Brizza: Wenn Brezel auf Pizza trifft


44 likes

Brizza ist kein flüchtiger Rechtschreibfehler, sondern eine neue Food-Kreation der Geschwister Sascha und Jennifer Zeller aus Aschaffenburg.

Es gibt vielerlei Kombinationen in der Kulinarik, die außergewöhnlich oder zumindest bemerkenswert sind. Ein Cronut etwa ähnelt einem Donut, besteht aber aus einem croissant-ähnlichen Teig. Hier reihen sich auch Bruffins (Gebäckstück aus ei- und fettreichem Hefeteig, mit einem Muffin gekreuzt), Cragel (Mischung aus Croissant und Bagel) oder der Ramen-Burger (statt zwischen zwei Bun-Scheiben steckt das Fleisch zwischen zwei japanischen Ramen-Nudelkreisen) ein. Auch die Geschwister Sascha und Jennifer Zeller haben eine Variation von beliebter Nahrung entwickelt und Brizza erfunden.

Brizza pfeift auf den klassischen Pizzateig

Seit acht Jahren betreibt die Founderin ihr eigenes Wirtshaus “Wurstbendel” mit traditionell deutscher Küche in Aschaffenburg. Neben Krustenbraten und Stelze darf bei ihr die Laugenbrezel nicht fehlen: “Außen knusprig, innen schön weich, ist sie der absolute Verkaufsschlager”, so die Gastronomin.

Vor rund drei Jahren kam ihr die Idee, aus der klassischen Brezel etwas ganz Neues zu kreieren. Herausgekommen ist Brizza, eine Brezelpizza. Statt italienischem Pizzateig besteht sie aus Laugenteig und “bekommt dadurch die einzigartige Färbung am Rand und am Boden. Durch die tellerartige Form lässt sie sich genauso individuell belegen wie ihr italienisches Pendant”, erklärt Jennifer Zeller ihr Produkt.

Auch tiefgekühlt erhältlich

In ihrem Restaurant kam die Eigenkreation bei den Gästen so gut an, dass sie Brizza nun auch als Tiefkühlprodukt anbietet.
“Beim Belegen der Brizza sind der Fantasie keine Grenzen gesetzt. Ob vegan, vegetarisch, mit Fleisch oder auch mit Fisch”, ergänzt Sascha Zeller. Nach dem Aufbau ihrer eigenen Produktion haben sie sich auf den Großhandel konzentriert und verkaufen ihr Produkt derzeit an andere Gastronom*innen.

Mehr von Brizza seht ihr am Montag in der Höhle der Löwen. Auch mit dabei: Dr. Vivien Karl, Futurerised, Mitmalfilm und Akoua.

Diese Artikel könnten Sie auch interessieren:

Humanoide Roboter: Vision und Realität

Der Weltroboterverband IFR veröffentlicht sein Positionspapier zu Trends, Chancen und möglichen Grenzen rund um das Thema humanoide Roboter.

Menschenähnliche Roboter gelten als die nächste große Innovation in der Robotik: Der weltweit größte Markt für Industrieroboter, China, hat bereits konkrete Pläne für die Massenproduktion von Humanoiden festgelegt. Gleichzeitig kündigten Technologieunternehmen in den USA und Europa große Investitionsvorhaben in diesem Bereich an. Die Vision ist, Allzweckroboter zu entwickeln, die auf menschlicher Mechanik basieren. Einblicke in Trends, Chancen und mögliche Grenzen humanoider Roboter bietet das neue Positionspapier der International Federation of Robotics.

„Futuristisch anmutende humanoide Roboter, die in unserem Zuhause, in Unternehmen und in der Öffentlichkeit arbeiten, faszinieren die Menschen“, sagt Takayuki Ito, Präsident der International Federation of Robotics. „Da die Welt in der wir leben auf den menschlichen Körper zugeschnitten ist, liegt die Idee eines schnellen, universellen Helfers in der Produktion und bei Dienstleistungen auf der Hand. Ob und wann es aber zu einer massenhaften Nutzung von Humanoiden kommen wird, bleibt ungewiss. Nicht zu erwarten ist jedenfalls, dass Humanoide in Zukunft die derzeit auf dem Markt befindlichen Robotertypen ersetzen. Stattdessen werden sie bestehende Technologien ergänzen und erweitern.“

Einsatz von Humanoiden in den Regionen

In den Vereinigten Staaten arbeiten Tech-Unternehmen wie NVIDIA, Amazon und Tesla intensiv an KI- und Robotertechnologien. Neben der Finanzierung durch das Militär wird diese Entwicklung auch durch zahlreiche private Investitionen unterstützt. Das führt zu einer bedeutenden Start-up-Szene, die sich auf humanoide Roboter spezialisiert. Besonders groß ist das Interesse an Humanoiden in Branchen wie der Logistik und in der Fertigung. Dabei werden humanoide Roboter weniger als soziale Begleiter gesehen, sondern eher als Werkzeuge, die dabei helfen, Produktivität und Effizienz zu steigern. So liegt der Schwerpunkt verstärkt auf praktischen Anwendungen und weniger auf der Integration von Robotern in das tägliche soziale Leben.

In China nehmen die Humanoiden eine zentrale Stellung in der nationalen Robotik-Strategie ein. Die Regierung möchte in diesem Technologiebereich Kompetenz und globale Wettbewerbsfähigkeit unter Beweis stellen. Der Einsatzschwerpunkt liegt dabei im Dienstleistungssektor, beispielsweise für die Kundenbetreuung. Die Automatisierung von Produktionslinien in der Fertigung und der Einsatz von Humanoiden, um weniger von menschlichen Arbeitskräften abhängig zu sein, scheint nur auf zweiter Ebene wichtig zu sein. Kernelement der chinesischen Strategie ist der Aufbau einer skalierbaren Lieferkette für Schlüsselkomponenten.

Japan ist ein Pionier in der Entwicklung humanoider Roboter. Als frühes Beispiel wurde Hondas Asimo bereits im Oktober 2000 vorgestellt. Roboter werden in Japan eher als Gefährten, denn als bloße Werkzeuge gesehen. Humanoide Roboter wie Pepper und Palro sind demzufolge in erster Linie als Sozialroboter konzipiert und kommen in Bildungseinrichtungen, Geschäften und Altenpflegeeinrichtungen zum Einsatz. Diese Ausrichtung spiegelt die Nachfrage einer alternden Gesellschaft wider, mit der Japan konfrontiert ist. Ein wichtiger Schwerpunkt der Projekte liegt auf Robotern, die harmonisch mit Menschen zusammenleben können und als Teil der Gesellschaft akzeptiert sind. Führende Unternehmen wie Kawasaki entwickeln humanoide Roboter als eine Forschungsplattform.

In Europa wird auf die ethischen Implikationen von Robotik und KI besonderes viel Wert gelegt. Im Fokus stehen kollaborative Roboter, die im industriellen Umfeld mit Menschen zusammenarbeiten. Kernthemen sind die Verbesserung der Sicherheit und Effizienz und die Nachahmung menschlicher Fähigkeiten. Die Arbeitskraft von Menschen zu kompensieren, steht dagegen nicht im Fokus. Der Schwerpunkt liegt vielmehr auf einem menschenzentrierten Design und den sozialen und gesellschaftlichen Auswirkungen von Robotern. Die europäischen Unternehmen stehen dem Einsatz von Humanoiden generell eher zurückhaltend gegenüber, wenn es um die kurz- bis mittelfristigen Automatisierungsaufgaben im Fertigungs- und Dienstleistungssektor geht.

+++ Ein bahnbrechendes Robotik Start-up aus Deutschland ist NEURA-Robotics: Hier geht’s zu unserer Gründerstory von NEURA Robotics +++

Ausblick

Dank ihrer menschenähnlichen Geschicklichkeit und Anpassungsfähigkeit sind die Humanoiden prädestiniert, komplexe Aufgaben zu automatisieren, mit denen heutige Roboter durch herkömmliche Programmiermethoden Schwierigkeiten haben. Einen massenhaften Einsatz als universelle Haushaltshelfer dürfte es jedoch kurz- bis mittelfristig nicht geben.

Das POSITION PAPER Humanoid Robots - Vision and Reality von IFR gibt's hier zum freien Download

Kurz mal die Welt retten

Wie GreenTech-Start-ups aus dem DACH-Raum dazu beitragen, die Auswirkungen des Klimawandels zu mildern.

Ist es bereits zu spät, den Klimawandel aufzuhalten? Während diese Frage unablässig für hitzige Debatten sorgt, arbeiten Start-ups unermüdlich an Lösungen für die dringendsten Umweltprobleme. Die DACH-Region erlebt einen rasanten Anstieg von GreenTech-Start-ups, angetrieben durch technologische Innovationen und zunehmenden regulatorischen Druck. Dies zeigt u.a. das DACH GreenTech Software Mapping 2025 von Hi Inov und veranschaulicht, welche vielversprechenden Ansätze und Technologien die Zukunft des GreenTech-Ökosystems in Europa prägen.

Mapping der Herausforderungen und Lösungen

Das Mapping bietet einen umfassenden Überblick über die Softwarelösungen von GreenTech-Start-ups im DACH-Raum. Sie umfassen eine Vielzahl von Ansätzen, um den Anstieg der globalen Temperaturen einzudämmen und die damit einhergehenden wirtschaftlichen und gesellschaftlichen Herausforderungen zu bewältigen.

1. Messung und Optimierung des CO2-Fußabdrucks

Fortgeschrittene Techniken zur Datenerfassung und KI-gesteuerte Analysen helfen Organisationen, ihre Effizienz zu steigern und ihren CO-Fußabdruck zu reduzieren. Sie helfen Unternehmen, jährlich Emissionen von über 216.000 Tonnen CO-Äquivalenten zu vermeiden. Horizon­tale Plattformen bieten allgemeine Monitoring-Tools für branchen­übergreifende Messdienste. Vertikale Lösungen wie die für die Immobilienbranche maßgeschneiderte ESG-Datenplattform Deepki integrieren branchenspezifische Anforderungen.

2. Beschleunigung der Energiewende

Softwarelösungen spielen eine entscheidende Rolle bei der Optimierung der Standortauswahl für die Produktion erneuerbarer Energien, der vorausschauenden Wartung von Infrastruktur und der Verbesserung der Energiespeicherung. Sie können die Schwankungen in der Stromeinspeisung erneuerbarer Energien mindern und somit die Abhängigkeit von fossilen Brennstoffen reduzieren. Das Stuttgarter Start-up metergrid ermöglicht es beispielsweise Mieter*innen in Mehrfamilienhäusern, umweltfreundlichen Solarstrom zu nutzen, der im selben Gebäude produziert wird (mehr dazu in der StartingUp 01/25).

3. Förderung der Kreislaufwirtschaft und Ressourcenoptimierung

Digitale Lösungen erleichtern die Schonung von natürlichen Ressourcen durch intelligentes Ressourcenmanagement, indem sie die Planung und Nutzung von Ressourcen verbessern. Durch den Einsatz von KI lassen sich viele Prozesse optimieren, darunter Recycling, Landwirtschaft und Wassermanagement. So reduziert das Berliner Start-up Freshflow Abfall, indem es die Nachbestellung von frischen Lebensmitteln mit Machine Learning automatisiert und optimiert. Darüber hinaus verbinden digitale Markt­plätze Produzent*innen überschüssiger Ware mit potenziellen Abnehmer*innen, um Ressourcen effizierter zu nutzen.

4. Förderung von Nachhaltigkeitsinitiativen in Unternehmen

Unternehmen nutzen digitale Werkzeuge, um ihre Nachhaltigkeit über die regulatorischen Anforderungen hinaus zu verbessern. Zu den eingesetzten Lösungen zählen CO-Kreditbörsen, die es Organisationen ermöglichen, Emissionen durch strukturierte Märkte auszugleichen, und Mitarbeiterengagement-Plattformen, die die Teilnahme der Belegschaft an ESG-Initiativen fördern. Start-ups wie das Hamburger CarbonStack unterstützen Unternehmen bei der Erstellung von Nachhaltigkeitsberichten und dabei die relevanten Richtlinien einzuhalten.

Die Entwicklung von 2023 bis heute

Insgesamt zeigt das Mapping ein reiferes und strukturierteres GreenTech-Ökosystem, das Europas Position als Pionier in digitalen Klimaschutzlösungen stärkt. Die Entwicklung zwischen den Mappings aus den Jahren 2023 und 2025 verdeutlicht drei wichtige Trends:

1. Anstieg der Anzahl der angebotenen Softwarelösungen

Die steigende Nachfrage nach nachhaltigkeitsorientierten Innovationen in verschiedenen Branchen hat das Wachstum des GreenTech-Ökosystems beschleunigt und zu einem rasanten Anstieg der angebotenen Softwarelösungen geführt.

2. Regulatorisch getriebene Fortschritte

Aufgrund des zunehmenden regulatorischen Drucks wächst der Anteil der angebotenen Lösungen, die auf Compliance-Bedürfnisse wie CSRD, die Rückverfolgbarkeit von Produkten und transparente CO-Buchhaltung eingehen. Es werden zunehmend vertika­lisierte Monitoring-Tools entwickelt, um spezialisierte Datensätze und branchenspezifische Algorithmen zu erstellen.

3. Einfluss von generativer KI

Der Einsatz von generativer KI nimmt zu. Neue Anwendungsfälle im Bereich Nachhaltigkeit umfassen verbesserte Datenanalyse, automatisierte Com­pliance-Berichterstattung, sowie die Echtzeit-Optimierung von CO-Fußabdrücken und Ressourcenmanagement.

Fazit: Ein florierendes Ökosystem mit starker europäischer Führung

Der Klimawandel stellt eine immense Herausforderung dar, deren Bewältigung innovative technologische Lösungen erfordert. Das GreenTech Mapping 2025 verdeutlicht die führende Rolle Europas bei der Entwicklung dieser Lösungen und zeigt ein reiferes GreenTech-Ökosystem mit großer Dynamik. Durch den Einsatz fortschrittlicher Datenana­lysen, KI und Automatisierung sind Start-ups in der DACH­Region gut positioniert, um sowohl wirtschaftlichen als auch ökologischen Mehrwert zu schaffen. Sie werden Unternehmen und politischen Entscheidungsträger*innen dabei helfen, den Übergang zu einer nachhaltigeren Wirtschaft zu beschleunigen und die Folgen des Klimawandels einzudämmen.

Der Autor Dr. Wolfgang Krause leitet als Managing Partner das Deutschlandgeschäft des auf B2B-Digital­lösungen spezialisierten VC-Fonds von Hi Inov.

EU KI-Gesetz wird scharf gestellt

Diese Strafen für KI-Verstöße drohen ab dem 2. August 2025 – was Personalverantwortliche und Arbeitnehmende jetzt wissen und beachten müssen.

Das KI-Gesetz der Europäischen Union, die weltweit erste umfassende KI-Verordnung, erreicht am 2. August 2025 einen entscheidenden Meilenstein. Ab diesem Stichtag gelten für Unternehmen, Behörden und KI-Anbieter*innen in der EU zahlreiche zentrale Verpflichtungen, bei deren Nichteinhaltung Strafmaßnahmen eingeleitet und verhängt werden können. Was das für Unternehmen und ihre Mitarbeitenden bedeutet, erfährst du hier.

Der AI Act, der am 2. Februar dieses Jahres in Kraft getreten ist, schafft einen einheitlichen Rechtsrahmen für Künstliche Intelligenz (KI) in der EU. Zwar werden viele Regelungen erst 2026 wirksam, doch bereits am 2. August 2025 beginnt eine neue Phase, die sich auf drei Bereiche fokussiert:

  • Strafmaßnahmen bei Nichteinhaltung
  • Verpflichtungen für allgemeine General-Purpose-AI-Modelle (GPAI)
  • Aufbau von Aufsicht und Governance auf nationaler und europäischer Ebene

Strafen bis zu 35 Millionen Euro

Seit dem 2. Februar dieses Jahres sind KI-Systeme mit unannehmbaren Risiken verboten. Ab dem 2. August 2025 können zusätzlich nun Geldbußen für Verstöße gegen bereits bestehende Verpflichtungen verhängt werden, die bis zu 35 Millionen Euro oder 7 Prozent ihres gesamten Jahresumsatzes betragen können. Unternehmen müssen dazu beispielsweise sicherstellen, dass ihre Mitarbeitenden über KI-Kenntnisse verfügen. Die Europäische Union erwartet von ihren Mitgliedstaaten, dass sie eigene wirksame, verhältnismäßige und abschreckende Strafmaßnahmen festlegen. Dabei sollen die besonderen Umstände von KMUs und Start-ups berücksichtigt werden, um deren wirtschaftliche Lebensfähigkeit nicht zu gefährden.

Neue Verpflichtungen für Anbieter*innen von GPAI-Modellen

GPAI-Modelle, die ab dem 2. August 2025 in der Europäischen Union vermarktet werden, unterliegen gesetzlichen Verpflichtungen. Das Europäische Amt für Künstliche Intelligenz hat dazu am 10. Juli 2025 die endgültige Fassung der Verhaltenskodizes veröffentlicht. Anbieter*innen solcher GPAI-Modelle müssen unter anderem technische Dokumentationen erstellen, Urheberrechte beachten und Transparenz über die verwendeten Trainingsdaten sicherstellen.

GPAI-Modelle sind KI-Systeme mit besonders breitem Einsatzspektrum und sind darauf ausgelegt, eine Vielzahl von Aufgaben zu erfüllen. Sie werden mit riesigen Datenmengen trainiert und sind entsprechend vielseitig einsetzbar. Das bekannteste Beispiel sind große Sprachmodelle (Large Language Models, LLM), etwa das generative Sprachmodell GPT-4o, das in ChatGPT integriert ist. Für GPAI-Modelle, die bereits vor dem 2. August 2025 in der Europäischen Union auf dem Markt waren, gilt eine Übergangsfirst bis zum 2. August 2027.

Aufsicht und Governance

Die KI-Verordnung schafft einen Rahmen mit Durchführungs- und Durchsetzungsbefugnissen auf zwei Ebenen.

Auf nationaler Ebene muss jeder EU-Mitgliedstaat bis zum 2. August 2025 mindestens eine Marktüberwachungsbehörde sowie eine notifizierende Behörde benennen. Erstere ist für die Überwachung von KI-Systemen zuständig, letztere für die Notifizierung unabhängiger Konformitätsbewertungsstellen. Die Mitgliedstaaten müssen bis dem Stichtag Informationen zu den nationalen Behörden und deren Kontaktdaten veröffentlichen.

Auf EU-Ebene koordinieren das Europäische Amt für KI und der Europäische KI-Ausschuss die Aufsicht. Zusätzlich werden ein Beratungsforum und ein wissenschaftlicher Ausschuss aus unabhängigen Experten eingerichtet.

Was bedeutet das für Personalabteilungen und Arbeitnehmende?

Das KI-Gesetz hat direkte Auswirkungen darauf, wie KI in den Bereichen Rekrutierung, Performance-Management, Personalanalyse und Mitarbeitenden-Monitoring eingesetzt wird. Personalverantwortliche müssen sicherstellen, dass KI-Tools in diesen Bereichen transparent, fair und konform sind.

  • Fairness und Antidiskriminierung: KI-Systeme, die bei Einstellungs- oder Beförderungsentscheidungen eingesetzt werden, müssen nachvollziehbar und frei von Bias sein. Personalabteilungen sollten ihre Tools und Anbieter*innen regelmäßig überprüfen, um die Einhaltung der Vorschriften sicherzustellen.
  • Vertrauen und Transparenz: Mitarbeitende erhalten einen besseren Einblick, wie KI-Systeme ihre Arbeit beeinflussen, zum Beispiel bei der Einsatzplanung, Leistungsbewertung oder bei der Arbeitssicherheit. Personalabteilung können Vertrauen schaffen, indem sie offen kommunizieren, wie KI eingesetzt wird und wie die Daten der Mitarbeitenden geschützt werden.
  • Verantwortlichkeit von Drittanbieter*innen: Werden KI-Tools von Drittanbieter*innen genutzt, müssen Personalabteilungen sicherstellen, dass diese Anbieter*innen die Anforderungen an Transparenz und Dokumentation erfüllen. Verträge und Beschaffungsprozesse sollten entsprechend angepasst werden.
  • Training und Change Management: Mit stärkeren Regulierungen von KI wird die Personalabteilung eine Schlüsselrolle bei der Schulung von Führungskräften und Mitarbeitenden übernehmen. Ziel ist es, einen verantwortungsvollen Umgang mit KI zu fördern und ethische Standards in der Unternehmenskultur zu verankern.

Fazit

Anbieter*innen von GPAI-Modellen, die bereits vor dem 2. August 2025 auf dem Markt waren, haben bis zum 2. August 2027 Zeit, die neuen Vorschriften vollständig umzusetzen. Weitere Verpflichtungen für KI-Systeme mit hohem Risiko werden 2026 und 2027 folgen. Dieser Meilenstein spiegelt das Bestreben der EU wider, Innovationen zu fördern und gleichzeitig sicherzustellen, dass KI sicher, transparent und mit den europäischen Werten im Einklang steht. Damit rückt die Personalabteilung in den Mittelpunkt einer verantwortungsvollen Einführung von KI am Arbeitsplatz.

Der Autor Tom Saeys ist Chief Operations Officer bei SD Worx, einem international tätigen Dienstleistungsunternehmen im HR-Bereich.

„Österreich hat einen langen Atem – und das zahlt sich im Bereich Applied AI aus“

Als führende Standorte in Sachen Künstliche Intelligenz liegen die USA und Asien auf der Hand, doch auch in Österreich gibt es eine vielfältige AI-Landschaft. Welche Vorteile der Standort für künstliche Intelligenz mit sich bringt und welche Rolle dabei Applied AI spielt, weiß Clemens Wasner, Gründer von AI Austria und CEO der EnliteAI.

Clemens Wasner ist Gründer des österreichischen Verbandes für Künstliche Intelligenz, AI Austria und CEO des Wiener Venture Studios EnliteAI. Der studierte Informatiker arbeitete über ein Jahrzehnt in Asien, bevor er 2017 EnliteAI gründete.

Herr Wasner, Sie kennen die AI-Szene aus erster Hand. Wie gut ist Österreich im internationalen Vergleich aktuell aufgestellt, wenn es um Applied AI geht?

Gemessen an seiner Größe steht Österreich erstaunlich gut da. Unsere AI–Landscape verzeichnet mittlerweile über 450 Unternehmen, die aktiv mit KI arbeiten – nicht nur Start-ups, sondern auch klassische Industrieunternehmen, Dienstleister und der öffentliche Sektor. Gerade im Bereich der industriellen Anwendungen ist Österreich breit aufgestellt: Es gibt zahlreiche Corporates, die eigene Competence Center gegründet, Ausgründungen vorgenommen oder Lizenzmodelle für KI aufgebaut haben. Auch die Zahl der Inkubatoren und Corporate Venture Capitalisten ist beachtlich. Das Thema ist in der Realwirtschaft angekommen – und das nicht erst seit gestern. Bereits 2018 gab es hierzulande einen deutlichen Aufschwung. Im Bereich der Spitzenforschung sind wir ebenfalls stark: Mit drei sogenannten ELLIS-Hubs –  European Laboratory for Learning and Intelligent Systems – gehören wir zur europäischen Spitze, gemessen an der Größe des Landes.

Sie sprechen beim Blick auf Österreich oftmals vom „AI-Standort mit langem Atem“. Was genau meinen Sie damit und was macht aus Ihrer Sicht einen exzellenten Standort für AI-Start-ups aus?

Der „lange Atem“ ist positiv gemeint und beschreibt das, was Österreich im Bereich Forschung & Entwicklung auszeichnet: kontinuierliche Investitionen, strategischer Weitblick und langfristige Förderstrukturen. Die Steiermark war lange OECD-Spitzenreiter bei F&E-Ausgaben, Wien verfügt über eine dichte Forschungslandschaft. Das sind keine kurzfristigen Hypes, sondern über Jahrzehnte gewachsene Strukturen. Österreich verfügt zudem über eine differenzierte Förderarchitektur, die alle TRL-Stufen abdeckt – von der Grundlagenforschung bis zur Markteintrittsunterstützung. Auch Clusterstrukturen spielen eine Rolle: In Life Sciences etwa gibt es in Wien und Graz funktionierende Ökosysteme, in denen zunehmend auch KI eine Rolle spielt. Diese Verankerung ermöglicht Planbarkeit, die gerade in technologieintensiven Bereichen entscheidend ist.

Zu den Schlüsselfaktoren einen erfolgreichen Standorts zählen Infrastruktur, Talent Pool und Anwendungsmöglichkeiten. Wo sehen Sie hier derzeit die größten Hebel – und auch die größten Defizite – in Österreich?

Ein klarer Vorteil liegt in der Verfügbarkeit von Talenten: Wien zieht seit Jahren hochqualifizierte Developer aus dem osteuropäischen Raum an. Der AI-Fachkräftemangel ist hier weniger ausgeprägt als in anderen europäischen Hauptstädten. Hinzu kommt: Österreich bildet mehr AI-Absolventen aus, als die Wirtschaft derzeit absorbieren kann. Das schafft einen Bewerbermarkt, der gerade für Start-ups günstig ist. Auch Standortfaktoren wie Lebensqualität und erschwingliche Mieten machen zum Beispiel die Hauptstadt Wien attraktiv. Als Besonderheit sehe ich zudem den aktiven Zugang der Stadt: Wien versteht sich als First Client für KI-Anwendungen, etwa in der Analyse von Geodaten, IoT oder der Digitalisierung von Baueinreichprozessen. Hier ist wesentlich mehr Offenheit für politische Vergabe zu finden als in anderen Ländern. Weniger stark ist Wien in der Spitzenforschung vertreten, hier liegt Linz mit der JKU vorn. Aber man kann als kleines Land nicht alles abdecken – und sollte dort Schwerpunkte setzen, wo bestehende Stärken ausbaubar sind.

Was war der Gründungsimpuls für EnliteAI und wie ist Ihr Venture Studio heute aufgestellt?

Ich kam 2016 nach zehn Jahren in Asien zurück nach Österreich. In China und Japan war KI allgegenwärtig, ein regelrechter Hype. Zurück in Europa herrschte Funkstille – das war ein Kulturschock. Ich wollte dem Thema hierzulande Schub geben: 2017 gründete ich den Verband AI Austria und kurz darauf EnliteAI. Unsere Erkenntnis aus früheren Projekten zeigte, dass viele Unternehmen gute Ideen, aber keine Ressourcen zur Umsetzung hatten. Daraus entstand das Venture Studio: Wir entwickeln Prototypen gemeinsam mit Unternehmen und gründen darauf spezialisierte Start-ups. Aktuell sind wir 20 Personen und verfolgen zwei Themen – Detekt, das sich auf den Bereich Mobile Mapping spezialisiert hat, und ein weiteres im Stromnetzmanagement. Mit EnliteAI möchten wir künftig weitere Projekte unterstützen und bereiten dafür eine Dual-Entity-Struktur mit einem eigenen Fonds vor. Ziel ist es, das Modell professionell zu skalieren und Investoren direkt in die Spin-outs zu bringen.

Rechenleistung zählen zu den Schlüsselressourcen in der AI. Was braucht es aus Ihrer Sicht, damit europäische Standorte hier nicht dauerhaft in Abhängigkeit geraten?

Realistisch betrachtet: Die Abhängigkeit besteht bereits. Die großen Hyperscaler sind US-dominiert, ebenso Chips, Kommunikationstools, Social Networks. Europa muss in die digitale Souveränität investieren. Erste Schritte wie AI Factories sind wichtig, aber nicht ausreichend. Wir brauchen europäische Cloud-Anbieter, Chipproduktion auf europäischem Boden und eine nachhaltige Energiepolitik. Frankreichs KI-Boom basiert auf Atomstrom – weil er langfristig planbar ist. Diese Planbarkeit fehlt in vielen europäischen Ländern derzeit. Ohne Strom gibt es keine KI. Auch das zeigen Stimmen von Sam Altman, Elon Musk und anderen. Hier ist ein strategischer Paradigmenwechsel notwendig.

Sie sprachen bereits die vielfältige Landschaft von kleinen und mittleren Unternehmen in Österreich an, die offen für KI sind. Wie gut funktioniert das Matching zwischen Start-ups und klassischen Industrieunternehmen?

Österreich macht hier sehr viel richtig. Es gibt ein breites Netz an Förderinstrumenten – von der Österreichischen Forschungsförderungsgesellschaft FFG über die Austria Wirtschaftsservice bis hin zu regionalen Wirtschaftskammern. Zudem bietet Österreich eine Forschungsförderungsprämie an, bei der 14 Prozent der F&E-Ausgaben quasi mit einem Blankoschein gefördert werden können. Zudem organisieren viele Institutionen aktiv Matchmaking-Events, etwa im Rahmen von PreSeed-, AI-Adoption- oder Innovationsprogrammen. Hinzu kommt der Industry-Startup-Marktplatz mit mehreren Tausend registrierten Unternehmen. Auch Pitchings werden gefördert. Das Ziel ist stets, AI nicht nur in der Theorie zu belassen, sondern in die Realwirtschaft zu bringen. Trotzdem: Viele Unternehmen wissen noch immer nichts davon. Hier braucht es also noch mehr Aufklärung.

Welcher KI-Standort – in Österreich und darüber hinaus – hat Sie zuletzt positiv überrascht?

In Österreich ist Linz für mich der Hotspot schlechthin – die Kombination aus Spitzenforschung und erfolgreichem Technologietransfer ist dort besonders gut gelungen. International beeindruckt mich Twente in den Niederlanden: kein großer Name, aber mit klarer Strategie. Sie haben das Spin-out-Modell von Oxford und Cambridge adaptiert und konsequent umgesetzt – mit IP-Offices, Gründungsberatung und Infrastruktur für Start-ups. Ein weiteres Vorbild ist Heilbronn mit den Campus Founders: Sie haben, unterstützt durch die Dieter Schwarz Stiftung, einen Ort für Unternehmertum und Innovationen geschaffen und könnten Vorbild für viele europäische Regionen werden. Viele Stiftungen schaffen Parks oder Schlösser, aber wesentlich gewinnbringender wäre die Förderung von Entrepreneurship wie es in Heilbronn passiert statt Museumsstiftung. Europa braucht diese neue Denkweise.

Clemens Wasner, vielen Dank für das Gespräch.

Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin

“Digitalisierung ist kein Nice-to-have mehr, sondern strukturelle Voraussetzung für Wettbewerbsfähigkeit”

„Made in Steel. Built on Data.“ Mit diesem Leitsatz positioniert sich die EMR Dynamics GmbH als strategische Antwort auf die zunehmende Komplexität globaler Lieferketten – und auf die wachsenden Anforderungen an Geschwindigkeit, Transparenz und Resilienz in industriellen Wertschöpfungsnetzwerken.

Unter der Leitung von Emrullah Görsoy geht EMR Dynamics aus einem Berliner Familienunternehmen hervor, das seit 2005 als verlässlicher Partner für mechanische Komponenten in Europa etabliert ist. Nun markiert das Unternehmen den nächsten Entwicklungssprung der Unternehmensgeschichte: von der Fertigung zur Plattform.

Fragen dazu an Emrullah Görsoy, Managing Director at EMR:

Seit mehr als 20 Jahren seid ihr mit EMR am Markt. Man könnte sagen, ihr macht vieles richtig – Wie lautet euer Erfolgsrezept?

Unser Erfolgsrezept liegt in der konsequenten Weiterentwicklung. Wir haben uns nie auf bestehenden Strukturen ausgeruht, sondern das Unternehmen immer wieder neu gedacht – operativ, strategisch und technologisch. Besonders in Zeiten des Wandels war unser pragmatischer Unternehmergeist entscheidend. Dabei kombinieren wir mittelständische Robustheit mit einer agilen Denkweise – anpassungsfähig, resilient und wachstumsorientiert.

Zeitnah startet ihr mit eurer Neugründung EMR Dynamics am Markt. Was steckt dahinter?

EMR Dynamics ist unsere Antwort auf ein fragmentiertes Marktumfeld und wachsende Anforderungen an Geschwindigkeit, Transparenz und Resilienz in industriellen Lieferketten. Wir verbinden vertikal integrierte Fertigungskompetenz mit einer digitalen Prozessarchitektur – eine B2B-Plattform für die intelligente Steuerung und Vermittlung industrieller Produktions- und Beschaffungsprozesse. Das Ziel: maximale Skalierbarkeit, reduzierte Time-to-Market und durchgängige Prozesssicherheit für unsere Kunden.

Damit schlagen wir die Brücke zwischen Mittelstand und digitaler Ökonomie – resilient, effizient und kundennah. Wir wollen EMR Dynamics als Plattformmarke im industriellen Mittelstand etablieren – mit eigener Fertigung, digitalem Backbone und strategischer Nähe zum Kunden.

An wen richtet sich euer Angebot?

Unsere Zielgruppen sind OEMs, Tier-1-Zulieferer und Systempartner aus hoch regulierten und qualitätskritischen Industrien – etwa Rail, Aerospace, Defense oder Industrial Tech. Wir liefern nicht nur Komponenten, sondern vernetzen Prozesse, sichern Supply Chains ab und schaffen Plattformlösungen für beschleunigte Wertschöpfung – alles aus einer Hand.

Wie unterscheidet sich euer Angebot von klassischen Fertigungsdienstleistern?

Wir sind kein reiner Teilelieferant. Wir verstehen uns als Lösungsanbieter entlang der industriellen Wertschöpfung – von Co-Engineering und Prototyping über skalierbare Serienfertigung bis hin zur integrierten Lieferkette. Durch die Plattformlogik können wir unsere Prozesse mit denen unserer Kunden synchronisieren und so Time-to-Market und Lieferperformance signifikant verbessern – gerade für komplexe und hochqualifizierte Baugruppen.

Seit mehreren Jahren bist du Geschäftsführer des Unternehmens EMR Industrial. Wie fühlt es sich an, als Young Professional bereits in einer solchen verantwortungsvollen Rolle zu sein?

Herausfordernd, aber erfüllend. Ich hatte das Privileg, früh Verantwortung zu übernehmen – besonders während der Transformation von EMR in der Pandemie. Die Krise 2020 hat uns gezwungen, unser gesamtes Geschäftsmodell zu pivotieren. Diese Erfahrung hat mich geprägt: Strategisch zu denken, unternehmerisch zu handeln und nie den Kontakt zur operativen Realität zu verlieren.

Welche Bedeutung hat die Digitalisierung aus deiner Sicht für den Mittelstand und was können sich Mittelständler von Start-ups abschauen?

Digitalisierung ist kein Nice-to-have mehr, sondern strukturelle Voraussetzung für Wettbewerbsfähigkeit. Der Mittelstand kann von Start-ups besonders eines lernen: den Mut, Prozesse radikal neu zu denken – und den Fokus auf Geschwindigkeit, Automatisierung und User Experience.

Emrullah Görsoy, Danke für die Insights

5 Tipps für GPT-Sichtbarkeit im Netz

Warum klassisches SEO allein nicht mehr ausreicht und wie Unternehmen für die KI-Antworten der GPT-Modelle sichtbar werden.

Die Spielregeln der digitalen Sichtbarkeit werden gerade neu geschrieben – und die Unternehmen müssen sich neu aufstellen. Denn während viele Unternehmen ihre Strategien noch immer ausschließlich auf Google-Rankings und SEO-Kriterien ausrichten, verlagert sich die digitale Aufmerksamkeit längst in Richtung KI: Sprachmodelle wie ChatGPT, Claude oder Gemini ersetzen zunehmend die klassische Suche. Sie liefern keine Trefferlisten mehr, sondern direkte, aufbereitete Antworten – oft mit konkreten Empfehlungen und Verlinkungen. Für Marken, Produkte und Unternehmen wird es damit entscheidend, in diesen zusammengefassten Antworten stattzufinden.

Suchmaschinen waren gestern das führende Element in der Sortierung von Wissen im Netz und vor allem das Google-Ranking war entscheidend für die Sichtbarkeit von Informationen und Seiten. In Zukunft entscheiden dagegen Sprachmodelle darüber, welche Inhalte gesehen, zitiert und empfohlen werden. Und wer in diesen Systemen nicht genannt wird, verliert den direkten Draht zur Zielgruppe.

Diesen Paradigmenwechsel vom Google-Ranking zur Antwortlogik hat die SMAWAX, die auf Strategieberatung spezialisierte Agentur der Smarketer Group, erstmals systematisch im Rahmen eines Whitepapers analysiert (s. Link am Ende des Beitrags). Die Expert*innen erklären dabei detailliert, wie GPT-Modelle Inhalte auswählen – und welche Inhalte von den Systemen überhaupt referenziert werden dürfen. Die zentrale Erkenntnis: Suchmaschinenoptimierung nach alten Regeln greift zu kurz, ist aber weiterhin die Sichtbarkeitsgrundlage. Denn Sprachmodelle wie ChatGPT denken nicht in Keywords und Rankings, sondern in semantischen Relevanzräumen, Entitätenbeziehungen und struktureller Klarheit.

Inhalte müssen modular und semantisch präzise sein – doch das reicht nicht

Es geht nicht mehr um Top-Rankings – es geht darum, die richtige Antwort zu sein. Wir müssen SEO neu denken – als Schnittstelle zwischen Struktur, Relevanz und maschinellem Verstehen. Inhalte müssen dazu maschinenlesbar, modular aufgebaut und semantisch präzise sein. Nur dann haben Unternehmen eine Chance, in den Empfehlungslogiken von Claude, GPT & Co. aufzutauchen.

Besonders überraschend ist dabei aber, dass viele Unternehmen in GPT-Antworten zwar durchaus latent präsent, aber nicht sichtbar sind. Der Grund hierfür sind unscharfe Entitäten, fehlende „About“-Seiten, keine Verankerung in externen Quellen wie Wikidata, Trustpilot oder LinkedIn. Die Folgen wirken sich negativ auf die Marken aus und sorgen für Fehlinformationen: KI-Modelle verwechseln Marken, halluzinieren Funktionen oder verschweigen relevante Angebote. Halluzinationen sind in Wahrheit ein strategischer Hinweis auf Unsichtbarkeit. Wenn GPT ein Produkt falsch beschreibt oder dich mit einem Mitbewerber verwechselt, zeigt das: Deine Inhalte sind zwar irgendwo im Modell – aber nicht stabil genug verankert, um korrekt genannt zu werden.

Fünf konkrete Hebel für bessere GPT-Sichtbarkeit

Diese praxisnahe Handlungsempfehlungen können Unternehmen sofort umsetzen können – unabhängig davon, ob sie im B2B- oder B2C-Bereich aktiv sind.

1. Entitäten definieren: Jede Marke braucht heute eine kanonische „About“-Seite, ergänzt um ein Wikidata-Profil, semantische Markups und gleiche Namensverwendungen auf Plattformen wie LinkedIn oder Handelsregister.

2. Aktualität signalisieren: GPT-Modelle bevorzugen Inhalte mit klaren Update-Daten (z.B. dateModified). Ohne erkennbaren Pflegezustand gelten Inhalte als veraltet – und werden ausgefiltert.

3. Bing wird zum Gateway: Weil GPT seine Websuche auf Bing stützt, ist dessen Indexierung entscheidend. Wer dort nicht sauber auffindbar ist, existiert in GPT-Antworten nicht.

4. Content chunkbar machen: Inhalte sollten nicht mehr aus langen Fließtexten bestehen, sondern in modularen Blöcken mit H2-Strukturen, Listen und Zwischenfazits aufgebaut sein.

5. Externe Signale einbinden: Erwähnungen auf Trustpilot, Reddit oder in der Fachpresse stärken die semantische Autorität – und erhöhen die Chance, von Sprachmodellen zitiert zu werden.

Fazit

Die neue Sichtbarkeit entsteht durch das, was das Modell nicht selbst erzeugen kann – sie entsteht also nicht über Rankings, sondern über Relevanzräume. Wer auf Standard-Content setzt, wird paraphrasiert oder übergangen. Wer dagegen einzigartigen, strukturierten und technisch klaren Content liefert, wird empfohlen.

Zum Weiterlesen: Das Whitepaper steht zum kostenlosen Download bereit unter www.smawax.com/whitepaper-ki-sichtbarkeit

KI clever eingesetzt: Können deutsche Entwickler ihre App-Ideen mit Vibe Coding umsetzen?

Wie Vibe Coding, eine neue KI-gestützte Methode der App-Entwicklung, es heute deutlich einfacher macht, aus einer Idee ein funktionierendes digitales Produkt entstehen zu lassen.

Die Zeiten, in denen man für die Umsetzung einer App monatelang ein Entwicklerteam zusammenstellen, riesige Budgets planen und unzählige Meetings überstehen musste, scheinen langsam zu verblassen. Vibe Coding, eine neue KI-gestützte Methode der App-Entwicklung, macht es Gründern und kreativen Köpfen in Deutschland heute deutlich einfacher, aus einer Idee ein funktionierendes digitales Produkt entstehen zu lassen.

Was steckt hinter Vibe Coding?

Vibe Coding nutzt künstliche Intelligenz, um auf Basis einfacher Sprache Code zu erzeugen. Statt eine App Zeile für Zeile zu programmieren, beschreibt man, was sie können soll. Die KI wandelt diese Wünsche in Code um, der sich dann weiter anpassen und verfeinern lässt. Anders als bei klassischen No-Code-Plattformen entstehen keine bloßen Baukastenlösungen, sondern anpassbarer, individuell nutzbarer Code.

Im Unterschied zu Low-Code-Ansätzen braucht es keine aufwendige UI und keine grafische Umgebung, in der man mühsam Komponenten zusammensetzt. Stattdessen genügt es, der KI präzise zu erklären, welches Ergebnis angestrebt wird. Das spart nicht nur Zeit, sondern eröffnet auch Menschen ohne tiefgehendes Technikverständnis ganz neue Möglichkeiten.

Aktuell eignet sich dieser Ansatz besonders für die Entwicklung von Prototypen, Minimum Viable Products und überschaubaren Business-Apps. Wer dagegen komplexe Anwendungen mit tiefen Backend-Strukturen, Hochsicherheitsanforderungen oder extrem hoher Nutzerlast plant, stößt mit Vibe Coding derzeit noch an natürliche Grenzen. Doch für den ersten Schritt in die App-Welt ist dieses Werkzeug so vielversprechend wie kaum ein anderes.

Wie KI-basierte Entwicklung neue Möglichkeiten für Gründer eröffnet

In der Praxis bedeutet das: Was früher ein ganzes Entwicklerteam beschäftigt hätte, kann heute oft in wenigen Tagen oder sogar Stunden entstehen. Vibe Coding verkürzt die Entwicklungszeiten deutlich, die ersten funktionsfähigen Entwürfe stehen schneller zur Verfügung als je zuvor.

Nicht zu unterschätzen ist dabei auch die finanzielle Seite. Wo man früher fünfstellige Summen investieren musste, genügt heute oft ein Bruchteil davon, um einen ersten lauffähigen Prototypen zu testen. Damit wird der Einstieg in die App-Entwicklung auch für Gründer ohne Tech-Hintergrund realistischer. Kein Zwang mehr, einen CTO an Bord zu holen oder teure Agenturen zu engagieren.

Gerade in Deutschland, wo Gründungsteams häufig an fehlender Entwicklerkapazität scheitern, eröffnet diese Entwicklung eine völlig neue Dynamik. Wer eine gute Idee hat, kann sie dank Vibe Coding sehr viel leichter in die Realität umsetzen. Das fördert die Innovationskultur und macht Platz für mehr mutige Experimente.

Ein Beispiel, das hier besonders hervorsticht, ist die Founders Foundation in Ostwestfalen-Lippe. Mit gezielten Programmen und Workshops unterstützt sie Gründerinnen und Gründer dabei, KI-gestützte Methoden sinnvoll einzusetzen und so eigene digitale Produkte schneller auf die Straße zu bringen. Genau solche Impulse tragen dazu bei, dass sich der Trend immer stärker durchsetzt.

Welche deutschen Start-ups zeigen bereits, was mit KI und No-Code möglich ist?

Dass das alles keine Theorie mehr ist, sondern in deutschen Gründungszentren längst gelebt wird, zeigen einige aktuelle Beispiele sehr anschaulich. Leaping AI aus Berlin etwa entwickelt Voicebots, die im Kundenservice 70 Prozent aller Anfragen automatisiert beantworten. Eine Anwendung, die ohne moderne KI-Tools in dieser Geschwindigkeit und Qualität wohl kaum möglich wäre.

Auch qru aus Stuttgart beweist, was möglich ist. Mit ihren Videomarketing-Tools, die auf einem cleveren Mix aus Low-Code und KI basieren, können selbst kleinere Unternehmen ihre Marketingprozesse automatisieren und professionell gestalten, ohne dafür eine eigene IT-Abteilung zu benötigen.

Ein drittes Beispiel: Paul’s Job, ein Berliner Startup, das HR-Prozesse mit agentischer KI unterstützt. Recruiting und Personalverwaltung laufen dort in weiten Teilen automatisiert, was Gründern wie Personalabteilungen jede Menge Zeit und Nerven spart.

Diese und ähnliche Projekte zeigen deutlich, dass Vibe Coding und vergleichbare Methoden längst ihren Weg in die praktische Nutzung gefunden haben. Die Technologie entwickelt sich dabei so schnell weiter, dass immer mehr Gründer den Mut fassen, ihre App-Ideen mit solchen Ansätzen umzusetzen.

Warum die App-Entwicklung perspektivisch günstiger wird

Ein Blick auf die allgemeine Marktentwicklung macht schnell deutlich: App-Entwicklung wird in den kommenden Jahren noch günstiger und einfacher werden. Mit jedem Fortschritt der KI sinken die Kosten für die technische Umsetzung, gleichzeitig steigen die Möglichkeiten, individualisierte Lösungen zu entwickeln.

Das hat Folgen, insbesondere für kleinere und spezialisierte Anbieter. Wo früher nur große Unternehmen eigene Apps auf den Markt bringen konnten, öffnet sich der Zugang nun auch für kleinere Player. Gerade in Nischenmärkten entstehen so neue Chancen.

Ein besonders interessantes Feld ist aktuell der Gambling-Sektor. Lange Zeit galten die hohen Entwicklungskosten als Einstiegshürde für viele Anbieter. Inzwischen zeigt sich jedoch, dass speziell in diesem Bereich vermehrt Apps auf den Markt kommen, weil die technische Umsetzung dank KI-Tools deutlich günstiger geworden ist.

Aber nicht nur im Glücksspiel-Markt tut sich etwas. Health und Fitness, E-Learning, Content Creation sowie regionale Dienstleistungen profitieren in ähnlicher Weise von den neuen Möglichkeiten. Über Smartphones und Tablets gelangen viele dieser Lösungen direkt zu den Nutzern und ermöglichen eine viel engere Bindung als klassische Webanwendungen.

Wo klassische Entwicklerkompetenz weiterhin unverzichtbar bleibt

Natürlich hat auch Vibe Coding seine Grenzen. Gerade wenn es um anspruchsvolle Architektur, komplexe Backend-Systeme oder hochskalierbare Anwendungen geht, kommt man ohne erfahrene Entwickler nach wie vor nicht aus.

KI generiert Code auf Basis von Wahrscheinlichkeiten, was in der Praxis immer wieder zu fehlerhaften oder ineffizienten Strukturen führen kann. Qualitätssicherung, Testing und fundiertes Architekturwissen bleiben deshalb unerlässlich, sobald eine App mehr sein soll als ein einfaches MVP.

Auch bei Themen wie Performance, Sicherheit und Datenschutz kann KI derzeit noch nicht mithalten. Hier braucht es das Know-how klassischer Entwickler, um Anwendungen stabil und vertrauenswürdig zu machen.

Gerade für Anwendungen im Finanz- oder Gesundheitsbereich, wo hohe regulatorische Standards erfüllt werden müssen, bleibt der menschliche Faktor entscheidend. Vibe Coding ist ein fantastisches Werkzeug für den schnellen Einstieg und die Umsetzung erster Ideen, doch auf dem Weg zu einem ausgereiften Produkt wird klassisches Engineering weiterhin eine tragende Rolle spielen.

Vibe Coding bringt frischen Wind in die App-Entwicklung

Vibe Coding verändert die Art, wie in Deutschland Apps entstehen, in rasantem Tempo. Prototypen und erste marktfähige Tools lassen sich heute so schnell und günstig umsetzen wie nie zuvor. Für viele Gründer ohne Tech-Hintergrund eröffnen sich dadurch Möglichkeiten, die es vor wenigen Jahren schlicht nicht gab.

Die Beispiele aus der Startup-Szene zeigen eindrucksvoll, wie die neuen Werkzeuge bereits eingesetzt werden. Gleichzeitig bleibt klar: Für echte Skalierung, Sicherheit und Performance führt an klassischem Entwicklerwissen kein Weg vorbei.

Die Zukunft gehört wahrscheinlich zu einem hybriden Ansatz, bei dem KI als mächtiges Assistenzwerkzeug fungiert und Entwickler sich auf das konzentrieren, was KI noch nicht zuverlässig beherrscht. So entsteht Raum für mehr Innovation, mehr mutige Ideen und letztlich mehr spannende Apps. Und genau das dürfte der deutschen Tech-Szene mehr als guttun.

Münchner Scale-up Wemolo erreicht Break-even

Mit KI zur Profitabilität: Das 2019 gegründete Münchner Tech-Scale-up Wemolo, der "schrankenlose Parkraumspezialist", verzeichnet nach eigenen Angaben ein durchschnittliches Jahreswachstum von 280 Prozent, ist profitabel und verwaltet mehr als 255.000 Stellplätze in Europa.

Die digitale Transformation von Parkplätzen birgt großes Potenzial – vor allem, wenn sie nicht nur Schranken und Tickets eliminiert, sondern neue Geschäftsmodelle erschließt. In einem europäischen Markt für automatisierte Parksysteme, der auf 50 Milliarden Euro geschätzt wird, hat sich das Münchner Unternehmen Wemolo innerhalb kürzester Zeit in die erste Liga gearbeitet.

Mit einem Jahresumsatz von rund 40 Millionen Euro im Jahr 2024 und einer positiven EBIT-Marge im ersten Quartal 2025 hat das Scale-up trotz des signifikanten Wachstums die Gewinnzone erreicht. Die jährliche Wachstumsrate betrug seit Gründung 2019 durchschnittlich 280 Prozent (CAGR), was Wemolo laut Deloitte zu einem der am schnellsten wachsenden Tech-Unternehmen Deutschlands macht. Nach mehreren Finanzierungsrunden mit insgesamt rund 30 Millionen Euro (650.000 € Pre-Seed, 4,7 Mio. € Seed, 15 Mio. € Series A und zuletzt 10 Mio. € Growth Financing durch Partner wie die CIBC Innovation Banking) untermauert Wemolo damit die Attraktivität digitaler Parklösungen als Wachstumsbranche.

“Wir haben unsere Skalierungsphase genutzt, um parallel die Entwicklung unserer Technologie zu beschleunigen und rasch Marktanteile in fünf europäischen Ländern zu gewinnen”, sagt Wemolo-Mitgründer und CEO Dr. Yukio Iwamoto. Zu den Investor*innen zählen neben den strategischen Partnern Armira Growth und henQ auch die Flix Founders (Gründerteam des Mobilitätsanbieters Flix), wobei Jochen Engert dem Unternehmen als Beirat zur Seite steht.

"Dass sich Wemolo nach vergleichsweise kurzer Zeit ins Plus gearbeitet hat, ist das Ergebnis unseres kapitaleffizienten Wachstumskurses - mit deutlich weniger Investitionskapital als bei vergleichbaren Tech-Unternehmen. Unser KI-basiertes System liefert für Immobilieneigentümer, Asset-Manager, Einzelhandel und Kommunen nicht nur digitale Parklösungen, sondern auch wertvolle Daten für strategische Geschäftsentscheidungen", so Jochen Engert.

Vom Campus-Projekt zur Digitalplattform

Ursprünglich im Juli 2019 aus einem Projekt der UnternehmerTUM entstanden, betreibt Wemolo heute KI-basierte Kamerasysteme zur Kennzeichenerfassung und Abrechnung an über 3.000 Standorten in fünf Ländern. Täglich erfasst das Unternehmen mehr als zwei Millionen Parkvorgänge digital und wickelt diese ab. Das Unternehmen beschäftigt aktuell rund 250 Mitarbeitende und verwaltet insgesamt 255.000 Stellplätze – von Supermärkten und zentralen Parkhäusern über Krankenhäuser bis hin zu Freizeitanlagen wie Skigebieten und Badeseen.

"Unsere Profitabilität basiert nicht auf Kostendiät, sondern auf nachhaltiger Skalierung: mehr Volumen bei stabilen Fixkosten, bessere Flächenauslastung und immer wertvollere Daten-Assets für unsere Kunden", erklärt CEO und Mitgründer Jakob Bodenmüller. "Dank unserer KI-basierten Plattform können wir sehr schnell auf Marktanforderungen reagieren und unsere Lösung kontinuierlich weiterentwickeln."

Geschäftsmodell mit messbarem Mehrwert für Betreiber*innen

Das Kernprinzip: Mithilfe KI-basierter Computer Vision werden Ein- und Ausfahrten erfasst, was Schranken, Tickets, Parkscheiben und vor allem kostenintensives Personal vor Ort überflüssig macht. Wemolo bietet verschiedene Module für die Parkraumdigitalisierung - von der Überwachung kostenfreier Flächen bis zu volldigitalen Bezahlsystemen, die auf die jeweiligen Kund*innenanforderungen angepasst werden können. Die intelligente Plattform ermöglicht nicht nur die effiziente Bewirtschaftung von Parkraum und reibungslose Nutzer*innenerlebnisse, sondern liefert auch wertvolle Daten für optimierte Geschäftsentscheidungen.

“Wir liefern anonymisierte, aber hochgradig aussagekräftige Daten zur Flächennutzung”, erklärt CPTO und Mitgründer Bastian Pieper. “Ein Beispiel: Durch die effektive Vermeidung von Fremdparkern konnte einer unserer Lebensmittelkunden die Verfügbarkeit seiner Kundenparkplätze deutlich erhöhen. Das Ergebnis: Ein messbarer Anstieg des Filialumsatzes, der bei typischen Margen des Lebensmitteleinzelhandels eine Gewinnsteigerung im mittleren fünfstelligen Bereich pro Jahr ermöglicht.”

“Bei gewerblichen Immobilienprojekten ermöglichen unsere präzisen Nutzungsdaten eine optimierte Stellplatzdimensionierung, was für Investoren zu signifikanten Einsparungen bei Tiefgaragen-Investitionen führt und die Gesamtrendite der Immobilie verbessert”, ergänzt Pieper.

Wachstumsfinanzierung strategisch eingesetzt

Den Break-even wertet das Management als Bestätigung des Geschäftsmodells, aber auch als Signal des wachsenden Bedarfs am Markt. “Wir merken, dass immer mehr Unternehmen und Immobilieneigentümer aktiv nach einer unkomplizierten, verlässlichen Lösung suchen, um ihre Parkflächen zu digitalisieren – und zugleich relevante Daten zu erheben. Das Thema steht weiterhin am Anfang. Wir wollen Wemolo zum stärksten Anbieter auf dem Feld der smarten Parklösungen ausbauen”, sagt Iwamoto.

“Wir verfolgen bei unserer Technologieentwicklung einen hybriden Ansatz”, erklärt Pieper. “Die entscheidenden Komponenten – unsere custom-trainierte KI und die zentrale Softwareplattform – entwickeln wir komplett inhouse, während wir Spezialkomponenten wie Bezahlautomaten nach unserem Design in Deutschland fertigen lassen.”

“Wir setzen auf robuste Industrial-Grade-Hardware, auf der unsere speziell trainierte KI läuft, um jedes Fahrzeug unter allen Wetterbedingungen zuverlässig zu erfassen. Diese Kombination aus eigener Software-Expertise und gezielter Hardware-Integration ermöglicht uns viel schnellere Innovationszyklen als bei traditionellen Parksystembetreibern oder reinen Software-Anbietern”, führt Pieper fort. “Ähnlich wie Tech-Vorreiter aus dem Silicon Valley bringen wir neue Features und KI-Optimierungen in Wochen statt Quartalen zur Marktreife.”

Expansion und Herausforderungen des Wachstums

Wemolo ist bereits in fünf europäischen Ländern aktiv, darunter Deutschland, Österreich, Schweiz, Polen und Italien. Für 2025 plant das Unternehmen, seine digitalen Bezahllösungen in diesen und weiteren europäischen Märkten auszubauen. Dabei setzt das Scale-up auf ein Netzwerk aus strategischen Kooperationen mit Lebensmitteleinzelhändlern, Immobilienentwicklern und kommunalen Einrichtungen.

“Die klassischen Schrankenparksysteme sind in vielen Regionen noch Standard, aber der Markt wandelt sich rapide”, sagt Bodenmüller. “Unser digitales Konzept steigert den Verbraucherkomfort, die Wirtschaftlichkeit von Immobilien und erfüllt ESG-Anforderungen.”

Die größten Herausforderungen beim weiteren Wachstum sieht das Management vor allem in der unterschiedlichen Regulierung zur Kameraüberwachung in den europäischen Ländern sowie in der Akzeptanz schrankenloser Systeme bei traditionell orientierten Betreibern. “Mit unserer DSGVO-konformen Technologie und messbaren Kostenvorteilen durch den Wegfall wartungsintensiver Schranken und Ticketsysteme überzeugen wir den Markt”, betont Pieper.

Ambitionierte Ziele in einem wachsenden Markt

Vor dem Hintergrund der Profitabilität plant Wemolo nun den nächsten Wachstumsschritt. “Wir sind im digitalen Parksegment bereits Marktführer in Europa und wollen zum absolut stärksten Provider werden”, sagt Iwamoto. “Dass wir jetzt bereits profitabel sind, verschafft uns die nötige Unabhängigkeit, um in Technologie, Teams und Expansion zu investieren, ohne dabei von externem Kapital abhängig zu sein." Branchenexperten prognostizieren für den europäischen Markt digitaler Parksysteme ein anhaltend starkes Wachstum. Denn bislang gelten weniger als 25 Prozent des auf rund 50 Milliarden Euro geschätzten Gesamtmarktes als technologisch modernisiert – etwa durch kamerabasierte Zugangssysteme, automatisierte Bezahlprozesse oder intelligente Flächenanalysen.

KI-Übergangsphase: Fluch und Segen

Zwischen Wundermaschine und Blackbox – Warum wir gerade in einer KI-Übergangsphase leben und was das generell für das Marketing bedeutet.

Künstliche Intelligenz (KI) verändert gerade in rasantem Tempo unsere Welt. Sie automatisiert Prozesse, entlastet Teams, liefert Analysen in Echtzeit und ermöglicht einen bisher nicht gekannten Grad an Personalisierung. Wer heute im Marketing arbeitet, kommt an KI nicht mehr vorbei – sei es beim Texten von Werbebotschaften, beim Targeting, in der Bildgenerierung oder der Erfolgsmessung.

KI verspricht Effizienz, Präzision und neue kreative Möglichkeiten. Doch die Euphorie wird zunehmend begleitet von einer neuen, ernüchternden Erfahrung: Künstliche Intelligenz kann auch Nutzererlebnisse verschlechtern, Prozesse intransparent machen – oder gar ganze Geschäftsmodelle gefährden. Der technologische Fortschritt ist zweifellos da, doch gesellschaftlich, wirtschaftlich und kulturell befinden wir uns noch mitten in einer Übergangsphase. Und das birgt Risiken – nicht nur für Plattformen, sondern auch für Unternehmen, die sie nutzen.

Beispiel Pinterest: Wenn der Algorithmus plötzlich entscheidet

Ein aktuelles Beispiel liefert Pinterest: Die visuelle Such- und Inspirationsplattform setzt verstärkt auf KI, um Inhalte effizient zu kategorisieren, Hassrede zu erkennen, urheberrechtlich geschützte Werke zu markieren oder Spam zu unterbinden. Was auf dem Papier sinnvoll und zukunftsgerichtet klingt – ein moderner „Content Safety Stack“ mit automatisierter Moderation –, hat in der Praxis zahlreiche Creator*innen und Unternehmen auf dem falschen Fuß erwischt.

Accounts wurden gelöscht, Pins blockiert oder ganze Seiten unsichtbar gemacht – oft ohne erkennbare Begründung. Was ist passiert? Die KI-Modelle bei Pinterest wurden darauf trainiert, problematische Inhalte automatisiert zu erkennen und Plattformregeln durchzusetzen. Doch wie in vielen KI-Systemen liegt der Teufel im Detail: Die Modelle sind noch nicht präzise genug, um zwischen legitimen und grenzwertigen Inhalten zuverlässig zu unterscheiden – vor allem in einem visuellen Umfeld wie Pinterest. Besonders problematisch wird es, wenn Nutzer*innen keine Möglichkeit haben, die Entscheidungen nachzuvollziehen oder effektiv dagegen vorzugehen.

Für Unternehmen, die Pinterest als Marketingplattform nutzen, ist das ein unkalkulierbares Risiko. Wer auf Sichtbarkeit und Reichweite angewiesen ist, kann es sich kaum leisten, dass automatisierte Systeme ohne Vorwarnung Inhalte sperren. Der Vertrauensschaden ist enorm.

Im Spannungsfeld der KI-Nutzung

Dieser Fall steht exemplarisch für ein zentrales Spannungsfeld der KI-Nutzung: Auf der einen Seite die große Hoffnung auf Automatisierung, Kostenersparnis und Kontrolle – auf der anderen Seite die Realität einer noch nicht vollständig ausgereiften Technologie, die häufig wie eine Blackbox agiert. Für Nutzer*innen bedeutet das: weniger Transparenz, weniger Kontrolle, mehr Frustration. Ähnliche Phänomene beobachten wir auch bei großen Social-Media-Plattformen wie Meta oder TikTok. Auch hier sorgen KI-basierte Moderationssysteme regelmäßig für Unmut – sei es durch falsch erkannte Verstöße, Einschränkungen der Reichweite oder Verzögerungen im Kundenservice, der durch automatisierte Antworten ersetzt wurde. Dabei geht es nicht um generelle Ablehnung von KI – sondern um die Art und Weise, wie sie implementiert und kommuniziert wird.

Gute KI ist unsichtbar – weil sie funktioniert

Das Marketing der Zukunft soll nicht nur effizient, sondern muss auch verantwortungsvoll sein. Es wird davon abhängen, wie gut Unternehmen die Balance finden zwischen Automatisierung und menschlicher Kontrolle. Zwischen der Verlockung, Prozesse zu beschleunigen, und der Notwendigkeit, Vertrauen zu erhalten. Gute KI ist unsichtbar – weil sie funktioniert. Sie analysiert, aber entscheidet nicht alleine. Zukunftsfähiges Marketing ist also geprägt von einer Kombination aus technologischer Intelligenz und menschlicher Relevanz. KI, Automatisierung und Datenanalyse ermöglichen eine bisher unerreichte Präzision: Zielgruppen werden individueller angesprochen, Inhalte in Echtzeit ausgespielt und Customer Journeys automatisiert optimiert. Personalisierung ist dabei kein Zusatz mehr, sondern Standard.

Gleichzeitig verändern sich die Erwartungen der Konsument*innen: Sie wollen authentische Marken, klare Haltung, Datenschutz und echte Mehrwerte – keine leeren Werbeversprechen. Deshalb wird Marketing künftig nicht nur effizient, sondern auch ethisch und wertebasiert sein müssen. Vertrauen wird zur zentralen Währung. Auch deshalb ist das Marketing der Zukunft vor allem Inhouse zu verorten. Agenturen befinden sich auf dem absteigenden Ast – sie sind teuer und liefern nicht die Ergebnisse, die Unternehmen und Marken wirklich benötigen. Zu dieser Entwicklung gehört auch, dass Inhouse-Marketing-Verantwortliche umfassend geschult werden müssen, damit sich der Einsatz von KI maximal einfach gestaltet und gleichzeitig äußerst produktiv ist.

KI ist weder Fluch noch Segen – sie ist ein mächtiges Werkzeug, das mit Bedacht eingesetzt werden muss. Wer KI einfach laufen lässt, riskiert Vertrauensverluste. Wer sie aber erklärt, einbettet und begleitet, kann gewinnen – an Effizienz, Qualität und Glaubwürdigkeit. Das Marketing der Zukunft ist nicht einfach KI-gesteuert. Es ist menschenzentriert – mit KI als starkem, aber verantwortungsbewusstem Assistenten.

Der Autor Bastian Sens gründete Sensational Marketing im Jahr 2010 – zunächst als klassische Onlinemarketing-Agentur. Im Laufe der Jahre kristallisierte sich jedoch ein alternativer Weg heraus, sodass sich das Unternehmen zu einer Onlinemarketing-Academy wandelte.

CampfireFM: Social-Audio-App feiert Launch auf dem OMR Festival

CampfireFM – die Plattform, die Podcasts zu einem interaktiven Community-Erlebnis machen will –, startet mit prominenten Gründer*innen und Podcaster*innen.

Vor rund 7.000 Besucher*innen des OMR Festivals in Hamburg wurde heute (7.Mai 2025) die Social-Audio-App CampfireFM gestartet. Mit CampfireFM sollen Podcasts social werden, etwa so, wie Instagram es für Fotos und YouTube für Videos vorgemacht hat. CampfireFM soll der bisher schmerzlich vermisste Ort werden, wo sich die Community eines Podcasts trifft und diskutiert.

In der App für iOS und Android werden Podcasts dadurch zu einem interaktiven Hörerlebnis, bei dem sich Nutzer*innen mit anderen Fans direkt in ihrem Lieblings-Podcast austauschen können und exklusiven Zusatz-Content erhalten – auch von den Podcast-Hosts selbst. Neue Podcast-Episoden werden Startpunkte für Gespräche, Reaktionen und Emotionen. Zwischen den Episoden entsteht eine Timeline mit Begleitmaterialien, kurzen Sprachnachrichten, Umfragen oder Community-Diskussionen. Um Podcasts herum sollen auf CampfireFM so Communities entstehen.

Künstliche Intelligenz wird eine Reihe von Funktionen ermöglichen, mit denen auf CampfireFM zum Beispiel automatisch die besten Podcast-Zitate erkannt und mit einem Klick in sozialen Medien geshared werden können.

Über das CampfireFM-Gründungsteam

Hinter CampfireFM stehen Tobias Bauckhage, Benjamin Kubota und Jon Handschin (Gründer der größten deutschen Film-Community Moviepilot und Mitgründer von Studio Bummens, einem der größten unabhängigen Podcast-Publisher in Deutschland), Autor, Unternehmer und Podcaster Sascha Lobo und ein Team von ehemaligen Soundcloud Entwicklern und Produktleuten. Das Team wird unterstützt von einer Reihe von Podcaster*innen und Angel-Investor*innen wie Toni und Felix Kroos, Klaas Heufer-Umlauf, Jakob Lundt, Thomas Schmitt, Micky Beisenherz, Oliver Merkel (Ex Flink), Kai Bolik (GameDuell) oder David Fischer (Highsnobiety).

Zum Launch der neuen App sind einige der reichweitenstärksten Podcasts in Deutschland mit dabei: der Unterhaltungs-Podcast „Baywatch Berlin“ mit Klaas Heufer-Umlauf, Jakob Lundt und Thomas Schmitt, der Fußball-Podcast „Einfach mal Luppen“ mit Toni und Felix Kroos, der Nachrichten-Podcast „Apokalypse & Filterkaffee – Presseklub“ mit Micky Beisenherz und Markus Feldenkirchen, der Business-Podcast „OMR Podcast“ mit Philipp Westermeyer, der History-Podcast „Geschichten aus der Geschichte“ mit Daniel Meßner und Richard Hemmer und der Talk-Podcast „Dudes“ mit Niklas van Lipzig und David Martin.

Weitere Shows sollen in den nächsten Wochen folgen: u.a. die Interview-Podcasts „Hotel Matze“ und „Alles gesagt“ oder der Nachrichten-Podcast „Table Today“.

Eine Plattform für Nutzer*innen, Podcaster*innen und Werbetreibende

CampfireFM ist nicht nur eine neue Plattform für Nutzer*innen, sondern auch für Podcaster*innen und Werbetreibende: Bisher nicht vernetzte, passive Hörer*innen werden zu einer aktiven und wertvollen Community, die Feedback und echte Emotionen hinterlässt. Statt einer wöchentlichen Podcast-Veröffentlichung ohne Feedback-Möglichkeit entsteht bei CampfireFM für jeden Podcast ein kontinuierlicher, täglicher Stream an Interaktionen und Diskussionen. Dadurch bleibt die Podcast-Community aktiv und die Podcasts wachsen organisch. Eine lebendige Community schafft auch neue Vermarktungsmöglichkeiten: Ob Tickets, Merchandise oder exklusive Inhalte – alles kann direkt und effektiv über die App promotet werden. Auf CampfireFM werden Fans direkt und ungefiltert erreicht, die Abhängigkeit von den Algorithmen der großen Podcast-Plattformen sinkt.

Toni Kroos, Investor bei CampfireFM:„Ich glaube sehr an die Kraft der Community – was wären Fußballvereine ohne ihre Fans? Unser EM-Testlauf mit CampfireFM letztes Jahr war ein Volltreffer. Wir freuen uns, dass es jetzt richtig losgeht.”

Tobias Bauckhage, Co-Gründer von CampfireFM, Studio Bummens und Moviepilot: „CampfireFM bringt endlich Community und soziale Interaktionen in die Welt des Podcasting. Wir machen Podcasts zu aktiven, gemeinschaftlichen Erlebnissen, erzeugen das Gefühl von Gleichzeitigkeit und schaffen einen Raum, in dem sich Hörer:innen begegnen und austauschen können.”

Sascha Lobo, Co-Gründer von CampfireFM: „Ich caste seit vielen Jahren begeistert pod – aber vermisse dabei oft die wichtigste Erfindung unseres Social-Media-Jahrhunderts: den Rückkanal, den einen Ort, wo man nachschauen kann, worüber die Community diskutiert. Der Grund übrigens, warum es das bisher nicht gibt: Es geht nur mit generativer Künstlicher Intelligenz. ”

Die Betaversion der App ist ab sofort für iOS und Android verfügbar. Weitere Infos auf www.joincampfire.fm

Imkado: KI-gestützte App digitalisiert die Imkerei

Das bayerische AgriTech-Start-up Imkado launcht KIM – eine innovative Gratis-App mit KI für Bienenhalter*innen und forciert damit die Digitalisierung der Imkerei-Branche.

Mit "KIM - Die Imker App" bringt Imkado, das seit 2024 digitale Lösungen für die Imkerei-Branche entwickelt, eine vollständig kostenlose digitale Lösung auf den Markt, die die traditionelle Imkerei in die digitale Ära führt. Die Anwendung kombiniert eine leistungsstarke Stockkartenverwaltung mit einem KI-Assistenten und zeigt damit zugleich beispielhaft, wie Digitalisierung auch in traditionellen Branchen transformatives Potenzial entfalten kann.

Traditionelles Wissen trifft Digitalisierung

Denn die Imkerei-Branche, die in Deutschland mehr als 150.000 aktive Imker*innen umfasst, operiert vielfach noch mit analoger Dokumentation. KIM digitalisiert diesen Kernprozess und nutzt zudem KI, um praxisnahe Beratung zu bieten. Die App wurde speziell für die mobile Nutzung am Bienenstand optimiert und funktioniert auch offline – essentiell für den Einsatz an abgelegenen Standorten.

"Wir sehen in der Verbindung von traditionellem Wissen mit modernster Technologie enormes Potenzial", erklärt Stefan Seifert, Gründer und Geschäftsführer von Imkado. "Mit unserem KI-Assistenten haben wir einen digitalen Imkerpaten geschaffen, der rund um die Uhr verfügbar ist und dabei hilft, Herausforderungen in der Bienenhaltung zu meistern."

Booster für die gesamte Imker*innen-Gemeinschaft

Technisch setzt die App auf eine hybride Architektur, die vollständige Offline-Funktionalität mit Cloud-Synchronisation verbindet. Der integrierte KI-Assistent basiert auf fortschrittlicher Sprachmodell-Technologie und wurde durch imkereispezifische Anpassungen optimiert, um praxisnahe Fragen zur Bienenhaltung zu beantworten. "Wir arbeiten kontinuierlich daran, unseren Assistenten zu verbessern und planen regelmäßige Updates, um stets die neuesten KI-Entwicklungen in die App zu integrieren", erklärt Seifert das Entwicklungskonzept.

Im Gegensatz zu den üblichen Monetarisierungsstrategien der App-Wirtschaft verzichtet Imkado bewusst auf Abonnementmodelle oder In-App-Käufe. "Unser Ziel ist es, eine wertvolle kostenlose Lösung anzubieten, die die gesamte Imkergemeinschaft voranbringt", erläutert Seifert. "Als etablierter Fachhändler für Imkereibedarf sehen wir die App als Brücke zwischen digitaler Innovation und praktischen Bedürfnissen der Imker. Wer unsere digitalen Lösungen schätzt, findet in unserem spezialisierten Onlineshop genau die hochwertigen Produkte, die perfekt zu seiner imkerlichen Praxis passen – ein Mehrwert für beide Seiten."

Die App adressiert einen wachsenden Markt, da die Imkerei durch das gestiegene Bewusstsein für Biodiversität und Umweltschutz in den letzten Jahren einen signifikanten Aufschwung erlebt. Besonders in urbanen Räumen wächst die Zahl der Neu-Imker*innen kontinuierlich.

Mode als Ausdruck von Selbstbewusstsein: Empowerment durch Stil

Mode als Werkzeug für Body Positivity und Female Empowerment – wie der richtige Style das Selbstbewusstsein stärkt und neue Maßstäbe setzt.

In der heutigen Zeit ist Mode viel mehr als nur das, was wir tragen. Sie ist ein Ausdruck von Individualität, einem Lebensstil und vor allem – Selbstbewusstsein. Besonders in einer Welt, in der gesellschaftliche Normen zunehmend infrage gestellt werden, wird Mode zu einem mächtigen Werkzeug, das uns hilft, uns selbst zu definieren und unser wahres Ich zu leben. Doch was passiert, wenn Mode über bloßen Stil hinausgeht und tatsächlich zum Vehikel für Empowerment und Body Positivity wird? Es ist eine Entwicklung, die immer mehr Menschen in ihren Bann zieht und dazu beiträgt, den eigenen Körper zu schätzen und zu lieben.

Female Empowerment und Body Positivity: Ein wachsender Trend

Der gesellschaftliche Wandel hin zu mehr Akzeptanz und Vielfalt ist auch in der Modeindustrie angekommen. In den letzten Jahren hat der Fokus auf Female Empowerment und Body Positivity an Bedeutung gewonnen. Immer mehr Marken setzen auf inklusivere und realistischere Darstellungen von Körpern und bieten eine breite Palette von Größen und Designs an. Dieser Trend geht über die bloße Anpassung der Modeindustrie an den Markt hinaus – es geht darum, Frauen in ihrem Selbstbewusstsein zu stärken und die Idee zu fördern, dass jede Frau ihren eigenen Körper lieben sollte, unabhängig von Konventionen und gesellschaftlichen Erwartungen.

Mode ist ein kraftvolles Tool, das dazu beiträgt, dieses Selbstbewusstsein zu stärken. Sie ermöglicht es, sich in der eigenen Haut wohlzufühlen und den eigenen Körper so zu akzeptieren, wie er ist. Der Fokus verschiebt sich immer mehr von der „perfekten“ Körperform hin zu einem authentischen Ausdruck des individuellen Stils, der zu einem positiven Körperbild beiträgt.

Wie Mode das Selbstbewusstsein stärkt

Mode kann das Selbstwertgefühl erheblich beeinflussen. Die Wahl der richtigen Kleidung hat eine direkte Auswirkung auf unsere Stimmung und auf die Art, wie wir uns selbst sehen. Besonders gut designte Kleidungsstücke, die die eigenen Stärken betonen und den persönlichen Stil widerspiegeln, können das Vertrauen in den eigenen Körper stärken. Wenn Frauen sich gut fühlen, in dem, was sie tragen, kann das einen enormen Einfluss auf ihre Selbstwahrnehmung und ihr Auftreten haben.

Ein sehr praktisches Beispiel ist die Auswahl von Kleidung, die sowohl komfortabel als auch stilvoll ist. Die BH's von creamy fabrics bieten nicht nur Unterstützung, sondern vermitteln auch ein Gefühl von Selbstbewusstsein, das jede Frau stärkt. Wer sich in seiner Kleidung gut fühlt, wirkt selbstbewusster und kann das Leben in vollen Zügen genießen.

Die Bedeutung von Vielfalt in der Mode

Vielfalt ist ein wesentlicher Bestandteil des Body Positivity-Trends, und auch die Modeindustrie hat diese Tatsache erkannt. Marken und Designer erweitern ihre Auswahl an Größen, um Frauen aus allen Gesellschaftsschichten und allen Körperformen gerecht zu werden. Das bedeutet nicht nur, dass die Mode für alle zugänglich wird, sondern auch, dass mehr Menschen die Möglichkeit haben, sich in ihrer Kleidung selbst zu verwirklichen und ihren eigenen Stil zu finden.

Eine Mode, die auf Vielfalt setzt, signalisiert eine neue Ära der Inklusion. Es wird ein Raum geschaffen, in dem jeder Körper gefeiert wird und Frauen sich unabhängig von ihrer Form oder Größe selbstbewusst in ihrer Kleidung fühlen können. Dieser Trend hat auch Auswirkungen auf die Gesellschaft: Frauen sehen, dass sie sich nicht an unrealistische Schönheitsideale anpassen müssen, sondern dass wahre Schönheit in der Authentizität und Vielfalt liegt.

Warum Vielfalt in der Mode die Gesellschaft verändert

Die Veränderung, die durch Body Positivity und Female Empowerment angestoßen wird, hat nicht nur Auswirkungen auf die Modeindustrie, sondern auch auf die Gesellschaft als Ganzes. Wenn Frauen sich selbst lieben und stolz auf ihre Körper sind, verändert sich nicht nur ihre Wahrnehmung von sich selbst, sondern auch die Art und Weise, wie sie miteinander umgehen und wie sie sich in der Welt bewegen. Sie fühlen sich ermächtigt, ihre Meinungen zu äußern, Entscheidungen zu treffen und das zu tun, was sie glücklich macht.

In dieser neuen Ära geht es nicht mehr nur darum, was wir tragen, sondern warum wir es tragen. Es geht darum, unsere Individualität zu feiern, uns von gesellschaftlichen Normen zu befreien und die Mode als Ausdruck unseres Selbst zu nutzen. Ein stilvolles Outfit, das die eigene Persönlichkeit widerspiegelt, kann ein Statement für Selbstliebe und Empowerment sein.

Fazit: Mode als Ausdruck von Individualität und Empowerment

Mode hat sich in den letzten Jahren von einem bloßen Konsumgut zu einem Werkzeug für Selbstbewusstsein und Body Positivity entwickelt. Sie hilft nicht nur dabei, den eigenen Körper zu schätzen, sondern stärkt auch das Selbstbewusstsein und fördert den individuellen Ausdruck. Marken wie Creamy Fabrics bieten eine große Auswahl an Designs, die sowohl komfortabel als auch stilvoll sind und Frauen die Möglichkeit geben, sich in ihrer Kleidung zu verwirklichen.

Body Positivity und Female Empowerment sind nicht nur gesellschaftliche Trends, sondern eine Bewegung, die Mode als mächtiges Instrument nutzt, um positive Veränderungen in der Wahrnehmung von Körpern und der eigenen Identität herbeizuführen.

Nach dem KI-Hype: Diese vier Trends bleiben

KI entwickelt sich rasant weiter. Doch welche Trends bleiben und setzen sich wirklich durch? Diese Entwicklungen sollten Unternehmen 2025 weiterhin im Blick behalten.

Die vergangenen zwei Jahre haben einen regelrechten KI-Boom erlebt. Insbesondere generative Modelle (GenAI) haben sich rasant weiterentwickelt und etablieren sich zunehmend als feste Größe in den Arbeitsprozessen von Organisationen weltweit. Angesichts dieser Dynamik fragen sich nun viele Unternehmen, welche Entwicklungen das Jahr 2025 bestimmen werden und welche Potenziale sich daraus ergeben. Diese vier wichtigen KI-Trends werden uns 2025 maßgeblich begleiten.

Ob automatisierte Textproduktion, interaktive Chatbots oder KI-gestützte Analysen für Logistik und Finanzen: KIist längst im Tagesgeschäft angekommen. Diese Dynamik setzt sich 2025 fort. Dabei verschieben sich die Schwerpunkte zunehmend hin zu spezialisierten, effizienteren und flexibleren KI-Anwendungen.

Modular AI: Kleine Bausteine, große Wirkung

Modulare KI-Systeme werden zum Schlüssel für Unternehmen, die domänenspezifische Lösungen benötigen. Diese spezialisierten KI-Module sind genau auf einzelne Aufgabenbereiche zugeschnitten, etwa auf den Kundenservice oder auf Betrugserkennung im Bankwesen. Plug-and-Play-Architekturen beschleunigen hierbei die Implementierung: Statt monolithische Modelle einzuführen, integrieren Unternehmen bedarfsgerecht nur jene Module, die sie wirklich benötigen. Auf diese Weise lässt sich der zeitliche und finanzielle Aufwand für die Implementierung in Organisationen erheblich senken. Damit das Zusammenspiel verschiedener Module funktioniert, treiben Hersteller*innen und Standardisierungsgremien die Entwicklung einheitlicher APIs und Kommunikationsprotokolle weiter voran. Diese Interoperabilität ebnet den Weg für dynamische KI-Systeme, die sich je nach Anforderung in bestehende IT-Landschaften integrieren lassen.

Edge AI und On-Device Intelligence: Schneller zum Ergebnis

Während KI-Anwendungen bislang oft auf starke Cloud-Infrastrukturen angewiesen waren, verlagert sich die Intelligenz nun zunehmend an den Netzwerkrand. Dadurch können Daten in Echtzeit analysiert werden, um schnell fundierte Entscheidungen zu treffen. Gerade in sensiblen Bereichen wie der medizinischen Bildgebung oder in Branchen mit hoher Zeitkritikalität, beispielsweise bei autonomen Fahrzeugen, minimiert eine Edge-basierte KI-Analyse Latenzzeiten und ist somit wettbewerbsentscheidend. Parallel dazu treten neue, energieeffiziente KI-Chips wie neuromorphe Prozessoren oder TPUs (Tensor Processing Units) auf den Plan. Sie ermöglichen leistungsstarke KI-Anwendungen in Systemen mit begrenztem Platz oder Energiebudget – ein wichtiger Fortschritt für Wearables und sogar Satelliten.

Foundation Models: Optimieren statt komplett neu trainieren

Große KI-Basismodelle, sogenannte Foundation Models, haben 2024 ihren Nutzen in zahlreichen Branchen bewiesen. 2025 rücken jedoch kosten- und ressourcenschonende Optimierungen stärker in den Vordergrund. Verfahren wie Parameter-effizientes Tuning oder LoRA (Low-Rank Adaptation) ermöglichen es, aus umfassenden Basismodellen spezialisierte Teilmodelle zu erzeugen, ohne sie von Grund auf neu trainieren zu müssen. Kleinere, spezialisierte Modelle behalten die Leistungsfähigkeit der großen Systeme oft zu einem Bruchteil der nötigen Rechenleistung. Das senkt nicht nur die Kosten, sondern trägt auch zur Nachhaltigkeit bei, da der Energieverbrauch bei Training und Einsatz von KI zunehmend kritisch hinterfragt wird. Darüber hinaus entstehen lokalisierte Modelle, die speziell auf bestimmte Regionen oder Sprachen zugeschnitten sind und dadurch genauere Ergebnisse liefern.

Fortschrittliche KI-Agenten: Mehr Kontext, mehr Kollaboration

KI-Agenten erreichen 2025 eine neue Evolutionsstufe und können nuancierte Kontexte immer besser erfassen. Das steigert die Personalisierung von Interaktionen im Kund*innenservice, Gesundheitswesen oder Bildungsbereich. Zugleich werden Self-Improving Agents immer wichtiger: Sie enthalten eingebaute Feedbackschleifen, lernen aus ihren Erfahrungen und optimieren ihre Fähigkeiten – ganz ohne Eingreifen von außen. Darüber hinaus setzt sich das Konzept der Multi-Agent Collaboration durch. Hierbei übernehmen verschiedene KI-Agenten jeweils Spezialaufgaben und koordinieren sich untereinander, um komplexe Probleme wie logistische Planungen oder den Ablauf bei Großschadenslagen effizient zu lösen.

Fazit

Das laufende Jahr wird wie das letzte – und vermutlich wie noch viele kommende Jahre – von künstlicher Intelligenz geprägt sein. Zwar müssen wir bei Aspekten wie Datensicherheit, Transparenz und dem Schutz persönlicher Informationen weiterhin aufmerksam bleiben, doch gleichzeitig eröffnen sich durch KI ganz neue Chancen für Innovation, Effizienz und Wachstum. Schon jetzt arbeiten Unternehmen, Regierungen und Forschungseinrichtungen verstärkt Hand in Hand, um Standards zu definieren und verantwortungsvolle Lösungen zu entwickeln. Damit können wir das enorme Potenzial dieser Technologie nutzen und zugleich sicherstellen, dass Fortschritt und Vertrauen im Einklang stehen.

Der Autor Ramprakash Ramamoorthy ist Director of AI Research bei Zoho.

Generative KI – Chancen für Startups

Wie Startups mit drei Tipps die Kosten und Performance für ihren KI-Case optimieren können.

Das deutsche KI-Startup-Ökosystem befindet sich 2025 weiter im Gründungsboom. Nie gab es mehr KI-Gründer in Deutschland und alleine im vergangenen Jahr wuchs die Zahl der KI-Startups um 35 Prozent. Auch für Investoren bleibt KI eines der vielversprechendsten Themen. Sie investierten 2024 fast 200 Millionen mehr in deutsche KI-Jungunternehmen als im Vorjahr. Vor allem deutsche KI-Startups im B2B-Bereich mit branchenspezifischen Lösungen für die Fertigung, Logistik und das Gesundheitswesen haben aktuell ausgezeichnete Wachstumschancen. Sie können von einer engen Vernetzung mit dem Mittelstand und führenden Forschungseinrichtungen in Deutschland profitieren. Typische KI-Anwendungsfelder von aufstrebenden deutschen Startups wie BlueAvenir, PlanA, Smart Reporting oder nnamu liegen dabei u.a. in der Softwareentwicklung, Sprach- und Bilderkennung oder datenbasierten Analyseverfahren zur Entscheidungsunterstützung.

KI-Chancen und die häufigsten Hürden

Während die Gesamtfinanzierung für KI-Projekte wächst, scheitern in der Praxis vielversprechende Ideen von Startups aber auch immer wieder am konkreten Business Case. Langfristig können sich insbesondere unterschätzte Kosten und eine schwache Performance der Anwendungen wie ein Bremsklotz auswirken. Die Nutzung von Sprachmodellen ist dank API-basierten Diensten sehr einfach geworden, dennoch können sich hier bei großen Volumina und ungeschickter Modell-Wahl schnell höhere Kosten aufsummieren. Gleichzeitig spielt die Performance des KI-Systems eine wichtige Rolle für eine langfristige Profitabilität. So führen besonders hohe Latenzzeiten bei der Model-Inference zu trägeren Systemen, die Nutzeranfragen nicht schnell genug verbreiten und die Attraktivität der Anwendung erheblich mindern.

Gerade Startups setzen oft auf die Cloud, da sie unabhängig vom technischen Hintergrund einfachen Zugang zu KI und die nötige Flexibilität ermöglicht. Drei innovative Methoden erweisen sich in der Cloud als besonders hilfreich, um eine optimale Balance zwischen Leistungsfähigkeit, Kosten und Nutzerfreundlichkeit für die Umsetzung des eigenen KI-Anwendungsfalls zu finden. So kann jeder Gründer seine KI-Ideen schnell, kosteneffizient und sicher umsetzen.

KI-Modellauswahl: Kleiner, aber schneller

Für Startups ist es entscheidend, das richtige KI-Modell für ihren Anwendungsfall zu wählen, um Kosten und Leistung optimal auszubalancieren. Anbieter wie Anthropic, AI21 Labs, Meta, Cohere, Mistral und Amazon bieten Modelle in verschiedenen Größen an – kleinere Varianten sind oft günstiger und reagieren mit kürzerer Antwortzeit. Nach einer ersten Validierung mit einem leistungsstarken Modell können Startups Tools wie Amazon Bedrock Evaluations nutzen, um herauszufinden, welches Modell in welcher Größe ähnliche Ergebnisse bei geringeren Kosten oder höherer Geschwindigkeit liefert. Diese Evaluierungen helfen dabei, die Leistungsfähigkeit und Effizienz zu beurteilen, indem Metriken wie semantische Robustheit und Genauigkeit bei der Informationsabfrage analysiert werden. Durch eine Kombination aus automatisierten Bewertungen mit Large Language Models (LLMs) und menschlicher Prüfung können Startups die beste Balance zwischen Leistung, Kosten und Geschwindigkeit für ihre individuellen Bedürfnisse finden.

Prompt Caching: Zwischenspeicherung für wiederkehrende Anfragen

Eine weitere smarte Methode, um die Antwortzeiten von KI-Modellen zu verkürzen und Kosten zu senken, ist das Prompt-Caching. Wenn ein digitaler Assistent sich bei jeder Frage immer wieder die gleichen Grundinformationen durchlesen müsste, dann wäre das extrem ineffizient. Genau hier setzt das Prompt-Caching an und speichert feste Teile des Prompts, wie grundlegende Anweisungen für das LLM, direkt in der Inferenz-Hardware zwischen. Nur die variablen, nutzerspezifischen Daten, die sich von Aufruf zu Aufruf verändern, werden bei jeder Anfrage neu übermittelt. Das spart nicht nur Rechenleistung, sondern sorgt auch für schnellere Antworten – ideal für Anwendungen wie Chatbots oder personalisierte KI-Assistenten, die häufig wiederkehrende Anfragen verarbeiten. Mit Amazon Bedrock lässt sich diese Technik einfach nutzen, indem das Caching und das Setzen von Cache-Checkpoints automatisch verwaltet werden können. Sobald das Caching aktiviert ist, übernimmt der Service das gesamte Cache-Management automatisch. So lassen sich bis zu 90 Prozent kosteneffiziente KI-Anwendungen mit minimalem Konfigurationsaufwand realisieren.

Model Distillation: KI-Wissen auf das Wesentliche fokussieren

Eine dritte bewährte Option ist Model Distillation. Das Prinzip ist einfach und kann vereinfacht als ein intelligenter Wissenstransfer in der Welt der KI beschrieben werden. Also so, als ob ein erfahrener Lehrer (ein großes, leistungsstarkes KI-Modell) seinem Schüler (einem kleineren, schnelleren Modell) die wichtigsten Konzepte beibringt. Dabei nutzt dieser Prozess synthetische Trainingsdaten, die auf realen Anwendungsbeispielen basieren. Das Ergebnis ist ein kompakteres Modell, das für einen spezifischen Anwendungsfall ähnlich gute Ergebnisse liefert wie das größere Modell, dabei aber deutlich schneller und kostengünstiger arbeitet. Destillierte Modelle in Amazon Bedrock können bis zu fünfmal schneller arbeiten und die Kosten um bis zu 75 Prozent senken im Vergleich zu den Originalmodellen – bei Genauigkeitsverlust von weniger als zwei Prozent.

Fazit

Erfolgreiche KI-Lösungen können mit der Cloud kosteneffizienter und performanter umgesetzt werden. Das erfordert zwar ein wenig technisches Know-how, aber die Cloud reduziert die Einstiegshürden erheblich und ermöglicht es auch kleineren Unternehmen, mit drei bewährten Methoden das KI-Potenzial effektiver auszuschöpfen. Startups haben mit der Cloud die maximale Flexibilität, um entweder von den leistungsfähigsten vortrainierten LLMs zu profitieren oder alternativ eigene LLMs mit maßgeschneiderter Infrastruktur zu entwickeln bzw. auf fertige Dienste mit integrierter generativer KI zuzugreifen.

Der Autor Constantin Gonzalez ist Principal Solutions Architect bei Amazon Web Services (AWS) in München.
Die Autorin 
Jennifer Grün ist Senior Specialist - Machine Learning bei AWS in München.