KI als Start-up-Helfer

Autor: Henrik Roth
44 likes

Wie Start-ups mit künstlicher Intelligenz den Markt leichter erobern können. Inkl. der Top 10 KI-Anwendungsfälle für Start-ups.

Im digitalen Zeitalter ist Content König – doch nicht jedes Königreich verfügt über die gleichen Ressourcen. Start-ups stehen vor der gewaltigen Aufgabe, in einer Welt, die von Content überschwemmt wird, die richtigen Botschaften zu senden und sich von der Konkurrenz abzuheben. Mit begrenzten Budgets und oft knappen Personalressourcen ist es für sie eine Herausforderung, Inhalte zu erstellen, die nicht nur die eigene Marke stärken, sondern auch die Kund*innenbindung erhöhen und letztlich zu Umsatz führen.

In einem solchen Szenario entfaltet künstliche Intelligenz (KI) ihr volles Potenzial als Gamechanger. KI eröffnet neue Wege zur Automatisierung und Personalisierung der Erstellung von Inhalten – von der Erzeugung aufmerksamkeitsstarker Überschriften bis hin zur Formulierung überzeugender Produktbeschreibungen. KI-basierte Plattformen bieten Start-ups eine effiziente, leistungsstarke Lösung, um ihren Content nicht nur zielgruppengerecht, sondern auch wirtschaftlich und datengetrieben zu erstellen – und das bei gleichzeitig hoher Qualität.

Die digitale Marketinglandschaft verstehen

Die digitale Marketingwelt ist für Start-ups gleichermaßen ein Land der unbegrenzten Möglichkeiten wie ein Schlachtfeld intensiven Wettbewerbs. Eine kraftvolle digitale Präsenz ist entscheidend, um Aufmerksamkeit für die eigene Marke zu generieren und kontinuierliches Wachstum zu gewährleisten. Dabei sind Markenbekanntheit und ein effektives Management verschiedenster Marketingkanäle zentrale Faktoren, die von jungen Unternehmen beherrscht werden müssen. Budgetrestriktionen und die Herausforderung, sich in einem dicht besiedelten Markt gegen etablierte Mitbewerber*innen durchzusetzen, sind jedoch Hürden, die es zu überwinden gibt.

Es gilt, mit begrenzten Mitteln einen maximalen Effekt zu erzielen, die eigene Marke bekannt zu machen und die erzielte Aufmerksamkeit in nachhaltige Kund*innenbeziehungen und -umsätze zu konvertieren.

In diesem dynamischen Umfeld eröffnet KI als Schlüsseltechnologie Wege, um diese Hürden mit geringeren Ressourcen zu meistern und die Wirksamkeit ihrer Marketingaktivitäten zu steigern. Durch den Einsatz von KI-Tools kannst du effiziente und personalisierte Marketingstrategien entwickeln, die sowohl die Kund*innenansprache verbessern als auch eine konsistente, überzeugende Markenbotschaft über alle digitalen Kanäle hinweg gewährleisten. KI-unterstütztes Marketing ist somit nicht nur ein Katalysator für verbesserte Performance, sondern ermöglicht auch die Einsparung kost­barer Zeit und Finanzmittel, die stattdessen in das Kerngeschäft und innovative Entwicklungen investiert werden können.

Lernmöglichkeiten und Wachstum durch KI

Der eigenständige Umgang mit KI-Lösungen kann für dich eine erhebliche Bereicherung darstellen. Anstatt auf teure externe Agenturen angewiesen zu sein, die vielleicht nicht immer die dringenden und spezifischen Bedürfnisse eines agilen Start-ups vollständig verstehen, können es KI-Tools deinen Mitarbeitenden ermöglichen, den Content-Creation-Prozess inhouse zu übernehmen. Dadurch erhalten sie direkte Kon­trolle und ein Verständnis dafür, wie ihre Botschaften geformt und vermittelt werden.

Der Einsatz von KI schult Teams darin, datengesteuerte Entscheidungen zu treffen. Jedes Mal, wenn ein KI-Tool zur Erstellung oder Verbesserung von Content verwendet wird, ergeben sich daraus Erkenntnisse über die Präferenzen der Zielgruppe, über die Sprache, die am besten auf dem Markt ankommt und über Strategien, die die höchste Engagement-Rate aufweisen. Dieses Wissen, das oft in Echtzeit generiert wird, ist von unschätzbarem Wert beim Aufbau einer effektiven Marketingstrategie und bei der Feinabstimmung der Markenbotschaft.

Gleichzeitig fördern KI-Tools die Kreativität in deinem Unternehmen, indem sie Mitarbeitende ermutigen, neue Inhaltsformate zu erforschen und zu experimentieren, ohne sich Sorgen um Ressourcen zu machen. Beispielsweise kann die Generierung eines Blogs, einer Produktbeschreibung oder eines Social-Media-Posts durch KI das Team dazu inspirieren, einzigartige Kampagnen zu entwickeln, die die Marke vom Wettbewerb abheben.

Die Top 10 KI-Anwendungsfälle für Start-ups

KI-Technologie unterstützt dich und dein Team bei einer Vielzahl von Aufgaben im Content-Marketing:

  • Kurze Beschreibungen für Suchmaschinen: Du kannst KI nutzen, um kurze und präzise Beschreibungen zu erstellen, die bei Suchanfragen in den Suchergebnissen angezeigt werden. Diese Beschreibungen werden so gestaltet, dass sie die Aufmerksamkeit der Suchenden auf sich ziehen und ihre Neugier wecken.
  • Produktbeschreibungen für Online-Shops: Mithilfe von KI werden trockene Produktlisten in überzeugende Kaufempfehlungen umgewandelt. Die KI wählt die wichtigsten Informationen über ein Produkt aus und beschreibt es so lebendig, dass man es beinahe riechen, schmecken oder fühlen kann.
  • Inhalte für eine bessere SEO: Du kannst KI weiterhin verwenden, um fesselnde Inhalte zu generieren, die sowohl Leser*innen als auch Suchmaschinen ansprechen. Die KI analysiert Suchverhalten und Trends, um relevante und interessante Inhalte zu erstellen, die eine hohe Klickrate erzielen.
  • Social-Media-Posts: Um auf Social Media herauszustechen, kann KI genutzt werden, um ansprechende Inhalte zu erstellen. Egal ob lange LinkedIn-Posts, kurze Facebook-Beiträge oder sogar Instagram-Steckbriefe, die KI setzt die ­Social-Media-Inhalte in spezifische Kontexte und lädt die Follower*innen dazu ein, sich damit zu beschäftigen und zu interagieren.
  • Schreiben von professionellen E-Mails: Mit KI wird das Verfassen von professionellen E-Mails einfacher. Die KI verwendet Sprachmodelle und Branchenwissen, um maßgeschneiderte Nachrichten zu erstellen. Es gibt Vorlagen und personalisierte Vorschläge, um den Ton und die Kommunikationsprozesse jedes Unternehmens zu optimieren.
  • Umschreiben von Texten: Mit KI-Tools können Inhalte flexibel an verschiedene Formate angepasst werden. Zum Beispiel kann KI Texte zusammenfassen oder Textpassagen umschreiben. Ob es sich um Blogbeiträge, Newsletter oder Social-Media-Posts handelt, die KI passt die Inhalte nahtlos an die Anforderungen der verschiedenen Plattformen an.
  • Aufwertung von Texten: KI hilft dir, deine Texte ansprechender zu gestalten. Die KI analysiert das Vokabular und schlägt kraftvolle Wörter und Satzstrukturen vor, um den Text unverwechselbar und ausdrucksstark zu machen.
  • Erstellung von branchen- oder themenspezifischen Inhalten: Mithilfe von KI kannst du relevante Themen, Sprachmuster und Keywords identifizieren, die deine Zielgruppe ansprechen. So erstellst du Inhalte, die speziell auf die Sprache deiner Branche und auf die Interessen deiner Zielgruppe zugeschnitten sind.
  • Beantwortung von Kund*innenanfragen: KI-Systeme helfen dir dabei, spezifische Anfragen schnell zu identifizieren und individuelle Antworten zu generieren. Das sorgt für eine konsistente und qualitativ hochwertige Kund*innenbetreuung und spart gleichzeitig wertvolle Zeit.
  • Texte für Webseiten erstellen: Um eine ansprechende Online-Präsenz zu schaffen, kannst du KI nutzen, um überzeugende Texte für deine Websites zu erstellen. Die KI optimiert die Inhalte für Suchmaschinen und sorgt dafür, dass sie relevant, informativ und zugleich ansprechend für deine Leser*innen sind.

Fazit

Das digitale Marketingumfeld stellt Start-ups vor einzigartige Herausforderungen, die durch begrenzte Ressourcen und die Notwendigkeit, in einem dichten und wettbewerbsintensiven Markt hervorzustechen, verstärkt werden. In dieser Landschaft hat sich KI als unverzichtbares Werkzeug etabliert, das nicht nur die Effizienz und Personalisierung der Content-Erstellung verbessert, sondern auch bedeutsame Lernmöglichkeiten bietet, um internes Know-how auszubauen und die Abhängigkeit von externen Dienstleister*innen zu verringern.

Der Autor Henrik Roth ist Co-Founder der neuroflash GmbH, die mittels KI-Technologien Unternehmen direkte Unterstützung bei der Erstellung hochwirksamer sowie authentischer Inhalte bietet.

Diese Artikel könnten Sie auch interessieren:

Start-ups gegen Plastikmüll

Während die Verhandlungen zu einem globalen Plastikabkommen ergebnislos bleiben, entwickeln Start-ups weltweit innovative Technologien gegen Plastikmüll. Wir stellen eine Auswahl davon vor.

Die jüngsten Verhandlungen in Genf über ein globales Plastikabkommen sind wieder ohne Ergebnis geblieben. Die mehr als 180 verhandelnden Nationen konnten sich nicht einigen. Seit mehr als 50 Jahren sind die Gefahren durch Plastikmüll bekannt – und doch wird immer mehr davon produziert. Jedes Jahr entstehen rund 460 Millionen Tonnen Plastik, weniger als 10 Prozent davon werden recycelt und über 30 Millionen Tonnen gelangen in die Ozeane.

Auf politischer Ebene zeichnet sich bislang keine Lösung ab, auf die man sich global einigen könnte. Neue Vorgaben wie die Pflicht zu fixierten Flaschendeckeln in der EU sorgen eher für Frust. „Seit Jahrzehnten reden wir über das Plastikproblem. Um es zu lösen braucht es technologische Ansätze“, sagt Dr. Carsten Gerhardt, Vorsitzender der gemeinnützigen Circular Valley Stiftung. Solche Ansätze liegen längst auf dem Tisch. „Start-ups aus aller Welt zeigen, dass Innovation schneller sein kann als Verhandlungen.“

Start-ups aus aller Welt arbeiten an Lösungen

Einige dieser Unternehmen hat der Circular Economy Accelerator der Circular Valley Stiftung bereits unterstützt. Das Start-up PROSERVATION etwa stellt Polsterverpackungen aus Nebenprodukten der Getreideindustrie her, BIOWEG ersetzt Mikroplastik durch Biomaterialien aus Lebensmittelabfällen und das Unternehmen Biomyc verwendet Myzel-Verbundwerkstoffe aus Pilzwurzeln und Pflanzen.

Daüber hinaus stellt NYUNGU AFRIKA Damenhygieneprodukte aus Ananasblatt- und Maisschalenfasern her, Midwest Composites nutzt Ernteabfälle für die Herstellung von Textilien und Vlastic bietet eine Alternative zu geschäumten Kunststoffen auf Flachsbasis.

Wenn Produkte das Ende ihrer Lebensdauer erreichen, können sie durch Recycling ein zweites erhalten. Ecoplastile verwandelt Abfälle in langlebige Dachziegel, Gescol macht Bauplatten aus Schuhsohlen und Novoloop nutzt schwer zu recycelndes Polyethylen zur Produktion von thermoplastischen Hochleistungs-Polyurethanen.

Chemisches Recycling zerlegt Kunststoffe in molekulare Bausteine. Das Unternehmen CARBOLIQ verwendet ein katalytisches Niedertemperaturverfahren, um gemischte Kunststoffe in Öl umzuwandeln, das fossile Rohstoffe ersetzen kann; Radical Dot extrahiert Monomere, um sie erneut verwenden zu können.

Zu chemischem Recycling hat Circular Valley in diesem Jahr einen Informationsfilm veröffentlicht, der die Möglichkeiten dieser Methode erklärt und verdeutlicht.

Warum KI bei Förderanträgen versagt

Fünf Gründe, warum Unternehmen auf menschliche Intelligenz setzen sollten.

Ob steuerliche Forschungszulage, Investitionsförderung oder EU-Programme. Künstliche Intelligenz (KI) wie ChatGPT liefert in Sekundenschnelle eine Vielzahl möglicher Förderprogramme. Doch zwischen der reinen Information und der tatsächlichen Erschließung von Fördermitteln liegt ein erheblicher Unterschied. Hier gilt es, Unternehmen zu sensibilisieren.

Fördermittel sind heute ein strategischer Bestandteil moderner Unternehmensfinanzierung. Es reicht daher nicht, die Programme zu kennen. Entscheidend ist, sie rechtssicher, vollständig und förderlogisch aufeinander abgestimmt umzusetzen, um die vollen Förderpotenziale zu heben. Genau hier beginnt die Arbeit von Fördermittelexpert*innen.

Fünf Gründe, warum KI-Tools nicht als Fördermittelberater funktionieren

1. KI erkennt die wahren Förderpotenziale nicht

ChatGPT kann erklären, was ein Förderprogramm leistet. Doch welche Kosten eines konkreten Vorhabens tatsächlich und wie hoch förderfähig sind, lässt sich so nicht beurteilen. Gerade bei komplexen Programmen wie der steuerlichen Forschungszulage sind Erfahrung, Struktur und rechtssichere Abgrenzung entscheidend. Eine gute Fördermittelberatung prüft jedes Vorhaben systematisch: von der Förderfähigkeit nach dem Forschungszulagengesetz (FZulG), AGVO oder De-minimis-Verordnung bis hin zur klaren Trennung förderfähiger und nicht förderfähiger Aufwände.

2. KI kann keine Förderstrategien entwickeln

Eine Liste von Förderprogrammen ersetzt keine Strategie. KI kann nur Optionen nennen, aber keine Strategien zur Umsetzung im Unternehmen entwickeln. Eine gute Fördermittelberatung integriert die Forschungszulage sinnvoll in laufende Projekte und strukturiert Innovations- sowie Investitionsprozesse auf Bundes-, Landes- und EU-Ebene. So entstehen nicht nur Optionen, sondern belastbare, wirtschaftlich wirksame Lösungen.

3. KI kann nicht mit Menschen kommunizieren

Ein Antrag ist mehr als ein Formular. Er muss Anforderungen erfüllen und überzeugen. KI liefert Textbausteine, aber führt keine Gespräche und reagiert nicht auf Rückfragen mit der notwendigen Erfahrung in der Verwaltungspraxis der verschiedenen Förderprogramme. Eine gute Fördermittelberatung übernimmt die gesamte Kommunikation mit Förderstellen, koordiniert mit Bescheinigungsstellen und entwickelt formal korrekte und überzeugende Argumentationen.

4. KI endet beim Prompt – Fördermittelberatung bei der erfolgreichen Projektprüfung

Nach dem Antrag geht die Arbeit oft erst richtig los. Rückfragen, Prüfungen, Nachweise. KI kann Unternehmen dabei nicht unterstützen und keine Verantwortung übernehmen. Eine gute Fördermittelberatung hingegen begleitet die Kund*innen durch den gesamten Förderzyklus mit sauberer Dokumentation, revisionssicherer Aufbereitung und Unterstützung bei Audits und Außenprüfungen.

5. KI zeigt nur den Dschungel – Förderexperten finden den Schatz

Datenbanken geben einen Überblick, aber keine Richtung. Eine gute Fördermittelberatung bewertet alle denkbar möglichen Förderprogramme im konkreten Unternehmenskontext und entwickelt daraus konkrete Maßnahmen, um das Maximum an Fördermöglichkeiten für die Kund*innen rauszuholen. Eine gute Fördermittelberatung schafft so echte wirtschaftliche Vorteile statt der bloßen Auflistung von Fördermöglichkeiten.

Der Autor Efe Duran Sarikaya ist CEO der Fördermittelberatung EPSA Deutschland.

EU KI-Gesetz wird scharf gestellt

Diese Strafen für KI-Verstöße drohen ab dem 2. August 2025 – was Personalverantwortliche und Arbeitnehmende jetzt wissen und beachten müssen.

Das KI-Gesetz der Europäischen Union, die weltweit erste umfassende KI-Verordnung, erreicht am 2. August 2025 einen entscheidenden Meilenstein. Ab diesem Stichtag gelten für Unternehmen, Behörden und KI-Anbieter*innen in der EU zahlreiche zentrale Verpflichtungen, bei deren Nichteinhaltung Strafmaßnahmen eingeleitet und verhängt werden können. Was das für Unternehmen und ihre Mitarbeitenden bedeutet, erfährst du hier.

Der AI Act, der am 2. Februar dieses Jahres in Kraft getreten ist, schafft einen einheitlichen Rechtsrahmen für Künstliche Intelligenz (KI) in der EU. Zwar werden viele Regelungen erst 2026 wirksam, doch bereits am 2. August 2025 beginnt eine neue Phase, die sich auf drei Bereiche fokussiert:

  • Strafmaßnahmen bei Nichteinhaltung
  • Verpflichtungen für allgemeine General-Purpose-AI-Modelle (GPAI)
  • Aufbau von Aufsicht und Governance auf nationaler und europäischer Ebene

Strafen bis zu 35 Millionen Euro

Seit dem 2. Februar dieses Jahres sind KI-Systeme mit unannehmbaren Risiken verboten. Ab dem 2. August 2025 können zusätzlich nun Geldbußen für Verstöße gegen bereits bestehende Verpflichtungen verhängt werden, die bis zu 35 Millionen Euro oder 7 Prozent ihres gesamten Jahresumsatzes betragen können. Unternehmen müssen dazu beispielsweise sicherstellen, dass ihre Mitarbeitenden über KI-Kenntnisse verfügen. Die Europäische Union erwartet von ihren Mitgliedstaaten, dass sie eigene wirksame, verhältnismäßige und abschreckende Strafmaßnahmen festlegen. Dabei sollen die besonderen Umstände von KMUs und Start-ups berücksichtigt werden, um deren wirtschaftliche Lebensfähigkeit nicht zu gefährden.

Neue Verpflichtungen für Anbieter*innen von GPAI-Modellen

GPAI-Modelle, die ab dem 2. August 2025 in der Europäischen Union vermarktet werden, unterliegen gesetzlichen Verpflichtungen. Das Europäische Amt für Künstliche Intelligenz hat dazu am 10. Juli 2025 die endgültige Fassung der Verhaltenskodizes veröffentlicht. Anbieter*innen solcher GPAI-Modelle müssen unter anderem technische Dokumentationen erstellen, Urheberrechte beachten und Transparenz über die verwendeten Trainingsdaten sicherstellen.

GPAI-Modelle sind KI-Systeme mit besonders breitem Einsatzspektrum und sind darauf ausgelegt, eine Vielzahl von Aufgaben zu erfüllen. Sie werden mit riesigen Datenmengen trainiert und sind entsprechend vielseitig einsetzbar. Das bekannteste Beispiel sind große Sprachmodelle (Large Language Models, LLM), etwa das generative Sprachmodell GPT-4o, das in ChatGPT integriert ist. Für GPAI-Modelle, die bereits vor dem 2. August 2025 in der Europäischen Union auf dem Markt waren, gilt eine Übergangsfirst bis zum 2. August 2027.

Aufsicht und Governance

Die KI-Verordnung schafft einen Rahmen mit Durchführungs- und Durchsetzungsbefugnissen auf zwei Ebenen.

Auf nationaler Ebene muss jeder EU-Mitgliedstaat bis zum 2. August 2025 mindestens eine Marktüberwachungsbehörde sowie eine notifizierende Behörde benennen. Erstere ist für die Überwachung von KI-Systemen zuständig, letztere für die Notifizierung unabhängiger Konformitätsbewertungsstellen. Die Mitgliedstaaten müssen bis dem Stichtag Informationen zu den nationalen Behörden und deren Kontaktdaten veröffentlichen.

Auf EU-Ebene koordinieren das Europäische Amt für KI und der Europäische KI-Ausschuss die Aufsicht. Zusätzlich werden ein Beratungsforum und ein wissenschaftlicher Ausschuss aus unabhängigen Experten eingerichtet.

Was bedeutet das für Personalabteilungen und Arbeitnehmende?

Das KI-Gesetz hat direkte Auswirkungen darauf, wie KI in den Bereichen Rekrutierung, Performance-Management, Personalanalyse und Mitarbeitenden-Monitoring eingesetzt wird. Personalverantwortliche müssen sicherstellen, dass KI-Tools in diesen Bereichen transparent, fair und konform sind.

  • Fairness und Antidiskriminierung: KI-Systeme, die bei Einstellungs- oder Beförderungsentscheidungen eingesetzt werden, müssen nachvollziehbar und frei von Bias sein. Personalabteilungen sollten ihre Tools und Anbieter*innen regelmäßig überprüfen, um die Einhaltung der Vorschriften sicherzustellen.
  • Vertrauen und Transparenz: Mitarbeitende erhalten einen besseren Einblick, wie KI-Systeme ihre Arbeit beeinflussen, zum Beispiel bei der Einsatzplanung, Leistungsbewertung oder bei der Arbeitssicherheit. Personalabteilung können Vertrauen schaffen, indem sie offen kommunizieren, wie KI eingesetzt wird und wie die Daten der Mitarbeitenden geschützt werden.
  • Verantwortlichkeit von Drittanbieter*innen: Werden KI-Tools von Drittanbieter*innen genutzt, müssen Personalabteilungen sicherstellen, dass diese Anbieter*innen die Anforderungen an Transparenz und Dokumentation erfüllen. Verträge und Beschaffungsprozesse sollten entsprechend angepasst werden.
  • Training und Change Management: Mit stärkeren Regulierungen von KI wird die Personalabteilung eine Schlüsselrolle bei der Schulung von Führungskräften und Mitarbeitenden übernehmen. Ziel ist es, einen verantwortungsvollen Umgang mit KI zu fördern und ethische Standards in der Unternehmenskultur zu verankern.

Fazit

Anbieter*innen von GPAI-Modellen, die bereits vor dem 2. August 2025 auf dem Markt waren, haben bis zum 2. August 2027 Zeit, die neuen Vorschriften vollständig umzusetzen. Weitere Verpflichtungen für KI-Systeme mit hohem Risiko werden 2026 und 2027 folgen. Dieser Meilenstein spiegelt das Bestreben der EU wider, Innovationen zu fördern und gleichzeitig sicherzustellen, dass KI sicher, transparent und mit den europäischen Werten im Einklang steht. Damit rückt die Personalabteilung in den Mittelpunkt einer verantwortungsvollen Einführung von KI am Arbeitsplatz.

Der Autor Tom Saeys ist Chief Operations Officer bei SD Worx, einem international tätigen Dienstleistungsunternehmen im HR-Bereich.

„Österreich hat einen langen Atem – und das zahlt sich im Bereich Applied AI aus“

Als führende Standorte in Sachen Künstliche Intelligenz liegen die USA und Asien auf der Hand, doch auch in Österreich gibt es eine vielfältige AI-Landschaft. Welche Vorteile der Standort für künstliche Intelligenz mit sich bringt und welche Rolle dabei Applied AI spielt, weiß Clemens Wasner, Gründer von AI Austria und CEO der EnliteAI.

Clemens Wasner ist Gründer des österreichischen Verbandes für Künstliche Intelligenz, AI Austria und CEO des Wiener Venture Studios EnliteAI. Der studierte Informatiker arbeitete über ein Jahrzehnt in Asien, bevor er 2017 EnliteAI gründete.

Herr Wasner, Sie kennen die AI-Szene aus erster Hand. Wie gut ist Österreich im internationalen Vergleich aktuell aufgestellt, wenn es um Applied AI geht?

Gemessen an seiner Größe steht Österreich erstaunlich gut da. Unsere AI–Landscape verzeichnet mittlerweile über 450 Unternehmen, die aktiv mit KI arbeiten – nicht nur Start-ups, sondern auch klassische Industrieunternehmen, Dienstleister und der öffentliche Sektor. Gerade im Bereich der industriellen Anwendungen ist Österreich breit aufgestellt: Es gibt zahlreiche Corporates, die eigene Competence Center gegründet, Ausgründungen vorgenommen oder Lizenzmodelle für KI aufgebaut haben. Auch die Zahl der Inkubatoren und Corporate Venture Capitalisten ist beachtlich. Das Thema ist in der Realwirtschaft angekommen – und das nicht erst seit gestern. Bereits 2018 gab es hierzulande einen deutlichen Aufschwung. Im Bereich der Spitzenforschung sind wir ebenfalls stark: Mit drei sogenannten ELLIS-Hubs –  European Laboratory for Learning and Intelligent Systems – gehören wir zur europäischen Spitze, gemessen an der Größe des Landes.

Sie sprechen beim Blick auf Österreich oftmals vom „AI-Standort mit langem Atem“. Was genau meinen Sie damit und was macht aus Ihrer Sicht einen exzellenten Standort für AI-Start-ups aus?

Der „lange Atem“ ist positiv gemeint und beschreibt das, was Österreich im Bereich Forschung & Entwicklung auszeichnet: kontinuierliche Investitionen, strategischer Weitblick und langfristige Förderstrukturen. Die Steiermark war lange OECD-Spitzenreiter bei F&E-Ausgaben, Wien verfügt über eine dichte Forschungslandschaft. Das sind keine kurzfristigen Hypes, sondern über Jahrzehnte gewachsene Strukturen. Österreich verfügt zudem über eine differenzierte Förderarchitektur, die alle TRL-Stufen abdeckt – von der Grundlagenforschung bis zur Markteintrittsunterstützung. Auch Clusterstrukturen spielen eine Rolle: In Life Sciences etwa gibt es in Wien und Graz funktionierende Ökosysteme, in denen zunehmend auch KI eine Rolle spielt. Diese Verankerung ermöglicht Planbarkeit, die gerade in technologieintensiven Bereichen entscheidend ist.

Zu den Schlüsselfaktoren einen erfolgreichen Standorts zählen Infrastruktur, Talent Pool und Anwendungsmöglichkeiten. Wo sehen Sie hier derzeit die größten Hebel – und auch die größten Defizite – in Österreich?

Ein klarer Vorteil liegt in der Verfügbarkeit von Talenten: Wien zieht seit Jahren hochqualifizierte Developer aus dem osteuropäischen Raum an. Der AI-Fachkräftemangel ist hier weniger ausgeprägt als in anderen europäischen Hauptstädten. Hinzu kommt: Österreich bildet mehr AI-Absolventen aus, als die Wirtschaft derzeit absorbieren kann. Das schafft einen Bewerbermarkt, der gerade für Start-ups günstig ist. Auch Standortfaktoren wie Lebensqualität und erschwingliche Mieten machen zum Beispiel die Hauptstadt Wien attraktiv. Als Besonderheit sehe ich zudem den aktiven Zugang der Stadt: Wien versteht sich als First Client für KI-Anwendungen, etwa in der Analyse von Geodaten, IoT oder der Digitalisierung von Baueinreichprozessen. Hier ist wesentlich mehr Offenheit für politische Vergabe zu finden als in anderen Ländern. Weniger stark ist Wien in der Spitzenforschung vertreten, hier liegt Linz mit der JKU vorn. Aber man kann als kleines Land nicht alles abdecken – und sollte dort Schwerpunkte setzen, wo bestehende Stärken ausbaubar sind.

Was war der Gründungsimpuls für EnliteAI und wie ist Ihr Venture Studio heute aufgestellt?

Ich kam 2016 nach zehn Jahren in Asien zurück nach Österreich. In China und Japan war KI allgegenwärtig, ein regelrechter Hype. Zurück in Europa herrschte Funkstille – das war ein Kulturschock. Ich wollte dem Thema hierzulande Schub geben: 2017 gründete ich den Verband AI Austria und kurz darauf EnliteAI. Unsere Erkenntnis aus früheren Projekten zeigte, dass viele Unternehmen gute Ideen, aber keine Ressourcen zur Umsetzung hatten. Daraus entstand das Venture Studio: Wir entwickeln Prototypen gemeinsam mit Unternehmen und gründen darauf spezialisierte Start-ups. Aktuell sind wir 20 Personen und verfolgen zwei Themen – Detekt, das sich auf den Bereich Mobile Mapping spezialisiert hat, und ein weiteres im Stromnetzmanagement. Mit EnliteAI möchten wir künftig weitere Projekte unterstützen und bereiten dafür eine Dual-Entity-Struktur mit einem eigenen Fonds vor. Ziel ist es, das Modell professionell zu skalieren und Investoren direkt in die Spin-outs zu bringen.

Rechenleistung zählen zu den Schlüsselressourcen in der AI. Was braucht es aus Ihrer Sicht, damit europäische Standorte hier nicht dauerhaft in Abhängigkeit geraten?

Realistisch betrachtet: Die Abhängigkeit besteht bereits. Die großen Hyperscaler sind US-dominiert, ebenso Chips, Kommunikationstools, Social Networks. Europa muss in die digitale Souveränität investieren. Erste Schritte wie AI Factories sind wichtig, aber nicht ausreichend. Wir brauchen europäische Cloud-Anbieter, Chipproduktion auf europäischem Boden und eine nachhaltige Energiepolitik. Frankreichs KI-Boom basiert auf Atomstrom – weil er langfristig planbar ist. Diese Planbarkeit fehlt in vielen europäischen Ländern derzeit. Ohne Strom gibt es keine KI. Auch das zeigen Stimmen von Sam Altman, Elon Musk und anderen. Hier ist ein strategischer Paradigmenwechsel notwendig.

Sie sprachen bereits die vielfältige Landschaft von kleinen und mittleren Unternehmen in Österreich an, die offen für KI sind. Wie gut funktioniert das Matching zwischen Start-ups und klassischen Industrieunternehmen?

Österreich macht hier sehr viel richtig. Es gibt ein breites Netz an Förderinstrumenten – von der Österreichischen Forschungsförderungsgesellschaft FFG über die Austria Wirtschaftsservice bis hin zu regionalen Wirtschaftskammern. Zudem bietet Österreich eine Forschungsförderungsprämie an, bei der 14 Prozent der F&E-Ausgaben quasi mit einem Blankoschein gefördert werden können. Zudem organisieren viele Institutionen aktiv Matchmaking-Events, etwa im Rahmen von PreSeed-, AI-Adoption- oder Innovationsprogrammen. Hinzu kommt der Industry-Startup-Marktplatz mit mehreren Tausend registrierten Unternehmen. Auch Pitchings werden gefördert. Das Ziel ist stets, AI nicht nur in der Theorie zu belassen, sondern in die Realwirtschaft zu bringen. Trotzdem: Viele Unternehmen wissen noch immer nichts davon. Hier braucht es also noch mehr Aufklärung.

Welcher KI-Standort – in Österreich und darüber hinaus – hat Sie zuletzt positiv überrascht?

In Österreich ist Linz für mich der Hotspot schlechthin – die Kombination aus Spitzenforschung und erfolgreichem Technologietransfer ist dort besonders gut gelungen. International beeindruckt mich Twente in den Niederlanden: kein großer Name, aber mit klarer Strategie. Sie haben das Spin-out-Modell von Oxford und Cambridge adaptiert und konsequent umgesetzt – mit IP-Offices, Gründungsberatung und Infrastruktur für Start-ups. Ein weiteres Vorbild ist Heilbronn mit den Campus Founders: Sie haben, unterstützt durch die Dieter Schwarz Stiftung, einen Ort für Unternehmertum und Innovationen geschaffen und könnten Vorbild für viele europäische Regionen werden. Viele Stiftungen schaffen Parks oder Schlösser, aber wesentlich gewinnbringender wäre die Förderung von Entrepreneurship wie es in Heilbronn passiert statt Museumsstiftung. Europa braucht diese neue Denkweise.

Clemens Wasner, vielen Dank für das Gespräch.

Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin

Was Unternehmen über KI-Agenten wissen müssen

Künstliche Intelligenz in Form autonomer Agenten gewinnt rasant an Bedeutung. Doch wie arbeiten diese KI-Agenten? Was ist bei der Umsetzung zu beachten? Hier gibt's die Antworten.

Die Idee, dass autonome Systeme eng mit Menschen zusammenarbeiten und sie gezielt unterstützen, ist keine Vision mehr, sondern Realität. Während bisher eine umfassende Problemlösungskompetenz im Hintergrund fehlte, bringen KI-Agenten genau diese Fähigkeit mit und übernehmen zunehmend vielfältige Aufgaben in der Arbeitswelt. Wir erklären, was Unternehmen über KI-Agenten wissen müssen.

Was sind KI-Agenten und auf welcher Technologie basieren sie?

KI-Agenten sind Softwaresysteme, die eigenständig Aufgaben ausführen, aus Erfahrungen lernen und dynamisch mit ihrer Umgebung interagieren. Ihr Ziel ist es, Aufgaben autonom zu lösen, ohne dass ein kontinuierliches menschliches Eingreifen notwendig ist. Im Unterschied zu herkömmlichen Automatisierungslösungen bewältigen KI-Agenten selbst komplexe Anforderungen, indem sie sich an neue Bedingungen anpassen. Auch werden sie im Gegensatz zu universellen LLMs in der Regel fein abgestimmt, um Relevanz und Datenschutz zu gewährleisten. Sinnvoll ist eine kontextbezogene Architektur, die kausale KI, Document AI und multimodale Logik kombiniert und damit optimal auf geschäftliche Anwendungsfälle zugeschnitten ist.

In welchen Bereichen der Arbeitswelt entfalten KI-Agenten ihr Potenzial?

KI-Agenten finden in nahezu allen Unternehmensbereichen Einsatzmöglichkeiten – von der Beantwortung einfacher Anfragen bis hin zur Steuerung komplexer Prozesse. Eingebettet in CRM-Plattformen analysieren sie riesige Datenmengen, die Unternehmen manuell nicht mehr auswerten können. Anstatt die Ergebnisse lediglich zu präsentieren oder Kontakte nach Prioritäten zu sortieren, qualifizieren KI-Agenten auch noch automatisch Leads, schlagen passende Angebote vor und beantworten Kundenanfragen. Oder anders formuliert: Während herkömmliche Tools in der Regel auf statischen Wenn-dann-Regeln basieren, führt die neue Generation hyperpersonalisierte Aktionen nahezu in Echtzeit aus. Diese Entwicklung entlastet Mitarbeiter von Routineaufgaben und gibt ihnen Raum, sich auf strategisch wichtige Aufgaben zu konzentrieren. Unternehmen wiederum können ohne großen Aufwand Tausende von Kunden individuell betreuen.

Werden KI-Agenten den Arbeitsmarkt verändern?

Diese Frage lässt sich nicht pauschal beantworten. Es entstehen durch den verstärkten Einsatz von KI-Lösungen neue Berufsfelder – insbesondere bei der Entwicklung, Integration und Wartung solcher Agentensysteme werden qualifizierte Fachkräfte benötigt. Gleichzeitig stellt sich die Herausforderung, bestehende Mitarbeitende gezielt im Umgang mit diesen Technologien weiterzubilden und deren digitale Kompetenzen auszubauen. Eines muss klar sein: Das Ziel von KI-Agenten ist es nicht, menschliche Arbeitskraft zu ersetzen, sondern deren Fähigkeiten zu erweitern. Mitarbeitende können sich somit stärker auf komplexe Kundeninteraktionen oder die Entwicklung innovativer Kampagnen konzentrieren, während ihnen die KI zur Hand geht.

Worauf müssen Unternehmen bei der Auswahl von KI-Agenten-Lösungen achten?

In erster Linie benötigen sie eine digital ausgereifte Umgebung mit einheitlichen Datenformaten, optimierten Prozessen und regelbasierten Automatisierungen, um den ROI steigern zu können. Anschließend müssen sie sicherstellen, dass ihre KI-Systeme den geltenden Datenschutzbestimmungen entsprechen und sensible Kund*innendaten optimal geschützt sind. Transparenz und Nachvollziehbarkeit der KI-Entscheidungen sind ebenfalls essenziell, um das Vertrauen von Kunden und Mitarbeitenden nicht zu gefährden. Auf technischer Seite ist eine interoperable Lösung notwendig, die sich so nahtlos wie möglich in die bestehende IT-Umgebung integrieren lässt. Zu den weiteren Aspekten zählen die Priorisierung der kontextuellen Abstimmung, da Agenten geschäftsspezifische Arbeitsabläufe und Datenformate verstehen müssen, sowie die Nutzung eines Federated-Model-Ansatzes statt einheitlicher LLM-Frameworks, um Effizienz, Erklärbarkeit und Kosten zu optimieren.

Wie binden Unternehmen ihre Mitarbeitenden am besten ein?

Zunächst einmal ist ein grundlegendes Change Management erforderlich. Die Mitarbeiterinnen und Mitarbeiter müssen verstehen, dass die KI ihnen nicht die Arbeit wegnimmt, sondern sie unterstützen soll. Sinnvoll ist auch ein Low-Code-Ansatz: Maßgeschneiderte KI-Applikationen und automatisierte Workflows steigern die Arbeitseffizienz in Abteilungen um ein Vielfaches – sogar Mini-Anwendungen, die lediglich einfache Aufgaben übernehmen. Jedoch können zentrale IT-Abteilungen, die mit Entwicklungsanfragen aus verschiedenen Abteilungen überhäuft werden, diese kaum bewältigen. Mit einer Low-Code-Application-Plattform (LCAP) können auch Mitarbeiter ohne Programmierkenntnisse einfache KI-Anwendungen selbst erstellen. Möglich machen das einfache Drag-and-Drop-Optionen und vorgebaute Module, die je nach Wunsch kombinierbar sind.

Fazit

KI-Agenten sind als kollaborative Partner zu verstehen, nicht als Ersatz für den Menschen. Künftig werden wir eine Multi-Agent Collaboration sehen. Hierbei übernehmen verschiedene KI-Agenten jeweils Spezialaufgaben und koordinieren sich untereinander, um selbst die komplexesten Herausforderungen effizient zu lösen.

Der Autor Sridhar Iyengar ist Managing Director von Zoho Europe.

fünfeinhalb Funksysteme: Echtzeit-WLAN für die Industrie

Das 2023 als Ausgründung aus der TU Dresden gegründete Start-up fünfeinhalb Funksysteme stellt mit BlitzFunk eine 5G-Alternative für industrielle Anwendungen vor.

Die Einführung des Mobilfunkstandards 5G sollte die drahtlose Kommunikation nicht nur für den Consumer-Markt revolutionieren, sondern auch den Weg hin zur Industrie 4.0 mit vollvernetzten, intelligenten Fabriken ebnen. Doch bis heute können kommerzielle 5G- sowie zahlreiche WLAN-Systeme die Echtzeitanforderungen industrieller Anforderungen meist nicht erfüllen: Verzögerungen in der Datenübertragung (Latenzen) führen zu oft zu Systemstopps und Ausfällen ganzer Anlagen. Das Dresdner Start-up fünfeinhalb Funksysteme GmbH hat es sich zum Ziel gesetzt, dies zu ändern. Mit BlitzFunk, einem Echtzeit-WLAN-System mit berechenbaren Latenz-Garantien sowie latenzfreiem Roaming, ist ihm dies gelungen.

Fünfeinhalb Funksysteme wurde 2023 als Ausgründung aus der TU Dresden gegründet, mit dem Ziel, die nicht eingehaltenen Versprechen des Mobilfunkstandards 5G einzulösen und für Anwendungen im industriellen Umfeld nutzbar zu machen. Dafür hat das fünfköpfige Gründerteam rund um Geschäftsführer Dr. Lucas Scheuvens BlitzFunk entwickelt. Das Funksystem – bestehend aus Access Points und Clients – ist so konzipiert, dass es als eine koordinierte Einheit agiert. Die Anwendergeräte (Maschinen, Steuerungen oder Sensoren) werden über Ethernet mit dem System verbunden.

Latenzfreies Roaming ohne Unterbrechung

Einen der größten USPs des Funksystems fasst Dr. Lucas Scheuvens wie folgt zusammen: „Bei einem klassischen Roaming-Prozess, der in räumlich größeren Netzwerken immer nötig ist, ist der Client jeweils mit nur einem Access Point verbunden. Bevor er dessen Reichweite verlässt, muss er mit dem nächsten Access Point verknüpft werden. Das heißt, dass dort die Verbindung zum ersten Access Point ab- und zum nächsten Access Point neu wieder aufgebaut wird. Verschiedene Lösungen können dies zwar besonders schnell, aber es gibt immer einen zeitlichen Break. Bei Blitzfunk ist das nicht so, da unsere Access Points sich koordinieren und somit latenzfreies Roaming garantieren. Dabei koordinieren sie sich im Hintergrund automatisch so, dass sie sich nicht gegenseitig stören. Da das Roaming im BlitzFunk-System keinerlei negative Auswirkungen hat, entfällt auch die aufwendige und kostenintensive Funknetzplanung.“

Entwickelt für die Anforderungen der Industrie 4.0

BlitzFunk garantiert eine schnelle Datenübertragung – selbst bei mehreren verbundenen Geräten (Clients): Für 99,9999 Prozent aller Sendeversuche liegt die Latenz – so das Unternehmen – nachweislich bei maximal 2 × (N + 1) Millisekunden, wobei N die Anzahl der gleichzeitig aktiven Geräte ist – und das bei maximaler Ethernet-Framegröße von 1500 Bytes. Ein einzelner Client im System hat demnach eine garantierte Latenz von 4 Millisekunden, bei zehn Clients sind demnach 22 Millisekunden erwartbar, usw. Diese Garantie gilt auch für den Roaming-Fall, was vollständig unterbrechungsfreie Datenverbindungen für anspruchsvollste Industrie-Anwendungen ermöglicht.

Doch das Funksystem hat noch weitere Vorteile: es verhält sich wie ein verteilter Ethernet-Switch und bietet somit Plug&Play-Kompatibilität mit allen Ethernet-basierten Protokollen, inklusive Profinet, Profisafe, EtherNet/IP, CIP Safety und MQTT. Dazu kommen seine einfache Inbetriebnahme und Verwaltung über einen Webbrowser, was beides ohne spezielle technische Kenntnisse möglich ist. Ein weiterer Pluspunkt ist das eingebaute Troubleshooting, dank dem sich das Funksystem als Fehlerquelle eindeutig identifizieren (z.B. bei Überlastung) oder ausschließen lässt. Nicht zuletzt punktet das Funksystem auch in Bezug auf die Security mit geräteindividueller, quantensicherer Verschlüsselung sowie Authentifizierung.

Gemacht für mobile Anwendungen in der Logistik und Fertigungsbranche

Fünfeinhalb Funksysteme richtet sich insbesondere an Hersteller bzw. Systemintegratoren, die eine mobile Vernetzung ihrer Maschinen benötigen, die genauso zuverlässig funktioniert wie eine Kabelverbindung. Scheuvens erklärt dazu: „Obwohl sich mit BlitzFunk auch existierende Kabelinstallationen ersetzen lassen, ist das nicht unser Hauptanspruch. Konzipiert wurde das System hauptsächlich für Einsatzszenarien in der Fertigung, die mobile Roboter oder Fahrzeuge umfassen. Aber auch für Schlittensysteme und rotierende Elemente ist BlitzFunk geeignet – bzw. generell überall dort, wo Kabel stören oder technisch nicht sinnvoll einsetzbar sind“. Zu den zahlreichen, bereits erfolgreich durchgeführten Projekten zählen Vernetzungen von Schweißrobotern, Deckenkränen und fahrerlosen Transportfahrzeugen – sowohl im Safety- als auch Non-Safety-Bereich.

Blick in die Zukunft: Noch mehr Leistung

Gefragt nach einem Blick in die Zukunft des Unternehmens antwortet Scheuvens: „Aktuell basiert BlitzFunk auf klassischen, für den breiten Massenmarkt konzipierten Standard-Komponenten. Das macht die Lösung sofort und mit einem großen Mehrwert gegenüber anderen Systemen einsetzbar, demonstriert aber nur einen Bruchteil dessen, was möglich ist. Aktuell arbeiten wir an einem komplett integrierten Echtzeit-WLAN-System, das dann selbst BlitzFunk in den Kategorien Größe, Anzahl der gleichzeitig unterstützten Geräte, Zuverlässigkeit, Latenz und Energieverbrauch noch jeweils um den Faktor zwei bis zehn verbessern kann. Wir freuen uns auf die Reise!“

Digitaler Vorreiter: Wie Bootsschule1 die Sportboot-Ausbildung umkrempelt

Bootsschule1 überzeugt mit SmartLearn™-Plattform, AllInclusivePaketen, hoher Qualität und bundesweiter Praxis – digital, transparent und risikofrei.

Der Weg zum Sportbootführerschein galt lange als bürokratisch, zeitraubend und unflexibel – geprägt von Präsenzunterricht, Papierbergen und Prüfungsstress. Wer beruflich eingespannt ist oder außerhalb von Metropolregionen lebt, sah sich oft mit logistischen Hürden konfrontiert. Genau an diesem Punkt setzt Bootsschule1 an – und definiert die Ausbildung auf dem Wasser neu. Nicht mit leeren Marketingversprechen, sondern mit einem durchdachten Gesamtkonzept, das sich konsequent an den Bedürfnissen moderner Lerner orientiert.

Was einst nach trockener Theorie und starren Kurszeiten roch, verwandelt sich hier in ein digitales Lernsystem, das in punkto Nutzerfreundlichkeit und Didaktik Maßstäbe setzt. Im Zentrum steht eine selbst entwickelte Lernplattform, die Inhalte in kurzen, präzise aufbereiteten Videolektionen vermittelt – ergänzt durch realistische Prüfungssimulationen und ein umfassendes All-Inclusive-Paket, das vom Navigationsbesteck bis zur persönlichen Betreuung reicht. Transparente Preise, flexible Praxisstandorte und eine Geld-zurück-Garantie zeigen: Hier geht es nicht um den schnellen Schein, sondern um nachhaltige Qualität.

Dieser Artikel beleuchtet, wie Bootsschule1 mit technischer Präzision, durchdachten Services und didaktischer Klarheit nicht nur mit alten Konventionen bricht, sondern ein neues Kapitel in der Ausbildung für Wassersportbegeisterte aufschlägt – nah am Alltag, weit entfernt vom Schulbank-Gefühl.

Moderne Lernplattform mit smarten Tools

Die digitale Bootsschule von Bootsschule1 übernimmt in Deutschland eine Vorreiterrolle, wenn es um eine moderne Bootsführerschein-Ausbildung geht. Die selbst entwickelte SmartLearn™Lernplattform bildet das Herzstück dieses Konzepts. Sie bietet über 50 Videolektionen in hochwertiger 4K-Qualität und einen MultipleChoiceFragentrainer, die den gesamten Stoff für Sportbootführerscheine strukturiert abdecken. Die Videos dauern meist zwischen drei und fünf Minuten – ideal, um Inhalte gezielt und ohne Zeitdruck zu konsumieren: Sei es unterwegs beim Pendeln, in der Mittagspause oder abends auf dem heimischen Sofa. Dieses modulare Format erlaubt es, einzelne Themen effizient zu wiederholen oder gezielt Vertiefungen abzurufen.

Doch Bootsschule1 bietet weit mehr als reine Videospots: Ein interaktiver Prüfungssimulator integriert alle 15 offiziellen Prüfungsbögen. Nutzer*innen können die komplette Prüfungssituation durchspielen, inklusive Originalfragen und zeitlicher Vorgabe – so entsteht ein realistisches Trainingserlebnis. Dieser praxisnahe Ansatz führt weg vom bloßen Auswendiglernen hin zu gezielter Vorbereitung, mit hoher Trefferquote bei der echten Prüfung. Durch regelmäßiges Simulations-Training werden Schwachstellen sichtbar und lassen sich gezielt bearbeiten – ein entscheidender Vorteil gegenüber herkömmlichen Kursformaten.

AllInclusiveAngebot statt versteckter Kosten

Ein echtes Alleinstellungsmerkmal ist das AllInclusiveVersprechen. In einer einzigen Kursbuchung sind enthalten: Lernplattform, hochwertige Lernvideos, Kursmaterialien wie Kurs und Anlegedreieck, Zirkel sowie Tampen und Klampe, dazu die praktische Ausbildung inklusive einer kostenfreien 1:1Betreuung. Ergänzt wird das Ganze durch ein freiwilliges ExkursPaket mit über 25 zusätzlichen Lektionen mit einem Gegenwert von 119 €, das Kunden gratis erhalten.

Der Preis erscheint dabei vergleichsweise günstig: Ein Kombiangebot für SBF See & Binnen kostet gerade mal 445 € statt ursprünglich 495 € – inklusive ExkursPaket. Durch Aktionen mit Rabattcodes lässt sich die Summe weiter reduzieren – ohne unerwartete Zusatzkosten. Transparenz ist hier Programm.

Risikofrei dank GeldzurückGarantie

Bootsschule1 gibt Anfängern besonderen Rückhalt: Innerhalb von 14 Tagen nach Buchung kann man bei Nichtgefallen rückabwickeln – sofern bislang keine Praxisstunde gebucht und maximal 60 % der Kursinhalte absolviert wurden. Darüber hinaus gibt es eine Garantie für den Prüfungserfolg: Wer den TheorieTeil bestanden, aber in der Praxisprüfung durchfällt, erhält anteilig die Kursgebühr zurück. Das reduziert das finanzielle Risiko und lässt den Kurs zu einer sicheren Investition werden.

Flexible praktische Ausbildung in ganz Deutschland

Ein weiterer wichtiger Aspekt, in dem Bootsschule1 überzeugt, ist der bundesweite Zugang zur praktischen Ausbildung. Mehr als 100 Prüfzentren und zahlreiche Praxispartner ermöglichen es, Theorie online zu lernen und die Bootsfahrstunden lokal zu absolvieren. Unter anderem gibt es Angebote in großen Städten wie Berlin, Hamburg oder entlang des Rheins (z.B. Bonn, Koblenz, Köln).

Praktische Einheiten dauern meist 60 Minuten und reichen oft aus, um die Fahrpraxis für die Prüfung zu erlangen. Zudem übernimmt die Plattform die Terminbuchung, Organisation und Anmeldung bei der Prüfung – der gesamte Papierkram liegt in digitaler Hand, was Zeit und Aufwand spart.

Umfangreiche Kursvarianten für jeden Bedarf

Bootsschule1 deckt sämtliche Sportbootführerscheine ab: getrennte Kurse für SBF See, SBF Binnen sowie Kombikurse See & Binnen. Darüber hinaus werden spezielle Qualifikationen angeboten, etwa das Bodenseeschifferpatent, der SRC- und UBI-Funkschein sowie Fachkundenachweise (FKN/SKN).

  • Das Bodenseeschifferpatent ist als Ergänzung zum SBF günstig kombinierbar (145 € Theorie oder Kombipreis von € 590).
  • Der SRCFunkschein wird mit gleicher SmartLearn™Plattform vorbereitet – inklusive OnlineTraining und praktischer Prüfung in einem Prüfungszentrum (127,88 € Prüfungsgebühr).

Wer nur den Funkschein machen möchte, erhält dafür bis zu 365 Tage Zugriff auf Lernmaterial und Praxisaufgaben.

Qualitativ hochwertiger Unterricht

Bootsschule1 legt klar Wert auf hohe Produktionsqualität: Einzelne Videolektionen entstehen aus bis zu 200 Stunden Rohmaterial, das anschließend mehr als 100 Stunden postproduziert und mit 3DAnimationen sowie CGIEffekten angereichert wird. Das Ergebnis ist eine visuell ansprechende und fachlich präzise Darstellung, die man in vielen herkömmlichen Kursen vergeblich sucht. Ergänzt wird das durch profunde Fahrsessions per Videochat und persönliche Unterstützungsangebote.

Medizinischer Beleg und gesundheitliche Voraussetzungen

Vor Prüfungsanmeldung ist ein ärztliches Attest nötig. Dieses umfasst Sehtest (DIN 58220, Sehschärfe ≥ 0,8), Farbunterscheidung und Hörtest. Brillenträger schaffen den Führerschein problemlos – die Vermerkpflicht auf der Fahrerlaubnis ist im Einklang mit Vorschriften. Empfehlenswert ist es, frühzeitig die optionalen Testangebote bei Optikern zu nutzen, um die ärztliche Bescheinigung vorzubereiten.

Prüfung mit digitaler Unterstützung

Bootsschule1 nimmt Interessierten den bürokratischen Aufwand ab: Prüfterminbuchung, Anmeldeunterlagen und Zertifikatrecherche übernimmt das Team. Nach Bestehen der Prüfung erreicht man den Führerschein binnen zwei Wochen bequem per Post. Wer beim ersten Mal nicht besteht, kann Theorie und Praxis beliebig oft wiederholen – zusätzliche Kosten entstehen nur durch behördliche Prüfungsgebühren.

Fazit

Bootsschule1 präsentiert ein Konzept, bei dem Technik und didaktischer Anspruch eng miteinander verbunden sind: Die Lernplattform mit qualitativ hochwertigen Videos, Prüfungssimulationen und smartem Fragebetrieb bildet das Rückgrat der Ausbildung. Zeitgleich liefern AllInclusivePakete inklusive 1:1Betreuung, bundesweite Praxis sowie Garantien echte Mehrwerte.

In einer Zeit, in der Flexibilität und Qualität gefragt sind, liefert Bootsschule1 eine Antwort auf praktische Herausforderungen. Es ist kein theoretisches Referenzmodell, sondern ein funktionierendes System, das vielen den Zugang zum Wassersport erleichtert – und dabei ganz klar zeigt, wie moderne Bildung in der Praxis aussehen kann. Somit liefert der Anbieter im Sportbootbereich das, was bei Autofahrschulen schon länger Realität ist.

Circunomics startet eigenes Batterie-Testlabor

Die Circunomics-Gründer Felix Wagner und Jan Born haben sich das Ziel gesetzt, eine zirkuläre Batteriewirtschaft zu etablieren, indem sie einen digitalen Marktplatz für den Second-Life-Einsatz und das Recycling gebrauchter Batterien bieten. Mit der Einrichtung des eigenen Batterie-Testlabors setzt das Start-up mit Hauptsitz Mainz seine Expansion fort.

„Die Kreislaufwirtschaft ist in Zukunft von immer größerer Bedeutung. Dies ist für uns die große Chance, mit dem digitalen Marktplatz für gebrauchte Batterien, Module und Zellen eine herausragende Position einzunehmen“, sagt Felix Wagner, Co-Founder und CEO von Circunomics. „Im Jahr 2030 werden alleine im Automobilsektor zwischen 200 und 300 Millionen Elektrofahrzeuge auf den Straßen der Welt unterwegs sein. Das bedeutet, dass dann jedes Jahr etwa sechs Millionen gebrauchte Batterien als Rückläufer aus Altfahrzeugen auf den Markt kommen. Diese wiederzuverwenden oder gezielt zu recyclen ist eine Mega-Aufgabe, die gelöst werden muss. Schließlich haben wir alle ein Ziel: Weniger CO2 zu produzieren und weniger der wertvollen, seltenen Rohstoffe zu verbrauchen.“

Battery Lifecycle Management Solution

Die Ergebnisse KI-basierter Analysen von gebrauchten Batterien, die beispielsweise in elektrischen Fahrzeugen verwendet werden, mit selbst ermittelten Laborwerten aus einer Real-Life-Simulation abgleichen, trainieren und verifizieren: Das ist die Aufgabe des neuen Batterie-Testlabors, das vom Start-up Circunomics in Roßdorf bei Darmstadt eingerichtet wurde und jetzt seinen Betrieb vollumfänglich aufgenommen hat.

Die 2019 gegründete Circunomics GmbH ist damit in der Lage, eine Datenbasis für die selbst entwickelte Software aufzubauen, die wiederum genutzt wird, um den Gesundheitszustand (State of Health) einer gebrauchten Batterie während und nach einer Erstverwendung (First Life) sehr präzise zu ermitteln. Vielmehr aber kann detailliert simuliert und hochgerechnet werden, wie sich die gebrauchte Batterie bei einer Zweitverwendung (Second Life) zum Beispiel in einem stationären Speichersystem verhält. Zudem kann eine Empfehlung ausgesprochen werden, welche Batterien für das jeweilige Projekt am besten geeignet sind.

Mit der Einrichtung des Batterie-Testlabors setzt das Start-up mit Hauptsitz Mainz seine Expansion fort, die nach einer erfolgreich durchgeführten Series-A-Finanzierungsrunde möglich ist. Zu Jahresbeginn 2025 hatte Circunomics von Investor*innen über acht Millionen Euro erhalten.

Real-Life-Simulation im Testlabor

Im neuen Batterie-Testlabor in Roßdorf können je nach Bedarf und Programm verschiedene Zellen gleichzeitig in einer sicher abgeschirmten Prüfeinrichtung untergebracht und unterschiedlichsten Belastungen ausgesetzt werden. Es erfolgt eine umfangreiche Real-Life-Simulation täglicher Batterienutzungssituationen beispielsweise in einem Elektrofahrzeug: Schnell oder langsam aufeinander folgende Ladezyklen, unterschiedliche Ladestromstärken mit bis zu 300 Ampere Gleichstrom, verschiedene Degradierungszustände der Batterie und das Ganze – wenn notwendig – bei unterschiedlichen Temperaturen. Möglich ist eine Temperaturspanne von minus 20 bis plus 60 Grad Celsius. Die jeweiligen Tests der Zellen können über einen kurzen, mittleren oder längeren Zeitraum durchgeführt werden. Das können wenige Tage, Wochen und Monate, aber auch bis zu zwei Jahre sein.

„Bisher haben wir die Zellen von einem externen Dienstleister analysieren lassen. Diese Aufgaben nehmen wir jetzt selbst in die Hand, erhöhen damit unsere Effizienz, sind schneller mit dem Abgleich von Daten, wodurch wir in der Lage sind, unsere Simulationen und Hochrechnungen für eine Verwendung im Second Life noch genauer und zuverlässiger anbieten zu können“, erklärt Jan Born, Co-Founder und CTO von Circunomics. Und ergänzt: „Wir haben einerseits Millionen von Daten, die während des First Life einer Batterie gesammelt werden und die uns zur Verfügung gestellt werden. Auf dieser Basis haben wir bisher mit der KI-unterstützten Software am Computer analysiert, was die gebrauchte Batterie noch im Stande ist, im Second Life zu leisten, bevor sie dann endgültig dem Recycling zugeführt wird. Im neuen Labor und mit den eigenen Analysen sehen wir nun, wie sich eine Zelle im simulierten Batterieleben verhält und wir können die dabei ermittelten Ergebnisse, mit denen aus der Software abgleichen und verifizieren.“

Podcast: Die Peter Thiel Story

Tipp der Redaktion: Ab 28. Mai 2025 in der Deutschlandfunk App verfügbar – der sechsteilige Podcast „Die Peter Thiel Story“.

Peter Thiel ist mit PayPal und Facebook reich geworden und hat die Gedankenwelt des Silicon Valleys wie kaum ein zweiter geprägt. Der Tech-Milliardär ist ein Architekt des neuen rechten Amerikas, ist Strippenzieher und bestens vernetzt im radikalkonservativen und -libertären Amerika.

Mit dem sechsteiligen Podcast „Die Peter Thiel Story“ beleuchtet der Deutschlandfunk jetzt die Hintergründe des geheimnisvollen Investors, der trotz seines enormen Einflusses vielen kaum bekannt ist.

Host und Autor Fritz Espenlaub zeichnet nach, wie ein in Deutschland geborener Philosophiestudent im Silicon Valley aufstieg. Er zeigt das intellektuelle Fundament – geprägt von Carl Schmitt, René Girard und Ayn Rand – sowie das Netzwerk, das heute Schlüsselpositionen in Wirtschaft und Politik besetzt.

Die Serie dokumentiert dabei auch Thiels Visionen: Die Errichtung schwimmender libertärer Städte, die Entwicklung fortschrittlicher Überwachungstechnologie und seine Suche nach dem ewigen Leben.

Die Peter Thiel Story“ bietet Einblicke in das Leben des Mannes, der ewig leben und alles verändern will.

Die Peter Thiel Story

Sechsteilige Erzählserie jeweils ca. 30 Minuten

ab 28. Mai 2025 in der Deutschlandfunk App

Solarstrom für Gründer*innen: Wie Balkonkraftwerke die Energiezukunft dezentralisieren

Balkonkraftwerke boomen – und bieten Start-ups und Selbständigen eine einfache Lösung für mehr Energieunabhängigkeit.

Steigende Energiepreise, wachsende Klimasorgen und der Wunsch nach Unabhängigkeit verändern die Art, wie wir Strom erzeugen und nutzen. In Deutschland gewinnt dabei eine Lösung besonders an Fahrt: das Balkonkraftwerk. Diese kompakten Mini-Photovoltaikanlagen machen es möglich, auch ohne eigenes Dach und mit wenig Aufwand selbst Strom zu produzieren – ideal für Mietwohnungen, urbane Start-ups oder das Homeoffice.

Was früher vor allem ein Nischenthema war, wird jetzt zur massentauglichen Option – nicht nur für Privathaushalte, sondern auch für junge Unternehmen, Freelancer*innen und digital arbeitende Selbständige.

Was ist ein Balkonkraftwerk?

Ein Balkonkraftwerk ist eine kleine Photovoltaik-Anlage, die auf dem Balkon, an der Fassade oder auf der Terrasse montiert wird. Sie besteht in der Regel aus ein bis zwei Solarmodulen und einem Wechselrichter, der den erzeugten Strom direkt ins Hausnetz einspeist – über eine herkömmliche Steckdose.

Der Clou: Die Anlagen sind steckerfertig, benötigen keine baulichen Veränderungen und lassen sich einfach anmelden. So können auch Mieter*innen oder Menschen ohne Zugang zum Hausdach Teil der Energiewende werden – unabhängig und mit geringem Investitionsaufwand.

Wie kann beispielsweise das EcoFlow Balkonkraftwerk für eine nachhaltige Energiezukunft dabei unterstützen, möglichst effizient, nutzerfreundlich und flexibel Strom zu erzeugen? Solche Systeme kombinieren moderne Solartechnik mit smarter Steuerung und lassen sich auch ohne Vorkenntnisse schnell in Betrieb nehmen – ideal für urbane Haushalte und mobile Arbeitswelten.

Warum Balkonkraftwerke besonders für Gründer*innen spannend sind

Gerade Start-ups und Solo-Selbständige arbeiten häufig flexibel – mal im Homeoffice, mal im Co-Working-Space. Energie ist dabei ein nicht zu unterschätzender Kostenfaktor. Gleichzeitig erwarten Kund*innen und Investor*innen zunehmend ein klares Nachhaltigkeitsprofil.

Ein eigenes Balkonkraftwerk kann hier gleich mehrfach punkten:

  • Kosten senken: Der selbst erzeugte Strom reduziert die Stromrechnung messbar.
  • Kalkulierbarkeit schaffen: Energiekosten werden planbarer – ein Vorteil in der Gründungsphase.
  • Nachhaltigkeit leben: Umweltfreundliches Wirtschaften wird sichtbar – auch im Pitch oder auf Social Media.
  • Flexibel bleiben: Viele Systeme lassen sich bei einem Umzug einfach mitnehmen oder erweitern.

Kurz gesagt: Wer klein anfängt, kann dennoch groß denken – auch in Sachen Energie.

Rechtlicher Rahmen: Was gilt in Deutschland?

Deutschland hat in den letzten Jahren die Nutzung von Balkonkraftwerken deutlich vereinfacht. Seit 2024 dürfen Anlagen mit bis zu 800 Watt Ausgangsleistung unkompliziert beim Netzbetreiber registriert werden – Genehmigungen oder Installationspflichten entfallen in vielen Fällen.

Wichtig ist, dass die Geräte den gängigen Sicherheits- und Qualitätsnormen entsprechen (z B. VDE-zertifiziert sind) und fachgerecht installiert werden. Auch Förderprogramme oder lokale Zuschüsse machen den Einstieg zunehmend attraktiver – gerade für junge Haushalte oder Gründer*innen mit begrenztem Budget.

Prognosen gehen davon aus, dass bis Ende 2025 über eine Million solcher Anlagen in Deutschland in Betrieb sein werden.

Smart, vernetzt und mobil

Moderne Balkonkraftwerke – wie die von EcoFlow – bieten mehr als reine Stromproduktion. Über Apps lässt sich in Echtzeit verfolgen, wie viel Energie erzeugt und verbraucht wird. Die Kombination mit Batteriespeichern oder mobilen Powerstations macht die Systeme noch flexibler – ideal für ortsunabhängiges Arbeiten, Workshops oder Eventeinsätze.

Gerade für technologieaffine Start-ups ist das ein großer Vorteil: Wer Daten und Verbrauch jederzeit im Blick hat, kann Prozesse optimieren, Stromfresser identifizieren oder gezielt Lastspitzen ausgleichen.

Nachhaltigkeit trifft Unternehmertum

Der Einstieg in die eigene Stromproduktion ist nicht nur ökologisch sinnvoll – er zeigt Haltung. Wer heute gründet, tut das oft mit dem Anspruch, Ressourcen zu schonen, Verantwortung zu übernehmen und langfristig zu denken. Ein Balkonkraftwerk ist dabei ein sichtbares Statement – gegenüber Team, Kund*innen und Partner*innen.

Zugleich bietet es einen Einstieg in ein größeres Thema: dezentrale Energieversorgung. In Zukunft könnten sich daraus Peer-to-Peer-Netzwerke, flexible Stromtarife oder gemeinschaftlich genutzte Speicherlösungen entwickeln. Wer heute startet, ist morgen Teil dieser Entwicklung.

Die Digitalisierung verändert unser Leben – und wie wir arbeiten. Die Energiewende verändert, wie wir leben. Balkonkraftwerke verbinden beides: Sie bringen Technologie, Nachhaltigkeit und Unabhängigkeit zusammen – ganz ohne großen Aufwand.

Denn wer selbst produziert, bleibt flexibel. Und wer Energie smart nutzt, hat mehr Spielraum für das, was wirklich zählt: Ideen, Wachstum und Wirkung.

charles: DSGVO-konformer KI-Agent für WhatsApp gelauncht

Noch bevor Tech-Riesen wie Meta ihre Angebote auf den Markt bringen, bietet das Berliner Start-up charles erprobte, skalierbare und regulatorisch abgesicherte KI-Agent-Lösungen.

Während Meta LLM-gestützte Agenten auf WhatsApp für Verbraucher*innen einführt, will das Berliner Start-up charles Marken einen entscheidenden Vorsprung verschaffen. Mit der Einführung seines AI Agent Squad will sich charles als führender europäischer Anbieter markensicherer, hochspezialisierter KI-Agenten auf WhatsApp mit integrierter Sicherheit und Compliance etablieren – und damit den weltweit meistgenutzten Messenger in einen echten Handels- und Servicekanal transformieren.

Die KI-Agenten von charles nutzen WhatsApps Interaktivität, proprietäres Markenwissen und die Leistungsfähigkeit moderner KI, um Kund*innen direkt in WhatsApp anzusprechen - kontextbezogen, personalisiert und autonom. Von intelligenten Produktempfehlungen bis zu Support soll die Interaktion Kund*innen ein äußerst persönliches Gefühl vermitteln.

„Unsere KI-Agenten übernehmen echte Aufgaben wie Produktempfehlungen, Beantwortung von Fragen oder Reklamationsbearbeitung. Sie agieren wie echte Mitarbeiter: Man weist ihnen eine echte Aufgabe zu und gibt alle Mittel an die Hand, die sie benötigen, um diese Aufgabe zu erfüllen – sei es durch Zugriff auf Daten oder klare Vorgaben geben“, sagt Andreas Tussing, CEO von charles. “So ermöglichen wir Gespräche, die heute aufgrund von Ressourcen noch nicht möglich sind, und bieten gleichzeitig ein personalisiertes und innovatives Kundenerlebnis.“

WhatsApps native Interaktivität trifft auf markensichere KI

Mit den Berliner KI-Agenten soll WhatsApp zur leistungsstärksten Plattform für Kundenbeziehungen werden - und die Herausforderungen von Marken in Bezug auf Konversion und Kundenbindung lösen, ohne Authentizitätsverlust. Durch die Kombination der hohen Engagement-Raten von WhatsApp mit KI-gesteuerter Automatisierung und Personalisierung sollen Marken gleichzeitig Kundenzufriedenheit und Umsätze steigern sowie Betriebskosten senken können.

Fokus auf markenspezifisches Know-how, Security und Compliance

Der AI Agent Squad nutzt modernste KI-Technologien und verbindet generative Sprachmodelle mit markenspezifischen Datenquellen wie Produktkatalogen, CRM-Systemen und Kundenpräferenzen. Integrierte Schutzvorkehrungen und Tonalitätskontrollen gewährleisten Markensicherheit, während alle Daten auf europäischen Servern verarbeitet werden, ohne externe API-Aufrufe oder Datenextraktion - DSGVO-konform und markensicher.

What's next? Der Wettlauf um eigene Messaging-KI

Mit der Einführung von Memory durch OpenAI und Meta‘s Llama-basierte Agenten auf WhatsApp, heizt sich der Markt für personalisierte, generative Kundenkommunikation auf. Der EU AI Act und das aktuelle Handelsklima erhöhen die Dringlichkeit – Lösungen mit starker Data Governance und Auditierbarkeit sind daher unerlässlich. Charles will sich vor diesem Hintergrund als skalierbare, europäische Alternative zu generischen LLM-Lösungen positionieren – in Europa entwickelt und gehostet.

Robotik-Start-up Ottonomy startet Pilotprojekt im Münchner Flughafen

Der Lufthansa Innovation Hub und der Munich Airport kooperieren zur Förderung von Innovation in der Luftfahrt: Pilotprojekte mit Start-ups sind vor diesem Hintergrund wichtige Hebel zur Implementierung innovativer Lösungen.

Die Luftfahrtbranche steht vor einer Vielzahl von Herausforderungen, sowohl auf Kund*innenseite als auch in geschäftlichen Prozessen. Innovation spielt eine entscheidende Rolle bei der Bewältigung dieser Herausforderungen, indem sie Möglichkeiten zur Digitalisierung, Automatisierung, Optimierung und Neuerfindung schafft.

Vor diesem Hintergrund haben der Lufthansa Innovation Hub, die Berliner Innovationseinheit der Lufthansa Group, und die Terminal 2 Gesellschaft des Flughafens München eine Absichtserklärung (MoU) unterzeichnet. Mit der Unterzeichnung bekunden beide ihre Absicht, durch gemeinsame Initiativen die Innovation in der Luftfahrtbranche voranzutreiben.

“Innovation in der Reiseindustrie ist eine gemeinschaftliche Aufgabe, die dem gesamten Ökosystem zukommt”, sagt Dr. Stefan Nothelfer, Senior Director und Leiter Corporate Venturing & Strategic Growth beim Lufthansa Innovation Hub. “Wir freuen uns darauf, mit der Terminal 2 Gesellschaft des Flughafens München zusammenzuarbeiten, um das Kundenerlebnis gemeinsam zu verbessern und den gesamten Reiseprozess zu optimieren.”

Robotik-Einsatz im Terminal 2 des Flughafens München

Ein konkretes Beispiel für das Vorantreiben von Innovation im Flughafenbetrieb durch Pilotprojekte ist die Zusammenarbeit mit dem Robotik-Start-up Ottonomy.

Seit dieser Woche sind zwei autonome Service-Roboter in den Bereichen der Gates und Gepäckausgabe im Terminal 2 des Flughafens München im Einsatz. Die Roboter sind darauf ausgelegt, verschiedene Aufgaben zu übernehmen, um reibungslose Kund*inneninteraktionen zu ermöglichen. Sie unterstützen Passagier*innen mit Informationen und bewerben die Dienstleistungen von Lufthansa Airlines.

Durch das Scannen eines QR-Codes auf dem Roboter mit ihrem Smartphone gelangen Reisende zu Chat-Assistenten für Self-Service-Optionen. Dort können sie Fluginformationen abrufen und Prozesse wie Umbuchungen oder Erstattungen eigenständig verwalten. Die Roboter liefern zudem wichtige Informationen zu flughafenbezogenen Themen wie Tax Refund und Lost and Found. Dank integrierter Behälter können die Roboter auch für den Warentransport eingesetzt werden – etwa künftig für die Verteilung von Wasserflaschen an Passagier*innen.

“Unser Ziel ist es, unseren Gästen das beste Reiseerlebnis in Europa zu bieten”, sagt Marcus Schnabel, Vice President Ground Operations Hub Munich. “Die Nutzung digitaler Lösungen ist für dieses Vorhaben von entscheidender Bedeutung, und wir freuen uns, als Pilotstandort für wegweisende Innovationen zu dienen.”

Ottonomy setzt seine Roboter weltweit an Flughäfen, in Krankenhäusern und für Auslieferungen auf der letzten Strecke zum/zur Kund*in ein. “Unsere Roboter, die mit Contextual AI arbeiten, ermöglichen es Unternehmenskunden, Innovationen voranzutreiben, bessere Kundenerlebnisse zu schaffen und die betriebliche Effizienz in der Luftfahrt zu steigern“, sagte Ritukar Vijay, CEO von Ottonomy. „Eine Partnerschaft mit zukunftsorientierten Branchengrößen wie der Lufthansa bringt diese Vision der Realität ein großes Stück näher.“

Das Pilotprojekt mit Ottonomy entstand im Rahmen von Startup Gate, der Venture-Clienting-Initiative der Lufthansa Group. Startup Gate verbindet Teams der Lufthansa Group mit hochmodernen Start-ups, um deren Technologien schnell zu adaptieren und schlanke sowie kosteneffiziente Kooperationen zu ermöglichen.

In fünf Schritten zu rankingfähigen KI-Texten

Das aktuelle Whitepaper von eology beleuchtet das Potenzial und die Grenzen von KI-gestütztem Content im Hinblick auf SEO. Hier gibt’s Tipps rund um das Thema rankingfähige KI-Texte.

Die auf Suchmaschinenmarketing spezialisierte Online-Marketing-Agentur eology zeigt in ihrem Whitepaper „KI-Texte und Google-Rankings: Wie gut ranken KI-Inhalte?“, wie KI-Inhalte auf Google ranken, welche Herausforderungen sie mit sich bringen und welche Schritte erforderlich sind, um sie rankingfähig zu machen. Zudem wird auch auf spezifische technische, strategische und kreative Aspekte eingegangen, die für die Erstellung hochwertiger Inhalte entscheidend sind.

Gewusst wie: rankingfähige KI-Teste

Was zweifelsfrei erwiesen ist: Nach dem SEO-Qualitätsstandard erstellte KI-Texte sind rankingfähig und können die Sichtbarkeit einer Domain genauso unterstützen wie menschliche Inhalte. Allerdings ist die Erstellung solcher Texte nicht damit getan, einfach einen Prompt einzugeben und das Ergebnis online zu stellen. Es bedarf menschlicher Zuarbeit und Kontrolle.

Di Expert*innen von eology haben aus ihrer Studie heraus Best Practices ermittelt, um zu rankingfähigen Texten zu kommen. In fünf Schritten kannst du das auch:

1. Schritt: Chatbot briefen

Bei ChatGPT einen CustomGPT anlegen mit allen notwendigen Projektinstruktionen. Auf diese greift die KI immer zurück, ihr müsst sie daher nicht immer wieder neu eingeben. Das spart Zeit und sorgt langfristig für besseren Output. Bei Claude geht das nicht. Hier kopiert ihr die Projektinstruktionen einfach in den Chat. Die KI meldet dann, dass sie die Aufgabe verstanden hat und fasst diese noch einmal zusammen.

Folgende Instruktionen sind wichtig:

• Keywordset

• Infos zur Verwendung der Keywords (Verteilung, Häufigkeit, Positionierung im Text)

• Textlänge

• Zielgruppe und Leseransprache

• Stil, Tonalität und weitere Infos zum Wording

• Formaler Textaufbau (Überschriften, Aufzählungen, Tabellen)

• Inhaltlicher Textaufbau, ggf. Gliederung

2. Schritt: Chatbot testen

Prompt erstellen mit allen für den einzelnen Text relevanten Informationen (Thema, Keywordset). Da ihr alle Projektinstruktionen bereits an den Chatbot übermittelt habt, braucht ihr in den Prompt nur noch die Infos für den einzelnen Text reinschreiben. Er lautet dann: „Hallo GPT, erstellst Du mir bitte einen Text zum Thema „XY“ mit diesen Keywords: Hauptkeyword=Thema: [Hauptkeyword] Nebenkeywords: [Nebenkeywords] W-Fragen: [W-Fragen]. Danke.“

3. Schritt: Output prüfen

Output prüfen auf alle Projektanforderungen: SEO, Keywords, Wording, Rechtschreibung sowie Inhalt.

4. Schritt: Anpassungen vornehmen

Wenn der Output nicht passt, gebt der KI Anweisungen für Änderungen, passt die Projektinstruktionen an oder optimiert den Prompt. Ladet Beispieltexte hoch mit eurem gewünschten Stil, lasst die KI den Stil beschreiben und packt die Stilbeschreibung in die Projektinstruktionen. Wenn der Chatbot wiederholt zu wenig Text liefert, kann es Sinn machen, dass ihr diese Information doch in den Prompt eingeben müsst, selbst wenn diese in den Instruktionen steht. Insbesondere ChatGPT neigt dazu, zu wenig Text zu liefern und muss immer wieder daran erinnert werden.

5. Schritt: Bilder generieren 

Instruktionen für die Bilderstellung in den Projektinstruktionen hinterlegen. Bei einem CustomGPT hinterlegt ihr auch den Stil für die Bilder, denn dann habt ihr eine Chance auf einen einheitlichen Stil. Allerdings ist ChatGPT mit der Schnittstelle zu DALL-E nicht die beste Bild-KI. Daher funktioniert nicht alles reibungs- los. Für eine hochwertige und professionelle Bildgenerierung nutzt besser eine spezielle Bild-KI wie Midjourney.

Generative KI – Chancen für Startups

Wie Startups mit drei Tipps die Kosten und Performance für ihren KI-Case optimieren können.

Das deutsche KI-Startup-Ökosystem befindet sich 2025 weiter im Gründungsboom. Nie gab es mehr KI-Gründer in Deutschland und alleine im vergangenen Jahr wuchs die Zahl der KI-Startups um 35 Prozent. Auch für Investoren bleibt KI eines der vielversprechendsten Themen. Sie investierten 2024 fast 200 Millionen mehr in deutsche KI-Jungunternehmen als im Vorjahr. Vor allem deutsche KI-Startups im B2B-Bereich mit branchenspezifischen Lösungen für die Fertigung, Logistik und das Gesundheitswesen haben aktuell ausgezeichnete Wachstumschancen. Sie können von einer engen Vernetzung mit dem Mittelstand und führenden Forschungseinrichtungen in Deutschland profitieren. Typische KI-Anwendungsfelder von aufstrebenden deutschen Startups wie BlueAvenir, PlanA, Smart Reporting oder nnamu liegen dabei u.a. in der Softwareentwicklung, Sprach- und Bilderkennung oder datenbasierten Analyseverfahren zur Entscheidungsunterstützung.

KI-Chancen und die häufigsten Hürden

Während die Gesamtfinanzierung für KI-Projekte wächst, scheitern in der Praxis vielversprechende Ideen von Startups aber auch immer wieder am konkreten Business Case. Langfristig können sich insbesondere unterschätzte Kosten und eine schwache Performance der Anwendungen wie ein Bremsklotz auswirken. Die Nutzung von Sprachmodellen ist dank API-basierten Diensten sehr einfach geworden, dennoch können sich hier bei großen Volumina und ungeschickter Modell-Wahl schnell höhere Kosten aufsummieren. Gleichzeitig spielt die Performance des KI-Systems eine wichtige Rolle für eine langfristige Profitabilität. So führen besonders hohe Latenzzeiten bei der Model-Inference zu trägeren Systemen, die Nutzeranfragen nicht schnell genug verbreiten und die Attraktivität der Anwendung erheblich mindern.

Gerade Startups setzen oft auf die Cloud, da sie unabhängig vom technischen Hintergrund einfachen Zugang zu KI und die nötige Flexibilität ermöglicht. Drei innovative Methoden erweisen sich in der Cloud als besonders hilfreich, um eine optimale Balance zwischen Leistungsfähigkeit, Kosten und Nutzerfreundlichkeit für die Umsetzung des eigenen KI-Anwendungsfalls zu finden. So kann jeder Gründer seine KI-Ideen schnell, kosteneffizient und sicher umsetzen.

KI-Modellauswahl: Kleiner, aber schneller

Für Startups ist es entscheidend, das richtige KI-Modell für ihren Anwendungsfall zu wählen, um Kosten und Leistung optimal auszubalancieren. Anbieter wie Anthropic, AI21 Labs, Meta, Cohere, Mistral und Amazon bieten Modelle in verschiedenen Größen an – kleinere Varianten sind oft günstiger und reagieren mit kürzerer Antwortzeit. Nach einer ersten Validierung mit einem leistungsstarken Modell können Startups Tools wie Amazon Bedrock Evaluations nutzen, um herauszufinden, welches Modell in welcher Größe ähnliche Ergebnisse bei geringeren Kosten oder höherer Geschwindigkeit liefert. Diese Evaluierungen helfen dabei, die Leistungsfähigkeit und Effizienz zu beurteilen, indem Metriken wie semantische Robustheit und Genauigkeit bei der Informationsabfrage analysiert werden. Durch eine Kombination aus automatisierten Bewertungen mit Large Language Models (LLMs) und menschlicher Prüfung können Startups die beste Balance zwischen Leistung, Kosten und Geschwindigkeit für ihre individuellen Bedürfnisse finden.

Prompt Caching: Zwischenspeicherung für wiederkehrende Anfragen

Eine weitere smarte Methode, um die Antwortzeiten von KI-Modellen zu verkürzen und Kosten zu senken, ist das Prompt-Caching. Wenn ein digitaler Assistent sich bei jeder Frage immer wieder die gleichen Grundinformationen durchlesen müsste, dann wäre das extrem ineffizient. Genau hier setzt das Prompt-Caching an und speichert feste Teile des Prompts, wie grundlegende Anweisungen für das LLM, direkt in der Inferenz-Hardware zwischen. Nur die variablen, nutzerspezifischen Daten, die sich von Aufruf zu Aufruf verändern, werden bei jeder Anfrage neu übermittelt. Das spart nicht nur Rechenleistung, sondern sorgt auch für schnellere Antworten – ideal für Anwendungen wie Chatbots oder personalisierte KI-Assistenten, die häufig wiederkehrende Anfragen verarbeiten. Mit Amazon Bedrock lässt sich diese Technik einfach nutzen, indem das Caching und das Setzen von Cache-Checkpoints automatisch verwaltet werden können. Sobald das Caching aktiviert ist, übernimmt der Service das gesamte Cache-Management automatisch. So lassen sich bis zu 90 Prozent kosteneffiziente KI-Anwendungen mit minimalem Konfigurationsaufwand realisieren.

Model Distillation: KI-Wissen auf das Wesentliche fokussieren

Eine dritte bewährte Option ist Model Distillation. Das Prinzip ist einfach und kann vereinfacht als ein intelligenter Wissenstransfer in der Welt der KI beschrieben werden. Also so, als ob ein erfahrener Lehrer (ein großes, leistungsstarkes KI-Modell) seinem Schüler (einem kleineren, schnelleren Modell) die wichtigsten Konzepte beibringt. Dabei nutzt dieser Prozess synthetische Trainingsdaten, die auf realen Anwendungsbeispielen basieren. Das Ergebnis ist ein kompakteres Modell, das für einen spezifischen Anwendungsfall ähnlich gute Ergebnisse liefert wie das größere Modell, dabei aber deutlich schneller und kostengünstiger arbeitet. Destillierte Modelle in Amazon Bedrock können bis zu fünfmal schneller arbeiten und die Kosten um bis zu 75 Prozent senken im Vergleich zu den Originalmodellen – bei Genauigkeitsverlust von weniger als zwei Prozent.

Fazit

Erfolgreiche KI-Lösungen können mit der Cloud kosteneffizienter und performanter umgesetzt werden. Das erfordert zwar ein wenig technisches Know-how, aber die Cloud reduziert die Einstiegshürden erheblich und ermöglicht es auch kleineren Unternehmen, mit drei bewährten Methoden das KI-Potenzial effektiver auszuschöpfen. Startups haben mit der Cloud die maximale Flexibilität, um entweder von den leistungsfähigsten vortrainierten LLMs zu profitieren oder alternativ eigene LLMs mit maßgeschneiderter Infrastruktur zu entwickeln bzw. auf fertige Dienste mit integrierter generativer KI zuzugreifen.

Der Autor Constantin Gonzalez ist Principal Solutions Architect bei Amazon Web Services (AWS) in München.
Die Autorin 
Jennifer Grün ist Senior Specialist - Machine Learning bei AWS in München.