Aktuelle Events
Innovative Mobility-Allianz
Zwei Seiten, ein innovativer Weg: Der etablierte Autovermieter Starcar und die junge evectro mobility GmbH machen gemeinsame Sache.

Überseequartier Hamburg Westfield – an wenigen Orten in Deutschland zeigt sich so deutlich, wie Mobilität im urbanen Raum künftig gedacht werden kann. Hier entstand ein Quartier, in dem Lösungen nicht nur präsentiert, sondern auch gelebt werden. Ob Fahrräder, Roller oder Autos – kaum ein Gefährt, welches nicht per App gebucht und mit Keyless Access genutzt werden kann. Damit trägt das Konzept den größten Problemen der Städte Rechnung: verstopften Straßen und mangelndem Platz. Aber auch die Reduzierung der CO2-Emission wird durch eine konsequente Ausrichtung auf E-Mobilität berücksichtigt.
Im Zuge der Umsetzung hat sich eine besondere Allianz formiert: Starcar, seit über drei Jahrzehnten am Markt und eine der größten Autovermietungen Deutschlands, hat sich mit dem 2017 gegründeten Start-up evectro mobility GmbH zusammengeschlossen. Das zunächst auf private Leicht-Elektromobilität spezialisierte Start-up erweiterte bereits 2018 sein Repertoire und eröffnete in der Hamburger Hafencity einen zusätzlichen Shop für gewerbliche Elektromobilität, der neben den Produkten vom E-Cargobike über Scooter bis hin zu leichten E-Transportern auch Leasing- sowie Ladeinfrastrukturangebote bündelt.
Zwei Seiten, ein Weg
Bei der Starcar Autovermietung hat man schon früh erkannt, welche Vorteile eine Zusammenarbeit mit jungen Firmen bedeuten kann: „Bei einer Partnerschaft auf Augenhöhe mit innovativen Start-ups ergibt sich für beide Seiten ein enormer Mehrwert. Zwar werde ich immer wieder mit der Ansicht konfrontiert, dass wir mehr geben, als wir bekommen oder Forschung und Entwicklung lieber streng geheim im stillen Kämmerlein betrieben werden sollte, aber das ist in meinen Augen Unsinn und eine längst überholte Herangehensweise“, weiß Jens E. Hilgerloh, Geschäftsführer und federführend bei der Unternehmensstrategie. „Während das Start-up sich in einem stabilen Umfeld mit Marktzugang und verfügbaren Ressourcen schneller entwickeln kann, bekommt das etablierte Unternehmen regelrechte Innovationsschübe durch frische Ideen und Technologien von außen – und das häufig viel schlanker und unkonventioneller, als es über die eigenen Strukturen möglich wäre.“
Aufhören, alles selbst machen zu wollen
Jetzt profitiert die Autovermietung von der Innovationskraft der evectro mobility GmbH auch über das Überseequartier Westfield hinaus. Neben den Kickscootern des jungen Unternehmens wurden auch E-Motorroller testweise mit in die Flotte aufgenommen und an den entsprechenden Starcar Service-Stationen installiert. „Eine der größten Herausforderungen ist es, dass Start-ups erst einmal Vertrauen beim Verbraucher aufbauen müssen. Brand- Building ist ein großes Thema und der Grundstein für eine erfolgreiche unternehmerische Zukunft. Umso besser, wenn man dabei auf einen starken Partner zurückgreifen kann, der bereits am Markt etabliert ist“, erklärt Matthias Lemcke, General Manager der evectro mobility GmbH. „Auch ich habe viele schnelle Autos und Motorräder besessen und keines davon bereut, aber jetzt ist die Zeit für ein Umdenken und eine Veränderung gekommen“, so Lemcke, der zusätzlich auch der derzeitige Vorsitzende des Landesverbands für E-Mobilität in Hamburg ist.
Eine Ansicht, die auch bei Starcar geteilt wird: „Die Herausforderung ist, die rasante Entwicklung unserer Branche nicht zu verschlafen und bereits jetzt den eigenen Weg in die Zukunft zu finden. Wir glauben fest daran, dass uns das als mittelständisches Unternehmen mit einem silo-freien Denken und fairen Partnerschaften gelingt“, fügt Jens E. Hilgerloh abschließend hinzu.
Diese Artikel könnten Sie auch interessieren:
Mode als Ausdruck von Selbstbewusstsein: Empowerment durch Stil
Mode als Werkzeug für Body Positivity und Female Empowerment – wie der richtige Style das Selbstbewusstsein stärkt und neue Maßstäbe setzt.

In der heutigen Zeit ist Mode viel mehr als nur das, was wir tragen. Sie ist ein Ausdruck von Individualität, einem Lebensstil und vor allem – Selbstbewusstsein. Besonders in einer Welt, in der gesellschaftliche Normen zunehmend infrage gestellt werden, wird Mode zu einem mächtigen Werkzeug, das uns hilft, uns selbst zu definieren und unser wahres Ich zu leben. Doch was passiert, wenn Mode über bloßen Stil hinausgeht und tatsächlich zum Vehikel für Empowerment und Body Positivity wird? Es ist eine Entwicklung, die immer mehr Menschen in ihren Bann zieht und dazu beiträgt, den eigenen Körper zu schätzen und zu lieben.
Female Empowerment und Body Positivity: Ein wachsender Trend
Der gesellschaftliche Wandel hin zu mehr Akzeptanz und Vielfalt ist auch in der Modeindustrie angekommen. In den letzten Jahren hat der Fokus auf Female Empowerment und Body Positivity an Bedeutung gewonnen. Immer mehr Marken setzen auf inklusivere und realistischere Darstellungen von Körpern und bieten eine breite Palette von Größen und Designs an. Dieser Trend geht über die bloße Anpassung der Modeindustrie an den Markt hinaus – es geht darum, Frauen in ihrem Selbstbewusstsein zu stärken und die Idee zu fördern, dass jede Frau ihren eigenen Körper lieben sollte, unabhängig von Konventionen und gesellschaftlichen Erwartungen.
Mode ist ein kraftvolles Tool, das dazu beiträgt, dieses Selbstbewusstsein zu stärken. Sie ermöglicht es, sich in der eigenen Haut wohlzufühlen und den eigenen Körper so zu akzeptieren, wie er ist. Der Fokus verschiebt sich immer mehr von der „perfekten“ Körperform hin zu einem authentischen Ausdruck des individuellen Stils, der zu einem positiven Körperbild beiträgt.
Wie Mode das Selbstbewusstsein stärkt
Mode kann das Selbstwertgefühl erheblich beeinflussen. Die Wahl der richtigen Kleidung hat eine direkte Auswirkung auf unsere Stimmung und auf die Art, wie wir uns selbst sehen. Besonders gut designte Kleidungsstücke, die die eigenen Stärken betonen und den persönlichen Stil widerspiegeln, können das Vertrauen in den eigenen Körper stärken. Wenn Frauen sich gut fühlen, in dem, was sie tragen, kann das einen enormen Einfluss auf ihre Selbstwahrnehmung und ihr Auftreten haben.
Ein sehr praktisches Beispiel ist die Auswahl von Kleidung, die sowohl komfortabel als auch stilvoll ist. Die BH's von creamy fabrics bieten nicht nur Unterstützung, sondern vermitteln auch ein Gefühl von Selbstbewusstsein, das jede Frau stärkt. Wer sich in seiner Kleidung gut fühlt, wirkt selbstbewusster und kann das Leben in vollen Zügen genießen.
Die Bedeutung von Vielfalt in der Mode
Vielfalt ist ein wesentlicher Bestandteil des Body Positivity-Trends, und auch die Modeindustrie hat diese Tatsache erkannt. Marken und Designer erweitern ihre Auswahl an Größen, um Frauen aus allen Gesellschaftsschichten und allen Körperformen gerecht zu werden. Das bedeutet nicht nur, dass die Mode für alle zugänglich wird, sondern auch, dass mehr Menschen die Möglichkeit haben, sich in ihrer Kleidung selbst zu verwirklichen und ihren eigenen Stil zu finden.
Eine Mode, die auf Vielfalt setzt, signalisiert eine neue Ära der Inklusion. Es wird ein Raum geschaffen, in dem jeder Körper gefeiert wird und Frauen sich unabhängig von ihrer Form oder Größe selbstbewusst in ihrer Kleidung fühlen können. Dieser Trend hat auch Auswirkungen auf die Gesellschaft: Frauen sehen, dass sie sich nicht an unrealistische Schönheitsideale anpassen müssen, sondern dass wahre Schönheit in der Authentizität und Vielfalt liegt.
Warum Vielfalt in der Mode die Gesellschaft verändert
Die Veränderung, die durch Body Positivity und Female Empowerment angestoßen wird, hat nicht nur Auswirkungen auf die Modeindustrie, sondern auch auf die Gesellschaft als Ganzes. Wenn Frauen sich selbst lieben und stolz auf ihre Körper sind, verändert sich nicht nur ihre Wahrnehmung von sich selbst, sondern auch die Art und Weise, wie sie miteinander umgehen und wie sie sich in der Welt bewegen. Sie fühlen sich ermächtigt, ihre Meinungen zu äußern, Entscheidungen zu treffen und das zu tun, was sie glücklich macht.
In dieser neuen Ära geht es nicht mehr nur darum, was wir tragen, sondern warum wir es tragen. Es geht darum, unsere Individualität zu feiern, uns von gesellschaftlichen Normen zu befreien und die Mode als Ausdruck unseres Selbst zu nutzen. Ein stilvolles Outfit, das die eigene Persönlichkeit widerspiegelt, kann ein Statement für Selbstliebe und Empowerment sein.
Fazit: Mode als Ausdruck von Individualität und Empowerment
Mode hat sich in den letzten Jahren von einem bloßen Konsumgut zu einem Werkzeug für Selbstbewusstsein und Body Positivity entwickelt. Sie hilft nicht nur dabei, den eigenen Körper zu schätzen, sondern stärkt auch das Selbstbewusstsein und fördert den individuellen Ausdruck. Marken wie Creamy Fabrics bieten eine große Auswahl an Designs, die sowohl komfortabel als auch stilvoll sind und Frauen die Möglichkeit geben, sich in ihrer Kleidung zu verwirklichen.
Body Positivity und Female Empowerment sind nicht nur gesellschaftliche Trends, sondern eine Bewegung, die Mode als mächtiges Instrument nutzt, um positive Veränderungen in der Wahrnehmung von Körpern und der eigenen Identität herbeizuführen.
Nach dem KI-Hype: Diese vier Trends bleiben
KI entwickelt sich rasant weiter. Doch welche Trends bleiben und setzen sich wirklich durch? Diese Entwicklungen sollten Unternehmen 2025 weiterhin im Blick behalten.

Die vergangenen zwei Jahre haben einen regelrechten KI-Boom erlebt. Insbesondere generative Modelle (GenAI) haben sich rasant weiterentwickelt und etablieren sich zunehmend als feste Größe in den Arbeitsprozessen von Organisationen weltweit. Angesichts dieser Dynamik fragen sich nun viele Unternehmen, welche Entwicklungen das Jahr 2025 bestimmen werden und welche Potenziale sich daraus ergeben. Diese vier wichtigen KI-Trends werden uns 2025 maßgeblich begleiten.
Ob automatisierte Textproduktion, interaktive Chatbots oder KI-gestützte Analysen für Logistik und Finanzen: KIist längst im Tagesgeschäft angekommen. Diese Dynamik setzt sich 2025 fort. Dabei verschieben sich die Schwerpunkte zunehmend hin zu spezialisierten, effizienteren und flexibleren KI-Anwendungen.
Modular AI: Kleine Bausteine, große Wirkung
Modulare KI-Systeme werden zum Schlüssel für Unternehmen, die domänenspezifische Lösungen benötigen. Diese spezialisierten KI-Module sind genau auf einzelne Aufgabenbereiche zugeschnitten, etwa auf den Kundenservice oder auf Betrugserkennung im Bankwesen. Plug-and-Play-Architekturen beschleunigen hierbei die Implementierung: Statt monolithische Modelle einzuführen, integrieren Unternehmen bedarfsgerecht nur jene Module, die sie wirklich benötigen. Auf diese Weise lässt sich der zeitliche und finanzielle Aufwand für die Implementierung in Organisationen erheblich senken. Damit das Zusammenspiel verschiedener Module funktioniert, treiben Hersteller*innen und Standardisierungsgremien die Entwicklung einheitlicher APIs und Kommunikationsprotokolle weiter voran. Diese Interoperabilität ebnet den Weg für dynamische KI-Systeme, die sich je nach Anforderung in bestehende IT-Landschaften integrieren lassen.
Edge AI und On-Device Intelligence: Schneller zum Ergebnis
Während KI-Anwendungen bislang oft auf starke Cloud-Infrastrukturen angewiesen waren, verlagert sich die Intelligenz nun zunehmend an den Netzwerkrand. Dadurch können Daten in Echtzeit analysiert werden, um schnell fundierte Entscheidungen zu treffen. Gerade in sensiblen Bereichen wie der medizinischen Bildgebung oder in Branchen mit hoher Zeitkritikalität, beispielsweise bei autonomen Fahrzeugen, minimiert eine Edge-basierte KI-Analyse Latenzzeiten und ist somit wettbewerbsentscheidend. Parallel dazu treten neue, energieeffiziente KI-Chips wie neuromorphe Prozessoren oder TPUs (Tensor Processing Units) auf den Plan. Sie ermöglichen leistungsstarke KI-Anwendungen in Systemen mit begrenztem Platz oder Energiebudget – ein wichtiger Fortschritt für Wearables und sogar Satelliten.
Foundation Models: Optimieren statt komplett neu trainieren
Große KI-Basismodelle, sogenannte Foundation Models, haben 2024 ihren Nutzen in zahlreichen Branchen bewiesen. 2025 rücken jedoch kosten- und ressourcenschonende Optimierungen stärker in den Vordergrund. Verfahren wie Parameter-effizientes Tuning oder LoRA (Low-Rank Adaptation) ermöglichen es, aus umfassenden Basismodellen spezialisierte Teilmodelle zu erzeugen, ohne sie von Grund auf neu trainieren zu müssen. Kleinere, spezialisierte Modelle behalten die Leistungsfähigkeit der großen Systeme oft zu einem Bruchteil der nötigen Rechenleistung. Das senkt nicht nur die Kosten, sondern trägt auch zur Nachhaltigkeit bei, da der Energieverbrauch bei Training und Einsatz von KI zunehmend kritisch hinterfragt wird. Darüber hinaus entstehen lokalisierte Modelle, die speziell auf bestimmte Regionen oder Sprachen zugeschnitten sind und dadurch genauere Ergebnisse liefern.
Fortschrittliche KI-Agenten: Mehr Kontext, mehr Kollaboration
KI-Agenten erreichen 2025 eine neue Evolutionsstufe und können nuancierte Kontexte immer besser erfassen. Das steigert die Personalisierung von Interaktionen im Kund*innenservice, Gesundheitswesen oder Bildungsbereich. Zugleich werden Self-Improving Agents immer wichtiger: Sie enthalten eingebaute Feedbackschleifen, lernen aus ihren Erfahrungen und optimieren ihre Fähigkeiten – ganz ohne Eingreifen von außen. Darüber hinaus setzt sich das Konzept der Multi-Agent Collaboration durch. Hierbei übernehmen verschiedene KI-Agenten jeweils Spezialaufgaben und koordinieren sich untereinander, um komplexe Probleme wie logistische Planungen oder den Ablauf bei Großschadenslagen effizient zu lösen.
Fazit
Das laufende Jahr wird wie das letzte – und vermutlich wie noch viele kommende Jahre – von künstlicher Intelligenz geprägt sein. Zwar müssen wir bei Aspekten wie Datensicherheit, Transparenz und dem Schutz persönlicher Informationen weiterhin aufmerksam bleiben, doch gleichzeitig eröffnen sich durch KI ganz neue Chancen für Innovation, Effizienz und Wachstum. Schon jetzt arbeiten Unternehmen, Regierungen und Forschungseinrichtungen verstärkt Hand in Hand, um Standards zu definieren und verantwortungsvolle Lösungen zu entwickeln. Damit können wir das enorme Potenzial dieser Technologie nutzen und zugleich sicherstellen, dass Fortschritt und Vertrauen im Einklang stehen.
Der Autor Ramprakash Ramamoorthy ist Director of AI Research bei Zoho.
Generative KI – Chancen für Startups
Wie Startups mit drei Tipps die Kosten und Performance für ihren KI-Case optimieren können.

Das deutsche KI-Startup-Ökosystem befindet sich 2025 weiter im Gründungsboom. Nie gab es mehr KI-Gründer in Deutschland und alleine im vergangenen Jahr wuchs die Zahl der KI-Startups um 35 Prozent. Auch für Investoren bleibt KI eines der vielversprechendsten Themen. Sie investierten 2024 fast 200 Millionen mehr in deutsche KI-Jungunternehmen als im Vorjahr. Vor allem deutsche KI-Startups im B2B-Bereich mit branchenspezifischen Lösungen für die Fertigung, Logistik und das Gesundheitswesen haben aktuell ausgezeichnete Wachstumschancen. Sie können von einer engen Vernetzung mit dem Mittelstand und führenden Forschungseinrichtungen in Deutschland profitieren. Typische KI-Anwendungsfelder von aufstrebenden deutschen Startups wie BlueAvenir, PlanA, Smart Reporting oder nnamu liegen dabei u.a. in der Softwareentwicklung, Sprach- und Bilderkennung oder datenbasierten Analyseverfahren zur Entscheidungsunterstützung.
KI-Chancen und die häufigsten Hürden
Während die Gesamtfinanzierung für KI-Projekte wächst, scheitern in der Praxis vielversprechende Ideen von Startups aber auch immer wieder am konkreten Business Case. Langfristig können sich insbesondere unterschätzte Kosten und eine schwache Performance der Anwendungen wie ein Bremsklotz auswirken. Die Nutzung von Sprachmodellen ist dank API-basierten Diensten sehr einfach geworden, dennoch können sich hier bei großen Volumina und ungeschickter Modell-Wahl schnell höhere Kosten aufsummieren. Gleichzeitig spielt die Performance des KI-Systems eine wichtige Rolle für eine langfristige Profitabilität. So führen besonders hohe Latenzzeiten bei der Model-Inference zu trägeren Systemen, die Nutzeranfragen nicht schnell genug verbreiten und die Attraktivität der Anwendung erheblich mindern.
Gerade Startups setzen oft auf die Cloud, da sie unabhängig vom technischen Hintergrund einfachen Zugang zu KI und die nötige Flexibilität ermöglicht. Drei innovative Methoden erweisen sich in der Cloud als besonders hilfreich, um eine optimale Balance zwischen Leistungsfähigkeit, Kosten und Nutzerfreundlichkeit für die Umsetzung des eigenen KI-Anwendungsfalls zu finden. So kann jeder Gründer seine KI-Ideen schnell, kosteneffizient und sicher umsetzen.
KI-Modellauswahl: Kleiner, aber schneller
Für Startups ist es entscheidend, das richtige KI-Modell für ihren Anwendungsfall zu wählen, um Kosten und Leistung optimal auszubalancieren. Anbieter wie Anthropic, AI21 Labs, Meta, Cohere, Mistral und Amazon bieten Modelle in verschiedenen Größen an – kleinere Varianten sind oft günstiger und reagieren mit kürzerer Antwortzeit. Nach einer ersten Validierung mit einem leistungsstarken Modell können Startups Tools wie Amazon Bedrock Evaluations nutzen, um herauszufinden, welches Modell in welcher Größe ähnliche Ergebnisse bei geringeren Kosten oder höherer Geschwindigkeit liefert. Diese Evaluierungen helfen dabei, die Leistungsfähigkeit und Effizienz zu beurteilen, indem Metriken wie semantische Robustheit und Genauigkeit bei der Informationsabfrage analysiert werden. Durch eine Kombination aus automatisierten Bewertungen mit Large Language Models (LLMs) und menschlicher Prüfung können Startups die beste Balance zwischen Leistung, Kosten und Geschwindigkeit für ihre individuellen Bedürfnisse finden.
Prompt Caching: Zwischenspeicherung für wiederkehrende Anfragen
Eine weitere smarte Methode, um die Antwortzeiten von KI-Modellen zu verkürzen und Kosten zu senken, ist das Prompt-Caching. Wenn ein digitaler Assistent sich bei jeder Frage immer wieder die gleichen Grundinformationen durchlesen müsste, dann wäre das extrem ineffizient. Genau hier setzt das Prompt-Caching an und speichert feste Teile des Prompts, wie grundlegende Anweisungen für das LLM, direkt in der Inferenz-Hardware zwischen. Nur die variablen, nutzerspezifischen Daten, die sich von Aufruf zu Aufruf verändern, werden bei jeder Anfrage neu übermittelt. Das spart nicht nur Rechenleistung, sondern sorgt auch für schnellere Antworten – ideal für Anwendungen wie Chatbots oder personalisierte KI-Assistenten, die häufig wiederkehrende Anfragen verarbeiten. Mit Amazon Bedrock lässt sich diese Technik einfach nutzen, indem das Caching und das Setzen von Cache-Checkpoints automatisch verwaltet werden können. Sobald das Caching aktiviert ist, übernimmt der Service das gesamte Cache-Management automatisch. So lassen sich bis zu 90 Prozent kosteneffiziente KI-Anwendungen mit minimalem Konfigurationsaufwand realisieren.
Model Distillation: KI-Wissen auf das Wesentliche fokussieren
Eine dritte bewährte Option ist Model Distillation. Das Prinzip ist einfach und kann vereinfacht als ein intelligenter Wissenstransfer in der Welt der KI beschrieben werden. Also so, als ob ein erfahrener Lehrer (ein großes, leistungsstarkes KI-Modell) seinem Schüler (einem kleineren, schnelleren Modell) die wichtigsten Konzepte beibringt. Dabei nutzt dieser Prozess synthetische Trainingsdaten, die auf realen Anwendungsbeispielen basieren. Das Ergebnis ist ein kompakteres Modell, das für einen spezifischen Anwendungsfall ähnlich gute Ergebnisse liefert wie das größere Modell, dabei aber deutlich schneller und kostengünstiger arbeitet. Destillierte Modelle in Amazon Bedrock können bis zu fünfmal schneller arbeiten und die Kosten um bis zu 75 Prozent senken im Vergleich zu den Originalmodellen – bei Genauigkeitsverlust von weniger als zwei Prozent.
Fazit
Erfolgreiche KI-Lösungen können mit der Cloud kosteneffizienter und performanter umgesetzt werden. Das erfordert zwar ein wenig technisches Know-how, aber die Cloud reduziert die Einstiegshürden erheblich und ermöglicht es auch kleineren Unternehmen, mit drei bewährten Methoden das KI-Potenzial effektiver auszuschöpfen. Startups haben mit der Cloud die maximale Flexibilität, um entweder von den leistungsfähigsten vortrainierten LLMs zu profitieren oder alternativ eigene LLMs mit maßgeschneiderter Infrastruktur zu entwickeln bzw. auf fertige Dienste mit integrierter generativer KI zuzugreifen.
Der Autor Constantin Gonzalez ist Principal Solutions Architect bei Amazon Web Services (AWS) in München.
Die Autorin Jennifer Grün ist Senior Specialist - Machine Learning bei AWS in München.
KI als Erfolgsfaktor für Mikro- und Kleinunternehmen
Wie Start-ups und Kleinunternehmen mit smarten KI-Tools Zeit und Ressourcen sparen.

Zeit ist die wertvollste Ressource für Unternehmer*innen. Zwischen wichtigen Aufgaben, wie Kund*innenmanagement, Buchhaltung und Marketing bleibt oft wenig Zeit für strategische Weiterentwicklung. Hier eröffnet künstliche Intelligenz (KI) neue Chancen und Potenziale: KI kann Prozesse automatisieren, die Effizienz steigern und Unternehmer:innen wertvolle Stunden zurückgeben. Laut der GoDaddy Global Entrepreneurship Survey 2025 sparen Start-ups und Kleinunternehmen durch den Einsatz von KI-Tools durchschnittlich zehn Stunden pro Woche. Doch nicht nur die Zeitersparnis ist entscheidend: KI bietet zudem Wettbewerbsvorteile und ermöglicht es Kleinunternehmen, auf Augenhöhe mit größeren Playern zu agieren.
Zahlen, die überzeugen: Warum Start-ups und Kleinunternehmen auf KI setzen
Die Studie zeigt, dass Kleinunternehmen und Start-ups durch den Einsatz von KI bedeutende Vorteile erzielen können. Besonders hervorzuheben: 82 % der Kleinunternehmen geben an, dass KI ihnen hilft, mit größeren Organisationen besser zu konkurrieren. Auch in der Zeitersparnis liegt ein großer Vorteil: Unternehmer:innen gewinnen durchschnittlich 10 Stunden pro Woche, die sie in strategische Aufgaben investieren können.
Langfristig zeigt sich zudem ein klarer positiver Geschäftsausblick: 69 % der Unternehmen, die KI nutzen, erwarten in den nächsten drei bis fünf Jahren Wachstum – deutlich mehr als die 45 % unter den Nicht-Nutzer*innen. Ein deutliches Signal, dass KI längst nicht mehr nur eine Zukunftsvision ist, sondern bereits heute den Unternehmensalltag revolutioniert.
Praxisbeispiele: Wie kleine Unternehmen KI erfolgreich einsetzen
Die Anwendungsmöglichkeiten von KI-Tools sind besonders für Gründer:innen und Kleinunternehmen von Bedeutung, da sie ihnen helfen können, Prozesse zu automatisieren, Ressourcen effizienter zu nutzen und mit größeren Wettbewerbern Schritt zu halten:
- Logo-Erstellung: Der Aufbau einer überzeugenden visuellen Identität ist für jedes Unternehmen essenziell, kann aber zeit- und kostenintensiv sein. KI-gestützte Tools ermöglichen es Unternehmer:innen, innerhalb weniger Minuten einzigartige Logos zu generieren und so ein professionelles Markenbild zu etablieren.
- Website-Entwicklung in wenigen Minuten: Moderne KI-Technologien ermöglichen es, komplette Websites mit wenigen Klicks zu generieren. Ohne technische Vorkenntnisse können Unternehmer:innen innerhalb kürzester Zeit eine funktionale Website mit personalisierten Inhalten veröffentlichen.
- Automatisierte Suchmaschinenoptimierung (SEO): KI kann Unternehmen dabei unterstützen, ihr Suchmaschinenranking zu verbessern. Durch gezielte Keyword-Analysen und Optimierungsvorschläge wird die Sichtbarkeit in den Suchergebnissen erhöht, was letztlich zu mehr Kund*innen führen kann.
- Professionelle E-Mail-Dienste: Eine E-Mail-Adresse mit eigener Domain schafft nicht nur Vertrauen bei Kund:innen, sondern trägt auch zur Markenbildung bei. Zusätzlich sorgt KI-gestützte Technologie für den Schutz des Mailverkehrs, inklusive Funktionen wie Backups, Archivierung und nahtloser Migration.
Der gezielte Einsatz von KI-gestützten Tools kann nicht nur wertvolle Zeitressourcen freisetzen, sondern auch dazu beitragen, die digitale Präsenz und Professionalität eines Unternehmens nachhaltig zu optimieren.
Wachstum mit Stolpersteinen?
Die Nutzung von KI kann Unternehmen enorme Vorteile bieten, stellt sie aber auch vor einige Herausforderungen. Durch den Einsatz von KI lassen sich Geschäftsprozesse skalieren, Kosten senken und datengetriebene Entscheidungen treffen, was mehr Raum für Kreativität und strategische Entwicklung schafft. Gleichzeitig müssen sich Unternehmen mit Themen wie Datenschutz, Implementierungskosten und der Einarbeitung in neue Technologien auseinandersetzen. Besonders für Gründer*innen ist es entscheidend, diese Herausforderungen frühzeitig anzugehen, um langfristig wettbewerbsfähig zu bleiben.
Fazit
Die Ergebnisse der GoDaddy-Studie belegen, dass künstliche Intelligenz nicht nur eine technologische Spielerei ist, sondern Gründer*innen und Kleinunternehmer*innen echte Vorteile bringt. Wer heute in KI investiert, sichert sich entscheidende Vorteile für die Zukunft. Jetzt ist die perfekte Zeit, die Potenziale von KI zu erkunden und für den eigenen Geschäftserfolg zu nutzen.
Die Autorin Alexandra Anderson ist Marketing Director Germany bei GoDaddy und seit mehr als zehn Jahren als Marketingexpertin in der IT-Branche tätig. Ein besonderes Anliegen ist ihr die Digitalisierung von Mikro- und Kleinunternehmer*innen.
Acrylic Robotics: die Zukunft des Kunstmarkts?
Die Gründerin und Künstlerin Chloë Ryan will mit Acrylic Robotics den Kunstmarkt neu definieren: Mithilfe eines Roboterarms, der Gemälde Pinselstrich für Pinselstrich rekonstruiert, schlägt das Start-up die Brücke zwischen traditioneller Kunst und moderner Technologie, um Kunstwerke einem breiten Publikum zugänglich zu machen.

Kunst skalierbar machen
Die in Montreal ansässige Acrylic Robotics-Gründerin und CEO Chloë Ryan, selbst Künstlerin, hatte die Idee aus einer persönlichen Erfahrung heraus. Ein Gemälde zu schaffen, erfordert viel Zeit; und am Ende kann das Werk nur einmal verkauft werden. Inspiriert von der Skalierbarkeit der Musik- und Buchbranche entwickelte Chloë Ryan ein Konzept, mit dem Kunstwerke präzise reproduziert werden können – ohne an Qualität oder künstlerischem Anspruch zu verlieren. Gemeinsam mit Walker Singleton, Head of Engineering des Start-ups, entstand so ein interdisziplinärer Ansatz, der Robotik, Softwareentwicklung und mechanische Präzision vereint.

Der Roboter: Präzision in jedem Pinselstrich
Das Herzstück von Acrylic Robotics ist ein Roboterarm, der Gemälde detailgetreu reproduzieren kann. Der Prozess unterscheidet sich je nach Ursprung des Kunstwerks. Digitale Kunstwerke, die auf einem Tablet oder Computer erstellt wurden, können direkt an den Roboter übermittelt werden, da Daten wie Pinselrichtungen, Druckstärke und Farbwahl bereits digital vorliegen. Analoge Gemälde erfordern hingegen eine zusätzliche Analyse. Hier kommt ein speziell trainiertes KI-Modell zum Einsatz, das die wesentlichen Parameter berechnet, um eine möglichst präzise Reproduktion zu erzielen. Besonders wichtig ist es Acrylic Robotics, den Künstler kontinuierlich in den Prozess einzubeziehen. Es geht nicht darum, den kreativen Schaffensprozess zu ersetzen, sondern ihn zu ergänzen und weiterzuentwickeln.
Kunst für alle: Ein Service für Künstler und Käufer
Acrylic Robotics bietet seine Technologie Künstlern als Dienstleistung an. Über die Website können Künstler eine Zusammenarbeit anfragen, bei der ihre Werke in limitierter Auflage reproduziert werden. Käufer erhalten dadurch hochwertige Acrylreproduktionen, ohne den Wert des Originals zu schmälern. Das Konzept verbindet Exklusivität mit breiterer Zugänglichkeit und positioniert sich als innovative Lösung im Kunstmarkt.
Europäisches KI-Gesetz in Kraft getreten
Der AI Act ist am 2. Februar 2025 in Kraft getreten und gilt für alle Unternehmen und Organisationen mit Angestellten, die KI im Auftrag des Unternehmens nutzen. Bei Nichteinhaltung drohen Geldbußen.

Künstliche Intelligenz (KI) entwickelt sich rasant und findet in immer mehr Bereichen, auch in Unternehmen, Anwendung. Deshalb schafft Europa mit dem AI Act einen einheitlichen Rechtsrahmen, den alle europäischen Unternehmen einhalten müssen.
Nicht allen Arbeitgebenden ist bewusst, dass die europäische Verordnung bereits in Kraft getreten ist. Sie gilt für jede Organisation – unabhängig von ihrer Größe – und ist verbindlich. Das Gesetz betrifft somit alle Unternehmen und Organisationen mit Angestellten, die KI im Auftrag des Unternehmens nutzen, unabhängig vom Beschäftigungsverhältnis. Europa überlässt einen Teil der Durchführung und Umsetzung des KI-Gesetzes den Mitgliedstaaten selbst – ebenso wie die Verhängung von Geldbußen bei Nichteinhaltung. Die konkrete Höhe dieser Bußgelder wird erst am 2. August 2025 feststehen. Dennoch sollten Unternehmen ab dem 2. Februar lieber gut aufgestellt sein, da die Bußgelder auch rückwirkend in Kraft treten können.
Verbindliche KI-Policy und adäquate KI-Kompetenzen
Unternehmen sind dafür verantwortlich, dass ihre Belegschaft über ausreichende KI-Kenntnisse verfügt. Dabei ist es nicht erforderlich, dass jeder Mitarbeitende umfassendes Wissen über KI besitzt. Es muss sichergestellt werden, dass alle Mitarbeitenden, die mit KI-Systemen arbeiten, über die notwendigen Kenntnisse und Fähigkeiten verfügen. So können sie informierte Entscheidungen treffen und potenzielle Risiken erkennen. Dazu gehören alle Mitarbeiter*innen, die mit KI-Systemen arbeiten – vom Anbietenden bis zum/zur Endnutzer*in – und erstreckt sich also nicht nur auf IKT-Fachleute in Unternehmen.
Das KI-Gesetz legt nicht genau fest, welche Maßnahmen Arbeitgebende ergreifen müssen, damit alle beteiligten Personen ausreichende KI-Kenntnisse erwerben. Arbeitgebende sollten daher nicht nur die technischen Kenntnisse, Erfahrungen, Ausbildungen und Fortbildungen der Mitarbeitenden berücksichtigen, sondern auch den Kontext, in dem die KI-Systeme genutzt werden, sowie die betroffenen Personen oder Personengruppe.
Arbeitgebende können selbst entscheiden, welche Kenntnisse und Fähigkeiten ihre Mitarbeitenden benötigen und wie sie diese angeeignet werden können. Mögliche Maßnahmen sind allgemeine KI-Schulungen, die Grundkenntnisse vermitteln und auf verschiedene Zielgruppen zugeschnitten sein können. Dabei kann es sich um spezifische Schulungen handeln, die sich auf bestimmte Tools und Anwendungen konzentrieren, aber auch um die Zusammenarbeit zwischen juristischen und technischen Teams.
Arbeitgebenden wird empfohlen, eine KI-Policy mit klaren Richtlinien für den Einsatz von KI im Unternehmen zu erstellen. Darin kann festgehalten werden, welche Anwendungen von wem und auf welche Weise genutzt werden dürfen. In dieser Richtlinie kann der Arbeitgebende auch Hinweise darauf geben, wie die Mitarbeitenden ausreichend mit KI vertraut bleiben können. Wie wird zum Beispiel vorgegangen, wenn sich im Unternehmen oder bei den Tools etwas ändert? KI-Kompetenz ist schließlich nichts Statisches. Wenn ein(e) Mitarbeiter*in die Rolle wechselt, oder wenn die eingesetzten Tools sich ändern, muss der Arbeitgebende sicherstellen, dass die betreffende Person weiterhin über ausreichende KI-Kenntnisse verfügt.
Verbotene bestimmter KI-Systeme
Zum anderen verbietet der AI Act ab dem 2. Februar 2025 den Einsatz von KI-Systemen, die gegen europäische Normen und Grundwerte verstoßen, indem sie beispielsweise Grundrechte missachten. Darunter fallen auch KI-Systeme für Social Scoring, die Menschen aufgrund ihres sozialen Verhaltens oder persönlicher Eigenschaften bewerten, oder KI-Systeme zur Emotionserkennung am Arbeitsplatz oder im Bildungsbereich. Arbeitgeber sollten daher die eingesetzten KI-Systeme im Hinblick auf die Identifizierung verbotener Systeme und die Einstellung ihrer Nutzung überprüfen.
Ab August 2025 drohen Geldbußen - auch rückwirkend
Ab dem 2. August 2025 drohen Unternehmen und Organisationen, die verbotene KI entwickeln oder einsetzen, hohe Geldbußen. Die Überwachung und die Festlegung der Höhe der Strafen liegen vollständig in der Verantwortung der EU. Die Höhe der Geldbußen sowie die Aufsicht hierüber liegen vollständig in der Verantwortung der EU. Bis zu 35 Millionen Euro Strafe oder sieben Prozent des weltweiten Jahresumsatzes des vorangegangenen Geschäftsjahres – je nachdem, welcher Betrag höher ist – können verhängt werden.
Der Autor Sander Runkel ist Fachanwalt für Arbeitsrecht und Manager Tax & Legal bei SD Worx Deutschland
Wahlprogramme 2025: Innovationsförderung, Quo vadis?
So plant die Politik die Zukunft der Innovationsförderung. Eine Analyse von Efe Duran Sarikaya, CEO der Fördermittelberatung EPSA Deutschland.

Mit den Bundestagswahlen 2025 steht Deutschland vor wegweisenden Entscheidungen. Fördermittel, ein zentrales Instrument für Innovation, Nachhaltigkeit und Unternehmensentwicklung, stehen im Fokus der Parteiprogramme. Doch wie gestalten die Parteien die Zukunft der Förderpolitik, und welche Schwerpunkte setzen sie?

Efe Duran Sarikaya, CEO der Fördermittelberatung EPSA Deutschland, liefert einen Überblick über die Pläne der politischen Parteien zur Zukunft der Förderpolitik.
Dabei werden nicht nur die Unterschiede beleuchtet, sondern auch, welche Auswirkungen die jeweiligen Wahlprogramme auf die Unternehmen und den Wirtschaftsstandort Deutschland haben können.
Nachhaltigkeit: Sinnorientierung statt Image-PR und Greenwashing
Im Interview: Co-Gründer Günther Reifer vom Terra Institute.

Als Experten mit langjähriger Erfahrung und Kompetenz in der Beratungstätigkeit gründeten Evelyn Oberleiter und Günther Reifer vor 10 Jahren gemeinsam das Terra Institute: Ein Beratungsunternehmen mit Schwerpunkt in Geschäftsmodellinnovation, Nachhaltigkeitsmanagement, Produktentwicklung, Kreislaufwirtschaft und sinnorientiertem, transformativem Leadership. Das Terra Institute hat heute 25 Mitarbeiter in Deutschland, Österreich und Italien.
Im Interview zum Thema Nachhaltiges Wirtschaften: Terra Institute-Co-Gründer Günther Reifer.
Heutzutage macht das Thema Nachhaltigkeit einen großen Teil vom Image eines Unternehmens aus. Wer nicht nachhaltig ist, geht nicht mit dem Puls der Zeit. Doch was ist überhaupt mit Nachhaltigkeit gemeint und wie kann sie in einem Unternehmen umgesetzt werden?
Nachhaltigkeit hat verschiedene Definitionen. Die gängigste besagt: „Nachhaltigkeit gewährleistet, dass zukünftige Generationen nicht schlechter gestellt sind, ihre Bedürfnisse auf der Erde zu befriedigen als die gegenwärtig lebende Generation.“ Für ein produzierendes Unternehmen bedeutet das konkret: Die Verwendung von nachwachsenden Rohstoffen, ressourcenschonende Produktion, Vermeidung von Müll, ein möglichst geringer CO2-Ausstoß und im besten Fall ein recyclebares Endprodukt. Wenn ein Produkt all diese Kriterien erfüllt, kann es sich ökologisch nachhaltig nennen.
Ein Beispiel: Ein T-Shirt aus 100 Prozent Bio-Baumwolle, dessen Aufdruck jedoch giftige Chemikalien enthält, ist keineswegs nachhaltig. Es ist wichtig, dass wir den gesamten Produktionsprozess betrachten – vom Design zum finalen Produkt bis zur Rückführung in den Wertstoffkreislauf.
Wenn ein Unternehmen ein ökologisch nachhaltiges Produkt herstellt, ist dann das gesamte Unternehmen nachhaltig?
Noch lange nicht. Nachhaltigkeit steht nämlich auf drei Standbeinen: Umwelt, Gesellschaft und Wirtschaft. Neben den ökologischen Aspekten bestimmen also noch soziale und ökonomische Faktoren, inwieweit ein Unternehmen nachhaltig ist. Die soziale Komponente widmet sich dabei in erster Linie dem Wohlergehen von Mensch und Gesellschaft. Für Mitarbeiter des Unternehmens bedeutet das zum Beispiel ein fairer Lohn, geregelte Arbeitszeiten und Pausen sowie die Möglichkeit auf persönliche und berufliche Weiterentwicklung. Insbesondere der Aspekt Schulungen spielt wiederum eine wichtige Rolle für die ökologische Nachhaltigkeit des Unternehmens.
Um ökologische Nachhaltigkeit ganzheitlich im Unternehmen zu etablieren, muss zunächst ein gemeinsames Bewusstsein dafür geschaffen werden. Bei Führungskräften genauso wie bei allen Mitarbeitern. Durch regelmäßige Coachings der Mitarbeiter – sei es persönlich oder digital – werden Nachhaltigkeit und Klimaschutz zur Angelegenheit des gesamten Unternehmens. Alle sind auf dem neuesten Stand und ziehen am selben Strang.
Was sind die ökonomischen Faktoren, die ein Unternehmen nachhaltig machen? Und stehen diese nicht im Konflikt mit den ökologischen Aspekten der Nachhaltigkeit?
Die meisten denken wahrscheinlich, dass sich Umwelt und Wirtschaft von vorneherein ausschließen. Das stimmt so jedoch nicht. Fakt ist: Nur ein Unternehmen, was auch ökonomisch nachhaltig ist, wird langfristig bestehen bleiben und so seinen Beitrag für eine bessere Zukunft leisten können. Die Umstellung auf eine ökologisch nachhaltige Produktion ist dabei kein Verlustgeschäft. Wenn Sie zum Beispiel alles regional produzieren statt einzelne Produktionsprozesse ins Ausland zu verlagern, dann sind auch Ihre Lieferketten kürzer. Das spart erhebliche Transportkosten und CO2. Zudem sind regionale Lieferketten transparenter und daher leichter zu managen.
Auch im Fall einer globalen Krise wie der Corona-Pandemie ist das Risiko einer Produktionsunterbrechung deutlich reduziert. In innovative und verbesserte Fertigungstechnologien zu investieren, zahlt sich auch aus. Material-, Wasser- und Energieverbrauch werden so reduziert und anfallende Abfallprodukte können recycelt werden. Nachhaltigkeit ist also nicht teurer, sondern langfristig gesehen sogar lukrativ.
Was sind die ersten Schritte für ein Unternehmen, um nachhaltig zu werden?
Die Bereitschaft für Veränderung ist immer der erste Schritt. Das gesamte Unternehmen – Führungskräfte wie Mitarbeiter – muss eine neue Sinnorientierung erfahren. Dafür werden zunächst die aktuellen sozioökonomischen Megatrends intensiv analysiert. Mit den gewonnenen Erkenntnissen wird anschließend der gesamte Betrieb durchleuchtet und aufgeräumt. Gemeinsam wird ermittelt, welche Kompetenzen Führungskräfte und Mitarbeiter mitbringen, was noch verbesserungswürdig ist und wie sich zukunftsrelevante Themen aus Nachhaltigkeit, Gesellschaft und Wirtschaft in das Unternehmen integrieren lassen. Dabei ist es wichtig, bestehende Strukturen zu überdenken, von alten Gewohnheiten loszulassen und sich neue Ziele zu setzen.
Natürlich ist so eine Neuorientierung, bei der alle drei Dimensionen der Nachhaltigkeit berücksichtigt werden, ein sehr komplexer Prozess, der für viele Unternehmen eine Herausforderung darstellt. Wir vom Terra Institute möchten Unternehmen in ihrem Umdenken bestärken und ihren Transformationsprozess tatkräftig unterstützen!
KI-gestützte Identitätsbetrugsprävention hinkt Bedrohung hinterher
E-Mails, Chat-Nachrichten, Telefonanrufe, Fotos und Videos – immer häufiger missbrauchen Cyberkriminelle diese Kommunikationstools als Vehikel für einen Identitätsbetrug – doch was tun?

Immer häufiger wird in den Medien über erfolgreiche KI-gestützte Deep-Fake-Attacken berichtet. Die Folge: Das Vertrauen der Verbraucher*innen in digitale Medien und Kanäle nimmt zusehends Schaden – und damit auch die betreffenden Online-Anbieter*innen. Bei nicht wenigen von ihnen wird das Phänomen KI-gestützter Angriffe über kurz oder lang zu massivem Imageverlust und Umsatzeinbußen führen.
Diskrepanz zwischen Sensibilisierung und Handeln
Vor diesem Hintergrund stimmt es nachdenklich, dass bislang nur 22 Prozent der Unternehmen Maßnahmen zur Verhinderung von KI-gestütztem Identitätsbetrug ergriffen haben. Der aktuelle Signicat-Report "The Battle Against AI-driven Identity Fraud" zeigt eine Kluft zwischen Bewusstsein und Handeln auf. Während über 76 Prozent der Entscheidungsträger*innen die wachsende Bedrohung durch KI bei Betrug erkennen, haben, wie erwähnt, nur 22 Prozent der Unternehmen damit begonnen, KI-gesteuerte Maßnahmen zur Betrugsprävention zu implementieren.
Für die Studie wurden über 1.200 Entscheidungsträger*innen aus Banken, FinTechs, Zahlungsanbietenden und Versicherungsunternehmen in Europa befragt. In dem Bericht wird hervorgehoben, dass sich die Unternehmen des Problems durchaus bewusst sind, aber Schwierigkeiten haben, die erforderlichen Schutzmaßnahmen zu ergreifen, und zwar aus folgenden Gründen:
- Mangelndes Fachwissen: 76 Prozent der Entscheidungsträger*innen im Bereich Betrugsbekämpfung geben unzureichende Kenntnisse als Haupthindernis an.
- Zeitmangel: 74 Prozent geben zu, dass sie nicht die Zeit haben, das Problem mit der erforderlichen Dringlichkeit anzugehen.
- Fehlendes Budget: 76 Prozent geben an, dass nicht genügend Mittel zur Verfügung stehen, um robuste Technologien zur Betrugsprävention einzusetzen.
2025: das Jahr des KI-Betrugs
Im Hinblick auf die aktuellen Herausforderungen warnt der Bericht davor, dass Betrüger*innen KI in einem noch nie dagewesenen Ausmaß nutzen werden Deepfake-Angriffe, die laut Signicat-Daten in den letzten drei Jahren um 2137 Prozent zugenommen haben, sind nur ein Beispiel dafür, wie schnell sich KI-gesteuerte Betrugstechniken weiterentwickeln.
Um den Betrüger*innen einen Schritt voraus zu sein, sollten die Unternehmen schnell handeln: Empfohlen wird ein mehrschichtiger Verteidigungsansatz – von der frühzeitigen Risikobewertung über robuste Identitätsüberprüfungs- und Authentifizierungstools in Kombination mit Datenanreicherung bis hin zur laufenden Überwachung für einen umfassenden Ansatz, der die wichtigsten Angriffsflächen abdeckt:
- Investitionen in KI-gesteuerte Betrugsprävention: Innovative Technologien bieten Echtzeit-Betrugserkennung, einschließlich der Erkennung von Dokumentenmanipulationen und Imitationen, einschließlich Deepfakes, und bekämpfen KI mit KI.
- Aufbau eines internen Bewusstseins und Zusammenarbeit mit vertrauenswürdigen Anbietenden: Ein proaktiver Ansatz für Mitarbeitendenschulungen und externe Zusammenarbeit ist der Schlüssel zum Umgang mit dieser sich entwickelnden Bedrohungslandschaft.
HealthTech, Quo vadis?
Diese Trends und Entwicklungen im HealthTech-Markt sollten Gründer*innen und Start-ups kennen und sich 2025 zunutze machen.

In den letzten Jahren hat sich – nicht zuletzt durch die COVID-19-Pandemie beschleunigt – eine Vielzahl von HealthTech-Unternehmen etabliert, die innovative Lösungen für die Gesundheitsversorgung entwickelt haben. Unternehmen wie Withings, das Sensoren für die Überwachung von Risikopatient*innen im Krankenhaus entwickelt hat, oder Hersteller von Apps zum Selbstcheck der Gesundheit in den eigenen vier Wänden haben in dieser Zeit positive Entwicklungen erfahren. Der Erfolg solcher Technologien hat deren Potenzial der breiten Masse vorgeführt und den Bedarf nach digitalen Gesundheitslösungen weltweit verstärkt. Kurzum: Der HealthTech-Sektor erlebte goldene Zeiten.
Doch diese Zeiten scheinen heute so fern wie das Schlangestehen im Impfzentrum. Bleiben die Fragen: Wie endet das aktuelle Jahr nach den allgemein schwierigen Marktbedingungen im Vorjahr? Und wie sieht die Zukunft dieser Branche aus? So viel ist sicher: Es zeichnet sich eine Phase der Neuausrichtung ab, die sowohl Herausforderungen als auch Chancen birgt.
Der Markt konsolidiert sich
Nach einem massiven Anstieg des Investitionsvolumens während der Pandemie hat sich der HealthTech-Markt mittlerweile stabilisiert. Investor*innen legen nun, ähnlich wie in anderen Technologiesektoren, wieder größeren Wert auf Profitabilität und weniger auf reines Wachstum um jeden Preis. Dies führt zu einer Konsolidierung des Markts. Unternehmen, die eine stabile Infrastruktur aufgebaut haben oder durch starke und innovative Technologien überzeugen, sind potenziell attraktive M&A-Ziele für Strateg*innen und Finanzinvestor*innen. Große, finanzstarke Unternehmen aus den Bereichen Technologie, Pharma und Gesundheit suchen aktiv nach innovativen Ergänzungen und Erweiterungen ihrer digitalen Angebote, sowohl innerhalb Europas als auch auf globaler Ebene.
Laut dem aktuellen Pava Digital Health Report haben sich die globale Investitionsdynamik und M&A-Aktivitäten in der digitalen Gesundheitsbranche – nach einer Abkühlung im Jahr 2023 – in diesem Jahr wieder deutlich beschleunigt. Bis Dezember werden sie das Niveau vor der Pandemie sowie jenes von 2023 übertreffen. Nach einer längeren Durststrecke bei Börsengängen nehmen die Aktivitäten auch auf dem öffentlichen Markt wieder zu, was Unternehmen wie Tempus AI und Waystar zeigen. Obwohl viele börsennotierte HealthTechs derzeit noch unter ihren Höchstbewertungen von 2022 gehandelt werden, wird die grundsätzlich deutlich positivere Stimmung im Markt in Bezug auf den Sektor immer offenkundiger.
Regulatorische Entwicklungen und Chancen für „Made in Germany“
Gründen im HealthTech-Sektor erfordert Mut, da der deutsche Gesundheitsmarkt zu den am strengsten regulierten weltweit gehört. Dies gilt besonders für die Nutzung sensibler Daten. Das 2024 eingeführte Gesundheitsdatennutzungsgesetz (GDGN), das den Zugang zu Gesundheitsdaten für die gemeinnützige Forschung erleichtern soll, ist zwar ein positiver Schritt in die richtige Richtung, doch bleibt der Markt herausfordernd. Die komplexe Regulatorik kann dabei jedoch auch als Qualitätsmerkmal und Wettbewerbsvorteil fungieren. Junge Unternehmen, die in der Lage sind, sich in diesem anspruchsvollen Umfeld zu behaupten und trotz regulatorischer Hürden erfolgreiche Geschäftsmodelle entwickeln, gelten als besonders vertrauenswürdig, robust und werden für internationale Investor*innen zunehmend attraktiv.
Internationale Unternehmen, insbesondere aus weniger regulierten Märkten, betrachten die Fähigkeit, sich im streng regulierten europäischen Markt durchzusetzen, als wertvolle Ressource. Die Einhaltung von Vorschriften im deutschen Markt ist ein Qualitätsmerkmal, das potenziellen Investor*innen Sicherheit bietet und gleichzeitig Markteintrittsbarrieren für neue Wettbewerber*innen schafft. Deutsche Health- Tech-Unternehmen sollten diesen regulatorischen Unterschied aktiv in ihre Expansions- und Fundraising-Strategie einfließen lassen und das enorme weiterführende und globale Potenzial außerhalb europäischer Datenschutz- und Gesundheitsrichtlinien positionieren.
HealthTech-(Start-up-)Trends für 2025
Neben der allgemein deutlich positiveren Entwicklung in 2024 gibt es eine Reihe von Trends, die wir aktuell bis weit in das nächste Kalenderjahr erwarten sowie die M&A- und Investmentaktivität beeinflussen werden. Folgende Trends und sektorspezifische Entwicklungen im HealthTech-Markt sollten sich Gründer*innen zunutze machen:
1. Biohacking und Datennutzung im Massenmarkt
Die Nutzung von Healthcare-Apps, Software und Wearables boomt und ist längst nicht mehr nur Leistungssportler*innen und Biohacker*innen vorbehalten. Immer mehr Patient*innen wollen aktiv auf ihre Gesundheitsdaten zugreifen, diese verstehen und proaktiv an diesen arbeiten, um ihren Lifestyle zu optimieren und teilweise sogar aktiv Therapien zu unterstützen. Dieser Trend wird durch die wachsende Bereitschaft der Nutzer*innen und Patient*innen unterstützt, für diese proaktiven Einblicke in die eigene Gesundheit zu bezahlen.
Während es in anderen Märkten wie zum Beispiel den USA längst Normalität ist, für die eigene Gesundheit Geld auszugeben, zieht der lokale Markt aufseiten des Nutzer*innenverhaltens langsam nach. Besonders Unternehmen, die direkt an die Endverbraucher*innen vertreiben, können von dieser stetig steigenden Zahlungsbereitschaft in Europa profitieren. Dies gilt sowohl für Lifestyle-Anwendungen als auch für medizinische Lösungen und digitale Therapien. Der Markt entwickelt sich weg von reinen Überwachungsfunktionen hin zu personalisierten Empfehlungen, Echtzeit-Coaching und integrativen Plattformen, die verschiedene Gesundheitsdaten zusammenführen, um ganzheitliche Gesundheitsbilder zu erstellen und die Nutzer*innen ermächtigen, eigenständig oder mit deutlich reduzierter ärztlicher Intervention zu agieren und positive Effekte zu erzielen.
2. Künstliche Intelligenz und Diagnostik
KI revolutioniert nicht nur die medizinische Diagnostik, sondern wird auch zunehmend als Schlüsseltechnologie zur Verbesserung von Effizienz und Präzision in der Gesundheitsversorgung gesehen. KI-basierte Lösungen können beispielsweise bei der Analyse von Bilddaten und der Vorhersage von Krankheitsverläufen eingesetzt werden, was eine personalisierte Behandlung erleichtert. Mit der Integration von KI in die klinische Praxis werden Abläufe optimiert, Kosten gesenkt und Behandlungsentscheidungen verbessert. Unternehmen, die auf KI setzen, sind daher attraktive Übernahmeziele für strategische Investor*innen. Die Fokussierung auf KI ist ein wesentlicher Teil der M&A-Strategie, da große Gesundheitsunternehmen und Dateninhaber*innen die Chancen der Technologie nutzen wollen, um Innovationen schneller zu realisieren. KI-basierte Lösungen in der Arzneimittelentwicklung und Diagnostik bieten ebenfalls enorme Chancen, um die Gesundheitsversorgung weiter zu verbessern und personalisierte Ansätze zu fördern.
3. Telemedizin 2.0
Virtuelle und erweiterte Realität (VR und AR) verändern die Telemedizin grundlegend. Mit AR-Brillen können Chirurg*innen aus der Ferne assistieren, und neue Plattformen ermöglichen es Patient*innen, sich von zu Hause aus mit ihren Ärzt*innen zu verbinden und Nachsorgepläne zu besprechen. Dies verbessert den Zugang zu medizinischen Leistungen, besonders in ländlichen Regionen, wo der Fachkräftemangel ein Problem bleibt. Zudem ermöglicht die Telemedizin eine intensivere Betreuung chronisch Kranker, indem regelmäßige Konsultationen und Überwachung des Gesundheitszustandes vereinfacht werden.
Die Weiterentwicklung hin zu sogenannten digitalen Krankenhäusern, die digitale Diagnostik- und Behandlungsangebote unter einem Dach vereinen, könnte die Effizienz des Gesundheitssystems erheblich steigern. Allgemein wird und muss die Entwicklung der Versorgung physisch und digital näher an die Patient*innen rücken sowie medizinisches Personal in die Lage versetzt werden, fokussierter und effizienter die Tätigkeiten auszuüben, die ausschließlich von ihm ausgeübt werden können, um der globalen Ressourcenknappheit im Gesundheitswesen entgegenzuwirken.
4. Mental Health Solutions
Die Nachfrage nach digitalen Lösungen für die mentale Gesundheit wächst stetig. Die Pandemie hat den Bedarf an psychologischer Unterstützung stark erhöht, und digitale Plattformen bieten nicht nur leichten Zugang, sondern auch Anonymität und personalisierte Unterstützung. Dieser Bereich zählt zu den am besten finanzierten innerhalb des digitalen Gesundheitssektors und bleibt ein zentraler Fokus für Investor*innen. Die Kombination aus niedrigeren Zugangshürden und einer zunehmenden Akzeptanz für digitale Gesundheitsangebote bietet spannende Perspektiven, um das traditionelle Angebot psychologischer Dienste zu ergänzen und zu erweitern. Hinzu kommt die zunehmende Integration von KI in digitale Lösungen für mentale Gesundheit, die personalisierte Therapieansätze und eine kontinuierliche Betreuung vereinfachen.
5. Integrative Gesundheitslösungen
Im Zuge der Konsolidierung im HealthTech-Sektor rücken Strategien der Expansion und Integration zunehmend in den Mittelpunkt. Größere Unternehmen nutzen Akquisitionen nicht nur, um ihre Marktpräsenz zu erweitern, sondern auch, um umfassende Gesundheitslösungen anzubieten, die verschiedene Teilsektoren miteinander verbinden. Die Fähigkeit, Diagnostik, Therapie und Nachsorge in integrierte digitale Angebote zu überführen, wird als Schlüssel zur Zukunft des HealthTech-Markts betrachtet. Dabei geht es nicht nur um Effizienzgewinne, sondern auch darum, Patient*innenerfahrungen zu verbessern und individuelle Bedürfnisse besser abzudecken.
Insbesondere US-amerikanische Unternehmen sehen Akquisitionen in Europa als attraktive Möglichkeit, ihre Expertise auf dem stark regulierten europäischen Markt einzusetzen. Diese Strategien sind Teil einer übergreifenden Bewegung hin zu größeren, stärker integrierten Gesundheitsakteuren. Start-ups, die spezialisierte Dienstleistungen und technologische Innovationen kombinieren, können sich so als führende Anbietende in einem zunehmend wettbewerbsintensiven Markt positionieren.
HealthTech bietet vielversprechende Perspektiven
Der Health Tech-Markt befindet sich in einer Phase der Konsolidierung. Für Start-ups, die bewiesen haben, dass ihre Technologien funktionieren, deren medizinische Evidenz nachgewiesen ist und das Geschäftsmodell entweder profitabel ist oder sich das attraktive Profitabilitätsprofil abzeichnet, kann dies ein günstiger Zeitpunkt für einen Exit sein. Strategische Käufer*innen suchen nach starken Technologien und attraktiven Einstiegs- bzw. Erweiterungsopportunitäten im europäischen Markt. Finanzinvestor*innen haben in den vergangenen Jahren ausgiebig Erfahrung mit dem Sektor gesammelt und häufig ein tiefes Verständnis von Regulatorik, Marktdynamik, Chancen und Risiken in den jeweiligen Subsektoren.
Gründer*innen, die grundsätzlich einen Exit anstreben, sollten unabhängig von ihrer Unternehmensphase kontinuierlich über mögliche Exit-Szenarien und ihre Positionierung nachdenken: Welche Rolle spielt meine Technologie? Wie einzigartig ist diese und für wen ist sie potenziell strategisch am wertvollsten?
Welche Potenziale und Hürden hat mein Geschäftsmodell in einem anderen Markt? Dies sind nur beispielhafte Fragestellungen, die kurz- oder langfristig an Relevanz gewinnen.
Der Autor Kevin Kissner ist Partner und M&A-Experte im Bereich Software und HealthTech bei Pava Partners, einer europaweit agierenden M&A- und Debt-Advisory-Beratungen für dynamisch wachsende Tech-Unternehmen.
Was gehört in eine KI-Policy?
Recht für Gründer*innen: Über den verantwortungsvollen Umgang mit KI.

Künstliche Intelligenz (KI) ist längst Teil unseres Alltags und hält in Unternehmen auch zunehmend Einzug. Ob beim Erstellen von Texten, in der Datenanalyse oder bei der Automatisierung von Routineaufgaben – KI ist ein starkes Werkzeug, das Unternehmen viele Vorteile bieten kann. Doch mit diesen Vorteilen kommen auch Verantwortung und Risiken, die eine klare und durchdachte KI-Policy erfordern.
Diese Einleitung zu einem Artikel über KI-Policies ist KI-generiert. Es ist so schön bequem und schnell gemacht: eines der gängigen LLM-Systeme online aufrufen, beispielsweise ChatGPT, und binnen Sekunden ist der Artikel fertig.
Ihr kennt das im Privaten, vor allem aber auch im Arbeitsumfeld. KI-Tools sind aus der Arbeitswelt nicht mehr wegzudenken. Die Nutzung von KI – insbesondere für berufliche Aufgaben – birgt jedoch Risiken. Manche KI neigt, falsch trainiert, zu diskriminierenden Entscheidungen, was z.B. im HR-Bereich gefährlich ist. Unbedacht erstellte Prompts können den Schutz von Geschäftsgeheimnissen aufs Spiel setzen. Die Datenschutzgrundsätze sind wie immer einzuhalten.
Generative KI schert sich, wenn wir als Nutzer*innen nicht darauf Acht geben, nicht um die Urheberrechte derer, deren Werke wir – ob bewusst oder unbewusst – verwenden oder verletzen. Zudem ist seit August 2024 die KI-Verordnung in der EU in Kraft und stellt an Unternehmen, die KI-Systeme und -Modelle entwickeln, anbieten oder betreiben, umfangreiche Anforderungen. Auch die mit KI einhergehenden Risiken sind nicht außer Acht zu lassen.
Seid ihr als Gründer*innen oder in sonst verantwortlicher Position in einem Unternehmen mit mehreren Mitarbeiter*innen tätig, müsst ihr euch Gedanken darüber machen, wie solche Risiken zu fassen und zu begrenzen sind. Tut ihr das nicht, drohen aus diversen Rechtsgrundlagen z.B. Schadensersatzforderungen, Bußgelder oder der Verlust an Assets – Dinge, die allerspätestens bei der nächsten Finanzierungsrunde negativ bewertet werden. In Bezug auf eure Belegschaft müsst ihr also Awareness für diese Themen schaffen und konkrete Vorgaben machen.
Denn eines ist klar: KI wird in eurem Unternehmen genutzt werden, ob mit oder ohne euer Wissen. Und bevor die Mitarbeiter*innen auf privaten Geräten sensible berufliche Aufgaben nicht reglementiert mittels ChatGPT & Co. lösen, beschreibt lieber beizeiten Dos and Don’ts, um sicherstellen, dass KI verantwortungsvoll, sicher und rechtskonform im Unternehmen eingesetzt wird.
Dazu dient eine die Belegschaft informierende und verpflichtende KI-Policy. Im Folgenden findest du einen Überblick darüber, welche Aspekte in eine solche Policy gehören.
1. Richtlinien für den Einsatz generativer KI am Arbeitsplatz
Generative KI-Modelle wie ChatGPT, DALL-E und andere erstellen Inhalte nach Maßgabe der Eingaben der Nutzenden. Bei diesen Prompts und bei der Verwendung der generierten Ergebnisse ist auf Folgendes zu achten:
- Schutz sensibler Daten: Die Eingabe vertraulicher Informationen in KI-Modelle stellt ein erhebliches Risiko dar, da generative KI-Systeme auf großen Datenmengen trainiert sind und Informationen potenziell unkontrolliert verarbeiten und speichern. Die KI-Policy sollte explizit verbieten, sensible oder vertrauliche Informationen in generative KI-Systeme einzugeben, insbesondere, wenn diese extern betrieben werden. Die Policy sollte beschreiben wie mit sensiblen Daten umzugehen ist und welche Daten für die Verarbeitung durch KI-Systeme ungeeignet sind.
- Einhaltung des Datenschutzes: Die KI-Policy sollte klarstellen, dass der Einsatz generativer KI-Tools den Anforderungen der Datenschutzgesetze (DSGVO, BDSG) entsprechen muss. Dazu gehören Vorgaben, wie personenbezogene Daten rechtssicher zu handhaben sind und welche dieser Daten überhaupt für den Einsatz von KI-Modellen geeignet sind. Zudem bedarf es Vorgaben zur Anonymisierung und Pseudonymisierung der Daten, daneben Transparenzvorgaben, um betroffene Personen über die Nutzung ihrer Daten zu informieren. Personenbezogene Daten in öffentlichen KI-Systemen einzusetzen, sollte möglichst untersagt werden.
- Umgang mit geistigem Eigentum: Die Nutzung generativer KI-Modelle kann zu Problemen führen, wenn die KI auf geschütztem Material trainiert wurde, von dem/der Nutzenden urheberrechtlich geschützte Werke in den Prompt einbezogen werden oder die KI Werke erstellt, die bestehende Urheber- oder sonstige Schutzrechte verletzen. Die KI-Policy sollte ein Verbot der Verwendung von Werken enthalten, an denen nicht die für die Bearbeitung erforderlichen Rechte bestehen. Und sie kann Regelungen zur Überprüfung und Genehmigung von KI-erstellten Inhalten festlegen, etwa durch eine Rechtsabteilung oder eine speziell dafür zuständige Stelle.
- Transparenz und Kennzeichnung: Die KI-Policy sollte festlegen, dass Inhalte, die mithilfe von generativer KI erstellt wurden, transparent gekennzeichnet werden. Dies trägt dazu bei, Missverständnisse zu vermeiden und sicherzustellen, dass die Herkunft von Texten und Bildern klar erkennbar ist. Diese Kennzeichnungspflicht sollte insbesondere dann gelten, wenn KI-generierte Inhalte veröffentlicht werden, aber auch im internen Gebrauch.
- Positivliste erlaubter KI-Systeme: Um die Mitarbeiter*innen mit der Anwendung dieser Vorgaben auf einzelne am Markt angebotene KI-Systeme nicht allein zu lassen, kann eine KI-Policy auch eine Auflistung der vom Unternehmen freigegebenen Systeme enthalten. Voraussetzung ist dafür natürlich, dass diese Systeme vorab entsprechend fachlich geprüft wurden. Das kann schwierig sein, weil sich Anbieter*innen meist nicht in die Karten schauen lassen.
2. Richtlinien für die Entwicklung und Implementierung von KI
Auch wenn ihr in eurem Unternehmen KI-Systeme entwickeln oder implementieren wollt, sind ethische, rechtliche und technische Anforderungen in einer KI-Policy zu adressieren.
- Fairness, Transparenz und Nichtdiskriminierung: KI-Systeme können, wenn sie auf verzerrten Datensätzen trainiert werden, Diskriminierung oder Vorurteile reproduzieren. Eine KI-Policy sollte deshalb klare ethische Richtlinien festlegen, die sicherstellen, dass die entwickelten Modelle fair, transparent und frei von Diskriminierung sind. Ein mögliches Vorgehen ist, regelmäßige Audits und Bias-Tests durchzuführen und in der Policy verpflichtend vorzusehen, um Verzerrungen frühzeitig zu erkennen und zu beheben.
- Datenschutz und Datensicherheit: Der verantwortungsvolle Umgang mit Nutzer*innendaten ist eine der wichtigsten Anforderungen in der KI-Entwicklung. Die KI-Policy sollte festlegen, dass bei der Verarbeitung personenbezogener Daten durch die KI strenge Schutzanforderungen, am besten strenge Begrenzungen, gelten. Rein automatisierte Entscheidungen sind schon laut DSGVO verboten. Es sollten nur die für die jeweilige Anwendung notwendigen Daten erhoben und verarbeitet werden, und diese Daten sollten weitestgehend anonymisiert oder pseudonymisiert werden. Regelungen für den Zugang zu diesen Daten sowie Maßnahmen zur Datensicherheit (wie Verschlüsselung und Zugriffskontrollen) sollten ebenfalls Bestandteil der Policy sein.
- Überprüfung auf Halluzinationen und Fehlinterpretationen: Generative KI-Modelle neigen dazu, Informationen zu „halluzinieren“, also falsche oder ungenaue Inhalte zu erstellen. In der KI-Policy sollte festgelegt sein, dass entwickelte KI-Modelle regelmäßig auf ihre Genauigkeit und Zuverlässigkeit überprüft werden. Dies kann durch vorgeschriebene Tests und Simulationen geschehen, bei denen die KI in verschiedenen Szenarien eingesetzt und auf ihre Fähigkeit, korrekte Ergebnisse zu liefern, geprüft wird. Es sollten auch definiert werden, wie Fehler erkannt und behoben werden können.
- Erklärbarkeit und Nutzer*infreundlichkeit: Komplexe KI-Modelle sind oft schwer verständlich und wirken wie eine Black Box, deren Entscheidungen für Außenstehende kaum nachvollziehbar sind. Die KI-Policy sollte daher sicherstellen, dass die KI so gestaltet ist, dass ihre Funktionsweise für Nutzer*innen transparent und nachvollziehbar ist. Dies ist insbesondere dort wichtig, wo KI-Entscheidungen schwerwiegende Auswirkungen haben können. Ihr solltet sicherstellen, dass für Nutzer*innen eine verständliche Erläuterung darüber bereitgestellt wird, wie und warum die KI zu einem bestimmten Ergebnis gelangt ist. Das ist Voraussetzung für Kontrolle und rechtskonformen Betrieb der KI.
- Gesetzeskonformität gemäß KI-Verordnung: Nicht zuletzt hat die Europäische Union die KI-Verordnung in Kraft gesetzt, die strenge Anforderungen an die Entwicklung und Nutzung von KI stellt. Die KI-Verordnung dient der Produktsicherheit und verlangt zunächst eine Risikoeinschätzung für die KI-Systeme. Die Maßgaben für eine solche Einschätzung sollten in der Policy angerissen und No-Gos für die Entwicklung von Funktionalitäten, die zu den laut KI-Verordnung verbotenen KI-Anwendungen gehören, ausgesprochen werden. Für sogenannte Hochrisiko-KI-Systeme gelten besondere Anforderungen, die bei einer Entwicklung mitgedacht werden müssen, wofür eine KI-Policy zumindest sensibilisieren sollte. Die im Einzelfall geforderte Überprüfung und Einstufung des jeweiligen Systems oder Modells kann eine Policy nicht leisten. Die initialen und regelmäßigen Überprüfungen sowie Risikobewertungen sollte sie aber fordern.
- Regelmäßige Überwachung und Wartung der KI-Modelle: KI-Modelle entwickeln sich weiter und benötigen regelmäßige Überwachung und Wartung, um die Leistung zu optimieren und mögliche Fehler zu minimieren. Die KI-Policy sollte eine solche sich wiederholende Maintenance festlegen, etwa die schon erwähnten regelmäßigen Aktualisierungen, Fehlerbehebungen und Performance-Überprüfungen, damit die KI-Systeme immer den aktuellen Standards und Anforderungen entsprechen.
3. Übergreifende Ziele und Vorgaben einer KI-Policy
Eine KI-Policy sollte nicht nur detaillierte Vorgaben zur Nutzung und Entwicklung von KI enthalten, sondern auch allgemeine Leitlinien und Prinzipien für den Einsatz von KI im Unternehmen, um ein Bewusstsein für die Potenziale und Risiken der Technologie zu schaffen.
- Regelmäßige Überprüfung und Anpassung: Da sich KI-Technologien und gesetzliche Anforderungen stetig weiterentwickeln, sollte auch die KI-Policy regelmäßig überprüft und aktualisiert werden. Dies hilft sicherzustellen, dass das Unternehmen stets auf dem neuesten Stand ist und seine KI-Systeme konform mit den aktuellen gesetzlichen, ethischen und technischen Standards sind. Es ist empfehlenswert, regelmäßige Audits durchzuführen und die Policy an neue Entwicklungen in der KI-Forschung und Gesetzgebung sowie an die Marktanforderungen anzupassen.
- Unternehmenskultur in Bezug auf KI: Eine KI-Policy sollte dazu dienen, den transparenten und offenen Umgang mit KI in allen Unternehmensbereichen und damit die Akzeptanz für KI-Systeme sowohl innerhalb des Unternehmens als auch bei Kund*innen und Partner*innen zu fördern. Dazu gehört auch, dass das Unternehmen offenlegt, in welchen Bereichen KI eingesetzt wird und welche Entscheidungen die Technologie beeinflusst. Letztendlich ist die KI-Policy ein Instrument zur Förderung einer verantwortungsvollen und ethischen Unternehmenskultur in Bezug auf KI. Das schützt letztlich auch die Integrität und die Werte des Unternehmens.
- Schulungen und Sensibilisierungsmaßnahmen: Um einen solchen kompetenten und verantwortungsvollen Umgang mit KI zu erreichen, sind regelmäßige Schulungen und Sensibilisierungsmaßnahmen für die Mitarbeiter*innen zu den hier genannten Aspekten vorzusehen.
Fazit
Dieser Artikel kann nur einen groben Überblick und Rahmen geben. Die konkreten Inhalte einer auf eure Belange und Nutzungsformen passenden Policy müsst ihr in Anschauung der Spezifika der eingesetzten oder zu entwickelnden KI-Systeme erarbeiten. Das kann auch schlecht an KI delegiert werden: Der Rest des eingangs erwähnten KI-generierten Artikels war nicht wirklich brauchbar, ebenso die testweise mit KI erstellten Policies. Dafür braucht es professionelle Unterstützung.
Der Autor Dr. Daniel Michel, LL.M. ist seit 2004 als Rechtsanwalt im Bereich IT/IP/Technologie tätig. Nach Stationen in spezialisierten und Großkanzleien betreibt er seit 2018 seine eigene Rechtsberatung im Raum München, www.datalawcounsel.com
Empion: Dem Perfect Match auf der Spur
Dr. Larissa Leitner und Dr. Annika von Mutius haben mit Empion das erste automatisierte Headhunting-System auf Basis von KI entwickelt, das – wissenschaftlich fundiert – Fachkräfte schneller aufspürt und treffsicherer vermittelt.

Angesichts des steigenden Fachkräftemangels werben Unternehmen immer stärker um gut ausgebildete, motivierte Mitarbeitende. Sie bieten attraktive Gehälter, zusätzliche Benefits und investieren viel in ihre Arbeitgebermarken. Zahlreiche Jobplattformen und Dienstleister*innen versprechen, dass sie das ideale Match zwischen Bewerber*innen und Unternehmen herstellen können. Doch die Realität sieht häufig anders aus. Beschäftige sind unzufrieden mit ihrem Job, sie wechseln auf gut Glück den Arbeitgebenden oder kündigen innerlich. Für Unternehmen bedeuten unzufriedene Mitarbeitende und Fehlbesetzungen Reibungsverluste und finanzielle Einbußen.
„In Deutschland stehen wir vor dem Problem, dass die Beschäftigung steigt, gleichzeitig jedoch die Produktivität sinkt“, sagt Dr. Annika von Mutius, Mitgründerin und CEO des Berliner HR-Start-ups Empion. Das Phänomen lasse sich durch den falschen Einsatz der Kompetenzen erklären: „Menschen sind besonders leistungsbereit und zufrieden, wenn sie einen Job machen, in dem sie wirklich gut und produktiv sind“, so Annika, und dazu müsse man die richtigen Skills mit den richtigen Aufgaben zusammenbringen.
Wertebasiertes, KI-gestütztes Matching von Kandidat*innen und Jobs
Idealerweise werden die Persönlichkeit und die Anforderungen einer Stelle schon im Bewerbungsprozess umfassend berücksichtigt. Dazu zählen insbesondere auch weiche Faktoren wie individuelle Werte, Unternehmenskultur, Wertschätzung und Respekt, die für Mitarbeitendenzufriedenheit entscheidend sind. Genau das ermöglicht Empion. Kandidat*innen und Unternehmen werden beim Onboarding eingehend befragt und charakterisiert. „Wir betrachten sowohl Persönlichkeitselemente und kulturelle Präferenzen als auch harte Kriterien wie Ausbildung, Berufserfahrung und Mitarbeiterbenefits“, sagt Annika. „So ermöglichen wir Arbeitnehmern und Unternehmen, das entsprechend ideale Match zu finden.“ Das Ziel ist eine maximale Mitarbeitendenzufriedenheit, die sich in einer entsprechend hohen Produktivität und langjähriger Betriebszugehörigkeit widerspiegelt.
Kandidat*innen, die sich für Jobangebote interessieren, können sich bei Empion kostenlos registrieren. „Wir sprechen hier besonders den passiven Bewerbermarkt an“, so Annika, „also diejenigen Menschen, die grundsätzlich offen für neue Chancen und somit wechselbereit sind, die aber nicht unbedingt bereits aktiv suchen.“ Unternehmen schreiben auf der Plattform ihre offenen Positionen aus. Die Bewerber*innenprofile und Stellen werden entlang der zahlreichen Faktoren mit KI-Unterstützung abgeglichen, auf Korrelation geprüft und vorqualifiziert. Die Unternehmen erhalten die voraussichtlich am besten passenden Kandidat*innen als Vorschläge und können in den persönlichen Austausch einsteigen.
Durch die Vorauswahl sparen Unternehmen viel Zeit und bis zu 60 Prozent an Recruitingkosten. Mit der Genauigkeit des Matchings seien die Kund*innen zufrieden, und auch die Mitarbeitendenbindung sei höher als bei Kandidat*innen, die über andere Kanäle rekrutiert werden, so Annika. „Da wir erst knapp drei Jahre als Unternehmen existieren, können wir natürlich noch keine Langzeitwerte liefern und müssen hier einschränken, doch die Erfolge in der Mitarbeitersuche und den ökonomischen Mehrwert von Empion sehen unsere Kunden bereits heute.“
Von der Doktorarbeit zum Start-up
Annika, die in dritter Generation einer Unternehmerfamilie entstammt, entschied sich während ihrer Dissertation in Mathematik für die Gründung. Ihre Mitgründerin Dr. Larissa Leitner lernte sie während einer Konferenz kennen. Larissa schrieb damals ihre Doktorarbeit zur Unternehmenskultur im Mittelstand. Über den Verteiler der Universität erfuhr Annika von Larissas erfolgreicher Dissertation und gratulierte. So begannen sie, sich regelmäßig zu schreiben. Während eines Arbeitsaufenthalts im Silicon Valley trainierte Annika dann Datenmodelle für den pharmazeutischen Markt, um Medikamente zu individualisieren. Als sie nach Deutschland zurückkehrte, traf sie Larissa für ein Wochenende in ihrer Heimat Südtirol. „Da wir beide damals in engem Austausch mit dem Mittelstand standen, kannten wir die Herausforderungen in der Mitarbeitersuche“, so Annika. Mittelständler*innen können bei Bewerber*innen nicht mit den größten Gehältern oder den schönsten Locations punkten, stattdessen aber durch Faktoren wie Teamwork und Unternehmenskultur. „Wir wussten, dass diese Vorzüge im Recruiting kaum eingesetzt werden.“
Sie begannen, mathematische Modelle für das Matching von Unternehmen und Kandidat*innen mit Daten aus Larissas Promotion zu füttern. Die Ergebnisse waren vielversprechend. „Es war ein klassischer Forschungstransfer“, erinnert sich Annika. Der Fokus lag zunächst auf den kulturellen Faktoren. Doch bald stellten sie fest, dass sich die Mitarbeiter*innensuche nicht allein über die Kultur lösen lässt, und sie erweiterten den Ansatz um zusätzliche Persönlichkeitsmerkmale.
Schneller Start, rasantes Wachstum
Um den Prototypen zu entwickeln, beantragten Annika und Larissa das EXIST-Gründerstipendium. „Der Förderantrag war unser erstes gemeinsames Projekt“, so Annika, „und bereits das funktionierte sehr gut.“ Die Wochen der Ideenentwicklung, in der sie die Eckdaten für Produkt und Plattform festlegten, waren für beide die bislang anstrengendste Phase: „Larissa und ich sind wohl eher Macher, und die rein konzeptionelle Arbeit war nichts für uns.“ Doch nach zwei Wochen stand das Konzept. Sie brachten den Ansatz in den Markt, testeten und holten Feedback ein. „Es ist sicherlich eine Persönlichkeitsfrage, aber ich kann jedem Gründerteam nur empfehlen, nicht zu lang im theoretischen Ideenstadium zu verweilen, sondern loszulegen und die Dinge dann schnell anzupassen“, sagt Annika.
Direkt zur Gründung zogen sie nach Berlin. Weil das Geld für ein Büro fehlte, kam das Team zunächst im Büro eines Freundes unter. „Der Deal war, dass wir aufräumen und für Kaffee und Snacks sorgen würden“, so Annika. Das Büro befand sich zufällig unter der Privatwohnung von Angela Merkel, sodass es Tag und Nacht mit bewacht wurde. Empion wurde schnell professioneller, gewann erste Kund*innen und Traktion. Zur weiteren Finanzierung entschlossen sich Annika und Larissa, Beteiligungskapital an Bord zu holen und gewannen so neue Unterstützer wie etwa Robin Behlau von Aroundhome, die nicht nur investierten, sondern auch wichtiges Know-how für das Start-up in der Frühphase mitbrachten. Auch Samuli Siren und Michael Brehm von Redstone Partners waren von der Idee, den HR-Markt datengetrieben anzugehen, angetan. Sie ermutigten das Team, bereits in der Pre-Seed-Runde Venture-Capital-Fonds einzubinden. So konnten sie die Pre-Seed-Runde schließlich mit 20 Business Angels und zwei VC-Fonds schließen.
Ein Jahr später stieg bei der Seed-Runde Cavalry Ventures mit ein. „Das Fundraising war ein schneller, schlanker Prozess, was uns sehr half“, sagt Annika, „so konnten wir uns weiterhin voll auf das operative Kerngeschäft konzentrieren, statt langwierige Fundraising-Prozesse voranzutreiben.“ Bei der Seed-Runde investierten viele Business Angels erneut – ein eher ungewöhnlicher Schritt, der das Vertrauen in das Team und das Unternehmen unterstreicht. Insgesamt hat Empion neun Mio. Euro Beteiligungskapital gesammelt. Das Team umfasst heute rund 50 Personen, das Büro befindet sich am Hackeschen Markt. Zu den über 500 Kund*innen zählen Unternehmen wie Procter & Gamble, Osram, Tengelmann sowie die Volks- und Raiffeisenbanken.
Erfolg stellt das Gründungsteam auf die Probe
Doch der Weg zum Erfolg hatte auch steinige Abschnitte. „Als Gründerinnen verbrachten Larissa und ich zu Beginn viel Zeit zusammen und wurden wirklich gute Freundinnen“, erzählt Annika. Doch mit dem wachsenden Start-up arbeiteten sie irgendwann nicht mehr im selben Büro, sie reisten viel, kümmerten sich um Kund*innen und Mitarbeitende. Die Gespräche wurden seltener und verlagerten sich auf Videocalls. Unter dem fehlenden Austausch litt die Beziehung. Doch gute Beziehungen und Kommunikation im Gründungsteam sind essenziell für den Erfolg eines Start-ups. Sie engagierten einen Coach, der ihnen half, die fehlende gemeinsame Zeit wiederzufinden. Seitdem treffen sich die Gründerinnen wöchentlich an einem Nachmittag und widmen sich gemeinsam strategischen Themen und anderen Dingen, die zusammen zu besprechen sind. „Häufig gehen wir dann noch essen, und das tut uns sehr gut“, sagt Annika.
Das rasante Wachstum von Umsatz und Mitarbeitendenzahl stelle auch Ansprüche an die Entwicklung als Persönlichkeit und Führungskraft: „Im Prinzip entsteht alle sechs Monate ein komplett neues Unternehmen – mit neuen Herausforderungen und Anforderungen an das Management“, so Annika. Einen Teil der notwendigen Fähigkeiten könne man sich erarbeiten, manche Fragen müsse man delegieren und gegebenenfalls auch neue Mitarbeitende an Bord holen. Und für manche Themen müsse man eigene Lösungen entwickeln. „Persönlich geht es darum, die richtige Balance zwischen strategischer und operativer Arbeit sowie zwischen Kontrolle und Abgeben von Verantwortung zu finden“, sagt Annika, „und das kann durchaus herausfordernd sein.“
Weiterentwicklung von Team und Technologie
Im August übernahm Empion das Berliner Unternehmen Zalvus, das ebenfalls Recruiting-Dienstleistungen mit KI-Unterstützung anbietet. Die Stärken von Zalvus liegen im Bereich Performance-Marketing, Big-Data-Analysen und Beratungsleistungen. „Zalvus gibt es seit rund zehn Jahren, das Team bringt neben dem Zugang zu neuen Kundengruppen natürlich auch wertvolle Expertise mit“, sagt Annika. Zalvus verfügt unter anderem über jahrelange Erfahrung im Blue-Collar-Markt, während Empion bislang eher die White-Collar-Jobs im Fokus hat. Die technischen Funktionalitäten und Daten sollen nun in die Empion-Plattform integriert werden, sodass ein gesamtheitliches Produkt entsteht. Parallel dazu arbeitet das Team an der Weiterentwicklung der KI-Systeme, um die wachsende Datenmenge optimal nutzen zu können.
Auch wenn die Gründerinnen mittlerweile hauptsächlich mit dem Management beschäftigt sind, sind sie weiterhin auch im Engineering involviert. „Die ursprünglichen Algorithmen stammen von Larissa und mir, und es freut mich zu sehen, wie wir die Technologie zusammen mit unserem Team weiterentwickeln“, sagt Annika. An den Entwicklungsmeetings teilzunehmen, bereitet den beiden immer noch große Freude. Beim Ausbau des eigenen Teams setzen Annika und Larissa auch auf ihre Plattform. Die Talente durchlaufen danach einen dreistufigen Interviewprozess mit einem Vorgespräch, gefolgt von einem klassischen Interview mit Fallstudien und Scorecards. Im dritten Interview, bei dem der Fokus auf kulturellen Themen liegt, wird geschaut, wie gut ein(e) Kandidat*in tatsächlich ins Team passt. „Wenn ich dieses Gespräch führe, versuche ich immer, meinen ersten Eindruck, egal ob positiv oder negativ, zu revidieren, und mich vom Gegenteil zu überzeugen“, so Annika.
Im Wettbewerb mit den großen Playern
Im Markt konkurriert Empion unter anderem mit Plattformen wie Stepstone und internationalen Unternehmen wie LinkedIn, Monster und Indeed. Neben den großen Playern gibt es hunderte Personalberatungen, Agenturen und Headhunter. „Dazwischen ist jedoch eine große Lücke, und da liegt für uns die Chance“, sagt Annika. Auch viele große Plattformen arbeiten daran, ihre Angebote durch KI zu unterstützen und aufzuwerten. „Doch in der Regel ist das für diese Unternehmen kein Kernthema, weil die alten Geschäftsmodelle für sie noch sehr gut funktionieren.“ Einige Start-ups bieten Lösungen für andere Teilbereiche des HR-Marktes. Testgorilla aus den Niederlanden zum Beispiel ist auf Einstellungstests spezialisiert. „Unser Vorteil ist, dass wir bereits heute zeigen, dass unser Ansatz wissenschaftlich valide ist und ökonomische Vorteile bietet“, so Annika.
Seit Kurzem ist Annika zudem im Vorstand des KI-Bundesverbands, der sich für eine innovationsfreundliche KI-Regulierung einsetzt: „Gesellschaftliches Engagement war mir schon immer ein Anliegen, und ich glaube, dass ich meine Expertise hier sehr gut einbringen kann.“
Empion soll nun zunächst in der DACH-Region weiterwachsen und den Markt durchdringen. Parallel dazu konzentriert sich das Team auf die Produktentwicklung und die Optimierung der Performance. Danach könnte Empion das Angebot auch auf weitere Länder ausweiten.
riprip: EXIST-Team entwickelt Mobile Games als innovatives Serienformat
Das aus der Kunsthochschule Kassel stammende Gründungsteam riprip entwickelt ein innovatives Mobilegame-Genre, das auf typische Glücksspielmechanismen und weitere dark patterns verzichtet. Seit Oktober 2024 wird das Team im Rahmen des 12-monatigen EXIST Gründungsstipendiums bei der Umsetzung seines innovativen Geschäftskonzepts mit insgesamt 139.300 Euro unterstützt.

Als Folge der immer kürzer werdenden Aufmerksamkeitsspannen – insbesondere beim jüngeren Publikum – konkurruieren die traditionellen Videospiele zusehends mit Kurzform-Content auf Social Media, wie Tiktok, Instagram Reels und Youtube Shorts.
Die einzige Alternative, die die Games-Branche bisher anbietet, sind typische Mobilegames aus dem App Store. Diese sind in der Regel mit Glücksspielmechanismen und weiteren „dark patterns“ (manipulativen Mechanismen) verbunden und bieten als einfache Gelegenheitsspiele auch nur selten einen sozial-kulturellen Mehrwert.
Das Gründungsteam riprip entwickelt ein innovatives Mobilegame-Genre, das auf typische Glücksspielmechanismen und weitere dark patterns verzichtet. Als Pilotprojekt produziert riprip aktuell bereits die erste Staffel (10 Folgen) der Spieleserie „Terminal Crossing“ (Arbeitstitel), eine satirische Dekonstruktion des populären Cozy-Game-Genres. Die Spieleserie für mobile Geräte soll im regelmäßigen Rhythmus auf Social Media erscheinen. Die Pilotspielserie dient darüber hinaus dem Aufbau einer eigenen Community, die sich mit dem neuen Genre in einem hohen Maß identifiziert. Schließlich entwickelt das Team im Rahmen der Förderlaufzeit eine eigene Spiel-Engine, die die Entwicklung von Mobilegames erleichtert und Entwicklungsbarrieren abbaut.
„Wir stellen uns eine Welt vor, in der jede(r) Games-Macher*in sein kann“, so Robin Vehrs, Mitglied im ripip-EXIST Team. Das Gründungsteam, bestehend aus Robin Vehrs, Nico Fiona Brauer, Christoph Schnerr und Hannes Drescher, vereint Kompetenzen aus dem Studium der Visuellen Kommunikation an der Kunsthochschule, mit Erfahrungen im Projekt-, Finanz- und Communitymanagement.
Als EXIST Mentor unterstützt Prof. Joel Baumann, ehemaliger Rektor und Leiter des Fachbereichs Neue Medien an der Kunsthochschule, das Team mit seiner Expertise und seinem Netzwerk. Der Studienschwerpunkt Neue Medien wurde Ende 2003 im Studiengang Visuelle Kommunikation an der Kunsthochschule Kassel etabliert. „Das Studium der neuen Medien bedeutet eine künstlerische oder gestalterische Auseinandersetzung mit Technologien einzugehen. Es gilt zukünftige Infrastrukturen zu erforschen und zu entwickeln, hierbei Irrwege zu akzeptieren und daraus zu lernen. Studierende sind aufgefordert, Technologiebegeisterung kritisch zu hinterfragen, zu reflektieren und in theoretischen und gesellschaftlichen Diskursen neu zu verhandeln“, so Baumann.
EXIST ist ein Förderprogramm des Bundesministeriums für Wirtschaft und Energie. Ziel ist es, das Gründungsklima an Hochschulen und außeruniversitären Forschungseinrichtungen zu verbessern. Darüber hinaus sollen die Anzahl und der Erfolg technologieorientierter und wissensbasierter Unternehmensgründungen erhöht werden. Bisher konnten bereits rund 50 Projekte der Universität Kassel durch das EXIST-Förderprogramm unterstützt werden. Die Fördersumme umfasst Personal-, Sach- und Coachingmittel. Betreut werden die Teams vom UniKasselTransfer Inkubator, der zentralen Gründungsförderung der Universität Kassel. Der Inkubator begleitet Nachwuchswissenschaftler*innen, Mitarbeitende, Studierende und Alumni der Universität Kassel und der Kunsthochschule mit einem weitreichenden Unterstützungsangebot in der Phase von der Ideenfindung bis zur Gründung.