht, bewertet und entscheidet.“
Smart Hardware: Warum das Rad neu erfinden?
Ein Detail, das Investor*innen besonders aufhorchen lässt, ist die Kapitaleffizienz der Gründer. Wer an Industrie-Robotik denkt, denkt an teure Hardware-Entwicklung. R3 Robotics geht einen pragmatischen Weg: Ein Großteil der verwendeten Hardware wird „von der Stange“ gekauft.
Die Roboterarme sind Standardprodukte. Die Innovation – und damit das geistige Eigentum – steckt in den spezialisierten „End-Effektoren“ (den Roboterhänden), den Sensorsystemen und vor allem dem Software-Stack, der alles steuert. Das erlaubt eine Skalierung, die mit proprietärer Hardware kaum möglich wäre. Mitgründer Dr. Xavier Kohll betont, dass dies eine bewusste Entscheidung gegen „Over-Engineering“ war: „Der Roboterarm ist Standard und die Intelligenz sitzt in den Endeffektoren, der Sensorik und dem Software-Stack, der alles zusammenbringt. Das ist unser geistiges Eigentum, und genau das lässt sich skalieren.“
David gegen Goliath – oder Partner?
Während große Recycling-Konzerne oft noch auf den Schredder setzen und die manuelle Demontage an ihre Grenzen stößt, positioniert sich R3 Robotics in einer neuen Nische. Es geht nicht darum, die Chemie-Giganten zu ersetzen, sondern ihnen den Rohstoff so rein wie möglich zu liefern – als strategische Quelle für kritische Materialien. Doch der Markt schläft nicht: Weltweit entstehen Initiativen zur Automatisierung.
Trotz des aktuellen „Gegners“ – dem Menschen mit dem Schraubenzieher – und potenzieller Konkurrenz durch Tech-Start-ups oder Autohersteller, bleibt Welter gelassen. „Wir konkurrieren nicht mit den Chemie-Giganten, wir liefern ihnen den reinsten möglichen Stoffstrom“, stellt er klar. Gegenüber potenziellen Nachahmern sieht er einen entscheidenden Vorteil, den „Unfair Advantage“: die Kombination aus Flexibilität und industrieller Automatisierungstiefe. „Wir sind aktuell die einzige Plattform, die sowohl Variabilität managt als auch für kontinuierlichen Industriebetrieb ausgelegt ist.“
Deutschland als Labor, USA als Skalierungsmarkt
Die Wachstumsstrategie von R3 Robotics ruht auf zwei massiven Säulen: technologischer Tiefe in Europa und kommerzieller Breite in den USA.
Deutschland fungiert dabei als das technologische Rückgrat. Mit der Erweiterung der Anlage in Karlsruhe zur Lighthouse Facility demonstriert das Unternehmen industrielle Leistungsfähigkeit direkt vor der Haustür der großen Autobauer. Hier wird die Technologie gehärtet. Das zeigt sich auch im Leuchtturmprojekt ReDriveS, wo R3 Robotics Seite an Seite mit Giganten wie Schaeffler und VW an der Demontage von E-Achsen arbeitet.
Doch für das massive Volumen blickt das Team über den Atlantik. Der für 2026 geplante Markteintritt in den USA ist Kern der neuen Strategie. Die frischen 20 Millionen Euro sollen gezielt in den Aufbau strategischer Partnerschaften vor Ort fließen, um die Technologie dort auszurollen, wo Pragmatismus auf riesige „End-of-Life“-Volumina trifft. Für Welter ist dieser Doppelschlag essenziell: „Deutschland ist unser Beweisstand. Hier zeigen wir Schaeffler, VW und Co., dass unsere Technologie industriellen Maßstäben in Deutschland standhält.“ Die USA seien hingegen der wichtige Skalierungsmarkt, wo pragmatische Entscheider auf gigantische Volumina treffen. „Beides brauchen wir: die Glaubwürdigkeit aus Europa und das Volumen aus Amerika.“
Industrialisierung statt Romantik
Mit Peter Mohnen, dem ehemaligen CEO des Roboter-Riesen KUKA, holte sich das Start-up zudem einen Beirat, der wie kaum ein anderer weiß, was Industriestandard bedeutet. Er beschreibt den Ansatz von R3 als Beweis für die nötige Automatisierungsexpertise, um Variabilität und Sicherheit gleichzeitig zu managen.
Um diese Expertise weiter auszubauen, wächst das Team rasant. Die Belegschaft soll mit der neuen Finanzierung massiv aufgestockt werden, vor allem im Bereich Engineering und KI. R3 Robotics hat den Beweis erbracht, dass Kreislaufwirtschaft kein ökologisches Nischenprojekt sein muss, sondern ein harter industrieller Prozess ist, der sich rechnet.
Denn letztlich, so das Fazit von Antoine Welter, sei Automatisierung der einzige Weg, das Problem wirklich zu lösen – nicht allein aus ökologischen Gründen, sondern weil es wirtschaftlich Sinn ergibt. „Was wir aufbauen, ist am Ende ein harter industrieller Prozess: Er muss zuverlässig funktionieren und sich rechnen.“ Es gehe aber um mehr als ein Geschäftsmodell: „Europa braucht eine Antwort auf die Frage, woher seine kritischen Materialien in Zukunft kommen“, mahnt Welter abschließend. „Wenn Europa diesen Zugang sichern will, braucht es Unternehmen, die genau das industriell umsetzen können. Dafür bauen wir diese Infrastruktur, und mit dem neuen Kapital und Team haben wir jetzt die Mittel dazu.“
Customer-Support-ROI 2026: Warum Ticket-Automatisierung allein nicht ausreicht
Im Jahr 2026 stehen viele Führungskräfte vor einem echten Paradox: Die klassischen Kennzahlen im Customer Support erreichen Höchststände – und dennoch bleibt der Zusammenhang mit messbarem wirtschaftlichem Nutzen oft unklar.
Das Problem liegt nicht darin, dass gängige Automatisierungsansätze grundsätzlich nicht funktionieren. Vielmehr reicht es nicht aus, lediglich Tickets zu automatisieren, wenn Customer Support tatsächlich einen belastbaren ROI liefern soll. Der wahre Wert von Support liegt heute nicht mehr in der massenhaften Bearbeitung von Anfragen, sondern darin, Probleme frühzeitig zu verhindern, bevor sie sich zu messbaren wirtschaftlichen Verlusten entwickeln.
Warum sich Support-ROI 2026 schwerer belegen lässt
Moderne Support-Organisationen entwickeln sich zunehmend hin zu hybriden Modellen, in denen KI und menschliche Agents zusammenarbeiten. Eine Gartner-Umfrage zeigt: 95 % der Customer-Service-Verantwortlichen planen, auch künftig menschliche Agents parallel zu KI einzusetzen. Hybride Setups sind damit längst auf dem Weg zum Standard.
In der Praxis übernehmen KI-Systeme heute Routineanfragen, während Menschen komplexe oder kritische Fälle bearbeiten. Mit dieser veränderten Arbeitslogik verlieren klassische Kennzahlen wie Kosten pro Ticket, durchschnittliche Bearbeitungszeit oder Automatisierungsquote an Aussagekraft. In manchen Fällen verschleiern sie den tatsächlichen Wert von Support sogar.
Das führt dazu, dass Führungsteams häufig Folgendes beobachten:
- steigende Automatisierungsquoten bei stagnierenden Einsparungen,
- verbesserte CSAT-Werte ohne klaren finanziellen Effekt,
- starke CX- und Effizienzkennzahlen, die sich dennoch nicht in unternehmerische Ergebnisse übersetzen lassen.
Support ist nicht weniger wertvoll geworden. Doch durch den Einsatz von KI sind die Erwartungen gestiegen – und lineares Denken in einzelnen Metriken reicht nicht mehr aus, um den tatsächlichen Beitrag von Support zu bewerten.
Wo sich Customer-Support-ROI tatsächlich zeigt
Der ROI von Customer Support zeigt sich nur selten als „direkt generierter Umsatz“. Stattdessen wird er sichtbar in vermiedenen Verlusten und reduzierten Risiken. Konkret äußert sich das in Veränderungen im Kundenverhalten, etwa durch:
- weniger Rückerstattungen,
- geringere Eskalationen,
- einen Rückgang öffentlicher Beschwerden,
- sinkendes Abwanderungsrisiko.
- höheres Vertrauen an entscheidenden Punkten der Customer Journey
Diese Signale entstehen nicht über Nacht. Sie bauen sich über Zeit auf – und werden deshalb in Budgetdiskussionen häufig unterschätzt.
In einem unserer Kundenprojekte (Details aufgrund einer NDA anonymisiert) wurde der Customer Support über einen Zeitraum von zwölf Monaten vollständig neu aufgebaut. Ziel war nicht allein eine schnellere Reaktionszeit, sondern eine frühere und konsistentere Problemlösung entlang der gesamten Customer Journey. Die Ergebnisse waren eindeutig:
- Rückerstattungsquote von 40 % auf 4 % gesenkt.
- CSAT-Anstieg von 50 auf 95.
- NPS-Steigerung von 32 auf 80.
- Verbesserung der Trustpilot-Bewertung von 3,0 auf 4,7.
- Erhöhung der Chargeback-Erfolgsquote von 5 % auf 90 % durch ein dediziertes Billing-Team im Support.
Keine dieser Kennzahlen für sich genommen „beweist“ ROI. In ihrer Gesamtheit zeigen sie jedoch, wie Support begann, Ergebnisse zu beeinflussen, die in klassischen CX-Dashboards kaum sichtbar sind: Rückerstattungen gingen zurück, weil Probleme frühzeitig gelöst wurden; öffentliche Bewertungen verbesserten sich, weil weniger Kunden an ihre Belastungsgrenze kamen; Loyalität wuchs, weil Support von Schadensbegrenzung zu echter Bedürfnislösung überging.
Darüber hinaus begann das Team, Kundenanfragen systematisch zu analysieren, um Muster und frühe Reibungspunkte zu identifizieren. Dadurch wurden Abweichungen zwischen angenommener Customer Journey und tatsächlichem Kundenerlebnis sichtbar. Für das Management entstand so eine deutlich belastbarere Grundlage für strategische Entscheidungen. Diese Erkenntnisse führten zu neuen Services, die sich am realen Kundenverhalten orientierten – und damit Wachstum und Umsatz beschleunigten.
So zeigt sich Support-ROI in der Praxis: nicht als einzelne Kennzahl, sondern als Zusammenspiel aus vermiedenen Verlusten, gestärktem Vertrauen und datenbasierten Entscheidungen.
Wie hybrider Support die Wirtschaftlichkeit verändert
Über Jahre hinweg galt Automatisierung als vermeintliche „Wunderlösung“ zur Kostensenkung. Die Logik war simpel: geringere Supportkosten führen automatisch zu höherem ROI. In der Realität ist der Zusammenhang komplexer. Niedrigere Kosten bedeuten nicht automatisch höhere Erträge – insbesondere dann nicht, wenn Automatisierung genau die Mechanismen entfernt, die Verluste verhindern.
Wird Support ausschließlich auf Effizienz optimiert, verschwinden ungelöste Probleme nicht. Sie verlagern sich: in Rückerstattungen, Chargebacks, Abwanderung und öffentliche Beschwerden. Einsparungen tauchen in einer Zeile der GuV auf, während sich der Schaden still im restlichen Unternehmen summiert. Hybrider Support kann diese Gleichung verändern – aber nur, wenn er bewusst gestaltet wird.
Wenn KI im Support richtig eingesetzt wird:
- lassen sich bis zu 85 % der Anfragen automatisiert bearbeiten,
- liegt der CSAT rund 15 % höher als in nicht-hybriden Setups,
- führt KI echte Aktionen aus (Rückerstattungen, Kündigungen, Account-Änderungen) statt nur standardisierte Antworten zu versenden.
In abonnementbasierten Geschäftsmodellen beginnen wir beispielsweise stets mit einer Analyse eingehender Anfragen, um zu verstehen, welche Aktionen sich sicher vollständig automatisieren lassen. Rund 50 % der Kündigungsanfragen sind in der Regel unkompliziert und risikoarm – und damit gut für eine End-to-End-Automatisierung geeignet.
Die verbleibenden Fälle unterscheiden sich deutlich. Etwa ein Viertel der Kündigungsanfragen stammt von frustrierten oder emotional belasteten Kunden. Diese Interaktionen bergen das höchste Risiko für Abwanderung. In gut konzipierten hybriden Setups übernimmt Automatisierung hier die Rolle eines Co-Piloten: Sie kennzeichnet risikoreiche Fälle, eskaliert sie an menschliche Agents und liefert Kontext – während Tonfall, Urteilsvermögen und finale Entscheidungen bewusst beim Menschen bleiben.
Der wirtschaftliche Effekt entsteht dabei nicht durch den Ersatz von Menschen, sondern durch den gezielten Einsatz menschlicher Aufmerksamkeit genau in den Momenten, die Vertrauen und Loyalität tatsächlich entscheiden.
Warum hybrider ROI klassische Messlogik sprengt
In Projekten, in denen First-Level-KI sinnvoll eingeführt wird, sinken die Supportkosten innerhalb eines Jahres typischerweise um 15–25 %, abhängig vom Geschäftsmodell. Gleichzeitig verbessern sich häufig die Erlebniskennzahlen. Diese Kombination ist jedoch kein Selbstläufer – sie entsteht nur dann, wenn Automatisierung Probleme wirklich löst und nicht lediglich verlagert.
Der Haken: Hybrider Support macht ROI schwerer messbar. Klassische ROI-Modelle gehen davon aus, dass Wertschöpfung klar getrennt erfolgt. In Wirklichkeit entsteht der größte Effekt genau dort, wo KI und Menschen zusammenarbeiten: Probleme werden verhindert, Kundenbeziehungen stabilisiert und Loyalität geschützt.
Finanzteams sehen deshalb oft Verbesserungen, können sie aber in bestehenden Scorecards nicht abbilden. Während sich das operative Modell weiterentwickelt hat, ist die Logik der Messung stehen geblieben.
Was Führungskräfte tatsächlich messen sollten
2026 müssen Unternehmen von Aktivitätsmetriken zu Wirkungssignalen wechseln. Ein praxisnaher Ansatz besteht darin, Ergebnisse auf drei Ebenen zu verfolgen:
- Finanzielle Risiken und Leckagen: Rückerstattungsquoten, Chargeback-Erfolgsraten, Dispute-Volumen, wiederkehrende Zahlungsprobleme.
- Vertrauens- und Reibungssignale: öffentliche Bewertungen, Eskalationstrends, Wiederholungskontakte, Kundenstimmung.
- Bindungsindikatoren: Abwanderungsrisikosegmente, Kündigungsmuster und Retention-Ergebnisse (auch wenn die exakte Umsatzzuordnung später erfolgt).
Diese Signale machen Wert früher sichtbar als klassische Umsatzberichte. Sie zeigen, ob Support Verluste verhindert – und genau dort beginnt ROI in der Regel.
Wie sich Support-Budgets rechnen
Support-Budgets scheitern, wenn sie ausschließlich an Ticketvolumen und Headcount ausgerichtet sind. Ein gesünderer Ansatz beginnt mit einer anderen Frage: Wo kostet schlechter Support unser Unternehmen am meisten Geld?
Teams, die echten ROI aus Support erzielen, investieren typischerweise in drei Bereiche:
- Präventionsfähigkeit: Support übernimmt Zahlungs- und Abrechnungsthemen, steuert risikoreiche Fälle und etabliert Feedback-Loops zur Ursachenanalyse.
- Automatisierung mit Fokus auf Lösung: First-Level-KI erledigt risikoarme Aufgaben vollständig, statt Anfragen lediglich weiterzureichen.
- Menschliches Urteilsvermögen dort, wo es zählt: Menschen bearbeiten Hochrisiko-Kündigungen, Eskalationen, emotional sensible Fälle und betreuen besonders wertvolle Kunden.
In diesem Moment hört Support auf, ein Kostenpunkt zu sein, und wird zu einem strategischen Hebel, der Umsatz schützt, Risiken reduziert und mit dem Unternehmen skaliert.
Fazit
2026 entsteht der tatsächliche ROI von Customer Support vor allem dadurch, dass vermeidbare Probleme gar nicht erst zu Umsatzverlusten werden.
Automatisierung ist entscheidend – aber nur dann, wenn sie Probleme tatsächlich löst. Und menschliches Urteilsvermögen sollte gezielt dort eingesetzt werden, wo es Retention, Loyalität und Vertrauen wirklich beeinflusst.
Für Führungskräfte, die sich auf Ergebnisse statt auf Aktivitätskennzahlen konzentrieren, ist Support kein Cost Center mehr. Er ist das, was er schon heute sein sollte: ein Hebel zum Schutz von Umsatz, zur Reduktion von Risiken und zur Nutzung von Kundenverhalten als Grundlage für fundierte unternehmerische Entscheidungen.
Die Autorin Nataliia Onyshkevych ist CEO von EverHelp. Sie arbeitet mit wachsenden Unternehmen aus unterschiedlichen Branchen daran, Customer Support in KI-gestützten Umgebungen skalierbar und wirkungsvoll zu gestalten.
From Lab to Launch
Wie Start-ups Forschung in Wirkung und Wachstum übersetzen: So gelingt Life-Sciences-Start-ups die Series A.
Life Sciences gehören zu den spannendsten, aber auch anspruchsvollsten Bereichen für Wachstumskapital. Kaum ein Sektor verbindet wissenschaftliche Exzellenz so direkt mit gesellschaftlichem Nutzen und gleichzeitig mit langen Entwicklungszyklen, hohen Kosten und komplexen regulatorischen Anforderungen. Genau diese Mischung macht den Weg vom Forschungslabor bis zum Series A-Deal so herausfordernd – und sie erklärt, warum Impact-Investoren hier besonders genau hinschauen.
Hervorragende Technologien werden nicht automatisch zu einer überzeugenden Investmentstory. Entscheidend ist, ob ein Start-up den Sprung von der wissenschaftlichen Idee zur skalierbaren Wertschöpfung schafft. Wer Series A-Kapital aufnehmen will, muss zeigen, dass aus Forschung ein Produkt werden kann, aus einem Produkt ein Markt und aus einem Markt ein nachhaltiges Geschäftsmodell.
Wissenschaft allein reicht nicht: Der Forschungsansatz muss investierbar werden
Viele Life Sciences-Start-ups starten mit einem starken technologischen Fundament. Die wissenschaftliche Tiefe ist oft beeindruckend, ebenso wie die Expertise im Team. Für Investoren ist das jedoch nur der Ausgangspunkt. Series A-Investoren erwarten einen realistischen Anwendungskontext und ein skalierbares Businessmodell mit klarer Exitstrategie. Damit verändern sich die entscheidenden Fragen im Unternehmen und auch die Teamanforderungen. Wie stabil ist die Datenlage? Wie groß ist der adressierbare Markt? Wie robust ist das Verfahren außerhalb idealer Laborbedingungen? Ist die Patentlage verteidigbar? Wie ist das Wettbewerbsumfeld strukturiert – und welche Schritte (inkl. Regulatorik und Kapitalbedarf) sind nötig, um ein marktfähiges Produkt zu schaffen? Je klarer ein Start-up diesen Übergang strukturieren und belegen kann, desto eher entsteht Vertrauen beim Investor: Denn die Series A ist oft der Zeitpunkt, an dem Investoren das hohe Risiko eines Life Sciences-Start-ups anhand seines Kommerzialisierungspotenzials genauer beurteilen. Detaillierte Informationen zu Entwicklungszeit, Kapitalbedarf, Regulatorik sowie Marktzugang, Exitoptionen und die richtige Equity Story werden zu entscheidenden Faktoren für ein Series A-Start-up.
Impact ist kein Buzzword: Wirkung muss messbar und plausibel sein
Impact-Investoren investieren nicht nur in Rendite, sondern auch in Wirkung. Gerade in den Life Sciences kann Impact sehr konkret sein, etwa durch bessere Diagnostik, effizientere Therapien, schnellere Entwicklungspfade oder niedrigere Kosten im Gesundheitssystem – oder auch eine erste neue Therapieoption für bestimmte Indikationen. Impact muss verständlich, messbar und realistisch hergeleitet werden. Viele Start-ups formulieren ihren Impact zu allgemein. Am meisten Erfolg verspricht eine klare, fokussierte Wirkungskette. Welches Problem wird gelöst? Für welche Patientengruppe oder welches Versorgungssystem? Welche Outcomes verbessern sich tatsächlich? Und welche Evidenz spricht dafür, dass diese Wirkung erreichbar ist? Gibt es kompetitive Therapien oder Diagnostika, wie strukturiert sich der Preis, und vor allem: Gibt es eine (teilweise) Erstattung der Versicherungen? Wer Impact so darstellt, dass er nicht nur emotional, sondern auch ökonomisch und klinisch nachvollziehbar wird, schafft einen echten Vorteil im Fundraising.
Der Weg zur Series A: Strategie schlägt Hoffnung
Series A-Kapital ist nicht einfach „mehr Geld“. Es markiert einen Strategiewechsel. In dieser Phase wollen Investoren sehen, dass ein Start-up seinen Entwicklungsplan realistisch strukturiert, die Risiken kennt und einen klaren Pfad zur Kommerzialisierung aufzeigen kann. Dazu gehören belastbare Meilensteine, ein sauberer Finanzierungsplan und eine klare Priorisierung. Welche Daten müssen bis wann vorliegen? Welche regulatorischen Schritte sind kritisch? Welche Partnerschaften sind erforderlich, um Zeit und Kosten zu reduzieren und sich strategisch zu platzieren? Und wie sieht der Plan aus, wenn einzelne Annahmen nicht eintreten? Ein überzeugender Series A-Case zeigt nicht nur das Best Case-Szenario, sondern auch professionelles Risikomanagement – denn Investoren wissen, dass im Life Sciences-Umfeld nicht alles planbar ist. Umso wichtiger ist ein strukturierter, realistischer Ansatz.
Team, Governance und Umsetzungskraft: Investoren investieren in Führung
Im Life Sciences-Bereich ist die Teamfrage oft entscheidend. Nicht, weil wissenschaftliche Kompetenz unwichtig wäre, sondern weil Series A eine operative Phase ist. Investoren suchen Teams, die nicht nur Forschung können, sondern auch kommerzielle Produktentwicklung, klinische Strategie, Marktlogik und Partnerschaften. Start-ups wirken besonders überzeugend, wenn sie früh ein starkes Set-up schaffen. Dazu gehören erfahrene Advisors, ein realistisches Verständnis für klinische und regulatorische Prozesse sowie eine Governance-Struktur, die Wachstum ermöglicht. Ein starkes Board, klare Rollen und ein transparenter Kommunikationsstil sind nicht nur „nice to have“, sondern Signale von Reife. Gerade Impact-Investoren achten darauf, ob die Mission eines Unternehmens auch organisatorisch getragen wird. Wer Wirkung verspricht, muss zeigen, dass Verantwortung strukturell verankert ist.
Skalierung in Life Sciences: Partnerschaften oft der schnellste Hebel
Während in klassischen Tech-Modellen Skalierung oft über Vertrieb und Marketing läuft, ist der Hebel in den Life Sciences häufig ein anderer. Strategische Partnerschaften können der Schlüssel sein, um schneller Richtung Markt zu kommen und früh einen Exitpfad zu skizzieren. Das kann über Pharmakooperationen, Diagnostikpartner, Forschungseinrichtungen oder Industriepartner geschehen.
Für Investoren ist dabei entscheidend, dass Partnerschaften nicht nur als Option erwähnt werden, sondern als strategischer Bestandteil des Geschäftsmodells. Wer zeigen kann, dass der Zugang zu Infrastruktur, klinischen Studien, Produktionskapazitäten oder Vertriebskanälen realistisch gesichert ist, reduziert das Risiko (oft auch die Kosten) und erhöht die Attraktivität der Series A-Runde.
Gleichzeitig sollten Start-ups vermeiden, sich zu früh abhängig zu machen. Gute Deals entstehen, wenn die eigene Position stark genug ist, um Partnerschaften auf Augenhöhe zu verhandeln.
Fazit: Series A gewinnt, wer Impact in ein skalierbares Geschäftsmodell übersetzt
Der Weg vom Labor zum Launch ist in den Life Sciences kein Sprint, sondern ein anspruchsvoller, kapitalintensiver Prozess. Impact-Investoren sind bereit, diesen Weg zu begleiten, erwarten jedoch Klarheit, Struktur und Evidenz. Wissenschaftliche Exzellenz ist die Basis, doch Series A-Kapital gibt es nur, wenn daraus ein investierbares Produkt, ein plausibler Markt und ein professionell geführtes Unternehmen entsteht. Start-ups, die ihren Impact messbar machen, ihre Meilensteine realistisch planen und ihr Team auf Umsetzung ausrichten, haben die besten Chancen, Wirkung und Rendite zusammenzubringen: Denn am Ende überzeugt nicht die Vision allein, sondern vor allem die Fähigkeit, sie in messbare Ergebnisse zu übersetzen.
Dies ist ein Beitrag aus der StartingUp 01/26 – hier geht's zum E-Shop.
Bye-bye Pendelordner: Wie KI-gestütztes Accounting Start-ups die Runway rettet
Digitales Accounting ist 2026 mehr als nur papierloses Büro. Wir analysieren, wie KI-Tools Start-ups Zeit und Geld sparen, erklären die verschärfte E-Rechnungs-Pflicht und warnen vor den Fallen bei Haftung, Dokumentation und Datenschutz.
Von der lästigen Pflicht zur strategischen Waffe: Die Buchhaltung in Start-ups wandelt sich radikal. Wer heute noch Belege sortiert, verliert wertvolle Zeit im Wettbewerb. Doch der Wechsel auf KI-gestütztes Accounting – digitale Buchhaltung / steht für papierlose Erfassung, Verarbeitung und Archivierung von Finanzdaten mittels Software und Cloud-Systemen – birgt neben enormen Chancen auch rechtliche Fallstricke, die Gründer*innen kennen müssen.
In der frühen Phase eines Start-ups ist Zeit knapper als Kapital. Im Jahr 2026 ist KI-gestütztes Accounting kein Trend mehr, sondern das Standard-Betriebssystem für Gründer*innen. Doch wer sich blind auf Algorithmen verlässt, riskiert mehr als nur eine falsche Bilanz.
Vom digitalen Archiv zum denkenden System
KI-gestützte Systeme gehen heute weit über das bloße Speichern von PDFs hinaus:
- Kontextuelles Verstehen: OCR-Systeme ordnen Rechnungen automatisch korrekt zu und erkennen den Unterschied zwischen SaaS-Lizenzen und Bewirtung.
- Echtzeit-Matching: Bankbewegungen werden in Sekunden mit offenen Posten abgeglichen. Der Blick auf den Cashflow ist tagesaktuell.
- Proaktive Warnsysteme: Algorithmen erkennen Anomalien im Cashflow, bevor diese kritisch werden.
Die relevantesten Player 2026 im Check
- Lexware Office & sevDesk: Ideal für Einzelgründer*innen und kleine Teams. Starke E-Rechnungs-Schnittstellen.
- BuchhaltungsButler: Fokus auf maximale Automatisierung für belegintensive Firmen durch lernende KI.
- Moss & Pleo: Kombination aus Firmenkarten und Accounting. Ideal für wachsende Teams.
Der Datenschutz- & KI-Check: Wo „denkt“ die KI?
Ein kritischer Blick hinter die Kulissen zeigt: Für Start-ups ist der Serverstandort eine strategische Entscheidung.
- Die „Sicherheits-Fraktion“ (DE/EU): Anbieter wie Lexware Office, sevDesk oder BuchhaltungsButler garantieren DSGVO-Konformität durch Hosting in Europa.
- EU AI Act & Transparenz: Seit Februar 2026 müssen KI-Systeme transparenter sein. Achte darauf, dass dein Anbieter die Konformität mit dem EU AI Act bestätigt und keine "Hochrisiko"-Einstufung (z.B. für Kreditwürdigkeitsprüfung) ohne entsprechende Dokumentation vorliegt.
Die Schattenseiten: Wo Gründer*innen ins Risiko gehen
- Die Haftungsfalle: Die Verantwortung liegt allein beim Geschäftsführer (§ 43 GmbHG). Ein blindes Vertrauen auf KI-Vorschläge („Automation Bias“) schützt nicht vor Sanktionen. Eine dokumentierte Plausibilitätsprüfung bleibt Pflicht.
- Der „Papier-Tiger“ mit Biss: Das Finanzamt verlangt zwingend eine Verfahrensdokumentation. Fehlt diese, gilt die Buchführung als formell mangelhaft – der Prüfer darf dann den Gewinn schätzen (Hinzuschätzung), selbst wenn die Steuerzahlung inhaltlich korrekt war.
- Das XML-Original: Bei E-Rechnungen ist der strukturierte XML-Datensatz das rechtliche Original, nicht das PDF. Wer das XML löscht und nur das PDF speichert, verliert den Vorsteuerabzug. Das XML muss revisionssicher archiviert werden.
Infokasten: Die E-Rechnungs-Pflicht 2026 – Wer muss was tun?
- Empfangspflicht (Gilt für JEDES Unternehmen): Auch Solo-Gründer*innen, UGs und Kleinunternehmer*innen müssen seit Januar 2025 XML-basierte Rechnungen (ZUGFeRD, XRechnung) technisch empfangen und im Original-Datensatz archivieren.
- Versandpflicht: Start-ups mit > 800.000 € Vorjahresumsatz (2026) müssen ab Januar 2027 digital versenden. Kleinere Unternehmen haben eine Gnadenfrist bis Ende 2027.
- Bonus-Fact 2026: Dank des Bürokratieentlastungsgesetzes IV wurde die Aufbewahrungsfrist für Buchungsbelege (Rechnungen, Quittungen) von 10 auf 8 Jahre verkürzt. Achtung: Bücher, Abschlüsse und die Verfahrensdokumentation müssen weiterhin 10 Jahre bleiben!
Checkliste (Stand: Februar 2026)
- E-Rechnung: Archiviert mein Tool das XML-Original (nicht nur das Sicht-PDF)?
- Verfahrensdokumentation: Liegt diese schriftlich vor (Schutz vor Hinzuschätzung)?
- KI-Konformität: Bestätigt der Anbieter schriftlich die Einhaltung des EU AI Acts?
- Datenschutz: Erfolgt die KI-Verarbeitung (Inference) auf EU-Servern?
- Kontroll-Log: Gibt es einen Prozess für stichprobenartige Kontrollen der KI-Ergebnisse?
- Export-Check: Ist der DATEV-Schnittstellen-Check für den/die Steuerberater*in erfolgt?
Gründer*in der Woche: Famories – Wenn Stimmen bleiben
Wie das 2025 von Neele Himmelsbach und Lennie König gegründete Famories wertvollen Erinnerungen per privaten Podcasts ein digitales Zuhause gibt.
Die schönsten Familienerinnerungen entstehen zuhause, am Küchentisch, im Wohnzimmer, beim gemeinsamen Essen. Doch was passiert, wenn diese Momente verblassen? Neele Himmelsbach und ihr Co-Gründer Lennie König haben mit Famories eine Antwort darauf gefunden – und eine Plattform geschaffen, die Generationen verbindet, indem sie das Persönlichste bewahrt: unsere Stimme.
Es sind oft die leisen Momente, die den Anstoß für große Ideen geben. Für die Gründer*innen von Famories war es die Distanz zum Alltag, die die entscheidende Erkenntnis brachte. Während eines gemeinsamen Wanderurlaubs wurde Neele und Lennie schmerzlich bewusst, wie wenig sie eigentlich über die Lebensgeschichten ihrer eigenen Großeltern wussten. Diese Lücke im familiären Gedächtnis wurde durch einen Verlust noch deutlicher: Der Tod ihrer Großväter führte ihnen vor Augen, dass deren Geschichten, da sie nie festgehalten wurden, nun unwiederbringlich verloren waren.
Vom Sprachmemo zum „Privaten Podcast“
Die beiden beschlossen, es besser zu machen. Sie begannen, die Erinnerungen ihrer Großmütter aufzuzeichnen – ganz einfach per Sprachnachricht. Dabei machten sie eine entscheidende Entdeckung über die Kraft der eigenen Stimme: „Man hört Emotionen, Pausen, Lachen und dennoch ist die Hemmschwelle viel geringer als beim Schreiben oder Filmen“, so die Gründerin.
Der Ansatz war denkbar simpel: „Es reicht, eine Frage zu stellen und auf ‚Aufnehmen‘ zu drücken“, so Lennie. Doch die pragmatische Lösung offenbarte schnell ein technisches Problem: Die wertvollen Aufnahmen lagen verstreut auf verschiedenen Geräten. Aus diesem Chaos entwickelte Lennie den ersten Prototypen einer App, die diese Erinnerungen strukturiert und sicher speichert – die Idee des „privaten Familien-Podcasts“ war geboren. „Famories soll kein Telefonat ersetzen. Ich telefoniere weiterhin mit meiner Oma. Aber es schafft einen gemeinsamen Raum, in dem Geschichten gesammelt werden können, für die ganze Familie, über Generationen hinweg“, berichtet Neele.
Top-Start in die App-Charts
Was im Januar 2025 mit der Konkretisierung der Geschäftsidee im Digital Hub Aachen begann, nahm rasant Fahrt auf. Bereits im April 2025 wurde die Famories UG gegründet. Die Vision überzeugte nicht nur Investor*innen, sondern auch Jurys: Das Team sicherte sich das NRW-Gründerstipendium und gewann den Publikumspreis beim Pitch des Founder Institute Berlin. Der offizielle Launch im August 2025 zeigte, dass Famories einen Nerv getroffen hatte. Die App, die im Apple App Store und Google Play Store veröffentlicht wurde, positionierte sich bereits am ersten Wochenende auf Platz 24 der App-Store-Charts in der Kategorie „Soziale Netzwerke“.
Ein digitales Zuhause für alle Generationen
Heute ist Famories weit mehr als ein reines Archiv für Großeltern-Geschichten. Die Gründer*innen formulieren ihre Mission klar: „Unser Ziel ist es, Familien dauerhaft näher zusammenzubringen, indem wir ein digitales Zuhause schaffen“, so die Gründer*innen.
Durch wöchentliche Fragen und thematische Alben entstehen in der App echte „Erzählräume“. Egal ob für Pendler*innen, Studierende im Ausland oder Eltern – die App hilft Familien, Erinnerungen festzuhalten, die sonst verloren gingen. „Wir bekommen immer wieder Nachrichten von Nutzer*innen, die Famories für ganz unterschiedliche Lebensmomente nutzen: Eine Nutzerin hat uns geschrieben, dass sie die Meilensteine ihrer Kinder festhält, ein anderer Nutzer hat Famories sogar auf seiner eigenen Hochzeit genutzt. Das zeigt uns, dass unsere App viel breiter eingesetzt wird, als wir es ursprünglich gedacht haben.“
Wie wichtig dieser Ansatz gesellschaftlich ist, zeigte ein Pilotprojekt im Juli 2025 in Senioren-Wohngemeinschaften in Wildau und Zeuthen. Gemeinsam mit den Bewohner*innen wurden Lebensgeschichten festgehalten, was nicht nur den Dialog zwischen den Generationen stärkte, sondern auch den immensen Wert erzählter Erinnerungen für Angehörige und Pflegende unterstrich. „Das Projekt hat uns gezeigt: Jeder Mensch hat spannende Geschichten, man muss sich nur die Zeit nehmen, nachzufragen und zuzuhören. Genau das geht im Alltag oft verloren“, erzählt Lennie.
Vernetzung und Vision
Gründerin Neele treibt die Vision des Unternehmens konsequent voran. Im November 2025 wurde sie in das renommierte SHEROES-Investmentnetzwerk aufgenommen. Auch die Präsenz in der Öffentlichkeit wächst: Am 11. Februar sind die Gründer*innen im Rahmen des „Leaders & Mission Podcasts“ zu Gast bei IKEA in Berlin-Tempelhof. Dort diskutieren sie, wie IKEA Räume für Begegnung schafft, während Famories „die Geschichten bewahrt, die dort entstehen“.
Mit Funktionen wie personalisierbaren Weihnachtszeitungen und einem digitalen Adventskalender hat das Start-up zuletzt eindrucksvoll Gespür für emotionale Bindung bewiesen. Famories zeigt damit, dass in einer immer schnelleren digitalen Welt das Bedürfnis nach Beständigkeit wächst – und bietet eine Lösung, damit die Geschichten, die uns verbinden, nie wieder verloren gehen. „Langfristig wollen wir Geschichten nicht nur digital in der App bewahren, sondern Nutzer*innen ermöglichen, aus den Folgen Bücher oder sogar Videos zu generieren. Kinder sollen eine Tonie-Figur ihrer eigenen Oma erhalten, die ihre Geschichte erzählt“, träumt Neele.
GeneralMind: 12 Mio. Dollar Investment nur 6 Monate nach Gründung
Das Berliner KI-Start-up GeneralMind entwickelt ein sog. autonomes AI System of Action, das wiederkehrende, komplexe Arbeitsschritte entlang von Waren- und Zahlungsflüssen automatisiert.
GeneralMind, ein „KI System of Actionˮ zur Automatisierung von digitaler Zettelwirtschaft, unstrukturierter Koordination sowie ineffizienter manueller Prozesse entlang der gesamten Lieferkette, gibt heute den Abschluss seiner Eigenkapitalfinanzierung in Höhe von 12 Millionen US-Dollar bekannt. Die Runde ist eine der größten bekannten europäischen Pre-Seed Runden der letzten Jahre und wurde weniger als sechs Monate nach der Aufnahme der Geschäftstätigkeit des Unternehmens abgeschlossen. GeneralMind will die Mittel verwenden, um die Skalierung seiner Technologie in Europa voranzutreiben.
Angeführt wurde die Finanzierungsrunde von Lakestar, Leo Capital, Lucid Capital, Heliad, BOOOM, mit Partizipierung von etablierten Angel-Investoren wie Alexander Kudlich, Jens Urbaniak, Samir Sood und Vishal Lugani.
GeneralMind wurde in Berlin vom Gründerteam um die Razor Group gemeinsam mit führenden Technologen aus dem Silicon Valley gegründet: Tushar Ahluwalia Shrestha Chowdhury, Dr. Oliver Dlugosch, Lennart von Hardenberg, Nishrit Shrivastava und Sergiu Șoima. Neben dem Hauptsitz in Berlin betreibt das Unternehmen einen weiteren Standort in Bangalore.
GeneralMind – das „AI System of Action“
Unternehmen arbeiten heute mit sogenannten Systems of Record SoR, zum Beispiel ERP-Systemen, um die Komplexität von Lieferketten zu bewältigen. Trotz dieser Systeme findet ein Großteil der operativen Arbeit weiterhin in E-Mail-Posteingängen und Spreadsheets statt: Teams müssen unstrukturierte Kommunikation und Koordination, Übergaben, Rückfragen und Ausnahmen manuell zusammenführen, nachhalten und in Systeme übertragen. Oft fehlt dabei klare Nachverfolgbarkeit, es entstehen Medienbrüche und die Fehleranfälligkeit ist hoch, obwohl genau diese Arbeit entscheidend ist, um die Lieferkette zuverlässig am Laufen zu halten.
GeneralMind entwickelt das „AI System of Action“ (SoA), um genau diese manuelle, repetitive Arbeit sowie unstrukturierte Koordination entlang der Lieferkette end-to-end zu übernehmen, als operative KI-Ebene über bestehenden Systemen, menschenüberwacht und bei Bedarf mit Freigabe.
KI-Autopilot für operative Prozesse mit menschlicher Fähigkeit
Der KI-Autopilot von GeneralMind übernimmt die „digitale Zettelwirtschaft" entlang komplexer Lieferketten, indem er automatisiert manuelle, repetitive Abläufe zwischen E-Mail, Excel und ERP-Systemen autonom ausführt. Eingehende Aufgaben (oft per E-Mail) werden erfasst, analysiert und anschließend end-to-end ausgeführt. Besonders dort, wo viele kleinteilige Aufgaben zuverlässig abgearbeitet, Abstimmungen sauber nachgehalten, Termine und Fristen gesichert und zahlreiche interne und externe Stakeholder entlang des Prozesses koordiniert werden müssen. Zum Beispiel in Beschaffung, Vertrieb oder der Rechnungsbearbeitung.
Diese „digitale Zettelwirtschaft“ kostet global agierende Unternehmen entlang ihrer Lieferketten teilweise Umsätze in Milliardenhöhe. Ware bleibt liegen, Entscheidungen verzögern sich, Aufgaben gehen im Tagesgeschäft unter.
„Unternehmen wissen oft genau, wo es hakt, scheitern aber an der operativen Umsetzung“, sagt Tushar Ahluwalia, Gründer und CEO von GeneralMind. „Ich habe im E-Commerce immer wieder gesehen, wie digitale Zettelwirtschaft, ineffiziente manuelle Prozesse und schmerzhafte Stakeholder-Koordination zwischen unstrukturierter Kommunikation und ERP-Systemen enorme Ineffizienzen in großen Unternehmen erzeugen. Genau dieses Problem lösen wir mit GeneralMind. Unsere KI übernimmt diese Prozesse end-to-end; kein Copilot, sondern mit Autopilot-Funktionalität, die von Menschen überwacht und bei Bedarf freigegeben wird“, ergänzt er.
GreenTech-Start-up UV Energy sammelt 1,1 Mio. Euro
Das Böblinger GreenTech-Start-up UV Energy will die Energiewende radikal beschleunigen. Mit einem „minimalinvasiven“ Montage-Ansatz und einer KI-Plattform zielt das Unternehmen auf eine Marktlücke, die große Baukonzerne bislang links liegen lassen.
Klassische Photovoltaik-Projekte auf Parkflächen gleichen oft einem Marathon: Statik-Prüfungen, komplexe Tiefbauarbeiten für Betonfundamente und das Risiko, beim Aufreißen des Asphalts bestehende Strom- oder Wasserleitungen zu beschädigen, schrecken viele Immobilienbesitzer*innen ab. UV Energy, 2023 von Steffen Theurer und Felix Gerhardt (heute nicht mehr aktiv) gegründet, löst dieses Problem mit einem technologischen Doppelschlag aus Hardware und Software.
Angriff auf die „Beton-Riesen“
Mit seinem Ansatz besetzt UV Energy gezielt die Nische zwischen lokalen Handwerksbetrieben und industriellen Großanbietern wie Goldbeck. Während sich massive Stahlkonstruktionen oft erst bei riesigen Flächen rechnen und lokale Solarteure häufig an der komplexen Statik von Parkdecks scheitern, bietet das Start-up eine standardisierte Lösung für den Mittelstand – rentabel bereits ab zehn Stellplätzen.
Der entscheidende Wettbewerbsvorteil ist der Verzicht auf klassische Fundamente. Das System wird mittels spezieller Verfahren direkt auf oder im Bestand verankert. Da keine schweren Erdarbeiten nötig sind, entfallen Aushärtungszeiten für Beton und das Risiko für Erdkabel.
Der Algorithmus als Bauleiter
Skaliert wird das Modell durch eine eigene KI-Plattform. Während Wettbewerber Projekte oft händisch prüfen müssen, automatisiert die Software von UV Energy die Wertschöpfungskette von der ersten Skizze bis zur Logistik. Die KI analysiert Parkflächen und berechnet die optimale Belegung auch auf verwinkelten Arealen. Das Versprechen von CEO Steffen Theurer: Von der Anfrage bis zum Netzanschluss vergehen im Optimalfall nur drei bis sechs Wochen – ein Bruchteil der branchenüblichen Dauer.
Erfolgreicher Proof-of-Concept
Dass die Kombination aus fundamentloser Montage und KI-Planung funktioniert, beweist das Unternehmen bereits in der Praxis. Ein prominentes Referenzprojekt ist die Zentrale der Vereinigten Volksbanken in Böblingen. Die Anlage ging bereits im Juli 2025 ans Netz, überdachte 21 Stellplätze im laufenden Betrieb und lieferte vom Start weg Strom. Ein Tempo, das auch die Politik überzeugte: Umweltministerin Thekla Walker würdigte das Projekt als Vorbild für die effiziente Nutzung versiegelter Flächen.
1,1 Millionen Euro für die Expansion
Dieser technologische Vorsprung hat nun Investoren überzeugt. In der aktuellen Finanzierungsrunde (Februar 2026) sicherte sich UV Energy rund 1,1 Millionen Euro. Angeführt vom Business Angel Netzwerk Companisto und unterstützt durch den Industriespezialisten Irion, soll das Kapital nun in den Vertriebsausbau fließen. Tim Weifenbach, Investment Manager bei Companisto, sieht den USP klar definiert: „UV Energy punktet mit einem skalierbaren Ansatz in einem Markt, der durch regulatorische Vorgaben – wie die Solarpflicht auf Parkplätzen in Baden-Württemberg und NRW – massiv wächst.“
Fazit
UV Energy zeigt, wie DeepTech die Baubranche aufbrechen kann. Durch den Einsatz von KI wird aus einem trägen Bauprojekt ein schnell lieferbares Produkt – ein entscheidender Hebel, um die ambitionierten Klimaziele im Gebäudesektor überhaupt erreichbar zu machen.
Millionen-Spritze gegen den Brain Drain: Blockbrain holt 17,5 Mio. Euro
Wissen ist das neue Gold – doch es wandert oft mit den Mitarbeitenden aus der Tür. Das 2022 gegründete Stuttgarter Scale-up Blockbrain will das verhindern. Mit einer „No-Code“-Plattform konservieren die Gründer Antonius Gress, Mattias Protzmann und Nam Hai Ngo Firmenwissen in KI-Agenten. Jetzt gab es frisches Kapital, dass primär in die Expansion nach Großbritannien und Europa sowie in die Produktentwicklung fließen soll.
Der demografische Wandel setzt Unternehmen unter Druck: Wenn erfahrene Fachkräfte in den Ruhestand gehen oder kündigen, hinterlassen sie oft nicht nur eine leere Stelle, sondern eine Wissenslücke. Eingespielte Prozesse und implizites Erfahrungswissen („Tribal Knowledge“) gehen verloren. Genau hier hakt Blockbrain ein. Das Tech-Unternehmen gab heute den Abschluss einer Serie-A-Finanzierungsrunde über 17,5 Millionen Euro bekannt.
Angeführt wird die Runde vom Münchner VC Alstin Capital und dem Londoner Tech-Investor 13books Capital. Zudem stockten die Bestandsinvestoren Giesecke+Devrient Ventures, Landesbank Baden-Württemberg Ventures und Mätch VC ihr finanzielles Engagement auf. Auch das Family Office von Harting beteiligte sich an der Runde, was die Gesamtfinanzierung des Unternehmens auf 22,5 Millionen Euro hebt.
Vom Konzern-Problem zur Start-up-Lösung
Dass Blockbrain bei der Industrie einen Nerv trifft, liegt auch an der DNA des Gründerteams. CEO Antonius Gress kennt die Schmerzen großer Organisationen aus seiner Zeit bei Bosch, während CTO Mattias Protzmann als Mitgründer von Statista bereits bewiesen hat, wie man Datenmodelle skaliert. Dritter im Bunde ist Nam Hai Ngo (ehemals Antler).
Ihr Ansatz: Eine „No-Code“-Plattform, mit der Unternehmen ohne Programmieraufwand sogenannte Knowledge Bots erstellen können. Diese digitalen Zwillinge speichern nicht nur Dokumente, sondern bilden Entscheidungslogiken und Methodenwissen von Experten ab. Die Anwendungsfelder reichen vom schnelleren Onboarding neuer Mitarbeiter bis zur Automatisierung komplexer Vertriebsprozesse.
Der Markt scheint ihnen recht zu geben: 2025 konnte Blockbrain nach eigenen Angaben den Umsatz verfünffachen. Kunden wie Bosch, Roland Berger und die Seifert Logistics Group setzen die Lösung bereits ein. Letztere berichtet von einer Zeitersparnis von bis zu 15 Prozent pro Woche durch die KI-Assistenten.
Sicherheit als „Moat“ gegen ChatGPT & Co.
Während viele Unternehmen beim Einsatz generativer KI wegen Halluzinationen und Datenlecks zögern, positioniert sich Blockbrain als der „sichere Hafen“. Die Plattform ist nicht nur ISO-27001-zertifiziert und „EU-AI-Act-ready“, sondern ermöglicht durch eine Multi-Model-Architektur auch die volle Datensouveränität. Kund*innendaten können bei Bedarf in regionalen Cloud-Umgebungen des Nutzenden verbleiben.
Wie groß der Vorsprung vor herkömmlichen Enterprise-Lösungen ist, untermauert das Start-up mit Zahlen: In einem unabhängigen Benchmark des Sicherheitsspezialisten Giesecke+Devrient erzielte Blockbrain 92 von 105 Punkten – der Zweitplatzierte kam lediglich auf 58 Punkte. „Sich einfach auf Versprechungen und die Stärke eines Modells zu verlassen, ist im Unternehmenskontext schlicht nicht genug“, kommentiert CTO Protzmann die Strategie.
Expansion mit „Forward-Deployed“ Ingenieuren
Das frische Kapital fließt nun primär in die Expansion nach Großbritannien und Europa sowie in die Produktentwicklung. Dabei setzt Blockbrain auf ein spezielles Personalmodell: Sogenannte Forward-Deployed AI-Engineers sollen Kund*innen eng bei der Integration begleiten – remote oder vor Ort. Ziel ist es, Recherche-Workflows weiter zu automatisieren und KI vom Experimentierfeld zum verlässlichen Werkzeug im Kerngeschäft zu machen.
Rouge: Vom Tabu zum Geschäftsmodell
Die Menstruation ist ein Milliardenmarkt – und dennoch oft unsichtbar. Das von Tina Frey und Patrick Gsell gegründete Start-up Rouge bricht mit diesem Muster. Was Ende 2022 als Vision in der Schweiz begann, hat sich durch geschickte Positionierung und Expansion nach Deutschland zu einem ernstzunehmenden Player im FemTech-Bereich entwickelt.
Die Grundidee von Rouge ist so simpel wie strategisch klug: Statt die Menstruation zu verstecken, wird sie zum sichtbaren Lifestyle-Element. „Mich hat fasziniert, wie sehr die Menstruation unseren Alltag beeinflusst und wie konsequent wir trotzdem darüber schweigen“, erklärt Mitgründerin Tina Frey. „Bald wurde mir klar: Das ist ein gesellschaftliches Problem.“ Dass dieser Ansatz einen Nerv trifft, zeigt der rasche Aufstieg des Unternehmens. Durch gezielte Medienarbeit gelang es dem Team, das Thema aus der Nische in den Mainstream zu heben – Tina Frey positioniert sich dabei konsequent nicht nur als Unternehmerin, sondern als Expertin für Frauengesundheit.
Differenzierung im "Red Ocean"
Im Zentrum der Marke steht der Rouge-Drink, ein Pulver-Supplement mit Eisen, Vitamin B12 und Granatapfel. Doch der eigentliche USP liegt nicht in den Inhaltsstoffen, sondern in der Inszenierung. Die transparente Flasche mit der roten Flüssigkeit fungiert als bewusstes „Statement-Piece“.
Hier gelingt dem Start-up ein entscheidender Schachzug im wachsenden Markt für Zyklusgesundheit: Während Wettbewerber wie FEMNA oder MYLILY auf funktionale Nahrungsergänzung in diskreter Kapselform setzen, inszeniert Rouge die Einnahme als genussvollen Wellness-Moment. Gleichzeitig emanzipiert sich das Duo von den „lauten“ Tabubrechern der Branche wie The Female Company: Rouge setzt weniger auf Provokation durch Hygieneartikel, sondern transformiert die Linderung von Regelbeschwerden von einer medizinischen Notwendigkeit in eine „ästhetische Selbstverständlichkeit“.
„Sichtbarkeit verändert Verhalten“, so Tina Frey. „Die Flasche macht den Zyklus im Alltag sichtbar und löst Gespräche aus. Noch wichtiger: Viele Frauen erleben dadurch eine neue Selbstverständlichkeit und mehr Selbstbewusstsein.“ Dieser Social-Impact-Gedanke ist fest im Geschäftsmodell verankert: Ein Teil der Erlöse fließt in Aufklärungsprojekte. „Sozialer Impact ist kein Marketing-Trick, sondern eine Notwendigkeit“, ergänzt Co-Founder Patrick Gsell. „Gleichzeitig braucht es wirtschaftliche Stabilität, um langfristig bestehen zu können.“
Diverse Kompetenzen als Wachstumstreiber
Hinter der Marke steht ein komplementäres Gründungs-Duo. Tina Frey bringt als Marketing-Expertin das kommunikative Rüstzeug mit, während Patrick Gsell – seit über 20 Jahren Geschäftsführer eines Softwareunternehmens – die strategische Struktur und Skalierungserfahrung liefert. Patrick Gsell, der 2022 den Bund-Essay-Preis gewann, liefert zudem den intellektuellen Unterbau. „Die Hälfte der Menschheit erlebt die Menstruation. Trotzdem betrifft sie die ganze Gesellschaft und nicht zuletzt das Verständnis zwischen Mann und Frau. Genau deshalb finde ich es so spannend, mit Rouge am Anfang eines gesellschaftlichen Wandels zu stehen“, so Patrick Gsell.
Expansion mit lokaler Strategie
Nach der Etablierung auf dem Schweizer Heimatmarkt erreichte Rouge im Herbst 2025 den nächsten Meilenstein: den Markteintritt in Deutschland. Anders als bei reinen Export-Modellen setzt das Start-up hierbei auf lokale Strukturen und Partner vor Ort. „Der deutsche Markt bietet großes Potenzial, aber jede Gesellschaft tickt anders“, begründet Tina Frey den Schritt. Das Ziel bleibt grenzüberschreitend gleich: Die Menstruation soll kein Nischenthema bleiben, sondern als normaler Teil der weiblichen Gesundheit akzeptiert werden – sichtbar gemacht durch eine rote Flasche, die den Dialog eröffnet.
E-Bike-Start-up Sushi Bikes gerettet
Nach der Insolvenz im November 2025 übernimmt die Düsseldorfer Wealth Collect Holding das Münchner E-Bike-Start-up. Gründer Andreas Weinzierl bleibt an Bord – und spricht von einem „Befreiungsschlag“.
Aufatmen in der Münchner Mobilitäts-Szene: Das Zittern um Sushi Bikes hat ein Ende. Wie heute bekannt wurde, übernimmt die WEALTH COLLECT Holding (WCH) die Marke und die Assets des Unternehmens. Der Deal markiert den Abschluss eines mehrmonatigen Investorenprozesses, nachdem die operative Gesellschaft im November 2025 Insolvenz anmelden musste.
Für das 2019 gegründete Start-up, das mit minimalistischen E-Bikes zum Kampfpreis von unter 1.000 Euro den Markt aufmischte, bedeutet der Einstieg der Düsseldorfer Holding das Überleben. Über den Kaufpreis wurde Stillschweigen vereinbart.
Opfer der Marktkonsolidierung
Sushi Bikes galt lange als Vorzeige-Startup der deutschen Mobilitätswende. Mit dem Versprechen, ein E-Bike zu bauen, das „so leicht und bezahlbar ist wie ein klassisches Fahrrad“, traf Gründer Andreas Weinzierl einen Nerv. Über 30.000 Räder wurden verkauft, Prominente wie Joko Winterscheidt waren früh als Investoren an Bord (und stiegen bereits vor der Krise aus).
Doch wie viele Direct-to-Consumer-Brands (DTC) im Fahrradmarkt bekam auch Sushi die massive Abkühlung der Nachfrage nach dem Corona-Boom zu spüren. Volle Lager, sinkende Margen und Kaufzurückhaltung führten im Herbst 2025 schließlich zur Zahlungsunfähigkeit. Der nun erfolgte Verkauf an die WCH beendet die Hängepartie.
„Befreiungsschlag“ für den Gründer
Andreas Weinzierl, der das Unternehmen auch unter dem neuen Eigentümer weiterführen wird, kommentiert den Deal sichtlich erleichtert. „In den vergangenen Monaten haben wir hart dafür gekämpft, eine Lösung zu finden, die der Marke SUSHI BIKES und unserer treuen Community gerecht wird. Dass wir nun mit einem starken Partner an der Seite weitermachen können, fühlt sich wie der Befreiungsschlag an“, so Weinzierl.
Dass der Gründer nach einer Insolvenz operativ an der Spitze bleibt, deutet darauf hin, dass der neue Eigentümer den Markenwert eng an die Person Weinzierl knüpft.
Strategischer Fit für die Holding
Die Käuferin, die Wealth Collect Holding aus Düsseldorf, ist bisher vor allem in den Bereichen Private Equity, Green Energy und Real Estate aktiv. Mit Sushi Bikes holt sich CEO Rainer Langnickel nun einen „Volumentreiber“ ins Portfolio, der als Einstiegssegment in ein breiteres Mobilitäts-Ökosystem integriert werden soll.
„Die Stärke von Sushi liegt in der konsequenten Reduktion auf das Wesentliche“, lässt sich Langnickel zitieren. Die Holding will nun vor allem die finanzielle Stabilität nutzen, um Lieferketten und Service zu optimieren – Bereiche, die in der Vergangenheit oft unter der knappen Liquidität des Startups litten. Für die Kunden soll sich laut Unternehmen wenig ändern: Die Identität der Marke bleibt erhalten.
Auf einen Blick: Der Deal
- Unternehmen: Sushi Bikes (München)
- Käufer: WEALTH COLLECT Holding GmbH (Düsseldorf)
- Gründer: Andreas Weinzierl (bleibt Geschäftsführer)
- Hintergrund: Übernahme aus der Insolvenz (Asset Deal)
- Traktion: > 30.000 verkaufte Bikes seit 2019
- Status: Marke bleibt bestehen, Service und Produktion laufen weiter
