Top KI-Prompts für Start-ups

Autor: Alexandra Anderson
44 likes

Diese Prompts liefern dir konkrete Handlungsanweisungen, wie du den Mehrwert von KI voll ausschöpfen kannst.

Künstliche Intelligenz (KI) hat sich als mächtiges Werkzeug erwiesen, das dir dabei dabei hilft, deine Effizienz zu steigern, innovative Lösungen zu entwickeln und Marktchancen zu nutzen. Doch der Einstieg in KI kann regelrecht erschlagend sein – von der Auswahl der richtigen Anwendungen bis hin zur Implementierung in den Betriebsablauf gibt es viele Hürden zu überwinden.

Genau hier kommen KI-Prompts ins Spiel: strukturierte Ideen und Anregungen, die dir helfen, den Einsatz von KI zu optimieren. Dieser Artikel bietet einen Überblick über die besten KI-Prompts für Start-ups.

1. KI-Prompts für die Content-Erstellung

Egal ob bei der Findung von Themenideen oder der Erstellung ganzer Texte, mit dem richtigen Briefing kann KI ein richtiger Gamechanger sein:

Schreibblockade überwinden

„Wecke deine Kreativität und generiere frische Ideen für einen Blogbeitrag zum Thema <Thema>. Entwickle eine Struktur aus zehn Punkten für den Beitrag und schlage fünf fesselnde Überschriften vor, die dein Publikum begeistern werden.“

Überschriften und Schlagzeilen generieren

„Nutze die Kreativität eines erfahrenen Content-Marketers, um 25 überzeugende Ideen für Überschriften zu <Thema> zu entwickeln, die bei der Zielgruppe für die <Branche>-Branche Anklang finden. Jeder Titel sollte einzigartig sein, relevante Keywords für die Suchmaschinenoptimierung enthalten und die Kernaussage des jeweiligen Inhalts auf den Punkt bringen. Der Ton und die Stimme der Marke sollten <Adjektiv> sein. Das Zielpublikum ist <Zielgruppe>. Denke daran, Neugierde zu wecken und das Engagement zu fördern.“

Produktbeschreibungen verfassen

„Schlüpfe in die Rolle eines Produkttexters und verfasse eine fesselnde und ansprechenden Produktbeschreibung, die die <Zielgruppe> überzeugt. Die Beschreibung sollte die Merkmale, Vorteile und Alleinstellungsmerkmale der Produkte hervorheben, um Kaufentscheidungen zu beeinflussen und den Verkauf zu fördern. Die Produkte sind: <Produkte>.“

2. KI-Prompts für Social Media

In einer zunehmend vielfältigen Social-Media-­Landschaft mit verschiedenen Plattformen und Post-Formaten kann die Content-Erstellung zur echten Herausforderung werden. Folgende Prompts können dich und dein Team dabei unterstützen bzw. entlasten:

Social-Media-Posts verfassen

„Verkörpere die Rolle eines erfahrenen Werbetexters und nenne Richtlinien für das Verfassen von fesselnden Social-Media-Captions. Vermittle Techniken zur Erstellung Aufmerksamkeit gewinnender Aufhänger, Storytelling-Elemente und Handlungsaufforderungen für mein Unternehmen <Unternehmen> in <Branche>. Biete Ratschläge für die Anpassung von Bildunterschriften an bestimmte Plattformen und Publikumsvorlieben. Befähige mich als Unternehmer, überzeugende Bildunterschriften zu erstellen, die das Engagement erhöhen und zu den gewünschten Handlungen führen. Gib dann fünf Beispiele in einem <Ton> Ton an.“

Zielgruppe vergrößern, Interaktion steigern

„Fungiere als einflussreicher Community-Manager und skizziere Strategien, um das Social-Media-Publikum von <Unternehmen> zu vergrößern und zu binden. Biete Techniken zur Steigerung der Follower, Optimierung von Profilen und effektiver Verwendung von Hashtags an. Gib Ratschläge zur Förderung von Engagement durch interaktive Beiträge, Wettbewerbe und nutzergenerierte Inhalte. Hilf dem Unternehmer dabei, Beziehungen zu seinem Publikum aufzubauen, indem er auf Kommentare, Nachrichten und Bewertungen antwortet. Ermächtige den Unternehmer dazu, eine Social-Media-Community aufzubauen und Markenloyalität zu fördern.“

Kund*innenservice via Social Media optimieren

„Agiere als Experte für den Kundenservice in den sozialen Medien und stelle Richtlinien für einen herausragenden Kundenservice über soziale Medienkanäle für mein Unternehmen <Unternehmen> in <Branche> bereit. Skizziere Strategien für die Beantwortung von Anfragen, das Eingehen auf Kundenanliegen und die Lösung von Problemen. Gib Ratschläge, wie man einen positiven und professionellen Ton beibehält, Antworten personalisiert und Unterhaltungen bei Bedarf auf private Kanäle verlagern kann. Befähige Unternehmer dazu, einen erstklassigen Kundenservice in den sozialen Medien zu bieten und so die Kundenzufriedenheit und Treue zu erhöhen.“

3. KI-Prompts für SEO

Suchmaschinenoptimierung (SEO) ist ein entscheidender Faktor, in der Praxis aber oft komplex. Diese KI-Prompts vereinfachen den Prozess deutlich:

SEO-Keywords generieren

„Generiere eine vielfältige Liste hocheffektiver SEO-Keywords für <Unternehmen> in der <Branche>, Standort: <Stadt/Staat/Land oder online>. Nutze bewährte Keyword-Recherche-Tools und -Techniken, um relevante Keywords mit hohem Suchvolumen und geringem Wettbewerb zu ermitteln. Berücksichtige dabei Faktoren wie die Zielgruppe, Branchentrends und die spezifischen Angebote des Unternehmens. Erstelle eine Schlüsselwortliste, die primäre Schlüsselwörter, Long-Tail- Schlüsselwörter und standortbezogene Schlüsselwörter umfasst, um den Inhalt der Website zu optimieren und den organischen Traffic zu steigern.“

SEO-optimierte Blogartikel erstellen

„Handle als Experte für Online-Marketing. Du arbeitest für ein <Unternehmen> namens <Unternehmensname> in der Branche <Industrie>. Die Konkurrenten sind <Konkurrenten>. Schreibe eine Gliederung für einen Blogbeitrag unter Berücksichtigung der SEO. Das Thema des Blogbeitrags ist <Thema>, der Ton ist <Ton>, die Zielgruppe ist <Zielgruppe>. Konzentriere dich auf die Art und Weise, wie der Beitrag zeigen kann, dass sich das Unternehmen von seinen Konkurrenten unterscheidet. Beginne den Blogbeitrag mit einem interessanten Aufhänger. Jeder Teil der Gliederung sollte Folgendes enthalten: Name des Abschnitts; Überblick über den Inhalt des Abschnitts; welche Schlüsselwörter zur SEO in dem Abschnitt verwendet werden sollten; warum die ausgewählten Schlüsselwörter in diesem Abschnitt besser für die SEO sind als in einem anderen Abschnitt. Schreibe deine Antwort in Markdown. SEO-Schlüsselwörter: <SEO-Schlüsselwörter>.“

4. KI-Prompts für den Kund*innensupport

Eine erstklassige Kund*innenbetreuung ist von entscheidender Bedeutung für kleine Unternehmen. Diese KI-Prompts können hierbei unterstützen:

Kund*innenanfragen beantworten

„Handle wie ein Mitarbeiter im Kundenservice mit 20 Jahren Erfahrung in der Branche <Industrie>. Unterweise mich da­r­in, wie ich eine taktvolle Antwort auf eine Kundenanfrage zu <Thema> formulieren kann. Stelle sicher, dass meine Antwort pünktlich, professionell, rücksichtsvoll und informativ ist und das Engagement des Unternehmens für die Kundenzufriedenheit unterstreicht. Zeige mir drei Beispiele unter Verwendung eines <Ton>-Tons.“

Negative Kund*innenrezension lösen

„Handle wie ein erfahrener Kundenbetreuer. Du arbeitest für ein <Unternehmen>. Verfasse eine rücksichtsvolle und lösungsorientierte Antwort an einen Kunden, der eine negative Bewertung über <Thema> abgegeben hat. Zeige dein Verständnis und dein Bedauern für die Unzufriedenheit des Kunden, versichere ihm, dass sein Anliegen ernst genommen wird, und biete eine geeignete Lösung für das Problem an. Zeige Einfühlungsvermögen und Professionalität.“

Tipp: Passe die Nutzung von KI-Prompts an deine individuellen Gegebenheiten an und formuliere Anfragen so präzise wie möglich. KI bietet eine Vielzahl von Einsatzmöglichkeiten, die über die genannten Beispiele hinausgehen. Experimentiere daher mit diesen Technologien und schöpfe ihr Potenzial voll aus. Wichtig: Bei der Verwendung von KI-Tools sollte die Eingabe sensibler Daten vermieden und die Ergebnisse stets auf ihre Richtigkeit hin überprüft werden.

Die Autorin Alexandra Anderson ist Marketing Director Germany bei GoDaddy und seit über zehn Jahren als Marketingexpertin in der IT-Branche tätig.

Diese Artikel könnten Sie auch interessieren:

Agentic AI als Erfolgsgrundlage für Start-ups

KI befeuert den aktuellen Gründungsboom, doch für eine erfolgreiche Skalierung braucht es mehr. Warum Agentic AI auf Basis einer soliden Datenarchitektur zum entscheidenden Erfolgsfaktor für Start-ups wird.

Das Jahr startete für Start-ups mit einer Rekordmeldung: In Deutschland wurden im vergangenen Jahr fast ein Drittel mehr Gründungen verzeichnet. In absoluten Zahlen wurden 2025 insgesamt 3.568 neue Firmen geschaffen – ein neuer Höchststand, wie der Start-up-Verband im Januar verkündete. Dies ist auch der künstlichen Intelligenz (KI) zu verdanken, wie sich beim genauen Hinschauen herausstellt. 853 dieser neuen Unternehmen kommen aus dem Bereich Software. Doch nicht nur sie verwenden KI; bei einer Umfrage gab ein Drittel aller Gründer und Gründerinnen an, dass sie mit KI arbeiten. Dementsprechend sehen die Sprecher des Verbands in der Technologie auch die treibende Kraft hinter dem Start-up-Rekord.

Wirft man einen Blick über den Tellerrand hinaus, so lässt sich feststellen, dass die Start-up-Szene in Europa insgesamt floriert. Der „State of European Tech 2025“-Report im Auftrag von Atomico und anderen schätzt, dass im letzten Jahr Investitionen in Höhe von 44 Milliarden US-Dollar (umgerechnet ca. 38 Mrd. EUR) in diesen Sektor geflossen sind. Geldgeber erwarten inzwischen, dass Start-ups mit KI und Deep Tech arbeiten, so der Report. Demnach flossen auch 36 Prozent der europäischen Start-up-Investitionen in genau diese beiden Felder.

Das Gründungsumfeld könnte also kaum besser sein. Doch ein Rekord an Start-ups und steigende Investitionssummen bedeuten nicht zwangsläufig auch eine einfache Skalierung der Geschäftsmodelle. Viele – zu viele – Start-ups scheitern nach erfolgreichen ersten Jahren an der Weiterentwicklung ihres Geschäfts. Neben einer Reihe üblicher Herausforderungen stehen vor allem Bürokratie, Fragen zur Datenhoheit und ein Betrieb über Landesgrenzen und Wirtschaftszonen hinweg im Vordergrund. Start-ups müssen nachweisen, dass ihre Nutzung von KI auf soliden, regulierten Datenfundamenten basiert und den Compliance-Vorgaben entspricht.

Hier kommt Agentic AI ins Spiel. Die Einbettung von KI-Agenten in den Kern der Betriebsabläufe ist die Antwort auf viele dieser Herausforderungen und wird für das Wachstum im Jahr 2026 von entscheidender Bedeutung sein.

Solide Datenbasis vor KI-Einsatz

Start-ups, die dies erreichen wollen, sollten sich darauf konzentrieren, ihre KI-Nutzung auf einer soliden Datenbasis aufzubauen, deren Fundament eine einheitliche Datenarchitektur ist. Sie tun sich deutlich leichter damit, die dafür nötigen Architekturentscheidungen zu treffen, als etablierte Unternehmen mit entsprechender Legacy-IT. Gründer und Gründerinnen sollten daher von Beginn an darüber nachdenken, wie sie eine starke Datenarchitektur aufsetzen, Silos abbauen und KI als Herzstück ihrer Prozesse einbetten.

Diese Grundlage hilft bei der Einführung von KI-Agenten, damit deren Output auch die Erwartungen erfüllt: Geschäftsprozesse effizienter zu strukturieren und zu optimieren sowie die Entscheidungsfindung zu beschleunigen. Start-ups, die dies umsetzen, werden sich gegen ihre Konkurrenten durchsetzen und letztlich erfolgreich sein.

KI-Agenten als Innovationsbeschleuniger

Indem Start-ups KI-Agenten von Beginn an in den Kern ihrer Geschäftsabläufe integrieren, skalieren sie schneller als mit dem Einsatz von nur einem reinen Large Language Model (LLM). Der Grund dafür liegt in der Standardisierung der Daten, die für KI-Agenten notwendig ist. Auf dieser Grundlage können die Agenten ihre einzigartigen, autonomen Fähigkeiten ausspielen, da sie mit unternehmenseigenen Daten trainiert werden. Vor allem bei Start-ups können Potenziale schnell gehoben werden: Wenn Agenten für bestimmte Aufgaben entwickelt werden, können sie diese auch lösen – egal wie komplex und fachspezifisch sie sein mögen. Stimmt die Datenbasis, lassen sich auch mehrere Agenten miteinander verknüpfen, um sogar noch komplexere Herausforderungen zu bewältigen.

Ein Beispiel dafür ist die mögliche Kooperation zwischen einem Kundensupport-Agenten und einem Prognose-Agenten. Wenn ein Kunde einen Support-Fall auslöst, kann der andere Agent sogleich die Kosten berechnen, was die Kundenzufriedenheit durch eine schnellere Reaktion steigern kann. Für die Skalierung von Start-ups ist ein enges Zusammenspiel der Abteilungen wichtig, um die Geschäftsbeziehungen zu zufriedenen Kunden weiter ausbauen zu können. Der Einsatz von KI-Agenten kann, gepaart mit dem menschlichen Element, begrenzte personelle Ressourcen ausgleichen und eine bessere Serviceleistung ermöglichen, was für ein schnelles Wachstum unabdingbar ist.

Doch nicht nur der Kundenkontakt lässt sich automatisieren, sondern auch eine ganze Reihe von Routinevorgängen in der internen Verwaltung der Firmen selbst. Dies ermöglicht nicht nur dem Management, sondern auch den Investoren, schnell einen fundierten Überblick über Liquidität, Umsatz, Einnahmen und Gewinn zu erhalten. Die Erkenntnisse in Echtzeit führen zu schnellen und datenbasierten Entscheidungen, was für junge Unternehmen Gold wert ist und es ihnen ermöglicht, flexibel zu bleiben.

Die Datenbasis muss stimmen

Für Start-ups sind Probleme beim Datenzugriff ein kritisches Risiko für den Geschäftserfolg. Eine einheitliche, moderne Datenarchitektur ermöglicht die Demokratisierung des Datenzugriffs und löst Datensilos auf. Der Vorteil liegt auf der Hand: Schneller Datenzugriff schafft Transparenz gegenüber Kunden und Aufsichtsbehörden. Darüber hinaus erhöht dies auch das Vertrauen der Mitarbeitenden und schafft ein Gefühl des Zusammenhalts.

Governance ist auch bei der Verwendung von KI-Agenten von entscheidender Bedeutung. Der Druck zur Einhaltung von Vorschriften sollte daher als Vorteil betrachtet werden.

Der Dreiklang aus Datenherkunft, Versionierung und automatisierter Auswertung der Ergebnisse hilft jungen Unternehmen dabei, Governance auf einem soliden Fundament aufzubauen. Die Teams erhalten direkte Transparenz darüber, wie sich die KI-Agenten verhalten, auf welchen Daten sie basieren und wie sie ihre Ergebnisse im Laufe der Zeit verändern. Laufende Bewertungen tragen dazu bei, dass KI-Agenten präziser werden, um genau jene hochwertigen Ergebnisse zu liefern, die Start-ups für die Skalierung ihrer Geschäftsmodelle benötigen. Dies ist besonders wichtig, wenn proprietäre KI-Modelle entwickelt und von der Testphase in die Produktion überführt werden, wobei gesetzliche Vorschriften wie die DSGVO oder der EU AI Act zwingend einzuhalten sind.

Parloa, ein deutsches Start-up-Unternehmen mit einer Bewertung von drei Milliarden US-Dollar, ist ein hervorragendes Beispiel dafür, wie dieser Ansatz in der Praxis aussehen kann: Das Unternehmen hat KI-Agenten zum Kern seines Kundenservice gemacht und gleichzeitig eine einheitliche, kontrollierte Datenbasis aufgebaut, die vollständig mit der DSGVO und dem EU AI Act konform ist. Seine Plattform folgt den Prinzipien des „Privacy by Design“, sodass sensible Kundendaten ohne Kontrollverlust verwendet werden können. Durch die Verwaltung des gesamten Lebenszyklus von KI-Agenten macht Parloa Governance zu etwas Greifbarem und gibt den Teams Klarheit darüber, welche Daten verwendet wurden, wie sich die Agenten verhalten haben und wie sich die Ergebnisse im Laufe der Zeit entwickelt haben. Diese Kombination aus moderner Architektur und starker Governance ermöglicht es den Kunden von Parloa, Zugang zu hochwertigen Daten zu erhalten und die Transparenz für Regulierungsbehörden sowie Endnutzer zu erhöhen – und dennoch KI-gesteuerte Kundeninteraktionen in Umgebungen zu skalieren, in denen Fehler oder Missbrauch inakzeptabel sind.

Fazit

KI-Agenten bieten europäischen Start-ups eine einmalige Gelegenheit, schnell zu wachsen und gleichzeitig Investoren anzuziehen, die bekanntermaßen ihr Geld bevorzugt in Unternehmen investieren, die Wert auf Datenverwaltung, Genauigkeit, Qualität und die Schaffung von echtem Mehrwert durch Technologie legen. Es ist jedoch ein Fehler, sich ohne sorgfältige Überlegungen auf die Einführung von Agenten zu stürzen. Start-ups, die KI-Agenten einsetzen, ohne zuvor eine einheitliche Datenbasis aufzubauen und eine solide Verwaltung sowie Bewertung sicherzustellen, riskieren, mehr Komplexität als Mehrwert zu schaffen. Letztlich werden jene Gründer und Gründerinnen erfolgreich sein, die ihre Geschäftsmodelle branchen- und länderübergreifend skalieren können – hierbei spielt der Einsatz von KI-Agenten bereits jetzt eine entscheidende Rolle.

Der Autor Nico Gaviola ist VP Digital Natives & Emerging Enterprise bei Databricks EMEA.

Series A: 6,5 Mio. Euro für den „KI-Mitarbeiter“ von happyhotel

Das 2019 gegründete TravelTech happyhotel wandelt sich vom reinen Software-Anbieter zum Entwickler von KI-Agenten. Doch der Schritt zum autonomen „Hotel-Autopiloten“ birgt auch technische und psychologische Hürden.

Wer heute ein mittelständisches Hotel führt, hat oft zwei Probleme: Die Kosten steigen, und für komplexe Aufgaben wie die dynamische Preisgestaltung (Revenue Management) fehlt schlicht das Personal. Genau hier setzt die 2019 gegründete happyhotel GmbH an, die nun den Abschluss ihrer Series-A-Finanzierungsrunde über 6,5 Millionen Euro bekanntgegeben hat.

Angeführt wird die Runde vom VC Reimann Investors, unterstützt von den Bestandsinvestoren wie dem Start-up BW Innovation Fonds (MBG), seed + speed Ventures und dem Family Office Wecken & Cie.

Der USP: Autopilot statt Cockpit

Der Markt für Revenue-Management-Software ist voll: Platzhirsche wie IDeaS oder Duetto bedienen die großen Ketten, Herausforderer wie RoomPriceGenie buhlen um die Kleinen. Doch happyhotel will sich mit einem radikalen Versprechen abheben: Weg vom „Tool“, das bedient werden muss, hin zum autonomen KI-Agenten.

„Wir bauen unser System nicht für den Revenue Manager – wir automatisieren die Aufgaben eines Revenue Managers“, erklärt CEO Rafael Weißmüller. Für unabhängige Hotels, die sich keine teuren Spezialisten leisten können, wird die Software so quasi zum digitalen Mitarbeiter, der Preise in Echtzeit anpasst – ein Ansatz, der in Zeiten des Personalmangels bei Investor*innen extrem gut verfängt.

Gründer-Team mit „Stallgeruch“ und Exit-Erfahrung

Dass die Runde in einem schwierigen Marktumfeld zustande kam, dürfte auch am Setup des Gründerteams liegen, das die klassische Branchen-Expertise mit Skalierungswissen vereint:

  • Sebastian Kuhnhardt kommt selbst aus einer Hoteliersfamilie und entwickelte die Ur-Idee aus dem Frust über die Zettelwirtschaft im elterlichen Betrieb.
  • Rafael Weißmüller bringt die SaaS-Erfahrung mit: Er war früherer Mitarbeiter bei sevDesk, dem Offenburger Vorzeige-Start-up, das zeigte, wie man Büro-Software für KMUs massentauglich macht.
  • Marius Müller liefert als Wirtschaftsinformatiker das technische Fundament.

Expansion und Realitätscheck

Aktuell steuert das System bereits über 50.000 Hotelzimmer in 12 Ländern und optimiert nach eigenen Angaben ein Umsatzvolumen von über einer Milliarde Euro. Mit dem frischen Kapital soll nun die Expansion in Europa forciert werden.

Dennoch bleiben Herausforderungen: Der Markt der Hotel-Technologie ist berüchtigt für seine fragmentierte Landschaft aus veralteten Verwaltungssystemen (PMS). Der Erfolg des KI-Agenten wird maßgeblich davon abhängen, wie reibungslos happyhotel die Schnittstellen zu diesen Altsystemen managt. Zudem müssen die Gründer eine psychologische Hürde nehmen: Hoteliers dazu zu bringen, die Kontrolle über ihre wichtigste Stellschraube – den Preis – vollends an eine „Black Box“ abzugeben, erfordert großes Vertrauen.

Dass dieses Vertrauen noch wachsen muss, zeigt auch das aktuelle Modell: Noch agiert die KI nicht völlig allein. Ein internes Team aus menschlichen Revenue-Expert*innen unterstützt das System weiterhin bei strategischen Fragen – der Weg vom Copiloten zum echten Autopiloten ist also auch bei happyhotel ein schrittweiser Prozess.

ewigbyte: Datenspeicher für die Ewigkeit?

Wie das 2025 von Dr. Steffen Klewitz, Dr. Ina von Haeften und Phil Wittwer gegründete Münchner DeepTech-Start-up Microsoft und die Tape-Industrie herausfordert und sich für seine Mission 1,6 Millionen Euro Pre-Seed-Kapital sichert.

Daten werden oft als das „Öl des 21. Jahrhunderts“ bezeichnet, doch ihre Lagerung gleicht technologisch oft noch dem Stand der 1950er Jahre. Während Künstliche Intelligenz und IoT-Anwendungen den weltweiten Datenhunger exponentiell in die Höhe treiben, werden Informationen physisch meist noch auf Magnetbändern (LTO) oder Festplatten archiviert. Diese Medien sind energiehungrig, müssen alle paar Jahre aufwändig migriert werden und sind anfällig für physikalische Zerfallsprozesse.

In diesen Markt für sogenannte Cold Data – also Daten, die archiviert, aber selten abgerufen werden – stößt nun das Münchner DeepTech-Start-up ewigbyte. Das Unternehmen, das erst im Jahr 2025 gegründet wurde, gab heute den Abschluss einer Finanzierungsrunde bekannt, die den Übergang in die industrielle Entwicklung ermöglichen soll. Angeführt wird das Konsortium von Vanagon Ventures und Bayern Kapital, ergänzt durch Business Angels aus dem BayStartUP-Netzwerk. Doch der Weg zum Markterfolg ist kein Selbstläufer, denn das Startup betritt ein Feld, auf dem sich bereits globale Giganten und etablierte Industriestandards tummeln.

Der Markt: Ein schlafender Riese erwacht

Der Zeitpunkt für den Vorstoß scheint indes gut gewählt. Branchenanalysten schätzen den globalen Markt für Archivdaten („Cold Storage“) auf ein Volumen von rund 160 bis 180 Milliarden Euro, mit Prognosen, die bis Mitte der 2030er Jahre auf über 450 Milliarden Euro ansteigen. Getrieben wird dies nicht nur durch KI-Trainingsdaten, sondern auch durch verschärfte Compliance-Regeln und den massiven Anstieg unstrukturierter Daten. Die derzeit dominierende Magnetband-Technologie stößt jedoch zunehmend an physikalische Dichtegrenzen und zwingt Rechenzentren zu kostspieligen Migrationszyklen alle fünf bis sieben Jahre, um Datenverlust durch Entmagnetisierung („Bit Rot“) zu verhindern.

Lasergravur statt magnetischer Ladung: So funktioniert es

Der Ansatz von ewigbyte bricht radikal mit diesem Paradigma. Statt Daten magnetisch oder elektronisch zu speichern, nutzt das Startup Femtosekunden-Laser, um Informationen mittels ultrakurzer Lichtpulse direkt in Quarzglas einzuschreiben.

Das Verfahren ähnelt mikroskopisch kleinen QR-Codes, die dreidimensional in das Material „graviert“ werden (Voxel). Das zentrale Versprechen: Einmal geschrieben, benötigen die Daten keinerlei Energie mehr zur Erhaltung. Das Glas ist resistent gegen Hitze, Wasser, elektromagnetische Impulse (EMP) und Cyberangriffe, da die Daten physisch fixiert sind (WORM-Speicher: Write Once, Read Many). Laut ewigbyte ermöglicht dies eine dauerhafte Archivierung über Jahrhunderte ohne die sonst üblichen laufenden Kosten für Klimatisierung und Migration.

Vom Hardware-Verkauf zum „Storage-as-a-Service“

Interessant für Gründer ist der strategische Schwenk im Geschäftsmodell, den ewigbyte vollzieht. Anstatt teure und wartungsintensive Lasermaschinen an Kunden zu verkaufen (CAPEX-Modell), positioniert sich das Start-up als Anbieter von „Storage-as-a-Service“. Kunden mieten Speicherkapazität, ewigbyte übernimmt das komplexe Handling der Laser. Dies senkt die Einstiegshürde für Pilotkunden massiv, erfordert aber vom Start-up hohe Vorab-Investitionen in die eigene Infrastruktur – ein klassisches „DeepTech“-Wagnis, das nur mit geduldigem Kapital funktioniert.

David gegen Goliath: Das Rennen um das Glas

Mit der Technologie ist ewigbyte allerdings nicht allein auf weiter Flur. Das Start-up begibt sich in direkten Wettbewerb mit einem der größten Technologiekonzerne der Welt: Microsoft forscht unter dem Namen „Project Silica“ seit Jahren an exakt dieser Technologie, um seine eigene Azure-Cloud-Infrastruktur unabhängiger von Magnetbändern zu machen. Auch lokal gibt es Konkurrenz: Das ebenfalls in München und den USA ansässige Unternehmen Cerabyte verfolgt einen ähnlichen Ansatz mit keramisch beschichtetem Glas, setzt dabei aber stärker auf kassettierte Hardware-Verkäufe.

Ewigbyte muss sich in diesem „Haifischbecken“ also klug positionieren. Mit dem frischen Kapital von 1,6 Millionen Euro will das Gründungsteam um CEO Dr. Steffen Klewitz, Technologiechef Phil Wittwer und Operations-Chefin Dr. Ina von Haeften nun den Schritt von der Forschung in die industrielle Anwendung vollziehen. Geplant ist die Entwicklung eines Prototyps, der als Basis für erste Pilotprojekte ab 2026 dienen soll. Ein entscheidender Vertrauensbeweis ist dabei der kürzlich erhaltene Validierungsauftrag der Bundesagentur für Sprunginnovationen (SPRIND). Dieses Mandat gilt in der DeepTech-Szene als Ritterschlag, da SPRIND gezielt Technologien fördert, die das Potenzial haben, Märkte disruptiv zu verändern, für klassische VCs aber oft noch zu risikoreich sind.

Die technologischen Nadelöhre

Trotz der Euphorie über die Finanzierung und das SPRIND-Siegel bleiben die technischen und ökonomischen Hürden hoch. Die Achillesferse optischer Speichermedien war historisch immer die Schreibgeschwindigkeit (Throughput). Während ein Magnetband Daten in rasender Geschwindigkeit aufspult, muss ein Laser beim Glas-Speicher physische Punkte brennen. Um im Zeitalter von Petabytes konkurrenzfähig zu sein, muss ewigbyte eine massive Parallelisierung des Schreibvorgangs erreichen – das Start-up spricht hier von „über einer Million Datenpunkten pro Puls“.

Ein weiterer Knackpunkt sind die Kosten pro Terabyte. Magnetbänder sind in der Anschaffung spottbillig. Glas als Rohstoff ist zwar günstig, doch die komplexe Lasertechnik treibt die Initialkosten. ewigbyte muss beweisen, dass die Gesamtkostenrechnung (Total Cost of Ownership) über 10 oder 20 Jahre hinweg günstiger ausfällt, weil Strom- und Migrationskosten entfallen. Zudem entsteht für Kunden ein neues Risiko: Da die Daten nur mit speziellen optischen Geräten lesbar sind, begeben sie sich in eine Abhängigkeit vom Technologieanbieter (Vendor Lock-in).

Digitale Souveränität als Verkaufsargument

Hier kommt der strategische Aspekt der „Digitalen Souveränität“ ins Spiel, den auch die Investoren betonen. Da ein Großteil europäischer Daten derzeit auf US-amerikanischer Cloud-Infrastruktur liegt oder von Hardware aus Fernost abhängt, könnte eine physische, langlebige Speicherlösung „Made in Germany“ für Behörden, Banken und kritische Infrastrukturen ein entscheidendes Argument sein. Sandro Stark von Vanagon Ventures sieht im Ausbau der Speicherinfrastruktur den „Schlüssel für alles, was davor liegt: KI, Energie, Rechenleistung“.

Ob ewigbyte tatsächlich zu einem Unternehmen von „generationeller Bedeutung“ wird, wie es die Investoren hoffen, wird sich zeigen, wenn der angekündigte industrielle Prototyp die geschützten Laborbedingungen verlässt. Der Bedarf an einer Alternative zum Magnetband ist unbestritten da – das Rennen darum, wer den Standard für das Glas-Zeitalter setzt, ist hiermit eröffnet.

ChatGPT schreibt Texte. R3 Robotics zerlegt Batterien

Es gibt Probleme, die man mit Software lösen kann, und es gibt Probleme, für die man sich die Hände schmutzig machen muss – oder besser: Roboterhände nutzt. Antoine Welter und Dr. Xavier Kohll haben mit Circu Li-ion begonnen, um Batterien zu retten. Jetzt, unter dem neuen Namen R3 Robotics und mit 20 Millionen Euro frischem Kapital im Rücken, treten sie an, um den wohl größten Flaschenhals der kommenden Mobilitätswende zu beseitigen. Ihr Ansatz: Keine teuren Spezialmaschinen, sondern intelligente Standard-Roboter, die sehen, verstehen und sicher zupacken.

Wenn in den Vorstandsetagen der Automobilhersteller über die Zukunft gesprochen wird, geht es meist um Reichweiten und Software-Defined Vehicles. Doch am anderen Ende der Wertschöpfungskette braut sich ein Sturm zusammen. Millionen von Elektrofahrzeugen werden in den kommenden Jahren ihr Lebensende erreichen. Die derzeitige Realität in vielen Recyclinghöfen wirkt dagegen fast archaisch: Menschen, die mit Handwerkzeugen komplexe Systeme auseinanderschrauben. Das ist nicht nur teuer und schwer skalierbar, sondern bei Hochvolt-Systemen auch lebensgefährlich.

Genau hier setzen Antoine Welter und Xavier Kohll an. Die Nachricht, die das deutsch-luxemburgische Unternehmen Anfang Februar 2026 verkündete, ist mehr als nur eine Finanzierungsrunde. Die 20 Millionen Euro – aufgeteilt in 14 Millionen Euro Series-A-Kapital und 6 Millionen Euro öffentliche Fördergelder – heben die Gesamtfinanzierung des Unternehmens auf ein neues Level. Angeführt wird die Runde von HG Ventures und Suma Capital, unterstützt von Co-Investoren wie der Oetker Collection und dem EIC Fund.

Doch das Geld ist nur der Treibstoff für eine strategische Evolution. Aus Circu Li-ion wird R3 Robotics. Der neue Name ist Programm: Repair, Reuse, Recycle. Antoine Welter erklärt die Motivation hinter der Umbenennung pragmatisch: „Circu Li-ion hat beschrieben, wo wir angefangen haben. R3 Robotics beschreibt, was wir aufbauen: industrielle Robotik, die Demontage skalierbar, sicher und kosteneffizient macht.“

Wenn der Roboter Augen bekommt

Die größte Hürde im Recycling ist nicht die Chemie, sondern die Variabilität. Kein Batteriepack gleicht dem anderen, E-Motoren sind unterschiedlich verbaut, Schrauben sind korrodiert. Starre Fertigungsstraßen scheitern hier. R3 Robotics löst dies mit einer Plattform, die Computer Vision, künstliche Intelligenz und Robotik verschmilzt.

Das System fungiert dabei fast wie ein „ChatGPT für die physische Welt“: Anstatt Text zu generieren, plant die KI physische Handlungen. Sensoren scannen das Bauteil, die KI erkennt den Zustand und promptet den Roboterarm dynamisch durch den Demontageprozess. Der entscheidende Vorteil: Der Mensch wird aus der Gefahrenzone der Hochspannung genommen, während der Roboter Aufgaben erledigt, die für klassische Automatisierung zu komplex wären.

Angesprochen auf den Vergleich mit Generative AI und die Frage, wie die Roboter tatsächlich „sehen“ und „entscheiden“, bestätigt Welter die Parallele: „Der Vergleich mit Generative AI passt gut: Das Modell bekommt einen Input – keinen Text, sondern einen Scan des Bauteils – und generiert daraus eine Handlungssequenz.“ Es gehe darum zu erkennen, um welches Modell es sich handelt, wie der Zustand ist und wo die Verbindungspunkte liegen. „Das klingt simpel, ist es aber nicht – kein Pack ist identisch“, so Welter. Die eigentliche Herausforderung liege jedoch in der Entscheidung davor: „Welche Reihenfolge ist sicher? Ein falscher Griff an ein Hochvoltsystem kann tödlich sein. Unser System sieht, bewertet und entscheidet.“

Smart Hardware: Warum das Rad neu erfinden?

Ein Detail, das Investor*innen besonders aufhorchen lässt, ist die Kapitaleffizienz der Gründer. Wer an Industrie-Robotik denkt, denkt an teure Hardware-Entwicklung. R3 Robotics geht einen pragmatischen Weg: Ein Großteil der verwendeten Hardware wird „von der Stange“ gekauft.

Die Roboterarme sind Standardprodukte. Die Innovation – und damit das geistige Eigentum – steckt in den spezialisierten „End-Effektoren“ (den Roboterhänden), den Sensorsystemen und vor allem dem Software-Stack, der alles steuert. Das erlaubt eine Skalierung, die mit proprietärer Hardware kaum möglich wäre. Mitgründer Dr. Xavier Kohll betont, dass dies eine bewusste Entscheidung gegen „Over-Engineering“ war: „Der Roboterarm ist Standard und die Intelligenz sitzt in den Endeffektoren, der Sensorik und dem Software-Stack, der alles zusammenbringt. Das ist unser geistiges Eigentum, und genau das lässt sich skalieren.“

David gegen Goliath – oder Partner?

Während große Recycling-Konzerne oft noch auf den Schredder setzen und die manuelle Demontage an ihre Grenzen stößt, positioniert sich R3 Robotics in einer neuen Nische. Es geht nicht darum, die Chemie-Giganten zu ersetzen, sondern ihnen den Rohstoff so rein wie möglich zu liefern – als strategische Quelle für kritische Materialien. Doch der Markt schläft nicht: Weltweit entstehen Initiativen zur Automatisierung.

Trotz des aktuellen „Gegners“ – dem Menschen mit dem Schraubenzieher – und potenzieller Konkurrenz durch Tech-Start-ups oder Autohersteller, bleibt Welter gelassen. „Wir konkurrieren nicht mit den Chemie-Giganten, wir liefern ihnen den reinsten möglichen Stoffstrom“, stellt er klar. Gegenüber potenziellen Nachahmern sieht er einen entscheidenden Vorteil, den „Unfair Advantage“: die Kombination aus Flexibilität und industrieller Automatisierungstiefe. „Wir sind aktuell die einzige Plattform, die sowohl Variabilität managt als auch für kontinuierlichen Industriebetrieb ausgelegt ist.“

Deutschland als Labor, USA als Skalierungsmarkt

Die Wachstumsstrategie von R3 Robotics ruht auf zwei massiven Säulen: technologischer Tiefe in Europa und kommerzieller Breite in den USA.

Deutschland fungiert dabei als das technologische Rückgrat. Mit der Erweiterung der Anlage in Karlsruhe zur Lighthouse Facility demonstriert das Unternehmen industrielle Leistungsfähigkeit direkt vor der Haustür der großen Autobauer. Hier wird die Technologie gehärtet. Das zeigt sich auch im Leuchtturmprojekt ReDriveS, wo R3 Robotics Seite an Seite mit Giganten wie Schaeffler und VW an der Demontage von E-Achsen arbeitet.

Doch für das massive Volumen blickt das Team über den Atlantik. Der für 2026 geplante Markteintritt in den USA ist Kern der neuen Strategie. Die frischen 20 Millionen Euro sollen gezielt in den Aufbau strategischer Partnerschaften vor Ort fließen, um die Technologie dort auszurollen, wo Pragmatismus auf riesige „End-of-Life“-Volumina trifft. Für Welter ist dieser Doppelschlag essenziell: „Deutschland ist unser Beweisstand. Hier zeigen wir Schaeffler, VW und Co., dass unsere Technologie industriellen Maßstäben in Deutschland standhält.“ Die USA seien hingegen der wichtige Skalierungsmarkt, wo pragmatische Entscheider auf gigantische Volumina treffen. „Beides brauchen wir: die Glaubwürdigkeit aus Europa und das Volumen aus Amerika.“

Industrialisierung statt Romantik

Mit Peter Mohnen, dem ehemaligen CEO des Roboter-Riesen KUKA, holte sich das Start-up zudem einen Beirat, der wie kaum ein anderer weiß, was Industriestandard bedeutet. Er beschreibt den Ansatz von R3 als Beweis für die nötige Automatisierungsexpertise, um Variabilität und Sicherheit gleichzeitig zu managen.

Um diese Expertise weiter auszubauen, wächst das Team rasant. Die Belegschaft soll mit der neuen Finanzierung massiv aufgestockt werden, vor allem im Bereich Engineering und KI. R3 Robotics hat den Beweis erbracht, dass Kreislaufwirtschaft kein ökologisches Nischenprojekt sein muss, sondern ein harter industrieller Prozess ist, der sich rechnet.

Denn letztlich, so das Fazit von Antoine Welter, sei Automatisierung der einzige Weg, das Problem wirklich zu lösen – nicht allein aus ökologischen Gründen, sondern weil es wirtschaftlich Sinn ergibt. „Was wir aufbauen, ist am Ende ein harter industrieller Prozess: Er muss zuverlässig funktionieren und sich rechnen.“ Es gehe aber um mehr als ein Geschäftsmodell: „Europa braucht eine Antwort auf die Frage, woher seine kritischen Materialien in Zukunft kommen“, mahnt Welter abschließend. „Wenn Europa diesen Zugang sichern will, braucht es Unternehmen, die genau das industriell umsetzen können. Dafür bauen wir diese Infrastruktur, und mit dem neuen Kapital und Team haben wir jetzt die Mittel dazu.“

Customer-Support-ROI 2026: Warum Ticket-Automatisierung allein nicht ausreicht

Im Jahr 2026 stehen viele Führungskräfte vor einem echten Paradox: Die klassischen Kennzahlen im Customer Support erreichen Höchststände – und dennoch bleibt der Zusammenhang mit messbarem wirtschaftlichem Nutzen oft unklar.

Das Problem liegt nicht darin, dass gängige Automatisierungsansätze grundsätzlich nicht funktionieren. Vielmehr reicht es nicht aus, lediglich Tickets zu automatisieren, wenn Customer Support tatsächlich einen belastbaren ROI liefern soll. Der wahre Wert von Support liegt heute nicht mehr in der massenhaften Bearbeitung von Anfragen, sondern darin, Probleme frühzeitig zu verhindern, bevor sie sich zu messbaren wirtschaftlichen Verlusten entwickeln.

Warum sich Support-ROI 2026 schwerer belegen lässt

Moderne Support-Organisationen entwickeln sich zunehmend hin zu hybriden Modellen, in denen KI und menschliche Agents zusammenarbeiten. Eine Gartner-Umfrage zeigt: 95 % der Customer-Service-Verantwortlichen planen, auch künftig menschliche Agents parallel zu KI einzusetzen. Hybride Setups sind damit längst auf dem Weg zum Standard.

In der Praxis übernehmen KI-Systeme heute Routineanfragen, während Menschen komplexe oder kritische Fälle bearbeiten. Mit dieser veränderten Arbeitslogik verlieren klassische Kennzahlen wie Kosten pro Ticket, durchschnittliche Bearbeitungszeit oder Automatisierungsquote an Aussagekraft. In manchen Fällen verschleiern sie den tatsächlichen Wert von Support sogar.

Das führt dazu, dass Führungsteams häufig Folgendes beobachten:

  • steigende Automatisierungsquoten bei stagnierenden Einsparungen,
  • verbesserte CSAT-Werte ohne klaren finanziellen Effekt,
  • starke CX- und Effizienzkennzahlen, die sich dennoch nicht in unternehmerische Ergebnisse übersetzen lassen.

Support ist nicht weniger wertvoll geworden. Doch durch den Einsatz von KI sind die Erwartungen gestiegen – und lineares Denken in einzelnen Metriken reicht nicht mehr aus, um den tatsächlichen Beitrag von Support zu bewerten.

Wo sich Customer-Support-ROI tatsächlich zeigt

Der ROI von Customer Support zeigt sich nur selten als „direkt generierter Umsatz“. Stattdessen wird er sichtbar in vermiedenen Verlusten und reduzierten Risiken. Konkret äußert sich das in Veränderungen im Kundenverhalten, etwa durch:

  • weniger Rückerstattungen,
  • geringere Eskalationen,
  • einen Rückgang öffentlicher Beschwerden,
  • sinkendes Abwanderungsrisiko.
  • höheres Vertrauen an entscheidenden Punkten der Customer Journey

Diese Signale entstehen nicht über Nacht. Sie bauen sich über Zeit auf – und werden deshalb in Budgetdiskussionen häufig unterschätzt.

In einem unserer Kundenprojekte (Details aufgrund einer NDA anonymisiert) wurde der Customer Support über einen Zeitraum von zwölf Monaten vollständig neu aufgebaut. Ziel war nicht allein eine schnellere Reaktionszeit, sondern eine frühere und konsistentere Problemlösung entlang der gesamten Customer Journey. Die Ergebnisse waren eindeutig:

  • Rückerstattungsquote von 40 % auf 4 % gesenkt.
  • CSAT-Anstieg von 50 auf 95.
  • NPS-Steigerung von 32 auf 80.
  • Verbesserung der Trustpilot-Bewertung von 3,0 auf 4,7.
  • Erhöhung der Chargeback-Erfolgsquote von 5 % auf 90 % durch ein dediziertes Billing-Team im Support.

Keine dieser Kennzahlen für sich genommen „beweist“ ROI. In ihrer Gesamtheit zeigen sie jedoch, wie Support begann, Ergebnisse zu beeinflussen, die in klassischen CX-Dashboards kaum sichtbar sind: Rückerstattungen gingen zurück, weil Probleme frühzeitig gelöst wurden; öffentliche Bewertungen verbesserten sich, weil weniger Kunden an ihre Belastungsgrenze kamen; Loyalität wuchs, weil Support von Schadensbegrenzung zu echter Bedürfnislösung überging.

Darüber hinaus begann das Team, Kundenanfragen systematisch zu analysieren, um Muster und frühe Reibungspunkte zu identifizieren. Dadurch wurden Abweichungen zwischen angenommener Customer Journey und tatsächlichem Kundenerlebnis sichtbar. Für das Management entstand so eine deutlich belastbarere Grundlage für strategische Entscheidungen. Diese Erkenntnisse führten zu neuen Services, die sich am realen Kundenverhalten orientierten – und damit Wachstum und Umsatz beschleunigten.

So zeigt sich Support-ROI in der Praxis: nicht als einzelne Kennzahl, sondern als Zusammenspiel aus vermiedenen Verlusten, gestärktem Vertrauen und datenbasierten Entscheidungen.

Wie hybrider Support die Wirtschaftlichkeit verändert

Über Jahre hinweg galt Automatisierung als vermeintliche „Wunderlösung“ zur Kostensenkung. Die Logik war simpel: geringere Supportkosten führen automatisch zu höherem ROI. In der Realität ist der Zusammenhang komplexer. Niedrigere Kosten bedeuten nicht automatisch höhere Erträge – insbesondere dann nicht, wenn Automatisierung genau die Mechanismen entfernt, die Verluste verhindern.

Wird Support ausschließlich auf Effizienz optimiert, verschwinden ungelöste Probleme nicht. Sie verlagern sich: in Rückerstattungen, Chargebacks, Abwanderung und öffentliche Beschwerden. Einsparungen tauchen in einer Zeile der GuV auf, während sich der Schaden still im restlichen Unternehmen summiert. Hybrider Support kann diese Gleichung verändern – aber nur, wenn er bewusst gestaltet wird.
Wenn KI im Support richtig eingesetzt wird:

  • lassen sich bis zu 85 % der Anfragen automatisiert bearbeiten,
  • liegt der CSAT rund 15 % höher als in nicht-hybriden Setups,
  • führt KI echte Aktionen aus (Rückerstattungen, Kündigungen, Account-Änderungen) statt nur standardisierte Antworten zu versenden.

In abonnementbasierten Geschäftsmodellen beginnen wir beispielsweise stets mit einer Analyse eingehender Anfragen, um zu verstehen, welche Aktionen sich sicher vollständig automatisieren lassen. Rund 50 % der Kündigungsanfragen sind in der Regel unkompliziert und risikoarm – und damit gut für eine End-to-End-Automatisierung geeignet.

Die verbleibenden Fälle unterscheiden sich deutlich. Etwa ein Viertel der Kündigungsanfragen stammt von frustrierten oder emotional belasteten Kunden. Diese Interaktionen bergen das höchste Risiko für Abwanderung. In gut konzipierten hybriden Setups übernimmt Automatisierung hier die Rolle eines Co-Piloten: Sie kennzeichnet risikoreiche Fälle, eskaliert sie an menschliche Agents und liefert Kontext – während Tonfall, Urteilsvermögen und finale Entscheidungen bewusst beim Menschen bleiben.

Der wirtschaftliche Effekt entsteht dabei nicht durch den Ersatz von Menschen, sondern durch den gezielten Einsatz menschlicher Aufmerksamkeit genau in den Momenten, die Vertrauen und Loyalität tatsächlich entscheiden.

Warum hybrider ROI klassische Messlogik sprengt

In Projekten, in denen First-Level-KI sinnvoll eingeführt wird, sinken die Supportkosten innerhalb eines Jahres typischerweise um 15–25 %, abhängig vom Geschäftsmodell. Gleichzeitig verbessern sich häufig die Erlebniskennzahlen. Diese Kombination ist jedoch kein Selbstläufer – sie entsteht nur dann, wenn Automatisierung Probleme wirklich löst und nicht lediglich verlagert.

Der Haken: Hybrider Support macht ROI schwerer messbar. Klassische ROI-Modelle gehen davon aus, dass Wertschöpfung klar getrennt erfolgt. In Wirklichkeit entsteht der größte Effekt genau dort, wo KI und Menschen zusammenarbeiten: Probleme werden verhindert, Kundenbeziehungen stabilisiert und Loyalität geschützt.

Finanzteams sehen deshalb oft Verbesserungen, können sie aber in bestehenden Scorecards nicht abbilden. Während sich das operative Modell weiterentwickelt hat, ist die Logik der Messung stehen geblieben.

Was Führungskräfte tatsächlich messen sollten

2026 müssen Unternehmen von Aktivitätsmetriken zu Wirkungssignalen wechseln. Ein praxisnaher Ansatz besteht darin, Ergebnisse auf drei Ebenen zu verfolgen:

  1. Finanzielle Risiken und Leckagen: Rückerstattungsquoten, Chargeback-Erfolgsraten, Dispute-Volumen, wiederkehrende Zahlungsprobleme.
  2. Vertrauens- und Reibungssignale: öffentliche Bewertungen, Eskalationstrends, Wiederholungskontakte, Kundenstimmung.
  3. Bindungsindikatoren: Abwanderungsrisikosegmente, Kündigungsmuster und Retention-Ergebnisse (auch wenn die exakte Umsatzzuordnung später erfolgt).

Diese Signale machen Wert früher sichtbar als klassische Umsatzberichte. Sie zeigen, ob Support Verluste verhindert – und genau dort beginnt ROI in der Regel.

Wie sich Support-Budgets rechnen

Support-Budgets scheitern, wenn sie ausschließlich an Ticketvolumen und Headcount ausgerichtet sind. Ein gesünderer Ansatz beginnt mit einer anderen Frage: Wo kostet schlechter Support unser Unternehmen am meisten Geld?

Teams, die echten ROI aus Support erzielen, investieren typischerweise in drei Bereiche:

  1. Präventionsfähigkeit: Support übernimmt Zahlungs- und Abrechnungsthemen, steuert risikoreiche Fälle und etabliert Feedback-Loops zur Ursachenanalyse.
  2. Automatisierung mit Fokus auf Lösung: First-Level-KI erledigt risikoarme Aufgaben vollständig, statt Anfragen lediglich weiterzureichen.
  3. Menschliches Urteilsvermögen dort, wo es zählt: Menschen bearbeiten Hochrisiko-Kündigungen, Eskalationen, emotional sensible Fälle und betreuen besonders wertvolle Kunden.

In diesem Moment hört Support auf, ein Kostenpunkt zu sein, und wird zu einem strategischen Hebel, der Umsatz schützt, Risiken reduziert und mit dem Unternehmen skaliert.

Fazit

2026 entsteht der tatsächliche ROI von Customer Support vor allem dadurch, dass vermeidbare Probleme gar nicht erst zu Umsatzverlusten werden.

Automatisierung ist entscheidend – aber nur dann, wenn sie Probleme tatsächlich löst. Und menschliches Urteilsvermögen sollte gezielt dort eingesetzt werden, wo es Retention, Loyalität und Vertrauen wirklich beeinflusst.

Für Führungskräfte, die sich auf Ergebnisse statt auf Aktivitätskennzahlen konzentrieren, ist Support kein Cost Center mehr. Er ist das, was er schon heute sein sollte: ein Hebel zum Schutz von Umsatz, zur Reduktion von Risiken und zur Nutzung von Kundenverhalten als Grundlage für fundierte unternehmerische Entscheidungen.

Die Autorin Nataliia Onyshkevych ist CEO von EverHelp. Sie arbeitet mit wachsenden Unternehmen aus unterschiedlichen Branchen daran, Customer Support in KI-gestützten Umgebungen skalierbar und wirkungsvoll zu gestalten.

From Lab to Launch

Wie Start-ups Forschung in Wirkung und Wachstum übersetzen: So gelingt Life-Sciences-Start-ups die Series A.

Life Sciences gehören zu den spannendsten, aber auch anspruchsvollsten Bereichen für Wachstumskapital. Kaum ein Sektor verbindet wissenschaftliche Exzellenz so direkt mit gesellschaftlichem Nutzen und gleichzeitig mit langen Entwicklungszyklen, hohen Kosten und komplexen regulatorischen Anforderungen. Genau diese Mischung macht den Weg vom Forschungslabor bis zum Series A-Deal so herausfordernd – und sie erklärt, warum Impact-Investoren hier besonders genau hinschauen.

Hervorragende Technologien werden nicht automatisch zu einer überzeugenden Investmentstory. Entscheidend ist, ob ein Start-up den Sprung von der wissenschaftlichen Idee zur skalierbaren Wertschöpfung schafft. Wer Series A-Kapital aufnehmen will, muss zeigen, dass aus Forschung ein Produkt werden kann, aus einem Produkt ein Markt und aus einem Markt ein nachhaltiges Geschäftsmodell.

Wissenschaft allein reicht nicht: Der Forschungsansatz muss investierbar werden

Viele Life Sciences-Start-ups starten mit einem starken technologischen Fundament. Die wissenschaftliche Tiefe ist oft beeindruckend, ebenso wie die Expertise im Team. Für Investoren ist das jedoch nur der Ausgangspunkt. Series A-Investoren erwarten einen realistischen Anwendungskontext und ein skalierbares Businessmodell mit klarer Exitstrategie. Damit verändern sich die entscheidenden Fragen im Unternehmen und auch die Teamanforderungen. Wie stabil ist die Datenlage? Wie groß ist der adressierbare Markt? Wie robust ist das Verfahren außerhalb idealer Laborbedingungen? Ist die Patentlage verteidigbar? Wie ist das Wettbewerbsumfeld strukturiert – und welche Schritte (inkl. Regulatorik und Kapitalbedarf) sind nötig, um ein marktfähiges Produkt zu schaffen? Je klarer ein Start-up diesen Übergang strukturieren und belegen kann, desto eher entsteht Vertrauen beim Investor: Denn die Series A ist oft der Zeitpunkt, an dem Investoren das hohe Risiko eines Life Sciences-Start-ups anhand seines Kommerzialisierungspotenzials genauer beurteilen. Detaillierte Informationen zu Entwicklungszeit, Kapitalbedarf, Regulatorik sowie Marktzugang, Exitoptionen und die richtige Equity Story werden zu entscheidenden Faktoren für ein Series A-Start-up.

Impact ist kein Buzzword: Wirkung muss messbar und plausibel sein

Impact-Investoren investieren nicht nur in Rendite, sondern auch in Wirkung. Gerade in den Life Sciences kann Impact sehr konkret sein, etwa durch bessere Diagnostik, effizientere Therapien, schnellere Entwicklungspfade oder niedrigere Kosten im Gesundheitssystem – oder auch eine erste neue Therapieoption für bestimmte Indikationen. Impact muss verständlich, messbar und realistisch hergeleitet werden. Viele Start-ups formulieren ihren Impact zu allgemein. Am meisten Erfolg verspricht eine klare, fokussierte Wirkungskette. Welches Problem wird gelöst? Für welche Patientengruppe oder welches Versorgungssystem? Welche Outcomes verbessern sich tatsächlich? Und welche Evidenz spricht dafür, dass diese Wirkung erreichbar ist? Gibt es kompetitive Therapien oder Diagnostika, wie strukturiert sich der Preis, und vor allem: Gibt es eine (teilweise) Erstattung der Versicherungen? Wer Impact so darstellt, dass er nicht nur emotional, sondern auch ökonomisch und klinisch nachvollziehbar wird, schafft einen echten Vorteil im Fundraising.

Der Weg zur Series A: Strategie schlägt Hoffnung

Series A-Kapital ist nicht einfach „mehr Geld“. Es markiert einen Strategiewechsel. In dieser Phase wollen Investoren sehen, dass ein Start-up seinen Entwicklungsplan realistisch strukturiert, die Risiken kennt und einen klaren Pfad zur Kommerzialisierung aufzeigen kann. Dazu gehören belastbare Meilensteine, ein sauberer Finanzierungsplan und eine klare Priorisierung. Welche Daten müssen bis wann vorliegen? Welche regulatorischen Schritte sind kritisch? Welche Partnerschaften sind erforderlich, um Zeit und Kosten zu reduzieren und sich strategisch zu platzieren? Und wie sieht der Plan aus, wenn einzelne Annahmen nicht eintreten? Ein überzeugender Series A-Case zeigt nicht nur das Best Case-Szenario, sondern auch professionelles Risikomanagement – denn Investoren wissen, dass im Life Sciences-Umfeld nicht alles planbar ist. Umso wichtiger ist ein strukturierter, realistischer Ansatz.

Team, Governance und Umsetzungskraft: Investoren investieren in Führung

Im Life Sciences-Bereich ist die Teamfrage oft entscheidend. Nicht, weil wissenschaftliche Kompetenz unwichtig wäre, sondern weil Series A eine operative Phase ist. Investoren suchen Teams, die nicht nur Forschung können, sondern auch kommerzielle Produktentwicklung, klinische Strategie, Marktlogik und Partnerschaften. Start-ups wirken besonders überzeugend, wenn sie früh ein starkes Set-up schaffen. Dazu gehören erfahrene Advisors, ein realistisches Verständnis für klinische und regulatorische Prozesse sowie eine Governance-Struktur, die Wachstum ermöglicht. Ein starkes Board, klare Rollen und ein transparenter Kommunikationsstil sind nicht nur „nice to have“, sondern Signale von Reife. Gerade Impact-Investoren achten darauf, ob die Mission eines Unternehmens auch organisatorisch getragen wird. Wer Wirkung verspricht, muss zeigen, dass Verantwortung strukturell verankert ist.

Skalierung in Life Sciences: Partnerschaften oft der schnellste Hebel

Während in klassischen Tech-Modellen Skalierung oft über Vertrieb und Marketing läuft, ist der Hebel in den Life Sciences häufig ein anderer. Strategische Partnerschaften können der Schlüssel sein, um schneller Richtung Markt zu kommen und früh einen Exitpfad zu skizzieren. Das kann über Pharmakooperationen, Diagnostikpartner, Forschungseinrichtungen oder Industriepartner geschehen.

Für Investoren ist dabei entscheidend, dass Partnerschaften nicht nur als Option erwähnt werden, sondern als strategischer Bestandteil des Geschäftsmodells. Wer zeigen kann, dass der Zugang zu Infrastruktur, klinischen Studien, Produktionskapazitäten oder Vertriebskanälen realistisch gesichert ist, reduziert das Risiko (oft auch die Kosten) und erhöht die Attraktivität der Series A-Runde.

Gleichzeitig sollten Start-ups vermeiden, sich zu früh abhängig zu machen. Gute Deals entstehen, wenn die eigene Position stark genug ist, um Partnerschaften auf Augenhöhe zu verhandeln.

Fazit: Series A gewinnt, wer Impact in ein skalierbares Geschäftsmodell übersetzt

Der Weg vom Labor zum Launch ist in den Life Sciences kein Sprint, sondern ein anspruchsvoller, kapitalintensiver Prozess. Impact-Investoren sind bereit, diesen Weg zu begleiten, erwarten jedoch Klarheit, Struktur und Evidenz. Wissenschaftliche Exzellenz ist die Basis, doch Series A-Kapital gibt es nur, wenn daraus ein investierbares Produkt, ein plausibler Markt und ein professionell geführtes Unternehmen entsteht. Start-ups, die ihren Impact messbar machen, ihre Meilensteine realistisch planen und ihr Team auf Umsetzung ausrichten, haben die besten Chancen, Wirkung und Rendite zusammenzubringen: Denn am Ende überzeugt nicht die Vision allein, sondern vor allem die Fähigkeit, sie in messbare Ergebnisse zu übersetzen.

Dies ist ein Beitrag aus der StartingUp 01/26 – hier geht's zum E-Shop.

Neues Venture Studio und 30-Mio.-Fonds für Europas Sicherheitstechnologien

Ein Konsortium aus Beratung, Venture Building und Kapitalmanagement startet eine neue Initiative für Technologien im Bereich „Resilience & Defence“. PwC Deutschland, Bridgemaker und Segenia Capital haben am 12. Februar den Launch eines gemeinsamen Venture Studios bekannt gegeben. Die Allianz positioniert sich als „System-Integrator“, um die Lücke zwischen universitärer Forschung und marktfähigen Produkten im Sicherheitssektor zu schließen.

Der Markt für Sicherheitstechnologie und den Schutz kritischer Infrastrukturen (KRITIS) wandelt sich von einer Nische zum zentralen Fokus der europäischen Innovationspolitik. Mit dem neuen Venture Studio reagieren die Initiatoren auf die geopolitische Notwendigkeit, technologische Souveränität in Europa zu stärken.

Für Gründer*innen im DeepTech-Bereich eröffnet sich damit eine Alternative zum klassischen Venture Capital (VC). Während normale VCs oft erst investieren, wenn ein Produkt Marktumsätze zeigt („Product-Market-Fit“), setzt diese Initiative früher an. Sie adressiert spezifisch die hohen Hürden im Defence-Sektor – wie langwierige staatliche Beschaffungsprozesse und komplexe Regulierung.

Smart Money statt nur Kapital: Der „System-Integrator“-Ansatz

Das Kernproblem vieler europäischer DeepTech-Start-ups ist die Skalierung von der reinen Forschung (Technology Readiness Level 1) hin zur industriellen Anwendung (Level 6+). Während Milliarden-Töpfe wie der NATO Innovation Fund oft erst in Wachstumsphasen greifen, fehlt es häufig an Kapital für die „schmutzige Phase“ des Prototypenbaus („Valley of Death“).

Das Konsortium tritt hier nicht als reiner Geldgeber auf, sondern bündelt drei Disziplinen, um Dual-Use-Technologien (zivile und militärische Nutzbarkeit) schneller zur Marktreife zu bringen:

  1. Regulatorik & Marktzugang (PwC Deutschland): Unterstützung bei der Navigation durch behördliche Anforderungen („Vergaberechts-Compliance“).
  2. Company Building (Bridgemaker): Operative „Execution Power“ beim Aufbau der Ventures – von der Hardware bis zur Software.
  3. Kapital (Segenia Capital): Professionelles Fondsmanagement für die Frühphase.

Für Gründer*innen wirkt dieses Setup wie ein Qualitäts-Filter: Wer das Studio durchläuft, gilt für spätere Series-A-Investoren als „vorgeprüft“ und regulatorisch abgesichert.

Bekannte Gesichter aus dem Ökosystem

Die Personalien hinter der Initiative signalisieren Branchenkennern, dass hier operatives Verständnis auf politisches Netzwerk trifft.

Federführend bei PwC agiert Florian Nöll. Als ehemaliger langjähriger Vorsitzender des Bundesverbands Deutsche Startups gilt er als einer der wichtigsten Brückenbauer zwischen der Berliner Politik und der Gründerszene. Seine Erfahrung ist essenziell, um junge Tech-Firmen durch die oft starren Beschaffungsprozesse der öffentlichen Hand zu navigieren.

Auf der operativen Seite bringt Henrike Luszick (CEO Bridgemaker) einen Track Record ein, der über reine Software-Modelle hinausgeht. Mit Ventures wie Nestor (einem Joint Venture für mobile Überwachungssysteme mit KI-Analyse) hat der Company Builder bereits bewiesen, dass er Hardware-Themen im Sicherheitsbereich erfolgreich am Markt platzieren kann.

30-Millionen-Euro-Fonds & der „Dual-Use“-Hebel

Parallel zum operativen Studio-Betrieb wird ein Venture Fonds mit einem Zielvolumen von 30 Millionen Euro aufgelegt. Segenia Capital, als bei der BaFin registrierter AIFM-Manager, übernimmt die Verwaltung. Die im Vergleich zu Mega-Fonds überschaubare Summe unterstreicht den Fokus auf die Pre-Seed- und Seed-Phase (Tickets ca. 500k – 1,5 Mio. EUR). Der Fonds operiert nach einem „Dual-Track-Ansatz“: Er finanziert sowohl interne Ausgründungen des Studios als auch externe Startups, die strategisch ins Portfolio passen.

Dass München als einer der zentralen Standorte gewählt wurde, ist strategisch kein Zufall. Die bayerische Landeshauptstadt hat sich – getrieben durch die TU München und Einhörner wie Quantum Systems – zum europäischen Hub für DefenceTech entwickelt.

Für Gründer*innen ist zudem der strategische Fokus auf Dual-Use entscheidend. Technologien, die primär für Resilienz und den Schutz kritischer Infrastrukturen entwickelt werden, aber auch militärisch nutzbar sind, umschiffen die strengen ESG-Hürden vieler institutioneller Investoren. Dies öffnet Kapitalquellen, die reinen Rüstungs-Start-ups oft verschlossen bleiben.

Einordnung: Reality Check – Hürden bleiben bestehen

Trotz der prominenten Unterstützung und der Marktlogik müssen interessierte Gründer*innen genau hinsehen. Venture-Studio-Modelle stehen oft in der Kritik, durch hohe Service-Anteile für das operative „Building“ die „Cap Table“ (Gesellschafterstruktur) frühzeitig zu verwässern. Wenn Studio und Fonds signifikante Anteile halten, bleibt Gründer*innen oft weniger Equity, was Folgerunden mit externen VCs erschweren kann („Skin in the Game“-Debatte).

Zudem sind 30 Millionen Euro im kapitalintensiven Hardware-Sektor schnell aufgebraucht – das Risiko einer Finanzierungslücke nach der Seed-Phase bleibt. Die größte Unbekannte ist jedoch der Kunde Staat: Auch mit PwC im Rücken gelten für Start-ups weiterhin die strengen Vergaberechte der öffentlichen Hand. Ob das Studio diese „Paperwork Barrier“ tatsächlich signifikant verkürzen kann, muss die Praxis erst noch zeigen.

Key Facts

  • Initiatoren: PwC Deutschland, Bridgemaker, Segenia Capital
  • Marktpositionierung: Early-Stage „System-Integrator“ (Kapital + Regulatorik + Building)
  • Fokus: Resilience, Defence Technology, KRITIS, Dual-Use
  • Finanzierung: Fonds mit 30 Mio. EUR Zielvolumen (Pre-Seed/Seed Fokus)
  • Investitionsstrategie: Neugründungen (Inkubation) und externe Direktinvestments
  • Standorte: Berlin, Frankfurt am Main, München

1,3 Mio. Euro Finanzierung für BauTech-Start-up conmeet

Das 2023 von Benedikt Kisner, Leandro Ananias und Lennart Eckerlein gegründete conmeet bietet eine All-in-One-Plattform für das Bau- und Handwerksgewerbe.

Nach Jahren der Entwicklung im „Stealth Mode“ meldet sich das Cloud-Software-Start-up conmeet mit einem Erfolg am Markt: Das 2023 gegründete Unternehmen hat seine Pre-Seed-Finanzierungsrunde über 1,3 Millionen Euro abgeschlossen. Das frische Kapital soll die Markteinführung der All-in-One-Plattform für das Bau- und Handwerksgewerbe beschleunigen. Als Lead-Investor tritt der VC-Fonds May Ventures auf.

Das im nordrhein-westfälischen Borken ansässige Unternehmen zielt mit seiner Lösung auf die Digitalisierung mittelständischer Bau- und Handwerksunternehmen ab. Kern des Geschäftsmodells ist eine cloud-native Plattform, die verschiedene Unternehmensbereiche wie CRM, ERP, Projektmanagement, Controlling und Banking in einer zentralen Anwendung bündelt. Ziel ist es, die in der Branche weit verbreitete Fragmentierung durch isolierte Softwarelösungen – den sogenannten „Flickenteppich“ – aufzulösen.

Erfahrene Gründer und erfolgreicher Track-Record

Hinter conmeet steht ein Trio mit komplementären Kompetenzen, das die Software in den vergangenen zwei Jahren im Verborgenen entwickelte, bevor im Sommer 2023 die formale Gründung der GmbH erfolgte und vor einigen Monaten die ersten Kunden angebunden wurden.

Der Einstieg von CEO Benedikt Kisner in den ConTech-Markt wird in der Szene dabei besonders aufmerksam verfolgt. Kisner lieferte mit dem Aufbau der netgo group eine der beachtlichsten Wachstumsstorys im deutschen IT-Mittelstand ab. Er führte das Unternehmen bis zum Exit an den Private-Equity-Investor Waterland – zum Zeitpunkt seines Ausstiegs verzeichnete die Gruppe über 1.300 Mitarbeitende und erwirtschaftete Umsätze im dreistelligen Millionenbereich. Komplettiert wird das Gründungsteam durch CTO Leandro Ananias und COO Lennart Eckerlein, der langjährige Führungserfahrung aus dem Handwerkssektor einbringt.

Marktanalyse: Angriff auf den App-Dschungel

Mit dem Marktstart tritt conmeet in ein dicht besiedeltes und umkämpftes Wettbewerbsfeld ein. Moderne Cloud-Herausforderer wie ToolTime, Plancraft oder HERO Software haben in den letzten Jahren bereits erfolgreich digitale Lösungen im Handwerk etabliert. Diese Anbieter punkten oft mit hoher Benutzerfreundlichkeit bei spezifischen Workflows wie Terminplanung oder Angebotserstellung und adressieren primär kleine bis mittlere Betriebe.

Die Differenzierungsstrategie von conmeet zielt jedoch auf eine Lücke im "Upper Mid-Market": Während viele Wettbewerber als Insellösungen fungieren, die über Schnittstellen verbunden werden müssen, positioniert sich das Start-up als integriertes Betriebssystem. Anstatt nur Büroprozesse zu digitalisieren, greift die Software tiefer in die Wertschöpfungskette ein – von der integrierten Banksteuerung bis zur Einbindung von Subunternehmern in Projekthierarchien.

Die Marktchancen stehen dabei gut, da der Leidensdruck in der Branche wächst: Der anhaltende Fachkräftemangel zwingt Bauunternehmen zur drastischen Effizienzsteigerung. Wer nicht mehr Personal findet, muss die Verwaltung automatisieren. Genau hier – in der komplexen Steuerung von Großprojekten und Firmenverbünden – will conmeet sich etablieren.

Starkes Eigeninvestment der Gründer

Eine Besonderheit der aktuellen Runde: Die drei Gründer beteiligen sich selbst mit einem substanziellen Betrag aus eigener Tasche an der Finanzierung. Als Lead-Investor tritt der Venture-Capital-Fonds May Ventures unter der Leitung von Managing Partner Maximilian Derpa auf. Derpa sieht in der Kombination aus technologischer Kompetenz und der durch Eckerlein eingebrachten Branchenerfahrung den ausschlaggebenden Faktor für das Investment: „Conmeet adressiert ein echtes Problem im Mittelstand mit einer technologisch fortschrittlichen Lösung“, so Dominik Lohle von May Ventures.

Ausblick: KI-Integration und Ökosystem

Mit den eingeworbenen 1,3 Millionen Euro plant das Start-up den Ausbau der Teams in Vertrieb, Marketing und Produktentwicklung. Mittelfristig verfolgt das Unternehmen ambitionierte Technologieziele: Geplant ist der Einsatz von KI-Agenten zur autonomen Steuerung von Geschäftsprozessen. Parallel soll die Plattform zu einem umfassenden Ökosystem für die Immobilienwirtschaft ausgebaut werden – von Architekten über Generalunternehmer bis hin zum Facility Management.

exist Leuchtturm konkret: Wie die Startup Factory FUTURY ihre Kräfte im Bausektor bündelt

Der Bund will mit seinen exist Startup Factories international sichtbare Gründungs-Leuchttürme schaffen. In Hessen zeigt sich nun, wie diese Theorie in die Praxis übersetzt wird: Die Frankfurter Factory FUTURY und der mittelhessische Hub LOVEDIS formen eine strategische Allianz.

Es ist eines der ambitioniertesten Projekte der deutschen Gründungsförderung: Mit dem Leuchtturmwettbewerb will das Bundeswirtschaftsministerium (BMWK) die Fragmentierung der deutschen Start-up-Landschaft überwinden. Das Ziel sind hoch vernetzte, kapitalstarke Ökosysteme – sogenannte Startup Factories –, die Public-Private-Partnerships auf ein neues Level heben. Hintergründe dazu in unserem Special zu den exist Startup Factories.

FUTURY, einer der Gewinner dieses Wettbewerbs, liefert nun den Beweis, dass das Konzept „Factory“ mehr ist als ein Label: Durch die Allianz mit LOVEDIS (ehemals StartMiUp) wird die Innovationskraft des Finanzplatzes Frankfurt mit der industriellen Substanz Mittelhessens verzahnt.

Die Logik der  Startup Factory: Skalierung durch Arbeitsteilung

Die Kernidee der Startup Factories – die Bündelung von Ressourcen für größere Schlagkraft – wird am Beispiel des Programms „The Mission Construction“ exemplarisch durchdekliniert. Während FUTURY als zentraler Hub und methodischer Enabler fungiert und die Verbindung zu Kapitalgebern und internationalen Netzwerken hält, übernimmt LOVEDIS die operative Führung im vertikalen Marktsegment Bau.

Dieser Schritt ist strategisch konsequent: LOVEDIS sitzt in Marburg inmitten einer Region, die reich an Hidden Champions des Baugewerbes ist. Die neue Aufgabenteilung verlagert die Validierung von Innovationen somit direkt an die Quelle der industriellen Wertschöpfung, während FUTURY den Rahmen für Skalierung und Methodik liefert.

Vom Pitch-Deck ins Real-Labor

Für Gründer*innen im Bereich ConstructionTech bedeutet diese Strukturreform eine Abkehr vom reinen Pitch-Training hin zur industriellen Integration. Der für 2026 angesetzte Accelerator nutzt die Factory-Struktur, um Startups Zugang zu sogenannten Real-Laboren zu verschaffen. Partner wie Lupp, FingerHaus oder Weimer Bau fungieren dabei nicht nur als Sponsoren, sondern öffnen ihre Baustellen und Datenräume für Pilotprojekte.

Das Ziel der Factory-Strategie ist dabei klar definiert: Weg von der Insel-Lösung, hin zu systemrelevanten Kooperationen. Nach einer dreimonatigen Validierungsphase mündet das Programm in einen One-on-One-Accelerator, der gezielt auf langfristige Lieferbeziehungen oder Co-Entwicklungen hinarbeitet.

10 Millionen Euro als Hebel für 1.000 Start-ups

Die Allianz zwischen LOVEDIS und FUTURY ist auch ein Signal an die Politik und Geldgeber. FUTURY tritt an, um bis 2030 rund 1.000 neue Startups hervorzubringen – unterstützt durch bis zu 10 Millionen Euro Bundesförderung, die durch private Mittel gespiegelt werden müssen.

Dass nun LOVEDIS als starker regionaler Partner die Federführung in einem Schlüsselsektor übernimmt, zeigt, wie die Mittel eingesetzt werden: Um regionale Exzellenzcluster (wie die Bauindustrie in Mittelhessen) an die große Infrastruktur der Startup Factory anzudocken. Mara Steinbrenner (CEO LOVEDIS) und Melissa Ott (MD FUTURY) betonen unisono, dass diese „Kollaboration der neue Standard“ sei – ein Modell, das notwendig ist, um im europäischen Wettbewerb um DeepTech- und Industrie-Innovationen bestehen zu können.

Gründungs-Optimismus 2026: Trotz Gegenwind auf Wachstumskurs?

Während die makroökonomischen Vorzeichen auf Abkühlung stehen – die OECD prognostizierte zuletzt eine Verlangsamung des globalen Wirtschaftswachstums um rund zehn Prozent in den kommenden Jahren – zeichnet sich in der deutschen Gründer*innenszene ein überraschendes Gegenbild ab: Ein neuer Optimismus macht sich breit.

Laut dem aktuellen „Work Change Special Report“ von LinkedIn (befragt wurden über 1000 Unternehmensführungen und Fachkräfte in Deutschland) blicken 55 Prozent der deutschen Kleinunternehmer*innen zuversichtlich auf das Wachstum in den kommenden zwölf Monaten. Dieser Wert sticht besonders hervor, da kleine Unternehmen (KMU) rund 90 Prozent aller Unternehmen ausmachen und für 70 Prozent des globalen BIP verantwortlich sind. Wenn dieser Sektor trotzt, hat das Signalkraft.

Damit zeigt der Report eine klare Trendwende: Die wirtschaftliche Unsicherheit führt nicht zur Schockstarre, sondern zu mehr Eigeninitiative. Die Zahl der LinkedIn-Mitglieder in Deutschland, die ihrem Profil den Titel „Founder“ hinzufügen, ist im Jahresvergleich um 61 Prozent gestiegen. Ein Indiz dafür, dass sich der Begriff des Unternehmertums wandelt – weg von rein formalen Strukturen, hin zu einer agilen Founder-Economy, die oft digital startet, bevor sie im Handelsregister landet.

KI als der große „Gleichmacher“ für kleine Teams

Was treibt diesen Mut zur Selbständigkeit in einem schwierigen Umfeld? Die Daten legen nahe, dass technologische Barrieren fallen. Künstliche Intelligenz (KI) fungiert hier als „Equalizer“, der kleinen Teams Wettbewerbschancen eröffnet, die früher Konzernen vorbehalten waren. Das generative KI-Potenzial wird global auf eine Wertschöpfung von bis zu 6,6 Billionen US-Dollar geschätzt – und kleine Unternehmen wollen sich ihren Teil davon sichern.

  • Wettbewerbsvorteil: 53 Prozent der Geschäftsführer*innen kleiner Unternehmen in Deutschland geben an, dass KI entscheidend für das Wachstum ihres Unternehmens ist.
  • Gründungsmotor: Fast 30 Prozent der Fachkräfte in Deutschland sagen, dass erst die Verfügbarkeit von KI sie dazu ermutigt hat, den Schritt in die Selbständigkeit zu wagen.
  • Hohe Adaption: Während in der breiten Wirtschaft die Implementierung oft schleppend verläuft, sind die auf LinkedIn aktiven Kleinunternehmen bereits deutlich weiter: Hier geben 84 Prozent an, KI bereits in irgendeiner Form zu nutzen.

Die Renaissance der Soft Skills: Vertrauen als Differenzierungsmerkmal

Der Report warnt jedoch davor, sich allein auf Technologie zu verlassen. In einer Ära, in der KI-generierte Inhalte exponentiell zunehmen, wird der Human Factor zum entscheidenden Wettbewerbsvorteil.

Wenn Aufmerksamkeit ein knappes Gut ist, wird Vertrauen zur härtesten Währung.

  • Netzwerkeffekte: 69 Prozent der Marketingverantwortlichen in kleinen Unternehmen bestätigen, dass Käufer*innen Informationen heute primär über ihre Netzwerke validieren, bevor sie Entscheidungen treffen.
  • Markenaufbau: Für 71 Prozent der deutschen Kleinunternehmer*innen ist der Aufbau einer starken Marke der Schlüssel, um ihre 3-bis-5-Jahres-Ziele zu erreichen.
  • Authentizität: 72 Prozent setzen verstärkt auf „Community-Driven-Content“ – also Stimmen von Mitarbeitern und Experten –, da bloße Markenbotschaften an Wirkung verlieren.

Fazit für Gründer*innen

Die Strategie für 2026 lautet Hybridität: Erfolgreiche Gründer*innen nutzen KI für Geschwindigkeit und Skalierung im Hintergrund, investieren aber gleichzeitig massiv in den Aufbau persönlicher Netzwerke und einer glaubwürdigen Marke. Oder wie es die Daten zeigen: 65 Prozent der deutschen Kleinunternehmer*innen sehen das aktive Netzwerken inzwischen als essenziellen Schlüssel für langfristiges Wachstum an.

Wer heute gründet, tut dies mit mächtigeren Werkzeugen als je zuvor – muss aber mehr denn je beweisen, dass hinter der Technologie echte Menschen stehen.

New Defense: Christoph Keese wird Co-Founder der Defence-Plattform BASED

Das New-Defense-Ökosystem BASED holt sich prominente Verstärkung: Gemeinsam mit Gründer Lippold von Oldershausen will Christoph Keese als Co-Founder die europäische Start-up-Landschaft für Sicherheits- und Dual-Use-Technologien radikal beschleunigen.

In der europäischen Defense-Tech-Szene zeichnet sich eine signifikante Machtverschiebung ab: BASED, das führende Ökosystem für Dual-Use- und New-Defense-Start-ups, schaltet offiziell in eine neue strategische Wachstumsphase. Mit dem Einstieg des profilierten Medienunternehmers, Strategen und Venture-Investors Christoph Keese als Co-Founder untermauert das Unternehmen seinen Anspruch, die zentrale operative Infrastruktur für Sicherheit und Innovation in Europa zu werden.

Vom Frühstückstisch zur staatlich beauftragten Drehscheibe

Die Erfolgsgeschichte von BASED nahm ihren Anfang am Verhandlungstisch. Was Gründer Lippold von Oldershausen vor drei Jahren mit dem Munich Security Breakfast als hochkarätiges Forum im Rahmen der Münchner Sicherheitskonferenz etablierte, hat sich längst zu einer festen Institution entwickelt. Aus dieser Initiative heraus entstand im Jahr 2024 die Plattform BASED, die kurz darauf einen entscheidenden Meilenstein erreichte: Die Beauftragung durch das Bundesministerium für Wirtschaft und Klimaschutz (BMWK) sowie das Bundesministerium für Digitales und Staatsmodernisierung als offizieller de:hub Security & Defense. Seither verfolgt die Plattform das Ziel, New-Defense-Start-ups, den Mittelstand, Investoren und Bedarfsträger strukturiert zu vernetzen, um technologische Souveränität nicht nur als Vision zu begreifen, sondern aktiv umzusetzen.

Strategisches Schwergewicht für die Skalierungsphase

Mit Christoph Keese gewinnt BASED nun ein unternehmerisches Schwergewicht mit tiefen Wurzeln in der europäischen Wirtschafts- und Medienlandschaft. Der Volkswirt und Journalist, der unter anderem als Chefredakteur der Financial Times Deutschland und der WELT sowie als Wegbereiter von POLITICO Europe agierte, bringt wertvolle Expertise als Brückenbauer und Venture-Investor mit. Für Keese steht fest, dass Europa in der aktuellen geopolitischen Lage vor allem Umsetzungskraft benötigt. Sein Ziel ist es, BASED gemeinsam mit Lippold von Oldershausen zur zentralen Plattform eines handlungsfähigen europäischen Defence-Ökosystems auszubauen, indem Innovationen skaliert, Kapital mobilisiert und institutionelle Verantwortung gebündelt werden.

Ein Turbo für Dual-Use-Gründer

Für Gründerinnen und Gründer im Bereich Dual-Use bedeutet diese personelle Verstärkung vor allem eine stärkere Sichtbarkeit und verbesserte Skalierungschancen. BASED fungiert dabei als Enabler, der Start-ups den oft schwierigen Zugang zu industriellen Kapazitäten, privatem Kapital und staatlichen Bedarfsträgern ebnet. In einer Zeit, in der Resilienz und technologische Souveränität zu Grundvoraussetzungen für Wohlstand geworden sind, bietet das Duo von Oldershausen und Keese eine Plattform, die Gründer*innen hilft, ihre Innovationen sicherheitspolitisch wirksam zu verankern und strategisch zum Erfolg zu führen.

StartingUp-Fazit: Was bedeutet das für die Szene?

Lange Zeit war Defense-Tech ein Nischenthema für Spezialist*innen, doch durch die institutionelle Verankerung als de:hub und die zusätzliche strategische Schlagkraft von Keese rückt das Thema endgültig in den Investment-Mainstream. Für Gründer*innen im Bereich Dual-Use bedeutet das: Die Barrieren zwischen ziviler Innovation und staatlicher Sicherheitsarchitektur werden durchlässiger. Wer heute Technologien entwickelt, die Europa resilienter machen, findet in BASED nun eine Infrastruktur vor, die industriell und politisch Türen öffnet, die bisher fest verschlossen schienen.

Service: So profitieren Start-ups von BASED

Für Gründerinnen und Gründer aus den Bereichen Dual-Use, Deep-Tech und Sicherheit bietet BASED konkrete Anknüpfungspunkte, um die „Valley of Death“-Phase schneller zu überwinden:

Zugang zum Netzwerk: Als offizieller de:hub öffnet die Plattform Türen zu Bundesministerien, der Bundeswehr und internationalen Sicherheitsinstitutionen.

Investoren-Matchmaking: BASED bringt kapitalsuchende Start-ups mit spezialisierten VCs und Business Angels zusammen, die ein tiefes Verständnis für die Zyklen im Defence-Sektor haben.

Industrie-Partnerschaften: Über das Ökosystem lassen sich Kooperationen mit etablierten mittelständischen Unternehmen schließen, um Prototypen in die industrielle Skalierung zu bringen.

Wissenstransfer: Kuratierte Events bieten die Chance auf direktes Feedback von hochrangigen Entscheidungsträgern aus Politik und Industrie.

Interessierte Gründer*innen können über die Website BASED direkt Kontakt aufnehmen.

SET100-Liste 2026: ClimateTech entwächst den Kinderschuhen

Zum zehnten Mal hat die Deutsche Energie-Agentur (dena) die globalen Top-Start-ups der Energiewende identifiziert. Die Analyse der SET100-Liste 2026 zeigt: Statt Visionen dominieren heute umsatzstarke Geschäftsmodelle und industrielle Hardware-Lösungen.

Wer verstehen will, wie sich die globale Start-up-Szene im Bereich Energie und Klima entwickelt, muss in diesem Jahr auf den Reifegrad der Technologien schauen. Die Zeiten, in denen Climate Tech vornehmlich aus Software-Piloten im frühen Stadium bestand, scheinen vorbei zu sein. Zum zehnjährigen Jubiläum der Innovationsplattform Start Up Energy Transition (SET) veröffentlichte die dena am 11. Februar 2026 die neue SET100-Liste. Ein Blick in die Daten der 100 ausgewählten Unternehmen offenbart eine massive Verschiebung hin zu marktreifen Lösungen.

Vom Prototyp zum Markteintritt

Aus insgesamt 470 Bewerbungen aus 79 Ländern wählte eine internationale Jury die vielversprechendsten Kandidat*innen aus. Auffällig ist dabei der hohe technologische Reifegrad (Technology Readiness Level, TRL). 79 Prozent der gelisteten Start-ups befinden sich bereits in der „Late Stage“ (TRL 7-9), verfügen also über marktreife Produkte oder sind bereits in der Skalierung.

Philipp Richard, Bereichsleiter Digitale Technologien & Start-up Ökosystem bei der dena, betont die fortgeschrittene technische Bereitschaft dieses Jahrgangs: „Viele Start-ups befinden sich jetzt auf TRL 7-9, was auf Lösungen hinweist, die für den sofortigen Einsatz auf dem Markt bereit sind.“. Die Start-ups haben die Pilotphase weitgehend hinter sich gelassen – 80 Prozent verfügen über Produkte, die über den Status eines „Minimum Viable Product“ (MVP) hinausgehen.

Umsatzsprung und Kapitalfluss

Diese Reife spiegelt sich auch in den betriebswirtschaftlichen Kennzahlen wider. Die monatlichen Umsätze der SET100-Unternehmen haben sich im Jahresvergleich mehr als verdoppelt – von 10,1 Millionen Euro im August 2024 auf 20,9 Millionen Euro im August 2025.

Dabei zeigt sich eine klare Trennung bei der Kapitalverteilung. Obwohl der Sektor „Clean Energy & Storage“ mit 39 Start-ups die größte Gruppe in der Liste stellt, floss das meiste Kapital in einen anderen Bereich. Die Finalisten der Kategorie „Industry“ konnten mit 93,6 Millionen Euro mehr als die Hälfte des gesamten Finanzierungsvolumens der Finalisten auf sich vereinen. Dies deutet auf ein wachsendes Interesse von Investor*innen an Lösungen für schwer dekarbonisierbare Industriesektoren (Hard-to-Abate-Sectors) hin, die oft kapitalintensive Hardware erfordern.

Hardware dominiert, Software flankiert

Die Analyse der Geschäftsmodelle zeigt, dass reine Softwarelösungen in vielen Bereichen zur Minderheit werden. Besonders in den Sektoren „Buildings & Construction“ sowie „Mobility & Transportation“ dominieren Hardware-Lösungen mit 62 Prozent beziehungsweise 50 Prozent. Lediglich im Bereich „Clean Energy & Storage“ liegt der Software-Anteil mit 51 Prozent noch vorn, was auf die hohe Bedeutung von Netzmanagement und digitalen Speicherlösungen hinweist.

Insgesamt zeigt die Liste 2026 eine hohe Produktkomplexität: 59 Prozent der Lösungen werden als „sehr komplex“ eingestuft. Gleichzeitig ist der Weg zur Profitabilität für viele greifbar: 18 Prozent der Start-ups haben den Break-even bereits erreicht, weitere 36 Prozent erwarten diesen Schritt innerhalb der nächsten 12 Monate.

Die Finalist*innen im Überblick

Aus den Top 100 wurden 15 Finalist*innen ausgewählt, die ihre Lösungen am 17. März 2026 auf dem SET Tech Festival in Berlin präsentieren werden. Die Bandbreite reicht von Kreislaufwirtschaft bis zu KI-gesteuerter Netzstabilität:

  • Clean Energy & Storage: Hier treten unter anderem Alternō (Singapur) mit thermischen Speichern auf Sandbasis und Flower (Schweden) mit KI-basiertem Energiehandel an.
  • Industry: In dieser kapitalstarken Kategorie finden sich Unternehmen wie Cyclic Materials (Kanada), das Seltene Erden recycelt, und InPlanet (Deutschland), das auf beschleunigte Gesteinsverwitterung zur CO2-Speicherung setzt.
  • Buildings & Construction: Hier liegt der Fokus auf Materialien und Inspektion, etwa durch Birdsview (Norwegen) mit KI-gestützter Betondiagnose oder Mykor (UK) mit Dämmstoffen aus Pilzmyzel.
  • Mobility: Finalisten wie CLIP.bike (USA) setzen auf E-Bike-Nachrüstungen, während Gridio (Estland) intelligentes Laden von E-Autos ermöglicht.
  • Energy Access: Unternehmen wie Acecore (USA/Nigeria) und BioMassters (Ruanda) adressieren die Energieversorgung im globalen Süden.

Herausforderungen bleiben bestehen

Trotz der positiven Entwicklung sehen sich die Gründerinnen und Gründer weiterhin mit signifikanten Hürden konfrontiert. Als größte Herausforderung identifizieren die Unternehmen die Anpassung an politische Rahmenbedingungen und Regulierung – ein Thema, das besonders im stark reglementierten Energiesektor schwer wiegt. Auch die internationale Expansion und die Akquise von Talenten zählen zu den drängendsten Problemen. Im Industriesektor, der stark auf spezialisierte Ingenieurskunst angewiesen ist, wird der Fachkräftemangel als besonders kritisch bewertet.

Der SET Award 2026 markiert einen Wendepunkt: ClimateTech ist keine Nische für Idealisten mehr, sondern ein reifer Markt mit validierten Geschäftsmodellen, der zunehmend traditionelle Industriestrukturen aufbricht.

DIONYS: Schluss mit Event-Chaos

Events und Offsites erleben ein massives Comeback. Doch hinter den Kulissen vieler Locations herrscht oft noch analoges Chaos. Das Münchner Start-up DIONYS will genau das ändern: Schluss mit dem E-Mail-Pingpong, hin zu echten Buchungen.

Die steigende Nachfrage nach Firmen-Events und privaten Feiern stellt die Hospitality-Branche vor administrative Herausforderungen. Während Hotelzimmer und Tischreservierungen weitgehend digitalisiert sind, erfolgt die Bearbeitung von Gruppenanfragen und Event-Konfigurationen in vielen Betrieben noch manuell. Das 2025 gegründete Software-Start-up DIONYS tritt an, um diesen Prozess durch Standardisierung zu beschleunigen.

Konfigurator statt E-Mail-Pingpong

Das Kernprodukt des Unternehmens ist eine Softwarelösung, die den Angebotsprozess für Veranstaltungen digitalisiert. Anstatt individuelle Angebote manuell zu tippen, sollen Kunden ihre Events – von Menüs bis zu Getränkepaketen – über eine Online-Oberfläche selbst konfigurieren können.

CEO Folke Mehrtens beschreibt den aktuellen Zustand der Branche als paradox: „Es ist absurd: Gerade dort, wo Events den meisten Umsatz bringen, fehlt oft jede Struktur. Solange Events wie Sonderfälle behandelt werden, bleiben sie ein operativer Schmerz.“

Die Software von DIONYS zielt darauf ab, diesen „Schmerz“ zu lindern, indem sie Events von der manuellen Ausnahme zum standardisierten Produkt wandelt – buchbar und transparent wie im E-Commerce.

Technik trifft auf operative Erfahrung

Technisch steht das Unternehmen vor der Hürde, die individuellen Parameter von Gastronomiebetrieben – etwa spezifische Stornoregeln oder variable Menüfolgen – in einen Algorithmus zu überführen. CTO Gregor Matte betont, dass die Herausforderung weniger in der reinen Buchung, sondern in der Abbildung der operativen Vielfalt liege.

Um die Praxistauglichkeit sicherzustellen, setzt das Gründungsteam auf Mitstreiter mit Branchenhintergrund. Neben Mehrtens (Strategie) und Matte (Technik) sind unter anderem Ekkehard Bay (ehemals Manager im Mandarin Oriental) sowie Daniel Simon (ehemals OpenTable) an Bord.

Wettbewerb und der Faktor „Mensch“

DIONYS positioniert sich in einem dichten Marktumfeld zwischen etablierten Back-Office-Lösungen wie Bankettprofi und modernen Reservierungssystemen wie aleno. Die Münchner suchen ihre Nische bei individuellen Event-Locations und Restaurants, die sich von reinen Tagungshotels abgrenzen.

Die in der Branche verbreitete Sorge, dass durch die Digitalisierung die persönliche Note leide, versucht Head of Hospitality Ekkehard Bay zu entkräften: „Wenn Standardfragen digital geklärt sind, bleibt im echten Gespräch mehr Zeit für das, was wirklich zählt: besondere Wünsche und echte Aufmerksamkeit.“

Erste Marktdaten und Ausblick

Seit dem Start im Herbst 2025 wurden nach Angaben des Unternehmens Anfragen mit einem Volumen von rund 400.000 Euro über das System abgewickelt. Zu den ersten Nutzern zählen bekannte Münchner Betriebe wie Kustermann und die Bar Valentin. Das Erlösmodell basiert auf einer Kombination aus monatlicher Softwaregebühr und umsatzabhängigen Komponenten.

Für die nächste Wachstumsphase strebt DIONYS die Akquise von 100 „Pionier-Betrieben“ in der DACH-Region an. Ob sich der Ansatz als neuer Industriestandard durchsetzen kann, wird davon abhängen, ob die Software die komplexen Anforderungen einer breiten Masse an unterschiedlichen Betrieben tatsächlich ohne manuelles Nachsteuern abbilden kann. Daniel Simon gibt sich zuversichtlich: „In drei Jahren wird Event-Management nicht mehr improvisiert, sondern datenbasiert gesteuert.“