Aktuelle Events
Geschäftsideen Mode: Absatzschoner für Highheels
Aufsteck-Absätze für Kopfsteinpflaster
Vor einigen Jahren suchte Katharina Hermes für ihre schicken Highheels Absatzschoner, um auf Kopfsteinpflaster nicht so leicht umzuknicken und die Absätze auch vor Kratzern zu schützen. Ausgangspunkt für eine eigene Geschäftsidee.
Im Rahmen ihrer Recherche fand sie keine Absatzschoner, die sie überzeugen konnten. Entweder fielen sie schnell wieder ab, oder waren nicht formschön, oder sie waren transparent.
Die diplomierte Fashion-Designerin entschied sich deshalb dafür, eine bessere Lösung auf den Markt zu bringen. Den Markteintritt für ihre Geschäftsidee wagte die Gründerin 2013 mit einem Auftritt auf der Fashion Week in Berlin. Seitdem bekommt sie viele Anfragen von Händlern auch außerhalb Deutschlands, die gerne ihre Heelbopps verkaufen wollen. Sie sind nicht nur praktisch, sondern auch ein modisches Accessoire.
Diese Artikel könnten Sie auch interessieren:
KI und Selbstreflexion: Was macht KI mit dir?
Wie du innovative KI-Technologie und persönliche Entwicklung strategisch geschickt kombinierst, um dein Start-up nachhaltig zu skalieren.
Künstliche Intelligenz (KI) gilt als Wachstumsbooster. Doch wer dabei nur auf Technik setzt, lässt ein entscheidendes Potenzial ungenutzt – die eigene persönliche Entwicklung. Warum es gerade die Verbindung aus KI und Selbstreflexion ist, die Gründer*innen und Start-ups langfristig erfolgreich macht, liest du hier.
Gründen bedeutet, Entscheidungen unter Unsicherheit zu treffen
Wer ein Start-up aufbaut, bewegt sich im Spannungsfeld von Vision und Verantwortung. Geschäftsmodell, Finanzierung, Teamführung, Produktentwicklung – all das passiert meist parallel und unter enormem Zeitdruck. Technologie wird dabei oft als Hebel gesehen, um schneller und effizienter zu arbeiten. Und das stimmt: Tools, die auf KI basieren, können Prozesse automatisieren, Muster erkennen, Kund*innenbeziehungen vertiefen. Doch Technik allein garantiert keinen Erfolg. Entscheidend ist, wer sie wie einsetzt. Und hier kommt ein oft unterschätzter Faktor ins Spiel: der/die Gründer*in selbst mit den Mustern seiner/ihrer Persönlichkeit.
Jede einzelne Erfahrung, die die Marke rund um eine(n) Gründer*in prägt, kann niemals von einer KI erzeugt werden. Diese kann im zweiten Schritt sachlich analysieren, wie Erlebnisse für zukünftige Prozesse genutzt werden, die dazugehörigen Werte oder Ängste aber stecken in der Person selbst als Fundament.
Markenkern, Werte und Identität – das unsichtbare Fundament des Erfolgs
Jede Marke beginnt mit einer Geschichte, und diese umfasst den Menschen als Dreh- und Angelpunkt. Die Erfahrungen, Werte und Überzeugungen der Gründer*in formen den Kern eines Start-ups weit vor dem ersten Pitchdeck. Während KI dabei helfen kann, diese Identität greifbar zu machen, zu analysieren oder in die Kommunikation zu übersetzen, erzeugen kann sie diese nicht.
Gerade in der frühen Phase entscheidet nicht nur das Produkt über den Erfolg, sondern die Haltung dahinter: Wofür steht das Unternehmen? Welche Werte prägen die Entscheidungen? Welches Bedürfnis treibt den/die Gründer*in auch jenseits der KPIs an? Eine klare Positionierung entsteht nicht im Workshop, sondern im inneren Prozess. Es ist die Fähigkeit zur Selbstreflexion, die hier als Kompass dient:
- Was ist mir wirklich wichtig?
- Was darf sich nie ändern, selbst wenn wir skalieren?
- Was wäre ein Deal, den ich nie eingehen würde – egal wie lukrativ er erscheint?
Wer diesen Markenkern kennt, trifft strategische Entscheidungen konsistenter, kommuniziert authentischer und baut Vertrauen bei Investor*innen, Mitarbeitenden und Kund*innen auf. Und erst dann lohnt sich der Einsatz von KI wirklich, um diese klare Positionierung zum Beispiel zu verstärken, nicht aber zu ersetzen.
KI – mehr als nur Effizienzmaschine
KI hat längst ihren Platz in der Start-up-Welt gefunden. Vom Recruiting über Sales bis hin zum Customer Support. KI-gestützte Tools erleichtern die Arbeit und verschaffen jungen Unternehmen echte Wettbewerbsvorteile:
- Automatisierung: Mithilfe von KI lassen sich zeitintensive Prozesse wie Terminplanung, Rechnungsstellung oder E-Mail-Korrespondenz automatisieren. Das schafft Raum für strategische Aufgaben.
- Personalisierung: Wer seine Kund*innen wirklich verstehen will, profitiert von datenbasierten Insights. KI hilft dabei, Verhalten zu analysieren, Bedürfnisse vorherzusagen und Inhalte gezielt auszuspielen.
- Recruiting: Im „War for Talents“ zählt Geschwindigkeit, ergänzend aber unbedingt auch Qualität. KI-Tools unterstützen dabei, Bewerber*innen effizient zu sichten und unbewusste Bias zu reduzieren.
Richtig eingesetzt, ermöglicht KI mehr Fokus, schnellere Iterationen und datengestützte Entscheidungen. Aber genau hier beginnt auch das Problem: Technologie kann nur das verstärken, was ohnehin vorhanden ist oder eben (noch) nicht.
Selbstreflexion – der unterschätzte Erfolgsfaktor
Gründer*innen stehen täglich vor Entscheidungen mit Tragweite. Doch unter Druck, Unsicherheit und Wachstumsschmerz wird oft reaktiv gehandelt statt reflektiert geführt. Genau hier setzt Selbstreflexion an. Wer sich seiner Stärken, Muster und blinden Flecken bewusst ist, trifft bessere Entscheidungen – für sich, das Team und das Unternehmen. Selbstreflexion ist kein esoterisches Extra, sondern ein pragmatisches Führungsinstrument. Einige wirkungsvolle Methoden:
- Regelmäßige Selbstchecks: Was hat in dieser Woche funktioniert und warum? Was nicht? Was sagt das über meine Prioritäten aus?
- Feedback aktiv einholen: nicht nur von Mitgründer*innen oder Coaches, sondern auch vom Team. Nicht defensiv reagieren, sondern neugierig auf das Feedback sein.
- Mentoring und Coaching: Externe Sparringspartner*innen helfen, Perspektiven zu erweitern und Denkfehler zu entlarven.
- Reflexionstools nutzen: vom (digitalen) Journal bis zur strukturierten Entscheidungsanalyse gibt es einfache Hilfsmittel, die Klarheit schaffen.
Wer bereit ist, sich selbst zu hinterfragen, entwickelt nicht nur sich, sondern auch sein Start-up weiter. Denn Führung beginnt nicht mit der Verantwortung für andere, sondern mit der Verantwortung für sich selbst.
Die Synergie – wenn KI auf Selbstreflexion trifft
Die wirklich erfolgreichen Gründer*innen sind nicht entweder Tech-Expert*innen oder People-Leader*innen. Sie verbinden beides. Sie nutzen KI, um operative Exzellenz zu schaffen und reflektieren gleichzeitig, wie sie führen, entscheiden, kommunizieren. Diese Kombination erzeugt eine Form von unternehmerischer Klarheit, die sowohl innovativ als auch resilient ist.
KI kann Erkenntnisse liefern. Aber nur, wer sie richtig einordnet, profitiert davon. Selbstreflexion schafft den Raum, um mit Technologie sinnvoll umzugehen. Umgekehrt kann KI helfen, Reflexionsprozesse zu unterstützen, etwa durch gezielte Feedback-Auswertung oder datengestützte Teamanalysen.
Ein Beispiel aus der Praxis: Ein Start-up im HR-Tech-Bereich nutzt KI, um Kund*innenfeedback in Echtzeit zu analysieren. Gleichzeitig reflektieren die Gründer*innen wöchentlich im Führungsteam, welche Learnings daraus für Produkt und Kommunikation folgen und welche persönlichen Muster sie bei sich selbst erkennen. Diese Kombination aus technologischem Blick nach außen und menschlichem Blick nach innen führt dazu, dass das Unternehmen nicht nur schneller wächst, sondern dabei auch klar bleibt.
Skalierung braucht Klarheit in der Technik und im Kopf
Start-ups, die skalieren wollen, müssen effizient sein, gleichzeitig aber auch fokussiert, werteorientiert und anpassungsfähig. KI ist dabei ein mächtiges Werkzeug. Doch ohne die Fähigkeit zur Selbstreflexion bleibt sie oft bloß ein weiteres Tool im Tech-Stack.
Deshalb gilt: Die Kombination aus klugem KI-Einsatz und bewusster persönlicher Entwicklung ist kein Luxus, sondern unternehmerische Notwendigkeit. Wer beides ernst nimmt, schafft ein Unternehmen, das nicht nur wächst, sondern dabei auch „gesund“ bleibt.
Die Autorin Lea Baptista ist Geschäftsführerin der GG Consulting Agency und unterstützt Unternehmer*innen, Führungskräfte und Teams dabei, ihren Führungsstil klar zu definieren, Selbstreflexion als Werkzeug zu nutzen und authentisch erfolgreich zu sein.
Code für die künstliche Intelligenz: technische Optimierung für die Ära der KI-Suche
Code für die KI: So optimierst du deine Website technisch mit strukturierten Daten und Protokollen für die besten generativen Suchergebnisse.
Die Regeln der Online-Sichtbarkeit werden neu geschrieben. Es geht nicht mehr nur darum, von einem herkömmlichen Algorithmus indiziert zu werden. Stattdessen müssen Websites so aufbereitet werden, dass sie von künstlicher Intelligenz (KI) und großen Sprachmodellen (LLMs) fehlerfrei interpretiert und verarbeitet werden können.
KI erstellt ihre Antworten, indem sie Inhalte blitzschnell liest, deren Bedeutung versteht und die wichtigsten Fakten daraus extrahiert. Wenn der technische Unterbau einer Website unsauber ist, kann die KI die Informationen entweder nicht zuverlässig finden oder sie falsch interpretieren.
Das bedeutet, die technische Seite der Website – der Code – wird zum Fundament für eine gute Platzierung in den generativen Suchergebnissen. Wer hier Nachholbedarf hat, riskiert, als vertrauenswürdige Quelle für die KI unsichtbar zu werden.
Dieser Artikel beleuchtet die entscheidenden technischen Anpassungen, die notwendig sind, um deine Website optimal für die neue Ära der KI-Suche vorzubereiten.
Kontrolle und Zugang: Die Regeln für Sprachmodelle
Der erste technische Schritt zur Optimierung für KI-Ergebnisse ist die Steuerung des Zugriffs durch die großen Sprachmodelle (LLMs). Traditionell wird der Zugang durch die robots.txt Datei geregelt, die festlegt, welche Bereiche der Website von herkömmlichen Suchmaschinen-Crawlern besucht werden dürfen.
Mit dem Aufkommen verschiedener, spezialisierter KI-Crawler (die nicht immer identisch mit dem Googlebot oder Bingbot sind) entsteht jedoch die Notwendigkeit, diesen neuen Akteuren eigene Regeln zu geben. Es geht darum, Transparenz darüber zu schaffen, welche Daten zur Generierung von Antworten verwendet werden dürfen und welche nicht.
Neue Protokolle für neue Crawler
Experten diskutieren und entwickeln neue Protokolle, um diese Unterscheidung zu ermöglichen. Ein viel diskutierter Ansatz ist die Einführung von Protokollen, die spezifisch den Umgang mit generativer KI regeln. Dies könnte die Einführung von Protokollen wie einer llms.txt Datei beinhalten. Solche spezifischen Dateien könnten festlegen, ob ein KI-Modell Inhalte zur Schulung oder zur generativen Beantwortung von Nutzeranfragen nutzen darf.
Diese Kontrollmechanismen sind entscheidend. Sie geben den Website-Betreibern die Autorität darüber zurück, wie ihre Inhalte in der KI-Ära verwendet werden. Wer hier klare Regeln setzt, schafft die technische Grundlage für eine kontrollierte und damit vertrauenswürdige Sichtbarkeit in den KI-Ergebnissen.
Strukturierte Daten als universelle KI-Sprache
Nach der Regelung des Zugangs durch Protokolle ist die Strukturierung der Inhalte der wichtigste technische Schritt. Suchmaschinen nutzen strukturierte Daten schon lange, um Rich Snippets in den klassischen Ergebnissen anzuzeigen. Für die KI sind diese Daten jedoch absolut essenziell.
Strukturierte Daten, die auf dem Vokabular von Schema.org basieren, sind im Grunde eine Übersetzungshilfe im Code, die dem Sprachmodell den Kontext des Inhalts direkt mitteilt. Sie sind die "Sprache", die die KI am schnellsten und präzisesten versteht.
Die Bedeutung für die Generierung
Wenn ein Nutzer eine Frage stellt, sucht die KI nicht nur nach Stichwörtern, sondern nach definierten Informationstypen. Mit strukturierten Daten liefert man der KI diese Informationen als fertige, fehlerfreie Bausteine.
- Fehlerfreie Extraktion: Die KI muss keine Textpassagen interpretieren, um beispielsweise ein Rezept, die Bewertung eines Produkts oder einen FAQ-Abschnitt zu identifizieren. Die korrekte Auszeichnung macht die Daten sofort nutzbar.
- Vertrauensbildung: Fehlerhafte oder inkonsistente strukturierte Daten führen zu einer falschen Interpretation und können bewirken, dass die KI deine Seite als unzuverlässig einstuft.
Die Implementierung muss fehlerfrei sein und sollte alle relevanten Inhaltstypen der Website abdecken. Nur eine saubere Schema-Implementierung garantiert, dass deine Fakten korrekt in die generativen Antworten der KI einfließen.
Ladezeit und Interaktivität als Vertrauenssignal
Die Geschwindigkeit und die Nutzbarkeit einer Website sind in der Ära der KI-Suche nicht mehr nur ein Komfortfaktor, sondern ein entscheidendes technisches Vertrauenssignal. Wenn deine Seite langsam lädt oder schlecht bedienbar ist, wird das von der KI als Indikator für mangelnde Qualität und niedrige Autorität gewertet.
Die Basis dafür sind die sogenannten Core Web Vitals (CWVs). Diese Messwerte, die sich auf das Nutzererlebnis konzentrieren, sind feste Ranking-Faktoren und haben direkten Einfluss darauf, ob eine KI deine Seite als zitierwürdig einstuft:
- LCP (Largest Contentful Paint): Misst die Zeit, bis der größte sichtbare Inhalt geladen ist.
- FID/INP (First Input Delay / Interaction to Next Paint): Misst die Zeit bis zur ersten Interaktion und die allgemeine Reaktionsfähigkeit der Seite.
- CLS (Cumulative Layout Shift): Misst die visuelle Stabilität.
Mobile Performance ist der Schlüssel
Da ein Großteil der Online-Aktivität über mobile Geräte stattfindet, legt die KI höchsten Wert auf die Optimierung der Mobilversion. Eine schlechte mobile Performance kann das gesamte Ranking negativ beeinflussen.
Die technische Anpassung muss daher darauf abzielen, die CWVs zu perfektionieren. Dies beinhaltet die Optimierung von Bildern, das Bereinigen unnötiger Code-Lasten und das Priorisieren wichtiger Ressourcen. Eine schnell ladende und reaktionsfreudige Website signalisiert nicht nur dem Nutzer, sondern auch der KI, dass die Quelle professionell und damit vertrauenswürdig ist.
Redundanz vermeiden: kanonische Klarheit
Eines der größten technischen Probleme für KI-Modelle ist die Verwirrung durch doppelte Inhalte (Duplikate). Wenn die gleiche Information unter verschiedenen URLs verfügbar ist, weiß die KI nicht, welche die Originalquelle darstellt. Dies zersplittert deine Autorität.
Der technische Schlüssel zur Lösung ist der Canonical Tag (<link rel="canonical" ...>). Dieser Tag im Code muss auf jeder Seite korrekt auf die bevorzugte, indexierbare URL zeigen. Durch die Vermeidung von Duplikaten und die korrekte Nutzung dieses Tags stellst du technisch sicher, dass die KI deine Inhalte als eindeutig und autoritär wahrnimmt und dich als zuverlässigen Faktenlieferanten zitiert.
Schlussworte
Die Zukunft der Online-Sichtbarkeit wird durch künstliche Intelligenz neu definiert. Der Erfolg hängt von einer technisch sauberen Vorbereitung ab.
Die wichtigsten Schritte in der Generative Engine Optimization (GEO) sind:
1. Zugangskontrolle durch Protokolle wie die diskutierte llms.txt Datei.
2. Die Nutzung von strukturierten Daten als unverzichtbare KI-Sprache.
3. Die Perfektionierung der Core Web Vitals als Vertrauenssignal.
4. Die Vermeidung von Duplikaten durch kanonische Klarheit.
Investiere in diese technische Qualität, um Autorität und Sichtbarkeit in der Ära der KI-generierten Antworten zu sichern.
eleQtron: It's MAGIC
In nur fünf Jahren vom Laborgerät zum 24/7-betriebenen Quantencomputer: Wie das 2020 von Jan Leisse, Christof Wunderlich und Michael Johanning gegründete eleQtron mit seiner MAGIC-Technologie neue Wege ebnet.
Was ihr da macht, ist der Wahnsinn – und genau deswegen bin ich dabei.“ Mit diesen Worten beschreibt Jan Leisse, einer der Gründer von eleQtron, die Anfänge des Unternehmens. Das erste Treffen mit dem Physiker Christof Wunderlich war geprägt von einer Mischung aus Skepsis und Begeisterung. Der Wissenschaftler hatte an der Universität Siegen einen Quantencomputer gebaut – mitten in der deutschen Provinz und ohne das Millionenbudget, das Konzernen wie Google oder IBM zur Verfügung steht. Doch genau das reizte Leisse: „Hier wurde nicht einfach nachgemacht, was andere tun. Hier wurde Neuland betreten.“
Es war ein ungewöhnlicher Ort für eine bahnbrechende
Innovation in der Quantentechnologie. Siegen, eine Mittelstadt im Süden Nordrhein-Westfalens, ist nicht gerade als Hotspot für Hochtechnologie bekannt. Doch manchmal entstehen die Top-Innovationen fernab der etablierten Zentren; die Universität Siegen hatte über Jahre hinweg eine bemerkenswerte Expertise in der Quantenphysik aufgebaut, ohne große mediale Aufmerksamkeit.
Von der Universität ...
Im Jahr 2020, als das globale Interesse an Quantentechnologien exponentiell zunahm, erwuchs aus dieser mutigen Pionierarbeit das Start-up eleQtron – als Spin-off der Universität Siegen. Die Gründer – Jan Leisse, Christof Wunderlich und Michael Johanning – verbindet eine Vision: Quantencomputer für industrielle Anwendungen nutzbar zu machen.
Die Anfangsjahre waren geprägt von Experimentierfreude, Improvisation und dem festen Glauben an die eigene technologische Innovationskraft. Während Tech-Giganten wie IBM, Google und Amazon Milliarden Euro in ihre Quantenprogramme investierten und viele Start-ups auf bekannte Technologien setzten, wagte eleQtron den Schritt in eine völlig neue Richtung.
In den Laboren der Gründer entstand die sogenannte MAGIC-Technologie (Magnetic Gradient Induced Coupling), eine Methode, Qubits (das Quantencomputing-Äquivalent zum klassischen Bit in der Digitaltechnik) nicht wie bislang üblich mit Lasern, sondern mit Mikrowellen zu steuern.
... zum technologischen Durchbruch
Die MAGIC-Technologie basiert auf einem raffinierten Zusammenspiel physikalischer Prinzipien: Magnetische Gradienten (räumliche Veränderungen der Magnetfeldstärke) ermöglichen es als lokale Felder, einzelne Ionen in einer sogenannten Falle selektiv anzusprechen. Die technischen Vorteile sind beeindruckend: Die Fidelity (Genauigkeit) bei Operationen an einzelnen Qubits liegt bei etwa 99,95 Prozent, die Gate-Zeiten (Gate-Zeit steht für die Dauer, die ein Quanten-Gate benötigt, um eine Operation auf einem Qubit auszuführen) betragen nur wenige Mikrosekunden. Gleichzeitig ermöglicht die Technologie eine bessere Skalierbarkeit, da sich Mikrowellenfelder einfacher erzeugen und verteilen lassen als komplexe Lasersysteme. „Der Vorteil liegt nicht nur in der höheren Präzision, sondern auch in der deutlich geringeren Komplexität der Systeme“, erklärt Johanning. „Wir brauchen keine aufwändigen Optiken oder ultrastabile Umgebungen. Unsere Technologie funktioniert auch unter realen Bedingungen.“
Früh erkannten die drei Forscher das große Potenzial ihrer Technologie für praktische Anwendungen. „Durch das gezielte Ersetzen sensibler High-End-Komponenten – insbesondere Lasertechnologie – durch bewährte Mikrowellentechnik und Elektronik, vermeiden wir unnötige Komplexität, minimieren Aufwand und senken die Kosten“, fasst es Leisse zusammen.
Wachstumsschub und strategische Entwicklung
2022 gelang eleQtron ein entscheidender Schritt: Durch Earlybird und den Siegerlandfonds als Investoren sowie das vom BMBF geförderte Projekt „MAGIC App“ sicherte sich das Start-up eine Finanzierung in Höhe von 16 Millionen Euro. Diese Finanzierungsrunde war ein Wendepunkt für das Unternehmen und signalisierte das Vertrauen der Investor*innen in die MAGIC-Technologie.
„Mit diesem Kapitalschub konnten wir von einer reinen Forschungsorganisation zu einem echten Technologieunternehmen werden“, erklärt Leisse. Die Mittel flossen in den Ausbau der Produktionskapazitäten, die Vergrößerung des Teams und die Weiterentwicklung der Technologie-Roadmap. Auch die Mitwirkung von Infineon im Rahmen von MAGIC App war strategisch von Bedeutung: „Die Zusammenarbeit mit Infineon hat uns die Augen für die Realitäten des Industriemarkts geöffnet“, erklärt Leisse.
Eva Helmeth: Mutig neue Wege gehen
Eva Helmeth (44) ist die Gründerin und CEO von MON COURAGE – einer Naturkosmetikmarke, die Hautpflege für unterwegs neu denkt. Die Anthropologin und Heilpflanzenexpertin lebt als moderne Nomadin und reist um die Welt, um die besten pflanzlichen Wirkstoffe zu finden. Im Juni 2025 pitchte Eva in der TV-Show „Die Höhle der Löwen“ (DHDL). Mehr dazu im Interview.
Eva, was hat dich dazu bewogen, in der VOX-Gründer*innen-Show „Die Höhle der Löwen“ mitzumachen?
In meinem Freundeskreis hörte ich seit 2020: „Du musst deine Hautpflege-Sticks unbedingt bei DHDL vorstellen.“ Ich wollte mir damit aber Zeit lassen. So ein Format kann ein gewaltiger Katalysator sein. Es kann dich nach vorne katapultieren – oder dich überrollen, wenn du noch nicht bereit bist. Ich wusste, wenn ich diesen Schritt gehe, dann zum richtigen Zeitpunkt.
Wie hast du diesen für dich richtigen Zeitpunkt definiert?
Ich habe drei Jahre lang bewusst gewartet. Für mich war entscheidend, dass MON COURAGE kein reines Ideenprojekt mehr war, sondern auf eigenen Beinen steht. Ich wollte Erfahrungswerte mitbringen – in der Produktion, im Vertrieb, im Feedback der Kundinnen und Kunden. Der richtige Zeitpunkt hieß für mich konkret, getestete Produkte, etablierte Marketingkanäle und eine solide Lieferkette vorweisen zu können. Als all das stand, war klar: Jetzt oder nie – denn jetzt sind wir stabil genug, um eine Welle wie DHDL reiten zu können.
Wie war zu diesem Zeitpunkt deine Haltung zu DHDL?
Ich habe die Sendung vorher ehrlich gesagt nie geschaut. Es kursierten Geschichten von Durchbrüchen bis hin zu absoluten Pleiten. Ich habe es als Chance gesehen, meine Geschichte zu erzählen und damit einen Investor oder eine Investorin zu überzeugen der bzw. die wirklich zu MON COURAGE passt. Mir war klar, dass es im Fernsehen in erster Linie um Unterhaltung geht. Als Nomadin, die ihr Kosmetikunternehmen aufbaut während sie weltweit nach Rohstoffen sucht, habe ich genügend Geschichten auf Lager. Das hat mir geholfen, ganz ohne Erwartungsdruck in die Aufzeichnung zu gehen.
Was waren für dich die wichtigsten Learnings aus dem Bewerbungsprozess?
Ich war gerade auf den Philippinen auf der Suche nach passenden Kokosölproduzenten, als ich das erste Gespräch mit der Produktionsfirma führte. Nachdem ich bisher nur Ölraffinerien gefunden hatte, die teils schimmliges Kokosfleisch verarbeiteten, war ich kurz davor, die Suche abzubrechen. Doch plötzlich tat sich eine neue Fährte auf. Ich erzählte von dieser Odyssee – und sie waren begeistert.
Ich habe dabei vor allem eines gelernt: Menschen lieben echte Geschichten. Und die besten Geschichten entstehen nicht am Schreibtisch, sondern da draußen – bei echten Begegnungen, im echten Leben
Wie hast du dann die TV-Show bzw. Aufzeichnung erlebt?
Als die Zusage kam, war ich in einem kleinen Dorf in Sri Lanka. „Eva, du bist genommen. Hast du nächsten Mittwoch Zeit?“ Drei Tage später landete ich in Deutschland – und hatte so gut wie keine Zeit zur Vorbereitung. Aber vielleicht war genau das mein Glück: Mein Pitch war dadurch pur, lebendig, ungefiltert. Ich hatte richtig Lust auf den Dreh. Die Interviews backstage waren ein schöner Auftakt, die Aufregung hinter dem Tor unvergesslich. Als ich dann vor den Löwen stand, war ich fokussiert und klar. Sie waren wirklich sehr höflich und interessiert, kein Gebrüll, kein Zerfleischen – vielleicht doch eher Stubentiger?
Einige „Löwen“ haben deinen Lebensstil als Nomadin infrage gestellt. Wie lässt sich denn ein wachsendes Unternehmen führen, wenn du selbst in der Welt unterwegs bist?
Ich verstehe den Reflex – klassische Unternehmensführung sieht anders aus. Aber MON COURAGE ist kein klassisches Unternehmen. Unser ganzes Konzept basiert auf echter Verbindung: zu den Menschen, die unsere Rohstoffe anbauen, und zu den Kundinnen und Kunden, die unsere Produkte nutzen. Gerade weil ich unterwegs bin, lerne ich die Menschen kennen, die hinter unseren Zutaten stehen. Ich sehe, unter welchen Bedingungen produziert wird, kann direkt und fair einkaufen, neue Ideen entwickeln und Innovationen frühzeitig aufspüren.
Remote zu arbeiten heißt nicht, abwesend zu sein. Im Gegenteil: Ich bin im täglichen Austausch mit meinem Team, wir arbeiten digital und gleichzeitig sehr eng zusammen. Mein Lebensstil erfordert klare Kommunikation, Vertrauen und Teamkolleginnen, die diese Freiheit schätzen. Aber genau das ist ja MON COURAGE: mutig neue Wege gehen.
EU AI Act: Status quo
Recht für Gründer*innen: der EU AI Act. Wo stehen wir in Sachen Umsetzung? Was Gründer*innen und Start-ups jetzt wissen müssen.
Künstliche Intelligenz (KI) ist längst kein Zukunftsthema mehr, sondern prägt schon heute Geschäftsmodelle, Investitionsentscheidungen und die Arbeitswelt. Mit der europäischen KI-Verordnung (EU AI Act, im Folgenden AI Act) wurde im Frühjahr 2024 der weltweit erste umfassende Rechtsrahmen für den Einsatz von KI verabschiedet. Inzwischen sind die ersten Regelungen in Kraft getreten. Für Gründer*innen und Start-ups bedeutet das nicht nur zusätzliche Pflichten, sondern auch Chancen, sofern sie sich rechtzeitig vorbereiten.
Überblick: Der AI Act
Die Verordnung folgt einem risikobasierten Ansatz: Je höher das Risiko für Grundrechte oder Sicherheit, desto strenger die Anforderungen. Auf der untersten Stufe stehen KI-Systeme, die keinerlei Vorgaben erfüllen müssen, solange sie nicht in verbotene Anwendungsfälle fallen. An der Spitze der Regulierungspyramide befinden sich die sogenannten HochrisikoSysteme, also etwa Anwendungen in der medizinischen Diagnostik, in kritischer Infrastruktur oder bei biometrischen Verfahren. Viele Tools aus dem HR-Bereich fallen darunter.
Daneben bestehen besondere Pflichten für sogenannte Generative KI beziehungsweise General Purpose AI, eingeführt, also große Modelle, die viele Anwendungen treiben und „systemische Risiken“ entfalten können.
Wichtig ist zu wissen, dass die Vorgaben schrittweise gelten. Bereits seit dem 2. Februar 2025 sind bestimmte Praktiken ausdrücklich verboten – zum Beispiel das Social Scoring von Bürger*innen, die flächendeckende Emotionserkennung in Schulen oder am Arbeitsplatz sowie das unkontrollierte Sammeln biometrischer Daten. Wer damit noch experimentiert, bewegt sich schon jetzt im rechtswidrigen Raum.
Seit dem 2. August 2025 gelten außerdem die ersten Pflichten für Anbieter*innen von generativen Modellen. Sie müssen unter anderem Transparenzberichte veröffentlichen und Angaben zu den verwendeten Trainingsdaten machen. Für Modelle, die bereits vor Inkrafttreten am Markt waren, gibt es eine Übergangsfrist bis 2027. Für viele Unternehmen, die solche Modelle nutzen oder in Produkte einbetten, bedeutet das, genau hinzuschauen, welche Informationen von den Modellanbieter*innen zur Verfügung gestellt werden. Sonst können eigene Transparenzpflichten womöglich nicht erfüllt werden.
Noch weiter in der Zukunft liegen die Vorschriften für Hochrisiko-Systeme. Diese greifen ab 2. August 2026 und verlangen ein umfassendes Risikomanagement, eine strenge Qualität der Trainingsdaten, eine lückenlose Protokollierung und eine Konformitätsbewertung, bevor ein Produkt überhaupt in Verkehr gebracht werden darf. Für Hochrisiko-KI, die in ohnehin streng regulierten Produkten steckt, zum Beispiel in Medizinprodukten, gilt eine verlängerte Frist bis 2027.
Konformitätsbewertung heißt vor allem Risikobewertung, welche die Anbieter*innen oder Betreiber*innen selbst durchführen müssen. Eine solche „regulierte Selbstregulierung“ ist ein klassisches Merkmal einer solchen klassischen Produktregulierung und Marktüberwachung.
Was fehlt? Guidance und Governance
Noch herrscht allerdings an vielen Stellen Unsicherheit. Zwar hat die EU-Kommission schon erste Leitlinien veröffentlicht, etwa zur Definition von KI-Systemen oder zu den verbotenen Praktiken. Auch für Anbieter*innen generativer KI gibt es inzwischen ein detailliertes Dokumentationsmuster. Noch fehlen allerdings die angekündigten Handreichungen für die Einstufung und Risikobewertung von Hochrisiko-Systemen, die bis Februar 2026 folgen und praktische Beispiele enthalten sollen. Bis dahin bleibt nur, sich für die Bewertung an bestehenden internationalen Standards zu orientieren, zum Beispiel an den Normungsprojekten der Europäischen Komitees für Normung und für elektrotechnische Normung.
Auf Unionsebene entstehen parallel die neuen Governance-Strukturen. Das AI Office innerhalb der Kommission ist bereits aktiv und koordiniert die Umsetzung. Das AI Board, ein Gremium der Mitgliedstaaten, tagt regelmäßig und stimmt Vorgehensweisen ab. Ein wissenschaftliches Panel unabhängiger Expert*innen wurde im Frühjahr eingerichtet, und das Advisory Forum, das die Perspektive von Unternehmen und Zivilgesellschaft einbringen soll, befindet sich gerade in der Bewerbungsphase. Auch die geplante EU-Datenbank für Hochrisiko-Systeme existiert bisher nur auf dem Papier. Ab 2026 müssen Anbieter*innen ihre Systeme dort registrieren; die Plattform selbst wird jedoch gerade erst aufgebaut.
Und wo steht Deutschland?
Auch hierzulande hakt es noch etwas. Eigentlich hätten die Mitgliedstaaten bis 2. August 2025 ihre Marktüberwachungsbehörden benennen müssen. Ein Entwurf für das deutsche Umsetzungsgesetz sieht die Bundesnetzagentur als zentrale Aufsicht vor, doch die formale Benennung ist noch nicht erfolgt. Klar ist, dass die Bundesnetzagentur die Rolle der Notifizierungsbehörde übernimmt, also für die Anerkennung von Konformitätsbewertungsstellen zuständig ist. Zudem entsteht dort ein Kompetenzzentrum für KI, das die Arbeit von Bund und Ländern koordinieren soll.
Reallabore
Ein Bereich, der für KI-Entwickler*innen besonders interessant ist, sind KI-Reallabore, also sichere Testumgebungen, in denen neue Anwendungen unter Aufsicht erprobt und darauf geprüft werden können, ob sie den rechtlichen Rahmen einhalten. Bis zum Sommer 2026 müssen die Mitgliedstaaten mindestens ein solches Reallabor einrichten. Deutschland hat im Mai 2025 ein erstes Pilotprojekt in Hessen gestartet, gemeinsam mit der Bundesnetzagentur und der Bundesdatenschutzbeauftragten. Hier werden reale Unternehmensfälle durchgespielt, um Abläufe und Bedarfe besser zu verstehen. Solche Projekte können eine wertvolle Möglichkeit sein, mit den Aufsichtsbehörden auf Augenhöhe ins Gespräch zu kommen.
Reaktionen
Der AI Act wird zwar kritisch diskutiert, im Grundsatz aber breit akzeptiert. Gerichtliche Klagen direkt gegen die Verordnung gibt es bislang nicht. In der juristischen Literatur überwiegt die Zustimmung zur Zielrichtung. Kritisiert werden vor allem die Komplexität und die noch offenen Fragen bei der praktischen Umsetzung. Streitpunkte finden sich eher außerhalb der Verordnung bei der Frage, ob Trainingsdaten urheberrechtlich geschützt sind oder wie personenbezogene Daten für KI genutzt werden dürfen.
Die Industrie zeigt ein gemischtes Bild. Viele große Anbieter*innen – von Google über OpenAI bis Mistral – haben einen freiwilligen Verhaltenskodex unterzeichnet. Andere, wie etwa Meta, haben sich bewusst dagegen entschieden. Man muss sich also darauf einstellen, dass je nach Anbieter*in sehr unterschiedliche Informationen und Compliance-Nachweise verfügbar sind.
Andererseits wirkt der AI Act bereits am Markt. In öffentlichen Ausschreibungen tauchen Modellklauseln auf, die auf die KI-Verordnung Bezug nehmen. Investor*innen fragen verstärkt nach Compliance-Prozessen, und Unternehmen beginnen, interne Strukturen für Risikomanagement und Dokumentation aufzubauen.
Im Vergleich zu Europa gibt es in den USA bislang nur freiwillige Standards. Die dort bei der Entwicklung und Anwendung von KI (angeblich) vorherrschende größere Freiheit wird zwar viel gerühmt. Einzelne Bundesstaaten wie Colorado arbeiten allerdings an eigenen regulierenden Gesetzen, die ab 2026 greifen sollen. Vielleicht ist es also ein Vorteil, dass europäische Start-ups früh Erfahrungen in einem regulierten Markt sammeln können.
Fazit
Der AI Act entfaltet bereits jetzt Wirkung, auch wenn viele Details erst in den kommenden Monaten geklärt werden. Daher gilt es, nicht abzuwarten, sondern jetzt eine eigene Roadmap zu entwickeln. Wer früh Prozesse für Risikomanagement, Transparenz und Governance etabliert, wird nicht nur rechtlich auf der sicheren Seite sein, sondern auch Vertrauen bei Kund*innen und Investor*innen gewinnen.
Die EU hat ein klares Signal gesetzt: KI soll innovativ sein, aber auch sicher und vertrauenswürdig. Für Start-ups ist das eine Herausforderung – aber auch eine Chance, sich von Anfang an professionell aufzustellen und den Markt aktiv mitzugestalten.
Der Autor Dr. Daniel Michel, LL.M. ist als Rechtsanwalt im Bereich IT/IP/Technologie tätig und betreibt seit 2018 mit DATA LAW COUNSEL seine eigene Rechtsberatung im Raum München
Humanoide Roboter: Vision und Realität
Der Weltroboterverband IFR veröffentlicht sein Positionspapier zu Trends, Chancen und möglichen Grenzen rund um das Thema humanoide Roboter.
Menschenähnliche Roboter gelten als die nächste große Innovation in der Robotik: Der weltweit größte Markt für Industrieroboter, China, hat bereits konkrete Pläne für die Massenproduktion von Humanoiden festgelegt. Gleichzeitig kündigten Technologieunternehmen in den USA und Europa große Investitionsvorhaben in diesem Bereich an. Die Vision ist, Allzweckroboter zu entwickeln, die auf menschlicher Mechanik basieren. Einblicke in Trends, Chancen und mögliche Grenzen humanoider Roboter bietet das neue Positionspapier der International Federation of Robotics.
„Futuristisch anmutende humanoide Roboter, die in unserem Zuhause, in Unternehmen und in der Öffentlichkeit arbeiten, faszinieren die Menschen“, sagt Takayuki Ito, Präsident der International Federation of Robotics. „Da die Welt in der wir leben auf den menschlichen Körper zugeschnitten ist, liegt die Idee eines schnellen, universellen Helfers in der Produktion und bei Dienstleistungen auf der Hand. Ob und wann es aber zu einer massenhaften Nutzung von Humanoiden kommen wird, bleibt ungewiss. Nicht zu erwarten ist jedenfalls, dass Humanoide in Zukunft die derzeit auf dem Markt befindlichen Robotertypen ersetzen. Stattdessen werden sie bestehende Technologien ergänzen und erweitern.“
Einsatz von Humanoiden in den Regionen
In den Vereinigten Staaten arbeiten Tech-Unternehmen wie NVIDIA, Amazon und Tesla intensiv an KI- und Robotertechnologien. Neben der Finanzierung durch das Militär wird diese Entwicklung auch durch zahlreiche private Investitionen unterstützt. Das führt zu einer bedeutenden Start-up-Szene, die sich auf humanoide Roboter spezialisiert. Besonders groß ist das Interesse an Humanoiden in Branchen wie der Logistik und in der Fertigung. Dabei werden humanoide Roboter weniger als soziale Begleiter gesehen, sondern eher als Werkzeuge, die dabei helfen, Produktivität und Effizienz zu steigern. So liegt der Schwerpunkt verstärkt auf praktischen Anwendungen und weniger auf der Integration von Robotern in das tägliche soziale Leben.
In China nehmen die Humanoiden eine zentrale Stellung in der nationalen Robotik-Strategie ein. Die Regierung möchte in diesem Technologiebereich Kompetenz und globale Wettbewerbsfähigkeit unter Beweis stellen. Der Einsatzschwerpunkt liegt dabei im Dienstleistungssektor, beispielsweise für die Kundenbetreuung. Die Automatisierung von Produktionslinien in der Fertigung und der Einsatz von Humanoiden, um weniger von menschlichen Arbeitskräften abhängig zu sein, scheint nur auf zweiter Ebene wichtig zu sein. Kernelement der chinesischen Strategie ist der Aufbau einer skalierbaren Lieferkette für Schlüsselkomponenten.
Japan ist ein Pionier in der Entwicklung humanoider Roboter. Als frühes Beispiel wurde Hondas Asimo bereits im Oktober 2000 vorgestellt. Roboter werden in Japan eher als Gefährten, denn als bloße Werkzeuge gesehen. Humanoide Roboter wie Pepper und Palro sind demzufolge in erster Linie als Sozialroboter konzipiert und kommen in Bildungseinrichtungen, Geschäften und Altenpflegeeinrichtungen zum Einsatz. Diese Ausrichtung spiegelt die Nachfrage einer alternden Gesellschaft wider, mit der Japan konfrontiert ist. Ein wichtiger Schwerpunkt der Projekte liegt auf Robotern, die harmonisch mit Menschen zusammenleben können und als Teil der Gesellschaft akzeptiert sind. Führende Unternehmen wie Kawasaki entwickeln humanoide Roboter als eine Forschungsplattform.
In Europa wird auf die ethischen Implikationen von Robotik und KI besonderes viel Wert gelegt. Im Fokus stehen kollaborative Roboter, die im industriellen Umfeld mit Menschen zusammenarbeiten. Kernthemen sind die Verbesserung der Sicherheit und Effizienz und die Nachahmung menschlicher Fähigkeiten. Die Arbeitskraft von Menschen zu kompensieren, steht dagegen nicht im Fokus. Der Schwerpunkt liegt vielmehr auf einem menschenzentrierten Design und den sozialen und gesellschaftlichen Auswirkungen von Robotern. Die europäischen Unternehmen stehen dem Einsatz von Humanoiden generell eher zurückhaltend gegenüber, wenn es um die kurz- bis mittelfristigen Automatisierungsaufgaben im Fertigungs- und Dienstleistungssektor geht.
+++ Ein bahnbrechendes Robotik Start-up aus Deutschland ist NEURA-Robotics: Hier geht’s zu unserer Gründerstory von NEURA Robotics +++
Ausblick
Dank ihrer menschenähnlichen Geschicklichkeit und Anpassungsfähigkeit sind die Humanoiden prädestiniert, komplexe Aufgaben zu automatisieren, mit denen heutige Roboter durch herkömmliche Programmiermethoden Schwierigkeiten haben. Einen massenhaften Einsatz als universelle Haushaltshelfer dürfte es jedoch kurz- bis mittelfristig nicht geben.
Das POSITION PAPER Humanoid Robots - Vision and Reality von IFR gibt's hier zum freien Download
Kurz mal die Welt retten
Wie GreenTech-Start-ups aus dem DACH-Raum dazu beitragen, die Auswirkungen des Klimawandels zu mildern.
Ist es bereits zu spät, den Klimawandel aufzuhalten? Während diese Frage unablässig für hitzige Debatten sorgt, arbeiten Start-ups unermüdlich an Lösungen für die dringendsten Umweltprobleme. Die DACH-Region erlebt einen rasanten Anstieg von GreenTech-Start-ups, angetrieben durch technologische Innovationen und zunehmenden regulatorischen Druck. Dies zeigt u.a. das DACH GreenTech Software Mapping 2025 von Hi Inov und veranschaulicht, welche vielversprechenden Ansätze und Technologien die Zukunft des GreenTech-Ökosystems in Europa prägen.
Mapping der Herausforderungen und Lösungen
Das Mapping bietet einen umfassenden Überblick über die Softwarelösungen von GreenTech-Start-ups im DACH-Raum. Sie umfassen eine Vielzahl von Ansätzen, um den Anstieg der globalen Temperaturen einzudämmen und die damit einhergehenden wirtschaftlichen und gesellschaftlichen Herausforderungen zu bewältigen.
1. Messung und Optimierung des CO2-Fußabdrucks
Fortgeschrittene Techniken zur Datenerfassung und KI-gesteuerte Analysen helfen Organisationen, ihre Effizienz zu steigern und ihren CO₂-Fußabdruck zu reduzieren. Sie helfen Unternehmen, jährlich Emissionen von über 216.000 Tonnen CO₂-Äquivalenten zu vermeiden. Horizontale Plattformen bieten allgemeine Monitoring-Tools für branchenübergreifende Messdienste. Vertikale Lösungen wie die für die Immobilienbranche maßgeschneiderte ESG-Datenplattform Deepki integrieren branchenspezifische Anforderungen.
2. Beschleunigung der Energiewende
Softwarelösungen spielen eine entscheidende Rolle bei der Optimierung der Standortauswahl für die Produktion erneuerbarer Energien, der vorausschauenden Wartung von Infrastruktur und der Verbesserung der Energiespeicherung. Sie können die Schwankungen in der Stromeinspeisung erneuerbarer Energien mindern und somit die Abhängigkeit von fossilen Brennstoffen reduzieren. Das Stuttgarter Start-up metergrid ermöglicht es beispielsweise Mieter*innen in Mehrfamilienhäusern, umweltfreundlichen Solarstrom zu nutzen, der im selben Gebäude produziert wird (mehr dazu in der StartingUp 01/25).
3. Förderung der Kreislaufwirtschaft und Ressourcenoptimierung
Digitale Lösungen erleichtern die Schonung von natürlichen Ressourcen durch intelligentes Ressourcenmanagement, indem sie die Planung und Nutzung von Ressourcen verbessern. Durch den Einsatz von KI lassen sich viele Prozesse optimieren, darunter Recycling, Landwirtschaft und Wassermanagement. So reduziert das Berliner Start-up Freshflow Abfall, indem es die Nachbestellung von frischen Lebensmitteln mit Machine Learning automatisiert und optimiert. Darüber hinaus verbinden digitale Marktplätze Produzent*innen überschüssiger Ware mit potenziellen Abnehmer*innen, um Ressourcen effizierter zu nutzen.
4. Förderung von Nachhaltigkeitsinitiativen in Unternehmen
Unternehmen nutzen digitale Werkzeuge, um ihre Nachhaltigkeit über die regulatorischen Anforderungen hinaus zu verbessern. Zu den eingesetzten Lösungen zählen CO₂-Kreditbörsen, die es Organisationen ermöglichen, Emissionen durch strukturierte Märkte auszugleichen, und Mitarbeiterengagement-Plattformen, die die Teilnahme der Belegschaft an ESG-Initiativen fördern. Start-ups wie das Hamburger CarbonStack unterstützen Unternehmen bei der Erstellung von Nachhaltigkeitsberichten und dabei die relevanten Richtlinien einzuhalten.
Die Entwicklung von 2023 bis heute
Insgesamt zeigt das Mapping ein reiferes und strukturierteres GreenTech-Ökosystem, das Europas Position als Pionier in digitalen Klimaschutzlösungen stärkt. Die Entwicklung zwischen den Mappings aus den Jahren 2023 und 2025 verdeutlicht drei wichtige Trends:
1. Anstieg der Anzahl der angebotenen Softwarelösungen
Die steigende Nachfrage nach nachhaltigkeitsorientierten Innovationen in verschiedenen Branchen hat das Wachstum des GreenTech-Ökosystems beschleunigt und zu einem rasanten Anstieg der angebotenen Softwarelösungen geführt.
2. Regulatorisch getriebene Fortschritte
Aufgrund des zunehmenden regulatorischen Drucks wächst der Anteil der angebotenen Lösungen, die auf Compliance-Bedürfnisse wie CSRD, die Rückverfolgbarkeit von Produkten und transparente CO₂-Buchhaltung eingehen. Es werden zunehmend vertikalisierte Monitoring-Tools entwickelt, um spezialisierte Datensätze und branchenspezifische Algorithmen zu erstellen.
3. Einfluss von generativer KI
Der Einsatz von generativer KI nimmt zu. Neue Anwendungsfälle im Bereich Nachhaltigkeit umfassen verbesserte Datenanalyse, automatisierte Compliance-Berichterstattung, sowie die Echtzeit-Optimierung von CO₂-Fußabdrücken und Ressourcenmanagement.
Fazit: Ein florierendes Ökosystem mit starker europäischer Führung
Der Klimawandel stellt eine immense Herausforderung dar, deren Bewältigung innovative technologische Lösungen erfordert. Das GreenTech Mapping 2025 verdeutlicht die führende Rolle Europas bei der Entwicklung dieser Lösungen und zeigt ein reiferes GreenTech-Ökosystem mit großer Dynamik. Durch den Einsatz fortschrittlicher Datenanalysen, KI und Automatisierung sind Start-ups in der DACHRegion gut positioniert, um sowohl wirtschaftlichen als auch ökologischen Mehrwert zu schaffen. Sie werden Unternehmen und politischen Entscheidungsträger*innen dabei helfen, den Übergang zu einer nachhaltigeren Wirtschaft zu beschleunigen und die Folgen des Klimawandels einzudämmen.
Der Autor Dr. Wolfgang Krause leitet als Managing Partner das Deutschlandgeschäft des auf B2B-Digitallösungen spezialisierten VC-Fonds von Hi Inov.
„Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing“
Mit planqc verfolgt Dr. Alexander Glätzle die Mission, hochskalierbare Quantencomputer für wirtschaftliche Anwendungen zu bauen. Warum das Unternehmen dabei auf Standorte wie München und Innsbruck setzt und welche Rolle Österreichs Talentpool spielt, verrät er im Interview.
Dr. Alexander Glätzle ist Quantenphysiker und Mitgründer von planqc. Er studierte und promovierte an der Universität Innsbruck, forschte an renommierten Instituten wie Oxford, Harvard sowie in Singapur und war als Unternehmensberater tätig. 2022 gründete er planqc als Ausgründung aus dem Max-Planck-Institut in München.
Herr Dr. Glätzle, wie entstand die Unternehmensidee und welche Meilensteine haben Sie mit planqc bisher erreicht?
Die Idee zu planqc ist bereits während meines Studiums an der Universität Innsbruck entstanden. Dort habe ich intensiv im Bereich Quantentechnologie geforscht und das enorme Potenzial erkannt, aus diesen Erkenntnissen ein Start-up zu gründen. Bis zur Gründung hat es allerdings noch einige Jahre gedauert – nicht zuletzt, weil die technologische Entwicklung im Labor ebenfalls voranschreiten musste. 2022 sind wir dann als Ausgründung aus dem Max-Planck-Institut offiziell gestartet. Zu den wichtigsten Meilensteinen zählen zwei große öffentlich geförderte Projekte: Für das Deutsche Zentrum für Luft- und Raumfahrt bauen wir einen Quantencomputer mit einem Volumen von 30 Mio. EUR, ein weiteres Projekt mit dem Leibniz-Rechenzentrum umfasst 20 Mio. EUR, beide mit Abschluss bis Ende 2026 bzw. 2027. Dann werden an diesen beiden Standorten voll funktionsfähige Quantencomputer von planqc installiert sein.
Sie haben bereits Venture Capital mit an Bord. Wer zählt zu Ihren Investoren?
Gestartet sind wir 2022 mit einer Seed-Runde, an der unter anderem UVC Partners, Speedinvest und Apex Ventures beteiligt waren – also bereits starke Partner auch aus Österreich. Diese Basis konnten wir in der Series-A im letzten Jahr weiter ausbauen. Die CATRON Holding, ein Wiener Family Office, ist als Lead-Investor eingestiegen. Dazu kamen weitere Partner wie der DeepTech & Climate Fonds sowie Bayern Kapital. Besonders erfreulich ist, dass auch unsere Bestandsinvestoren erneut signifikant investiert haben. Damit verfügen wir über eine starke, rein mitteleuropäische, deutsch-österreichische Investorenbasis – was in unserem Sektor tatsächlich selten ist.
Ihr Headquarter befindet sich in der Nähe von München. Was hat Sie dazu bewegt, zusätzlich einen Standort in Innsbruck zu eröffnen?
Ursprünglich haben wir planqc in München gegründet – als Ausgründung aus dem Max-Planck-Institut. Doch bereits innerhalb eines Jahres haben wir ein zweites Büro in Innsbruck eröffnet. Der Grund liegt auf der Hand: Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing. Mit renommierten Instituten wie dem Institut für Quantenoptik und Quanteninformation (IQOQI) und Persönlichkeiten wie Peter Zoller und Rainer Blatt gibt es dort eine kritische Masse an international anerkannten Wissenschaftlern. Zudem ist es in der Praxis oft schwierig, hochqualifizierte Talente aus der Region nach München zu bringen. Deshalb haben wir entschieden, ihnen vor Ort ein attraktives Arbeitsumfeld zu bieten – mit einem eigenen Standort in Innsbruck.
Welche Vorteile bietet der Standort Österreich speziell für Unternehmen im Bereich Quantencomputing?
Österreich hat eine lange und starke Tradition in der Quantenphysik. Universitäten wie Innsbruck und Wien, das IQOQI und eine ganze Generation exzellenter Wissenschaftler prägen diese Landschaft. Viele bahnbrechende theoretische und experimentelle Arbeiten wurden hier in den vergangenen Jahren geleistet. Gerade für junge Start-ups bietet das Land enorme Vorteile: Der Talentpool ist außergewöhnlich – mit hervorragend ausgebildeten, dynamischen Fachkräften. Darüber hinaus ist die Nähe zu sogenannten „Industry First Movern“ gegeben, was den Standort besonders spannend macht. Und nicht zuletzt hat Österreich eine historische Verbindung zur Physik – Namen wie Schrödinger, Pauli oder Hess stehen sinnbildlich für diese wissenschaftliche Tiefe.
Welche Unterstützung erhielten Sie bei der Ansiedlung durch die Austrian Business Agency?
Die Austrian Business Agency sowie die Standortagentur Tirol haben uns außerordentlich engagiert unterstützt – sei es bei der Suche nach Büroflächen, bei der Eröffnung des ersten Bankkontos oder in bürokratischen Fragen. Sie standen uns nicht nur beratend zur Seite, sondern haben uns tatkräftig geholfen, Hürden aus dem Weg zu räumen. Genau so stelle ich mir die Zusammenarbeit mit einer lokalen Agentur vor: nah dran, lösungsorientiert und mit exzellentem Netzwerk. Wir hatten wirklich großes Glück mit der Unterstützung vor Ort.
Sie selbst sind in Österreich geboren, haben in Innsbruck promoviert und weltweit Forschungsaufenthalte absolviert – bevor Sie als Unternehmensberater und Gründer nach München gingen. Mit welchen Qualitäten punktet Österreich allgemein, auch als Arbeits- und Wohnort?
Ich habe viele Jahre im Ausland gelebt und gearbeitet – in Oxford, Singapur und Deutschland. Was Innsbruck und Tirol für mich besonders macht, ist die Kombination aus wissenschaftlicher Exzellenz und hoher Lebensqualität. Die Stadt liegt inmitten der Alpen, bietet eine hervorragende Infrastruktur und ein ausgewogenes Verhältnis zwischen Studierenden und Einwohnern. Das schafft ein inspirierendes Umfeld – zum Leben, Forschen und Arbeiten gleichermaßen.
Dr. Alexander Glätzle, vielen Dank für das Gespräch.
Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin
Zeit für ein neues Leistungsnarrativ
Warum wir Ambitionen neu denken müssen. Ein Kommentar von Benedikt Sons, Co-Founder und CEO der Cansativa Group.
In Deutschland ist Leistung ein stilles Versprechen. Man bringt sie, spricht aber selten darüber. Wer es doch tut, wird schnell als selbstverliebt, unsolidarisch oder toxisch abgestempelt. Ambition? Gilt bei uns oft als Ego-Trip.
Dabei trifft genau das Gegenteil zu: Ambitionen sind der Motor des Fortschritts. Will heißen – ohne Ambitionen treten wir auf der Stelle. Können wir uns das, können wir uns ein Denken, dass Leistung ein Ego-Trip ist, heute noch erlauben? In einer Zeit, die von multiplen geopolitischen Spannungen geprägt ist?
Wir diskutieren über die Vier-Tage-Woche. Obwohl wir international an Boden verlieren und andere Länder Tempo machen, Innovation finanzieren und mutig skalieren. Deutschland? Spricht über „Entschleunigung“ und über Work-Life-Balance als übergeordnetes Ziel. Dabei geht es meiner Meinung nach nicht um weniger Arbeit, sondern um die Frage: Wofür lohnt es sich, Leistung zu bringen – und wie schaffen wir es, das Beste aus Menschen herauszuholen, ohne sie zu verheizen?
Also: Wie kommen wir da hin, dass sich Leistung wieder gut anfühlt?
Leistung: Zwischen Burnout-Mythos und Selbstoptimierungswahn
Das gegenwärtige Leistungsbild pendelt zwischen zwei Polen: Auf der einen Seite der ausgebrannte Consultant, der sein Leben für ein Projekt opfert. Auf der anderen Seite die Influencer-Ästhetik, in der jeder Tag „High Performance“ verspricht, solange die richtige Morgenroutine stimmt.
Beides ist Unsinn. Beides ist egozentriert. Beides ignoriert, worum es wirklich geht: Leistung als kollektives Ziel, als Ausdruck von Sinn, von Teamgeist, von etwas, das größer ist als man selbst. Wenn wir es schaffen, Leistung als etwas Verbindendes zu begreifen, als Teamgedanken – nicht als Konkurrenz –, dann entsteht neben Erfolg auch Identifikation.
Ambitionen sind kein Makel – sie sind Orientierung
Wir müssen wieder lernen, uns mit ambitioniertem Handeln zu identifizieren. Deutschland ist ein Land voller Talente – aber oft auch voller Zweifel. Was fehlt, ist ein klarer Rahmen: Wo wollen wir hin? Wer sind unsere Vorbilder? Und warum lohnt es sich überhaupt, den Sprint aufzunehmen?
Diese Fragen betreffen unser gesamtes Wirtschaftsverständnis. Wir brauchen mehr Mut, klare Ziele zu formulieren. Und wir brauchen den Willen, sie offen zu verfolgen.
Start-up-Kultur: Hardcore oder Heilsbringer?
Start-ups sind Meister darin, ein klares, übergeordnetes Ziel zu formulieren – und mit dem unerschütterlichen Antrieb einer Rakete arbeiten sie gerade zu Beginn mit vollem Schub darauf hin. Gleichzeitig sind Start-ups der Inbegriff von Überforderung: lange Tage, kurze Nächte, wenig Absicherung. Manche glorifizieren diesen Zustand, andere verdammen ihn. Die Wahrheit ist: Start-up ist ein Überlebenskampf, aber auch eine Schule für Fokus, Disziplin und Priorisierung. Mein alter Physiklehrer sagte: „Leistung ist Arbeit pro Zeit.“ Und genau darum geht es. Nicht um den Dauer-Hustle, sondern um kluge, fokussierte Arbeit.
Daher braucht die deutsche Wirtschaft ein Ökosystem, das Hochleistung fördert – ohne Burnout zu belohnen. In dem man mit hoher Schlagzahl arbeitet, aber nicht daran zerbricht. Studien zeigen: Ja, die Belastung im Start-up-Sektor ist hoch – längere Arbeitszeiten, geringere Gehälter, weniger Sicherheit. Besonders Frauen sind oft benachteiligt.
Aber: Die Offenheit für neue Arbeitsmodelle ist ebenfalls höher. Viele Start-ups bieten flexiblere Strukturen, Homeoffice, Fokus-Zeiten, Purpose-getriebenes Arbeiten – also eine Umgebung, die mehr bietet als den klassischen „9-to-5“-Job. Damit machen sie einen entscheidenden Unterschied gegenüber Traditionsunternehmen, die eher auf feste Arbeitszeiten und Bürokultur setzen.
Innovation braucht Raum, kein Sicherheitsdenken
Apropos Traditionsunternehmen: Ich glaube, dass in einem überregulierten Ökosystem die Innovation auf der Strecke bleibt. Wer bei jedem Schritt Angst vor Fehlern hat, wird keine Risiken eingehen. Doch Innovation ohne Risiko gibt es nicht. Unternehmen, die keine Fehler machen wollen, machen auch keine Fortschritte.
Hier ist ein Umdenken gefragt – auch politisch. Wer heute in Deutschland ein Unternehmen gründet, sieht sich mit einer Bürokratie konfrontiert, die oft mehr lähmt als schützt. Gleichzeitig verlieren wir im internationalen Wettbewerb – weil andere Länder schneller, pragmatischer und technologieoffener agieren. Innovation verlangt Raum, Geschwindigkeit – und eine Kultur für Gründer*innen und Investor*innen, in der sie schnell skalieren können.
Europas Chance: Der Weg der Qualität
Der Inbegriff für schnelles Skalieren sind China und die USA. Während China auf Masse setzt und die USA auf Kommerzialisierung, hat Europa die Chance, einen eigenen Weg zu gehen: mit Qualität und gesellschaftlicher Einheit als Alleinstellungsmerkmal. Europa ist eine der wenigen Regionen, in der wirtschaftlicher Erfolg mit sozialer Verantwortung verbunden wird. Wir haben Zugang zu Spitzenforschung, zu klugen Köpfen, zu funktionierenden Institutionen. Was uns fehlt, ist der Mut zur schnellen Umsetzung.
Wir brauchen mehr Kommerzialisierung, ohne unsere Werte zu verlieren. Wir brauchen mehr Tempo, ohne Menschen zu überfordern. Und wir benötigen ein neues Narrativ, das Leistung nicht als toxisch, sondern als Teil einer starken Gesellschaft begreift.
Warum der Leistungsanspruch tief im Unternehmen verankert sein muss
Mehr Tempo, kluge Köpfe, ein Team: Wie gut dieser Dreiklang für mehr Leistung funktioniert, zeigt die Geschichte von Cansativa selbst. 2017 mit wenig Kapital gegründet, haben mein Bruder Jakob und ich früh auf Geschwindigkeit und Umsetzung gesetzt. Während andere noch in Businessplänen dachten, organisierten wir die ersten Importe von Medizinalcannabis, navigierten durch eine regulatorisch hochkomplexe Landschaft und bauten eine Plattform auf, die heute Marktführer in Deutschland ist.
Dass wir vom Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM) den Zuschlag für die Distribution von in Deutschland angebautem Cannabis erhielten, war kein Zufall, sondern Ergebnis von Expertise, strategischer Schärfe und kompromissloser Arbeit. Inzwischen haben wir über 2500 B2B-Kund*innen, ein eigenes Produktportfolio, ein starkes Partnerschaftsnetzwerk und wachsen mit jeder regulatorischen Veränderung weiter. Nicht weil wir Glück hatten, sondern weil wir Leistung als Haltung verstehen.
Ambition braucht Anerkennung
Deshalb fordere ich: Deutschland muss lernen, Ambitionen nicht zu fürchten, sondern zu fördern. Denn wer Leistung immer nur mit Egoismus, Selbstausbeutung oder Ellenbogenmentalität gleichsetzt, nimmt sich die Chance auf echten Fortschritt. Leistung ist kein Selbstzweck – sie ist ein Beitrag zum Wirtschaftswachstum Europas. Sie ist Ausdruck von Haltung, Verantwortung und dem Willen, Dinge besser zu machen. Gefragt ist ein gesellschaftliches Klima, in dem es willkommen ist, Großes zu wollen. Und in dem diejenigen, die sich anstrengen, auch Rückenwind bekommen – nicht Gegenwind.
Unser Unternehmen ist nur ein Beispiel dafür, was möglich ist, wenn Menschen Verantwortung übernehmen und mit einem klaren Ziel handeln. Der Erfolg ist kein Zufall, sondern das Ergebnis einer gelebten Leistungskultur, die nicht auf Kontrolle, sondern auf Klarheit basiert. Und auf dem Mut weiterzumachen, gerade wenn der Weg steinig ist.
Es ist Zeit, dass wir in Deutschland – und in Europa – ein neues Kapitel aufschlagen. Eines, in dem Ambition der Antrieb ist, in dem Leistung nicht verdächtig, sondern wertvoll ist. Und in dem wir verstehen: Zukunft entsteht dort, wo Menschen nicht fragen, was gerade bequem, sondern was möglich ist.
Was Unternehmen über KI-Agenten wissen müssen
Künstliche Intelligenz in Form autonomer Agenten gewinnt rasant an Bedeutung. Doch wie arbeiten diese KI-Agenten? Was ist bei der Umsetzung zu beachten? Hier gibt's die Antworten.
Die Idee, dass autonome Systeme eng mit Menschen zusammenarbeiten und sie gezielt unterstützen, ist keine Vision mehr, sondern Realität. Während bisher eine umfassende Problemlösungskompetenz im Hintergrund fehlte, bringen KI-Agenten genau diese Fähigkeit mit und übernehmen zunehmend vielfältige Aufgaben in der Arbeitswelt. Wir erklären, was Unternehmen über KI-Agenten wissen müssen.
Was sind KI-Agenten und auf welcher Technologie basieren sie?
KI-Agenten sind Softwaresysteme, die eigenständig Aufgaben ausführen, aus Erfahrungen lernen und dynamisch mit ihrer Umgebung interagieren. Ihr Ziel ist es, Aufgaben autonom zu lösen, ohne dass ein kontinuierliches menschliches Eingreifen notwendig ist. Im Unterschied zu herkömmlichen Automatisierungslösungen bewältigen KI-Agenten selbst komplexe Anforderungen, indem sie sich an neue Bedingungen anpassen. Auch werden sie im Gegensatz zu universellen LLMs in der Regel fein abgestimmt, um Relevanz und Datenschutz zu gewährleisten. Sinnvoll ist eine kontextbezogene Architektur, die kausale KI, Document AI und multimodale Logik kombiniert und damit optimal auf geschäftliche Anwendungsfälle zugeschnitten ist.
In welchen Bereichen der Arbeitswelt entfalten KI-Agenten ihr Potenzial?
KI-Agenten finden in nahezu allen Unternehmensbereichen Einsatzmöglichkeiten – von der Beantwortung einfacher Anfragen bis hin zur Steuerung komplexer Prozesse. Eingebettet in CRM-Plattformen analysieren sie riesige Datenmengen, die Unternehmen manuell nicht mehr auswerten können. Anstatt die Ergebnisse lediglich zu präsentieren oder Kontakte nach Prioritäten zu sortieren, qualifizieren KI-Agenten auch noch automatisch Leads, schlagen passende Angebote vor und beantworten Kundenanfragen. Oder anders formuliert: Während herkömmliche Tools in der Regel auf statischen Wenn-dann-Regeln basieren, führt die neue Generation hyperpersonalisierte Aktionen nahezu in Echtzeit aus. Diese Entwicklung entlastet Mitarbeiter von Routineaufgaben und gibt ihnen Raum, sich auf strategisch wichtige Aufgaben zu konzentrieren. Unternehmen wiederum können ohne großen Aufwand Tausende von Kunden individuell betreuen.
Werden KI-Agenten den Arbeitsmarkt verändern?
Diese Frage lässt sich nicht pauschal beantworten. Es entstehen durch den verstärkten Einsatz von KI-Lösungen neue Berufsfelder – insbesondere bei der Entwicklung, Integration und Wartung solcher Agentensysteme werden qualifizierte Fachkräfte benötigt. Gleichzeitig stellt sich die Herausforderung, bestehende Mitarbeitende gezielt im Umgang mit diesen Technologien weiterzubilden und deren digitale Kompetenzen auszubauen. Eines muss klar sein: Das Ziel von KI-Agenten ist es nicht, menschliche Arbeitskraft zu ersetzen, sondern deren Fähigkeiten zu erweitern. Mitarbeitende können sich somit stärker auf komplexe Kundeninteraktionen oder die Entwicklung innovativer Kampagnen konzentrieren, während ihnen die KI zur Hand geht.
Worauf müssen Unternehmen bei der Auswahl von KI-Agenten-Lösungen achten?
In erster Linie benötigen sie eine digital ausgereifte Umgebung mit einheitlichen Datenformaten, optimierten Prozessen und regelbasierten Automatisierungen, um den ROI steigern zu können. Anschließend müssen sie sicherstellen, dass ihre KI-Systeme den geltenden Datenschutzbestimmungen entsprechen und sensible Kund*innendaten optimal geschützt sind. Transparenz und Nachvollziehbarkeit der KI-Entscheidungen sind ebenfalls essenziell, um das Vertrauen von Kunden und Mitarbeitenden nicht zu gefährden. Auf technischer Seite ist eine interoperable Lösung notwendig, die sich so nahtlos wie möglich in die bestehende IT-Umgebung integrieren lässt. Zu den weiteren Aspekten zählen die Priorisierung der kontextuellen Abstimmung, da Agenten geschäftsspezifische Arbeitsabläufe und Datenformate verstehen müssen, sowie die Nutzung eines Federated-Model-Ansatzes statt einheitlicher LLM-Frameworks, um Effizienz, Erklärbarkeit und Kosten zu optimieren.
Wie binden Unternehmen ihre Mitarbeitenden am besten ein?
Zunächst einmal ist ein grundlegendes Change Management erforderlich. Die Mitarbeiterinnen und Mitarbeiter müssen verstehen, dass die KI ihnen nicht die Arbeit wegnimmt, sondern sie unterstützen soll. Sinnvoll ist auch ein Low-Code-Ansatz: Maßgeschneiderte KI-Applikationen und automatisierte Workflows steigern die Arbeitseffizienz in Abteilungen um ein Vielfaches – sogar Mini-Anwendungen, die lediglich einfache Aufgaben übernehmen. Jedoch können zentrale IT-Abteilungen, die mit Entwicklungsanfragen aus verschiedenen Abteilungen überhäuft werden, diese kaum bewältigen. Mit einer Low-Code-Application-Plattform (LCAP) können auch Mitarbeiter ohne Programmierkenntnisse einfache KI-Anwendungen selbst erstellen. Möglich machen das einfache Drag-and-Drop-Optionen und vorgebaute Module, die je nach Wunsch kombinierbar sind.
Fazit
KI-Agenten sind als kollaborative Partner zu verstehen, nicht als Ersatz für den Menschen. Künftig werden wir eine Multi-Agent Collaboration sehen. Hierbei übernehmen verschiedene KI-Agenten jeweils Spezialaufgaben und koordinieren sich untereinander, um selbst die komplexesten Herausforderungen effizient zu lösen.
Der Autor Sridhar Iyengar ist Managing Director von Zoho Europe.
KI clever eingesetzt: Können deutsche Entwickler ihre App-Ideen mit Vibe Coding umsetzen?
Wie Vibe Coding, eine neue KI-gestützte Methode der App-Entwicklung, es heute deutlich einfacher macht, aus einer Idee ein funktionierendes digitales Produkt entstehen zu lassen.
Die Zeiten, in denen man für die Umsetzung einer App monatelang ein Entwicklerteam zusammenstellen, riesige Budgets planen und unzählige Meetings überstehen musste, scheinen langsam zu verblassen. Vibe Coding, eine neue KI-gestützte Methode der App-Entwicklung, macht es Gründern und kreativen Köpfen in Deutschland heute deutlich einfacher, aus einer Idee ein funktionierendes digitales Produkt entstehen zu lassen.
Was steckt hinter Vibe Coding?
Vibe Coding nutzt künstliche Intelligenz, um auf Basis einfacher Sprache Code zu erzeugen. Statt eine App Zeile für Zeile zu programmieren, beschreibt man, was sie können soll. Die KI wandelt diese Wünsche in Code um, der sich dann weiter anpassen und verfeinern lässt. Anders als bei klassischen No-Code-Plattformen entstehen keine bloßen Baukastenlösungen, sondern anpassbarer, individuell nutzbarer Code.
Im Unterschied zu Low-Code-Ansätzen braucht es keine aufwendige UI und keine grafische Umgebung, in der man mühsam Komponenten zusammensetzt. Stattdessen genügt es, der KI präzise zu erklären, welches Ergebnis angestrebt wird. Das spart nicht nur Zeit, sondern eröffnet auch Menschen ohne tiefgehendes Technikverständnis ganz neue Möglichkeiten.
Aktuell eignet sich dieser Ansatz besonders für die Entwicklung von Prototypen, Minimum Viable Products und überschaubaren Business-Apps. Wer dagegen komplexe Anwendungen mit tiefen Backend-Strukturen, Hochsicherheitsanforderungen oder extrem hoher Nutzerlast plant, stößt mit Vibe Coding derzeit noch an natürliche Grenzen. Doch für den ersten Schritt in die App-Welt ist dieses Werkzeug so vielversprechend wie kaum ein anderes.
Wie KI-basierte Entwicklung neue Möglichkeiten für Gründer eröffnet
In der Praxis bedeutet das: Was früher ein ganzes Entwicklerteam beschäftigt hätte, kann heute oft in wenigen Tagen oder sogar Stunden entstehen. Vibe Coding verkürzt die Entwicklungszeiten deutlich, die ersten funktionsfähigen Entwürfe stehen schneller zur Verfügung als je zuvor.
Nicht zu unterschätzen ist dabei auch die finanzielle Seite. Wo man früher fünfstellige Summen investieren musste, genügt heute oft ein Bruchteil davon, um einen ersten lauffähigen Prototypen zu testen. Damit wird der Einstieg in die App-Entwicklung auch für Gründer ohne Tech-Hintergrund realistischer. Kein Zwang mehr, einen CTO an Bord zu holen oder teure Agenturen zu engagieren.
Gerade in Deutschland, wo Gründungsteams häufig an fehlender Entwicklerkapazität scheitern, eröffnet diese Entwicklung eine völlig neue Dynamik. Wer eine gute Idee hat, kann sie dank Vibe Coding sehr viel leichter in die Realität umsetzen. Das fördert die Innovationskultur und macht Platz für mehr mutige Experimente.
Ein Beispiel, das hier besonders hervorsticht, ist die Founders Foundation in Ostwestfalen-Lippe. Mit gezielten Programmen und Workshops unterstützt sie Gründerinnen und Gründer dabei, KI-gestützte Methoden sinnvoll einzusetzen und so eigene digitale Produkte schneller auf die Straße zu bringen. Genau solche Impulse tragen dazu bei, dass sich der Trend immer stärker durchsetzt.
Welche deutschen Start-ups zeigen bereits, was mit KI und No-Code möglich ist?
Dass das alles keine Theorie mehr ist, sondern in deutschen Gründungszentren längst gelebt wird, zeigen einige aktuelle Beispiele sehr anschaulich. Leaping AI aus Berlin etwa entwickelt Voicebots, die im Kundenservice 70 Prozent aller Anfragen automatisiert beantworten. Eine Anwendung, die ohne moderne KI-Tools in dieser Geschwindigkeit und Qualität wohl kaum möglich wäre.
Auch qru aus Stuttgart beweist, was möglich ist. Mit ihren Videomarketing-Tools, die auf einem cleveren Mix aus Low-Code und KI basieren, können selbst kleinere Unternehmen ihre Marketingprozesse automatisieren und professionell gestalten, ohne dafür eine eigene IT-Abteilung zu benötigen.
Ein drittes Beispiel: Paul’s Job, ein Berliner Startup, das HR-Prozesse mit agentischer KI unterstützt. Recruiting und Personalverwaltung laufen dort in weiten Teilen automatisiert, was Gründern wie Personalabteilungen jede Menge Zeit und Nerven spart.
Diese und ähnliche Projekte zeigen deutlich, dass Vibe Coding und vergleichbare Methoden längst ihren Weg in die praktische Nutzung gefunden haben. Die Technologie entwickelt sich dabei so schnell weiter, dass immer mehr Gründer den Mut fassen, ihre App-Ideen mit solchen Ansätzen umzusetzen.
Warum die App-Entwicklung perspektivisch günstiger wird
Ein Blick auf die allgemeine Marktentwicklung macht schnell deutlich: App-Entwicklung wird in den kommenden Jahren noch günstiger und einfacher werden. Mit jedem Fortschritt der KI sinken die Kosten für die technische Umsetzung, gleichzeitig steigen die Möglichkeiten, individualisierte Lösungen zu entwickeln.
Das hat Folgen, insbesondere für kleinere und spezialisierte Anbieter. Wo früher nur große Unternehmen eigene Apps auf den Markt bringen konnten, öffnet sich der Zugang nun auch für kleinere Player. Gerade in Nischenmärkten entstehen so neue Chancen.
Ein besonders interessantes Feld ist aktuell der Gambling-Sektor. Lange Zeit galten die hohen Entwicklungskosten als Einstiegshürde für viele Anbieter. Inzwischen zeigt sich jedoch, dass speziell in diesem Bereich vermehrt Apps auf den Markt kommen, weil die technische Umsetzung dank KI-Tools deutlich günstiger geworden ist.
Aber nicht nur im Glücksspiel-Markt tut sich etwas. Health und Fitness, E-Learning, Content Creation sowie regionale Dienstleistungen profitieren in ähnlicher Weise von den neuen Möglichkeiten. Über Smartphones und Tablets gelangen viele dieser Lösungen direkt zu den Nutzern und ermöglichen eine viel engere Bindung als klassische Webanwendungen.
Wo klassische Entwicklerkompetenz weiterhin unverzichtbar bleibt
Natürlich hat auch Vibe Coding seine Grenzen. Gerade wenn es um anspruchsvolle Architektur, komplexe Backend-Systeme oder hochskalierbare Anwendungen geht, kommt man ohne erfahrene Entwickler nach wie vor nicht aus.
KI generiert Code auf Basis von Wahrscheinlichkeiten, was in der Praxis immer wieder zu fehlerhaften oder ineffizienten Strukturen führen kann. Qualitätssicherung, Testing und fundiertes Architekturwissen bleiben deshalb unerlässlich, sobald eine App mehr sein soll als ein einfaches MVP.
Auch bei Themen wie Performance, Sicherheit und Datenschutz kann KI derzeit noch nicht mithalten. Hier braucht es das Know-how klassischer Entwickler, um Anwendungen stabil und vertrauenswürdig zu machen.
Gerade für Anwendungen im Finanz- oder Gesundheitsbereich, wo hohe regulatorische Standards erfüllt werden müssen, bleibt der menschliche Faktor entscheidend. Vibe Coding ist ein fantastisches Werkzeug für den schnellen Einstieg und die Umsetzung erster Ideen, doch auf dem Weg zu einem ausgereiften Produkt wird klassisches Engineering weiterhin eine tragende Rolle spielen.
Vibe Coding bringt frischen Wind in die App-Entwicklung
Vibe Coding verändert die Art, wie in Deutschland Apps entstehen, in rasantem Tempo. Prototypen und erste marktfähige Tools lassen sich heute so schnell und günstig umsetzen wie nie zuvor. Für viele Gründer ohne Tech-Hintergrund eröffnen sich dadurch Möglichkeiten, die es vor wenigen Jahren schlicht nicht gab.
Die Beispiele aus der Startup-Szene zeigen eindrucksvoll, wie die neuen Werkzeuge bereits eingesetzt werden. Gleichzeitig bleibt klar: Für echte Skalierung, Sicherheit und Performance führt an klassischem Entwicklerwissen kein Weg vorbei.
Die Zukunft gehört wahrscheinlich zu einem hybriden Ansatz, bei dem KI als mächtiges Assistenzwerkzeug fungiert und Entwickler sich auf das konzentrieren, was KI noch nicht zuverlässig beherrscht. So entsteht Raum für mehr Innovation, mehr mutige Ideen und letztlich mehr spannende Apps. Und genau das dürfte der deutschen Tech-Szene mehr als guttun.
Digitaler Vorreiter: Wie Bootsschule1 die Sportboot-Ausbildung umkrempelt
Bootsschule1 überzeugt mit SmartLearn™-Plattform, All‑Inclusive‑Paketen, hoher Qualität und bundesweiter Praxis – digital, transparent und risikofrei.
Der Weg zum Sportbootführerschein galt lange als bürokratisch, zeitraubend und unflexibel – geprägt von Präsenzunterricht, Papierbergen und Prüfungsstress. Wer beruflich eingespannt ist oder außerhalb von Metropolregionen lebt, sah sich oft mit logistischen Hürden konfrontiert. Genau an diesem Punkt setzt Bootsschule1 an – und definiert die Ausbildung auf dem Wasser neu. Nicht mit leeren Marketingversprechen, sondern mit einem durchdachten Gesamtkonzept, das sich konsequent an den Bedürfnissen moderner Lerner orientiert.
Was einst nach trockener Theorie und starren Kurszeiten roch, verwandelt sich hier in ein digitales Lernsystem, das in punkto Nutzerfreundlichkeit und Didaktik Maßstäbe setzt. Im Zentrum steht eine selbst entwickelte Lernplattform, die Inhalte in kurzen, präzise aufbereiteten Videolektionen vermittelt – ergänzt durch realistische Prüfungssimulationen und ein umfassendes All-Inclusive-Paket, das vom Navigationsbesteck bis zur persönlichen Betreuung reicht. Transparente Preise, flexible Praxisstandorte und eine Geld-zurück-Garantie zeigen: Hier geht es nicht um den schnellen Schein, sondern um nachhaltige Qualität.
Dieser Artikel beleuchtet, wie Bootsschule1 mit technischer Präzision, durchdachten Services und didaktischer Klarheit nicht nur mit alten Konventionen bricht, sondern ein neues Kapitel in der Ausbildung für Wassersportbegeisterte aufschlägt – nah am Alltag, weit entfernt vom Schulbank-Gefühl.
Moderne Lernplattform mit smarten Tools
Die digitale Bootsschule von Bootsschule1 übernimmt in Deutschland eine Vorreiterrolle, wenn es um eine moderne Bootsführerschein-Ausbildung geht. Die selbst entwickelte SmartLearn™‑Lernplattform bildet das Herzstück dieses Konzepts. Sie bietet über 50 Videolektionen in hochwertiger 4K-Qualität und einen Multiple‑Choice‑Fragentrainer, die den gesamten Stoff für Sportbootführerscheine strukturiert abdecken. Die Videos dauern meist zwischen drei und fünf Minuten – ideal, um Inhalte gezielt und ohne Zeitdruck zu konsumieren: Sei es unterwegs beim Pendeln, in der Mittagspause oder abends auf dem heimischen Sofa. Dieses modulare Format erlaubt es, einzelne Themen effizient zu wiederholen oder gezielt Vertiefungen abzurufen.
Doch Bootsschule1 bietet weit mehr als reine Videospots: Ein interaktiver Prüfungssimulator integriert alle 15 offiziellen Prüfungsbögen. Nutzer*innen können die komplette Prüfungssituation durchspielen, inklusive Originalfragen und zeitlicher Vorgabe – so entsteht ein realistisches Trainingserlebnis. Dieser praxisnahe Ansatz führt weg vom bloßen Auswendiglernen hin zu gezielter Vorbereitung, mit hoher Trefferquote bei der echten Prüfung. Durch regelmäßiges Simulations-Training werden Schwachstellen sichtbar und lassen sich gezielt bearbeiten – ein entscheidender Vorteil gegenüber herkömmlichen Kursformaten.
All‑Inclusive‑Angebot statt versteckter Kosten
Ein echtes Alleinstellungsmerkmal ist das All‑Inclusive‑Versprechen. In einer einzigen Kursbuchung sind enthalten: Lernplattform, hochwertige Lernvideos, Kursmaterialien wie Kurs‑ und Anlegedreieck, Zirkel sowie Tampen und Klampe, dazu die praktische Ausbildung inklusive einer kostenfreien 1:1‑Betreuung. Ergänzt wird das Ganze durch ein freiwilliges Exkurs‑Paket mit über 25 zusätzlichen Lektionen mit einem Gegenwert von 119 €, das Kunden gratis erhalten.
Der Preis erscheint dabei vergleichsweise günstig: Ein Kombiangebot für SBF See & Binnen kostet gerade mal 445 € statt ursprünglich 495 € – inklusive Exkurs‑Paket. Durch Aktionen mit Rabattcodes lässt sich die Summe weiter reduzieren – ohne unerwartete Zusatzkosten. Transparenz ist hier Programm.
Risikofrei dank Geld‑zurück‑Garantie
Bootsschule1 gibt Anfängern besonderen Rückhalt: Innerhalb von 14 Tagen nach Buchung kann man bei Nichtgefallen rückabwickeln – sofern bislang keine Praxisstunde gebucht und maximal 60 % der Kursinhalte absolviert wurden. Darüber hinaus gibt es eine Garantie für den Prüfungserfolg: Wer den Theorie‑Teil bestanden, aber in der Praxisprüfung durchfällt, erhält anteilig die Kursgebühr zurück. Das reduziert das finanzielle Risiko und lässt den Kurs zu einer sicheren Investition werden.
Flexible praktische Ausbildung in ganz Deutschland
Ein weiterer wichtiger Aspekt, in dem Bootsschule1 überzeugt, ist der bundesweite Zugang zur praktischen Ausbildung. Mehr als 100 Prüfzentren und zahlreiche Praxispartner ermöglichen es, Theorie online zu lernen und die Bootsfahrstunden lokal zu absolvieren. Unter anderem gibt es Angebote in großen Städten wie Berlin, Hamburg oder entlang des Rheins (z.B. Bonn, Koblenz, Köln).
Praktische Einheiten dauern meist 60 Minuten und reichen oft aus, um die Fahrpraxis für die Prüfung zu erlangen. Zudem übernimmt die Plattform die Terminbuchung, Organisation und Anmeldung bei der Prüfung – der gesamte Papierkram liegt in digitaler Hand, was Zeit und Aufwand spart.
Umfangreiche Kursvarianten für jeden Bedarf
Bootsschule1 deckt sämtliche Sportbootführerscheine ab: getrennte Kurse für SBF See, SBF Binnen sowie Kombikurse See & Binnen. Darüber hinaus werden spezielle Qualifikationen angeboten, etwa das Bodenseeschifferpatent, der SRC- und UBI-Funkschein sowie Fachkundenachweise (FKN/SKN).
- Das Bodenseeschifferpatent ist als Ergänzung zum SBF günstig kombinierbar (145 € Theorie oder Kombipreis von € 590).
- Der SRC‑Funkschein wird mit gleicher SmartLearn™‑Plattform vorbereitet – inklusive Online‑Training und praktischer Prüfung in einem Prüfungszentrum (127,88 € Prüfungsgebühr).
Wer nur den Funkschein machen möchte, erhält dafür bis zu 365 Tage Zugriff auf Lernmaterial und Praxisaufgaben.
Qualitativ hochwertiger Unterricht
Bootsschule1 legt klar Wert auf hohe Produktionsqualität: Einzelne Videolektionen entstehen aus bis zu 200 Stunden Rohmaterial, das anschließend mehr als 100 Stunden postproduziert und mit 3D‑Animationen sowie CGI‑Effekten angereichert wird. Das Ergebnis ist eine visuell ansprechende und fachlich präzise Darstellung, die man in vielen herkömmlichen Kursen vergeblich sucht. Ergänzt wird das durch profunde Fahrsessions per Videochat und persönliche Unterstützungsangebote.
Medizinischer Beleg und gesundheitliche Voraussetzungen
Vor Prüfungsanmeldung ist ein ärztliches Attest nötig. Dieses umfasst Sehtest (DIN 58220, Sehschärfe ≥ 0,8), Farbunterscheidung und Hörtest. Brillenträger schaffen den Führerschein problemlos – die Vermerkpflicht auf der Fahrerlaubnis ist im Einklang mit Vorschriften. Empfehlenswert ist es, frühzeitig die optionalen Testangebote bei Optikern zu nutzen, um die ärztliche Bescheinigung vorzubereiten.
Prüfung mit digitaler Unterstützung
Bootsschule1 nimmt Interessierten den bürokratischen Aufwand ab: Prüfterminbuchung, Anmeldeunterlagen und Zertifikatrecherche übernimmt das Team. Nach Bestehen der Prüfung erreicht man den Führerschein binnen zwei Wochen bequem per Post. Wer beim ersten Mal nicht besteht, kann Theorie und Praxis beliebig oft wiederholen – zusätzliche Kosten entstehen nur durch behördliche Prüfungsgebühren.
Fazit
Bootsschule1 präsentiert ein Konzept, bei dem Technik und didaktischer Anspruch eng miteinander verbunden sind: Die Lernplattform mit qualitativ hochwertigen Videos, Prüfungssimulationen und smartem Fragebetrieb bildet das Rückgrat der Ausbildung. Zeitgleich liefern All‑Inclusive‑Pakete inklusive 1:1‑Betreuung, bundesweite Praxis sowie Garantien echte Mehrwerte.
In einer Zeit, in der Flexibilität und Qualität gefragt sind, liefert Bootsschule1 eine Antwort auf praktische Herausforderungen. Es ist kein theoretisches Referenzmodell, sondern ein funktionierendes System, das vielen den Zugang zum Wassersport erleichtert – und dabei ganz klar zeigt, wie moderne Bildung in der Praxis aussehen kann. Somit liefert der Anbieter im Sportbootbereich das, was bei Autofahrschulen schon länger Realität ist.
Podcast: Die Peter Thiel Story
Tipp der Redaktion: Ab 28. Mai 2025 in der Deutschlandfunk App verfügbar – der sechsteilige Podcast „Die Peter Thiel Story“.
Peter Thiel ist mit PayPal und Facebook reich geworden und hat die Gedankenwelt des Silicon Valleys wie kaum ein zweiter geprägt. Der Tech-Milliardär ist ein Architekt des neuen rechten Amerikas, ist Strippenzieher und bestens vernetzt im radikalkonservativen und -libertären Amerika.
Mit dem sechsteiligen Podcast „Die Peter Thiel Story“ beleuchtet der Deutschlandfunk jetzt die Hintergründe des geheimnisvollen Investors, der trotz seines enormen Einflusses vielen kaum bekannt ist.
Host und Autor Fritz Espenlaub zeichnet nach, wie ein in Deutschland geborener Philosophiestudent im Silicon Valley aufstieg. Er zeigt das intellektuelle Fundament – geprägt von Carl Schmitt, René Girard und Ayn Rand – sowie das Netzwerk, das heute Schlüsselpositionen in Wirtschaft und Politik besetzt.
Die Serie dokumentiert dabei auch Thiels Visionen: Die Errichtung schwimmender libertärer Städte, die Entwicklung fortschrittlicher Überwachungstechnologie und seine Suche nach dem ewigen Leben.
„Die Peter Thiel Story“ bietet Einblicke in das Leben des Mannes, der ewig leben und alles verändern will.
Die Peter Thiel Story
Sechsteilige Erzählserie jeweils ca. 30 Minuten
ab 28. Mai 2025 in der Deutschlandfunk App

