Die Alibaba-Story

Serie: Die Mega-Gründer. - Jack Ma - der China-Kracher und sein Börsen-Feuerwerk

Autor: Niclas Hagen
44 likes

Wie Alibaba-Gründer Jack Ma von einem ganz normalen Englischlehrer zum reichsten Mann Chinas wurde. Alle Fakten und seine besten Gründer-Zitate.

Jack Ma: Der Mann hinter Alibaba

Ein unauffälliger, bescheiden wirkender Mann, der durch seine höfliche, aber auch exzentrische Art die Menschen bewegt. Das ist Alibaba Gründer Jack Ma. Was viele nicht wissen, Jack Ma heißt in Wirklichkeit Ma Yun. Um in der westlichen Welt an Bekanntheit zu gewinnen, nannte er sich einfach Jack. Seine Geschichte ist sowohl beeindruckend als auch unglaublich.

Jack Ma wurde 1964 in der rund 9 Millionen Einwohner fassenden Stadt Hangzhou in China geboren. Chaos und Gewalt beherrschten seine Kindheit und Jugend – es war die Zeit der kommunistischen Kulturrevolution. Und in dieser Phase des Mao-Regimes lebten Jungs vom Typus Ma – mit seiner unangepassten Art und seinen eher bescheidenen Schulleistungen – auf gefährlichem Fuße.

Im Alter von 12 Jahren entdeckte er seine Liebe für die englische Sprache. Bald radelte er täglich 40 Minuten in die Nachbarstadt, um in einem Touristenhotel als englischsprachiger Fremdenführer zu arbeiten. 1988 – im Alter von 24 Jahren bewarb sich Jack Ma am Hangzhou Teacher's Institute, um Englischlehrer zu werden. Diesen Beruf übte er fünf Jahre lang aus, bevor er 1995 als Teil einer Handelsdelegation in die USA reiste. Viele Gerüchte ranken um diese Reise. Angeblich wurde der damals 29-Jährige von einem amerikanischen Vertragspartner in dessen Villa in Malibu gefangen gehalten. Ma gelang die Flucht zu Freunden nach Seattle, wo er zum ersten Mal mit dem Medium Internet konfrontiert wurde. Er tippte die Wörter „Bier“ und „China“ in die Suchmaschine Yahoo ein und stellte fest, dass für China keine Ergebnisse angezeigt wurden. Ma erkannte sofort, welches Potential das Internet für sein Heimatland haben könnte und begeisterte sich für dieses Medium, ohne davon viel zu verstehen.

Zurück in China gründete er mit einem Startkapital von gerade einmal 2.000 Dollar die erste kommerzielle Website Chinas: China Pages, ein Branchenverzeichnis für Unternehmen. Das Projekt floppte. 1999 gründete Jack Ma mit Hilfe von 17 Freunden und einem Kapital von rund 60.000 Dollar schließlich die B2B-Handelsplattform Alibaba.com. Ziel war es, chinesische Hersteller mit westlichen Käufern zu verbinden. Der Name stammt übrigens von dem armen Holzfäller aus „Tausendundeine Nacht“. In der Folge gründete Ma weitere Unternehmen wie Taobao, Tmall und Alipay – und so wuchs die Alibaba Group zu einem Konzern.

Jack Ma ist ein Typ, der auf die ganz große Show steht. So hat er sich im September 2009 auf der Alibaba-Jahres-Party, die vor mehr als 16.000 Mitarbeitern in einem Stadion stattfand, mit Elton John’s „Can You Feel The Love Tonight“ in einem Lady-Gaga-Kostüm in Szene gesetzt. Außerdem fungiert er als Philanthrop und Umweltschützer. Trotzdem ist Ma aufgrund politischer Äußerung einmal in Kritik geraten. Er bezeichnete die Niederschlagung der Demonstrationen auf dem Platz des himmlischen Friedens in Peking im Jahr 1989 als „nicht die perfekte, aber die bestmögliche Entscheidung“. Allerdings ist davon auszugehen, dass hinter dieser Aussage mehr Meinungsmache seitens der chinesischen Politik steckt, als die wahre Meinung von Jack Ma selbst.

Die Alibaba Group

Durch die Verknüpfung all seiner Unternehmen gelang es Jack Ma und der Alibaba Group 80 Prozent des gesamten chinesischen E-Commerce zu kontrollieren. Im Geschäftsjahr 2013 verzeichnete die Alibaba Group einen Gesamtumsatz von 7,95 Milliarden Euro bei einem Gewinn von 3,56 Milliarden Euro. Das ist ein höherer Gewinn als der von Ebay und Amazon zusammen. Heute verfügt die Alibaba Group über mehr als 25.000 Mitarbeitern.

Die Unternehmen der Alibaba-Group:

  • Alibaba: dient als Plattform, welche chinesische Hersteller und deren Produkte mit westlichen Händlern verknüpft. Die Produktpalette reicht von allen möglichen Ersatzteilen für Elektrogeräte, bis hin zu Kuriositäten wie Wurstfüllmaschinen.
  • Taobao: auf dieser Plattform können Privatpersonen ähnlich wie bei Ebay Produkte anbieten und kaufen. Anders als beim amerikanischen Vorbild haben Artikel einen Festpreis. Es wird also nicht darauf geboten. Auf dem chinesischen Markt verfügt Taobao über einen Marktanteil von 99 Prozent.
  • Tmall: ist das chinesische Pendant zum Online-Warenhaus Amazon. Prognosen zufolge wird der Handelsumsatz von Tmall den von Amazon im Jahr 2015 übersteigen.
  • Alipay: kann gut und gerne mit dem Bezahlsystem PayPal verglichen werden. Jedoch bekommt der Verkäufer sein Geld erst ausgezahlt, wenn der Käufer seine Zufriedenheit bestätigt.

Die Anteilsrechte an der Alibaba Group sind wie folgt aufgeteilt:

  • 34% - SoftBank
  • 23% - Yahoon 
  • 8,9% - Jack Ma
  • 3,6% - Joseph Tsai
  • 31% - Streubesitz

Nicht alles Gold was glänzt – die dunklen Zeiten der Alibaba Group

Allíbaba – der Konzern der Superlative. Der Jubel des Börsengangs 2014 verdeckt jedoch auch ein paar Niederlagen. Etwa, dass das Unternehmen schon einmal den Schritt an die Börse wagte, jedoch scheiterte. Passiert ist das 2007 in Hongkong. Ein Jahr nach dem ersten Börsengang brach die Aktie von Alibaba.com in der Spitze um ganze 90 Prozent ein. Auch der Skandal, dass 2.000 chinesische Scheinfirmen Waren weltweit anboten, aber nie lieferten, prägten ein problematisches Bild der Alibaba Group. Als Folge dessen musste 2011 der Großteil der Alibaba-Führungsriege zurücktreten. Jack Ma war gezwungen die Alibaba Group personell umzustrukturieren. Das gelang ihm mit Erfolg.

2014 – Alibaba bricht alle Rekorde

2014 sollte nun das große Jahr der Alibaba Group werden. Denn das Unternehmen wagte sich im September zum zweiten Mal an die Börse. Die Prognosen waren großartig und man sprach vom größtmöglichen Börsengang seit Facebook. Doch was dann geschah, sollte alle Erwartungen übertreffen. Jack Ma wurde über Nacht zum reichsten Mann Chinas und brach mit seinem Börsengang schließlich Rekord um Rekord. Die Aktie war mit einem Ausgabepreis von 68 Dollar die höchstdotierte Aktie aller Zeiten. Im Endeffekt spülte der Börsengang sage und schreibe 25 Milliarden Dollar in die Kassen der Alibaba Group. Das stellt eine größere Summe dar, als die Börsengänge von Google, Facebook und Twitter zusammen. Jack Ma’s Ziel, seine Shareholder glücklich zu machen, ging damit voll auf.

Jack Ma’s Privatvermögen wird auf 28,4 Milliarden US-Dollar geschätzt, was ihn zum reichsten Mann Chinas macht. Durch den Börsengang von Alibaba, konnte er sein Vermögen um ganze 687,8 Prozent vergrößern. Das macht ihn zu dem Senkrechtstarter des letzten Jahres. Trotz des Erfolges rundum das Internet Start-Up Alibaba ist Jack Ma immer auf dem Boden geblieben. So sagte er in einem Interview mit CNBC, dass Reichtum ein „großer Schmerz“ sei und, dass er Alibaba nicht gegründet hätte, um reich zu werden.

Seine Persönlichkeit unterstreicht ein nettes Zitat:
"Vor 14 Jahren fragte ich meine Frau: Willst du, dass dein Mann ein reicher Mann ist oder ein respektierter Geschäftsmann?", berichtet Ma. "Sie sagte: Natürlich ein respektierter Geschäftsmann. Denn sie dachte nie, dass ich mal reich würde."

HR-Trends 2026

Die Arbeitswelt verändert sich, die Position der Unternehmen wird stärker, eine Rezession auf Management- und Führungsebene droht: die HR-Welt bleibt ein Schmelztiegel verschiedenster Strömungen. Das sind die fünf größten Herausforderungen für 2026.

Die Arbeitswelt verändert sich - sowohl für Personalmanager*innen als auch für die Belegschaft. Während sich vor wenigen Jahren die Arbeitnehmenden in einer starken Verhandlungsposition befanden, schlägt das Pendel jetzt immer stärker zugunsten der Unternehmen aus. Das eröffnet ihnen die Chance, die Arbeitswelt mehr nach ihren Vorstellungen zu gestalten, um ihren Unternehmenserfolg zu sichern. Gleichzeitig tragen sie auch die große Verantwortung, das Arbeitsumfeld ihrer Mitarbeitenden kontinuierlich zu verbessern, das Engagement zu fördern und die Rolle der KI für die kommenden Jahre mit Weitblick und Sorgfalt auszubalancieren.

Wir werfen einen Blick nach vorne und skizzieren die fünf wichtigsten HR-Trends für die DACH-Region im kommenden Jahr.

1. Kulturelle Transparenz – Strategiewechsel bei der Talentakquise

Die Stagnation der Wirtschaft, der angespannte Arbeitsmarkt, weniger Stellenangebote – all das führt dazu, dass Mitarbeitende lieber in ihren derzeitigen Positionen und Rollen verharren. Die Folge ist ein “Talentestau:” Mitarbeitende, die sonst das Unternehmen verlassen würden, bleiben und blockieren damit die Wechsel- und Entwicklungsmöglichkeiten derer, die eher bereit sind, ihre Karriere engagiert voranzubringen. Auf der Suche nach effektiven Möglichkeiten, diese Engpässe zu überwinden, werden Unternehmen im kommenden Jahr ihre Strategie hin zu mehr kultureller Transparenz ausrichten. Anstatt neue Talente mit einem Wertversprechen oder der einseitigen Hervorhebung positiver Alleinstellungsmerkmale zu gewinnen, kommunizieren sie ihre tatsächlichen Erwartungen und die Realität des Arbeitsalltags klar. Damit betonen sie bewusst auch Aspekte, die weniger passende Bewerbende eher abschrecken - damit sich die wirklich passenden umso stärker angesprochen fühlen. Beispiele dafür können u.a. die Erwartung, wieder vollständig zur Büropräsenz zurückzukehren, Prozessreife und Struktur der Unternehmen sowie die Nutzung von KI-Tools im Arbeitsalltag sein.

2. Neudefinition des Erfolgs – Leistung statt Leistungsschau?

Mitarbeitende haben oft das Gefühl, dass ihre tatsächlich geleistete Arbeit nicht richtig bewertet wird und sie nicht ausreichend Anerkennung erfahren. Analysen von Culture Amp ergaben, dass 2025 rund 20 Prozent der Mitarbeitenden nicht genau wissen, wie sich die Bewertung ihrer Performance zusammensetzt. Die Folge dieser Unkenntnis sind Mutmaßungen und die Fokussierung auf mehr Sichtbarkeit: Mitarbeitende betreiben eine Art Leistungsschau und arbeiten so, dass es vor allem produktiv aussieht. Wenn das Gefühl hinzukommt, einem passiven Monitoring ausgesetzt zu sein – in der DACH-Region nur unter strengen Auflagen erlaubt – konzentrieren sich Mitarbeitende auf das, was vermeintlich gemessen wird. Diese Kluft wird sich 2026 weiter vergrößern, wenn die Verantwortlichen ihre Leistungsbewertung nicht neu ausrichten, um ein vertrauenswürdiges und vollständigeres Bild von der Performance ihrer Mitarbeitenden zu erhalten. Wer hingegen menschzentrierte Feedbacksysteme wie Upward Feedback, 360GradFeedback und reflektierende Einzelgespräche verankert, kann das Vertrauen stärken und ein ganzheitlicheres Verständnis der Beiträge der Mitarbeitenden erhalten.

3. Mensch und KI – zwei Seiten der HR-Medaille

2026 werden KI-Tools verstärkt Einzug in den HR-Abteilungen halten. Routineaufgaben wie z.B. eine erste Bewerberauswahl oder die Beantwortung von häufig gestellten Fragen werden zunehmend automatisiert beantwortet. Doch mit den Möglichkeiten der KI wächst auch die Erkenntnis, dass sie nicht die Lösung für alles sein darf. Darüber hinaus tritt 2026 der EU AI Act vollständig in Kraft. Demzufolge werden KI-Tools im Zusammenhang mit Personaleinsatz als Hochrisiko eingestuft: Sie unterliegen sehr strengen Richtlinien bezüglich Transparenz, Kontrolle und Grenzen des KI-Einsatzes. Bei der Frage, welche Aufgaben der KI überlassen werden können und welche nach wie vor die Empathie, die Erfahrung und das Wissen echter HR-Expert*innen erfordern, ist Fingerspitzengefühl gefragt. Auch scheinbar administrative Aufgaben benötigen manchmal den direkten persönlichen Austausch. Unternehmen werden dazu übergehen, deutlicher zu definieren, welche Fragestellungen und Bereiche maschinenbezogene Fähigkeiten und welche menschliche Fähigkeiten erfordern. 2026 wird sich ein deutlicher Trend bemerkbar machen: Die verstärkte Integration von KI in den Personalabteilungen und gleichzeitig die permanente Überprüfung, welche Aufgabenbereiche zukünftig KI-gestützt erledigt werden sollen.

4. Führung neu denken – Managementpositionen verlieren an Attraktivität

Auch das verraten die Analysen von Culture Amp: 72 Prozent der Generation Z sind nicht an Führungspositionen interessiert. Die jungen Arbeitnehmenden bleiben lieber in ihren jeweiligen Rollen, manche entscheiden sich ganz bewusst gegen eine Managementkarriere. Der Reiz, eine Leitungsfunktion zu übernehmen, nimmt insbesondere im Bereich des mittleren Managements ab: Diese Manager*innen fühlen sich zwischen den Erwartungen der Unternehmensführung und den Erwartungen ihres Teams oft unter starkem Druck. In der Folge könnte es im kommenden Jahr zu einer weiteren Abflachung der Hierarchien in den Unternehmen kommen, manche befürchten gar eine Rezession auf der Management- und Führungsebene. Gleichzeitig eröffnen sich Manager*innen durch den Einsatz von KI-Tools neue Möglichkeiten, ihren Einfluss zu vergrößern. Für jene Talente, die sich darauf einlassen, werden Führungspositionen dadurch zugänglicher und nachhaltiger. In Anbetracht dessen werden sich die Dynamiken in den Teams verändern. Unternehmen werden Führungsrollen zunehmend überdenken und ihre Manager*innen besser unterstützen, statt weitere einzustellen. Denn wenn weniger Menschen führen wollen, braucht es nicht mehr, sondern besser unterstützte Manager*innen.

5. Ambitionen und Leistungsbereitschaft wird außerhalb der Arbeitswelt ausgelebt

Ob berufliche Nebentätigkeit, Ehrenamt oder leidenschaftliches Hobby – immer mehr Mitarbeitende bringen Energie und Motivation für Tätigkeiten auf, die außerhalb ihrer regulären Arbeit liegen. Sie erkennen, dass sie ihre Stärken auch anderswo verwirklichen können. Dieser Trend hin zu mehr Kreativität, Leidenschaft und Erfüllung durch sinnvolle Tätigkeiten nach Feierabend und am Wochenende wird sich auch 2026 fortsetzen. Das Risiko für Unternehmen geht dabei über bloße Ablenkung hinaus: Bleiben angemessene Antworten im kommenden Jahr aus, wandern Ambitionen nach außen ab. Führung muss etwas Besseres anbieten: Die Chance 2026 liegt darin, den Hauptjob so zu gestalten, dass er sich wieder energiegeladen, kreativ und investitionswürdig anfühlt.

Fazit

Die Strömungen und Entwicklungen in der HR-Welt bringen einen fortdauernden Wandel mit sich. Gespannt blicken die Personalabteilungen auf die für 2026 vorgesehene nationale Umsetzung der Entgelttransparenz-Richtlinie der EU (EU Pay Transparency Directive and Equal Pay). Die weitreichendsten Veränderungen verursacht aber der Einzug der KI in die Arbeits- und Lebenswelt der Mitarbeitenden. Dies wirft unablässig neue Fragen auf: Droht der Talentepool zu versiegen, wenn Aufgaben für Berufseinsteiger*innen von KI übernommen werden und sie infolgedessen keine Erfahrung aufbauen können? Wird sich die Belegschaft eines Unternehmens früher oder später in KI-resistente und KI-affine Gruppen aufspalten? Die HR-Welt bleibt ein Schmelztiegel verschiedenster Strömungen im Unternehmen, die datengestützte Strategien erfordern.

Der Autor Dr. Arne Sjöström ist Regional Director, People Science EMEA bei Culture Amp mit dem Schwerpunkt Organisationspsychologie und angewandte Forschung.

Weckruf für (KI-)Start-ups

Zwischen Pflicht und Potenzial: Warum der EU AI Act kein Stolperstein, sondern ein strategischer Hebel ist und wie junge Unternehmen ihn frühzeitig für sich nutzen können.

Spätestens seit der Verabschiedung des AI Acts der Europäischen Union im Jahr 2024 ist klar: Der Einsatz künstlicher Intelligenz (KI) in Europa wird rechtlich geregelt – verbindlich, umfassend und risikobasiert. Für viele Unternehmen, vor allem im Start-up-Umfeld, bedeutet das erst einmal: neue Vorgaben, viel Bürokratie, hoher Aufwand. Doch dieser Eindruck greift zu kurz. Denn der AI Act ist weit mehr als ein Regelwerk zur Risikominimierung; er bietet jungen Unternehmen die Chance, Ethik, Effizienz und Rechtssicherheit von Anfang an in Einklang zu bringen. Wer ihn strategisch klug nutzt, kann sich nicht nur vor teuren Fehlern schützen, sondern auch produktiver, innovativer und vertrauenswürdiger aufstellen.

Ein Weckruf mit Wachstumspotenzial

Der AI Act ist die erste umfassende gesetzliche Regelung weltweit, die den Umgang mit KI verbindlich definiert. Ziel ist es, Vertrauen in KI-Technologien zu schaffen, Risiken wie Diskriminierung oder Manipulation zu minimieren und gleichzeitig die Innovationskraft Europas zu sichern. Je nach Risikoklasse, von minimal über hoch bis unvertretbar, gelten unterschied­liche Anforderungen an Transparenz, Sicherheit und Kontrolle. Was viele dabei übersehen: Der AI Act richtet sich nicht nur an Entwickler*innen, sondern auch an Anwender*innen. Schon wer KI zur automatisierten Lebenslaufanalyse, zur Lead-Bewertung im Vertrieb oder für interne Personalentscheidungen nutzt, kann als Betreiber*in haftbar sein – inklusive Dokumentations- und Prüfpflichten. Seit Februar 2025 gilt zudem eine allgemeine Schulungspflicht für KI-Nutzung, unabhängig von Branche oder Unternehmensgröße.

Start-ups: (Noch) nicht betroffen? Ein Trugschluss

Gerade junge Unternehmen neigen dazu, gesetzliche Regularien auf die lange Bank zu schieben – oft verständlich, wenn Zeit, Geld und personelle Ressourcen knapp sind. Doch genau hier liegt das Risiko: Laut einer Bitkom-Studie haben sich nur rund 3 Prozent der Unternehmen intensiv mit dem AI Act beschäftigt. 25 Prozent wissen gar nichts davon. Ein gefähr­licher Blindflug, nicht nur wegen potenzieller Bußgelder von bis zu 35 Millionen Euro oder 7 Prozent des Jahresumsatzes, sondern weil damit auch Chancen verschenkt werden.

Dabei geht es beim AI Act nicht nur um Pflichterfüllung, sondern um Zukunftsfähigkeit. Wer KI nutzt, sei es für Marketing, Kund*innenservice oder Produktentwicklung, muss ihre Auswirkungen verstehen, Risiken identifizieren und Prozesse so gestalten, dass sie nachvollziehbar, fair und sicher bleiben. Für Start-ups, die langfristig skalieren und wachsen wollen, ist das kein Nice-to-have, sondern ein Muss.

Wissensdefizite als Wachstumsbremse

Aktuell setzen nur etwa 17 Prozent der kleinen und mittleren Unternehmen in Deutschland KI im Geschäftsalltag ein. Die Gründe: Über 70 Prozent nennen fehlendes Wissen, 58 Prozent Unsicherheit bei rechtlichen Fragen. Gerade bei Start-ups, deren Geschäftsmodell oft auf digitalen Lösungen basiert, ist diese Zurückhaltung alarmierend. Denn wer das Potenzial von KI nicht erkennt oder falsch einsetzt, verliert nicht nur Zeit, sondern auch Marktchancen. Dazu kommt noch die Sorge vor zukünftigen rechtlichen Einschränkungen, wie 82 Prozent der Anwender*innen generativer KI angeben, 73 Prozent verweisen auf die Datenschutzanforderungen als Hemmnis und 68 Prozent sehen Unsicherheiten durch rechtliche Unklarheiten.

Der Schlüssel liegt ganz klar in der Weiterbildung: Nur wer die Funktionsweise, Stärken und Grenzen von KI-Systemen versteht, kann sie verantwortungsvoll und effizient nutzen. Das beginnt schon bei der bloßen Auseinandersetzung mit dem AI Act: 69 Prozent der Unternehmen brauchen professionelle Hilfe dabei. Das betrifft nicht nur Entwickler*innen oder Tech-Teams, sondern auch Gründer*innen sowie Verantwortliche in Marketing, HR und Customer Support. Der AI Act kann dabei als Orientierung dienen: Er macht transparent, welche Prozesse es zu beachten gilt und wie sich Risiken frühzeitig erkennen und adressieren lassen.

KI im Marketing: Vom Tool zur Strategie

Beispiel: Im Marketing ist KI längst mehr als nur eine Helferin für Textgenerierung oder A/B-Testing. Sie analysiert Zielgruppen, erkennt Kaufmuster, generiert kreative Inhalte und liefert datenbasierte Insights in Echtzeit. Doch viele Marketingverantwortliche gehen mit KI noch zu leichtfertig um oder unterschätzen ihre strategische Wirkung. In modernen Marketingabteilungen dient KI als Beschleuniger, Effizienzmotor und kreativer Sparringspartner.

Doch um diesen Nutzen voll auszuschöpfen, braucht es klare Regeln, Datenqualität und nachvollziehbare Prozesse – genau das, was der AI Act einfordert. Was auf den ersten Blick wie ein regulatorisches Korsett wirkt, ist in Wahrheit ein Innova­tionstreiber: Wer frühzeitig in qualitätsgesicherte Datenprozesse, Modellvalidierung und Feedbackschleifen investiert, steigert nicht nur die Rechtssicherheit, sondern auch die Performance seiner Kampagnen.

Ethik als Wettbewerbsfaktor

Neben Effizienz und Legalität spielt auch Ethik eine zunehmend wichtige Rolle. Nutzer*innen und Kund*innen erwarten von Unternehmen, dass sie KI fair, transparent und verantwortungsvoll einsetzen. Diskriminierende Algorithmen, intransparente Entscheidungen oder Datenmissbrauch können nicht nur rechtliche Konsequenzen haben, sie beschädigen auch das Vertrauen in die Marke. Gerade Start-ups haben hier einen Vorteil: Sie können ethische Leitlinien von Anfang an mitdenken und in ihre Unternehmenskultur integrieren. Das schafft nicht nur Glaubwürdigkeit gegenüber Kund*innen, Investor*innen und Partner*innen – es spart auch spätere Reputationskosten. Studien zeigen: Unternehmen, die KI ethisch reflektiert einsetzen, erzielen höhere Zufriedenheitswerte bei Mitarbeitenden und Kundschaft, und sie sind resilienter gegenüber technologischen Risiken.

Von Anfang an strategisch denken

Für Gründer*innen und junge Unternehmen lautet die Empfehlung daher: Nicht warten, bis der AI Act zum Problem wird, sondern ihn frühzeitig als Chance nutzen, sich professionell aufzustellen. Das bedeutet konkret:

  • Verantwortlichkeiten klären: Wer ist im Unternehmen für KI verantwortlich – technisch, ethisch, rechtlich?
  • Transparente Prozesse etablieren: Wie werden Daten erhoben, verarbeitet und genutzt? Wer prüft Algorithmen auf Verzerrungen?
  • Schulungen anbieten: Alle, die mit KI-Systemen arbeiten, sollten deren Funktionsweise und rechtliche Implikationen kennen.
  • Ethikrichtlinien entwickeln: Wie kann das Unternehmen sicherstellen, dass KI fair, sicher und inklusiv eingesetzt wird?
  • Technologische Standards einhalten: Wer dokumentiert und validiert die eingesetzten Systeme regelmäßig?

Kein Bremsklotz, sondern ein Beschleuniger

Der EU AI Act ist ein Weckruf für Start-ups, die KI nutzen oder dies künftig wollen. Er schafft Klarheit, wo zuvor Unsicherheit herrschte, und definiert Standards, an denen sich junge Unternehmen orientieren können. Wer das ignoriert, riskiert nicht nur Bußgelder, sondern auch seine Wettbewerbsfähigkeit. Wer ihn jedoch proaktiv angeht, positioniert sich als verantwortungsvolle(r) Innovator*in. Der Wandel hat längst be­- gonnen. Jetzt ist die Zeit, ihn bewusst mitzugestalten.

Der Autor Bastian Sens ist Marketing-Experte und Gründer der Beratung & Academy Sensational GmbH

Code für die künstliche Intelligenz: technische Optimierung für die Ära der KI-Suche

Code für die KI: So optimierst du deine Website technisch mit strukturierten Daten und Protokollen für die besten generativen Suchergebnisse.

Die Regeln der Online-Sichtbarkeit werden neu geschrieben. Es geht nicht mehr nur darum, von einem herkömmlichen Algorithmus indiziert zu werden. Stattdessen müssen Websites so aufbereitet werden, dass sie von künstlicher Intelligenz (KI) und großen Sprachmodellen (LLMs) fehlerfrei interpretiert und verarbeitet werden können.

KI erstellt ihre Antworten, indem sie Inhalte blitzschnell liest, deren Bedeutung versteht und die wichtigsten Fakten daraus extrahiert. Wenn der technische Unterbau einer Website unsauber ist, kann die KI die Informationen entweder nicht zuverlässig finden oder sie falsch interpretieren.

Das bedeutet, die technische Seite der Website – der Code – wird zum Fundament für eine gute Platzierung in den generativen Suchergebnissen. Wer hier Nachholbedarf hat, riskiert, als vertrauenswürdige Quelle für die KI unsichtbar zu werden.

Dieser Artikel beleuchtet die entscheidenden technischen Anpassungen, die notwendig sind, um deine Website optimal für die neue Ära der KI-Suche vorzubereiten.

Kontrolle und Zugang: Die Regeln für Sprachmodelle

Der erste technische Schritt zur Optimierung für KI-Ergebnisse ist die Steuerung des Zugriffs durch die großen Sprachmodelle (LLMs). Traditionell wird der Zugang durch die robots.txt Datei geregelt, die festlegt, welche Bereiche der Website von herkömmlichen Suchmaschinen-Crawlern besucht werden dürfen.

Mit dem Aufkommen verschiedener, spezialisierter KI-Crawler (die nicht immer identisch mit dem Googlebot oder Bingbot sind) entsteht jedoch die Notwendigkeit, diesen neuen Akteuren eigene Regeln zu geben. Es geht darum, Transparenz darüber zu schaffen, welche Daten zur Generierung von Antworten verwendet werden dürfen und welche nicht.

Neue Protokolle für neue Crawler

Experten diskutieren und entwickeln neue Protokolle, um diese Unterscheidung zu ermöglichen. Ein viel diskutierter Ansatz ist die Einführung von Protokollen, die spezifisch den Umgang mit generativer KI regeln. Dies könnte die Einführung von Protokollen wie einer llms.txt Datei beinhalten. Solche spezifischen Dateien könnten festlegen, ob ein KI-Modell Inhalte zur Schulung oder zur generativen Beantwortung von Nutzeranfragen nutzen darf.

Diese Kontrollmechanismen sind entscheidend. Sie geben den Website-Betreibern die Autorität darüber zurück, wie ihre Inhalte in der KI-Ära verwendet werden. Wer hier klare Regeln setzt, schafft die technische Grundlage für eine kontrollierte und damit vertrauenswürdige Sichtbarkeit in den KI-Ergebnissen.

Strukturierte Daten als universelle KI-Sprache

Nach der Regelung des Zugangs durch Protokolle ist die Strukturierung der Inhalte der wichtigste technische Schritt. Suchmaschinen nutzen strukturierte Daten schon lange, um Rich Snippets in den klassischen Ergebnissen anzuzeigen. Für die KI sind diese Daten jedoch absolut essenziell.

Strukturierte Daten, die auf dem Vokabular von Schema.org basieren, sind im Grunde eine Übersetzungshilfe im Code, die dem Sprachmodell den Kontext des Inhalts direkt mitteilt. Sie sind die "Sprache", die die KI am schnellsten und präzisesten versteht.

Die Bedeutung für die Generierung

Wenn ein Nutzer eine Frage stellt, sucht die KI nicht nur nach Stichwörtern, sondern nach definierten Informationstypen. Mit strukturierten Daten liefert man der KI diese Informationen als fertige, fehlerfreie Bausteine.

  • Fehlerfreie Extraktion: Die KI muss keine Textpassagen interpretieren, um beispielsweise ein Rezept, die Bewertung eines Produkts oder einen FAQ-Abschnitt zu identifizieren. Die korrekte Auszeichnung macht die Daten sofort nutzbar.
  • Vertrauensbildung: Fehlerhafte oder inkonsistente strukturierte Daten führen zu einer falschen Interpretation und können bewirken, dass die KI deine Seite als unzuverlässig einstuft.

Die Implementierung muss fehlerfrei sein und sollte alle relevanten Inhaltstypen der Website abdecken. Nur eine saubere Schema-Implementierung garantiert, dass deine Fakten korrekt in die generativen Antworten der KI einfließen.

Ladezeit und Interaktivität als Vertrauenssignal

Die Geschwindigkeit und die Nutzbarkeit einer Website sind in der Ära der KI-Suche nicht mehr nur ein Komfortfaktor, sondern ein entscheidendes technisches Vertrauenssignal. Wenn deine Seite langsam lädt oder schlecht bedienbar ist, wird das von der KI als Indikator für mangelnde Qualität und niedrige Autorität gewertet.

Die Basis dafür sind die sogenannten Core Web Vitals (CWVs). Diese Messwerte, die sich auf das Nutzererlebnis konzentrieren, sind feste Ranking-Faktoren und haben direkten Einfluss darauf, ob eine KI deine Seite als zitierwürdig einstuft:

  • LCP (Largest Contentful Paint): Misst die Zeit, bis der größte sichtbare Inhalt geladen ist.
  • FID/INP (First Input Delay / Interaction to Next Paint): Misst die Zeit bis zur ersten Interaktion und die allgemeine Reaktionsfähigkeit der Seite.
  • CLS (Cumulative Layout Shift): Misst die visuelle Stabilität.

Mobile Performance ist der Schlüssel

Da ein Großteil der Online-Aktivität über mobile Geräte stattfindet, legt die KI höchsten Wert auf die Optimierung der Mobilversion. Eine schlechte mobile Performance kann das gesamte Ranking negativ beeinflussen.

Die technische Anpassung muss daher darauf abzielen, die CWVs zu perfektionieren. Dies beinhaltet die Optimierung von Bildern, das Bereinigen unnötiger Code-Lasten und das Priorisieren wichtiger Ressourcen. Eine schnell ladende und reaktionsfreudige Website signalisiert nicht nur dem Nutzer, sondern auch der KI, dass die Quelle professionell und damit vertrauenswürdig ist.

Redundanz vermeiden: kanonische Klarheit

Eines der größten technischen Probleme für KI-Modelle ist die Verwirrung durch doppelte Inhalte (Duplikate). Wenn die gleiche Information unter verschiedenen URLs verfügbar ist, weiß die KI nicht, welche die Originalquelle darstellt. Dies zersplittert deine Autorität.

Der technische Schlüssel zur Lösung ist der Canonical Tag (<link rel="canonical" ...>). Dieser Tag im Code muss auf jeder Seite korrekt auf die bevorzugte, indexierbare URL zeigen. Durch die Vermeidung von Duplikaten und die korrekte Nutzung dieses Tags stellst du technisch sicher, dass die KI deine Inhalte als eindeutig und autoritär wahrnimmt und dich als zuverlässigen Faktenlieferanten zitiert.

Schlussworte

Die Zukunft der Online-Sichtbarkeit wird durch künstliche Intelligenz neu definiert. Der Erfolg hängt von einer technisch sauberen Vorbereitung ab.

Die wichtigsten Schritte in der Generative Engine Optimization (GEO) sind:

1. Zugangskontrolle durch Protokolle wie die diskutierte llms.txt Datei.

2. Die Nutzung von strukturierten Daten als unverzichtbare KI-Sprache.

3. Die Perfektionierung der Core Web Vitals als Vertrauenssignal.

4. Die Vermeidung von Duplikaten durch kanonische Klarheit.

Investiere in diese technische Qualität, um Autorität und Sichtbarkeit in der Ära der KI-generierten Antworten zu sichern.

Eva Helmeth: Mutig neue Wege gehen

Eva Helmeth (44) ist die Gründerin und CEO von MON COURAGE – einer Naturkosmetikmarke, die Hautpflege für unterwegs neu denkt. Die Anthropologin und Heilpflanzenexpertin lebt als moderne Nomadin und reist um die Welt, um die besten pflanzlichen Wirkstoffe zu finden. Im Juni 2025 pitchte Eva in der TV-Show „Die Höhle der Löwen“ (DHDL). Mehr dazu im Interview.

Eva, was hat dich dazu bewogen, in der VOX-Gründer*innen-Show „Die Höhle der Löwen“ mitzumachen?

In meinem Freundeskreis hörte ich seit 2020: „Du musst deine Hautpflege-Sticks unbedingt bei DHDL vorstellen.“ Ich wollte mir damit aber Zeit lassen. So ein Format kann ein gewaltiger Katalysator sein. Es kann dich nach vorne katapultieren – oder dich überrollen, wenn du noch nicht bereit bist. Ich wusste, wenn ich diesen Schritt gehe, dann zum richtigen Zeitpunkt.

Wie hast du diesen für dich richtigen Zeitpunkt definiert?

Ich habe drei Jahre lang bewusst gewartet. Für mich war entscheidend, dass MON COURAGE kein reines Ideenprojekt mehr war, sondern auf eigenen Beinen steht. Ich wollte Erfahrungswerte mitbringen – in der Produktion, im Vertrieb, im Feedback der Kundinnen und Kunden. Der richtige Zeitpunkt hieß für mich konkret, getestete Produkte, etablierte Marketingkanäle und eine solide Lieferkette vorweisen zu können. Als all das stand, war klar: Jetzt oder nie – denn jetzt sind wir stabil genug, um eine Welle wie DHDL reiten zu können.

Wie war zu diesem Zeitpunkt deine Haltung zu DHDL?

Ich habe die Sendung vorher ehrlich gesagt nie geschaut. Es kursierten Geschichten von Durchbrüchen bis hin zu absoluten Pleiten. Ich habe es als Chance gesehen, meine Geschichte zu erzählen und damit einen Investor oder eine Investorin zu überzeugen der bzw. die wirklich zu MON COURAGE passt. Mir war klar, dass es im Fernsehen in erster Linie um Unterhaltung geht. Als Nomadin, die ihr Kosmetikunternehmen aufbaut während sie weltweit nach Rohstoffen sucht, habe ich genügend Geschichten auf Lager. Das hat mir geholfen, ganz ohne Erwartungsdruck in die Aufzeichnung zu gehen.

Was waren für dich die wichtigsten Learnings aus dem Bewerbungsprozess?

Ich war gerade auf den Philippinen auf der Suche nach passenden Kokosölproduzenten, als ich das erste Gespräch mit der Produktionsfirma führte. Nachdem ich bisher nur Ölraffinerien gefunden hatte, die teils schimmliges Kokosfleisch verarbeiteten, war ich kurz davor, die Suche abzubrechen. Doch plötzlich tat sich eine neue Fährte auf. Ich erzählte von dieser Odyssee – und sie waren begeistert.

Ich habe dabei vor allem eines gelernt: Menschen lieben echte Geschichten. Und die besten Geschichten entstehen nicht am Schreibtisch, sondern da draußen – bei echten Begegnungen, im echten Leben

Wie hast du dann die TV-Show bzw. Aufzeichnung erlebt?

Als die Zusage kam, war ich in einem kleinen Dorf in Sri Lanka. „Eva, du bist genommen. Hast du nächsten Mittwoch Zeit?“ Drei Tage später landete ich in Deutschland – und hatte so gut wie keine Zeit zur Vorbereitung. Aber vielleicht war genau das mein Glück: Mein Pitch war dadurch pur, lebendig, ungefiltert. Ich hatte richtig Lust auf den Dreh. Die Interviews back­stage waren ein schöner Auftakt, die Aufregung hinter dem Tor unvergesslich. Als ich dann vor den Löwen stand, war ich fokussiert und klar. Sie waren wirklich sehr höflich und interessiert, kein Gebrüll, kein Zerfleischen – vielleicht doch eher Stubentiger?

Einige „Löwen“ haben deinen Lebensstil als Nomadin infrage gestellt. Wie lässt sich denn ein wachsendes Unternehmen führen, wenn du selbst in der Welt unterwegs bist?

Ich verstehe den Reflex – klassische Unternehmensführung sieht anders aus. Aber MON COURAGE ist kein klassisches Unternehmen. Unser ganzes Konzept basiert auf echter Verbindung: zu den Menschen, die unsere Rohstoffe anbauen, und zu den Kundinnen und Kunden, die unsere Produkte nutzen. Gerade weil ich unterwegs bin, lerne ich die Menschen kennen, die hinter unseren Zutaten stehen. Ich sehe, unter welchen Bedingungen produziert wird, kann direkt und fair einkaufen, neue Ideen entwickeln und Innovationen früh­zeitig aufspüren.

Remote zu arbeiten heißt nicht, abwesend zu sein. Im Gegenteil: Ich bin im täglichen Austausch mit meinem Team, wir arbeiten digital und gleichzeitig sehr eng zusammen. Mein Lebensstil erfordert klare Kommunikation, Vertrauen und Teamkolleginnen, die diese Freiheit schätzen. Aber genau das ist ja MON COURAGE: mutig neue Wege gehen.

EU KI-Gesetz wird scharf gestellt

Diese Strafen für KI-Verstöße drohen ab dem 2. August 2025 – was Personalverantwortliche und Arbeitnehmende jetzt wissen und beachten müssen.

Das KI-Gesetz der Europäischen Union, die weltweit erste umfassende KI-Verordnung, erreicht am 2. August 2025 einen entscheidenden Meilenstein. Ab diesem Stichtag gelten für Unternehmen, Behörden und KI-Anbieter*innen in der EU zahlreiche zentrale Verpflichtungen, bei deren Nichteinhaltung Strafmaßnahmen eingeleitet und verhängt werden können. Was das für Unternehmen und ihre Mitarbeitenden bedeutet, erfährst du hier.

Der AI Act, der am 2. Februar dieses Jahres in Kraft getreten ist, schafft einen einheitlichen Rechtsrahmen für Künstliche Intelligenz (KI) in der EU. Zwar werden viele Regelungen erst 2026 wirksam, doch bereits am 2. August 2025 beginnt eine neue Phase, die sich auf drei Bereiche fokussiert:

  • Strafmaßnahmen bei Nichteinhaltung
  • Verpflichtungen für allgemeine General-Purpose-AI-Modelle (GPAI)
  • Aufbau von Aufsicht und Governance auf nationaler und europäischer Ebene

Strafen bis zu 35 Millionen Euro

Seit dem 2. Februar dieses Jahres sind KI-Systeme mit unannehmbaren Risiken verboten. Ab dem 2. August 2025 können zusätzlich nun Geldbußen für Verstöße gegen bereits bestehende Verpflichtungen verhängt werden, die bis zu 35 Millionen Euro oder 7 Prozent ihres gesamten Jahresumsatzes betragen können. Unternehmen müssen dazu beispielsweise sicherstellen, dass ihre Mitarbeitenden über KI-Kenntnisse verfügen. Die Europäische Union erwartet von ihren Mitgliedstaaten, dass sie eigene wirksame, verhältnismäßige und abschreckende Strafmaßnahmen festlegen. Dabei sollen die besonderen Umstände von KMUs und Start-ups berücksichtigt werden, um deren wirtschaftliche Lebensfähigkeit nicht zu gefährden.

Neue Verpflichtungen für Anbieter*innen von GPAI-Modellen

GPAI-Modelle, die ab dem 2. August 2025 in der Europäischen Union vermarktet werden, unterliegen gesetzlichen Verpflichtungen. Das Europäische Amt für Künstliche Intelligenz hat dazu am 10. Juli 2025 die endgültige Fassung der Verhaltenskodizes veröffentlicht. Anbieter*innen solcher GPAI-Modelle müssen unter anderem technische Dokumentationen erstellen, Urheberrechte beachten und Transparenz über die verwendeten Trainingsdaten sicherstellen.

GPAI-Modelle sind KI-Systeme mit besonders breitem Einsatzspektrum und sind darauf ausgelegt, eine Vielzahl von Aufgaben zu erfüllen. Sie werden mit riesigen Datenmengen trainiert und sind entsprechend vielseitig einsetzbar. Das bekannteste Beispiel sind große Sprachmodelle (Large Language Models, LLM), etwa das generative Sprachmodell GPT-4o, das in ChatGPT integriert ist. Für GPAI-Modelle, die bereits vor dem 2. August 2025 in der Europäischen Union auf dem Markt waren, gilt eine Übergangsfirst bis zum 2. August 2027.

Aufsicht und Governance

Die KI-Verordnung schafft einen Rahmen mit Durchführungs- und Durchsetzungsbefugnissen auf zwei Ebenen.

Auf nationaler Ebene muss jeder EU-Mitgliedstaat bis zum 2. August 2025 mindestens eine Marktüberwachungsbehörde sowie eine notifizierende Behörde benennen. Erstere ist für die Überwachung von KI-Systemen zuständig, letztere für die Notifizierung unabhängiger Konformitätsbewertungsstellen. Die Mitgliedstaaten müssen bis dem Stichtag Informationen zu den nationalen Behörden und deren Kontaktdaten veröffentlichen.

Auf EU-Ebene koordinieren das Europäische Amt für KI und der Europäische KI-Ausschuss die Aufsicht. Zusätzlich werden ein Beratungsforum und ein wissenschaftlicher Ausschuss aus unabhängigen Experten eingerichtet.

Was bedeutet das für Personalabteilungen und Arbeitnehmende?

Das KI-Gesetz hat direkte Auswirkungen darauf, wie KI in den Bereichen Rekrutierung, Performance-Management, Personalanalyse und Mitarbeitenden-Monitoring eingesetzt wird. Personalverantwortliche müssen sicherstellen, dass KI-Tools in diesen Bereichen transparent, fair und konform sind.

  • Fairness und Antidiskriminierung: KI-Systeme, die bei Einstellungs- oder Beförderungsentscheidungen eingesetzt werden, müssen nachvollziehbar und frei von Bias sein. Personalabteilungen sollten ihre Tools und Anbieter*innen regelmäßig überprüfen, um die Einhaltung der Vorschriften sicherzustellen.
  • Vertrauen und Transparenz: Mitarbeitende erhalten einen besseren Einblick, wie KI-Systeme ihre Arbeit beeinflussen, zum Beispiel bei der Einsatzplanung, Leistungsbewertung oder bei der Arbeitssicherheit. Personalabteilung können Vertrauen schaffen, indem sie offen kommunizieren, wie KI eingesetzt wird und wie die Daten der Mitarbeitenden geschützt werden.
  • Verantwortlichkeit von Drittanbieter*innen: Werden KI-Tools von Drittanbieter*innen genutzt, müssen Personalabteilungen sicherstellen, dass diese Anbieter*innen die Anforderungen an Transparenz und Dokumentation erfüllen. Verträge und Beschaffungsprozesse sollten entsprechend angepasst werden.
  • Training und Change Management: Mit stärkeren Regulierungen von KI wird die Personalabteilung eine Schlüsselrolle bei der Schulung von Führungskräften und Mitarbeitenden übernehmen. Ziel ist es, einen verantwortungsvollen Umgang mit KI zu fördern und ethische Standards in der Unternehmenskultur zu verankern.

Fazit

Anbieter*innen von GPAI-Modellen, die bereits vor dem 2. August 2025 auf dem Markt waren, haben bis zum 2. August 2027 Zeit, die neuen Vorschriften vollständig umzusetzen. Weitere Verpflichtungen für KI-Systeme mit hohem Risiko werden 2026 und 2027 folgen. Dieser Meilenstein spiegelt das Bestreben der EU wider, Innovationen zu fördern und gleichzeitig sicherzustellen, dass KI sicher, transparent und mit den europäischen Werten im Einklang steht. Damit rückt die Personalabteilung in den Mittelpunkt einer verantwortungsvollen Einführung von KI am Arbeitsplatz.

Der Autor Tom Saeys ist Chief Operations Officer bei SD Worx, einem international tätigen Dienstleistungsunternehmen im HR-Bereich.

Start-ups gegen Plastikmüll

Während die Verhandlungen zu einem globalen Plastikabkommen ergebnislos bleiben, entwickeln Start-ups weltweit innovative Technologien gegen Plastikmüll. Wir stellen eine Auswahl davon vor.

Die jüngsten Verhandlungen in Genf über ein globales Plastikabkommen sind wieder ohne Ergebnis geblieben. Die mehr als 180 verhandelnden Nationen konnten sich nicht einigen. Seit mehr als 50 Jahren sind die Gefahren durch Plastikmüll bekannt – und doch wird immer mehr davon produziert. Jedes Jahr entstehen rund 460 Millionen Tonnen Plastik, weniger als 10 Prozent davon werden recycelt und über 30 Millionen Tonnen gelangen in die Ozeane.

Auf politischer Ebene zeichnet sich bislang keine Lösung ab, auf die man sich global einigen könnte. Neue Vorgaben wie die Pflicht zu fixierten Flaschendeckeln in der EU sorgen eher für Frust. „Seit Jahrzehnten reden wir über das Plastikproblem. Um es zu lösen braucht es technologische Ansätze“, sagt Dr. Carsten Gerhardt, Vorsitzender der gemeinnützigen Circular Valley Stiftung. Solche Ansätze liegen längst auf dem Tisch. „Start-ups aus aller Welt zeigen, dass Innovation schneller sein kann als Verhandlungen.“

Start-ups aus aller Welt arbeiten an Lösungen

Einige dieser Unternehmen hat der Circular Economy Accelerator der Circular Valley Stiftung bereits unterstützt. Das Start-up PROSERVATION etwa stellt Polsterverpackungen aus Nebenprodukten der Getreideindustrie her, BIOWEG ersetzt Mikroplastik durch Biomaterialien aus Lebensmittelabfällen und das Unternehmen Biomyc verwendet Myzel-Verbundwerkstoffe aus Pilzwurzeln und Pflanzen.

Daüber hinaus stellt NYUNGU AFRIKA Damenhygieneprodukte aus Ananasblatt- und Maisschalenfasern her, Midwest Composites nutzt Ernteabfälle für die Herstellung von Textilien und Vlastic bietet eine Alternative zu geschäumten Kunststoffen auf Flachsbasis.

Wenn Produkte das Ende ihrer Lebensdauer erreichen, können sie durch Recycling ein zweites erhalten. Ecoplastile verwandelt Abfälle in langlebige Dachziegel, Gescol macht Bauplatten aus Schuhsohlen und Novoloop nutzt schwer zu recycelndes Polyethylen zur Produktion von thermoplastischen Hochleistungs-Polyurethanen.

Chemisches Recycling zerlegt Kunststoffe in molekulare Bausteine. Das Unternehmen CARBOLIQ verwendet ein katalytisches Niedertemperaturverfahren, um gemischte Kunststoffe in Öl umzuwandeln, das fossile Rohstoffe ersetzen kann; Radical Dot extrahiert Monomere, um sie erneut verwenden zu können.

Zu chemischem Recycling hat Circular Valley in diesem Jahr einen Informationsfilm veröffentlicht, der die Möglichkeiten dieser Methode erklärt und verdeutlicht.

Warum KI bei Förderanträgen versagt

Fünf Gründe, warum Unternehmen auf menschliche Intelligenz setzen sollten.

Ob steuerliche Forschungszulage, Investitionsförderung oder EU-Programme. Künstliche Intelligenz (KI) wie ChatGPT liefert in Sekundenschnelle eine Vielzahl möglicher Förderprogramme. Doch zwischen der reinen Information und der tatsächlichen Erschließung von Fördermitteln liegt ein erheblicher Unterschied. Hier gilt es, Unternehmen zu sensibilisieren.

Fördermittel sind heute ein strategischer Bestandteil moderner Unternehmensfinanzierung. Es reicht daher nicht, die Programme zu kennen. Entscheidend ist, sie rechtssicher, vollständig und förderlogisch aufeinander abgestimmt umzusetzen, um die vollen Förderpotenziale zu heben. Genau hier beginnt die Arbeit von Fördermittelexpert*innen.

Fünf Gründe, warum KI-Tools nicht als Fördermittelberater funktionieren

1. KI erkennt die wahren Förderpotenziale nicht

ChatGPT kann erklären, was ein Förderprogramm leistet. Doch welche Kosten eines konkreten Vorhabens tatsächlich und wie hoch förderfähig sind, lässt sich so nicht beurteilen. Gerade bei komplexen Programmen wie der steuerlichen Forschungszulage sind Erfahrung, Struktur und rechtssichere Abgrenzung entscheidend. Eine gute Fördermittelberatung prüft jedes Vorhaben systematisch: von der Förderfähigkeit nach dem Forschungszulagengesetz (FZulG), AGVO oder De-minimis-Verordnung bis hin zur klaren Trennung förderfähiger und nicht förderfähiger Aufwände.

2. KI kann keine Förderstrategien entwickeln

Eine Liste von Förderprogrammen ersetzt keine Strategie. KI kann nur Optionen nennen, aber keine Strategien zur Umsetzung im Unternehmen entwickeln. Eine gute Fördermittelberatung integriert die Forschungszulage sinnvoll in laufende Projekte und strukturiert Innovations- sowie Investitionsprozesse auf Bundes-, Landes- und EU-Ebene. So entstehen nicht nur Optionen, sondern belastbare, wirtschaftlich wirksame Lösungen.

3. KI kann nicht mit Menschen kommunizieren

Ein Antrag ist mehr als ein Formular. Er muss Anforderungen erfüllen und überzeugen. KI liefert Textbausteine, aber führt keine Gespräche und reagiert nicht auf Rückfragen mit der notwendigen Erfahrung in der Verwaltungspraxis der verschiedenen Förderprogramme. Eine gute Fördermittelberatung übernimmt die gesamte Kommunikation mit Förderstellen, koordiniert mit Bescheinigungsstellen und entwickelt formal korrekte und überzeugende Argumentationen.

4. KI endet beim Prompt – Fördermittelberatung bei der erfolgreichen Projektprüfung

Nach dem Antrag geht die Arbeit oft erst richtig los. Rückfragen, Prüfungen, Nachweise. KI kann Unternehmen dabei nicht unterstützen und keine Verantwortung übernehmen. Eine gute Fördermittelberatung hingegen begleitet die Kund*innen durch den gesamten Förderzyklus mit sauberer Dokumentation, revisionssicherer Aufbereitung und Unterstützung bei Audits und Außenprüfungen.

5. KI zeigt nur den Dschungel – Förderexperten finden den Schatz

Datenbanken geben einen Überblick, aber keine Richtung. Eine gute Fördermittelberatung bewertet alle denkbar möglichen Förderprogramme im konkreten Unternehmenskontext und entwickelt daraus konkrete Maßnahmen, um das Maximum an Fördermöglichkeiten für die Kund*innen rauszuholen. Eine gute Fördermittelberatung schafft so echte wirtschaftliche Vorteile statt der bloßen Auflistung von Fördermöglichkeiten.

Der Autor Efe Duran Sarikaya ist CEO der Fördermittelberatung EPSA Deutschland.

„Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing“

Mit planqc verfolgt Dr. Alexander Glätzle die Mission, hochskalierbare Quantencomputer für wirtschaftliche Anwendungen zu bauen. Warum das Unternehmen dabei auf Standorte wie München und Innsbruck setzt und welche Rolle Österreichs Talentpool spielt, verrät er im Interview.

Dr. Alexander Glätzle ist Quantenphysiker und Mitgründer von planqc. Er studierte und promovierte an der Universität Innsbruck, forschte an renommierten Instituten wie Oxford, Harvard sowie in Singapur und war als Unternehmensberater tätig. 2022 gründete er planqc als Ausgründung aus dem Max-Planck-Institut in München.

Herr Dr. Glätzle, wie entstand die Unternehmensidee und welche Meilensteine haben Sie mit planqc bisher erreicht?

Die Idee zu planqc ist bereits während meines Studiums an der Universität Innsbruck entstanden. Dort habe ich intensiv im Bereich Quantentechnologie geforscht und das enorme Potenzial erkannt, aus diesen Erkenntnissen ein Start-up zu gründen. Bis zur Gründung hat es allerdings noch einige Jahre gedauert – nicht zuletzt, weil die technologische Entwicklung im Labor ebenfalls voranschreiten musste. 2022 sind wir dann als Ausgründung aus dem Max-Planck-Institut offiziell gestartet. Zu den wichtigsten Meilensteinen zählen zwei große öffentlich geförderte Projekte: Für das Deutsche Zentrum für Luft- und Raumfahrt bauen wir einen Quantencomputer mit einem Volumen von 30 Mio. EUR, ein weiteres Projekt mit dem Leibniz-Rechenzentrum umfasst 20 Mio. EUR, beide mit Abschluss bis Ende 2026 bzw. 2027. Dann werden an diesen beiden Standorten voll funktionsfähige Quantencomputer von planqc installiert sein.

Sie haben bereits Venture Capital mit an Bord. Wer zählt zu Ihren Investoren?

Gestartet sind wir 2022 mit einer Seed-Runde, an der unter anderem UVC Partners, Speedinvest und Apex Ventures beteiligt waren – also bereits starke Partner auch aus Österreich. Diese Basis konnten wir in der Series-A im letzten Jahr weiter ausbauen. Die CATRON Holding, ein Wiener Family Office, ist als Lead-Investor eingestiegen. Dazu kamen weitere Partner wie der DeepTech & Climate Fonds sowie Bayern Kapital. Besonders erfreulich ist, dass auch unsere Bestandsinvestoren erneut signifikant investiert haben. Damit verfügen wir über eine starke, rein mitteleuropäische, deutsch-österreichische Investorenbasis – was in unserem Sektor tatsächlich selten ist.

Ihr Headquarter befindet sich in der Nähe von München. Was hat Sie dazu bewegt, zusätzlich einen Standort in Innsbruck zu eröffnen?

Ursprünglich haben wir planqc in München gegründet – als Ausgründung aus dem Max-Planck-Institut. Doch bereits innerhalb eines Jahres haben wir ein zweites Büro in Innsbruck eröffnet. Der Grund liegt auf der Hand: Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing. Mit renommierten Instituten wie dem Institut für Quantenoptik und Quanteninformation (IQOQI) und Persönlichkeiten wie Peter Zoller und Rainer Blatt gibt es dort eine kritische Masse an international anerkannten Wissenschaftlern. Zudem ist es in der Praxis oft schwierig, hochqualifizierte Talente aus der Region nach München zu bringen. Deshalb haben wir entschieden, ihnen vor Ort ein attraktives Arbeitsumfeld zu bieten – mit einem eigenen Standort in Innsbruck.

Welche Vorteile bietet der Standort Österreich speziell für Unternehmen im Bereich Quantencomputing?

Österreich hat eine lange und starke Tradition in der Quantenphysik. Universitäten wie Innsbruck und Wien, das IQOQI und eine ganze Generation exzellenter Wissenschaftler prägen diese Landschaft. Viele bahnbrechende theoretische und experimentelle Arbeiten wurden hier in den vergangenen Jahren geleistet. Gerade für junge Start-ups bietet das Land enorme Vorteile: Der Talentpool ist außergewöhnlich – mit hervorragend ausgebildeten, dynamischen Fachkräften. Darüber hinaus ist die Nähe zu sogenannten „Industry First Movern“ gegeben, was den Standort besonders spannend macht. Und nicht zuletzt hat Österreich eine historische Verbindung zur Physik – Namen wie Schrödinger, Pauli oder Hess stehen sinnbildlich für diese wissenschaftliche Tiefe.

Welche Unterstützung erhielten Sie bei der Ansiedlung durch die Austrian Business Agency?

Die Austrian Business Agency sowie die Standortagentur Tirol haben uns außerordentlich engagiert unterstützt – sei es bei der Suche nach Büroflächen, bei der Eröffnung des ersten Bankkontos oder in bürokratischen Fragen. Sie standen uns nicht nur beratend zur Seite, sondern haben uns tatkräftig geholfen, Hürden aus dem Weg zu räumen. Genau so stelle ich mir die Zusammenarbeit mit einer lokalen Agentur vor: nah dran, lösungsorientiert und mit exzellentem Netzwerk. Wir hatten wirklich großes Glück mit der Unterstützung vor Ort.

Sie selbst sind in Österreich geboren, haben in Innsbruck promoviert und weltweit Forschungsaufenthalte absolviert – bevor Sie als Unternehmensberater und Gründer nach München gingen. Mit welchen Qualitäten punktet Österreich allgemein, auch als Arbeits- und Wohnort?

Ich habe viele Jahre im Ausland gelebt und gearbeitet – in Oxford, Singapur und Deutschland. Was Innsbruck und Tirol für mich besonders macht, ist die Kombination aus wissenschaftlicher Exzellenz und hoher Lebensqualität. Die Stadt liegt inmitten der Alpen, bietet eine hervorragende Infrastruktur und ein ausgewogenes Verhältnis zwischen Studierenden und Einwohnern. Das schafft ein inspirierendes Umfeld – zum Leben, Forschen und Arbeiten gleichermaßen.

Dr. Alexander Glätzle, vielen Dank für das Gespräch.

Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin

„Österreich hat einen langen Atem – und das zahlt sich im Bereich Applied AI aus“

Als führende Standorte in Sachen Künstliche Intelligenz liegen die USA und Asien auf der Hand, doch auch in Österreich gibt es eine vielfältige AI-Landschaft. Welche Vorteile der Standort für künstliche Intelligenz mit sich bringt und welche Rolle dabei Applied AI spielt, weiß Clemens Wasner, Gründer von AI Austria und CEO der EnliteAI.

Clemens Wasner ist Gründer des österreichischen Verbandes für Künstliche Intelligenz, AI Austria und CEO des Wiener Venture Studios EnliteAI. Der studierte Informatiker arbeitete über ein Jahrzehnt in Asien, bevor er 2017 EnliteAI gründete.

Herr Wasner, Sie kennen die AI-Szene aus erster Hand. Wie gut ist Österreich im internationalen Vergleich aktuell aufgestellt, wenn es um Applied AI geht?

Gemessen an seiner Größe steht Österreich erstaunlich gut da. Unsere AI–Landscape verzeichnet mittlerweile über 450 Unternehmen, die aktiv mit KI arbeiten – nicht nur Start-ups, sondern auch klassische Industrieunternehmen, Dienstleister und der öffentliche Sektor. Gerade im Bereich der industriellen Anwendungen ist Österreich breit aufgestellt: Es gibt zahlreiche Corporates, die eigene Competence Center gegründet, Ausgründungen vorgenommen oder Lizenzmodelle für KI aufgebaut haben. Auch die Zahl der Inkubatoren und Corporate Venture Capitalisten ist beachtlich. Das Thema ist in der Realwirtschaft angekommen – und das nicht erst seit gestern. Bereits 2018 gab es hierzulande einen deutlichen Aufschwung. Im Bereich der Spitzenforschung sind wir ebenfalls stark: Mit drei sogenannten ELLIS-Hubs –  European Laboratory for Learning and Intelligent Systems – gehören wir zur europäischen Spitze, gemessen an der Größe des Landes.

Sie sprechen beim Blick auf Österreich oftmals vom „AI-Standort mit langem Atem“. Was genau meinen Sie damit und was macht aus Ihrer Sicht einen exzellenten Standort für AI-Start-ups aus?

Der „lange Atem“ ist positiv gemeint und beschreibt das, was Österreich im Bereich Forschung & Entwicklung auszeichnet: kontinuierliche Investitionen, strategischer Weitblick und langfristige Förderstrukturen. Die Steiermark war lange OECD-Spitzenreiter bei F&E-Ausgaben, Wien verfügt über eine dichte Forschungslandschaft. Das sind keine kurzfristigen Hypes, sondern über Jahrzehnte gewachsene Strukturen. Österreich verfügt zudem über eine differenzierte Förderarchitektur, die alle TRL-Stufen abdeckt – von der Grundlagenforschung bis zur Markteintrittsunterstützung. Auch Clusterstrukturen spielen eine Rolle: In Life Sciences etwa gibt es in Wien und Graz funktionierende Ökosysteme, in denen zunehmend auch KI eine Rolle spielt. Diese Verankerung ermöglicht Planbarkeit, die gerade in technologieintensiven Bereichen entscheidend ist.

Zu den Schlüsselfaktoren einen erfolgreichen Standorts zählen Infrastruktur, Talent Pool und Anwendungsmöglichkeiten. Wo sehen Sie hier derzeit die größten Hebel – und auch die größten Defizite – in Österreich?

Ein klarer Vorteil liegt in der Verfügbarkeit von Talenten: Wien zieht seit Jahren hochqualifizierte Developer aus dem osteuropäischen Raum an. Der AI-Fachkräftemangel ist hier weniger ausgeprägt als in anderen europäischen Hauptstädten. Hinzu kommt: Österreich bildet mehr AI-Absolventen aus, als die Wirtschaft derzeit absorbieren kann. Das schafft einen Bewerbermarkt, der gerade für Start-ups günstig ist. Auch Standortfaktoren wie Lebensqualität und erschwingliche Mieten machen zum Beispiel die Hauptstadt Wien attraktiv. Als Besonderheit sehe ich zudem den aktiven Zugang der Stadt: Wien versteht sich als First Client für KI-Anwendungen, etwa in der Analyse von Geodaten, IoT oder der Digitalisierung von Baueinreichprozessen. Hier ist wesentlich mehr Offenheit für politische Vergabe zu finden als in anderen Ländern. Weniger stark ist Wien in der Spitzenforschung vertreten, hier liegt Linz mit der JKU vorn. Aber man kann als kleines Land nicht alles abdecken – und sollte dort Schwerpunkte setzen, wo bestehende Stärken ausbaubar sind.

Was war der Gründungsimpuls für EnliteAI und wie ist Ihr Venture Studio heute aufgestellt?

Ich kam 2016 nach zehn Jahren in Asien zurück nach Österreich. In China und Japan war KI allgegenwärtig, ein regelrechter Hype. Zurück in Europa herrschte Funkstille – das war ein Kulturschock. Ich wollte dem Thema hierzulande Schub geben: 2017 gründete ich den Verband AI Austria und kurz darauf EnliteAI. Unsere Erkenntnis aus früheren Projekten zeigte, dass viele Unternehmen gute Ideen, aber keine Ressourcen zur Umsetzung hatten. Daraus entstand das Venture Studio: Wir entwickeln Prototypen gemeinsam mit Unternehmen und gründen darauf spezialisierte Start-ups. Aktuell sind wir 20 Personen und verfolgen zwei Themen – Detekt, das sich auf den Bereich Mobile Mapping spezialisiert hat, und ein weiteres im Stromnetzmanagement. Mit EnliteAI möchten wir künftig weitere Projekte unterstützen und bereiten dafür eine Dual-Entity-Struktur mit einem eigenen Fonds vor. Ziel ist es, das Modell professionell zu skalieren und Investoren direkt in die Spin-outs zu bringen.

Rechenleistung zählen zu den Schlüsselressourcen in der AI. Was braucht es aus Ihrer Sicht, damit europäische Standorte hier nicht dauerhaft in Abhängigkeit geraten?

Realistisch betrachtet: Die Abhängigkeit besteht bereits. Die großen Hyperscaler sind US-dominiert, ebenso Chips, Kommunikationstools, Social Networks. Europa muss in die digitale Souveränität investieren. Erste Schritte wie AI Factories sind wichtig, aber nicht ausreichend. Wir brauchen europäische Cloud-Anbieter, Chipproduktion auf europäischem Boden und eine nachhaltige Energiepolitik. Frankreichs KI-Boom basiert auf Atomstrom – weil er langfristig planbar ist. Diese Planbarkeit fehlt in vielen europäischen Ländern derzeit. Ohne Strom gibt es keine KI. Auch das zeigen Stimmen von Sam Altman, Elon Musk und anderen. Hier ist ein strategischer Paradigmenwechsel notwendig.

Sie sprachen bereits die vielfältige Landschaft von kleinen und mittleren Unternehmen in Österreich an, die offen für KI sind. Wie gut funktioniert das Matching zwischen Start-ups und klassischen Industrieunternehmen?

Österreich macht hier sehr viel richtig. Es gibt ein breites Netz an Förderinstrumenten – von der Österreichischen Forschungsförderungsgesellschaft FFG über die Austria Wirtschaftsservice bis hin zu regionalen Wirtschaftskammern. Zudem bietet Österreich eine Forschungsförderungsprämie an, bei der 14 Prozent der F&E-Ausgaben quasi mit einem Blankoschein gefördert werden können. Zudem organisieren viele Institutionen aktiv Matchmaking-Events, etwa im Rahmen von PreSeed-, AI-Adoption- oder Innovationsprogrammen. Hinzu kommt der Industry-Startup-Marktplatz mit mehreren Tausend registrierten Unternehmen. Auch Pitchings werden gefördert. Das Ziel ist stets, AI nicht nur in der Theorie zu belassen, sondern in die Realwirtschaft zu bringen. Trotzdem: Viele Unternehmen wissen noch immer nichts davon. Hier braucht es also noch mehr Aufklärung.

Welcher KI-Standort – in Österreich und darüber hinaus – hat Sie zuletzt positiv überrascht?

In Österreich ist Linz für mich der Hotspot schlechthin – die Kombination aus Spitzenforschung und erfolgreichem Technologietransfer ist dort besonders gut gelungen. International beeindruckt mich Twente in den Niederlanden: kein großer Name, aber mit klarer Strategie. Sie haben das Spin-out-Modell von Oxford und Cambridge adaptiert und konsequent umgesetzt – mit IP-Offices, Gründungsberatung und Infrastruktur für Start-ups. Ein weiteres Vorbild ist Heilbronn mit den Campus Founders: Sie haben, unterstützt durch die Dieter Schwarz Stiftung, einen Ort für Unternehmertum und Innovationen geschaffen und könnten Vorbild für viele europäische Regionen werden. Viele Stiftungen schaffen Parks oder Schlösser, aber wesentlich gewinnbringender wäre die Förderung von Entrepreneurship wie es in Heilbronn passiert statt Museumsstiftung. Europa braucht diese neue Denkweise.

Clemens Wasner, vielen Dank für das Gespräch.

Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin

Was Unternehmen über KI-Agenten wissen müssen

Künstliche Intelligenz in Form autonomer Agenten gewinnt rasant an Bedeutung. Doch wie arbeiten diese KI-Agenten? Was ist bei der Umsetzung zu beachten? Hier gibt's die Antworten.

Die Idee, dass autonome Systeme eng mit Menschen zusammenarbeiten und sie gezielt unterstützen, ist keine Vision mehr, sondern Realität. Während bisher eine umfassende Problemlösungskompetenz im Hintergrund fehlte, bringen KI-Agenten genau diese Fähigkeit mit und übernehmen zunehmend vielfältige Aufgaben in der Arbeitswelt. Wir erklären, was Unternehmen über KI-Agenten wissen müssen.

Was sind KI-Agenten und auf welcher Technologie basieren sie?

KI-Agenten sind Softwaresysteme, die eigenständig Aufgaben ausführen, aus Erfahrungen lernen und dynamisch mit ihrer Umgebung interagieren. Ihr Ziel ist es, Aufgaben autonom zu lösen, ohne dass ein kontinuierliches menschliches Eingreifen notwendig ist. Im Unterschied zu herkömmlichen Automatisierungslösungen bewältigen KI-Agenten selbst komplexe Anforderungen, indem sie sich an neue Bedingungen anpassen. Auch werden sie im Gegensatz zu universellen LLMs in der Regel fein abgestimmt, um Relevanz und Datenschutz zu gewährleisten. Sinnvoll ist eine kontextbezogene Architektur, die kausale KI, Document AI und multimodale Logik kombiniert und damit optimal auf geschäftliche Anwendungsfälle zugeschnitten ist.

In welchen Bereichen der Arbeitswelt entfalten KI-Agenten ihr Potenzial?

KI-Agenten finden in nahezu allen Unternehmensbereichen Einsatzmöglichkeiten – von der Beantwortung einfacher Anfragen bis hin zur Steuerung komplexer Prozesse. Eingebettet in CRM-Plattformen analysieren sie riesige Datenmengen, die Unternehmen manuell nicht mehr auswerten können. Anstatt die Ergebnisse lediglich zu präsentieren oder Kontakte nach Prioritäten zu sortieren, qualifizieren KI-Agenten auch noch automatisch Leads, schlagen passende Angebote vor und beantworten Kundenanfragen. Oder anders formuliert: Während herkömmliche Tools in der Regel auf statischen Wenn-dann-Regeln basieren, führt die neue Generation hyperpersonalisierte Aktionen nahezu in Echtzeit aus. Diese Entwicklung entlastet Mitarbeiter von Routineaufgaben und gibt ihnen Raum, sich auf strategisch wichtige Aufgaben zu konzentrieren. Unternehmen wiederum können ohne großen Aufwand Tausende von Kunden individuell betreuen.

Werden KI-Agenten den Arbeitsmarkt verändern?

Diese Frage lässt sich nicht pauschal beantworten. Es entstehen durch den verstärkten Einsatz von KI-Lösungen neue Berufsfelder – insbesondere bei der Entwicklung, Integration und Wartung solcher Agentensysteme werden qualifizierte Fachkräfte benötigt. Gleichzeitig stellt sich die Herausforderung, bestehende Mitarbeitende gezielt im Umgang mit diesen Technologien weiterzubilden und deren digitale Kompetenzen auszubauen. Eines muss klar sein: Das Ziel von KI-Agenten ist es nicht, menschliche Arbeitskraft zu ersetzen, sondern deren Fähigkeiten zu erweitern. Mitarbeitende können sich somit stärker auf komplexe Kundeninteraktionen oder die Entwicklung innovativer Kampagnen konzentrieren, während ihnen die KI zur Hand geht.

Worauf müssen Unternehmen bei der Auswahl von KI-Agenten-Lösungen achten?

In erster Linie benötigen sie eine digital ausgereifte Umgebung mit einheitlichen Datenformaten, optimierten Prozessen und regelbasierten Automatisierungen, um den ROI steigern zu können. Anschließend müssen sie sicherstellen, dass ihre KI-Systeme den geltenden Datenschutzbestimmungen entsprechen und sensible Kund*innendaten optimal geschützt sind. Transparenz und Nachvollziehbarkeit der KI-Entscheidungen sind ebenfalls essenziell, um das Vertrauen von Kunden und Mitarbeitenden nicht zu gefährden. Auf technischer Seite ist eine interoperable Lösung notwendig, die sich so nahtlos wie möglich in die bestehende IT-Umgebung integrieren lässt. Zu den weiteren Aspekten zählen die Priorisierung der kontextuellen Abstimmung, da Agenten geschäftsspezifische Arbeitsabläufe und Datenformate verstehen müssen, sowie die Nutzung eines Federated-Model-Ansatzes statt einheitlicher LLM-Frameworks, um Effizienz, Erklärbarkeit und Kosten zu optimieren.

Wie binden Unternehmen ihre Mitarbeitenden am besten ein?

Zunächst einmal ist ein grundlegendes Change Management erforderlich. Die Mitarbeiterinnen und Mitarbeiter müssen verstehen, dass die KI ihnen nicht die Arbeit wegnimmt, sondern sie unterstützen soll. Sinnvoll ist auch ein Low-Code-Ansatz: Maßgeschneiderte KI-Applikationen und automatisierte Workflows steigern die Arbeitseffizienz in Abteilungen um ein Vielfaches – sogar Mini-Anwendungen, die lediglich einfache Aufgaben übernehmen. Jedoch können zentrale IT-Abteilungen, die mit Entwicklungsanfragen aus verschiedenen Abteilungen überhäuft werden, diese kaum bewältigen. Mit einer Low-Code-Application-Plattform (LCAP) können auch Mitarbeiter ohne Programmierkenntnisse einfache KI-Anwendungen selbst erstellen. Möglich machen das einfache Drag-and-Drop-Optionen und vorgebaute Module, die je nach Wunsch kombinierbar sind.

Fazit

KI-Agenten sind als kollaborative Partner zu verstehen, nicht als Ersatz für den Menschen. Künftig werden wir eine Multi-Agent Collaboration sehen. Hierbei übernehmen verschiedene KI-Agenten jeweils Spezialaufgaben und koordinieren sich untereinander, um selbst die komplexesten Herausforderungen effizient zu lösen.

Der Autor Sridhar Iyengar ist Managing Director von Zoho Europe.

fünfeinhalb Funksysteme: Echtzeit-WLAN für die Industrie

Das 2023 als Ausgründung aus der TU Dresden gegründete Start-up fünfeinhalb Funksysteme stellt mit BlitzFunk eine 5G-Alternative für industrielle Anwendungen vor.

Die Einführung des Mobilfunkstandards 5G sollte die drahtlose Kommunikation nicht nur für den Consumer-Markt revolutionieren, sondern auch den Weg hin zur Industrie 4.0 mit vollvernetzten, intelligenten Fabriken ebnen. Doch bis heute können kommerzielle 5G- sowie zahlreiche WLAN-Systeme die Echtzeitanforderungen industrieller Anforderungen meist nicht erfüllen: Verzögerungen in der Datenübertragung (Latenzen) führen zu oft zu Systemstopps und Ausfällen ganzer Anlagen. Das Dresdner Start-up fünfeinhalb Funksysteme GmbH hat es sich zum Ziel gesetzt, dies zu ändern. Mit BlitzFunk, einem Echtzeit-WLAN-System mit berechenbaren Latenz-Garantien sowie latenzfreiem Roaming, ist ihm dies gelungen.

Fünfeinhalb Funksysteme wurde 2023 als Ausgründung aus der TU Dresden gegründet, mit dem Ziel, die nicht eingehaltenen Versprechen des Mobilfunkstandards 5G einzulösen und für Anwendungen im industriellen Umfeld nutzbar zu machen. Dafür hat das fünfköpfige Gründerteam rund um Geschäftsführer Dr. Lucas Scheuvens BlitzFunk entwickelt. Das Funksystem – bestehend aus Access Points und Clients – ist so konzipiert, dass es als eine koordinierte Einheit agiert. Die Anwendergeräte (Maschinen, Steuerungen oder Sensoren) werden über Ethernet mit dem System verbunden.

Latenzfreies Roaming ohne Unterbrechung

Einen der größten USPs des Funksystems fasst Dr. Lucas Scheuvens wie folgt zusammen: „Bei einem klassischen Roaming-Prozess, der in räumlich größeren Netzwerken immer nötig ist, ist der Client jeweils mit nur einem Access Point verbunden. Bevor er dessen Reichweite verlässt, muss er mit dem nächsten Access Point verknüpft werden. Das heißt, dass dort die Verbindung zum ersten Access Point ab- und zum nächsten Access Point neu wieder aufgebaut wird. Verschiedene Lösungen können dies zwar besonders schnell, aber es gibt immer einen zeitlichen Break. Bei Blitzfunk ist das nicht so, da unsere Access Points sich koordinieren und somit latenzfreies Roaming garantieren. Dabei koordinieren sie sich im Hintergrund automatisch so, dass sie sich nicht gegenseitig stören. Da das Roaming im BlitzFunk-System keinerlei negative Auswirkungen hat, entfällt auch die aufwendige und kostenintensive Funknetzplanung.“

Entwickelt für die Anforderungen der Industrie 4.0

BlitzFunk garantiert eine schnelle Datenübertragung – selbst bei mehreren verbundenen Geräten (Clients): Für 99,9999 Prozent aller Sendeversuche liegt die Latenz – so das Unternehmen – nachweislich bei maximal 2 × (N + 1) Millisekunden, wobei N die Anzahl der gleichzeitig aktiven Geräte ist – und das bei maximaler Ethernet-Framegröße von 1500 Bytes. Ein einzelner Client im System hat demnach eine garantierte Latenz von 4 Millisekunden, bei zehn Clients sind demnach 22 Millisekunden erwartbar, usw. Diese Garantie gilt auch für den Roaming-Fall, was vollständig unterbrechungsfreie Datenverbindungen für anspruchsvollste Industrie-Anwendungen ermöglicht.

Doch das Funksystem hat noch weitere Vorteile: es verhält sich wie ein verteilter Ethernet-Switch und bietet somit Plug&Play-Kompatibilität mit allen Ethernet-basierten Protokollen, inklusive Profinet, Profisafe, EtherNet/IP, CIP Safety und MQTT. Dazu kommen seine einfache Inbetriebnahme und Verwaltung über einen Webbrowser, was beides ohne spezielle technische Kenntnisse möglich ist. Ein weiterer Pluspunkt ist das eingebaute Troubleshooting, dank dem sich das Funksystem als Fehlerquelle eindeutig identifizieren (z.B. bei Überlastung) oder ausschließen lässt. Nicht zuletzt punktet das Funksystem auch in Bezug auf die Security mit geräteindividueller, quantensicherer Verschlüsselung sowie Authentifizierung.

Gemacht für mobile Anwendungen in der Logistik und Fertigungsbranche

Fünfeinhalb Funksysteme richtet sich insbesondere an Hersteller bzw. Systemintegratoren, die eine mobile Vernetzung ihrer Maschinen benötigen, die genauso zuverlässig funktioniert wie eine Kabelverbindung. Scheuvens erklärt dazu: „Obwohl sich mit BlitzFunk auch existierende Kabelinstallationen ersetzen lassen, ist das nicht unser Hauptanspruch. Konzipiert wurde das System hauptsächlich für Einsatzszenarien in der Fertigung, die mobile Roboter oder Fahrzeuge umfassen. Aber auch für Schlittensysteme und rotierende Elemente ist BlitzFunk geeignet – bzw. generell überall dort, wo Kabel stören oder technisch nicht sinnvoll einsetzbar sind“. Zu den zahlreichen, bereits erfolgreich durchgeführten Projekten zählen Vernetzungen von Schweißrobotern, Deckenkränen und fahrerlosen Transportfahrzeugen – sowohl im Safety- als auch Non-Safety-Bereich.

Blick in die Zukunft: Noch mehr Leistung

Gefragt nach einem Blick in die Zukunft des Unternehmens antwortet Scheuvens: „Aktuell basiert BlitzFunk auf klassischen, für den breiten Massenmarkt konzipierten Standard-Komponenten. Das macht die Lösung sofort und mit einem großen Mehrwert gegenüber anderen Systemen einsetzbar, demonstriert aber nur einen Bruchteil dessen, was möglich ist. Aktuell arbeiten wir an einem komplett integrierten Echtzeit-WLAN-System, das dann selbst BlitzFunk in den Kategorien Größe, Anzahl der gleichzeitig unterstützten Geräte, Zuverlässigkeit, Latenz und Energieverbrauch noch jeweils um den Faktor zwei bis zehn verbessern kann. Wir freuen uns auf die Reise!“

KI clever eingesetzt: Können deutsche Entwickler ihre App-Ideen mit Vibe Coding umsetzen?

Wie Vibe Coding, eine neue KI-gestützte Methode der App-Entwicklung, es heute deutlich einfacher macht, aus einer Idee ein funktionierendes digitales Produkt entstehen zu lassen.

Die Zeiten, in denen man für die Umsetzung einer App monatelang ein Entwicklerteam zusammenstellen, riesige Budgets planen und unzählige Meetings überstehen musste, scheinen langsam zu verblassen. Vibe Coding, eine neue KI-gestützte Methode der App-Entwicklung, macht es Gründern und kreativen Köpfen in Deutschland heute deutlich einfacher, aus einer Idee ein funktionierendes digitales Produkt entstehen zu lassen.

Was steckt hinter Vibe Coding?

Vibe Coding nutzt künstliche Intelligenz, um auf Basis einfacher Sprache Code zu erzeugen. Statt eine App Zeile für Zeile zu programmieren, beschreibt man, was sie können soll. Die KI wandelt diese Wünsche in Code um, der sich dann weiter anpassen und verfeinern lässt. Anders als bei klassischen No-Code-Plattformen entstehen keine bloßen Baukastenlösungen, sondern anpassbarer, individuell nutzbarer Code.

Im Unterschied zu Low-Code-Ansätzen braucht es keine aufwendige UI und keine grafische Umgebung, in der man mühsam Komponenten zusammensetzt. Stattdessen genügt es, der KI präzise zu erklären, welches Ergebnis angestrebt wird. Das spart nicht nur Zeit, sondern eröffnet auch Menschen ohne tiefgehendes Technikverständnis ganz neue Möglichkeiten.

Aktuell eignet sich dieser Ansatz besonders für die Entwicklung von Prototypen, Minimum Viable Products und überschaubaren Business-Apps. Wer dagegen komplexe Anwendungen mit tiefen Backend-Strukturen, Hochsicherheitsanforderungen oder extrem hoher Nutzerlast plant, stößt mit Vibe Coding derzeit noch an natürliche Grenzen. Doch für den ersten Schritt in die App-Welt ist dieses Werkzeug so vielversprechend wie kaum ein anderes.

Wie KI-basierte Entwicklung neue Möglichkeiten für Gründer eröffnet

In der Praxis bedeutet das: Was früher ein ganzes Entwicklerteam beschäftigt hätte, kann heute oft in wenigen Tagen oder sogar Stunden entstehen. Vibe Coding verkürzt die Entwicklungszeiten deutlich, die ersten funktionsfähigen Entwürfe stehen schneller zur Verfügung als je zuvor.

Nicht zu unterschätzen ist dabei auch die finanzielle Seite. Wo man früher fünfstellige Summen investieren musste, genügt heute oft ein Bruchteil davon, um einen ersten lauffähigen Prototypen zu testen. Damit wird der Einstieg in die App-Entwicklung auch für Gründer ohne Tech-Hintergrund realistischer. Kein Zwang mehr, einen CTO an Bord zu holen oder teure Agenturen zu engagieren.

Gerade in Deutschland, wo Gründungsteams häufig an fehlender Entwicklerkapazität scheitern, eröffnet diese Entwicklung eine völlig neue Dynamik. Wer eine gute Idee hat, kann sie dank Vibe Coding sehr viel leichter in die Realität umsetzen. Das fördert die Innovationskultur und macht Platz für mehr mutige Experimente.

Ein Beispiel, das hier besonders hervorsticht, ist die Founders Foundation in Ostwestfalen-Lippe. Mit gezielten Programmen und Workshops unterstützt sie Gründerinnen und Gründer dabei, KI-gestützte Methoden sinnvoll einzusetzen und so eigene digitale Produkte schneller auf die Straße zu bringen. Genau solche Impulse tragen dazu bei, dass sich der Trend immer stärker durchsetzt.

Welche deutschen Start-ups zeigen bereits, was mit KI und No-Code möglich ist?

Dass das alles keine Theorie mehr ist, sondern in deutschen Gründungszentren längst gelebt wird, zeigen einige aktuelle Beispiele sehr anschaulich. Leaping AI aus Berlin etwa entwickelt Voicebots, die im Kundenservice 70 Prozent aller Anfragen automatisiert beantworten. Eine Anwendung, die ohne moderne KI-Tools in dieser Geschwindigkeit und Qualität wohl kaum möglich wäre.

Auch qru aus Stuttgart beweist, was möglich ist. Mit ihren Videomarketing-Tools, die auf einem cleveren Mix aus Low-Code und KI basieren, können selbst kleinere Unternehmen ihre Marketingprozesse automatisieren und professionell gestalten, ohne dafür eine eigene IT-Abteilung zu benötigen.

Ein drittes Beispiel: Paul’s Job, ein Berliner Startup, das HR-Prozesse mit agentischer KI unterstützt. Recruiting und Personalverwaltung laufen dort in weiten Teilen automatisiert, was Gründern wie Personalabteilungen jede Menge Zeit und Nerven spart.

Diese und ähnliche Projekte zeigen deutlich, dass Vibe Coding und vergleichbare Methoden längst ihren Weg in die praktische Nutzung gefunden haben. Die Technologie entwickelt sich dabei so schnell weiter, dass immer mehr Gründer den Mut fassen, ihre App-Ideen mit solchen Ansätzen umzusetzen.

Warum die App-Entwicklung perspektivisch günstiger wird

Ein Blick auf die allgemeine Marktentwicklung macht schnell deutlich: App-Entwicklung wird in den kommenden Jahren noch günstiger und einfacher werden. Mit jedem Fortschritt der KI sinken die Kosten für die technische Umsetzung, gleichzeitig steigen die Möglichkeiten, individualisierte Lösungen zu entwickeln.

Das hat Folgen, insbesondere für kleinere und spezialisierte Anbieter. Wo früher nur große Unternehmen eigene Apps auf den Markt bringen konnten, öffnet sich der Zugang nun auch für kleinere Player. Gerade in Nischenmärkten entstehen so neue Chancen.

Ein besonders interessantes Feld ist aktuell der Gambling-Sektor. Lange Zeit galten die hohen Entwicklungskosten als Einstiegshürde für viele Anbieter. Inzwischen zeigt sich jedoch, dass speziell in diesem Bereich vermehrt Apps auf den Markt kommen, weil die technische Umsetzung dank KI-Tools deutlich günstiger geworden ist.

Aber nicht nur im Glücksspiel-Markt tut sich etwas. Health und Fitness, E-Learning, Content Creation sowie regionale Dienstleistungen profitieren in ähnlicher Weise von den neuen Möglichkeiten. Über Smartphones und Tablets gelangen viele dieser Lösungen direkt zu den Nutzern und ermöglichen eine viel engere Bindung als klassische Webanwendungen.

Wo klassische Entwicklerkompetenz weiterhin unverzichtbar bleibt

Natürlich hat auch Vibe Coding seine Grenzen. Gerade wenn es um anspruchsvolle Architektur, komplexe Backend-Systeme oder hochskalierbare Anwendungen geht, kommt man ohne erfahrene Entwickler nach wie vor nicht aus.

KI generiert Code auf Basis von Wahrscheinlichkeiten, was in der Praxis immer wieder zu fehlerhaften oder ineffizienten Strukturen führen kann. Qualitätssicherung, Testing und fundiertes Architekturwissen bleiben deshalb unerlässlich, sobald eine App mehr sein soll als ein einfaches MVP.

Auch bei Themen wie Performance, Sicherheit und Datenschutz kann KI derzeit noch nicht mithalten. Hier braucht es das Know-how klassischer Entwickler, um Anwendungen stabil und vertrauenswürdig zu machen.

Gerade für Anwendungen im Finanz- oder Gesundheitsbereich, wo hohe regulatorische Standards erfüllt werden müssen, bleibt der menschliche Faktor entscheidend. Vibe Coding ist ein fantastisches Werkzeug für den schnellen Einstieg und die Umsetzung erster Ideen, doch auf dem Weg zu einem ausgereiften Produkt wird klassisches Engineering weiterhin eine tragende Rolle spielen.

Vibe Coding bringt frischen Wind in die App-Entwicklung

Vibe Coding verändert die Art, wie in Deutschland Apps entstehen, in rasantem Tempo. Prototypen und erste marktfähige Tools lassen sich heute so schnell und günstig umsetzen wie nie zuvor. Für viele Gründer ohne Tech-Hintergrund eröffnen sich dadurch Möglichkeiten, die es vor wenigen Jahren schlicht nicht gab.

Die Beispiele aus der Startup-Szene zeigen eindrucksvoll, wie die neuen Werkzeuge bereits eingesetzt werden. Gleichzeitig bleibt klar: Für echte Skalierung, Sicherheit und Performance führt an klassischem Entwicklerwissen kein Weg vorbei.

Die Zukunft gehört wahrscheinlich zu einem hybriden Ansatz, bei dem KI als mächtiges Assistenzwerkzeug fungiert und Entwickler sich auf das konzentrieren, was KI noch nicht zuverlässig beherrscht. So entsteht Raum für mehr Innovation, mehr mutige Ideen und letztlich mehr spannende Apps. Und genau das dürfte der deutschen Tech-Szene mehr als guttun.

Circunomics startet eigenes Batterie-Testlabor

Die Circunomics-Gründer Felix Wagner und Jan Born haben sich das Ziel gesetzt, eine zirkuläre Batteriewirtschaft zu etablieren, indem sie einen digitalen Marktplatz für den Second-Life-Einsatz und das Recycling gebrauchter Batterien bieten. Mit der Einrichtung des eigenen Batterie-Testlabors setzt das Start-up mit Hauptsitz Mainz seine Expansion fort.

„Die Kreislaufwirtschaft ist in Zukunft von immer größerer Bedeutung. Dies ist für uns die große Chance, mit dem digitalen Marktplatz für gebrauchte Batterien, Module und Zellen eine herausragende Position einzunehmen“, sagt Felix Wagner, Co-Founder und CEO von Circunomics. „Im Jahr 2030 werden alleine im Automobilsektor zwischen 200 und 300 Millionen Elektrofahrzeuge auf den Straßen der Welt unterwegs sein. Das bedeutet, dass dann jedes Jahr etwa sechs Millionen gebrauchte Batterien als Rückläufer aus Altfahrzeugen auf den Markt kommen. Diese wiederzuverwenden oder gezielt zu recyclen ist eine Mega-Aufgabe, die gelöst werden muss. Schließlich haben wir alle ein Ziel: Weniger CO2 zu produzieren und weniger der wertvollen, seltenen Rohstoffe zu verbrauchen.“

Battery Lifecycle Management Solution

Die Ergebnisse KI-basierter Analysen von gebrauchten Batterien, die beispielsweise in elektrischen Fahrzeugen verwendet werden, mit selbst ermittelten Laborwerten aus einer Real-Life-Simulation abgleichen, trainieren und verifizieren: Das ist die Aufgabe des neuen Batterie-Testlabors, das vom Start-up Circunomics in Roßdorf bei Darmstadt eingerichtet wurde und jetzt seinen Betrieb vollumfänglich aufgenommen hat.

Die 2019 gegründete Circunomics GmbH ist damit in der Lage, eine Datenbasis für die selbst entwickelte Software aufzubauen, die wiederum genutzt wird, um den Gesundheitszustand (State of Health) einer gebrauchten Batterie während und nach einer Erstverwendung (First Life) sehr präzise zu ermitteln. Vielmehr aber kann detailliert simuliert und hochgerechnet werden, wie sich die gebrauchte Batterie bei einer Zweitverwendung (Second Life) zum Beispiel in einem stationären Speichersystem verhält. Zudem kann eine Empfehlung ausgesprochen werden, welche Batterien für das jeweilige Projekt am besten geeignet sind.

Mit der Einrichtung des Batterie-Testlabors setzt das Start-up mit Hauptsitz Mainz seine Expansion fort, die nach einer erfolgreich durchgeführten Series-A-Finanzierungsrunde möglich ist. Zu Jahresbeginn 2025 hatte Circunomics von Investor*innen über acht Millionen Euro erhalten.

Real-Life-Simulation im Testlabor

Im neuen Batterie-Testlabor in Roßdorf können je nach Bedarf und Programm verschiedene Zellen gleichzeitig in einer sicher abgeschirmten Prüfeinrichtung untergebracht und unterschiedlichsten Belastungen ausgesetzt werden. Es erfolgt eine umfangreiche Real-Life-Simulation täglicher Batterienutzungssituationen beispielsweise in einem Elektrofahrzeug: Schnell oder langsam aufeinander folgende Ladezyklen, unterschiedliche Ladestromstärken mit bis zu 300 Ampere Gleichstrom, verschiedene Degradierungszustände der Batterie und das Ganze – wenn notwendig – bei unterschiedlichen Temperaturen. Möglich ist eine Temperaturspanne von minus 20 bis plus 60 Grad Celsius. Die jeweiligen Tests der Zellen können über einen kurzen, mittleren oder längeren Zeitraum durchgeführt werden. Das können wenige Tage, Wochen und Monate, aber auch bis zu zwei Jahre sein.

„Bisher haben wir die Zellen von einem externen Dienstleister analysieren lassen. Diese Aufgaben nehmen wir jetzt selbst in die Hand, erhöhen damit unsere Effizienz, sind schneller mit dem Abgleich von Daten, wodurch wir in der Lage sind, unsere Simulationen und Hochrechnungen für eine Verwendung im Second Life noch genauer und zuverlässiger anbieten zu können“, erklärt Jan Born, Co-Founder und CTO von Circunomics. Und ergänzt: „Wir haben einerseits Millionen von Daten, die während des First Life einer Batterie gesammelt werden und die uns zur Verfügung gestellt werden. Auf dieser Basis haben wir bisher mit der KI-unterstützten Software am Computer analysiert, was die gebrauchte Batterie noch im Stande ist, im Second Life zu leisten, bevor sie dann endgültig dem Recycling zugeführt wird. Im neuen Labor und mit den eigenen Analysen sehen wir nun, wie sich eine Zelle im simulierten Batterieleben verhält und wir können die dabei ermittelten Ergebnisse, mit denen aus der Software abgleichen und verifizieren.“

KI-Übergangsphase: Fluch und Segen

Zwischen Wundermaschine und Blackbox – Warum wir gerade in einer KI-Übergangsphase leben und was das generell für das Marketing bedeutet.

Künstliche Intelligenz (KI) verändert gerade in rasantem Tempo unsere Welt. Sie automatisiert Prozesse, entlastet Teams, liefert Analysen in Echtzeit und ermöglicht einen bisher nicht gekannten Grad an Personalisierung. Wer heute im Marketing arbeitet, kommt an KI nicht mehr vorbei – sei es beim Texten von Werbebotschaften, beim Targeting, in der Bildgenerierung oder der Erfolgsmessung.

KI verspricht Effizienz, Präzision und neue kreative Möglichkeiten. Doch die Euphorie wird zunehmend begleitet von einer neuen, ernüchternden Erfahrung: Künstliche Intelligenz kann auch Nutzererlebnisse verschlechtern, Prozesse intransparent machen – oder gar ganze Geschäftsmodelle gefährden. Der technologische Fortschritt ist zweifellos da, doch gesellschaftlich, wirtschaftlich und kulturell befinden wir uns noch mitten in einer Übergangsphase. Und das birgt Risiken – nicht nur für Plattformen, sondern auch für Unternehmen, die sie nutzen.

Beispiel Pinterest: Wenn der Algorithmus plötzlich entscheidet

Ein aktuelles Beispiel liefert Pinterest: Die visuelle Such- und Inspirationsplattform setzt verstärkt auf KI, um Inhalte effizient zu kategorisieren, Hassrede zu erkennen, urheberrechtlich geschützte Werke zu markieren oder Spam zu unterbinden. Was auf dem Papier sinnvoll und zukunftsgerichtet klingt – ein moderner „Content Safety Stack“ mit automatisierter Moderation –, hat in der Praxis zahlreiche Creator*innen und Unternehmen auf dem falschen Fuß erwischt.

Accounts wurden gelöscht, Pins blockiert oder ganze Seiten unsichtbar gemacht – oft ohne erkennbare Begründung. Was ist passiert? Die KI-Modelle bei Pinterest wurden darauf trainiert, problematische Inhalte automatisiert zu erkennen und Plattformregeln durchzusetzen. Doch wie in vielen KI-Systemen liegt der Teufel im Detail: Die Modelle sind noch nicht präzise genug, um zwischen legitimen und grenzwertigen Inhalten zuverlässig zu unterscheiden – vor allem in einem visuellen Umfeld wie Pinterest. Besonders problematisch wird es, wenn Nutzer*innen keine Möglichkeit haben, die Entscheidungen nachzuvollziehen oder effektiv dagegen vorzugehen.

Für Unternehmen, die Pinterest als Marketingplattform nutzen, ist das ein unkalkulierbares Risiko. Wer auf Sichtbarkeit und Reichweite angewiesen ist, kann es sich kaum leisten, dass automatisierte Systeme ohne Vorwarnung Inhalte sperren. Der Vertrauensschaden ist enorm.

Im Spannungsfeld der KI-Nutzung

Dieser Fall steht exemplarisch für ein zentrales Spannungsfeld der KI-Nutzung: Auf der einen Seite die große Hoffnung auf Automatisierung, Kostenersparnis und Kontrolle – auf der anderen Seite die Realität einer noch nicht vollständig ausgereiften Technologie, die häufig wie eine Blackbox agiert. Für Nutzer*innen bedeutet das: weniger Transparenz, weniger Kontrolle, mehr Frustration. Ähnliche Phänomene beobachten wir auch bei großen Social-Media-Plattformen wie Meta oder TikTok. Auch hier sorgen KI-basierte Moderationssysteme regelmäßig für Unmut – sei es durch falsch erkannte Verstöße, Einschränkungen der Reichweite oder Verzögerungen im Kundenservice, der durch automatisierte Antworten ersetzt wurde. Dabei geht es nicht um generelle Ablehnung von KI – sondern um die Art und Weise, wie sie implementiert und kommuniziert wird.

Gute KI ist unsichtbar – weil sie funktioniert

Das Marketing der Zukunft soll nicht nur effizient, sondern muss auch verantwortungsvoll sein. Es wird davon abhängen, wie gut Unternehmen die Balance finden zwischen Automatisierung und menschlicher Kontrolle. Zwischen der Verlockung, Prozesse zu beschleunigen, und der Notwendigkeit, Vertrauen zu erhalten. Gute KI ist unsichtbar – weil sie funktioniert. Sie analysiert, aber entscheidet nicht alleine. Zukunftsfähiges Marketing ist also geprägt von einer Kombination aus technologischer Intelligenz und menschlicher Relevanz. KI, Automatisierung und Datenanalyse ermöglichen eine bisher unerreichte Präzision: Zielgruppen werden individueller angesprochen, Inhalte in Echtzeit ausgespielt und Customer Journeys automatisiert optimiert. Personalisierung ist dabei kein Zusatz mehr, sondern Standard.

Gleichzeitig verändern sich die Erwartungen der Konsument*innen: Sie wollen authentische Marken, klare Haltung, Datenschutz und echte Mehrwerte – keine leeren Werbeversprechen. Deshalb wird Marketing künftig nicht nur effizient, sondern auch ethisch und wertebasiert sein müssen. Vertrauen wird zur zentralen Währung. Auch deshalb ist das Marketing der Zukunft vor allem Inhouse zu verorten. Agenturen befinden sich auf dem absteigenden Ast – sie sind teuer und liefern nicht die Ergebnisse, die Unternehmen und Marken wirklich benötigen. Zu dieser Entwicklung gehört auch, dass Inhouse-Marketing-Verantwortliche umfassend geschult werden müssen, damit sich der Einsatz von KI maximal einfach gestaltet und gleichzeitig äußerst produktiv ist.

KI ist weder Fluch noch Segen – sie ist ein mächtiges Werkzeug, das mit Bedacht eingesetzt werden muss. Wer KI einfach laufen lässt, riskiert Vertrauensverluste. Wer sie aber erklärt, einbettet und begleitet, kann gewinnen – an Effizienz, Qualität und Glaubwürdigkeit. Das Marketing der Zukunft ist nicht einfach KI-gesteuert. Es ist menschenzentriert – mit KI als starkem, aber verantwortungsbewusstem Assistenten.

Der Autor Bastian Sens gründete Sensational Marketing im Jahr 2010 – zunächst als klassische Onlinemarketing-Agentur. Im Laufe der Jahre kristallisierte sich jedoch ein alternativer Weg heraus, sodass sich das Unternehmen zu einer Onlinemarketing-Academy wandelte.