Aktuelle Events
KI als Start-up-Helfer
Wie Start-ups mit künstlicher Intelligenz den Markt leichter erobern können. Inkl. der Top 10 KI-Anwendungsfälle für Start-ups.
Im digitalen Zeitalter ist Content König – doch nicht jedes Königreich verfügt über die gleichen Ressourcen. Start-ups stehen vor der gewaltigen Aufgabe, in einer Welt, die von Content überschwemmt wird, die richtigen Botschaften zu senden und sich von der Konkurrenz abzuheben. Mit begrenzten Budgets und oft knappen Personalressourcen ist es für sie eine Herausforderung, Inhalte zu erstellen, die nicht nur die eigene Marke stärken, sondern auch die Kund*innenbindung erhöhen und letztlich zu Umsatz führen.
In einem solchen Szenario entfaltet künstliche Intelligenz (KI) ihr volles Potenzial als Gamechanger. KI eröffnet neue Wege zur Automatisierung und Personalisierung der Erstellung von Inhalten – von der Erzeugung aufmerksamkeitsstarker Überschriften bis hin zur Formulierung überzeugender Produktbeschreibungen. KI-basierte Plattformen bieten Start-ups eine effiziente, leistungsstarke Lösung, um ihren Content nicht nur zielgruppengerecht, sondern auch wirtschaftlich und datengetrieben zu erstellen – und das bei gleichzeitig hoher Qualität.
Die digitale Marketinglandschaft verstehen
Die digitale Marketingwelt ist für Start-ups gleichermaßen ein Land der unbegrenzten Möglichkeiten wie ein Schlachtfeld intensiven Wettbewerbs. Eine kraftvolle digitale Präsenz ist entscheidend, um Aufmerksamkeit für die eigene Marke zu generieren und kontinuierliches Wachstum zu gewährleisten. Dabei sind Markenbekanntheit und ein effektives Management verschiedenster Marketingkanäle zentrale Faktoren, die von jungen Unternehmen beherrscht werden müssen. Budgetrestriktionen und die Herausforderung, sich in einem dicht besiedelten Markt gegen etablierte Mitbewerber*innen durchzusetzen, sind jedoch Hürden, die es zu überwinden gibt.
Es gilt, mit begrenzten Mitteln einen maximalen Effekt zu erzielen, die eigene Marke bekannt zu machen und die erzielte Aufmerksamkeit in nachhaltige Kund*innenbeziehungen und -umsätze zu konvertieren.
In diesem dynamischen Umfeld eröffnet KI als Schlüsseltechnologie Wege, um diese Hürden mit geringeren Ressourcen zu meistern und die Wirksamkeit ihrer Marketingaktivitäten zu steigern. Durch den Einsatz von KI-Tools kannst du effiziente und personalisierte Marketingstrategien entwickeln, die sowohl die Kund*innenansprache verbessern als auch eine konsistente, überzeugende Markenbotschaft über alle digitalen Kanäle hinweg gewährleisten. KI-unterstütztes Marketing ist somit nicht nur ein Katalysator für verbesserte Performance, sondern ermöglicht auch die Einsparung kostbarer Zeit und Finanzmittel, die stattdessen in das Kerngeschäft und innovative Entwicklungen investiert werden können.
Lernmöglichkeiten und Wachstum durch KI
Der eigenständige Umgang mit KI-Lösungen kann für dich eine erhebliche Bereicherung darstellen. Anstatt auf teure externe Agenturen angewiesen zu sein, die vielleicht nicht immer die dringenden und spezifischen Bedürfnisse eines agilen Start-ups vollständig verstehen, können es KI-Tools deinen Mitarbeitenden ermöglichen, den Content-Creation-Prozess inhouse zu übernehmen. Dadurch erhalten sie direkte Kontrolle und ein Verständnis dafür, wie ihre Botschaften geformt und vermittelt werden.
Der Einsatz von KI schult Teams darin, datengesteuerte Entscheidungen zu treffen. Jedes Mal, wenn ein KI-Tool zur Erstellung oder Verbesserung von Content verwendet wird, ergeben sich daraus Erkenntnisse über die Präferenzen der Zielgruppe, über die Sprache, die am besten auf dem Markt ankommt und über Strategien, die die höchste Engagement-Rate aufweisen. Dieses Wissen, das oft in Echtzeit generiert wird, ist von unschätzbarem Wert beim Aufbau einer effektiven Marketingstrategie und bei der Feinabstimmung der Markenbotschaft.
Gleichzeitig fördern KI-Tools die Kreativität in deinem Unternehmen, indem sie Mitarbeitende ermutigen, neue Inhaltsformate zu erforschen und zu experimentieren, ohne sich Sorgen um Ressourcen zu machen. Beispielsweise kann die Generierung eines Blogs, einer Produktbeschreibung oder eines Social-Media-Posts durch KI das Team dazu inspirieren, einzigartige Kampagnen zu entwickeln, die die Marke vom Wettbewerb abheben.
Die Top 10 KI-Anwendungsfälle für Start-ups
KI-Technologie unterstützt dich und dein Team bei einer Vielzahl von Aufgaben im Content-Marketing:
- Kurze Beschreibungen für Suchmaschinen: Du kannst KI nutzen, um kurze und präzise Beschreibungen zu erstellen, die bei Suchanfragen in den Suchergebnissen angezeigt werden. Diese Beschreibungen werden so gestaltet, dass sie die Aufmerksamkeit der Suchenden auf sich ziehen und ihre Neugier wecken.
- Produktbeschreibungen für Online-Shops: Mithilfe von KI werden trockene Produktlisten in überzeugende Kaufempfehlungen umgewandelt. Die KI wählt die wichtigsten Informationen über ein Produkt aus und beschreibt es so lebendig, dass man es beinahe riechen, schmecken oder fühlen kann.
- Inhalte für eine bessere SEO: Du kannst KI weiterhin verwenden, um fesselnde Inhalte zu generieren, die sowohl Leser*innen als auch Suchmaschinen ansprechen. Die KI analysiert Suchverhalten und Trends, um relevante und interessante Inhalte zu erstellen, die eine hohe Klickrate erzielen.
- Social-Media-Posts: Um auf Social Media herauszustechen, kann KI genutzt werden, um ansprechende Inhalte zu erstellen. Egal ob lange LinkedIn-Posts, kurze Facebook-Beiträge oder sogar Instagram-Steckbriefe, die KI setzt die Social-Media-Inhalte in spezifische Kontexte und lädt die Follower*innen dazu ein, sich damit zu beschäftigen und zu interagieren.
- Schreiben von professionellen E-Mails: Mit KI wird das Verfassen von professionellen E-Mails einfacher. Die KI verwendet Sprachmodelle und Branchenwissen, um maßgeschneiderte Nachrichten zu erstellen. Es gibt Vorlagen und personalisierte Vorschläge, um den Ton und die Kommunikationsprozesse jedes Unternehmens zu optimieren.
- Umschreiben von Texten: Mit KI-Tools können Inhalte flexibel an verschiedene Formate angepasst werden. Zum Beispiel kann KI Texte zusammenfassen oder Textpassagen umschreiben. Ob es sich um Blogbeiträge, Newsletter oder Social-Media-Posts handelt, die KI passt die Inhalte nahtlos an die Anforderungen der verschiedenen Plattformen an.
- Aufwertung von Texten: KI hilft dir, deine Texte ansprechender zu gestalten. Die KI analysiert das Vokabular und schlägt kraftvolle Wörter und Satzstrukturen vor, um den Text unverwechselbar und ausdrucksstark zu machen.
- Erstellung von branchen- oder themenspezifischen Inhalten: Mithilfe von KI kannst du relevante Themen, Sprachmuster und Keywords identifizieren, die deine Zielgruppe ansprechen. So erstellst du Inhalte, die speziell auf die Sprache deiner Branche und auf die Interessen deiner Zielgruppe zugeschnitten sind.
- Beantwortung von Kund*innenanfragen: KI-Systeme helfen dir dabei, spezifische Anfragen schnell zu identifizieren und individuelle Antworten zu generieren. Das sorgt für eine konsistente und qualitativ hochwertige Kund*innenbetreuung und spart gleichzeitig wertvolle Zeit.
- Texte für Webseiten erstellen: Um eine ansprechende Online-Präsenz zu schaffen, kannst du KI nutzen, um überzeugende Texte für deine Websites zu erstellen. Die KI optimiert die Inhalte für Suchmaschinen und sorgt dafür, dass sie relevant, informativ und zugleich ansprechend für deine Leser*innen sind.
Fazit
Das digitale Marketingumfeld stellt Start-ups vor einzigartige Herausforderungen, die durch begrenzte Ressourcen und die Notwendigkeit, in einem dichten und wettbewerbsintensiven Markt hervorzustechen, verstärkt werden. In dieser Landschaft hat sich KI als unverzichtbares Werkzeug etabliert, das nicht nur die Effizienz und Personalisierung der Content-Erstellung verbessert, sondern auch bedeutsame Lernmöglichkeiten bietet, um internes Know-how auszubauen und die Abhängigkeit von externen Dienstleister*innen zu verringern.
Der Autor Henrik Roth ist Co-Founder der neuroflash GmbH, die mittels KI-Technologien Unternehmen direkte Unterstützung bei der Erstellung hochwirksamer sowie authentischer Inhalte bietet.
Diese Artikel könnten Sie auch interessieren:
Verkaufen ohne Shop: Zahlungen erhalten mit PayPal Open
Sie verkaufen digitale Kunst, Online-Kurse oder Handgemachtes? Dafür ist ein Shop nicht zwingend nötig. Mit Zahlungslinks und Kaufen-Buttons von PayPal erhalten Sie Ihre Zahlungen, wo die Verkäufe entstehen – schnell, sicher und unkompliziert.
Zahlungen empfangen, wo Ihre Community ist
Viele Soloselbständige nutzen Social Media, E-Mails oder Messenger nicht nur zur Kommunikation, sondern auch zur Vermarktung ihrer Produkte. Mit den passenden Tools können sie dort zusätzlich direkt Zahlungen empfangen – ganz ohne Onlineshop oder technisches Setup.
PayPal Open bietet drei flexible Möglichkeiten, Zahlungen zu erhalten:
- Zahlungslinks, die schnell geteilt werden können, etwa per E-Mail, DM, Post oder QR-Code.
- Kaufen-Buttons, die sich in eine bestehende Seite integrieren lassen, zum Beispiel in ein Link-in-Bio-Tool oder eine Landingpage.
- Tap to Pay macht Ihr Smartphone zum Zahlungsterminal (kompatibles Smartphone vorausgesetzt).
Alle Varianten funktionieren schnell, mobiloptimiert und bieten eine vertraute Nutzererfahrung. Damit wird der Ort, an dem Interesse entsteht, direkt zum Verkaufsort.
Zahlungslinks: Vom Post zur Bezahlung in Sekunden
Ein Kauf beginnt nicht im Warenkorb, sondern dort, wo Interesse entsteht: in einem Post, einer Story oder einer E-Mail. Genau hier setzen Zahlungslinks von PayPal an: Sie führen direkt von der Produktinfo zur Zahlung, ohne Umwege über externe Plattformen.
Das ist besonders hilfreich bei:
- digitalen Produkten
- E-Book-, Kurs- oder Software-Verkäufen
- (Online-)Vorbestellungen oder Trinkgeld-Modellen
Ein Zahlungslink erzeugt eine eigene Bezahlseite mit Titel, Preis, Beschreibung und Produktbild. Varianten wie Größen oder Farben sind ebenso integrierbar wie frei wählbare Preise. Versandkosten und Steuern können automatisch berechnet werden.
Der fertige Zahlunglink lässt sich flexibel teilen: per Messenger, E-Mail, Social Media oder als QR-Code auf einem Produktetikett oder Tischaufsteller. Die Zahlungsseite unterstützt gängige Zahlarten wie Kreditkarte, Wallets sowie ausgewählte regionale Methoden wie SEPA-Lastschrift, iDEAL oder Swish – je nach Land und Verfügbarkeit für die jeweiligen Käufer:innen.
Besonders praktisch: Ihre Kund:innen brauchen dafür kein eigenes PayPal-Konto. So können Zahlungen sicher und bequem online abgewickelt werden.
Für Selbständige, die regelmäßig digitale Inhalte verkaufen, ist das eine einfache Möglichkeit, Zahlungen mit PayPal zu empfangen, ohne ein klassisches Shopsystem aufsetzen zu müssen.
Kaufen-Buttons: Ihre Seite wird zur Verkaufsfläche
Wer bereits eine Website oder ein Link-in-Bio-Tool nutzt, kann PayPals Warenkorb- oder Kaufen-Buttons mit wenigen Zeilen Code integrieren. Damit verwandeln Sie eine einfache Landingpage in eine funktionale Verkaufsfläche. Sie erstellen den Button in Ihrem PayPal-Konto und erhalten automatisch den passenden HTML-Code, der nur noch kopiert und in die Website eingefügt wird. Kund:innen klicken, zahlen mit ihrer bevorzugten Methode und der Betrag wird direkt gutgeschrieben.
Sie behalten die volle Kontrolle über Ihre Gestaltung, Storytelling und Nutzerführung und profitieren gleichzeitig von einem verlässlichen Check-out, der hilft Vertrauen zu schaffen. Eine schlanke Lösung für alle, die ihr Angebot online präsentieren und Zahlungen direkt abwickeln möchten.
Mit Tap to Pay ganz einfach vor Ort verkaufen
Neben den digitalen Optionen können Sie auch vor Ort Zahlungen annehmen: direkt über Ihr Smartphone. Mit der PayPal-Funktion „Tap to Pay“ akzeptieren Sie kontaktlose Zahlungen per Karte oder Wallet ohne separates Kartenlesegerät. Alles, was Sie benötigen, ist ein kompatibles iPhone oder Android-Gerät mit NFC-Funktion (Tap to Pay funktioniert auf Geräten mit Android 8.0, NFC-Funktionen und Google Play Services. iOS ab iPhone XS und höher).
Besonders praktisch ist das beispielsweise für:
- Märkte, Pop-up-Stores
- Workshops und Live-Events
- Verkäufe im kleinen Rahmen, bei denen Flexibilität zählt
Europa kann KI!
Was wir von den besten EU-AI-Companies lernen können, erläutert KI-Experte Fabian Westerheide.
Europa muss sich bei KI nicht kleinreden. Wir sehen gerade sehr deutlich: Aus Europa heraus entstehen Unternehmen, die Kategorien besetzen – und dann auch das große Kapital anziehen. Beispiele gibt es genug: Mistral AI, DeepL, Black Forest Labs, Parloa, Helsing, Lovable oder n8n.
Ich schreibe das aus drei Blickwinkeln: als Investor (AI.FUND), als Konferenz-Initiator (Rise of AI Conference) und als Autor von „Die KI-Nation“. Was du hier bekommst, ist kein „Europa-hat-ein-Problem“-Essay – sondern eine Analyse plus ein Execution-Set an Empfehlungen, das du direkt auf dein Start-up übertragen kannst.
Die Realität: Seed geht oft – Scale ist das Spiel
Am Anfang brauchst du selten „zu viel“ Geld. MVP, erste Kunden, Iteration: Das klappt in Deutschland in vielen Fällen mit Seed. Die echte Trennlinie kommt später – wenn du aus einem starken Start-up einen Kategorie-Gewinner bauen willst.
Denn KI ist zunehmend Winner-takes-most. Und das gilt auch fürs Kapital: In vielen Fällen ist die Growth-Finanzierung in den USA grob 25-mal größer – bei den aktuellen Front-Runnern (Modelle, Infrastruktur, Distribution) wirkt es teilweise wie 100-mal, weil Kapital sich auf die vermuteten Sieger stapelt. (Nicht „fair“, aber Marktmechanik.)
Die gute Nachricht: Genau die EU-Vorbilder oben zeigen, dass du das nicht wegdiskutieren musst – du musst es exekutieren.
Was die EU-Winner gemeinsam haben: 6 Execution-Prinzipien
1. Starkes Gründerteam – aber vor allem: vollständig
Alle genannten Vorbilder hatten (oder bauten sehr schnell) ein Team, das drei Dinge gleichzeitig kann:
- Tech & Produkt (nicht nur „Model-IQ“, sondern Produktgeschmack)
- Go-to-Market (Vertrieb, Buyer-Verständnis, Pricing)
- Tempo (entscheiden, shippen, lernen)
Wenn eine Säule fehlt, zahlst du später mit Zeit. Und Zeit ist in KI eine Währung, die dir niemand schenkt.
Founder-Move: Benenne eine Person, die Umsatz genauso hart verantwortet wie Modellqualität. Wenn das „später“ ist, ist das sehr wahrscheinlich dein Bottleneck.
2. Global denken – aber spitz: KI-Nische statt Bauchladen
Die EU-Winner sind nicht „KI für alles“. Sie besetzen klare Nischen:
Language-AI (DeepL), Customer-Experience-Agents (Parloa), GenAI-Modelle (Black Forest Labs), Defence-Tech (Helsing), Builder/Vibe-Coding (Lovable), Orchestration & Automation (n8n), Foundation-Model-Ambition (Mistral).
Founder-Move: Formuliere deinen Claim so, dass er in einem Satz sagt, welche Kategorie du dominierst. Wenn du drei Absätze brauchst, bist du noch zu breit.
3. Umsatz ist keine Nebenwirkung – Umsatz ist Souveränität
Der schnellste Weg zu Growth-Capital ist nicht „noch ein Pilot“, sondern Revenue, der deine Kategorie glaubwürdig macht.
Parloa kommuniziert z.B. ARR > 50 Mio. USD und wächst international – genau die Art Signal, die große Runden freischaltet.
Founder-Move (gegen Pilotitis): Kein PoC ohne schriftlichen Pfad in einen Vertrag (Budget, KPI, Entscheidungstermin). Sonst finanzierst du mit deiner Runway den Lernprozess des Kunden.
4. Internationales Kapital früh anbahnen – bevor du es brauchst
Das Muster ist klar: Erst Kategorie-Story + Traktion, dann große Checks.
Mistral (Series C 1,7 Mrd. €) oder Lovable (330 Mio. USD bei 6,6 Mrd. Bewertung) sind kein „Glück“ – das ist Momentum + Positionierung + Timing.
Founder-Move (90-Tage-Plan):
- Baue eine Capital Map deiner Nische (wer zahlt Growth-Checks?)
- Definiere die drei Metriken, die diese Investor:innen sehen wollen
- Organisiere zehn Intros jetzt, nicht erst bei sechs Monaten Runway
5. Compute ist keine IT-Zeile – es ist ein Wachstumshebel
In KI ist Compute Teil deiner Wettbewerbsfähigkeit. Geschwindigkeit beim Trainieren, Testen und Deployen entscheidet, wie schnell du am Markt lernst.
Founder-Move: Plane Compute-Runway wie Cash-Runway. Verhandle früh Kontingente, bevor dein Verbrauch explodiert – sonst wird Wachstum plötzlich zur Margen-Frage.
6. Trust & Compliance als Verkaufsargument – nicht als Ausrede
Gerade in DACH gilt: Wer secure, audit-fähig, enterprise-ready wirklich liefern kann, gewinnt Deals.
DeepL betont genau diesen Business-Wert: verlässliche, sichere Lösungen statt Hype.
Founder-Move: Baue Trust-Artefakte früh – Dokumentation, Governance, Datenflüsse, Rollen, Audit-Spuren. Das beschleunigt Enterprise-Vertrieb, statt ihn zu bremsen.
Kurz-Checkliste: Wenn du in Europa KI gewinnen willst
- Kategorie in einem Satz (spitze Nische, globaler Anspruch)
- Klarer Revenue-Pfad (weniger Piloten, mehr Verträge)
- Capital Map (international früh andocken)
- Compute-Runway (wie Cash planen)
- Trust by Design (verkaufsfähig machen)
- Tempo als Kultur (shippen, messen, nachschärfen)
Europa kann KI. Die Frage ist nicht, ob hier Talent existiert – das ist bewiesen.
Die Frage ist, ob du Execution so aufsetzt, dass aus Talent Marktführerschaft wird.
Der Autor Fabian Westerheide gestaltet als KI-Vordenker, Investor, Ökosystem-Pionier und Keynote Speaker seit über einem Jahrzehnt die Debatte um KI, Macht und digitale Zukunft mit.
KI als neuer Ort für Kaufentscheidungen
Das Start-up publuence.ai zeigt am Beispiel der Automobilbranche, wie Marken in generativen KI-Antworten sichtbar werden und warum das zum neuen Erfolgsfaktor wird.
2025 haben wir euch das Start-up publuence.ai von Cevahir Ejder als "Gründer*in der Woche" präsentiert. Publuence.ai ist eine SaaS-Lösung für AI Search Analytics für Marken, die täglich analysiert, wie sichtbar Marken in generativen KI-Antworten sind: bei welchen Fragen erscheinen sie, wie werden sie erwähnt und welche Inhalte sowie Quellen beeinflussen die Antworten. Da die KI-Sichtbarkeit zunehmend darüber entscheidet, ob eine Marke in der engeren Auswahl der Konsumenten stattfindet, sind die Ergebnisse für Unternehmen strategisch sehr relevant.
Beispiel Automobilbrache: KI wird zum Verkaufsberater, Chatfenster zum Showroom
Während Marketing- und Kommunikationsbudgets weiterhin nach klassischen Logiken verteilt werden, fällt ein entscheidender Teil der Markenbildung inzwischen außerhalb des Mediaplans: KI-Systeme beantworten Kauf- und Vergleichsfragen oft lange bevor Kampagnen greifen. Anhand der Automobilbranche etwa, in der Marken wie Volkswagen für eine ganze Industrie stehen, zeigt sich, dass sich Sichtbarkeit im KI-Dialog zum neuen Machtfaktor entwickelt. Sie entscheidet zunehmend darüber, welche Hersteller überhaupt in die engere Auswahl kommen.
Was früher im Autohaus oder auf Herstellerwebsites stattfand, spielt sich heute in KI-gestützten Beratungsgesprächen ab. Nutzer*innen stellen dort Fragen wie: „Welche E-Autos sind familienfreundlich?“ „Wie gut ist die Reichweite im Winter?“ „Welche Modelle laden am schnellsten?“
In der Initialanalyse erzielt beispielsweise VW im Themenbereich E-Autos – je nach Fragestellung bzw. Prompt – Sichtbarkeitswerte zwischen 20 und 88 Prozent. Damit prägen die Antworten frühzeitig das Bild, das Konsument*innen von der Marke haben. Wer dort nicht vorkommt beziehungsweise seine Mehrwerte nicht sichtbar macht, wird in der Entscheidungsfindung schlicht nicht berücksichtigt.
Tesla und Hyundai vorn, VW im Mittelfeld
Das aktuelle Wettbewerbsranking der führenden Automobilhersteller – basierend auf 30 relevanten KI-Prompts rund um das Thema Elektromobilität – zeigt, wie präsent die einzelnen Marken im neuen digitalen Beratungsraum sind. Mit knapp 64 Prozent Sichtbarkeit führt Tesla klar und profitiert von seiner technologischen Positionierung sowie einer starken Medienpräsenz. Überraschend landet Hyundai insbesondere im E-Auto-Segment mit mehr als 58 Prozent dahinter. Volkswagen erreicht solide, aber deutlich ausbaufähige 51 Prozent.
Doch es geht nicht nur um Quantität, die Analyse zeigt auch, wo das Bild der Marken ins Wanken gerät. Im Fall von VW sind es vor allem Themen wie Winterreichweite, Ladeinfrastruktur und Schnellladekosten, die negative Ausschläge erzeugen. Diese kritischen Inhalte sind es allerdings, die die Markenwahrnehmung und dementsprechend auch die konkreten Kaufentscheidungen beeinflussen.
Die stille Macht der Quellen: Medien, die prägen
Eine zentrale Erkenntnis der Analyse von publuence.ai ist, dass KI-Systeme nicht auf Basis eines objektiven Querschnitts des Internets antworten. Vielmehr orientieren sie sich an bestimmten Medienquellen, deren Inhalte überproportional stark einfließen und so die Darstellung von Marken maßgeblich mitformen. Umso wichtiger ist es für Marken zu verstehen, auf welche Fragen sie reagieren müssen – und über welche vertrauenswürdigen Medien sie in den Wissensraum der KI gelangen.
Dabei zeigen sich je nach Medium erhebliche Unterschiede in der Tonalität. Während focus.de sowie adac.de E-Mobilität eher wohlwollend behandelt, sind andere Portale kritischer. Für Unternehmen bedeutet das: Wer verstehen will, wie KI über die eigene Marke spricht, muss wissen, welche Inhalte sie beeinflussen.
Warum Marken nicht an KI-Monitoring vorbeikommen
Publuence.ai bietet Unternehmen ein strukturiertes, datenbasiertes Werkzeug, um ihre Sichtbarkeit in KI-Systemen wie ChatGPT, Google oder Perplexity zu analysieren und darauf aufbauend gezielt zu steuern. Die Plattform zeigt, welche Fragen zur Marke führen, wie die Antworten ausfallen, welche Medien zugrunde liegen und wo Wettbewerber besser abschneiden.
Besonders wichtig ist die Identifikation von Content- und Sentiment-Gaps. Sie erkennt Themenfelder, in denen eine Marke kaum oder gar nicht auftaucht, obwohl sie dort relevant sein sollte. Gleichzeitig analysiert sie, ob etwas positiv, negativ oder neutral erwähnt wird. Dies macht publuence.ai für Kommunikations-, Marketing- und Markenverantwortliche zum zentralen Steuerungsinstrument. Nur wer versteht, wie KI antwortet, kann Inhalte gezielt darauf anpassen, Medienarbeit datenbasiert ausrichten und so die eigene Markenpräsenz dort stärken, wo die Entscheidungen heute vorbereitet werden.
KI-Sichtbarkeit wird zur Basis für Markterfolg
Cevahir Ejder, Gründer und GF der publuence GmbH, fasst zusammen: „Kaufentscheidungen beginnen heute und auch in Zukunft im Dialog mit KI-Systemen. Marken, die dort nicht auftauchen, sind raus.“ Volkswagen steht dabei stellvertretend für viele Unternehmen, die ihren Fokus noch auf klassische Marketingkanäle legen und den digitalen Showroom der KI bislang kaum berücksichtigen. Ejder warnt: „Wer jetzt nicht handelt, riskiert, neben Reichweitenverlusten, einen tiefgreifenden Bedeutungsverlust im Moment der Entscheidung.“
Optocycle: Bauschutt-Recycling auf KI-Basis
Die Optocycle-Gründer Max-Frederick Gerken und Lars Wolff Optocycle zeigen, wie aus Bauschutt neuer Rohstoff wird und erhalten dafür eine Förderung der Deutschen Bundesstiftung Umwelt (DBU).
Jährlich fallen in Deutschland laut Umweltbundesamt rund 86 Mio. Tonnen Schutt und Abfälle auf Baustellen an. Häufig landen diese Materialien auf Deponien. So gehen allerdings wertvolle Ressourcen verloren. Der Ausweg: Ein hochqualitatives Recycling des Schutts vermeidet klimaschädliche Emissionen und hält wertvolle Materialien im Wertstoffkreislauf – und das bei zertifiziert gleichwertiger Qualität.
Um das Recycling von Material im Bausektor zu automatisieren, entwickelt das 2022 von Max-Frederick Gerken und Lars Wolff gegründete Start-up Optocycle aus Tübingen ein System auf Grundlage künstlicher Intelligenz (KI) zum Echtzeit-Monitoring.
Echtzeit-Monitoring im Recycling-Prozess
Die Deutsche Bundesstiftung Umwelt (DBU) fördert das Projekt mit rund 170.000 Euro. Im Rahmen der DBU-Green Startup-Förderung haben die Gründer ein KI-basiertes System zur automatischen, reproduzierbaren Klassifizierung von Bauabfällen entwickelt. Darauf aufbauend soll nun ein Prototyp das Echtzeit-Monitoring von RC-Körnungen – also recycelten Gesteinskörnungen aus Bauschutt – ermöglichen.
„Aktuell basiert in der Branche der Aufbereitungsprozess von Bauschutt meist auf subjektiven Schätzungen“, so Max-Frederick Gerken. Auch das Endprodukt werde nur stichprobenartig im Labor überprüft. Mit dem System sei „Echtzeitmonitoring von Recycling-Gesteinskörnungen möglich. Somit können die Qualität der Körnung verbessert und mehr Material in die Beton-Produktion überführt werden“, so Gerken.
Die Qualität von Sekundärrohstoffen verbessern
Das System kombiniert laut Gerken moderne, optische Sensorik mit KI – und löse so ein altbekanntes Problem in der Baubranche. „Zurzeit schwankt oft die Beschaffenheit der recycelten Rohstoffe. Das bedeutet einerseits ein wirtschaftliches Risiko für Unternehmen und führt andererseits zum Verlust von wertvollen Materialien“, so Gerken. Optocycle erwartet mithilfe seiner Entwicklung eine 20 Prozent höhere Menge an recycelten, hochqualitativen Gesteinskörnungen sowie 15 Prozent geringere Abfallreste, die sonst auf Deponien landen würden. Dazu werden nach Gerkens Angaben sowohl der eingehende Schutt „optimal klassifiziert“ als auch das Ergebnis transparent überprüft. Kooperationspartner ist hierbei die Heinrich Feeß GmbH, die laut Gerken bereits seit vielen Jahren mit Optocycle zusammenarbeitet. Der Mitgründer weiter: „Die Technologie leistet einen Beitrag für Kreislaufwirtschaft im Bauwesen. Wir helfen dabei, die Qualität von Sekundärrohstoffen zu verbessern, die aus dem Bauschutt gewonnen werden. Diese Lösung lässt sich zudem perspektivisch auf alle Abfallströme übertragen."
Das System von Optocycle kann Gerken zufolge direkt in bereits bestehende Anlagen zur Verarbeitung von Bauabfällen installiert werden – „direkt über dem Fließband.“ Diese einfache Nachrüstung spare Kosten und ermögliche die schnelle Umsetzung eines innovativen Bauschutt-Recyclings. „Denn nur wenn das Recycling finanziell machbar ist, kann die Kreislaufwirtschaft in der Baubranche Erfolg haben“, so Gerken.
Kreislaufwirtschaft in der Baubranche ist aktiver Klimaschutz
Kreislaufwirtschaft in der Baubranche hat nach den Worten des zuständigen DBU-Referenten Dr. Volker Berding wichtige Effekte für den Klimaschutz: „Die Produktion von immer neuem Beton sorgt für hohen Ausstoß von klimaschädlichen Treibhausgasen.“ Einer WWF-Studie zufolge entstehen bei der Herstellung von Zement – dem wichtigsten Bestandteil von Beton – acht Prozent der gesamten globalen Treibhausgasemissionen. Berding: „Alles, was zur einer Emissionsreduzierung beiträgt, hat also bereits einen großen Effekt für den Klimaschutz.“ Eine Kreislaufwirtschaft funktioniere jedoch nur, „wenn die Sekundärrohstoffe sich qualitativ nicht von einer Neuproduktion unterscheiden. Genau diesen Schritt kann Optocycle mit einem skalierbaren, optimierten Prototypen gehen.“
Social Engineering auf dem Vormarsch
Wie Deepfakes die Sicherheit von Führungskräften stärker in den Fokus rücken.
Fotorealistische KI liefert innerhalb von kürzester Zeit realistische Visuals. Was in vielerlei Hinsicht den Arbeitsalltag erleichtert, bedeutet für Social Engineering jedoch eine neue Eskalationsstufe, wie nicht zuletzt die hitzige Debatte um massenhaft sexualisierte Deepfakes von realen Personen durch Grok eindrücklich vor Augen führte.
Auch Personen in leitenden Funktionen in Unternehmen sind vor solchen Manipulationen nicht gefeit. Zunehmend zielen Angriffe auf Menschen mit Zugriffsrechten und Entscheidungsbefugnissen, deren Freigaben unmittelbare Wirkung auf die Sicherheit einer ganzen Organisation haben. „Fotorealistische KI und hybride Social-Engineering-Kampagnen erhöhen den Druck auf Schlüsselpersonen. Daher brauchen Unternehmen belastbare Verifikationsprozesse, Krisenroutinen und integrierte Schutzkonzepte“, erklärt Markus Weidenauer, geschäftsführender Gesellschafter der SecCon Group GmbH.
Deepfakes zielen auf privates Umfeld
Nach Angaben des Bundesamts für Sicherheit in der Informationstechnik (BSI) lassen sich Deepfakes als Verfahren beschreiben, die gezielt Spear-Phishing und andere Social-Engineering-Angriffe nutzen, um Vertrauen aufzubauen und Autorität zu simulieren. Generative KI fungiert dabei als zentraler technischer Enabler, da sie die realistische Erzeugung manipulativer Audio-, Video- und Textinhalte erstmals in industriellem Maßstab ermöglicht. „Die eigentliche Bedrohung ergibt sich dabei nicht aus einzelnen KI-generierten Inhalten, sondern aus deren koordinierter Nutzung“, weiß der Sicherheitsexperte.
Infolge der steigenden Qualität und der zunehmenden Verfügbarkeit generativer KI wird es darüber hinaus zunehmend schwieriger, Fakt von Fiktion zu unterscheiden „Zwar können isolierte Inhalte für sich betrachtet zweifelhaft sein, doch das konsistente Zusammenspiel mehrerer manipulierter Medieninhalte erhöht die wahrgenommene Glaubwürdigkeit erheblich“, ergänzt der Profi und weist darauf hin, dass sich diese Entwicklung in der Praxis zuspitzt. „Social Engineering, Deepfakes und digitale Erpressung werden immer häufiger mit Observationen des privaten Umfelds sowie Angriffen auf die Heim-IT kombiniert. Durch diese Eskalation der Angriffsmittel bauen Täter gezielt psychologischen Druck auf, der die Widerstandsfähigkeit der Betroffenen weiter reduziert.“
Risiken kennen, Wege einüben
Kompromittierte Schlüsselpersonen mit Steuerungs- und Entscheidungsfähigkeiten bergen hohes Schadenspotenzial für Betriebe. Das reicht von unmittelbaren finanziellen Verlusten bis zu dauerhaften Reputationsschäden. Dieses Risiko wird insbesondere dort verstärkt, wo organisatorische und prozessuale Absicherungen fehlen. „Resilienz bedeutet aber, auch in potenziellen Krisensituationen sichere Entscheidungen treffen zu können“, betont Markus Weidenauer. Trotzdem mangelt es vielen Unternehmen sowohl an speziellen Trainings zum Thema Social Engineering als auch an Meldewegen, klaren Freigabeprozessen, die auch unter Druck funktionieren, sowie alternativen Kommunikationskanälen. „Nur wenn Mitarbeiter diese Strukturen kennen und regelmäßig einüben, entsteht eine Kultur, in der eine frühzeitige Eskalation in der Meldekette als notwendiger Beitrag zur Sicherheit des gesamten Betriebs wahrgenommen wird“, fügt Markus Weidenauer hinzu.
Dringender Handlungsbedarf in Unternehmen
Um hier Abhilfe zu schaffen, verabschiedete im September 2025 das Bundeskabinett das sogenannte KRITIS-Dachgesetz zur Stärkung der Resilienz kritischer Einrichtungen. Es verpflichtet die Unternehmensleitung, Schutz- und Präventionsmaßnahmen umzusetzen, deren Wirksamkeit nachzuweisen ist. Der dem Regelwerk zugrunde liegende All-Gefahren-Ansatz fordert, dabei physische, digitale und organisatorische Dimensionen gemeinsam zu betrachten. „Auch wenn Führungskräftesicherheit hier kein eigener Rechtsbegriff ist, sollte sie Teil der Anforderungen an ein modernes Sicherheitsmanagement sein“, so der Geschäftsführer der SecCon Group.
Das bedeutet: Führungskräfte etwa vor Erpressungsversuchen durch Social Engineering zu schützen, ist weder persönlicher Luxus noch Symbolpolitik, sondern ein Element der nachweisbaren Unternehmensresilienz. Schließlich ist die Sicherung von Steuerungs- und Entscheidungsfähigkeit ein Governance-Baustein. Nicht die Person steht im Mittelpunkt, sondern die Handlungsfähigkeit des Instituts.
LegalTech-Trends 2026
KI, strategische Fähigkeiten und mehr Technikverständnis stehen 2026 auf der Agenda der Rechtsbranche – gut zu wissen nicht nur für LegalTech-Start-ups und -Gründer*innen.
Die LegalTech-Trends des Jahres 2026 machen deutlich, dass die Rechtsbranche vor einem grundlegenden Wandel steht: Routinetätigkeiten werden zunehmend in den Hintergrund gedrängt, da sie automatisiert oder von KI übernommen werden. Gleichzeitig gewinnen neue Kompetenzen an Bedeutung und Up-Skilling wird zur Schlüsselqualifikation, während traditionelle Karrierepfade ins Wanken geraten. Dementsprechend werden 2026 das Technologieverständnis, Prozessdesign sowie strategische Fähigkeiten in der Rechtsbranche immer wichtiger.
1. Integrierte Cloud LegalTech-Plattformen etablieren sich
Die LegalTech-Landschaft befindet sich in einem tiefgreifenden Wandel und konsolidiert sich zunehmend zu integrierten Cloud-Ökosystemen. Diese vereinen zentrale Funktionen wie Mandats- und Fallmanagement, Dokumentenautomatisierung, Ausgaben- und Risikoanalysen sowie Kollaborations- und Workflow-Funktionen auf einer gemeinsamen Plattform. Sie lösen die bislang weitverbreiteten, voneinander getrennten Einzelsysteme ab. Diese integrierten Plattformen versetzen juristische Teams in die Lage, auf eine einheitliche, konsistente Datenbasis (Single Source of Truth) zuzugreifen und fundierte Analysen durchzuführen. Das Ergebnis sind deutlich schnellere Arbeitsabläufe, eine verbesserte Transparenz über Team- und Abteilungsgrenzen hinweg sowie eine höhere operative Resilienz der Rechtsorganisation.
2. Eingebettete agentenbasierte KI (embedded agentic AI)
Embedded Agentic AI entwickelt sich rasant zu einem der prägendsten Trends im LegalTech-Markt. Im Gegensatz zu klassischen KI-Assistenzsystemen agieren agentische KI-Module direkt innerhalb juristischer Fachanwendungen und übernehmen eigenständig klar definierte Aufgaben – etwa die Fristenüberwachung, Vertragsprüfung oder Aktenvorbereitung. Nahtlos in bestehende Workflows eingebettet, reduzieren sie manuellen Aufwand, minimieren Risiken und steigern die Produktivität spürbar. Für Kanzleien bedeutet Embedded Agentic AI einen strategischen Schritt hin zu skalierbaren, zukunftssicheren Prozessen, bei denen juristische Expertise gezielt durch autonome, kontextbewusste KI ergänzt wird.
3. KI-Sicherheit & Governance
KI ist längst mehr als nur ein Werkzeug – sie entwickelt sich zu einer operativen Notwendigkeit. Im Jahr 2026 werden LegalTech-Pioniere deshalb über reine Pilotprojekte hinausgehen und Rahmenwerke für die KI-Governance, Risikokontrollen, Compliance und ethische Rahmenbedingungen einführen. In diesem Kontext gilt es beispielsweise Transparenzanforderungen zu definieren, Prompt-Audits und Human-in-the-Loop-Kontrollen einzuführen sowie für die Nachverfolgbarkeit von Datenquellen zu sorgen. Kanzleien und Rechtsabteilungen, die eine strukturierte KI-Governance integrieren, reduzieren Haftungsrisiken, stärken das Vertrauen und können KI skalieren. Wenn sie dabei auch noch den ethischen und regulatorischen Compliance-Anforderungen gerecht werden, sind sie für die Herausforderungen der Zukunft gut aufgestellt.
4. Predictive Legal Analytics
KI steht 2026 nicht mehr nur für unterstützende oder automatisierende Funktionen, sondern entwickelt sich zunehmend zum strategischen Faktor. Generative KI und fortschrittliche Analyseverfahren werden gezielt zum Einsatz kommen, um den Ausgang von Gerichtsverfahren zu prognostizieren, umfangreiche Beweis- und E-Discovery-Daten auszuwerten und bislang verborgene Muster in der Rechtsprechung zu identifizieren. Im Jahr 2026 wird KI-generierter Content in immer mehr Verfahren eine zentrale Rolle bei der Sichtung, Bewertung und Einordnung von Beweismitteln spielen. Dadurch verändern sich die Vorgehensweisen bei der Vorbereitung von Fällen, dem Entwickeln von Argumentationsketten sowie der strategischen Entscheidungsfindung. All das führt dazu, dass Technologie vom reinen Hilfsmittel zum strategischen Entscheidungsfaktor aufsteigt.
5. Juristische Talente entwickeln sich zu technisch versierten Fachkräften
Anwältinnen und Anwälte müssen sich zunehmend zu technologieaffinen Gestaltern entwickeln, die digitale Tools, Automatisierung und KI souverän in ihre tägliche Arbeit integrieren. Statt reiner Rechtsanwendung rücken Prozessverständnis, Systemkompetenz und Dateninterpretation in den Fokus. Kanzleien profitieren von effizienteren Abläufen, höherer Skalierbarkeit und besserer Mandantenorientierung. Tech-fluente Legal Professionals werden damit zum entscheidenden Wettbewerbsfaktor in einem zunehmend digitalisierten Rechtsmarkt.
6. KI-gestütztes Smart Contracting & Compliance Automation
KI geht im Vertragswesen weit über einfache Prüfungsfunktionen hinaus und wird zum zentralen Instrument für umfassendes Contract Lifecycle Management, Compliance-Monitoring sowie eine automatisierte Vertragserstellung. Zudem lassen sich durch Predictive Analytics Risiken, Inkonsistenzen und Compliance-Probleme immer früher identifizieren – ein Trend, der insbesondere für Unternehmensrechtsabteilungen und international tätige Kanzleien von Bedeutung ist. Im Jahr 2026 werden sich vor allem diese drei Anwendungsszenarien etablieren:
- KI-gestützte Vertragsanalysen, die potenzielle Risiken identifizieren und konkrete Korrekturvorschläge liefern.
- Automatisierte Compliance-Berichte zur lückenlosen Nachverfolgung regulatorischer Vorgaben.
- KI-Unterstützung bei der Erstellung von Dokumenten.
7. Cybersicherheit wird zum Wettbewerbsvorteil
Mit der zunehmenden Nutzung von LegalTech steigen auch die Risiken im Bereich Cybersecurity. Umso wichtiger ist es, dass Jurist*innen die Daten ihrer Mandant*innen, vertrauliche Fallakten sowie ihre KI-Systeme vor Ransomware-Angriffe, Datenpannen und der unbefugten Offenlegung sensibler Informationen schützen. Robuste Cybersecurity-Tools und datenschutzorientierte LegalTech-Architekturen sind daher unverzichtbar und werden häufig direkt in die Plattformen integriert. Kanzleien und Rechtsabteilungen, die hier proaktiv investieren, schützen nicht nur ihre Reputation und das Vertrauen ihrer Mandant*innen, sondern erfüllen zugleich die zunehmend strengeren globalen Datenschutzvorschriften.
8. Ergebnisorientierte und ROI-nachweisbare KI-Einführung
2026 steht LegalTech nicht mehr im Testmodus – sie muss konkrete Mehrwerte nachweisen. Sowohl Anbietende als auch Anwendende sind zunehmend gefordert, Investitionen in Technologie klar mit messbaren Ergebnissen zu verknüpfen, etwa durch Zeit- und Kostenersparnis, Reduzierung von Fehlern oder eine höhere Mandant*innenzufriedenheit. Für die Praxis bedeutet das: Pilotprojekte sollten stets mit klar definierten KPIs starten, um den Erfolg messbar zu machen. Analysen spielen eine entscheidende Rolle, um den geschäftlichen Nutzen gegenüber Führungskräften und Mandant*innen transparent darzustellen. Gleichzeitig verlagern sich Budgetentscheidungen weg von „Innovation um der Innovation willen“ hin zu einer klaren ROI-orientierten Ausrichtung.
9. Innovation in der Rechtsberatung & alternative Business-Modelle
Die Veränderung in der Rechtsbranche betrifft die gesamte Struktur juristischer Dienstleistungen. Klassische Stundenhonorare verlieren an Bedeutung, während alternative Preismodelle wie Festpreise, Abonnements oder wertbasierte Vergütungen an Bedeutung gewinnen. Diese Entwicklung wird durch Technologien unterstützt, die Ergebnisse zuverlässig vorhersagen und standardisierte Leistungen effizient bereitstellen. Für Rechtsabteilungen und Mandant*innen wird Kalkulierbarkeit zunehmend zum Standard. Kanzleien, die ihre Liefermodelle entsprechend innovativ gestalten, sichern sich einen Wettbewerbsvorteil gegenüber Wettbewerber*innen, die weiterhin auf traditionelle Stundenhonorare setzen.
10. Lawbots & Vertikale Automatisierung
„Lawbots“ stehen kurz davor, zum festen Bestandteil der Rechtsbranche zu werden. Diese spezialisierten Bots sind darauf ausgelegt, spezifische juristische Aufgaben zu automatisieren – von der Mandantenaufnahme über Dokumentenautomatisierung und Compliance-Prüfungen bis hin zu rechtlicher Recherche. Typische Einsatzszenarien sind etwa maßgeschneiderte Bots für Einwanderungsanträge, Markenanmeldungen oder Routineverfahren in der Prozessführung. Sie übernehmen klar definierte, standardisierte Aufgaben auf höchst effiziente Weise. So gewinnen Anwält*innen wertvolle Zeit, um sich auf komplexe, urteilsbasierte Arbeiten zu konzentrieren und strategische Entscheidungen zu treffen.
Der Autor Oliver Bendig ist CEO von stp.one, einem der führenden Anbietern von Legal-Tech-Komplettlösungen.
Report Gendermedizin
Auch mithilfe von FemTech- und HealthTech-Start-ups steigt in unserer Gesellschaft langsam das Bewusstsein dafür, dass der weibliche Körper medizinisch anders funktioniert als der männliche, und Frauengesundheit mehr ist als "nur" Zyklus, Schwangerschaft und Wechseljahre.
Alles, was speziell für die Frau ist und beim Mann nicht existiert“, erklärt Raoul Scherwitzl, Doktor der Philosophie, Festkörper- und Materialphysik sowie Co-Founder des FemTech-Start-ups Natural Cycles, was mit Frauenmedizin gemeint ist. Diese Aussage wird häufig innerhalb gesundheitspolitischer Debatten getätigt, wenn es darum geht, wie Frauenkrankheiten im Gegensatz zum männerzentrierten Usus in der Medizin behandelt werden: oftmals zweitrangig oder als Anhängsel an männerfokussiertem Wissen.
Der französische Soziologe Pierre Bourdieu beschrieb in seinem Werk „Die männliche Herrschaft“ bereits 1998, wie „kulturelle und wissenschaftliche Systeme männliche Normen als allgemeingültig setzen und alles, was weiblich ist, als Abweichung oder Sonderfall markieren“. Sieht man sich die Geschichte der westlichen Medizin an, drängt sich der Eindruck auf, dass Bourdieus Beschreibung für den Gesundheitsbereich ins Schwarze trifft.
Blickt man darüber hinaus in die (Fach-)Literatur der letzten Jahrzehnte, so erkennt man: Bis in die späten 80er-Jahre wurden weibliche Bedürfnisse, psychosoziale Belastungen und Körperbilder in der medizinischen Forschung und Praxis weitgehend ignoriert. Erst eine aufkeimende Frauengesundheitsbewegung durchbrach diese Mauer und etablierte den Begriff Frauengesundheit bzw. Gendermedizin. Seitdem schärft sich der Blick auf die Frau, und die Gesellschaft hat begonnen, in Publikationen und Debatten genauer hinzusehen – mit einer bewusstseinsschaffenden Agenda, warum dieses Thema wichtig ist.
Frauengesundheit ist mehr als Reproduktion
„Die Definition von Frauengesundheit wird oft sehr eng gefasst“, erklärt Scherwitzl das Problem; „nämlich als alles, was mit reproduktiver Gesundheit zu tun hat: Menstruationszyklus, Pubertät, Schwangerschaft, Geburt, Wochenbett, Unfruchtbarkeit und Wechseljahre. Die klassische Definition spannt sich dabei meist über das reproduktive Zeitfenster einer Frau zwischen etwa 15 und 50 Jahren.“ Dabei werde oft übersehen, dass Frauengesundheit weit mehr umfasse: „Es geht auch darum, den gesamten Gesundheitsbereich aus der Perspektive von Frauen zu betrachten – und das wird bislang kaum getan“, so Scherwitzl. Ein großes Problem liegt laut dem Gründer darin, dass die meisten Medikamente auf Basis klinischer Studien mit Männern entwickelt wurden; mit der Annahme, dass sie bei Frauen gleich gut wirken – obwohl Frauen biologisch anders reagieren. Als Beispiel nennt Scherwitzl die Insulinresistenz, die sich bei Frauen im Lauf des Zyklus verändert. „Dies wird aber kaum berücksichtigt“, ergänzt er.
Im Gesundheitswesen fehle es häufig an passenden Tools und Produkten, um Frauen gezielt zu unterstützen. Ein Beispiel hier sei die Hormontherapie in den Wechseljahren, bei der oftmals lediglich hoch dosierte Varianten jahrzehntealter Medikamente zum Einsatz kämen. „Das Resultat ist, dass sich Frauen häufig selbst um ihre Beschwerden kümmern müssen. Viele suchen zunehmend online nach Hilfe. Große Pharmakonzerne haben diesen Mangel erkannt und investieren inzwischen in Forschung zu Themen wie Endometriose oder Wechseljahre“, sagt Scherwitzl. Sein Start-up Natural Cycles setzt auf ein datenbasiertes Modell mit Körperwerten und Algorithmen, kombiniert mit Aufklärung und individualisierter Medizin; mit dem Ziel, einen Beitrag dazu zu leisten, dass Frauen künftig Zugang zu besser abgestimmten Medikamenten und mehr effektiven Lösungen erhalten.
Es muss endlich in die Köpfe kommen
„Es muss endlich in die Köpfe kommen, dass der weibliche Körper anders funktioniert als der männliche“, mahnt Simone Mérey in diesem Sinn. Sie ist Founderin des 2022 gegründeten Pflege-Start-ups HeldYn. Mérey hat jahrelang im Krankenhaus gearbeitet und hatte dabei viel mit Schmerzpatient*innen zu tun. Sie erkannte dabei einen Gender-Bias: Frauen mit Schmerzen wurden oft als wehleidig abgestempelt – veraltete Vorstellungen in den Köpfen der Beteiligten –, mit der Folge, dass Patientinnen schnell einmal als depressiv oder psychisch labil eingestuft wurden. „Dies ist keine akkurate Einschätzung – es ist wissenschaftlich belegt, dass Frauen eine höhere Schmerzgrenze als Männer haben“, betont Mérey. „Hier merkt man, wie soziale Konstrukte wirken: Die Frau wird oft als die gesellschaftlich Schwächere wahrgenommen, obwohl ihr Körper viel aushält, Stichwort Geburt. So kommt es zu falschen Dosierungen und der Vernachlässigung von Symptomen.“
Chance für HealthTech-Start-ups?
Eine Vernachlässigung, die Akteur*innen und Start-ups im Health-Bereich Chancen eröffnet. Ähnlich denkt Scherwitzl, der Start-ups mit „großen Ambitionen“ im Entstehen sieht: „Das Funding ist da“, sagt er. „Vor allem in den letzten fünf Jahren hat sich einiges verbessert. Wenn Investoren merken, dass man hier viel Growth erreichen kann, wird noch mehr Geld fließen.“
Was jedoch aktuell noch fehle, sei der große Erfolg, der beweise, dass es sich lohne, in dieses Feld zu investieren. „Im Pharmabereich gibt es etwa die Pille oder Antidepressiva – im digitalen Bereich bin ich jedoch optimistisch, dass der nächste große Durchbruch bevorsteht“, so Scherwitzl. Der Founder zeigt sich überzeugt, dass es zu jedem pharmazeutischen Ansatz künftig auch eine digitale Alternative geben sollte, mit der Frauen medizinisch besser begleitet werden können. „Pharmakonzerne wie Bayer, Organon und Merck haben trotz Deinvestitionen weiterhin Pipelines im Bereich Frauengesundheit. Gleichzeitig gibt es Start-ups wie uns oder Flo in England, das eine neue Version des Kondoms für Frauen entwickelt. Die dänische Cirqle Biomedical arbeitet ebenfalls an einer Alternative zum Kondom, die den Uterus verschließt. Außerdem existieren Start-ups wie Endogene.Bio, das sich auf Endometriose fokussiert.“
Auch Mérey hat trotz aller Probleme bei der Frauenmedizin einen neuen Tenor in dieser Sache erkannt, der sich vom bisherigen „medizinischen Ratschlag“ an Frauen à la „Man muss da durch“ unterscheide: Das Thema der zweiten Lebenshälfte der Frauen werde mehr diskutiert, Tabuthemen wie Wechseljahre würden aufgebrochen. Mérey: „Der negative Anstrich wird langsam entfernt. Es hat in den letzten Jahren ein Umdenken gegeben.“
KI-Trends 2026: Reifer, realer, relevanter
2026 tritt KI in eine neue Phase ein: weniger Hype, mehr Haltung. Expert*innen aus Technologie, Kommunikation und Mittelstand zeigen, wie künstliche Intelligenz Prozesse transformiert, Entscheidungen präziser macht und Marken stärkt – aber auch neue Risiken schafft, von Voice-Cloning bis Abhängigkeiten großer Plattformen. Klar wird: KI entfaltet ihr Potenzial dort, wo Unternehmen sie verantwortungsvoll einsetzen, Transparenz schaffen und menschliche Kompetenz stärken.
Zwischen Dynamik und Verantwortung: KI braucht gemeinsame Sichtweisen
„KI schafft keine perfekten Lösungen auf Knopfdruck, sondern eröffnet neue Wege, Herausforderungen besser zu bewältigen. Die größten Chancen liegen darin, Wissensverlust zu vermeiden, Reibungsverluste zu reduzieren und individueller auf Menschen einzugehen – im Gesundheitswesen genauso wie in HR, Bildung und Produktion. Gleichzeitig besteht die größte Herausforderung darin, eine gemeinsame Sichtweise auf KI zu entwickeln: Alle reden darüber, aber oft über völlig Unterschiedliches. Das gelingt nur über kleine Schritte, viel Kommunikation und eine Annäherung auf Augenhöhe. Zugleich zeichnet sich ein klarer Trend ab: die Fragmentarisierung der KI-Landschaft und eine problematische Abhängigkeit von US-Anbietern, die neue, eigene Handlungswege erfordert. Wer diese Dynamik versteht und verantwortungsvoll gestaltet, erschließt das Potenzial von KI von automatisierten medizinischen Leistungen über effizientere Produktionsprozesse bis hin zu deutlich schnelleren Innovationszyklen.“
KI-Modelle erfolgreich im Unternehmen einführen
Worauf es bei der Implementierung von KI wirklich ankommt.
Künstliche Intelligenz (KI) gewinnt in Unternehmen zunehmend an Bedeutung. Sie kann Prozesse beschleunigen, große Datenmengen sinnvoll nutzbar machen und Entscheidungen unterstützen. Doch in der Praxis zeigt sich: Moderne Technologie allein führt noch nicht zum Erfolg. Entscheidend ist ein strukturiertes Vorgehen, bei dem Ziele klar definiert, Daten sorgfältig vorbereitet und organisatorische Rahmenbedingungen von Beginn an berücksichtigt werden. „Viele KI-Initiativen scheitern daran, dass am Anfang die Orientierung fehlt“, sagt Benedikt Weber, Geschäftsführer der applord GmbH. „Struktur schafft Entscheidungsfähigkeit – noch bevor über konkrete KI-Modelle gesprochen wird.“
Organisatorischer Wandel und Einbindung der Mitarbeitenden
Der Einsatz von KI verändert Arbeitsabläufe, Verantwortlichkeiten und Entscheidungswege. Mitarbeitende arbeiten verstärkt mit automatisierten Systemen zusammen, Aufgaben verschieben sich, Rollen entwickeln sich weiter. Wird dieser Wandel nicht aktiv begleitet, entstehen Unsicherheiten oder Ablehnung gegenüber neuen Technologien. Erfolgreiche Unternehmen setzen deshalb auf transparente Kommunikation und frühzeitige Einbindung der Mitarbeitenden. Sie erklären, warum KI eingesetzt wird, welche Aufgaben sie übernimmt und wo menschliche Expertise weiterhin unverzichtbar bleibt. Fehlt dieses gemeinsame Verständnis, werden neue Systeme häufig nur eingeschränkt genutzt. „KI-Projekte scheitern selten an der Technologie“, betont Weber. „Viel häufiger fehlt ein klares Bild davon, welchen konkreten Nutzen KI für Mitarbeitende und Organisation wirklich bringt.“
Auswahl der passenden KI-Lösung
Das Angebot an KI-Lösungen wächst rasant. Für Unternehmen besteht die Herausforderung darin, nicht der technischen Vielfalt zu folgen, sondern eine Lösung zu wählen, die zum eigenen Geschäftsprozess passt. Der Ausgangspunkt sollte immer ein klar definierter Anwendungsfall sein: Welche Aufgabe soll KI konkret unterstützen oder verbessern? Neben den Funktionen spielen auch Fragen der Nachvollziehbarkeit, Integration in bestehende Systeme und regulatorische Anforderungen eine Rolle. Werden diese Aspekte zu spät berücksichtigt, entstehen Lösungen, die technisch leistungsfähig sind, im Alltag aber keinen Mehrwert liefern. „Viele Unternehmen wählen KI nach dem Funktionsumfang aus und stellen später fest, dass sie nicht zum eigenen Prozess passt“, erklärt Weber. „Erfolgreich ist KI dann, wenn sie Abläufe sinnvoll ergänzt und verständliche Ergebnisse liefert.“
Datenqualität als Grundlage für verlässliche Ergebnisse
KI-Modelle sind vollständig von der Qualität ihrer Daten abhängig. In vielen Unternehmen existieren relevante Informationen zwar, sie sind jedoch über verschiedene Systeme verteilt, unterschiedlich gepflegt oder historisch gewachsen. Diese Ausgangslage erschwert nicht nur den Einsatz von KI, sondern kann zu fehlerhaften oder schwer nachvollziehbaren Ergebnissen führen. Datenmanagement ist daher keine einmalige Vorarbeit, sondern eine kontinuierliche Aufgabe. Dazu gehören klare Zuständigkeiten, regelmäßige Prüfungen und eine strukturierte Aufbereitung der Daten. „Der Aufwand für Datenqualität wird häufig unterschätzt“, sagt Weber. „Ohne geprüfte und konsistente Daten lassen sich keine stabilen und verlässlichen KI-Ergebnisse erzielen – unabhängig davon, wie gut das Modell ist.“
Schrittweise Einführung statt großer Umbruch
Statt KI sofort unternehmensweit einzusetzen, empfiehlt sich ein schrittweises Vorgehen. Unternehmen können so mit klar abgegrenzten Anwendungsfällen beginnen, Lösungen im Alltag testen und die Ergebnisse anhand messbarer Kriterien, wie Benutzerfreundlichkeit oder verständlicher Anleitungen, bewerten. So lassen sich Risiken reduzieren und Erkenntnisse gezielt nutzen. Pilotprojekte liefern nicht nur technische Erkenntnisse, sondern zeigen auch, wie gut KI im Arbeitsalltag akzeptiert wird. Auf dieser Basis lässt sich entscheiden, welche Lösungen ausgebaut werden sollten. „Unternehmen, die mit überschaubaren Anwendungsfällen starten, treffen langfristig fundiertere Entscheidungen“, so Weber. „Praxiserfahrungen sind dabei deutlich wertvoller als theoretische Annahmen.“
Pflanzentheke: Vertical-Farming-Start-up erhält DBU-Förderung
Das 2022 gegründete Start-up Pflanzentheke ermöglicht vertikales Gemüsewachstum in nährstoffreichem Wasser statt in Erde und wird dafür mit 175.000 Euro durch die Deutsche Bundesstiftung Umwelt (DBU) gefördert.
Der Großteil des in Deutschland konsumierten Obsts und Gemüses wird importiert. Laut Zahlen des Bundesministeriums für Ernährung, Landwirtschaft und Heimat (BMLEH) liegt die Selbstversorgungsrate – also der Anteil der im Land produzierten im Vergleich zu den insgesamt verbrauchten Gütern – für Gemüse bei 36 Prozent, für Obst lediglich bei 20 Prozent. Besonders große Städte sind auf die Versorgung durch Lebensmittellieferungen über weite Distanzen angewiesen. DBU-Generalsekretär Alexander Bonde: „Nahrungsmittelanbau nah an urbanen Zentren mit hohem Bedarf spart teure und klimaschädliche Transportwege. Das geht jedoch nur mit einer effizienten Nutzung der knappen Flächen.“
Genau dieses Ziel verfolgt das 2022 von Dr. Michael Müller, Dr. Julia Dubowy, Lasse Olliges und Leon Welker gegründete Start-up Pflanzentheke aus dem hessischen Lorsch mit sogenannten Vertical-Farming-Systemen für den geschützten Anbau – also dem vertikalen Anbau von Lebensmitteln in geschlossenen Anlagen wie Gewächshäusern oder Folientunneln. Pflanzentheke-Mitgründer Leon Welker: „Das Gemüse wächst in A-förmigen Regalen in einem sogenannten hydroponischen System – Pflanzen gedeihen also in nährstoffhaltigem Wasser anstatt in Erde auf im Schnitt sieben Stufen pro Anlage.“ Nun nimmt das Unternehmen mit der DBU-Förderung in Höhe von 175.000 Euro die Automatisierung des Systems ins Visier – für einen effizienteren Einsatz von Zeit, Ressourcen und Energie.
Automatisiertes und datenbasiertes Pflanzenwachstum
Nach den Worten von Welker erfolgte die Bestückung mit Jungpflanzen der vertikalen Anlagen sowie die Ernte bislang manuell. Nun arbeitet das Start-up an einer vollständigen Automatisierung des Produktionsprozesses – bei minimalem Energieverbrauch und niedrigen Betriebskosten. „Wir setzen auf praxisnahe Automatisierungsschritte, die konkret dort ansetzen, wo kleine und mittlere Betriebe heute an ihre Grenzen stoßen: bei Ernte, Wiederbepflanzung und Systempflege“, so Welker. Das Ziel sei, die tägliche Arbeit „deutlich zu erleichtern – mit einem modularen System, das ressourcenschonend arbeitet, Wasser spart und Arbeitszeit reduziert“. Welker: „Damit machen wir effiziente Hydroponik auch für kleinere Betriebe wirtschaftlich zugänglich.“
Dazu werde das vorhandene A-förmige Anbaumodell in Bewegung versetzt und an eine intelligente Steuerung angeschlossen. „Mit Sensoren zur Überwachung werden die Pflanzenreihen mit den passenden Nährstoffen für die jeweilige Wachstumsphase versorgt – vollständig datenbasiert“, so der Mitgründer. Jede Reihe beherberge ein Gemüse in einem anderen Wachstumsstadium. Welker: „Durch die bewegliche Anlage optimieren wir auch den Zugang zum Sonnenlicht je nach Reifegrad.“ Schließlich könne eine Reihe geerntet und wiederbestückt werden, während die anderen Pflanzen durch die Umpositionierung ungestört wachsen.
Anlage soll Böden schonen sowie Wasser- und Düngerverbrauch reduzieren
Die von dem Start-up entwickelte Anlage ermöglicht Welker zufolge, Böden zu schonen, den Wasser- und Düngerverbrauch zu reduzieren und auf kleinen Flächen möglichst viele Lebensmittel anzubauen. „Das System kommt bei gleichem Ertrag mit rund 90 Prozent weniger Wasser und 85 Prozent weniger Dünger aus als die konventionelle Landwirtschaft,“ so der Pflanzentheke-Mitgründer. „Wir verbinden die Vorteile des Indoor-Vertical-Farmings – etwa bei Nährstoffnutzung und Wassereffizienz – mit einem entscheidenden Plus: Unsere Anlagen nutzen natürliches Sonnenlicht und kommen daher mit einem Bruchteil der Energiekosten aus“, sagt Welker. „Das macht den ressourcenschonenden Anbau wirtschaftlich tragfähig – auch ohne energieintensive Beleuchtungssysteme.“ Welker weiter: „Weite Transporte erzeugen hohe Mengen klimaschädlicher Treibhausgase. Der Anbau nah an Städten mithilfe solcher Vertical-Farming-Systeme reduziert die Lieferwege sowie die je nach Lebensmittel energieintensiven Kühlketten.“
DBU-Förderung ermöglicht klima- und umweltschonenden Lebensmittelanbau
Das Start-up war bereits bis Ende 2024 Teil der Green Startup-Förderung der DBU. Dadurch wurde nach Welkers Worten die Marktreife des Produkts erfolgreich erreicht. Die Entwicklung der Anlage sei zudem mit fachlicher Unterstützung durch die Hochschule Osnabrück erfolgt. „Die Automatisierung ist nun ein neues, zeitintensives Forschungsprojekt – eine Entwicklung, die wir im laufenden Betrieb nicht leisten könnten“, so Welker. Die erneute Förderung ermögliche mehr klima- und umweltschonenden Lebensmittelanbau mithilfe der automatisierten Pflanzentheke-Anlagen. Zielgruppen sind dem Unternehmen zufolge vor allem kleine und mittelgroße Betriebe. „Die Pflanzentheken sind schnell installierbar, da sie an bestehender Infrastruktur befestigt werden können“, so Welker. Neben den ökologischen Vorteilen des Systems solle die Automatisierung auch den steigenden Fachkräftemangel im Gartenbau in Teilen kompensieren.
KI-Agenten als Transformationstreiber 2026
Eine aktuelle DeepL-Studie zeigt: 69 % der globalen Führungskräfte erwarten für 2026 tiefgreifende Veränderungen durch KI-Agenten; KI-Sprachtechnologie wird zur unverzichtbaren Infrastruktur.
Eine neue Studie von DeepL, einem globalen Unternehmen für KI‑Produkte und ‑Forschung, zeigt: 2026 wird für viele Organisationen den Übergang vom Experimentieren mit KI hin zu agentischer Automatisierung markieren. So erwartet die Mehrheit der weltweit befragten Führungskräfte (69 %), dass agentenbasierte KI ihre Geschäftsabläufe im kommenden Jahr deutlich verändern wird.
Die Studie wurde im September 2025 von Censuswide im Auftrag von DeepL durchgeführt. Befragt wurden 5.000 Führungskräfte in Deutschland, Frankreich, den USA, Großbritannien und Japan. Die Ergebnisse deuten darauf hin, dass Unternehmen verstärkt planen, autonome KI-Agenten im großen Umfang einzusetzen – etwa zur Unterstützung von Wissensarbeit, zur Effizienzsteigerung oder zur Anpassung organisatorischer Strukturen. Damit zeichnet sich die bedeutendste operative Veränderung in der Wirtschaft seit der Einführung der Cloud an.
„KI-Agenten sind längst nicht mehr experimentell, sie sind unumgänglich.“ sagt Jarek Kutylowski, CEO und Gründer von DeepL. „Die nächste Phase besteht darin, sie tiefgreifend in unsere Arbeitsweisen zu integrieren. In 2026 werden KI-Agenten das mühsame Umschalten zwischen verschiedenen Kontexten und repetitive Aufgaben übernehmen, sodass sich Menschen auf das konzentrieren können, was Unternehmen tatsächlich voranbringt.“
KI-Agenten werden zum nächsten Disruptor für Unternehmen
Nach ersten Pilot- und Anwendungsfällen rücken KI-Agenten zunehmend in den produktiven Einsatz:
- Fast die Hälfte der globalen Führungskräfte (44 %) erwartet für 2026 einen tiefgreifenden Wandel durch agentische KI; ein Viertel (25 %) sieht diesen Wandel bereits heute. Nur 7 % glauben, dass KI-Agenten ihre Betriebsabläufe nicht verändern werden, was die hohe Geschwindigkeit der Implementierungen unterstreicht.
- Als die drei wichtigsten Voraussetzungen für den sinnvollen und vertrauenswürdigen Einsatz von KI-Agenten nennen die Befragten nachweisbare Effizienz- und ROI-Effekte (22 %), Anpassungsfähigkeit der Belegschaft (18 %) und zunehmende organisatorische Bereitschaft (18 %).
- Als wesentliche Herausforderungen bei der Einführung von KI-Agenten nennen die Befragten Kosten (16 %), Bereitschaft der Belegschaft (13 %) und Reife der Technologie (12 %).
KI als zentraler Wachstumstreiber für globale Unternehmen
Über Agenten hinaus gilt KI insgesamt als wichtigster Motor für das Wirtschaftswachstum in 2026:
- Über zwei Drittel (67 %) der Befragten geben an, dass sich der ROI ihrer KI-Initiativen in diesem Jahr erhöht hat; mehr als die Hälfte (52 %) erwartet, dass KI im kommenden Jahr mehr zum Unternehmenswachstum beitragen wird als jede andere Technologie.
- Wenn es um messbare Verbesserungen durch KI geht, liegt Deutschland (78 %) zusammen mit Großbritannien (80 %) an der Spitze, gefolgt von den USA (71 %) und Frankreich (70 %). Japan verzeichnet mit 35 % deutlich niedrigere Werte, was auf langsamere Implementierungen und Bereitschaften hindeutet.
- Über die Hälfte der globalen Führungskräfte (51 %) rechnet damit, dass KI im kommenden Jahr mehr neue Rollen schafft als ersetzt. 52 % geben an, dass KI-Kenntnisse für die meisten Neueinstellungen vorausgesetzt werden.
KI-Sprachtechnologie entwickelt sich vom Werkzeug zur zentralen Infrastruktur
Die Studie zeigt zudem, wie KI-Sprachtechnologie zur entscheidenden Komponente der Unternehmensinfrastruktur wird:
- Fast zwei Drittel der globalen Unternehmen (64 %) planen 2026 steigende Investitionen in KI-Sprachtechnologie – angeführt von Großbritannien (76 %) und Deutschland (74 %), gefolgt von den USA (67 %) und Frankreich (65 %) werden mehrsprachige Kommunikation und Inhalte zu zentralen Faktoren für globales Wachstum. Im Gegensatz dazu bleibt Japan (38 %) vergleichsweise konservativ, was auf eine langsamere Dynamik hindeutet, gleichzeitig aber das wachsende Interesse von mehr als einem Drittel der Führungskräfte widerspiegelt.
In diesem Zusammenhang wird Echtzeit-Sprachübersetzung 2026 unverzichtbar:
- Über die Hälfte der globalen Führungskräfte (54 %) sieht Echtzeit-Sprachübersetzung im kommenden Jahr als unverzichtbar an – derzeit sind es ein Drittel (32 %).
- Großbritannien (48 %) und Frankreich (33 %) sind Vorreiter bei der Nutzung von Tools für die Echtzeit-Sprachübersetzung; Japan liegt derzeit nur bei 11 %.
- Die Nachfrage wird angetrieben von technologischen Fortschritten in der Echtzeit-Sprachübersetzung (46 %), Kundenerwartungen (40 %) und marktübergreifender Expansion (38 %).
Die Erkenntnisse der Studie liefern wichtige Einblicke in die Zukunft der KI und zeigen, wie diese Veränderungen Branchen umgestalten, Kundenerwartungen neu definieren und sich auf das Wettbewerbsumfeld auswirken.
HR-Trends 2026
Die Arbeitswelt verändert sich, die Position der Unternehmen wird stärker, eine Rezession auf Management- und Führungsebene droht: die HR-Welt bleibt ein Schmelztiegel verschiedenster Strömungen. Das sind die fünf größten Herausforderungen für 2026.
Die Arbeitswelt verändert sich - sowohl für Personalmanager*innen als auch für die Belegschaft. Während sich vor wenigen Jahren die Arbeitnehmenden in einer starken Verhandlungsposition befanden, schlägt das Pendel jetzt immer stärker zugunsten der Unternehmen aus. Das eröffnet ihnen die Chance, die Arbeitswelt mehr nach ihren Vorstellungen zu gestalten, um ihren Unternehmenserfolg zu sichern. Gleichzeitig tragen sie auch die große Verantwortung, das Arbeitsumfeld ihrer Mitarbeitenden kontinuierlich zu verbessern, das Engagement zu fördern und die Rolle der KI für die kommenden Jahre mit Weitblick und Sorgfalt auszubalancieren.
Wir werfen einen Blick nach vorne und skizzieren die fünf wichtigsten HR-Trends für die DACH-Region im kommenden Jahr.
1. Kulturelle Transparenz – Strategiewechsel bei der Talentakquise
Die Stagnation der Wirtschaft, der angespannte Arbeitsmarkt, weniger Stellenangebote – all das führt dazu, dass Mitarbeitende lieber in ihren derzeitigen Positionen und Rollen verharren. Die Folge ist ein “Talentestau:” Mitarbeitende, die sonst das Unternehmen verlassen würden, bleiben und blockieren damit die Wechsel- und Entwicklungsmöglichkeiten derer, die eher bereit sind, ihre Karriere engagiert voranzubringen. Auf der Suche nach effektiven Möglichkeiten, diese Engpässe zu überwinden, werden Unternehmen im kommenden Jahr ihre Strategie hin zu mehr kultureller Transparenz ausrichten. Anstatt neue Talente mit einem Wertversprechen oder der einseitigen Hervorhebung positiver Alleinstellungsmerkmale zu gewinnen, kommunizieren sie ihre tatsächlichen Erwartungen und die Realität des Arbeitsalltags klar. Damit betonen sie bewusst auch Aspekte, die weniger passende Bewerbende eher abschrecken - damit sich die wirklich passenden umso stärker angesprochen fühlen. Beispiele dafür können u.a. die Erwartung, wieder vollständig zur Büropräsenz zurückzukehren, Prozessreife und Struktur der Unternehmen sowie die Nutzung von KI-Tools im Arbeitsalltag sein.
2. Neudefinition des Erfolgs – Leistung statt Leistungsschau?
Mitarbeitende haben oft das Gefühl, dass ihre tatsächlich geleistete Arbeit nicht richtig bewertet wird und sie nicht ausreichend Anerkennung erfahren. Analysen von Culture Amp ergaben, dass 2025 rund 20 Prozent der Mitarbeitenden nicht genau wissen, wie sich die Bewertung ihrer Performance zusammensetzt. Die Folge dieser Unkenntnis sind Mutmaßungen und die Fokussierung auf mehr Sichtbarkeit: Mitarbeitende betreiben eine Art Leistungsschau und arbeiten so, dass es vor allem produktiv aussieht. Wenn das Gefühl hinzukommt, einem passiven Monitoring ausgesetzt zu sein – in der DACH-Region nur unter strengen Auflagen erlaubt – konzentrieren sich Mitarbeitende auf das, was vermeintlich gemessen wird. Diese Kluft wird sich 2026 weiter vergrößern, wenn die Verantwortlichen ihre Leistungsbewertung nicht neu ausrichten, um ein vertrauenswürdiges und vollständigeres Bild von der Performance ihrer Mitarbeitenden zu erhalten. Wer hingegen menschzentrierte Feedbacksysteme wie Upward Feedback, 360‑Grad‑Feedback und reflektierende Einzelgespräche verankert, kann das Vertrauen stärken und ein ganzheitlicheres Verständnis der Beiträge der Mitarbeitenden erhalten.
3. Mensch und KI – zwei Seiten der HR-Medaille
2026 werden KI-Tools verstärkt Einzug in den HR-Abteilungen halten. Routineaufgaben wie z.B. eine erste Bewerberauswahl oder die Beantwortung von häufig gestellten Fragen werden zunehmend automatisiert beantwortet. Doch mit den Möglichkeiten der KI wächst auch die Erkenntnis, dass sie nicht die Lösung für alles sein darf. Darüber hinaus tritt 2026 der EU AI Act vollständig in Kraft. Demzufolge werden KI-Tools im Zusammenhang mit Personaleinsatz als Hochrisiko eingestuft: Sie unterliegen sehr strengen Richtlinien bezüglich Transparenz, Kontrolle und Grenzen des KI-Einsatzes. Bei der Frage, welche Aufgaben der KI überlassen werden können und welche nach wie vor die Empathie, die Erfahrung und das Wissen echter HR-Expert*innen erfordern, ist Fingerspitzengefühl gefragt. Auch scheinbar administrative Aufgaben benötigen manchmal den direkten persönlichen Austausch. Unternehmen werden dazu übergehen, deutlicher zu definieren, welche Fragestellungen und Bereiche maschinenbezogene Fähigkeiten und welche menschliche Fähigkeiten erfordern. 2026 wird sich ein deutlicher Trend bemerkbar machen: Die verstärkte Integration von KI in den Personalabteilungen und gleichzeitig die permanente Überprüfung, welche Aufgabenbereiche zukünftig KI-gestützt erledigt werden sollen.
4. Führung neu denken – Managementpositionen verlieren an Attraktivität
Auch das verraten die Analysen von Culture Amp: 72 Prozent der Generation Z sind nicht an Führungspositionen interessiert. Die jungen Arbeitnehmenden bleiben lieber in ihren jeweiligen Rollen, manche entscheiden sich ganz bewusst gegen eine Managementkarriere. Der Reiz, eine Leitungsfunktion zu übernehmen, nimmt insbesondere im Bereich des mittleren Managements ab: Diese Manager*innen fühlen sich zwischen den Erwartungen der Unternehmensführung und den Erwartungen ihres Teams oft unter starkem Druck. In der Folge könnte es im kommenden Jahr zu einer weiteren Abflachung der Hierarchien in den Unternehmen kommen, manche befürchten gar eine Rezession auf der Management- und Führungsebene. Gleichzeitig eröffnen sich Manager*innen durch den Einsatz von KI-Tools neue Möglichkeiten, ihren Einfluss zu vergrößern. Für jene Talente, die sich darauf einlassen, werden Führungspositionen dadurch zugänglicher und nachhaltiger. In Anbetracht dessen werden sich die Dynamiken in den Teams verändern. Unternehmen werden Führungsrollen zunehmend überdenken und ihre Manager*innen besser unterstützen, statt weitere einzustellen. Denn wenn weniger Menschen führen wollen, braucht es nicht mehr, sondern besser unterstützte Manager*innen.
5. Ambitionen und Leistungsbereitschaft wird außerhalb der Arbeitswelt ausgelebt
Ob berufliche Nebentätigkeit, Ehrenamt oder leidenschaftliches Hobby – immer mehr Mitarbeitende bringen Energie und Motivation für Tätigkeiten auf, die außerhalb ihrer regulären Arbeit liegen. Sie erkennen, dass sie ihre Stärken auch anderswo verwirklichen können. Dieser Trend hin zu mehr Kreativität, Leidenschaft und Erfüllung durch sinnvolle Tätigkeiten nach Feierabend und am Wochenende wird sich auch 2026 fortsetzen. Das Risiko für Unternehmen geht dabei über bloße Ablenkung hinaus: Bleiben angemessene Antworten im kommenden Jahr aus, wandern Ambitionen nach außen ab. Führung muss etwas Besseres anbieten: Die Chance 2026 liegt darin, den Hauptjob so zu gestalten, dass er sich wieder energiegeladen, kreativ und investitionswürdig anfühlt.
Fazit
Die Strömungen und Entwicklungen in der HR-Welt bringen einen fortdauernden Wandel mit sich. Gespannt blicken die Personalabteilungen auf die für 2026 vorgesehene nationale Umsetzung der Entgelttransparenz-Richtlinie der EU (EU Pay Transparency Directive and Equal Pay). Die weitreichendsten Veränderungen verursacht aber der Einzug der KI in die Arbeits- und Lebenswelt der Mitarbeitenden. Dies wirft unablässig neue Fragen auf: Droht der Talentepool zu versiegen, wenn Aufgaben für Berufseinsteiger*innen von KI übernommen werden und sie infolgedessen keine Erfahrung aufbauen können? Wird sich die Belegschaft eines Unternehmens früher oder später in KI-resistente und KI-affine Gruppen aufspalten? Die HR-Welt bleibt ein Schmelztiegel verschiedenster Strömungen im Unternehmen, die datengestützte Strategien erfordern.
Der Autor Dr. Arne Sjöström ist Regional Director, People Science EMEA bei Culture Amp mit dem Schwerpunkt Organisationspsychologie und angewandte Forschung.
Jakob Koenen: Mit 18 zum LegalTech-Start-up-Gründer
Die Sovereign AI Betriebs GmbH – 2025 von Jakob Koenen und seinem Vater Prof. Dr. Andreas Koenen mit Sitz in Berlin gegründet – entwickelt spezialisierte KI-Plattformen für die juristische Praxis.
Ein Technologie-begeisterter Abiturient, der schon mit 15 Jahren Jura-Vorlesungen besucht, gründet ein LegalTech-Start-up. Partnerschaftlich an seiner Seite agiert sein Vater, ein renommierter Professor für Baurecht. Das ist das Fundament der Sovereign AI Betriebs GmbH, die in Berlin antritt, das Rechtswissen ganzer Berufs-Generationen in eine juristisch kuratierte KI zu überführen. Herzstück des Unternehmens ist Sovereign Legal AI. Die Plattform bereitet juristische Fragen systematisch, verständlich und nachvollziehbar auf.
„Wir wollen das Recht aus der Blackbox holen“, sagt Jakob Koenen, Gründer und Geschäftsführer der Sovereign AI Betriebs GmbH. „Unsere KI soll kein Ersatz für Anwältinnen und Anwälte sein, sondern ein intelligentes Werkzeug, das Wissen strukturiert, Orientierung gibt und den Zugang zum Recht demokratisiert.“
Rechtspraxis-Know-how, digitalisiert für den Alltag
Die Idee zu Sovereign Legal AI entstand in einem Generationenprojekt. Prof. Dr. Andreas Koenen, Kanzleiinhaber, Fachanwalt und Herausgeber zahlreicher Werke zum Bau- und Architektenrecht, hat über Jahrzehnte beobachtet, wie Rechtswissen in der Praxis verloren geht, weil es zu spät, zu komplex oder zu exklusiv vermittelt wird.
„Das Recht wird beim Bauen oft erst dann herangezogen, wenn es knallt“, sagt Koenen. „Juristinnen und Juristen gelten als Ausputzer, nicht als Geburtshelfer. Sovereign Legal AI will das ändern. "Wir liefern Projektbeteiligten vom Architekten, Planer bis zum Bauherrn einen Kompass, der schon vor Konflikten Orientierung bietet; mit juristisch fundierter Systematik, aber barrierefrei zugänglich“, so Koenen weiter.
Die Wissensbasis der Sovereign Legal AI umfasst unter anderem kommentierte Urteile, systematisch aufbereitete Rechtsinformationen sowie Fachbeiträge von Anwältinnen und Anwälten zu typischen Praxisproblemen. Alle Inhalte sind mit Originalquellen aus Gesetz, Rechtsprechung und Literatur belegt, was den entscheidenden Unterschied zu generativen „Blackbox-Systemen“ markiert.
Neue Plattform für juristische Teilhabe
Sovereign Legal AI entstand in Zusammenarbeit mit den Anwältinnen und Anwälten der Kanzlei Koenen Bauanwälte. Die künstliche Intelligenz (KI) wurde entlang echter Fallarbeit trainiert und in einer Beta-Phase getestet. Dabei versteht sich die KI als Community-Projekt: Nutzende geben Feedback, benennen Lücken und tragen so zur Weiterentwicklung bei. Auf diese Weise wächst die KI mit der Praxis. Im Wissens-Ökosystem von Sovereign befinden sich auch die Austausch-Plattform Sovereign Community und der stationäre Sovereign Store in Münster. Beide sind Teil derselben Markenfamilie und werden von der Sovereign GmbH betrieben. Partner-, Lizenz- und Servicemodelle finanzieren das Projekt. „Wir schaffen eine KI-Plattform, die juristisches Wissen lebendig hält“, so Jakob Koenen. „Das ist Unternehmensnachfolge im besten Sinne. Das Wissen einer Generation wird nicht vererbt, sondern transformiert.“
Junger Gründer mit Tech-DNA
Dass Jakob Koenen früh Verantwortung übernimmt, überrascht kaum. Mit 11 wollte er bereits eine Web-Agentur gründen, erschuf in diesem Zuge den Digitalauftritt eines Handwerksunternehmens. Mit 15 hat er mit Unterstützung seiner Eltern beantragt, frühzeitig als geschäftsfähig erklärt zu werden und gründete nach der Bewilligung sein erstes Unternehmen. Heute ist er Gründer, App-Entwickler und Geschäftsführer des Berliner LegalTech-Unternehmens. Er arbeitet mit einem Netzwerk aus externen Entwicklerinnen und Entwicklern sowie Fachleuten an der technischen Weiterentwicklung von Sovereign Legal AI. Aktuell suchen er und sein Vater als Herausgeber der Inhalte nach Co-Autor*innen und Partner*innen, die weitere juristische Rechtsbereiche wie Energierecht oder IT-Recht innerhalb der KI für sich erschließen.
Vorsicht vor diesen KI-Versuchungen
Allzu großes Vertrauen in GenAI ist fahrlässig, dennoch prüfen nur rund ein Viertel der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit. Das sind die größten Gefahren und effektivsten Gegenmaßnahmen.
Die Leistung und die Zuverlässigkeit von KI-Assistenten nehmen gefühlt weiter zu. Doch wer in den letzten Wochen intensives Prompting bei ChatGPT, Perplexity und Co. betrieben und die Ergebnisse eingehend analysiert hat, fühlte sich in diesem Gefühl nicht bestätigt. Im Gegenteil: Die Qualität der generierten Antworten lässt neuerdings öfter zu wünschen übrig. Auf YouTube gibt es zahlreiche Videos zu diesem Phänomen, das sich offenbar auch die Herstellenden nicht so ganz erklären können, aber auch klassische Medien berichten darüber. In Anbetracht der Tatsache, wie abhängig sich viele Menschen im Berufsleben schon heute von GenAI-Tools gemacht haben, ist dieser Trend erschreckend und ernüchternd. Ein blindes Vertrauen in die digitalen Helfer aus der Familie generativer KI birgt zudem großes Schadenspotenzial, etwa dann, wenn sich Ärzt*innen bei der Diagnose auf sie stützen oder Entwickler*innen von der KI vorgeschlagene Frameworks ohne Sicherheitscheck implementieren.
Völliges Vertrauen in GenAI ist also, zurückhaltend formuliert, mindestens gewagt. Die Situation ist ernst und erfordert von GenAI-Anbietenden ein Mindestmaß an Qualitätssicherung – offenbar kein einfaches Unterfangen. Bis dahin ist es wichtig, eigene Maßnahmen zu ergreifen, um nicht in die Falle der folgenden vier Qualitätskiller zu geraten.
1. Halluzinationen
KI-Assistenten wie ChatGPT und Co. wurde die Aufgabe erteilt, Antworten zu liefern – koste es, was es wolle. Wenn die Wissensbibliothek nicht ausreicht, um komplexe Sachverhalte zu beantworten, fängt generative KI an, sich etwas auszudenken. Die von solchen Halluzinationen ausgehende Gefahr ist bekannt. Umso bedrückender ist die Tatsache, dass laut einer aktuellen Studie nur rund ein Viertel (27 %) der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit prüfen. Das sind zwar immerhin sieben Prozentpunkte mehr als bei gewöhnlichen Inhalten aus dem Internet, wie eine Studie des PR-COM Research Lab belegt, aber noch immer viel zu wenige.
Gegenmaßnahmen: Wer GenAI nutzt, sollte ausnahmslos alle von ihr produzierten Inhalte überprüfen. Dazu sollten User*innen insbesondere die von der KI verwendeten Primärquellen checken oder – wenn möglich – Expert*innen zur Prüfung der Korrektheit der Antworten zurate ziehen.
2. Bias
Die Anbieter*innen aktueller KI-Assistenten haben sehr viel Arbeit in ihre Produkte gesteckt, um den Bias, also die Voreingenommenheit ihrer Modelle auszumerzen und sie zur Vorurteilsfreiheit zu erziehen.
Verlassen sollten sich User*innen auf die moralische und ethische Unantastbarkeit ihrer Modelle dennoch nicht. Zwar ist es unwahrscheinlich, dass Produkte großer Hersteller*innen noch rassistische, sexistische oder sonstige ethisch fragwürdige Ansichten vertreten, aber komplett ausgeschlossen ist es eben nicht. Noch relativ hoch ist die Gefahr zudem bei der Nutzung von kostenlosen GenAI-Assistenten oder Nischen-Tools.
Gegenmaßnahmen: Auch im Zusammenhang mit Bias gilt es, die Ergebnisse einer KI-Befragung immer genauestens zu checken und mit geltenden Gesetzen und den vorherrschenden Wertevorstellungen unserer Gesellschaft abzugleichen. Wer dubiose KI-Tools meidet, kann sich zudem viel Ärger ersparen.
3. Content-Kannibalisierung
Immer mehr KI-generierter Content flutet das Internet – die logische Folge der zunehmenden Nutzung von GenAI-Assistenten. Leider trainieren KI-Entwickler*innen ihre Chatbots und deren zugrunde liegende Sprachmodelle unter anderem mit genau diesen Inhalten. Und schlimmer noch: Der exponentiell steigende KI-Inhalt ist darüber hinaus auch der Wissensschatz, auf den die KI für ihre Antworten zurückgreift. Dadurch entsteht ein Teufelskreis aus KI, die sich irgendwann nur noch mit von ihr selbst generierten Inhalten trainiert und auch nur noch von ihr produzierten Content als Basiswissen verwendet. Der Mensch wird aus dieser Gleichung immer weiter herausgekürzt. Die Qualität der Ergebnisse von Anfragen an die KI wird somit zunehmend abnehmen. Hinzu kommt, dass alle User*innen irgendwann die gleichen Ergebnisse abrufen, nutzen und veröffentlichen.
Gegenmaßnahmen: Es ergibt Sinn, hin und wieder auch ohne KI zu agieren und Content zu produzieren, der frei von KI-generierten Inhalten ist und das Qualitätsmerkmal „Made in a human brain“ trägt.
4. Wissensoligopol
Der KI-Markt ist derzeit auf einige wenige Big Player geschrumpft, die sich die enormen Rechenressourcen und Entwicklungskosten für generative KI leisten können. Dadurch entsteht zunehmend ein Wissensoligopol, in dem die großen Anbieter*innen wie OpenAI, Google, Microsoft und DeepSeek zukünftig die Art und Weise bestimmen, welche Informationen überhaupt noch zugänglich sind. Schon jetzt gehen Suchanfragen auf den traditionellen Suchmaschinen deutlich zurück, die Ergebnisse zwar nach Algorithmen ranken, aber selten Treffer komplett ausblenden. Viel restriktiver agieren GenAI-Tools, deren implementierte Filter die freiheitliche Verbreitung von Wissen einzuschränken drohen: Was nicht mit den politischen und moralischen Ideen der Hersteller übereinstimmt, wird automatisch unterdrückt. Das erinnert ein wenig an das Wahrheitsministerium aus Orwells „1984“.
Gegenmaßnahmen: Es ist wichtig, dass Unternehmen und offizielle Stellen auch unabhängige Projekte fördern und deren Nutzer*innen- sowie Supporter*innen-Basis wächst. Gleichzeitig sollten User*innen es dringend verinnerlichen, dass KI- Assistenten nicht der Wahrheit letzter Schluss sind. Das Nutzen möglichst vieler Quellen, um das eigene Wissen aufzubauen, ist immer besser als ein vermeintlicher „Single Point of Truth“.
Fazit
Wir sind noch lange nicht so weit, dass ein blindes Vertrauen in generative KI zu rechtfertigen ist. Es ist zwar logisch, dass wir eine vermeintlich arbeitserleichternde Technologie erst einmal ungern hinterfragen – doch dieser Bequemlichkeit wohnt, je nach Einsatzzweck, ein erhebliches Schadenspotenzial inne. Zum jetzigen Zeitpunkt lautet also die Maxime, restlos jede von GenAI generierte Antwort genauestens auf den Prüfstand zu stellen.
Der Autor Alain Blaes ist CEO der Münchner Kommunikationsagentur PR-COM (mit Fokus auf High-tech- und IT-Industrie im B2B-Umfeld).

