Keine Angst vor KI

Autor: Anna Schüler
44 likes

Warum gerade Start-ups von den neuen Technologien rund um das Thema künstliche Intelligenz profitieren.

Bereits der Film Blade Runner aus dem Jahr 1982 zeichnete ein nicht gerade verlockendes Bild hinsichtlich der Zukunft der künstlichen Intelligenz (KI). Die Menschheit hat die Erde beinahe vollständig zerstört, Überbevölkerung erschwert das Überleben. Leistungsfähige Androiden, sog. Replikanten, übernehmen im Film die Aufgabe, andere Planeten für ein besseres Leben zu erschließen. Die hochintelligenten, künstlichen Replikanten sind von uns Menschen kaum zu unterscheiden – also ist der Konflikt fast vorprogrammiert.

Bisher sieht unsere Realität anders aus. Viele Menschen werden jetzt sicher sagen „Zum Glück!“. Und bis KI tatsächlich einmal so intelligent wird, wie es Science-Fiction-Filmen gern darstellen, dauert es vermutlich noch eine ganze Weile, falls dies überhaupt je eintritt. Schon jetzt ist KI jedoch ein unverzichtbarer Teil unseres Arbeitsalltags – sie kann repetitive Aufgaben von Mitarbeitern übernehmen, um mehr Zeit für sinnstiftende Tätigkeiten zu schaffen.

Wieso davon gerade Start-ups und kleine Unternehmen profitieren, verrät die folgende Checkliste:

1. KI ≠ Roboter

Viele Menschen denken bei KI an Roboter, die planen, die Weltherrschaft an sich zu reißen. Tatsächlich handelt es sich bei KI nicht zwingend um etwas Körperliches. Strenggenommen ist KI ein Paradigma, das sich von den normalen Ansätzen, Informatik anzugehen, unterscheidet. Für gewöhnlich zerlegt ein Programmierer ein Problem in kleine Teilprobleme und löst diese. KI geht jedoch einen anderen Weg: Man legt einem System Beispiele von fertigen Lösungen vor. Daraus lernt es, wie sich unbekannte Probleme lösen lassen. Damit kann man der Maschine die Möglichkeit geben, selbstständig neue Lösungen zu entwickeln. Das funktioniert durch das Prinzip des sogenannten Supervised Learning, also überwachtes Lernen. Im Rahmen einer Trainingsmenge zeigt man dem System, wie es die Lösung anzusehen hat.

Am besten funktioniert dabei ein System mit neuronalen Netzen (https://artificialwork.meetq.ai/de/kunstliche-intelligenz/experteninterview-kuenstliche-intelligenz/ ), die selbstständig lernen können, eine Aufgabe immer besser zu lösen. Doch auch wenn künstliche Intelligenz lernt, heißt das noch lange nicht, dass sie wirklich „intelligent“ wäre. Es gibt dabei einen wesentlichen Unterschied zwischen KI und der tatsächlichen, menschlichen Intelligenz. Die Stärke von KI beruht derzeit auf Rechnerleistung und Algorithmen, die recht eng begrenzte Probleme lösen sollen. Hier ist KI tatsächlich in der Lage, riesige Datenmengen so schnell auszuwerten, wie es für uns Menschen niemals möglich wäre.

2. Intelligente Systeme sind schon längst Teil unseres Alltags

Bei KI handelt es sich also nicht um hochintelligente Roboter, die uns Menschen bereits in vielen Fähigkeiten voraus wären. Die Skepsis der Menschen, was KI betrifft, hat viel mit dieser (unbegründeten) Sorge zu tun. Aber wir sollten uns auch nichts vormachen: Die neuen Technologien sind schon längst in unserem Alltag angekommen! In Deutschland sind KI und Machine Learning zwar noch nicht so auf dem Vormarsch wie in einigen anderen Ländern – dies zeigt auch eine aktuelle Studie des Vereins Deutscher Ingenieure (VDI). Nichtsdestotrotz profitieren Unternehmen bereits heute vom Einsatz neuer Technologien, beispielsweise im CRM-Bereich. Systeme können auf Basis von Daten über frühere Käufe Rückschlüsse auf das zukünftige Kaufverhalten einer Person ziehen. Von diesen Möglichkeiten der „Predictive Analytics“ profitieren Unternehmen auch im Umgang mit ähnlichen Käufergruppen.

Ebenso verhält es sich bei Projektmanagementtools, die schon heute auf Basis der vom Nutzer eingegebenen Daten in der Lage sind, mitzudenken und zu lernen. Solche Tools können problemlos die Dauer von Arbeitszeiten automatisch erkennen und selbstständig eine Zuordnung zu bestimmten Projekten vorschlagen. Prinzipiell können und werden uns neue Technologien in unterschiedlichsten Lebenslagen unterstützen und aufwendige und vor allem repetitive Aufgaben problemlos erledigen, die uns sonst unnötig Zeit und Mühe kosten würden.

3. Wir hinken hinterher – aber KI wird sich weiterentwickeln

Selbst wenn Deutschland in Sachen KI Nachholbedarf hat: Durch KI werden sich Firmen im Laufe der Zeit stark verändern. Erste Veränderungen sind bereits eingetreten, doch sie müssen und werden noch viel weitergehen. Schon jetzt können Unternehmen mit Daten völlig neue Geschäftsfelder erschließen: Die neuen Technologien haben eine Tragweite, die der Revolution vergleichbar ist, die das Internet ausgelöst hat. Und die Ängste, die heute gegenüber KI bestehen, gab es in vergleichbarer Weise auch zu Beginn des Internet-Zeitalters: Schon vor Jahrzehnten äußerten viele Menschen Besorgnis und litten unter Jobverlustängsten. Doch auch im Internet – und im neuen Bereich des Internet of Things – gab und gibt es eine Vielzahl neuer Beschäftigungsmöglichkeiten. Dies wird im Themenumfeld KI und Machine Learning nicht anders sein.

Die Angst, durch KI seinen Job zu verlieren, ist zwar nicht ganz unbegründet, doch durch neue Geschäftsmodelle entstehen auch neue Möglichkeiten. KI wird Jobs, Prozesse oder Geschäftsmodelle nur sehr selten vollständig ersetzen. Vielmehr verspricht sie, menschliche Tätigkeiten sinnvoll zu ergänzen und damit sogar einen Mehrwert für Menschen zu schaffen. Während Computer dann noch mehr lästige Aufgaben übernehmen und automatisiert durchführen, bleibt Mitarbeitern mehr Freiraum für relevantere, sinnstiftende Aufgaben. Wenn jemand beispielsweise im Projektgeschäft tätig ist, besteht sein Arbeitsalltag im Großen und Ganzen darin, Projekte zu planen, zu verwalten und abzuarbeiten. Selbstverständlich muss er sich mit Kollegen abstimmen und gegebenenfalls Arbeitszeiten erfassen, um sich einen Überblick darüber zu verschaffen, wie erfolgreich ein Projekt verlaufen ist.

All diese Aspekte basieren auf Daten – und diese müssen entsprechend verwaltet werden. Und jedes Unternehmen weiß: Administrative Prozesse rund um Projektplanung und Auswertung von Daten sind sehr kostenintensiv. Genau hier kommen die Eigenschaften von KI positiv zum Tragen. Eine smarte Business Software kann dazu beitragen, die Tätigkeiten eines Mitarbeiters zu verbessern. Auf Basis von Daten zur Arbeitszeit oder zu überschrittenen Budgets ist sie in der Lage, ein Projekt mit anderen zu vergleichen – wenn ein Projekt schlecht verläuft, wird die Software automatisch darüber informieren und Verbesserungsvorschläge für kommende Projekte anbieten. Das klingt doch gar nicht mehr so gruselig, sondern eher hilfreich, oder?

4. Agilität und Schnelligkeit von Start-ups

Die knappen Ressourcen und das knappe Budget zwingen ein Start-up zu einer anderen Vorgehensweise als beispielsweise einen großen Konzern – was sich auch als großer Vorteil für Start-ups erweisen kann. Eben weil sie dazu gezwungen sind, ihre Geldmittel an richtigen Stellen einzusetzen und weil die meisten Start-ups in eher überschaubaren Teamgrößen arbeiten, können sie sich die Vorteile von KI zu eigen machen. Anstatt in teure Businesssoftware zu investieren, kann es sich lohnen, einen Blick über den Tellerrand zu werfen und zu prüfen, welches System die eigenen Bedürfnisse möglichst perfekt abdeckt. Da oftmals auch Prozesse in Start-ups deutlich schlanker sind als in Konzernen, können sie deutlich flexibler und agiler auf Anforderungen des Marktes reagieren.

Das heißt, dass sie auch dazu in der Lage sind, schneller in neue Tools zu investieren – da sich abteilungsübergreifend recht schnell abstimmen lässt, welche Anforderungen an das System gestellt werden und inwieweit die neue Lösung diese erfüllen kann. Sich auf etwas Neues gut einstellen zu können, fällt vielen Start-ups nicht schwer. Umso eher können sie von den vielen Möglichkeiten und Vorteilen, die sich durch neue KI-Technologien für sie ergeben, profitieren. Angst vor KI wäre unbegründet. Für Start-ups gilt dies erst recht.

Die Autorin Anna Schüler hat Kommunikationsmanagement studiert und berät Unternehmen im Bereich Online-Marketing. Als Redakteurin ist sie unter anderem für das Magazin artificialwork.com verantwortlich, in dem sie über KI-Trends, New Work und die Automatisierung von Geschäftsprozessen berichtet.


Sie möchten selbst ein Unternehmen gründen oder sich nebenberuflich selbständig machen? Nutzen Sie jetzt Gründerberater.deDort erhalten Sie kostenlos u.a.:

  • Rechtsformen-Analyser zur Überprüfung Ihrer Entscheidung
  • Step-by-Step Anleitung für Ihre Gründung
  • Fördermittel-Sofort-Check passend zu Ihrem Vorhaben

Diese Artikel könnten Sie auch interessieren:

Europa kann KI!

Was wir von den besten EU-AI-Companies lernen können, erläutert KI-Experte Fabian Westerheide.

Europa muss sich bei KI nicht kleinreden. Wir sehen gerade sehr deutlich: Aus Europa heraus entstehen Unternehmen, die Kategorien besetzen – und dann auch das große Kapital anziehen. Beispiele gibt es genug: Mistral AI, DeepL, Black Forest Labs, Parloa, Helsing, Lovable oder n8n.

Ich schreibe das aus drei Blickwinkeln: als Investor (AI.FUND), als Konferenz-Initiator (Rise of AI Conference) und als Autor von Die KI-Nation. Was du hier bekommst, ist kein „Europa-hat-ein-Problem“-Essay – sondern eine Analyse plus ein Execution-Set an Empfehlungen, das du direkt auf dein Start-up übertragen kannst.

Die Realität: Seed geht oft – Scale ist das Spiel

Am Anfang brauchst du selten „zu viel“ Geld. MVP, erste Kunden, Iteration: Das klappt in Deutschland in vielen Fällen mit Seed. Die echte Trennlinie kommt später – wenn du aus einem starken Start-up einen Kategorie-Gewinner bauen willst.

Denn KI ist zunehmend Winner-takes-most. Und das gilt auch fürs Kapital: In vielen Fällen ist die Growth-Finanzierung in den USA grob 25-mal größer – bei den aktuellen Front-Runnern (Modelle, Infrastruktur, Distribution) wirkt es teilweise wie 100-mal, weil Kapital sich auf die vermuteten Sieger stapelt. (Nicht „fair“, aber Marktmechanik.)

Die gute Nachricht: Genau die EU-Vorbilder oben zeigen, dass du das nicht wegdiskutieren musst – du musst es exekutieren.

Was die EU-Winner gemeinsam haben: 6 Execution-Prinzipien

1. Starkes Gründerteam – aber vor allem: vollständig

Alle genannten Vorbilder hatten (oder bauten sehr schnell) ein Team, das drei Dinge gleichzeitig kann:

  • Tech & Produkt (nicht nur „Model-IQ“, sondern Produktgeschmack)
  • Go-to-Market (Vertrieb, Buyer-Verständnis, Pricing)
  • Tempo (entscheiden, shippen, lernen)

Wenn eine Säule fehlt, zahlst du später mit Zeit. Und Zeit ist in KI eine Währung, die dir niemand schenkt.

Founder-Move: Benenne eine Person, die Umsatz genauso hart verantwortet wie Modellqualität. Wenn das „später“ ist, ist das sehr wahrscheinlich dein Bottleneck.

2. Global denken – aber spitz: KI-Nische statt Bauchladen

Die EU-Winner sind nicht „KI für alles“. Sie besetzen klare Nischen:
Language-AI (DeepL), Customer-Experience-Agents (Parloa), GenAI-Modelle (Black Forest Labs), Defence-Tech (Helsing), Builder/Vibe-Coding (Lovable), Orchestration & Automation (n8n), Foundation-Model-Ambition (Mistral).

Founder-Move: Formuliere deinen Claim so, dass er in einem Satz sagt, welche Kategorie du dominierst. Wenn du drei Absätze brauchst, bist du noch zu breit.

3. Umsatz ist keine Nebenwirkung – Umsatz ist Souveränität

Der schnellste Weg zu Growth-Capital ist nicht „noch ein Pilot“, sondern Revenue, der deine Kategorie glaubwürdig macht.
Parloa kommuniziert z.B. ARR > 50 Mio. USD und wächst international – genau die Art Signal, die große Runden freischaltet.

Founder-Move (gegen Pilotitis): Kein PoC ohne schriftlichen Pfad in einen Vertrag (Budget, KPI, Entscheidungstermin). Sonst finanzierst du mit deiner Runway den Lernprozess des Kunden.

4. Internationales Kapital früh anbahnen – bevor du es brauchst

Das Muster ist klar: Erst Kategorie-Story + Traktion, dann große Checks.
Mistral (Series C 1,7 Mrd. €) oder Lovable (330 Mio. USD bei 6,6 Mrd. Bewertung) sind kein „Glück“ – das ist Momentum + Positionierung + Timing.

Founder-Move (90-Tage-Plan):

  • Baue eine Capital Map deiner Nische (wer zahlt Growth-Checks?)
  • Definiere die drei Metriken, die diese Investor:innen sehen wollen
  • Organisiere zehn Intros jetzt, nicht erst bei sechs Monaten Runway

5. Compute ist keine IT-Zeile – es ist ein Wachstumshebel

In KI ist Compute Teil deiner Wettbewerbsfähigkeit. Geschwindigkeit beim Trainieren, Testen und Deployen entscheidet, wie schnell du am Markt lernst.

Founder-Move: Plane Compute-Runway wie Cash-Runway. Verhandle früh Kontingente, bevor dein Verbrauch explodiert – sonst wird Wachstum plötzlich zur Margen-Frage.

6. Trust & Compliance als Verkaufsargument – nicht als Ausrede

Gerade in DACH gilt: Wer secure, audit-fähig, enterprise-ready wirklich liefern kann, gewinnt Deals.
DeepL betont genau diesen Business-Wert: verlässliche, sichere Lösungen statt Hype.

Founder-Move: Baue Trust-Artefakte früh – Dokumentation, Governance, Datenflüsse, Rollen, Audit-Spuren. Das beschleunigt Enterprise-Vertrieb, statt ihn zu bremsen.

Kurz-Checkliste: Wenn du in Europa KI gewinnen willst

  • Kategorie in einem Satz (spitze Nische, globaler Anspruch)
  • Klarer Revenue-Pfad (weniger Piloten, mehr Verträge)
  • Capital Map (international früh andocken)
  • Compute-Runway (wie Cash planen)
  • Trust by Design (verkaufsfähig machen)
  • Tempo als Kultur (shippen, messen, nachschärfen)

Europa kann KI. Die Frage ist nicht, ob hier Talent existiert – das ist bewiesen.
Die Frage ist, ob du Execution so aufsetzt, dass aus Talent Marktführerschaft wird.

Der Autor Fabian Westerheide gestaltet als KI-Vordenker, Investor, Ökosystem-Pionier und Keynote Speaker seit über einem Jahrzehnt die Debatte um KI, Macht und digitale Zukunft mit.

KI als neuer Ort für Kaufentscheidungen

Das Start-up publuence.ai zeigt am Beispiel der Automobilbranche, wie Marken in generativen KI-Antworten sichtbar werden und warum das zum neuen Erfolgsfaktor wird.

2025 haben wir euch das Start-up publuence.ai von Cevahir Ejder als "Gründer*in der Woche" präsentiert. Publuence.ai ist eine SaaS-Lösung für AI Search Analytics für Marken, die täglich analysiert, wie sichtbar Marken in generativen KI-Antworten sind: bei welchen Fragen erscheinen sie, wie werden sie erwähnt und welche Inhalte sowie Quellen beeinflussen die Antworten. Da die KI-Sichtbarkeit zunehmend darüber entscheidet, ob eine Marke in der engeren Auswahl der Konsumenten stattfindet, sind die Ergebnisse für Unternehmen strategisch sehr relevant.

Beispiel Automobilbrache: KI wird zum Verkaufsberater, Chatfenster zum Showroom

Während Marketing- und Kommunikationsbudgets weiterhin nach klassischen Logiken verteilt werden, fällt ein entscheidender Teil der Markenbildung inzwischen außerhalb des Mediaplans: KI-Systeme beantworten Kauf- und Vergleichsfragen oft lange bevor Kampagnen greifen. Anhand der Automobilbranche etwa, in der Marken wie Volkswagen für eine ganze Industrie stehen, zeigt sich, dass sich Sichtbarkeit im KI-Dialog zum neuen Machtfaktor entwickelt. Sie entscheidet zunehmend darüber, welche Hersteller überhaupt in die engere Auswahl kommen.

Was früher im Autohaus oder auf Herstellerwebsites stattfand, spielt sich heute in KI-gestützten Beratungsgesprächen ab. Nutzer*innen stellen dort Fragen wie: „Welche E-Autos sind familienfreundlich?“ „Wie gut ist die Reichweite im Winter?“ „Welche Modelle laden am schnellsten?“

In der Initialanalyse erzielt beispielsweise VW im Themenbereich E-Autos – je nach Fragestellung bzw. Prompt – Sichtbarkeitswerte zwischen 20 und 88 Prozent. Damit prägen die Antworten frühzeitig das Bild, das Konsument*innen von der Marke haben. Wer dort nicht vorkommt beziehungsweise seine Mehrwerte nicht sichtbar macht, wird in der Entscheidungsfindung schlicht nicht berücksichtigt.

Tesla und Hyundai vorn, VW im Mittelfeld

Das aktuelle Wettbewerbsranking der führenden Automobilhersteller – basierend auf 30 relevanten KI-Prompts rund um das Thema Elektromobilität – zeigt, wie präsent die einzelnen Marken im neuen digitalen Beratungsraum sind. Mit knapp 64 Prozent Sichtbarkeit führt Tesla klar und profitiert von seiner technologischen Positionierung sowie einer starken Medienpräsenz. Überraschend landet Hyundai insbesondere im E-Auto-Segment mit mehr als 58 Prozent dahinter. Volkswagen erreicht solide, aber deutlich ausbaufähige 51 Prozent.

Doch es geht nicht nur um Quantität, die Analyse zeigt auch, wo das Bild der Marken ins Wanken gerät. Im Fall von VW sind es vor allem Themen wie Winterreichweite, Ladeinfrastruktur und Schnellladekosten, die negative Ausschläge erzeugen. Diese kritischen Inhalte sind es allerdings, die die Markenwahrnehmung und dementsprechend auch die konkreten Kaufentscheidungen beeinflussen.

Die stille Macht der Quellen: Medien, die prägen

Eine zentrale Erkenntnis der Analyse von publuence.ai ist, dass KI-Systeme nicht auf Basis eines objektiven Querschnitts des Internets antworten. Vielmehr orientieren sie sich an bestimmten Medienquellen, deren Inhalte überproportional stark einfließen und so die Darstellung von Marken maßgeblich mitformen. Umso wichtiger ist es für Marken zu verstehen, auf welche Fragen sie reagieren müssen – und über welche vertrauenswürdigen Medien sie in den Wissensraum der KI gelangen.

Dabei zeigen sich je nach Medium erhebliche Unterschiede in der Tonalität. Während focus.de sowie adac.de E-Mobilität eher wohlwollend behandelt, sind andere Portale kritischer. Für Unternehmen bedeutet das: Wer verstehen will, wie KI über die eigene Marke spricht, muss wissen, welche Inhalte sie beeinflussen.

Warum Marken nicht an KI-Monitoring vorbeikommen

Publuence.ai bietet Unternehmen ein strukturiertes, datenbasiertes Werkzeug, um ihre Sichtbarkeit in KI-Systemen wie ChatGPT, Google oder Perplexity zu analysieren und darauf aufbauend gezielt zu steuern. Die Plattform zeigt, welche Fragen zur Marke führen, wie die Antworten ausfallen, welche Medien zugrunde liegen und wo Wettbewerber besser abschneiden.

Besonders wichtig ist die Identifikation von Content- und Sentiment-Gaps. Sie erkennt Themenfelder, in denen eine Marke kaum oder gar nicht auftaucht, obwohl sie dort relevant sein sollte. Gleichzeitig analysiert sie, ob etwas positiv, negativ oder neutral erwähnt wird. Dies macht publuence.ai für Kommunikations-, Marketing- und Markenverantwortliche zum zentralen Steuerungsinstrument. Nur wer versteht, wie KI antwortet, kann Inhalte gezielt darauf anpassen, Medienarbeit datenbasiert ausrichten und so die eigene Markenpräsenz dort stärken, wo die Entscheidungen heute vorbereitet werden.

KI-Sichtbarkeit wird zur Basis für Markterfolg

Cevahir Ejder, Gründer und GF der publuence GmbH, fasst zusammen: „Kaufentscheidungen beginnen heute und auch in Zukunft im Dialog mit KI-Systemen. Marken, die dort nicht auftauchen, sind raus.“ Volkswagen steht dabei stellvertretend für viele Unternehmen, die ihren Fokus noch auf klassische Marketingkanäle legen und den digitalen Showroom der KI bislang kaum berücksichtigen. Ejder warnt: „Wer jetzt nicht handelt, riskiert, neben Reichweitenverlusten, einen tiefgreifenden Bedeutungsverlust im Moment der Entscheidung.“

Der industrielle Wasserkocher: Wie das Start-up SYPOX die Chemie grün färbt

Die chemische Industrie hat ein massives Emissionsproblem, denn ihre Prozesse verschlingen Unmengen an Erdgas. Das 2021 geründete Start-up SYPOX, ein Spin-off der TUM will das ändern – mit einer Technologie, die so simpel wie genial klingt: Ein riesiger, elektrischer Tauchsieder soll die fossile Verbrennung ersetzen. Nun meldet das junge Unternehmen den ersten Durchbruch auf dem Weltmarkt.

Wenn Dr. Martin Baumgärtl erklären will, wie er die chemische Industrie revolutionieren möchte, wählt er ein Bild, das jeder versteht: „Im Grunde ist es wie ein Wasserkocher in der heimischen Küche – nur im industriellen Maßstab.“ Baumgärtl ist CTO von SYPOX, und was er beschreibt, könnte einer der wichtigsten Hebel für die Dekarbonisierung einer der schmutzigsten Branchen der Welt sein.

Die chemische Industrie ist süchtig nach Energie. Um Basischemikalien wie Methanol oder Ammoniak herzustellen, wird sogenanntes Synthesegas benötigt – eine Mischung aus Wasserstoff und Kohlenmonoxid. Die Herstellung geschieht in gewaltigen Hochtemperaturprozessen. Bisher wird die dafür nötige Hitze fast ausschließlich durch das Verbrennen von Erdgas oder Öl erzeugt. Die Folge: Gigantische CO-Emissionen.

Strom statt Flamme

Genau hier setzt SYPOX an. Das 2021 in Freising gegründete Unternehmen ersetzt die offenen Gasflammen durch elektrischen Strom. In ihren Reaktoren, die von außen wie gewöhnliche Druckbehälter aussehen, stecken hochkomplexe elektrische Heizelemente, die direkt hinter den Katalysatoren platziert sind.

Der Effekt ist enorm: „In konventionellen Verfahren entfallen rund 40 Prozent der Emissionen allein auf die Wärmeerzeugung aus fossilen Energieträgern“, rechnet Baumgärtl vor. Durch die Elektrifizierung des Reaktors fallen diese Emissionen weg – vorausgesetzt, der Strom kommt aus erneuerbaren Quellen. Zudem lässt sich der Prozess laut den Gründern präziser und sicherer steuern.

Der Anti-Trend im Silicon Valley

Doch nicht nur technologisch, auch ökonomisch schwimmt SYPOX gegen den Strom. In der Tech-Szene ist es üblich, dass Start-ups jahrelang Verluste schreiben und sich von einer Venture-Capital-Runde zur nächsten hangeln, getrieben von Investoren, die schnelles Wachstum fordern.

Die bayerischen Gründer wählten einen konservativeren, fast schon mittelständischen Ansatz. „Es entsprach nicht unserem Stil, Geld einzuwerben – wir haben vielmehr von Anfang an versucht, auf Basis unserer Technologie ein tragfähiges Geschäft aufzubauen“, erklärt CEO Dr. Gianluca Pauletto. Man wolle bodenständig bleiben und sich aus Umsätzen finanzieren, statt sich in Abhängigkeiten zu begeben.

Vom Container im Altmühltal zum Großkunden

Die Wurzeln des Unternehmens liegen an der Technischen Universität München (TUM). Die Idee brachte Pauletto aus seiner Zeit in Montréal mit, an der TUM fand er in Prof. Johannes Lercher und dem damaligen Doktoranden Martin Baumgärtl die wissenschaftlichen Mitstreiter.

Der Weg zum marktreifen Produkt war – typisch für „Deep Tech“ – langwierig. „Vier Jahre Forschung und zahlreiche Versuchsreihen waren notwendig“, erinnert sich Lercher. Während andere Software im Co-Working-Space programmierten, baute das SYPOX-Team eine Pilotanlage in einem einfachen Stahlcontainer auf dem Gelände einer Biogasanlage im ländlichen Dollnstein (Altmühltal).

Diese Beharrlichkeit zahlt sich nun aus. Das Start-up hat, unterstützt durch den Spezialchemie-Konzern Clariant, seinen ersten Großkunden an Land gezogen. Ab 2026 soll eine erste industrielle Anlage in Betrieb gehen, die täglich 150 Tonnen Synthesegas produziert. „Das ist nicht nur ein Meilenstein für uns, sondern auch ein starkes Signal an die gesamte chemische Industrie“, so Baumgärtl.

Für das Team, das inzwischen in Langenbach bei Freising sitzt und weiterhin Labore auf dem Forschungscampus Garching betreibt, ist das der Beweis: Die Elektrifizierung der Chemie ist keine Zukunftsmusik mehr, sie beginnt jetzt.

reltix: Vom Aktenordner zum Algorithmus

Wie das 2025 von Andreas Plakinger, Jan Horstmann und Léon Bamesreiter gegründete Düsseldorfer PropTech-Start-up reltix das angestaubte Image einer Branche poliert.

Hausverwaltungen gelten nicht gerade als Sprintdisziplin. Schwer erreichbare Ansprechpartner, Papierberge und zähe Abläufe prägen das Image einer Branche, in der es an Nachwuchs fehlt und Fristen dennoch gnadenlos ticken. Genau da setzt reltix an und wächst: Im März 2025 gegründet, zählt das Düsseldorfer Start-up inzwischen 2000 Kund*innen.

Gegründet wurde reltix von drei ehemaligen Kommilitonen, die sich an der WHU Otto Beisheim School of Management in Vallendar bei Koblenz kennenlernten: Léon Bamesreiter, Jan Horstmann und Andreas Plakinger. Der Motor für die Gründung war eine große Portion eigener Unzufriedenheit. Bamesreiter kaufte mit 20 Jahren während seines dualen Studiums bei einer Großbank seine erste Wohnung, weitere folgten. Seine Erfahrung mit den Verwaltungen: dicke Ordner, langsame Reaktionen, wenig Transparenz. „Ich hatte das Gefühl, ich werde selbst zum Hausverwalter.“

Weniger Bürokratie und mehr Präsenz am Objekt

Mit dem Gründungsstipendium starteten die Drei eine Umfrage unter über 120 Eigentümer*innen: 87 Prozent gaben an, mit ihrer Verwaltung unzufrieden zu sein. Reltix will diese Unzufriedenheit nicht mit mehr Personal, sondern mit Digitalisierung im Hintergrund beheben. Herzstück ist eine selbst entwickelte Software, die E-Mails und WhatsApp-Nachrichten erfasst, automatisch Tickets anlegt, digitale Unterlagen ausliest und Vorgängen zuordnet. Handwerkeranfragen werden systemgestützt angestoßen, Daten zentral strukturiert. Gleichzeitig setzen die Düsseldorfer auf eine feste Ansprechperson je Immobilie.

Erklärtes Ziel der Gründer: weniger Bürokratie und mehr Präsenz am Objekt. Für diesen Ansatz erhielt das Team gerade eine Zusage zur Forschungszulage des Bundesministeriums für Forschung, Technologie, und Raumfahrt zum weiteren Ausbau der eigenen Software mit einer Projektsumme von 1,3 Millionen Euro.

Jahresendspurt brachte Mandate ...

Den größten Schub spürte reltix im Dezember 2025. Viele Hausverwaltungsverträge enden zum 31. Dezember, gleichzeitig laufen Abrechnungsfristen aus. Wer bis Jahresende keine neue Verwaltung findet, bekommt schnell kalte Füße. In den letzten Wochen des Jahres kamen deshalb laut Unternehmen 500 Mandate kurzfristig hinzu, darunter Neubauprojekte in Langenfeld und Köln. Einige namhafte Banken, Family Offices und größere private Bestandshalter zählt das Unternehmen ebenso zu seinen Kund*innen.

... und Personalaufbau

Das Start-up musste personell nachziehen und stockt zum Februar von 14 auf 17 Mitarbeitende auf. Während viele klassische Verwaltungen über fehlenden Nachwuchs klagen, setzt reltix auf junge Mitarbeitende, Quereinsteiger*innen und bildet selbst aus. Das Unternehmen ist IHK Ausbildungsbetrieb und beschäftigt eine Auszubildende im ersten Lehrjahr. Die 28-Jährige, aus der Ukraine geflüchtet, ist aktuell die älteste im Team. Dazu kommen Quereinsteiger*innen: Ein früherer Maschinenbauingenieur leitet inzwischen die Mietverwaltung, eine Mitarbeiterin aus dem Bankgeschäft arbeitet in der Buchhaltung.

Von Rhein-Ruhr bis an den Main

Neben der Verwaltung großer Objekte bietet das Düsseldorfer PropTech für kleinere Eigentümer*innengemeinschaften mit drei bis acht Einheiten die sogenannte Kompaktverwaltung. Enthalten ist darin eine rechtssichere Abrechnung, die Durchführung von Eigentümer*innenversammlungen sowie größere Sanierungen, während Alltägliches bei den Eigentümer*innen bleibt. Regional liegt der Fokus auf Rhein-Ruhr sowie dem Umfeld Köln Bonn. Frankfurt mit einem weiteren Standort ist als nächster Schritt Richtung Sommer geplant. Düsseldorf soll Hauptsitz bleiben.

DLR-Spin-off Nunos liefert Raumfahrt-Technik für den Acker

Das 2024 von Fabian Miersbach und Tim Paulke gegründete Start-up Nunos hat ein Verfahren entwickelt, das Gülle in effizienteren, geruchlosen Dünger umwandelt. Die Deutsche Bundesstiftung Umwelt (DBU) fördert Nunos mit 125.000 Euro.

Das Düngen mit Gülle ist wichtiger Bestandteil einer im Kreislauf gedachten Landwirtschaft. Aktuell ruhen viele Äcker noch, doch ab Februar versorgen zahlreiche Landwirt*innen ihre Felder wieder auf diese Weise mit Nährstoffen. Doch durch Gülle entstehen auch umweltschädliche Gase wie Ammoniak und Methan. Das Hürther Start-up Nunos hat nun ein Verfahren entwickelt, das Gülle in effizienteren, geruchlosen Dünger umwandelt. Dies verringert den Ausstoß von Treibhausgasen (THG) und sorgt gleichzeitig für eine bessere Nährstoff-Versorgung der Pflanzen. Mitgründer Tim Paulke zufolge wandelt die firmeneigene Anlage „innerhalb eines 24-Stunden-Zyklus‘ mit einem rein biologischen Verfahren Gülle zu einem Düngemittel mit höherer Nährstoffnutzungseffizienz und deutlich geringeren Treibhausgas-Emissionen um.“

Astronautik-Technologie für eine breite Anwendung

Als Ausgründung aus dem Deutschen Zentrum für Luft- und Raumfahrt (DLR) optimiert das Nunos-Team eine in der Astronautik entwickelte Technologie für eine breite Anwendung in der Landwirtschaft. Paulke: „Das zugrundeliegende System wurde ursprünglich zur Aufbereitung von menschlichem Urin als Düngemittel für den erdfreien Anbau in Gewächshäusern auf Raumstationen entwickelt.“ Bei der neuen Anwendung werde die Gülle in der bei den Betrieben errichteten Anlage mithilfe von Mikroorganismen weiterverarbeitet. „Es entstehen ein dünnflüssiges, geruchsloses Düngemittel und eine geringe Menge eines nährstoffreichen Feststoffs,“ so Paulke.

Ernte-Mehrertrag von 20 Prozent erwartet

Bei der Güllelagerung unter dem Stallboden reagieren die Ausscheidungen und setzen schädliche Gase frei. Paulke: „Um die Ausgasung von Methan und Ammoniak zu vermeiden, wird die Gülle möglichst schnell aus den Ställen in die Aufbereitungsanlage geleitet.“ Das zügige Entfernen erhöht nach seinen Worten auch das Tierwohl. Außerdem „werden die Nährstoffe in dem Düngemittel so aufbereitet, dass sie direkt für die Pflanzen verfügbar sind“, so der Nunos-Mitgründer. Diese Nährstoffe kämen schneller als beim herkömmlichen Ausbringen der Gülle bei den Pflanzen an. Auswaschungen aus dem Boden würden so deutlich verringert. „Nach ersten Pflanzversuchen rechnen wir bei der Ernte mit einem Mehrertrag von bis zu 20 Prozent, was wir in 2026 auf zwei landwirtschaftlichen Betrieben in Feldversuchen validieren möchten“, prognostiziert Paulke

Nunos-Dünger auch für den Hausgebrauch

Neben den Gülle-Aufbereitungsanlagen stellt das Start-up nach eigenen Angaben kleinere Mengen des Düngemittels für den Hausgebrauch her. „Der Dünger wirkt auch für den heimischen Tomatenanbau oder Zimmerpflanzen wie ein Multivitamin-Drink“, so Paulke. Der Vertrieb erfolge über das Internet. Das Verfahren zur Umwandlung der Gülle in den effizienten Dünger sei über das DLR patentiert und von Nunos exklusiv lizensiert.

Die Deutsche Bundesstiftung Umwelt (DBU) fördert das Unternehmen mit 125.000 Euro. Paulke: „Aktuell arbeiten wir hauptsächlich mit Rindergülle und Gärresten aus Biogasanlagen. Durch die DBU-Förderung bekommen wir die Möglichkeit, das Verfahren ausführlicher auf seine Umweltauswirkungen zu testen, anstatt nur wirtschaftliche Faktoren zu betrachten.“ Außerdem geplant seien neue Feldversuche, die die zusätzlichen Erträge durch den Dünger weiter verifizieren und Optimierungsmöglichkeiten finden.

Mehr Effektivität und wirtschaftliche Effizienz für die Landwirtschaft

DBU-Referentin Dr. Susanne Wiese-Willmaring sieht großen Bedarf in der Landwirtschaft für Konzepte wie das von Nunos: „Die Bäuerinnen und Bauern wissen von den Auswirkungen der bei ihrer Arbeit entstehenden Treibhausgase. Oft wollen Sie etwas verändern und müssen es aufgrund gesetzlicher Vorgaben teils auch.“ Die hohen Treibhausgas-Emissionen brächten der Landwirtschaft einen Misskredit ein, der durch innovative Lösungen behoben werden könne. Wiese-Willmaring weiter: „Für die Betriebe müssen dabei Effektivität und wirtschaftliche Effizienz stimmen – Herausforderungen, die Nunos beide aktiv angeht.“

Infinite Roots: Hamburger BioTech bringt pilzbasierte Gerichte ins Kühlregal

Das 2018 von Dr. Mazen Rizk, Anne-Cathrine Hutz und Dr. Thibault Godard als Mushlabs gegründete Hamburger Start-up Infinite Roots (ehemals Mushlabs) bringt die Vorteile der Pilzwelt erstmals als eigenständige Hauptzutat ins Kühlregal.

Infinite Roots ist ein forschungsgetriebenes BioTech-Unternehmen aus Hamburg. Seit 2018 entwickelt das Unternehmen (zunächst unter dem Namen Mushlab) neuartige Lebensmittel auf Basis von Pilzen – inspiriert vom Myzel, dem unterirdischen Wurzelgeflecht essbarer Pilze. Durch Fermentation schafft Infinite Roots Produkte, die über bloße Fleischalternativen hinausgehen. Das Ziel ist es, eine neue Kategorie zu etablieren: Lebensmittel, die echtes Umami und wertvolle Nährstoffe liefern, mit kurzen Zutatenlisten auskommen und die Umwelt entlasten.

Mit mehr als 60 Expert*innen aus Biotechnologie, Data, Lebensmittelwissenschaft und Kulinarik will das Team neue Standards für Geschmack, Qualität und Nachhaltigkeit setzen und zeigen, dass die Ernährung der Zukunft nicht Verzicht bedeutet, sondern Vielfalt und Genuss.

Die MushRoots-Produkte des Unternehmens sind keine Fleischimitate, sondern bieten ein eigenständiges, pilzbasiertes Geschmackserlebnis. Sie zeichnen sich durch einen saftigen, herzhaften Biss und ausgeprägte Umami-Noten aus. Die Hamburger setzen dabei auf Speisepilze, kombiniert mit vertrauten, hochwertigen Zutaten. Entsprechend bauen die Produkte auf einer natürlichen Zutatenliste auf und verzichten auf künstliche Aromen, Geschmacksverstärker und Farbstoffe. So entsteht ein Geschmackserlebnis, das an herzhafte Hausmannskost erinnert. Die Produkte lassen sich vielseitig im Alltag, etwa als Hack, Bällchen oder Patties.

„Im Kühlregal sehen Konsument*innen seit Jahren dieselbe Logik: Tierprotein hier, Pflanzenprotein dort“, sagt Philip Tigges, CCO/CFO von Infinite Roots. „Mit MushRoots bringen wir nicht nur eine dritte Option ins Regal, sondern kehren auch zu Lebensmitteln mit einer natürlichen Hauptzutat zurück. Pilze bieten einen herzhaften Geschmack, sind vielseitig, in allen gewohnten Rezepten einsetzbar und können kinderleicht zubereitet werden.“

MushRoots setzt dabei auf eine Proteinquelle mit vergleichsweise geringem ökologischen Fußabdruck. Pilze lassen sich lokal und ressourcenschonend kultivieren. „Wir wollten nie ein weiteres Fleischimitat herstellen, sondern eine eigene Kategorie umami-reicher Pilzprodukte schaffen, die durch Charakter und Geschmack überzeugen“, ergänzt Tigges. „Unser Ziel ist es jetzt, Menschen für Pilzprodukte zu gewinnen, ohne dass sie Fleisch vermissen.“

Jetzt meldet Infinite Roots, dass vier MushRoots-Produkte ab sofort bei REWE Nord in Norddeutschland und Billa Plus in Österreich erhältlich sind und damit eine neue Kategorie an Pilz-Produkten in die Kühlregale Einzug gehalten haben.

Schneller aus dem Labor

Wie Gründer*innen aus dem universitären Umfeld der Transfer von Wissen aus der akademischen Welt in die Privatwirtschaft noch besser gelingt, erörtern wir im Interview mit Dr. Philipp Baaske, Mitgründer von NanoTemper Technologies, Business Angel und seit Oktober 2025 Vizepräsident für Entrepreneurship an der Ludwig-Maximilians-Universität München (LMU).

NanoTemper, einer der Weltmarktführer für biophysikalische Messinstrumente, wurde 2008 als Spin-off der LMU gegründet. Was hatte dich damals dazu bewogen, vom Forscher zum Gründer zu werden?

Für mich war es sehr persönlich. Meine Mutter wurde mit Brustkrebs diagnostiziert, und das Medikament, das ihr das Leben gerettet hat, wurde dank Biotechnologie entwickelt. Mir wurde klar, dass Wissenschaft nur dann wirklich mächtig ist, wenn sie den Patienten erreicht. Dieser Gedanke hat mich nie mehr losgelassen.

Im Labor habe ich die Neugier, die Präzision, das Entdecken geliebt. Aber ich sah auch die Lücke: brillante Ideen blieben oft in Publikationen stecken, weit weg vom Alltag der Menschen. Ich wollte nicht bei der Entdeckung stehen bleiben. Ich wollte helfen, Entdeckungen in Produkte zu verwandeln, die jeder nutzen kann.

Diese Überzeugung wurde durch meine Herkunft noch verstärkt. Ich bin in einem kleinen bayerischen Dorf aufgewachsen, in einer Familie von Handwerkern. Meine Eltern haben mir beigebracht, dass Arbeit praktisch sein muss, dass sie den Menschen dienen sollte. Die Wissenschaft faszinierte mich, aber ich spürte eine Unruhe: Wie viel mächtiger kann unser Wissen werden, wenn wir es vom Labor auf den Alltag der Menschen übertragen?

Also habe ich zusammen mit meinem Mitgründer Stefan Duhr den Sprung gewagt. Zwei junge Wissenschaftler in einem Labor im Keller, die die ersten Prototypen von Hand bauten. Wir hatten kein Risikokapital, keine Roadmap, nur Entschlossenheit und den Glauben, dass das, was wir erschaffen, etwas verändern könnte. Uns trieb die gleiche Hartnäckigkeit an, die ich in der Werkstatt meiner Eltern gesehen hatte: Wenn etwas nicht funktionierte, reparierte man es, bis es funktionierte.

Wenn ich jetzt zurückblicke, war es nicht der Businessplan oder die Marktanalyse, die den Ausschlag gaben. Es war der Glaube, dass Forschung nicht im Labor enden, sondern die Brücke zur Gesellschaft schlagen sollte. Und für mich wurde Unternehmertum der Weg, diese Brücke zu bauen.

Was waren die größten Hürden auf diesem Weg?

Die größten Hürden waren nicht technischer, sondern menschlicher Natur. Als Wissenschaftler waren wir darauf trainiert, uns tief in die Experimente zu vertiefen, aber wir wussten nicht, wie man mit Kunden spricht, Verträge aushandelt oder Teams leitet. Das musste ich alles von Grund auf neu lernen.

In den Anfangsjahren haben wir Prototypen verkauft, bevor das Produkt überhaupt fertig war. Das hat uns gezwungen, schnell zu handeln, aber es hat uns auch Demut gelehrt: Kunden erwarten Zuverlässigkeit und nicht nur clevere Ideen. Später, als das Wachstum unsere Finanzen überstieg, mussten wir schwierige Entscheidungen treffen. Einmal musste ich Kollegen entlassen, um das Unternehmen zu retten. Das war einer der schwierigsten Momente meines Lebens, aber es hat mir gezeigt, dass Führung nicht darin besteht, Schmerzen zu vermeiden, sondern Verantwortung zu übernehmen.

Natürlich gab es unzählige kleinere Hürden: Menschen davon zu überzeugen, einem jungen Unternehmen zu vertrauen, die Gehaltsabrechnung zu erledigen, Instrumente von Hand zu reparieren. Aber diese Hindernisse wurden zu unserer Lehrzeit.

Wie können wir den Wissens- und Technologietransfer verbessern und gleichzeitig einen echten gesellschaftlichen Mehrwert schaffen?

Über Fördermittel wird viel gesprochen, was gut ist, denn wir müssen sie verbessern. Aber ich glaube, wir sollten über die Fördermittel hinausdenken. Der Fokus muss auf dem Impact liegen, nicht nur auf der Förderung. In den Life Sciences bedeutet das vor allem eines: Innovationen schneller zu den Patienten und den behandelnden Ärzten zu bringen.

Wir haben exzellente Forschung und Wissenschaftler von Weltrang. Die Frage ist, wie schnell ihre Entdeckungen den Weg vom Labor in die medizinische Praxis finden. Entscheidend sind stärkere Partnerschaften zwischen Universitäten, Krankenhäusern und praktizierenden Ärzten. Wenn Forscher, Kliniker und Ärzte früh zusammenarbeiten, wird der Weg von der Entdeckung zum Patienten kürzer und effektiver.

Ein weiterer wichtiger Aspekt ist, Wissenschaftler dazu zu ermutigen, den Schritt in die Selbständigkeit zu wagen. Viele zögern, weil sie glauben, dass ihnen die unternehmerischen Fähigkeiten fehlen. Was sie jedoch wirklich brauchen, ist eine unterstützende Umgebung: Mentoren, Vorbilder und die Möglichkeit, ihre Ideen auszuprobieren.

Schließlich geht es beim Wissenstransfer nicht darum, Patente von einem Büro in ein anderes zu verlagern. Es geht darum, wissenschaftliche Erkenntnisse in etwas umzusetzen, das das Leben der Menschen berührt und Ärzten hilft, ihre Patienten besser zu behandeln.

Die Skalierung von Forschungsergebnissen in der Privatwirtschaft funktioniert in Deutschland und Europa anders als in den USA. Was können wir aus den USA lernen und was sollten wir anders machen?

Ich bewundere den Mut des US-Ökosystems, in dem Gründer oft von großen Zielen träumen, schnell agieren und frühzeitig Investoren finden. Diese Energie schafft Dynamik und hat viele bahnbrechende Unternehmen hervorgebracht.

Europa hat seine eigenen Stärken. Wir sind bekannt für Qualität, Präzision und Vertrauen. Kunden schätzen, dass wir Dinge bauen, die lange halten. Unsere Herausforderung besteht darin, diese Stärken mit mehr Geschwindigkeit und Mut zu kombinieren. Wir haben die Chance, ein anderes Modell als das US-amerikanische zu entwickeln: verantwortungsvolles Wachstum, profitable Unternehmen und nachhaltige Wirkung, die über Jahrzehnte anhält, und nicht nur Finanzierungszyklen.

Kurz gesagt: Wir können uns von den USA die Zuversicht abschauen, aber wir sollten uns unserer europäischen DNA treu bleiben: geduldig, diszipliniert und langfristig orientiert.

Seit Oktober 2025 bist du Vizepräsident für Entrepreneurship an LMU. Wie willst du dort die Bereiche Entrepreneurship und Technologietransfer voranbringen?

Die LMU ist eine der weltweit führenden Universitäten mit 54.000 Studierenden und 18 Fakultäten. Sie vereint Exzellenz in allen Bereichen und Forschungsgebieten wie Medizin, Physik, KI, Recht, Wirtschaftswissenschaften und Geisteswissenschaften. Meine Aufgabe ist es, dafür zu sorgen, dass diese Vielfalt in die Gesellschaft getragen wird. In Form von Unternehmen, Wissen und Menschen, die ihre Fähigkeiten einsetzen. Und das muss schnell geschehen.

Eine natürliche Stärke der LMU liegt in DeepTech, in den Life Sciences, insbesondere in der Biotechnologie, und in aufkommenden Bereichen wie künstliche Intelligenz und Quanten-Technologien. In diesen Bereichen gibt es bereits bahnbrechende Forschung, und der Einfluss auf Patienten, Industrie und Gesellschaft kann enorm sein. Mein Fokus liegt darauf, diese Bereiche zu stärken und die Wege von der Forschung zur Anwendung zu beschleunigen und zu vereinfachen.

Das bedeutet, dass wir Studierenden und Forschern Zugang zu Büros und Laboren, Inkubationsprogrammen, Finanzierungsmöglichkeiten und starke Partnerschaften mit relevanten Akteuren in München und darüber hinaus bieten, dass wir ein Umfeld schaffen, in dem sie frühzeitig und in der Nähe der Kunden mutige Ideen testen können. In dem sie aus Fehlern und Erfolgen lernen können, von erfahrenen Gründern Ratschläge erhalten und Unternehmertum als attraktive Option sehen.

Vor allem aber möchte ich, dass die Zahl der Start-ups, die von der LMU ausgründen, deutlich ansteigt. Sind Lehre, Forschung und Unternehmertum auf Weltniveau und stärken sich gegenseitig, wird die LMU noch mehr zu einem Ort, an dem Ideen wirklich Wirkung entfalten. Nicht nur in München, sondern weit darüber hinaus.

Vor Kurzem ist dein Buch „The Honorable Entrepreneur“ erschienen. Welche Tipps daraus willst du Gründer*innen mit auf den Weg geben?

Diese sieben Prinzipien haben mich in den letzten 20 Jahren von einer kleinen Labor-WG in einem Keller zu einem globalen Unternehmen geführt:

  • Vertrauen aufbauen oder gar nichts aufbauen: Vertrauen ist die Grundlage für die Zusammenarbeit mit Mitgründern, Mitarbeitern, Investoren und Kunden. Ohne Vertrauen kann kein Unternehmen bestehen.
  • Menschen an erste Stelle setzen – immer: Erfolg wird von Teams und nicht von Einzelkämpfern geschaffen. Wenn du dich um deine Mitarbeiter kümmerst, werden sie die Mission mit dir durchziehen.
  • Innovieren für den Impact: Baue keine Technologie nur für dich selbst. Frage dich: Verbessert das das Leben – für Patienten, Kunden, die Gesellschaft?
  • Schnell und klug skalieren: Wachstum ist wichtig, aber Wachstum ohne Disziplin kann ein Unternehmen zerstören. Fokussiertes, profitables Skalieren schafft Resilienz.
  • Ein profitables, nachhaltiges Unternehmen aufbauen: Profitabilität ist kein Nachgedanke, sondern das, was dir Freiheit und Unabhängigkeit gibt.
  • Die Vision umsetzen: Viele Gründer verlieren sich in glänzenden Ablenkungen. Bleib fokussiert. Setze um, was am wichtigsten ist.
  • Gib etwas zurück: Teile deine Erfahrung, unterstütze andere und trage zum Ökosystem bei. Wahre Erfolge sind diejenigen, die überleben, wenn man selbst nicht mehr da ist.

Meine Botschaft ist einfach: Man kann im Geschäftsleben erfolgreich sein, ohne dabei seine Seele zu verkaufen. Rentabilität und Prinzipien sind keine Gegensätze, sondern gehören zusammen.

Philipp, Danke für deine Insights

Hinweis: Dieses Interview wurde ursprünglich auf Englisch geführt und ins Deutsche übersetzt.

KI-Modelle erfolgreich im Unternehmen einführen

Worauf es bei der Implementierung von KI wirklich ankommt.

Künstliche Intelligenz (KI) gewinnt in Unternehmen zunehmend an Bedeutung. Sie kann Prozesse beschleunigen, große Datenmengen sinnvoll nutzbar machen und Entscheidungen unterstützen. Doch in der Praxis zeigt sich: Moderne Technologie allein führt noch nicht zum Erfolg. Entscheidend ist ein strukturiertes Vorgehen, bei dem Ziele klar definiert, Daten sorgfältig vorbereitet und organisatorische Rahmenbedingungen von Beginn an berücksichtigt werden. „Viele KI-Initiativen scheitern daran, dass am Anfang die Orientierung fehlt“, sagt Benedikt Weber, Geschäftsführer der applord GmbH. „Struktur schafft Entscheidungsfähigkeit – noch bevor über konkrete KI-Modelle gesprochen wird.“

Organisatorischer Wandel und Einbindung der Mitarbeitenden

Der Einsatz von KI verändert Arbeitsabläufe, Verantwortlichkeiten und Entscheidungswege. Mitarbeitende arbeiten verstärkt mit automatisierten Systemen zusammen, Aufgaben verschieben sich, Rollen entwickeln sich weiter. Wird dieser Wandel nicht aktiv begleitet, entstehen Unsicherheiten oder Ablehnung gegenüber neuen Technologien. Erfolgreiche Unternehmen setzen deshalb auf transparente Kommunikation und frühzeitige Einbindung der Mitarbeitenden. Sie erklären, warum KI eingesetzt wird, welche Aufgaben sie übernimmt und wo menschliche Expertise weiterhin unverzichtbar bleibt. Fehlt dieses gemeinsame Verständnis, werden neue Systeme häufig nur eingeschränkt genutzt. „KI-Projekte scheitern selten an der Technologie“, betont Weber. „Viel häufiger fehlt ein klares Bild davon, welchen konkreten Nutzen KI für Mitarbeitende und Organisation wirklich bringt.“

Auswahl der passenden KI-Lösung

Das Angebot an KI-Lösungen wächst rasant. Für Unternehmen besteht die Herausforderung darin, nicht der technischen Vielfalt zu folgen, sondern eine Lösung zu wählen, die zum eigenen Geschäftsprozess passt. Der Ausgangspunkt sollte immer ein klar definierter Anwendungsfall sein: Welche Aufgabe soll KI konkret unterstützen oder verbessern? Neben den Funktionen spielen auch Fragen der Nachvollziehbarkeit, Integration in bestehende Systeme und regulatorische Anforderungen eine Rolle. Werden diese Aspekte zu spät berücksichtigt, entstehen Lösungen, die technisch leistungsfähig sind, im Alltag aber keinen Mehrwert liefern. „Viele Unternehmen wählen KI nach dem Funktionsumfang aus und stellen später fest, dass sie nicht zum eigenen Prozess passt“, erklärt Weber. „Erfolgreich ist KI dann, wenn sie Abläufe sinnvoll ergänzt und verständliche Ergebnisse liefert.“

Datenqualität als Grundlage für verlässliche Ergebnisse

KI-Modelle sind vollständig von der Qualität ihrer Daten abhängig. In vielen Unternehmen existieren relevante Informationen zwar, sie sind jedoch über verschiedene Systeme verteilt, unterschiedlich gepflegt oder historisch gewachsen. Diese Ausgangslage erschwert nicht nur den Einsatz von KI, sondern kann zu fehlerhaften oder schwer nachvollziehbaren Ergebnissen führen. Datenmanagement ist daher keine einmalige Vorarbeit, sondern eine kontinuierliche Aufgabe. Dazu gehören klare Zuständigkeiten, regelmäßige Prüfungen und eine strukturierte Aufbereitung der Daten. „Der Aufwand für Datenqualität wird häufig unterschätzt“, sagt Weber. „Ohne geprüfte und konsistente Daten lassen sich keine stabilen und verlässlichen KI-Ergebnisse erzielen – unabhängig davon, wie gut das Modell ist.“

Schrittweise Einführung statt großer Umbruch

Statt KI sofort unternehmensweit einzusetzen, empfiehlt sich ein schrittweises Vorgehen. Unternehmen können so mit klar abgegrenzten Anwendungsfällen beginnen, Lösungen im Alltag testen und die Ergebnisse anhand messbarer Kriterien, wie Benutzerfreundlichkeit oder verständlicher Anleitungen, bewerten. So lassen sich Risiken reduzieren und Erkenntnisse gezielt nutzen. Pilotprojekte liefern nicht nur technische Erkenntnisse, sondern zeigen auch, wie gut KI im Arbeitsalltag akzeptiert wird. Auf dieser Basis lässt sich entscheiden, welche Lösungen ausgebaut werden sollten. „Unternehmen, die mit überschaubaren Anwendungsfällen starten, treffen langfristig fundiertere Entscheidungen“, so Weber. „Praxiserfahrungen sind dabei deutlich wertvoller als theoretische Annahmen.“

19 Start-up-Geschenkideen für Xmas

Die Teilnehmer*innen des Hessischen Gründerpreises haben pfiffige, nutzwertige und stylische Produkte im Angebot, die bestens unter den Weihnachtsbaum passen.

Socken oder ein Buch? Gutschein oder Bargeld? Für viele Menschen ist die Weihnachtszeit auch stressig, denn sie müssen Geschenke für ihre Liebsten finden – und nicht immer nur für die. Für ein wenig Inspiration präsentieren wir geschenktaugliche Produkte und Dienstleistungen von jungen Unternehmen. Sie alle haben sich 2025 beim Hessischen Gründerpreis beworben, manche von ihnen sind ins Halbfinale gekommen, wurden als Preisträger*innen oder Sieger*innen ausgezeichnet.

19 Start-up-Inspirationen für Weihnachten

Häkelsets für Anfänger mit Video-Anleitungen hat Willy Wolle entworfen. Perfekt für gemütliche Nachmittage auf dem Sofa www.willywolle.com

Kurse rund um den Obstbaumschnitt und Erlebnisse auf der Streuobstwiese ermöglicht www.obstbaumglück.de

Musikgarten, Babymassage und Yoga für Kinder, liebevolle Kurse bietet www.mainglueckskind.de

An Weihnachten kommt gerne mal ein festlicher Hirsch- oder Rehbraten auf den Tisch. Das Fleisch dafür gibt es bei www.wildvonotto.de

Monatliche, von Montessori inspirierte Themenboxen mit liebevoll gestalteten Lern- und Bastelaktivitäten für Kinder von 3 bis 6 Jahren www.foxbox.kids

Ätherische Öle, Raumdüfte und Basisöle in Bio-Qualität liefert www.advanced-essentials.com

Sprechende Wanduhr erinnert Kinder automatisch per Sprachausgabe an Aufgaben und Termine und fördert Selbstständigkeit auf spielerische Weise www.routime.de

Tassen und andere 3D-gedruckte Keramik in herausragendem Design von www.additivum.de

Innovative Mundziehöle, basierend auf Phyto-Science und ayurvedischer Medizin, stellt www.maemaecare.com her

Professionelle Haarkosmetik mit hoher Hautverträglichkeit, produziert in Deutschland, von www.rndetail.com

www.schmunzelgeist.de ist eine Schokoladenmanufaktur, die außer leckeren Pralinen und Schokoladen auch Workshops und Tastings im Programm hat

Bio-Tees, ayurvedische Tees und Gewürze sowie Workshops und Tastings gibt es bei www.oktopus-tee.de

Weihnachten und der Winter sind die klassische Backsaison. Bio-Backmischungen ohne Industriezucker gibt es bei www.hasenzaehnchen.de

Komplette Nähprojekte in einer Box – das ideale Geschenk für kreative Köpfe von www.ankes-naehbox.de

Tagesplaner, Notizblöcke, Schreibtischunterlagen, Wochenplaner für Schüler, Studentinnen, und alle, die im Büro arbeiten: www.lemonplan.de

Maßgeschneiderte BHs, bei denen nichts mehr zwickt, zu erschwinglichen Preisen gibt es bei www.cupped.de

Brettspiel oder per App zocken? Off- und online verbindet www.playnconnect.de

Neon ist das neue Schwarz – auch bei Hundebekleidung www.lumiies.com

Handgefertigte Netztaschen & Lifestyle-Produkte gibt es bei www.netzeallerart.shop

KI-Agenten als Transformationstreiber 2026

Eine aktuelle DeepL-Studie zeigt: 69 % der globalen Führungskräfte erwarten für 2026 tiefgreifende Veränderungen durch KI-Agenten; KI-Sprachtechnologie wird zur unverzichtbaren Infrastruktur.

Eine neue Studie von DeepL, einem globalen Unternehmen für KIProdukte und Forschung, zeigt: 2026 wird für viele Organisationen den Übergang vom Experimentieren mit KI hin zu agentischer Automatisierung markieren. So erwartet die Mehrheit der weltweit befragten Führungskräfte (69 %), dass agentenbasierte KI ihre Geschäftsabläufe im kommenden Jahr deutlich verändern wird.

Die Studie wurde im September 2025 von Censuswide im Auftrag von DeepL durchgeführt. Befragt wurden 5.000 Führungskräfte in Deutschland, Frankreich, den USA, Großbritannien und Japan. Die Ergebnisse deuten darauf hin, dass Unternehmen verstärkt planen, autonome KI-Agenten im großen Umfang einzusetzen – etwa zur Unterstützung von Wissensarbeit, zur Ezienzsteigerung oder zur Anpassung organisatorischer Strukturen. Damit zeichnet sich die bedeutendste operative Veränderung in der Wirtschaft seit der Einführung der Cloud an.

„KI-Agenten sind längst nicht mehr experimentell, sie sind unumgänglich.“ sagt Jarek Kutylowski, CEO und Gründer von DeepL. „Die nächste Phase besteht darin, sie tiefgreifend in unsere Arbeitsweisen zu integrieren. In 2026 werden KI-Agenten das mühsame Umschalten zwischen verschiedenen Kontexten und repetitive Aufgaben übernehmen, sodass sich Menschen auf das konzentrieren können, was Unternehmen tatsächlich voranbringt.“

KI-Agenten werden zum nächsten Disruptor für Unternehmen

Nach ersten Pilot- und Anwendungsfällen rücken KI-Agenten zunehmend in den produktiven Einsatz:

  • Fast die Hälfte der globalen Führungskräfte (44 %) erwartet für 2026 einen tiefgreifenden Wandel durch agentische KI; ein Viertel (25 %) sieht diesen Wandel bereits heute. Nur 7 % glauben, dass KI-Agenten ihre Betriebsabläufe nicht verändern werden, was die hohe Geschwindigkeit der Implementierungen unterstreicht.
  • Als die drei wichtigsten Voraussetzungen für den sinnvollen und vertrauenswürdigen Einsatz von KI-Agenten nennen die Befragten nachweisbare Ezienz- und ROI-Eekte (22 %), Anpassungsfähigkeit der Belegschaft (18 %) und zunehmende organisatorische Bereitschaft (18 %).
  • Als wesentliche Herausforderungen bei der Einführung von KI-Agenten nennen die Befragten Kosten (16 %), Bereitschaft der Belegschaft (13 %) und Reife der Technologie (12 %).

KI als zentraler Wachstumstreiber für globale Unternehmen

Über Agenten hinaus gilt KI insgesamt als wichtigster Motor für das Wirtschaftswachstum in 2026:

  • Über zwei Drittel (67 %) der Befragten geben an, dass sich der ROI ihrer KI-Initiativen in diesem Jahr erhöht hat; mehr als die Hälfte (52 %) erwartet, dass KI im kommenden Jahr mehr zum Unternehmenswachstum beitragen wird als jede andere Technologie.
  • Wenn es um messbare Verbesserungen durch KI geht, liegt Deutschland (78 %) zusammen mit Großbritannien (80 %) an der Spitze, gefolgt von den USA (71 %) und Frankreich (70 %). Japan verzeichnet mit 35 % deutlich niedrigere Werte, was auf langsamere Implementierungen und Bereitschaften hindeutet.
  • Über die Hälfte der globalen Führungskräfte (51 %) rechnet damit, dass KI im kommenden Jahr mehr neue Rollen schat als ersetzt. 52 % geben an, dass KI-Kenntnisse für die meisten Neueinstellungen vorausgesetzt werden.

KI-Sprachtechnologie entwickelt sich vom Werkzeug zur zentralen Infrastruktur

Die Studie zeigt zudem, wie KI-Sprachtechnologie zur entscheidenden Komponente der Unternehmensinfrastruktur wird:

  • Fast zwei Drittel der globalen Unternehmen (64 %) planen 2026 steigende Investitionen in KI-Sprachtechnologie – angeführt von Großbritannien (76 %) und Deutschland (74 %), gefolgt von den USA (67 %) und Frankreich (65 %) werden mehrsprachige Kommunikation und Inhalte zu zentralen Faktoren für globales Wachstum. Im Gegensatz dazu bleibt Japan (38 %) vergleichsweise konservativ, was auf eine langsamere Dynamik hindeutet, gleichzeitig aber das wachsende Interesse von mehr als einem Drittel der Führungskräfte widerspiegelt.

In diesem Zusammenhang wird Echtzeit-Sprachübersetzung 2026 unverzichtbar:

  • Über die Hälfte der globalen Führungskräfte (54 %) sieht Echtzeit-Sprachübersetzung im kommenden Jahr als unverzichtbar an – derzeit sind es ein Drittel (32 %).
  • Großbritannien (48 %) und Frankreich (33 %) sind Vorreiter bei der Nutzung von Tools für die Echtzeit-Sprachübersetzung; Japan liegt derzeit nur bei 11 %.
  • Die Nachfrage wird angetrieben von technologischen Fortschritten in der Echtzeit-Sprachübersetzung (46 %), Kundenerwartungen (40 %) und marktübergreifender Expansion (38 %).

Die Erkenntnisse der Studie liefern wichtige Einblicke in die Zukunft der KI und zeigen, wie diese Veränderungen Branchen umgestalten, Kundenerwartungen neu definieren und sich auf das Wettbewerbsumfeld auswirken.

GreenTech – der Boom geht zu Ende

Zwar zählt Deutschland rund 3000 Start-ups aus dem GreenTech-Bereich, doch viele kämpfen mit Kapitalmangel, Fachkräftedefizit und einer überlasteten Infrastruktur. Der Boom ist vorbei – eine Einschätzung von Seriengründer und Transformationsexperte Daniel Fellhauer.

Die deutsche Wirtschaft steht vor einer ihrer größten Transformationen seit der Industrialisierung. Jahrzehntelang galten Auto- und Stahlindustrie als Rückgrat des Wohlstands. Nun rückt Nachhaltigkeit in den Mittelpunkt. Daniel Fellhauer sieht die GreenTech-Branche an einem kritischen Punkt: „GreenTech ist kein Hype, sondern Realität mit echten Herausforderungen. Die Frage ist: Wer bleibt übrig, wenn die Subventionen verschwinden?“ Seine Aussage bringt auf den Punkt, was viele Brancheninsider beschäftigt: der Übergang von gefördertem Wachstum zu marktwirtschaftlicher Reife. Jetzt entscheidet sich, welche Unternehmen Innovation und Wirtschaftlichkeit in Einklang bringen können – und wer an überzogenen Erwartungen scheitert.

Der Boom geht zu Ende

„Der Anteil grüner Gründungen ist zuletzt deutlich gesunken“, sagt Daniel Fellhauer. „Vor zwei Jahren war noch jedes dritte neue Start-up nachhaltig ausgerichtet. Heute ist es nicht einmal mehr jedes Vierte. Das ist ein deutliches Warnsignal. Der Markt sortiert sich, Kapital wird selektiver, und viele Ideen schaffen es nicht mehr über die Pilotphase hinaus.“ In den vergangenen fünf Jahren flossen zwar rund 11,7 Milliarden Euro in grüne Start-ups – etwa ein Viertel aller deutschen Risikoinvestitionen –, doch das Geld konzentriert sich zunehmend auf wenige, große Player. „Das zeigt eine Reifung, aber auch eine gefährliche Schieflage“, so Fellhauer. „Wir brauchen Breite, nicht nur Leuchttürme. Wenn die Finanzierungsströme versiegen, bevor Skalierung einsetzt, kippt der ganze Innovationspfad.“ Hinzu kommen steigende Zinsen, langwierige Genehmigungen und überlastete Netze.  „Viele unterschätzen, wie stark Infrastruktur über Wachstum entscheidet“, erklärt er. „Eine Solarfirma kann heute Aufträge für 1.000 Anlagen im Jahr haben. Aber wenn der Netzanschluss neun Monate dauert, bleibt sie auf halber Strecke stehen.“

Deutschland ist längst auf dem Weg zur nachhaltigen Wirtschaft – doch der Anstieg wird steiler. Die entscheidende Frage lautet: Wird GreenTech zum Fundament der nächsten industriellen Ära, oder zur vertanen Chance einer Generation? Laut einer aktuellen Analyse fließt ein erheblicher Teil staatlicher Investitionen und Subventionen in Deutschland weiterhin in fossile Strukturen – über 60 Milliarden Euro jährlich.  Da-bei hatte sich die Bundesregierung bereits 2009 gemeinsam mit anderen Industrieländern verpflichtet, ineffiziente Förderungen für fossile Energieträger bis 2025 zu beenden. Ein Ziel, das laut Fachleuten von Fraunhofer ISI, ZEW und Umweltbundesamt klar verfehlt wird. Daniel Fellhauer warnt: „Das ist kein ideologisches, sondern ein ökonomisches Problem. Solange Kapital und Fördermittel in alte Industrien gelenkt werden, anstatt in skalierbare GreenTech-Lösungen, bleibt Deutschland in der Vergangenheit verhaftet.“

Herausforderungen im deutschen GreenTech-Sektor

Trotz technologischer Fortschritte wird das Wachstum der Branche weiterhin durch strukturelle Probleme gebremst. Zu den größten Hindernissen zählen laut Fellhauer vor allem die unzureichende Netzinfrastruktur, die hohe Kapitalintensität sowie fragmentierte Märkte.  Hochqualifizierte Arbeitskräfte in den Bereichen Energie, Elektronik und Software sind rar, wodurch die Entwicklung und Umsetzung neuer Technologien verlangsamt wird. Gleichzeitig behindert der schleppende Ausbau der Strom- und Wärmenetze eine schnelle Skalierung innovativer Lösungen. Daniel Fellhauer erklärt: „Hinzu kommt, dass viele GreenTech-Unternehmen aufgrund langer Entwicklungszeiten und hoher Anfangsinvestitionen auf beträchtliches Kapital angewiesen sind. Schließlich sorgen unterschiedliche Förderprogramme und komplexe regulatorische Vorgaben dafür, dass Innovationen und Markteintritte ausgebremst werden. Diese Faktoren erschweren nicht nur das Wachstum bereits bestehender Firmen, sondern machen auch den Einstieg für neue Gründerinnen und Gründer deutlich schwieriger.“

Zweite Generation der Nachhaltigkeit für mehr wirtschaftliche Tragfähigkeit

„Nur wer wirtschaftlich denkt, kann nachhaltig handeln“, sagt Daniel Fellhauer. Für ihn ist klar: Die nächste Phase der GreenTech-Bewegung entscheidet sich nicht an Visionen, sondern an Umsetzungsdisziplin. „Wir haben die Ideen, die Technologien und den gesellschaftlichen Rückhalt – jetzt geht es um Strukturen, Prozesse und betriebswirtschaftliche Fitness.“ Er spricht damit vor allem zu Gründerinnen und Gründern, die gerade überlegen, in den Markt einzusteigen. „Ich sehe viele junge Teams, die voller Energie starten – aber ohne belastbares Geschäftsmodell. Das ist gefährlich, weil GreenTech kapitalintensiv ist und die Anlaufphase oft Jahre dauert. Wer heute gründet, braucht einen klaren Plan für Cashflow, Partnerschaften und Skalierung, nicht nur für Storytelling.“

Fellhauer plädiert für eine zweite Generation der Nachhaltigkeit: weniger Ideologie, mehr Industriekompetenz. „Wir müssen wieder lernen, wie man produziert, automatisiert und skaliert, nicht nur, wie man pitcht. Nachhaltigkeit ist kein Marketingbegriff, sondern eine Frage des industriellen Könnens.“ Er empfiehlt, früh Kooperationen mit etablierten Mittelständlern oder Industriebetrieben zu suchen, um Skaleneffekte und Erfahrung zu nutzen. Statt auf Subventionen zu bauen, rät er zu robusten Wertschöpfungsmodellen, die auch ohne politische Förderung bestehen können. „Die besten Green-Tech-Firmen der nächsten Jahre werden die sein, die unabhängig funktionieren – weil sie echte Marktprobleme lösen, nicht weil sie im Förderdschungel überleben.“

Politik und Wirtschaft in gemeinsamer Verantwortung

Damit Nachhaltigkeit tatsächlich zum tragfähigen Standbein der deutschen Wirtschaft wird, braucht es planbare Rahmenbedingungen – aber auch Eigeninitiative. Fellhauer betont, dass Gründerinnen und Gründer nicht auf die perfekte Politik warten dürfen. „Wir brauchen beides: verlässliche Energie- und Förderpolitik und unternehmerischen Pragmatismus.“ Politik müsse langfristige Investitionen ermöglichen, den Kapitalzugang vereinfachen und Fachkräfte mobilisieren. Fellhauer nennt staatlich unterstützte Risikokapitalfonds und europäische GreenTech-Programme als zentrale Hebel, damit Innovationen nicht im Frühstadium scheitern. Zugleich müsse Deutschland die Infrastruktur modernisieren: Netze, Standards, Digitalisierung. „Solange ein Windpark genehmigt, aber nicht ans Netz angeschlossen werden kann, bleibt das alles Theorie“, warnt er. Sein Fazit fällt entsprechend klar aus: „GreenTech wird die neue industrielle Basis – wenn wir sie als solche behandeln. Gründer müssen rechnen, Politiker müssen liefern, und die Gesellschaft muss akzeptieren, dass Nachhaltigkeit ein Geschäftsmodell braucht, keinen Idealismuspreis.“

Daniel Fellhauer hat mehrere Unternehmen im Bereich Solar, Wärmepumpen und erneuerbare Energien erfolgreich aufgebaut. Heute ist er Chief Transformation Officer bei Thermondo und eingesetzter CEO seiner ursprünglich gegründeten Firma FEBESOL.

Jakob Koenen: Mit 18 zum LegalTech-Start-up-Gründer

Die Sovereign AI Betriebs GmbH – 2025 von Jakob Koenen und seinem Vater Prof. Dr. Andreas Koenen mit Sitz in Berlin gegründet – entwickelt spezialisierte KI-Plattformen für die juristische Praxis.

Ein Technologie-begeisterter Abiturient, der schon mit 15 Jahren Jura-Vorlesungen besucht, gründet ein LegalTech-Start-up. Partnerschaftlich an seiner Seite agiert sein Vater, ein renommierter Professor für Baurecht. Das ist das Fundament der Sovereign AI Betriebs GmbH, die in Berlin antritt, das Rechtswissen ganzer Berufs-Generationen in eine juristisch kuratierte KI zu überführen. Herzstück des Unternehmens ist Sovereign Legal AI. Die Plattform bereitet juristische Fragen systematisch, verständlich und nachvollziehbar auf.

„Wir wollen das Recht aus der Blackbox holen“, sagt Jakob Koenen, Gründer und Geschäftsführer der Sovereign AI Betriebs GmbH. „Unsere KI soll kein Ersatz für Anwältinnen und Anwälte sein, sondern ein intelligentes Werkzeug, das Wissen strukturiert, Orientierung gibt und den Zugang zum Recht demokratisiert.“

Rechtspraxis-Know-how, digitalisiert für den Alltag

Die Idee zu Sovereign Legal AI entstand in einem Generationenprojekt. Prof. Dr. Andreas Koenen, Kanzleiinhaber, Fachanwalt und Herausgeber zahlreicher Werke zum Bau- und Architektenrecht, hat über Jahrzehnte beobachtet, wie Rechtswissen in der Praxis verloren geht, weil es zu spät, zu komplex oder zu exklusiv vermittelt wird.

„Das Recht wird beim Bauen oft erst dann herangezogen, wenn es knallt“, sagt Koenen. „Juristinnen und Juristen gelten als Ausputzer, nicht als Geburtshelfer. Sovereign Legal AI will das ändern. "Wir liefern Projektbeteiligten vom Architekten, Planer bis zum Bauherrn einen Kompass, der schon vor Konflikten Orientierung bietet; mit juristisch fundierter Systematik, aber barrierefrei zugänglich“, so Koenen weiter.

Die Wissensbasis der Sovereign Legal AI umfasst unter anderem kommentierte Urteile, systematisch aufbereitete Rechtsinformationen sowie Fachbeiträge von Anwältinnen und Anwälten zu typischen Praxisproblemen. Alle Inhalte sind mit Originalquellen aus Gesetz, Rechtsprechung und Literatur belegt, was den entscheidenden Unterschied zu generativen „Blackbox-Systemen“ markiert.

Neue Plattform für juristische Teilhabe

Sovereign Legal AI entstand in Zusammenarbeit mit den Anwältinnen und Anwälten der Kanzlei Koenen Bauanwälte. Die künstliche Intelligenz (KI) wurde entlang echter Fallarbeit trainiert und in einer Beta-Phase getestet. Dabei versteht sich die KI als Community-Projekt: Nutzende geben Feedback, benennen Lücken und tragen so zur Weiterentwicklung bei. Auf diese Weise wächst die KI mit der Praxis. Im Wissens-Ökosystem von Sovereign befinden sich auch die Austausch-Plattform Sovereign Community und der stationäre Sovereign Store in Münster. Beide sind Teil derselben Markenfamilie und werden von der Sovereign GmbH betrieben. Partner-, Lizenz- und Servicemodelle finanzieren das Projekt. „Wir schaffen eine KI-Plattform, die juristisches Wissen lebendig hält“, so Jakob Koenen. „Das ist Unternehmensnachfolge im besten Sinne. Das Wissen einer Generation wird nicht vererbt, sondern transformiert.“

Junger Gründer mit Tech-DNA

Dass Jakob Koenen früh Verantwortung übernimmt, überrascht kaum. Mit 11 wollte er bereits eine Web-Agentur gründen, erschuf in diesem Zuge den Digitalauftritt eines Handwerksunternehmens. Mit 15 hat er mit Unterstützung seiner Eltern beantragt, frühzeitig als geschäftsfähig erklärt zu werden und gründete nach der Bewilligung sein erstes Unternehmen. Heute ist er Gründer, App-Entwickler und Geschäftsführer des Berliner LegalTech-Unternehmens. Er arbeitet mit einem Netzwerk aus externen Entwicklerinnen und Entwicklern sowie Fachleuten an der technischen Weiterentwicklung von Sovereign Legal AI. Aktuell suchen er und sein Vater als Herausgeber der Inhalte nach Co-Autor*innen und Partner*innen, die weitere juristische Rechtsbereiche wie Energierecht oder IT-Recht innerhalb der KI für sich erschließen.

Code für die künstliche Intelligenz: technische Optimierung für die Ära der KI-Suche

Code für die KI: So optimierst du deine Website technisch mit strukturierten Daten und Protokollen für die besten generativen Suchergebnisse.

Die Regeln der Online-Sichtbarkeit werden neu geschrieben. Es geht nicht mehr nur darum, von einem herkömmlichen Algorithmus indiziert zu werden. Stattdessen müssen Websites so aufbereitet werden, dass sie von künstlicher Intelligenz (KI) und großen Sprachmodellen (LLMs) fehlerfrei interpretiert und verarbeitet werden können.

KI erstellt ihre Antworten, indem sie Inhalte blitzschnell liest, deren Bedeutung versteht und die wichtigsten Fakten daraus extrahiert. Wenn der technische Unterbau einer Website unsauber ist, kann die KI die Informationen entweder nicht zuverlässig finden oder sie falsch interpretieren.

Das bedeutet, die technische Seite der Website – der Code – wird zum Fundament für eine gute Platzierung in den generativen Suchergebnissen. Wer hier Nachholbedarf hat, riskiert, als vertrauenswürdige Quelle für die KI unsichtbar zu werden.

Dieser Artikel beleuchtet die entscheidenden technischen Anpassungen, die notwendig sind, um deine Website optimal für die neue Ära der KI-Suche vorzubereiten.

Kontrolle und Zugang: Die Regeln für Sprachmodelle

Der erste technische Schritt zur Optimierung für KI-Ergebnisse ist die Steuerung des Zugriffs durch die großen Sprachmodelle (LLMs). Traditionell wird der Zugang durch die robots.txt Datei geregelt, die festlegt, welche Bereiche der Website von herkömmlichen Suchmaschinen-Crawlern besucht werden dürfen.

Mit dem Aufkommen verschiedener, spezialisierter KI-Crawler (die nicht immer identisch mit dem Googlebot oder Bingbot sind) entsteht jedoch die Notwendigkeit, diesen neuen Akteuren eigene Regeln zu geben. Es geht darum, Transparenz darüber zu schaffen, welche Daten zur Generierung von Antworten verwendet werden dürfen und welche nicht.

Neue Protokolle für neue Crawler

Experten diskutieren und entwickeln neue Protokolle, um diese Unterscheidung zu ermöglichen. Ein viel diskutierter Ansatz ist die Einführung von Protokollen, die spezifisch den Umgang mit generativer KI regeln. Dies könnte die Einführung von Protokollen wie einer llms.txt Datei beinhalten. Solche spezifischen Dateien könnten festlegen, ob ein KI-Modell Inhalte zur Schulung oder zur generativen Beantwortung von Nutzeranfragen nutzen darf.

Diese Kontrollmechanismen sind entscheidend. Sie geben den Website-Betreibern die Autorität darüber zurück, wie ihre Inhalte in der KI-Ära verwendet werden. Wer hier klare Regeln setzt, schafft die technische Grundlage für eine kontrollierte und damit vertrauenswürdige Sichtbarkeit in den KI-Ergebnissen.

Strukturierte Daten als universelle KI-Sprache

Nach der Regelung des Zugangs durch Protokolle ist die Strukturierung der Inhalte der wichtigste technische Schritt. Suchmaschinen nutzen strukturierte Daten schon lange, um Rich Snippets in den klassischen Ergebnissen anzuzeigen. Für die KI sind diese Daten jedoch absolut essenziell.

Strukturierte Daten, die auf dem Vokabular von Schema.org basieren, sind im Grunde eine Übersetzungshilfe im Code, die dem Sprachmodell den Kontext des Inhalts direkt mitteilt. Sie sind die "Sprache", die die KI am schnellsten und präzisesten versteht.

Die Bedeutung für die Generierung

Wenn ein Nutzer eine Frage stellt, sucht die KI nicht nur nach Stichwörtern, sondern nach definierten Informationstypen. Mit strukturierten Daten liefert man der KI diese Informationen als fertige, fehlerfreie Bausteine.

  • Fehlerfreie Extraktion: Die KI muss keine Textpassagen interpretieren, um beispielsweise ein Rezept, die Bewertung eines Produkts oder einen FAQ-Abschnitt zu identifizieren. Die korrekte Auszeichnung macht die Daten sofort nutzbar.
  • Vertrauensbildung: Fehlerhafte oder inkonsistente strukturierte Daten führen zu einer falschen Interpretation und können bewirken, dass die KI deine Seite als unzuverlässig einstuft.

Die Implementierung muss fehlerfrei sein und sollte alle relevanten Inhaltstypen der Website abdecken. Nur eine saubere Schema-Implementierung garantiert, dass deine Fakten korrekt in die generativen Antworten der KI einfließen.

Ladezeit und Interaktivität als Vertrauenssignal

Die Geschwindigkeit und die Nutzbarkeit einer Website sind in der Ära der KI-Suche nicht mehr nur ein Komfortfaktor, sondern ein entscheidendes technisches Vertrauenssignal. Wenn deine Seite langsam lädt oder schlecht bedienbar ist, wird das von der KI als Indikator für mangelnde Qualität und niedrige Autorität gewertet.

Die Basis dafür sind die sogenannten Core Web Vitals (CWVs). Diese Messwerte, die sich auf das Nutzererlebnis konzentrieren, sind feste Ranking-Faktoren und haben direkten Einfluss darauf, ob eine KI deine Seite als zitierwürdig einstuft:

  • LCP (Largest Contentful Paint): Misst die Zeit, bis der größte sichtbare Inhalt geladen ist.
  • FID/INP (First Input Delay / Interaction to Next Paint): Misst die Zeit bis zur ersten Interaktion und die allgemeine Reaktionsfähigkeit der Seite.
  • CLS (Cumulative Layout Shift): Misst die visuelle Stabilität.

Mobile Performance ist der Schlüssel

Da ein Großteil der Online-Aktivität über mobile Geräte stattfindet, legt die KI höchsten Wert auf die Optimierung der Mobilversion. Eine schlechte mobile Performance kann das gesamte Ranking negativ beeinflussen.

Die technische Anpassung muss daher darauf abzielen, die CWVs zu perfektionieren. Dies beinhaltet die Optimierung von Bildern, das Bereinigen unnötiger Code-Lasten und das Priorisieren wichtiger Ressourcen. Eine schnell ladende und reaktionsfreudige Website signalisiert nicht nur dem Nutzer, sondern auch der KI, dass die Quelle professionell und damit vertrauenswürdig ist.

Redundanz vermeiden: kanonische Klarheit

Eines der größten technischen Probleme für KI-Modelle ist die Verwirrung durch doppelte Inhalte (Duplikate). Wenn die gleiche Information unter verschiedenen URLs verfügbar ist, weiß die KI nicht, welche die Originalquelle darstellt. Dies zersplittert deine Autorität.

Der technische Schlüssel zur Lösung ist der Canonical Tag (<link rel="canonical" ...>). Dieser Tag im Code muss auf jeder Seite korrekt auf die bevorzugte, indexierbare URL zeigen. Durch die Vermeidung von Duplikaten und die korrekte Nutzung dieses Tags stellst du technisch sicher, dass die KI deine Inhalte als eindeutig und autoritär wahrnimmt und dich als zuverlässigen Faktenlieferanten zitiert.

Schlussworte

Die Zukunft der Online-Sichtbarkeit wird durch künstliche Intelligenz neu definiert. Der Erfolg hängt von einer technisch sauberen Vorbereitung ab.

Die wichtigsten Schritte in der Generative Engine Optimization (GEO) sind:

1. Zugangskontrolle durch Protokolle wie die diskutierte llms.txt Datei.

2. Die Nutzung von strukturierten Daten als unverzichtbare KI-Sprache.

3. Die Perfektionierung der Core Web Vitals als Vertrauenssignal.

4. Die Vermeidung von Duplikaten durch kanonische Klarheit.

Investiere in diese technische Qualität, um Autorität und Sichtbarkeit in der Ära der KI-generierten Antworten zu sichern.