Trendreport: eLearning-Markt

Autor: Bettina Halbach
44 likes

Start-ups treffen mit dem Thema eLearning auf einen Zukunftsmarkt mit enormem Wachstums- und Umsatz-Potenzial. Wir zeigen, welche Chancen Gründer im eLearning-Sektor haben und stellen erfolgreiche B2B- und B2C-Start-ups und deren Konzepte vor.

Tiefgreifende Veränderungen innerhalb der Arbeitswelt als Folge der Globalisierung und Digitalisierung verlangen nach neuen didaktischen Wegen. Hier kommt eLearning ins Spiel. Zur eLearning-Branche gehört in meinen Augen jeder Anbieter, der elektronische oder digitale Hilfsmittel nutzt: Sei es, um Lehrmaterialien zu erstellen und zu verteilen oder um Onlinekurse durchzuführen. Die Vielfalt ist unsagbar groß“, sagt Sina Burghardt, Marketing-Expertin der e-Learning-Plattform Coursepath in Köln.

Coursepath ist eine intuitiv zu bedienende Do-it-Yourself-Software, mit deren Hilfe Unternehmen seit 2013 eLearning-Kurse schnell und bequem erstellen können. Die Software ist ein Produkt des niederländischen Software-Entwicklers für Wissensmanagement Viadesk. „eLearning war zunächst nicht unser Kerngeschäft. Die Kunden hatten aber immer mehr Bedarf an Software zum Schulen ihrer Mitarbeiter, also eLearning. Die Nachfrage war so groß, dass wir schließlich unsere Software-as-a-Service-Lösung entwickelten“, erzählt Sina Burghardt. „Schließlich ist Automation ein Trend im eLearning. Unternehmen wollen eLearning-Kurse immer schneller und immer einfacher erstellen können.“

Rasant steigende Umsätze

Start-ups treffen mit eLearning auf einen Zukunftsmarkt. Laut dem aktuellen Branchenmonitor der Essener Gesellschaft für Medien- und Kompetenzforschung (mmb-Institut) steigt der Umsatz der eLearning-Dienstleister seit 2011 im zweistelligen Prozentbereich. Stellt man alleine die Branchenumsätze der Jahre 2014 und 2015 gegenüber, ergibt sich ein Umsatzplus in Höhe von 14 Prozent für das Jahr 2015. Zum Vergleich: Statista gibt das Wachstum der Gesamtwirtschaft in Deutschland für 2015 mit 1,7 Prozent an. Die Umsätze der eLearning-Branche sollen rasant wachsen: Von 600 Mio. Euro im Jahr 2017 auf 1,3 Mrd. Euro im Jahr 2020: Einmal kann der Einsatz von eLearning Unternehmen Kosten sparen. Zum anderen kann es die Lernqualität alleine dadurch steigern, dass Nutzer zeitunabhängig lernen können. 

Wer eLearning wie einsetzt

Bereits 2009 setzten laut Bitkom mehr als zwei Drittel der deutschen Top-500-Unternehmen eLearning für das betriebliche Lernen ein sowie jedes fünfte kleine und mittlere Unternehmen (KMU). Start-ups können ihr Augenmerk dennoch auf die Zielgruppe KMU lenken. Wissensvermittlung ist für jedes Unternehmen überlebenswichtig: Zeit- und Kostendruck zwingen aber gerade die kleinen und mittleren Unternehmen bei Fortbildungen zu sparen. Gleichzeitig sitzen sie immer öfter an mehreren Standorten und können ihre Mitarbeiter nicht für mehrtägige Seminare entbehren. Die Nachfrage von kleinen und mittleren Unternehmen nach eLearning-Solutions sollte also da sein. Dabei findet eLearning besonders im Dienstleistungssektor weite Verbreitung, etwa in Banken und Versicherungen. Aber auch die Industrie zeigt sich dem digitalen Lernen gegenüber zunehmend aufgeschlossen. Darüber hinaus nutzen Selbständige und Freiberufler, Handwerker, Schulen und Hochschulen und die öffentliche Verwaltung eLearning.

Für privates Lernen oder Life Long Learning werden Computer und Internet ebenfalls immer wichtiger. Bitkom gibt an, dass sich bereits mehr als die Hälfte der Internetnutzer mindestens einmal online fortbildete. Besonders in der Altersgruppe der 30- bis 49-Jährigen steht die berufliche Bildung im Vordergrund. Jüngere und Best- bzw. Silver-Ager nutzen eLearning eher, um ihre Allgemeinbildung zu verbessern. „Ein Treiber dieser Entwicklung ist neben den immer besser werdenden mobilen Geräten sicher, dass die Menschen Totzeiten als Zeitfenster fürs Lernen nutzen wollen“, sagt Sina Burghardt. „Dazu gehören Zugfahrten zur Arbeit genauso wie lange Flüge.“

Die wichtigsten Trend

Im Studium arbeitete die Expertin mit eLearning-Plattformen wie Moodle und Ilias. „Ich fand die überladen und viel zu unübersichtlich, irgendwann fehlte mir der Durchblick.“ Start-ups brauchen in ihren Augen mehr als eine gute Idee. Denn Kunden sind zwar zahlwillig, verlangen aber Qualität: Benutzerfreundlichkeit, einfache und intuitive Administration, Unterstützung von mobile Devices, angemessene Folgekosten, Anpassungsfähigkeit an bestehende IT und dann noch Funktionsvielfalt, Social-Media-Integration sowie faire Anschaffungskosten. Eine Achillesferse im eLearning ist die nachlassende Motivation der Teilnehmer im Laufe eines Kurses. Ihr begegnet die Branche mit Gamification.

Mobile Learning ist ebenfalls ein Branchen-Trend: mlearning erlaubt zum Beispiel in dem Moment zu lernen, in dem die zu lernende Aufgabe ansteht. Noch recht neu ist Micro Learning wie es zum Beispiel das Berliner Start-up Mobile Learning Labs GmbH mit seiner App Quizzer aufgezogen hat: „Micro-Learning meint, dass ein Lernhäppchen innerhalb von 4 bis 5 Minuten erledigt ist.“ Mit Augmented Reality (AR) in Verbindung mit Wearables und Virtual Reality (VR) werden Lernende in reale Lebenssituationen versetzt, was umfassende Lernerfahrungen schafft: Auch das ist ein Mega-Trend, in den immer mehr Unternehmen investieren. Jeder Lerner hat außerdem seinen eigenen Lernstil. Darum ist Personalisierung von Lernen im Aufwind. Als No-Go der Branchen identifiziert der mmb-Trendmonitor dagegen Wissensvermittlung mit Twitter und Micro-Blogging.

So ist der eLearning-Kuchen verteilt

Daran, wie die Branchenumsätze sich verteilen, können Start-ups erkennen, welche Dienstleistungen und Produkte aktuell wirtschaftlich besonders erfolgversprechend sind. 2015 erwirtschafteten die Distributoren von digitalen Lerninhalten und eLearning-Kursen laut mmb-Branchenmonitor rund ein Drittel des Branchenumsatzes. Das Geschäftsfeld eLearning-Produktion war im Vergleich zu 2014 rückläufig. Es trug 2015 nur noch mit 31,9 Prozent zum gesamten Umsatz der Branche bei. Ebenfalls sank der Umsatzanteil im Geschäftsfeld Verkauf bzw. Vermietung von eLearning-Tools: Er lag 2015 bei 16,5 Prozent. Beratungsdienstleistungen lagen mit einem Anteil zwischen 11 und 13 Prozent am Branchenumsatz auf Platz vier der umsatzstärksten Geschäftsfelder im eLearning.

Wo der Einstieg lohnt

„Wer auf den Learn-Tech-Markt strebt, sollte fundierte Marktkenntnisse mitbringen. Wichtig ist auch, die Zeitspanne des Produktes von der Entwicklung bis zum Markt so gering wie möglich zu halten. „Und man muss auf die Bedürfnisse des Kunden eingehen, statt eLearning aufzusetzen und zu glauben, dass es funktionieren wird“, sagt Sina Burghardt. Interessant findet sie Kooperationen zwischen Software- und Kursanbietern: „Die Kursanbieter erstellen mit der Software Whitelabel-Kurse und verkaufen sie an interessierte Unternehmen. Die Kurse werden mit dem jeweiligen Corporate Design versehen und den Mitarbeitern zur Verfügung gestellt. Die Inhalte sind dabei beliebig und auch immer wieder anpassbar. So stehen die Möglichkeiten offen, für immer neuere und relevantere Wissensvermittlung.“

B2B-Start-ups

StackFuel

Der Betriebswirt Leo Marose und der Informatiker Stefan Berntheisel gründeten 2012 ihr erstes Start-up: BOXROX – ein Online-Magazin für den Trendsport „CrossFit“ mit über 1,5 Mio. Seitenaufrufe im Monat. Weil die jungen Männer schon immer sehr datengetrieben arbeiteten, merkten sie schnell, welche Vorteile das hat. Sie stiegen operativ aus ihrem Start-up aus und arbeiteten ein Jahr als Freelancer im Datenanalyse-Bereich. Dabei fiel Leo Marose und Stefan Berntheisel auf, wie wenige qualifizierte Datenexperten es aktuell auf dem Markt gibt. Leo Marose: „Laut einer aktuellen IBM Studie fehlen bis 2020 zum Beispiel alleine in den USA über 2,7 Mio. Daten-Experten. Ein Data-Scientist verdient durchschnittlich 115.000 US Dollar pro Jahr. Wir schätzten, dass Unternehmen Bedarf haben und massiv in den Aufbau von Talenten investieren. Es lag nahe, eine eLearning-Plattform für die Berufsfelder Data Analyst, Data Engineer und Data Scientist zu entwickeln.“

Im Mai 2017 gründeten sie in Berlin die StackFuel GmbH. Unterstützt wurden Leo Marose und Stefan Berntheisel durch ein EXIST Gründerstipendium über die FU Berlin. Das Team von StackFuel besteht heute aus acht Vollzeitkräften. Wettbewerb gibt es im deutschen Online-Segment kaum: Aktuell sind Weiterbildungen in dem Bereich Big Data, Data Science und Marketing Analytics ortsgebunden. Sie sind darüber hinaus teuer und finden in Präsenzseminaren statt. Online-Angebote beschränken sich eher auf die Theorie und auf bestimmte Technologien, nicht aber auf die Praxis und auf die entsprechende Hands-on-Erfahrung. Dementsprechend gut sind die Zukunftsaussichten des Start-ups.

Noch zielt das Angebot auf B2B-Kunden ab. Zu einem späteren Zeitpunkt ist es auch angedacht, das Angebot für Privatanwender zu öffnen. Die Firmen kaufen Kontingente für ihre Mitarbeiter ein, oder sie bezahlen pro gebuchter Weiterbildung. Das Geschäft ist vergleichbar mit einem Seminarangebot von klassischen Offline-Anbietern. Da die Programme allerdings online ablaufen, lässt es sich beliebig skalieren. „Als Start-up steht man immer gerade noch am Anfang beziehungsweise vor der nächsten Herausforderung. Anfangs galt es, sich neu ins eLearning einzuarbeiten. Dann ging es um die Finanzierung und darum Mitarbeiter zu finden: Jetzt sind wir dabei, das Kursangebot deutlich auszuweiten“, schildert Leo Marose. StackFuels Ziel ist es, innerhalb der kommenden drei Jahre der führende europäische Weiterbildungsanbieter im Bereich Data Analytics zu sein.

Userlane

Zu lernen, wie man eine neue Software bedient, kann sehr zeit- und nervenaufreibend sein. Ins Auto zu steigen und sich vom Navi leiten zu lassen, ohne sich zuvor um den Weg zum Ziel kümmern zu müssen, ist dagegen so bequem, dass es die drei Freunde Felix Eichler, Hartmut Hahn und Kai Uhlig inspirierte, das Bedienen neuer Software ebenfalls in solch ein interaktives Learning-by-doing-Erlebnis zu verwandeln: 2015 gründete das Trio dafür in München Userlane. Heute beschäftigt das Unternehmen 30 Mitarbeiter. Userlane entwickelte und vertreibt das innovative Navigationssystem Userlane. Damit erstellen Unternehmen auf einem denkbar einfachen Weg Bedienungsanleitungen für ihre Software.

Damit löst Userlane ein Kernproblem moderner Unternehmen: Um zukunftsfähig zu sein, müssen diese digitalisieren. Und die Mitarbeiter müssen folglich lernen, mit Software umzugehen. Mitarbeiterschulungen sind aber teuer und zeitaufwendig. Die Technologie von Userlane assistiert den Nutzern bereits während sie die noch unbekannte Software anwenden: „Die Kerninnovation liegt darin, dass Anwender Schritt-für-Schritt-Anleitungen in der echten Software erhalten und damit dort lernen, wo sie auch bedienen. Alles, was sie tun müssen, ist, den am Bildschirm aufpoppenden Anweisungen zu folgen.“ Das klassische Software-Schulungssystem wird dadurch ersetzt.

Deshalb ist der Einsatz der Userlane-Technologie extrem kostengünstig, zeitsparend und sicher. „Die Lernerfolge mit Userlane sind deutlich größer als die Lernerfolge, die Mitarbeiter mit klassischen Videotutorials, Präsenzschulungen und FAQ-Listen haben“, erklärt Kai Uhlig, der ursprünglich Rechtswissenschaften an der Uni Passau studierte und vom Thema eLearning fasziniert ist. Das erfolgreiche Unternehmen ist bootstrapped. „Wir haben während der Findungsphase laufend nebenbei gearbeitet. Wir hatten das Glück, dass wir unsere Expertise zu Geld machen konnten: Felix Eichler studierte Computer Science and Games Engineering, Hartmut Hahn dagegen Betriebswirtschaft.“

Seit dem Markteintritt entwickelte das Start-up sein Software-Navi außerdem Hand in Hand mit den ersten zahlenden Kunden: „Das gab uns einen ungeheuren Vertrauensvorschuss. Außerdem führte das dazu, dass wir später namhafte Investoren an Bord holen konnten.“ Userlane vertreibt seine Technologie zu individuell an die Kunden angepassten Preisen. Parameter für die Investitionssumme, die ein Unternehmen benötigt, sind zum Beispiel: In wie viele Softwarelösungen soll die Software eingebunden werden und wie viele Mitarbeiter sollen geschult werden? Der Markt des Unternehmens birgt noch sehr viel Potenzial und kann durchaus die Arbeitswelt revolutionieren. Kai Uhlig: „Ich wäre ein schlechter Unternehmer, wenn ich die Konkurrenz nicht fürchten würde. Gerade deshalb investieren wir in Marktvorteile, die nur sehr schwer einholbar sein werden, wie Machine Learning.“

B2C-Start-ups

Learn Now

In Deutschland ist der Markt für Seminare enorm. Es gibt aktuell ca. 22.000 Seminaranbieter mit mehr als 100.000 Kursen. Darunter die passende Weiterbildung zu finden ist mühsam: Datenbanken für Seminare helfen das Angebot zu ordnen. In ihnen sortiert der Nutzer sich Angebote nach verschiedenen Kriterien. Er wählt dabei zwischen Thema, Ort oder Datum. Jedoch bieten diese Datenbanken keinen Vergleich der Qualität. Die Folge: Der Laie kauft die Katze im Sack. Das brachte die Bremerin Anke Felbor 2014 auf die Idee, Learn Now zu gründen: Learn Now ist eine unabhängige Weiterbildungsdatenbank. Was allein noch nichts besonderes ist. Doch Anke Felbor und ihr Expertenteam prüfen zunächst eine Online-Weiterbildung auf Herz und Nieren. Passt alles?

Der Dozierende, die Lernumgebung, die Videoqualität? Besteht eine Weiterbildung den mehrstündigen Qualitäts-Check, schreibt der Testende eine Rezension? Erst dann geht die Weiterbildung online. Dieser Qualitätstest und die Rezension machen Learn Now einzigartig. „Dabei lassen sich Onlinekurse prima testen. Ihre Qualität bleibt immer auf dem gleichen Niveau“, sagt Anke Felbor, die Marketing, Informationsmanagement und Psychologie studierte. Learn Now hat sich Klasse statt Masse zum Ziel gesetzt: Pro Thema empfiehlt die Plattform höchstens zwei Kurse. Diese bewertete die Redaktion zuvor im Test mit sehr gut.

Die Zielgruppe bilden Kleinunternehmen, deren Personalreferenten und Angestellte. „Beliebt sind Excel, Englisch, Design Thinking und Soziale Medien“, meint Anke Felbor. Learn Now ist bootstrapped. Das Start-up finanziert sich über Provisionen und Gelder für Klicks. Darüber hinaus über Honorare, wenn persönliche Beratung gefragt wurde. Die angebotenen Kurse kosten zwei bis vierstellig für ein richtiges Fernstudium. Die Conversion Rate ist hoch und das macht die Plattform entsprechend attraktiv. Immer öfter sprechen Onlinekurs-Anbieter Anke Felbor an. Sie fragen, ob sie ihre Kurse prüft und weiterempfiehlt: „Was ich gern mache.“ Anke Felbor plant noch vielen Menschen hochwertige Online-Kurse erreichbar zu machen. Für die Zukunft sucht sie deshalb einen starken Partner: „Das kann ein Weiterbildungsträger sein, der noch kaum online unterwegs ist oder eine Karriereseite.“

Blinkist

In der App Blinkist lassen sich die Kernaussagen von über 2200 Bestseller-Sachbüchern in rund 15 Minuten pro Sachbuch lesen. Es gibt 22 Kategorien: zum Beispiel Geschäftsleitung und Mitarbeiterführung. Auf die Idee kamen Holger Seim, Niklas Jansen, Tobias Balling und Sebastian Klein vor sechs Jahren. Nach ihrem Studium merkten sie, dass sie im Beruf kaum Zeit für ihre Weiterbildung mit Büchern hatten. Das fand das lernbegeisterte Quartett schade. Sachbücher sind weltweit ein zentrales Medium für Fortbildung. 2011 kam gerade der App-Markt ins Rollen. Und viele Menschen lesen täglich auf ihrem Smartphone. Die Gründer überlegten, wie sie ein umfangreiches Sachbuch auf den Bildschirm eines kleinen Smartphones bannen.

Ganz klar: Die Aufmerksamkeit ist beim Smartphone kürzer als beim Lesen eines Buches. Sie entschieden, beliebte Sachbücher auf wenigen Seiten zusammenzufassen. Diese selbst geschriebenen Seiten planten sie in einer App zu veröffentlichen. Zuerst testeten die Gründer ihre Idee im Bekanntenkreis. Die Rückmeldung war durchweg gut. Deshalb fassten die jungen Männer Mut: Sie gründeten 2012 in Berlin Blinkist. Das konkrete Ziel: Sachbücher-Bestseller innerhalb einer App auf fünf Seiten im Kern zusammenzufassen. Darüber hinaus sollten sie innerhalb von 15 Minuten zu lesen oder zu hören sein. Um ihre Geschäftsidee zu finanzieren, entwarfen die vier einen Geschäftsplan. Mit diesem Plan warben sie Risikokapital ein und starteten. Bald stand Blinkist auf eigenen Füßen. Heute hat das Start-up vier Mio. Nutzer. Sie können das Angebot kostenfrei testen oder abonnieren. „Unsere Umsätze aus den Abonnements sind sehr solide, wir wachsen und beschäftigen derzeit 60 Mitarbeiter“, erzählt Holger Seim. „Blinkist richtet sich viel in die USA und nach Großbritannien aus. Dort ist die Zahlbereitschaft für digitale Inhalte derzeit größer als in Deutschland.“

Das große Ziel ist es, die global führende Marke für lebenslanges Lernen zu werden. Holger Seim schätzt es, von den Nutzern begeistertes Feedback zu erhalten: „Sie schreiben uns, dass sie durch Blinkist auf Ideen und Denkanstöße kommen, die ihnen im Leben helfen.“ Mit ihrem Start-up kamen auf die Gründer Holger Seim und seine Studienkollegen viele neue Herausforderungen zu: „An der Uni und in festen Berufen lernt man nicht, wie man ein Unternehmen aufbaut, eine App entwickelt und diese mit wenig Geld vermarktet. Aber wenn ein Gründer dran bleibt und den gesunden Menschenverstand einsetzt, klappt das.“

Karriere Tutor

Seit 2015 kann man sich beim Königssteiner Start-up karriere tutor® online beruflich weiterbilden und international anerkannte Zertifikate modern per eLearning erwerben. Karriere tutor unterstützt seine Absolventen außerdem intensiv bei der Suche nach dem Traumjob. Auf ihre Geschäftsidee kamen die Gründer Andrea Fischer und Oliver Herbig durch die eigene Jobbiografie. „Wir arbeiteten jahrelang in verschiedenen Positionen im Bereich der beruflichen Weiterbildung. Darüber hinaus bildeten wir uns selbst immer wieder neben dem Beruf beruflich weiter“, erzählt Oliver Herbig. Weiterbildung ist oft ein Massengeschäft. Bei Oliver Herbig und Andrea Fischer steht dagegen der Mensch mit seinen individuellen Bedürfnissen im Mittelpunkt. Das Lernen erfolgt digital über eine rund um die Uhr verfügbare Lernplattform.

Die Kursthemen umfassen neben den fachlichen Bereichen Betriebsführung, Marketing, IT & Projektmanagement und Vertrieb auch die Persönlichkeitsentwicklung und soziale Kompetenz. Alle Kurse liegen preislich zwischen 800 Euro bis 8000 Euro aufwärts. Einige Teilnehmer zahlen ihre Weiterbildung selbst. Ansonsten finanzieren die Arbeitgeber bzw. die öffentliche Hand die Kurse ganz oder teilweise. Jeder Kurs besteht aus Online-Lerneinheiten und aus dozentengeführten Lerneinheiten. Das Start-up achtet darauf, dass die Dozenten allesamt praxiserfahrene Experten ihres Faches sind. Darüber hinaus betreut das Start-up seine Teilnehmer intensiv persönlich. Das junge Unternehmen ist bootstrapped. Oliver Herbig freut sich: „Im ersten Jahr nach der Gründung haben wir bereits einen Umsatz von drei Millionen Euro erzielt.“ 2017 lag das Umsatzziel bereits bei 5 Mio. Euro.

Der Erfolg kommt nicht von ungefähr. „Wir haben eine Abschlussquote von 95 Prozent. Und 86 Prozent der Teilnehmer finden schon während der Weiterbildung einen Job oder haben einen in Aussicht“, sagt Oliver Herbig. Gemeinsam mit ihrem akademischen  Leiter Prof. Georg Adlmaier-Herbst bauen die Gründer die Bereiche Lehre, Forschung und Entwicklung künftig noch weiter aus. Prof. Adlmaier-Herbst ist Honorarprofessor und Scientific Director der Forschungsstelle Berliner Management Modell für die Digitalisierung (BMM) am Berlin Career College der Universität der Künste Berlin. Gemeinsam erforschen sie auch die Trends der Zukunft im Bereich Online-Lernen. Dazu gehören z.B. Augmented oder Virtual Reality. Außerdem arbeitet das Start-up an innovativen Methoden und Technologien, die das Lernen besser machen.

Hier liest du ein Experten-Interview zum Thema eLearning und Chancen für Gründer.


Sie möchten selbst ein Unternehmen gründen oder sich nebenberuflich selbständig machen? Nutzen Sie jetzt Gründerberater.deDort erhalten Sie kostenlos u.a.:

  • Rechtsformen-Analyser zur Überprüfung Ihrer Entscheidung
  • Step-by-Step Anleitung für Ihre Gründung
  • Fördermittel-Sofort-Check passend zu Ihrem Vorhaben

KI-Hype: mittel- bis langfristiger Weg zur Monetarisierung noch unklar

Aktueller Marktkommentar zum KI-Hype und den möglichen Folgen von Justin Thomson, Head Investment Institute and CIO bei T. Rowe Price.

Die Investitionsausgaben für künstliche Intelligenz (KI) haben ein erstaunliches Niveau erreicht, aber der Weg zur Monetarisierung bleibt unklar. Der Markt-Hype schaukelt sich selbst hoch, und die Tech-Giganten greifen nun zu Krediten, um ihre Expansion zu finanzieren. Blasen sind nicht immer schädlich und können zu erheblichen Produktivitätssteigerungen führen, aber Überkapazitäten sind ein reales Risiko, das beobachtet werden sollte.

Während eines hochkarätigen Finanzgipfels, an dem ich kürzlich in Hongkong teilgenommen habe, sagte der CEO einer führenden Vermögensverwaltungsgesellschaft, der es eigentlich besser wissen müsste: „Im Kontext der Ausstattung von Hyperscalern sind 2,5 Billionen US-Dollar [für Investitionen] über fünf Jahre keine große Summe.“ Ich war über diese Bemerkung erstaunt. In welchem Paralleluniversum sind 2,5 Billionen US-Dollar eine unbedeutende Summe? Antwort: in einem, in dem Nvidia innerhalb von drei Monaten eine Marktkapitalisierung von 1 Billion US-Dollar erreichen kann. Aber wie erzielt man eine Rendite auf Investitionen in Höhe von 2,5 Billionen US-Dollar, wenn der mittel- bis langfristige Weg zur Monetarisierung der KI noch unklar ist?

Dies deutet auf zwei verschiedene AI-Investitionsbooms hin: einen relativ kurzfristigen, der durch eine erkennbare tatsächliche Nachfrage gestützt wird, und einen längerfristigen spekulativen Boom, der mit einem quasi-religiösen Glauben an exponentielles Wachstum verbunden ist.

Betrachten wir zunächst einige beeindruckende Zahlen. Die Ausgaben für KI erreichten gerade 1 % des US-Bruttoinlandsprodukts (BIP) in einer Wirtschaft mit 1,8 % Wachstum – das ist mehr als die Hälfte der gesamten neuen Nachfrage. Allein Nividia erreichte Ende Oktober einen Wert von 5 Billionen US-Dollar, was 15 % der gesamten US-Wirtschaft entspricht. Zum Vergleich: Als Cisco im Jahr 2000 als weltweit größtes Unternehmen seinen Höhepunkt erreichte, betrug sein Anteil am BIP nur 5,5 %. Während viel Aufsehen um den 3 Milliarden US-Dollar teuren Hauptsitz von JP Morgan in Manhattan gemacht wurde, werden in Texas still und leise 40 Milliarden US-Dollar teure Rechenzentrumsprojekte gestartet. Niemand scheint sich dafür zu interessieren.

Sind wir also in einer Blase? Es gibt sicherlich eine Blase von Menschen, die über Blasen sprechen – werfen Sie einfach einen Blick auf Google Trends.

Unterdessen gibt es diejenigen, die glauben, dass wir uns gerade deshalb nicht in einer Blase befinden können, weil wir über eine solche sprechen. Meiner Meinung nach gibt es drei Schlüsselwörter in den jüngsten Marktentwicklungen, die Beachtung verdienen: Reflexivität, Zirkularität und Verschuldung. Reflexivität besagt, dass Preise tatsächlich die Fundamentaldaten beeinflussen und dass diese neu beeinflussten Fundamentaldaten dann die Erwartungen verändern und somit die Preise beeinflussen. Dieser Prozess setzt sich in einem sich selbst verstärkenden Muster fort. Die lebhafte Reaktion des Marktes auf die jüngsten KI-Megadeals ist ein Beispiel für einen solchen Feedback-Kreislauf. Hinzu kommt der zirkuläre Charakter dieser Deals. Im Wesentlichen investieren die Anbieter von Recheninfrastruktur in native KI-Akteure, die sich in einer Investitionsphase befinden. In der Dotcom-Ära war dies als „Vendor Financing” bekannt und wurde zu einer Art Schimpfwort.

Schließlich gibt es noch die Verschuldung. Bislang haben die finanzstarken Tech-Giganten diesen KI-Boom mit ihren eigenen tiefen Taschen und Eigenkapitalfinanzierungen finanziert. Aber jetzt treten wir in die Kreditphase ein – Unternehmen wenden sich den Schuldenmärkten zu, oft außerhalb der Bilanz, und die Kreditaufnahme wird sich wahrscheinlich beschleunigen. Wir wissen, dass wir mit generativer KI und später mit künstlicher Superintelligenz vor einem neuen technologischen Paradigma stehen – und möglicherweise vor einem massiven Produktivitätssprung. Das sind alles großartige Dinge, und es ist leicht zu verstehen, dass man der Versuchung erliegt, weiter auf der lukrativen KI-Welle zu reiten, die mit der Einführung von ChatGPT im November 2022 begann. Angesichts der aktuellen Indexkonzentration würde es in der Tat Mut erfordern, auszusteigen.

Schnelles Wachstum kann zu einem Überschuss führen

Eine wichtige Lehre aus der Geschichte ist, dass es zu Blasen kommt, wenn wir schöne Dinge erfinden. Aber nicht alle Blasen sind gleich. Es gibt „schlechte“ Blasen (Tulpen, Gold, Grundstücke), und wenn schlechte Blasen durch Schulden finanziert werden, kann dies ein systemisches Risiko für die Wirtschaft darstellen. Es gibt auch „gute“ Blasen, die zu Überkapazitäten bei Produktionsmitteln führen – man denke an die Eisenbahnen im goldenen Zeitalter der Expansion der USA zwischen 1870 und 1900, die Elektrizität in den frühen 1900er Jahren und den Dotcom-Boom Ende der 1990er Jahre. Letztendlich wurde in jedem Fall Wohlstand geschaffen, aber die frühen Investoren verloren viel Geld.

Es ist noch zu früh, um vorherzusagen, zu welcher Art von Blase sich der AI-Investitionsboom entwickeln wird. Die langfristigen Auswirkungen werden davon abhängen, ob die heutigen massiven Investitionen letztendlich die Grundlage für dauerhafte Produktivitätssteigerungen schaffen oder ob sie zu Überkapazitäten führen, die keine nachhaltigen Renditen erzielen. Wenn die Kapazitäten so schnell wachsen, ist es immer wahrscheinlich, dass sich das Ungleichgewicht zwischen Angebot und Nachfrage von einem Mangel zu einem Überschuss umkehrt. In der Dotcom-Ära verloren Investoren viel Geld mit Glasfaserkabeln und Switches, die in den Boden verlegt wurden, und etwas Ähnliches könnte mit KI passieren, wenn durch Überbauung riesige Kapitalmengen in Anlagen gebunden werden, die möglicherweise nicht annähernd mit voller Effizienz betrieben werden können – oder noch schlimmer, wenn die Schnelllebigkeit des Chip-Zyklus die Rechenleistung obsolet macht.

Erschwerend kommt hinzu, dass die Anreize für Infrastrukturanbieter („Picks and Shovels”-Akteure) und Entwickler von KI-Anwendungen nicht aufeinander abgestimmt sind. Während Infrastrukturunternehmen von einer kontinuierlichen Expansion und Investitionen profitieren, konzentrieren sich Anwendungsentwickler auf die Verbesserung der Effizienz und die Senkung der Kosten. Um den Kommentar des Dodos nach dem Caucus-Rennen in Lewis Carrolls Alice im Wunderland umzukehren: „Nicht jeder kann gewinnen, und nicht jeder kann einen Preis bekommen.” Die optimistischen Prognosen für die KI-Infrastruktur zeigen, wie viel Hype in den heutigen Bewertungen der Hyperscaler steckt. Es ist ironisch, dass Rechenzentrumsprojekte nach den griechischen Titanen Prometheus und Hyperion benannt werden. In der griechischen Mythologie folgt auf Hybris immer Nemesis. Um noch ein bisschen Latein mit einzubringen: caveat emptor.

KI & Bewertungen: Sichtbarkeit in einer neuen Suchrealität

Tipps und To-dos: Wie du dein Bewertungsmanagement strategisch aufsetzt und Sichtbarkeit und Vertrauen im KI-Zeitalter steigerst.

Generative Antworten in Suchmaschinen und Assistenten verändern die Spielregeln der Online-Sichtbarkeit. Nicht mehr nur klassische Rankings entscheiden, sondern die Frage, wem die KI genug vertraut, um es überhaupt zu nennen. Aktuelle, glaubwürdige und inhaltlich konkrete Bewertungen werden dabei zum Schlüsselsignal. Für kleine und mittlere Unternehmen bedeutet das: Bewertungsmanagement ist kein Nice-to-have mehr, sondern ein Pflichtprogramm, das Auffindbarkeit, Auswahl und Conversion spürbar beeinflusst. Im Folgenden erfährst du, wie du dein Bewertungsmanagement strategisch aufsetzen solltest, um Sichtbarkeit und Vertrauen im KI-Zeitalter zu steigern.

Warum Bewertungen jetzt geschäftskritisch sind

KI-Modelle zerlegen Rezensionen in viele kleine Bedeutungseinheiten und ziehen daraus ein konsistentes Bild. Welche Leistung wurde erbracht, an welchem Ort, mit welcher Qualität und für welchen Anlass. Aus den einzelnen Stimmen entsteht so ein Vertrauensprofil, das über bloße Sternesummen hinausgeht. Entscheidend ist nicht die bloße Menge, sondern die Frische und die inhaltliche Dichte der Aussagen. Eine Rezension wie „Schnell geholfen am Sonntag, sehr kompetente Beratung zu Reiseimpfungen“ liefert gleich mehrere Signale. Zeitliche Verfügbarkeit, thematische Expertise und konkreter Nutzen. Genau solche Details erhöhen die Wahrscheinlichkeit, in generativen Antworten aufzutauchen, wenn Menschen in ihrer Nähe nach einer Lösung suchen. Wer regelmäßig neue, authentische und präzise Bewertungen erhält, verschafft der KI verlässliche Hinweise und sichert sich dadurch mehr Sichtbarkeit in genau den Momenten, in denen Entscheidungen vorbereitet werden.

Bewertungsmanagement als Prozess, nicht als Aktion

Wirksam wird Bewertungsarbeit, wenn sie selbstverständlich Teil der täglichen Abläufe ist. Nach dem Kontakt freundlich um Feedback bitten, den Weg zur passenden Plattform so kurz wie möglich machen, interne Zuständigkeiten klar regeln und Reaktionszeiten verbindlich festlegen. Aus diesen scheinbar kleinen Schritten entsteht ein stabiler Rhythmus, der kontinuierlich neue Kund*innenstimmen hervorbringt und der KI immer wieder frische Kontexte liefert. Ein solcher Prozess ist robuster als jede einmalige Kampagne, weil er verlässlich Vertrauen aufbaut und saisonale Schwankungen abfedert. Teams profitieren, wenn sie Zielkorridore definieren, etwa eine bestimmte Zahl neuer Rezensionen pro Woche und wenn sie Fortschritte sichtbar machen. So wird aus gutem Vorsatz ein gelebter Ablauf, der die gesamte Organisation stärkt.

Sprache der Kund*innen wirkt wie natürliches SEO

KI versteht Alltagssprache deutlich besser als Listen isolierter Schlagwörter. Unternehmen gewinnen, wenn sie um freie, aber konkrete Formulierungen bitten, ohne Vorgabetexte und ohne Druck. Eine höfliche Bitte wie: „Wenn es für Sie passt, nennen Sie gern, was Ihnen besonders geholfen hat“ öffnet den Raum für präzise Hinweise auf Leistungen, Erreichbarkeit, Barrierefreiheit oder Schnelligkeit. Solche natürlich entstandenen Details sind für Menschen überzeugend und zugleich für Maschinen gut interpretierbar. Sie zeigen, wofür ein Betrieb tatsächlich steht, und verankern die passenden Begriffe in einem echten Nutzungskontext. Das Ergebnis ist eine Sprache, die Vertrauen schafft und die Auffindbarkeit stärkt, ohne künstlich zu wirken.

Antworten trainieren Vertrauen für Menschen und Maschinen

Jede Reaktion auf eine Bewertung ist ein sichtbares Zeichen von Serviceorientierung und zugleich zusätzlicher Kontext für die KI. Gute Antworten bedanken sich aufrichtig, beziehen sich konkret auf das Erlebte und bieten einen klaren nächsten Schritt an. Bei Kritik zählt ein professioneller Umgang. Das Anliegen nachvollziehen, Verantwortung übernehmen, eine realistische Lösung anbieten und einen direkten Kontaktweg nennen. So entsteht ein Bild von Verlässlichkeit, das Hemmschwellen senkt und Wiederbesuche wahrscheinlicher macht. Die KI erkennt diesen Umgang ebenso und ordnet das Unternehmen eher als vertrauenswürdig ein. Mit der Zeit entsteht ein stabiler Kreislauf aus guter Erfahrung, konstruktiver Reaktion und wachsendem Vertrauen.

Lokaler Content und Social Proof gehören zusammen

Bewertungen entfalten ihre volle Wirkung, wenn sie auf eine solide Informationsbasis treffen. Konsistente Unternehmensdaten, vollständige Leistungsseiten pro Standort, klare Öffnungszeiten inklusive Ausnahmen und eine schnelle, mobil optimierte Webseite erleichtern die Einordnung für Nutzer*innen und Maschine. Wenn ausgewählte Zitate oder Bewertungsschnipsel an relevanten Stellen sichtbar werden, etwa auf der Startseite, in der Buchungsstrecke oder in den häufigen Fragen, entsteht ein schlüssiges Gesamtbild. Der lokale Bezug bleibt klar erkennbar, die Erwartungen sind gut gesetzt, und die nächsten Schritte sind ohne Umwege möglich. So wird aus Social Proof ein handfester Conversion Hebel.

Vom Feedback zur Verbesserungsschleife

Rezensionen sind fortlaufende Marktforschung aus erster Hand. Wer wiederkehrende Themen auswertet, etwa Wartezeiten, Erreichbarkeit oder Bezahloptionen, erkennt schnell die Stellschrauben mit der größten Wirkung. Wichtig ist, die daraus abgeleiteten Verbesserungen konsequent umzusetzen und sichtbar zu machen. Informieren, handeln, erneut um Rückmeldung bitten. Dieser offene Kreislauf wirkt nach innen und nach außen. Mitarbeitende erleben, dass Feedback Veränderungen anstößt, Kund*innen erleben, dass ihre Hinweise ernst genommen werden, und die KI registriert die fortlaufende Pflege der Qualität. Mit jeder Runde werden Erlebnisse besser und Bewertungen stärker, was die Sichtbarkeit weiter erhöht.

Fazit

Sichtbarkeit entsteht heute dort, wo Menschen nach konkreten Lösungen fragen und wo KIs verlässliche Hinweise zu Qualität und Relevanz finden. Unternehmen, die Bewertungen als strategischen, kontinuierlichen Prozess verstehen, erhöhen ihre Chance, in generativen Antworten genannt zu werden und gewinnen genau in den entscheidenden Momenten an Präsenz. Vieles davon ist eine Frage kluger Organisation und klarer Abläufe. Der finanzielle Aufwand bleibt überschaubar, der Nutzen für Auffindbarkeit, Vertrauen und Umsatz ist deutlich spürbar.

Die Autorin Franziska Ortner ist Produktmanagerin bei SELLWERK

NICAMA Naturkosmetik: Von der Studienidee zum nachhaltigen Erfolgsunternehmen

NICAMA Naturkosmetik feiert sein fünfjähriges Bestehen: Was mit kleinen Experimenten während des Studiums begann, ist heute ein etabliertes Naturkosmetikunternehmen mit über 600 Handelspartnern im DACH-Raum.

Was 2019 als mutige Idee von vier Studierenden begann, wurde rasch zu einem inspirierenden Beispiel für gelebte Nachhaltigkeit. In einer Zeit, in der Umweltschutz noch kein selbstverständlicher Trend war, experimentierten die Gründerinnen und Gründer mit festen Shampoos, um eine plastikfreie Alternative zu herkömmlicher Kosmetik zu schaffen. Das erste Produkt entstand mit viel Leidenschaft, Neugier und Improvisation. Damit war der Grundstein für den späteren Unternehmenserfolg gelegt.

Ein erfolgreiches Crowdfunding finanzierte 2019 die erste Produktcharge und machte den Traum vom eigenen Webshop möglich. Es folgten die ersten Partnerschaften mit Bioläden, Outdoorhändlern, Friseuren und Geschenkeläden, die an die Vision glaubten. Heute zählt NICAMA stolz über 600 Vertriebspartner und wächst weiter.

Ein entscheidender Meilenstein war die Entwicklung des 1plus1 Meeresschutz-Prinzips: Für jedes verkaufte Produkt werden 100 Gramm Plastik in Küstenregionen gesammelt. Dieses Prinzip ist transparent, messbar und von jedem/jeder Kund*in nachvollziehbar. Bis heute konnten so über 33.290 Kilogramm Plastik aus der Umwelt entfernt werden. Das entspricht mehr als 3,2 Millionen Plastikflaschen. Darüber hinaus hat das Team mehrere Elbreinigungen organisiert, unter anderem gemeinsam mit der Naturschutzjugend NAJU und Charlotte Meentzen.

Mit dem Schritt in die Upcycling Beauty wurde NICAMA zum Pionier in Deutschland. Dabei werden wertvolle Nebenprodukte aus der Lebensmittelproduktion wie Ingwertrester und Kaffeekirsche zu hochwertigen Inhaltsstoffen verarbeitet. Heute umfasst das Sortiment über 50 plastikfreie Produkte, darunter Seifen, Shampoos, Deocremes, Pflegeöle und Körperpeelings – alle minimalistisch verpackt und mit reduzierten, sorgfältig ausgewählten Rezepturen.

Die Reise war jedoch nicht ohne Herausforderungen: Die Corona Pandemie und die Inflationsfolgen des Ukraine-Krieges setzten auch NICAMA stark zu. Das einst 15-köpfige Team musste sich zwischenzeitlich deutlich verkleinern. Trotz dieser Rückschläge bewies das Unternehmen Durchhaltevermögen. Heute steht es so solide da wie nie zuvor. Seit zwei Jahren verzeichnet NICAMA wieder überdurchschnittliches Wachstum und das deutlich über dem allgemeinen Naturkosmetikmarkt in Deutschland.

Für sein Engagement und seine Innovationskraft wurde das Unternehmen mehrfach ausgezeichnet: 2021 gewann NICAMA den Sächsischen Gründerpreis und erhielt bereits viermal den eku Zukunftspreis des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft.

Happy Homeoffice Club gestartet

Gründerin Caterina Hirt startet ein digitales Netzwerk als kollaborative Kommunikationsplattform für selbständige Mütter im Homeoffice.

Mit dem Start des Happy Homeoffice Clubs entsteht ein neues digitales Angebot für selbständige Mütter – mit Liveformaten, Co-Working, einer innovativen Softwareplattform und vielen nützlichen Business-Hacks. Die Gründerin Caterina Hirt bringt damit ein strukturiertes, unterstützendes Netzwerk an den Start, das den oft isolierten Homeoffice-Alltag in einen Ort der Verbindung, Motivation und echten Weiterentwicklung verwandelt. „Ich habe selbst erlebt, wie herausfordernd es ist, Beruf, Familie und Selbstverwirklichung unter einen Hut zu bringen – vor allem im Homeoffice. Mit dem Happy Homeoffice Club möchte ich Frauen zeigen, dass sie nicht alleine sind“, so die Gründerin. Caterina Hirt ist Unternehmerin, Autorin, systemische Coachin und Mutter von zwei Kindern. Mit ihrem Agenturbackground und über zehn Jahren Erfahrung im Homeoffice weiß die Marketingspezialistin aus erster Hand, welche Chancen – aber auch welche Herausforderungen – dieser Arbeitsalltag birgt.

Kern der Zusammenarbeit ist eine kollaborative Kommunikationsplattform, über die die Mütter dauerhaft in einem echten Netzwerk verbunden sind. Dazu setzt das Angebot auf Livecalls, Community-Austausch, Expertenvorträge und snackable Businesstipps, die den Workflow im Homeoffice effizienter machen. Das Angebot richtet sich explizit an selbständige Frauen oder Mütter im Homeoffice. „Bei uns fühlt sich keine Teilnehmerin mehr allein. Hier treffen sich Frauen, die genau wissen, wie es ist, mit Laptop, Kaffee, Kind und manchmal ein bisschen Chaos zu jonglieren. Sie arbeiten, lachen, tauschen sich aus und motivieren sich gegenseitig. So modern, vernetzt und unterstützend, wie man es sich als Selbstständige immer gewünscht hat “, sagt Caterina Hirt.

Die zugrundeliegende Softwarelösung bietet eine hochmoderne Nutzeroberfläche, Chats, Calls in einer geschützten Umgebung sowie Daten- und Wissensaustausch an. So gibt es zum Beispiel den Monday Motivation Call mit allen Teilnehmerinnen oder eine interaktive Kaffeeküche, in der man sich einfach mal über alle Themen abseits des Business interaktiv austauschen kann. Die Plattform wird jeder Teilnehmerin zur Verfügung gestellt, die Nutzung ist in der monatlichen Mitgliedsgebühr von 49 Euro (Einführungspreis) enthalten. Interessentinnen können die Community inklusive aller Angebote zwei Wochen kostenlos testen.

Jakob Koenen: Mit 18 zum LegalTech-Start-up-Gründer

Die Sovereign AI Betriebs GmbH – 2025 von Jakob Koenen und seinem Vater Prof. Dr. Andreas Koenen mit Sitz in Berlin gegründet – entwickelt spezialisierte KI-Plattformen für die juristische Praxis.

Ein Technologie-begeisterter Abiturient, der schon mit 15 Jahren Jura-Vorlesungen besucht, gründet ein LegalTech-Start-up. Partnerschaftlich an seiner Seite agiert sein Vater, ein renommierter Professor für Baurecht. Das ist das Fundament der Sovereign AI Betriebs GmbH, die in Berlin antritt, das Rechtswissen ganzer Berufs-Generationen in eine juristisch kuratierte KI zu überführen. Herzstück des Unternehmens ist Sovereign Legal AI. Die Plattform bereitet juristische Fragen systematisch, verständlich und nachvollziehbar auf.

„Wir wollen das Recht aus der Blackbox holen“, sagt Jakob Koenen, Gründer und Geschäftsführer der Sovereign AI Betriebs GmbH. „Unsere KI soll kein Ersatz für Anwältinnen und Anwälte sein, sondern ein intelligentes Werkzeug, das Wissen strukturiert, Orientierung gibt und den Zugang zum Recht demokratisiert.“

Rechtspraxis-Know-how, digitalisiert für den Alltag

Die Idee zu Sovereign Legal AI entstand in einem Generationenprojekt. Prof. Dr. Andreas Koenen, Kanzleiinhaber, Fachanwalt und Herausgeber zahlreicher Werke zum Bau- und Architektenrecht, hat über Jahrzehnte beobachtet, wie Rechtswissen in der Praxis verloren geht, weil es zu spät, zu komplex oder zu exklusiv vermittelt wird.

„Das Recht wird beim Bauen oft erst dann herangezogen, wenn es knallt“, sagt Koenen. „Juristinnen und Juristen gelten als Ausputzer, nicht als Geburtshelfer. Sovereign Legal AI will das ändern. "Wir liefern Projektbeteiligten vom Architekten, Planer bis zum Bauherrn einen Kompass, der schon vor Konflikten Orientierung bietet; mit juristisch fundierter Systematik, aber barrierefrei zugänglich“, so Koenen weiter.

Die Wissensbasis der Sovereign Legal AI umfasst unter anderem kommentierte Urteile, systematisch aufbereitete Rechtsinformationen sowie Fachbeiträge von Anwältinnen und Anwälten zu typischen Praxisproblemen. Alle Inhalte sind mit Originalquellen aus Gesetz, Rechtsprechung und Literatur belegt, was den entscheidenden Unterschied zu generativen „Blackbox-Systemen“ markiert.

Neue Plattform für juristische Teilhabe

Sovereign Legal AI entstand in Zusammenarbeit mit den Anwältinnen und Anwälten der Kanzlei Koenen Bauanwälte. Die künstliche Intelligenz (KI) wurde entlang echter Fallarbeit trainiert und in einer Beta-Phase getestet. Dabei versteht sich die KI als Community-Projekt: Nutzende geben Feedback, benennen Lücken und tragen so zur Weiterentwicklung bei. Auf diese Weise wächst die KI mit der Praxis. Im Wissens-Ökosystem von Sovereign befinden sich auch die Austausch-Plattform Sovereign Community und der stationäre Sovereign Store in Münster. Beide sind Teil derselben Markenfamilie und werden von der Sovereign GmbH betrieben. Partner-, Lizenz- und Servicemodelle finanzieren das Projekt. „Wir schaffen eine KI-Plattform, die juristisches Wissen lebendig hält“, so Jakob Koenen. „Das ist Unternehmensnachfolge im besten Sinne. Das Wissen einer Generation wird nicht vererbt, sondern transformiert.“

Junger Gründer mit Tech-DNA

Dass Jakob Koenen früh Verantwortung übernimmt, überrascht kaum. Mit 11 wollte er bereits eine Web-Agentur gründen, erschuf in diesem Zuge den Digitalauftritt eines Handwerksunternehmens. Mit 15 hat er mit Unterstützung seiner Eltern beantragt, frühzeitig als geschäftsfähig erklärt zu werden und gründete nach der Bewilligung sein erstes Unternehmen. Heute ist er Gründer, App-Entwickler und Geschäftsführer des Berliner LegalTech-Unternehmens. Er arbeitet mit einem Netzwerk aus externen Entwicklerinnen und Entwicklern sowie Fachleuten an der technischen Weiterentwicklung von Sovereign Legal AI. Aktuell suchen er und sein Vater als Herausgeber der Inhalte nach Co-Autor*innen und Partner*innen, die weitere juristische Rechtsbereiche wie Energierecht oder IT-Recht innerhalb der KI für sich erschließen.

Code für die künstliche Intelligenz: technische Optimierung für die Ära der KI-Suche

Code für die KI: So optimierst du deine Website technisch mit strukturierten Daten und Protokollen für die besten generativen Suchergebnisse.

Die Regeln der Online-Sichtbarkeit werden neu geschrieben. Es geht nicht mehr nur darum, von einem herkömmlichen Algorithmus indiziert zu werden. Stattdessen müssen Websites so aufbereitet werden, dass sie von künstlicher Intelligenz (KI) und großen Sprachmodellen (LLMs) fehlerfrei interpretiert und verarbeitet werden können.

KI erstellt ihre Antworten, indem sie Inhalte blitzschnell liest, deren Bedeutung versteht und die wichtigsten Fakten daraus extrahiert. Wenn der technische Unterbau einer Website unsauber ist, kann die KI die Informationen entweder nicht zuverlässig finden oder sie falsch interpretieren.

Das bedeutet, die technische Seite der Website – der Code – wird zum Fundament für eine gute Platzierung in den generativen Suchergebnissen. Wer hier Nachholbedarf hat, riskiert, als vertrauenswürdige Quelle für die KI unsichtbar zu werden.

Dieser Artikel beleuchtet die entscheidenden technischen Anpassungen, die notwendig sind, um deine Website optimal für die neue Ära der KI-Suche vorzubereiten.

Kontrolle und Zugang: Die Regeln für Sprachmodelle

Der erste technische Schritt zur Optimierung für KI-Ergebnisse ist die Steuerung des Zugriffs durch die großen Sprachmodelle (LLMs). Traditionell wird der Zugang durch die robots.txt Datei geregelt, die festlegt, welche Bereiche der Website von herkömmlichen Suchmaschinen-Crawlern besucht werden dürfen.

Mit dem Aufkommen verschiedener, spezialisierter KI-Crawler (die nicht immer identisch mit dem Googlebot oder Bingbot sind) entsteht jedoch die Notwendigkeit, diesen neuen Akteuren eigene Regeln zu geben. Es geht darum, Transparenz darüber zu schaffen, welche Daten zur Generierung von Antworten verwendet werden dürfen und welche nicht.

Neue Protokolle für neue Crawler

Experten diskutieren und entwickeln neue Protokolle, um diese Unterscheidung zu ermöglichen. Ein viel diskutierter Ansatz ist die Einführung von Protokollen, die spezifisch den Umgang mit generativer KI regeln. Dies könnte die Einführung von Protokollen wie einer llms.txt Datei beinhalten. Solche spezifischen Dateien könnten festlegen, ob ein KI-Modell Inhalte zur Schulung oder zur generativen Beantwortung von Nutzeranfragen nutzen darf.

Diese Kontrollmechanismen sind entscheidend. Sie geben den Website-Betreibern die Autorität darüber zurück, wie ihre Inhalte in der KI-Ära verwendet werden. Wer hier klare Regeln setzt, schafft die technische Grundlage für eine kontrollierte und damit vertrauenswürdige Sichtbarkeit in den KI-Ergebnissen.

Strukturierte Daten als universelle KI-Sprache

Nach der Regelung des Zugangs durch Protokolle ist die Strukturierung der Inhalte der wichtigste technische Schritt. Suchmaschinen nutzen strukturierte Daten schon lange, um Rich Snippets in den klassischen Ergebnissen anzuzeigen. Für die KI sind diese Daten jedoch absolut essenziell.

Strukturierte Daten, die auf dem Vokabular von Schema.org basieren, sind im Grunde eine Übersetzungshilfe im Code, die dem Sprachmodell den Kontext des Inhalts direkt mitteilt. Sie sind die "Sprache", die die KI am schnellsten und präzisesten versteht.

Die Bedeutung für die Generierung

Wenn ein Nutzer eine Frage stellt, sucht die KI nicht nur nach Stichwörtern, sondern nach definierten Informationstypen. Mit strukturierten Daten liefert man der KI diese Informationen als fertige, fehlerfreie Bausteine.

  • Fehlerfreie Extraktion: Die KI muss keine Textpassagen interpretieren, um beispielsweise ein Rezept, die Bewertung eines Produkts oder einen FAQ-Abschnitt zu identifizieren. Die korrekte Auszeichnung macht die Daten sofort nutzbar.
  • Vertrauensbildung: Fehlerhafte oder inkonsistente strukturierte Daten führen zu einer falschen Interpretation und können bewirken, dass die KI deine Seite als unzuverlässig einstuft.

Die Implementierung muss fehlerfrei sein und sollte alle relevanten Inhaltstypen der Website abdecken. Nur eine saubere Schema-Implementierung garantiert, dass deine Fakten korrekt in die generativen Antworten der KI einfließen.

Ladezeit und Interaktivität als Vertrauenssignal

Die Geschwindigkeit und die Nutzbarkeit einer Website sind in der Ära der KI-Suche nicht mehr nur ein Komfortfaktor, sondern ein entscheidendes technisches Vertrauenssignal. Wenn deine Seite langsam lädt oder schlecht bedienbar ist, wird das von der KI als Indikator für mangelnde Qualität und niedrige Autorität gewertet.

Die Basis dafür sind die sogenannten Core Web Vitals (CWVs). Diese Messwerte, die sich auf das Nutzererlebnis konzentrieren, sind feste Ranking-Faktoren und haben direkten Einfluss darauf, ob eine KI deine Seite als zitierwürdig einstuft:

  • LCP (Largest Contentful Paint): Misst die Zeit, bis der größte sichtbare Inhalt geladen ist.
  • FID/INP (First Input Delay / Interaction to Next Paint): Misst die Zeit bis zur ersten Interaktion und die allgemeine Reaktionsfähigkeit der Seite.
  • CLS (Cumulative Layout Shift): Misst die visuelle Stabilität.

Mobile Performance ist der Schlüssel

Da ein Großteil der Online-Aktivität über mobile Geräte stattfindet, legt die KI höchsten Wert auf die Optimierung der Mobilversion. Eine schlechte mobile Performance kann das gesamte Ranking negativ beeinflussen.

Die technische Anpassung muss daher darauf abzielen, die CWVs zu perfektionieren. Dies beinhaltet die Optimierung von Bildern, das Bereinigen unnötiger Code-Lasten und das Priorisieren wichtiger Ressourcen. Eine schnell ladende und reaktionsfreudige Website signalisiert nicht nur dem Nutzer, sondern auch der KI, dass die Quelle professionell und damit vertrauenswürdig ist.

Redundanz vermeiden: kanonische Klarheit

Eines der größten technischen Probleme für KI-Modelle ist die Verwirrung durch doppelte Inhalte (Duplikate). Wenn die gleiche Information unter verschiedenen URLs verfügbar ist, weiß die KI nicht, welche die Originalquelle darstellt. Dies zersplittert deine Autorität.

Der technische Schlüssel zur Lösung ist der Canonical Tag (<link rel="canonical" ...>). Dieser Tag im Code muss auf jeder Seite korrekt auf die bevorzugte, indexierbare URL zeigen. Durch die Vermeidung von Duplikaten und die korrekte Nutzung dieses Tags stellst du technisch sicher, dass die KI deine Inhalte als eindeutig und autoritär wahrnimmt und dich als zuverlässigen Faktenlieferanten zitiert.

Schlussworte

Die Zukunft der Online-Sichtbarkeit wird durch künstliche Intelligenz neu definiert. Der Erfolg hängt von einer technisch sauberen Vorbereitung ab.

Die wichtigsten Schritte in der Generative Engine Optimization (GEO) sind:

1. Zugangskontrolle durch Protokolle wie die diskutierte llms.txt Datei.

2. Die Nutzung von strukturierten Daten als unverzichtbare KI-Sprache.

3. Die Perfektionierung der Core Web Vitals als Vertrauenssignal.

4. Die Vermeidung von Duplikaten durch kanonische Klarheit.

Investiere in diese technische Qualität, um Autorität und Sichtbarkeit in der Ära der KI-generierten Antworten zu sichern.

eleQtron: It's MAGIC

In nur fünf Jahren vom Laborgerät zum 24/7-betriebenen Quantencomputer: Wie das 2020 von Jan Leisse, Christof Wunderlich und Michael Johanning gegründete eleQtron mit seiner MAGIC-Technologie neue Wege ebnet.

Was ihr da macht, ist der Wahnsinn – und genau deswegen bin ich dabei.“ Mit diesen Worten beschreibt Jan Leisse, einer der Gründer von eleQtron, die Anfänge des Unternehmens. Das erste Treffen mit dem Physiker Christof Wunderlich war geprägt von einer Mischung aus Skepsis und Begeisterung. Der Wissenschaftler hatte an der Universität Siegen einen Quantencomputer gebaut – mitten in der deutschen Provinz und ohne das Millionenbudget, das Konzernen wie Google oder IBM zur Verfügung steht. Doch genau das reizte Leisse: „Hier wurde nicht einfach nachgemacht, was andere tun. Hier wurde Neuland betreten.“

Es war ein ungewöhnlicher Ort für eine bahnbrechende

Innovation in der Quantentechnologie. Siegen, eine Mittelstadt im Süden Nordrhein-Westfalens, ist nicht gerade als Hotspot für Hochtechnologie bekannt. Doch manchmal entstehen die Top-Innovationen fernab der etablierten Zentren; die Universität Siegen hatte über Jahre hinweg eine bemerkenswerte Expertise in der Quantenphysik aufgebaut, ohne große mediale Aufmerksamkeit.

Von der Universität ...

Im Jahr 2020, als das globale Interesse an Quantentechnolo­gien exponentiell zunahm, erwuchs aus dieser mutigen Pionierarbeit das Start-up eleQtron – als Spin-off der Universität Siegen. Die Gründer – Jan Leisse, Christof Wunderlich und Michael Johanning – verbindet eine Vision: Quantencomputer für industrielle Anwendungen nutzbar zu machen.

Die Anfangsjahre waren geprägt von Experimentierfreude, Improvisation und dem festen Glauben an die eigene technologische Innovationskraft. Während Tech-Giganten wie IBM, Google und Amazon Milliarden Euro in ihre Quanten­programme investierten und viele Start-ups auf bekannte Technologien setzten, wagte eleQtron den Schritt in eine völlig neue Richtung.

In den Laboren der Gründer entstand die sogenannte MAGIC-Technologie (Magnetic Gradient Induced Coupling), eine Methode, Qubits (das Quantencomputing-Äquivalent zum klassischen Bit in der Digitaltechnik) nicht wie bislang üblich mit Lasern, sondern mit Mikrowellen zu steuern.

... zum technologischen Durchbruch

Die MAGIC-Technologie basiert auf einem raffinierten Zusammenspiel physikalischer Prinzipien: Magnetische Gradienten (räumliche Veränderungen der Magnetfeldstärke) ermöglichen es als lokale Felder, einzelne Ionen in einer so­genannten Falle selektiv anzusprechen. Die technischen Vorteile sind beeindruckend: Die Fidelity (Genauigkeit) bei Operationen an einzelnen Qubits liegt bei etwa 99,95 Prozent, die Gate-Zeiten (Gate-Zeit steht für die Dauer, die ein Quanten-Gate benötigt, um eine Operation auf einem Qubit auszuführen) betragen nur wenige Mikrosekunden. Gleichzeitig ermöglicht die Technologie eine bessere Skalierbarkeit, da sich Mikro­wellenfelder einfacher erzeugen und verteilen lassen als komplexe Lasersysteme. „Der Vorteil liegt nicht nur in der höheren Präzision, sondern auch in der deutlich geringeren Komplexität der Systeme“, erklärt Johanning. „Wir brauchen keine aufwändigen Optiken oder ultrastabile Umgebungen. Unsere Technologie funktioniert auch unter realen Bedingungen.“

Früh erkannten die drei Forscher das große Potenzial ihrer Technologie für praktische Anwendungen. „Durch das gezielte Ersetzen sensibler High-End-Komponenten – insbesondere Lasertechnologie – durch bewährte Mikrowellentechnik und Elektronik, vermeiden wir unnötige Komplexität, minimieren Aufwand und senken die Kosten“, fasst es Leisse zusammen.

Wachstumsschub und strategische Entwicklung

2022 gelang eleQtron ein entscheidender Schritt: Durch Earlybird und den Siegerlandfonds als Investoren sowie das vom BMBF geförderte Projekt „MAGIC App“ sicherte sich das Start-up eine Finanzierung in Höhe von 16 Millionen Euro. Diese Finanzierungsrunde war ein Wendepunkt für das Unternehmen und signalisierte das Vertrauen der Investor*innen in die MAGIC-Technologie.

„Mit diesem Kapitalschub konnten wir von einer reinen Forschungsorganisation zu einem echten Technologieunternehmen werden“, erklärt Leisse. Die Mittel flossen in den Ausbau der Produktionskapazitäten, die Vergrößerung des Teams und die Weiterentwicklung der Technologie-Roadmap. Auch die Mitwirkung von Infineon im Rahmen von MAGIC App war strategisch von Bedeutung: „Die Zusammenarbeit mit Infineon hat uns die Augen für die Realitäten des Industriemarkts geöffnet“, erklärt Leisse.

Indirekter Einkauf: Versteckter Kostenfresser oder unentdeckter Goldschatz?

Im Interview sprechen wir mit Bettina Fischer, Gründerin von Hivebuy, über die Chancen und Risiken des indirekten Einkaufs und darüber, wie Unternehmen mit der richtigen Software Kosten senken und Prozesse optimieren können.

In vielen Unternehmen wird der indirekte Einkauf häufig unterschätzt – dabei liegen hier oft erhebliche Einsparpotenziale verborgen. Durch die wachsende Digitalisierung und die zunehmende Verfügbarkeit von B2B eCommerce-Plattformen bestellen Mitarbeitende Waren und Dienstleistungen immer häufiger außerhalb klassischer Einkaufsprozesse. Diese Entwicklung bringt einerseits Flexibilität und Effizienz, stellt Unternehmen aber auch vor neue Herausforderungen: Wie lassen sich Ausgaben kontrollieren und Transparenz über die gesamte Einkaufskette sicherstellen?

Die beste Einkaufssoftware für den Mittelstand adressiert genau diese Herausforderungen. Hivebuy hat sich als moderne, benutzerfreundliche Lösung etabliert, die den indirekten Einkaufsprozess von der Bestellung bis zur Rechnungsprüfung digitalisiert und automatisiert. Die Software integriert sich nahtlos in bestehende ERP-, Buchhaltungs- und Kommunikationstools wie SAP, Microsoft Dynamics, Teams oder Slack – und das ohne aufwändige technische Implementierung.

Gegründet von erfahrenen Einkaufs- und Finanzexpert*innen aus Frustration über bisherige Lösungen, verfolgt Hivebuy die Mission, versteckte Kosten sichtbar zu machen, Budgets in Echtzeit zu kontrollieren und Einkaufsprozesse effizienter zu gestalten. Mit höchsten Sicherheitsstandards, inklusive ISO/IEC 27001-Zertifizierung und DSGVO-konformer Datenhaltung in Deutschland, schafft Hivebuy Transparenz und Vertrauen entlang der gesamten Einkaufskette.

Im Interview sprechen wir mit Bettina Fischer, Gründerin von Hivebuy, über die Chancen und Risiken des indirekten Einkaufs und darüber, wie Unternehmen mit der richtigen Software Kosten senken und Prozesse optimieren können.

StartingUp: Frau Fischer, viele Unternehmen sehen im indirekten Einkauf eher einen Kostenfaktor, der schwer zu kontrollieren ist. Was macht den indirekten Einkauf aus Ihrer Sicht zu einem versteckten Kostenfresser?

Bettina Fischer: Die große Herausforderung im indirekten Einkauf liegt darin, dass die einkaufenden Personen über das gesamte Unternehmen verteilt sind – anders als im direkten Einkauf, wo spezialisierte Einkaufsabteilungen tätig sind. Das bedeutet: Jede*r Mitarbeitende, der oder die einmal etwas bestellt, wird zum Einkäufer oder zur Einkäuferin – oft ohne die notwendige Erfahrung in Einkaufsprozessen.

Dadurch entstehen typische Muster: Es wird bei bekannten Lieferanten bestellt – oft aus dem privaten Umfeld, wie etwa Amazon Business – ohne Preisvergleiche, ohne Berücksichtigung von Lieferzeiten oder bereits verhandelten Konditionen. Das führt schnell zu ineffizienten und teuren Entscheidungen.

Hinzu kommt, dass im indirekten Einkauf eine hohe Produktvielfalt auf eine extrem heterogene Lieferantenlandschaft trifft. Das erschwert es, durch Bündelung bessere Konditionen zu erzielen. Es fehlt die klare, strategische Beziehung zu bestimmten Lieferanten – und genau dort entstehen die versteckten Kosten.

StartingUp: Wie hilft Hivebuy Mittelständlern konkret dabei, diese versteckten Kosten aufzudecken und zu reduzieren?

Bettina Fischer: Hivebuy verfolgt einen ganzheitlichen Ansatz, um die Herausforderungen des indirekten Einkaufs zu lösen. Zum einen ermöglichen wir es Mitarbeitenden, direkt über integrierte Lieferanten zu bestellen. Das bedeutet: Die Bestellungen erfolgen zentral über Hivebuy – ohne Umwege über externe Plattformen oder individuelle Beschaffungswege. Die Bestellübermittlung ist automatisiert und erfolgt effizient über unser System.

Darüber hinaus bietet Hivebuy einen integrierten Preisvergleich für B2B-Webshops. So wird sichergestellt, dass stets der beste Preis und die optimalen Lieferzeiten berücksichtigt werden – ein entscheidender Hebel zur Kostensenkung.

Ein weiterer zentraler Punkt ist die Budgetkontrolle: Sobald eine Bestellanforderung erstellt wird, sehen Budgetverantwortliche sofort die Auswirkungen auf ihr Budget – in Echtzeit. Dadurch lassen sich Entscheidungen schnell, fundiert und transparent treffen.

Auch die Freigabeprozesse sind flexibel und konfigurierbar: Mitarbeitenden wird Freiheit für alltägliche Bestellungen gegeben, während bei kritischen oder kostenintensiven Vorgängen automatische Eskalationen und Genehmigungen greifen.

Nicht zuletzt ermöglicht Hivebuy dem Einkauf, sein Wissen an die Organisation weiterzugeben. Vorverhandelte Verträge, Katalogartikel oder bevorzugte Lieferanten sind direkt im System sichtbar – wie ein digitaler Einkaufsberater im Hintergrund. So treffen selbst unerfahrene Nutzer bessere Entscheidungen – ganz im Sinne von Kostenkontrolle und Prozesssicherheit.

StartingUp: Ihre Software ist bekannt für ihre Nutzerfreundlichkeit. Wie schaffen Sie es, auch nicht-einkaufserfahrene Mitarbeitende einzubinden?

Bettina Fischer: Benutzerfreundlichkeit steht bei Hivebuy an oberster Stelle. Wann immer wir eine neue Funktion entwickeln, testen wir diese gemeinsam mit unseren Nutzerinnen und Nutzern – direkt aus der Praxis. Unser Ziel ist es, dass Hivebuy genauso intuitiv bedienbar ist wie eine Online-Überweisung: Jeder soll auf Anhieb verstehen, was zu tun ist.

Mit Funktionen wie unserem B2B-Preisvergleich und dem sogenannten Guided Buying führen wir Mitarbeitende gezielt durch den Einkaufsprozess – Schritt für Schritt, ganz ohne Schulungsaufwand. So wird selbst komplexes Einkaufswissen einfach zugänglich gemacht.

Für Freigabeverantwortliche haben wir zusätzlich eine besonders komfortable Lösung geschaffen: Freigaben können direkt über Messenger-Apps wie Microsoft Teams erteilt werden – ohne sich ins System einloggen zu müssen. Die relevanten Informationen kommen automatisch dorthin, wo man ohnehin schon arbeitet – aufs Handy oder den Desktop. Das senkt die Einstiegshürden enorm und sorgt für eine breite Akzeptanz im gesamten Unternehmen.

StartingUp: Welche Rolle spielen Transparenz und Echtzeit-Reporting in der Budgetkontrolle?

Bettina Fischer: Wir sind überzeugt: Budgetkontrolle funktioniert nur in Echtzeit. Es bringt wenig, wenn Budgetübersichten nur monatlich, quartalsweise oder gar halbjährlich zur Verfügung stehen. Entscheidungen im Einkauf werden täglich getroffen – also muss auch die Budgettransparenz jederzeit aktuell sein.

Deshalb haben wir bei der Entwicklung von Hivebuy besonderen Fokus auf eine unmittelbare Budgeteinsicht gelegt. Sobald eine Bestellung angefragt wird, sieht der oder die Budgetverantwortliche sofort, wie sich diese auf das verfügbare Budget auswirkt. Diese Echtzeit-Transparenz ist ein zentrales Element unserer Software.

Gleichzeitig möchten wir Mitarbeitende befähigen, innerhalb ihrer Befugnisse selbstständig Entscheidungen zu treffen. Nicht jede Anfrage muss durch mehrere Instanzen laufen. Vielmehr setzen wir auf smarte, automatisierte Prozesse – kombiniert mit dem Vertrauen in die Souveränität der Nutzer. Das spart nicht nur Zeit, sondern steigert auch die Effizienz und Zufriedenheit im Unternehmen.

StartingUp: Die Einführung neuer Software bedeutet oft hohen Aufwand. Wie gestaltet sich die Implementierung von Hivebuy?

Bettina Fischer: Ich habe selbst über viele Jahre ERP- und Einkaufssoftwareprojekte geleitet – und ehrlich gesagt: Es war jedes Mal ein enormer Aufwand. Genau diese Erfahrungen haben mich dazu motiviert, Hivebuy so zu entwickeln, dass Implementierung eben nicht zur Belastung wird.

Unsere Lösung ist bewusst so aufgebaut, dass sie schnell, unkompliziert und ohne großen IT-Aufwand eingeführt werden kann. Neue Unternehmen können innerhalb kürzester Zeit starten – oft sogar innerhalb eines Tages mit einem eigenen Testsystem.

Die Einführung begleiten wir durch leicht verständliche Videotutorials und Onboarding-Materialien. Darüber hinaus gibt es persönliche Sessions, in denen die Nutzer befähigt werden, das System selbstständig für ihr Unternehmen zu konfigurieren. Schnittstellen zu ERP-Systemen wie SAP, Microsoft Dynamics oder DATEV richten wir in der Regel innerhalb weniger Stunden bis Tage ein.

Wenn beide Seiten fokussiert an das Projekt herangehen, können wir bei Unternehmen mit mehreren tausend Mitarbeitenden innerhalb von acht Wochen vollständig live gehen – inklusive Integration, Schulung und Rollout.

StartingUp: Wie unterstützt Hivebuy IT-Teams und technische Entscheider bei der Integration?

Bettina Fischer: Unsere größte Stärke in der Zusammenarbeit mit IT-Teams ist unsere Schnelligkeit. Bereits im ersten Kick-Off mit der IT tauschen wir alle relevanten technischen Dokumentationen aus, klären die Rahmenbedingungen und ermöglichen in kürzester Zeit die Integration in ein Testsystem. Wir verzichten bewusst auf langwierige Business-Blueprint-Phasen und setzen stattdessen auf eine praxisnahe, direkte Umsetzung.

Hivebuy verfolgt eine klare Integration-First-Strategie. Das bedeutet: Unsere Lösung ist von Grund auf so konzipiert, dass sie sich schnell und flexibel in bestehende ERP-Systeme und IT-Landschaften integrieren lässt. Für alle gängigen Systeme – ob SAP, Microsoft Dynamics, DATEV oder NetSuite – stellen wir vollständige Schnittstellen-Dokumentationen zur Verfügung.

Mein Mitgründer Stefan Kiehne bringt aus seiner Zeit bei PwC tiefes technisches Know-how mit und hat zahlreiche ERP-Implementierungen verantwortet. Dieses Wissen fließt direkt in unsere Projekte ein. Inzwischen haben wir Hivebuy in so viele verschiedene Systeme integriert, dass kaum noch Überraschungen aufkommen. Für IT-Verantwortliche bedeutet das: minimale Unsicherheiten, schnelle Umsetzung und maximale Kompatibilität.

StartingUp: Wie sieht die Zukunft des indirekten Einkaufs aus? Welche Trends beobachten Sie?

Bettina Fischer: Ich sehe im indirekten Einkauf ganz klar einen Wandel hin zu intelligenter Automatisierung und echter Transparenz. Schon heute beobachten wir den Trend in Richtung „Agent AI“ – also digitale Einkaufsassistenten, die Nutzer durch Prozesse begleiten und Entscheidungen mit datenbasierten Empfehlungen unterstützen. Das wird sich in den nächsten Jahren deutlich verstärken.

Was mich persönlich schon lange wundert: Im B2C-Bereich haben wir mit Plattformen wie Idealo längst Preis- und Konditionsvergleiche. Im B2B gibt es das kaum. Deshalb war es uns wichtig, mit Hivebuy eine Lösung zu schaffen, die genau das möglich macht – inklusive der hinterlegten, unternehmensspezifischen Konditionen. Das ist ein echter Gamechanger.

In Zukunft wird der indirekte Einkauf zunehmend automatisiert ablaufen – von der Bedarfserkennung bis hin zur Bestellung. Vergleichbar mit einem intelligenten Kühlschrank, der automatisch Milch nachbestellt, wird auch im Unternehmen vieles automatisch geschehen: Bedarfe erkennen, Angebote vergleichen, Bestellungen auslösen – ganz ohne manuelles Zutun.

Strategische Beschaffung wird dabei zur Grundlage. Das Ziel ist nicht, jede Bestellung individuell zu behandeln, sondern Prozesse zu standardisieren, auf Unternehmensziele auszurichten und individuelle Bedarfe intelligent einzubinden.

Und auch die Rückseite des Einkaufs wird sich stark verändern: Rechnungsprüfung, Buchung und Zahlungsfreigabe werden zunehmend automatisiert ablaufen. In einer idealen Zukunft brauchen wir keine manuelle Rechnungserfassung mehr – weil alles systemgestützt, regelbasiert und transparent funktioniert.

StartingUp: Vielen Dank für das Gespräch, Frau Fischer. Ihre Einblicke verdeutlichen, wie entscheidend es für Unternehmen ist, den indirekten Einkauf transparent und effizient zu gestalten. Mit Lösungen wie Hivebuy können Mittelständler versteckte Kosten sichtbar machen und ihre Beschaffungsprozesse nachhaltig optimieren. Wir wünschen Ihnen weiterhin viel Erfolg bei Ihrer Mission, Einkaufsteams bestmöglich zu unterstützen.

Start-ups gegen Plastikmüll

Während die Verhandlungen zu einem globalen Plastikabkommen ergebnislos bleiben, entwickeln Start-ups weltweit innovative Technologien gegen Plastikmüll. Wir stellen eine Auswahl davon vor.

Die jüngsten Verhandlungen in Genf über ein globales Plastikabkommen sind wieder ohne Ergebnis geblieben. Die mehr als 180 verhandelnden Nationen konnten sich nicht einigen. Seit mehr als 50 Jahren sind die Gefahren durch Plastikmüll bekannt – und doch wird immer mehr davon produziert. Jedes Jahr entstehen rund 460 Millionen Tonnen Plastik, weniger als 10 Prozent davon werden recycelt und über 30 Millionen Tonnen gelangen in die Ozeane.

Auf politischer Ebene zeichnet sich bislang keine Lösung ab, auf die man sich global einigen könnte. Neue Vorgaben wie die Pflicht zu fixierten Flaschendeckeln in der EU sorgen eher für Frust. „Seit Jahrzehnten reden wir über das Plastikproblem. Um es zu lösen braucht es technologische Ansätze“, sagt Dr. Carsten Gerhardt, Vorsitzender der gemeinnützigen Circular Valley Stiftung. Solche Ansätze liegen längst auf dem Tisch. „Start-ups aus aller Welt zeigen, dass Innovation schneller sein kann als Verhandlungen.“

Start-ups aus aller Welt arbeiten an Lösungen

Einige dieser Unternehmen hat der Circular Economy Accelerator der Circular Valley Stiftung bereits unterstützt. Das Start-up PROSERVATION etwa stellt Polsterverpackungen aus Nebenprodukten der Getreideindustrie her, BIOWEG ersetzt Mikroplastik durch Biomaterialien aus Lebensmittelabfällen und das Unternehmen Biomyc verwendet Myzel-Verbundwerkstoffe aus Pilzwurzeln und Pflanzen.

Daüber hinaus stellt NYUNGU AFRIKA Damenhygieneprodukte aus Ananasblatt- und Maisschalenfasern her, Midwest Composites nutzt Ernteabfälle für die Herstellung von Textilien und Vlastic bietet eine Alternative zu geschäumten Kunststoffen auf Flachsbasis.

Wenn Produkte das Ende ihrer Lebensdauer erreichen, können sie durch Recycling ein zweites erhalten. Ecoplastile verwandelt Abfälle in langlebige Dachziegel, Gescol macht Bauplatten aus Schuhsohlen und Novoloop nutzt schwer zu recycelndes Polyethylen zur Produktion von thermoplastischen Hochleistungs-Polyurethanen.

Chemisches Recycling zerlegt Kunststoffe in molekulare Bausteine. Das Unternehmen CARBOLIQ verwendet ein katalytisches Niedertemperaturverfahren, um gemischte Kunststoffe in Öl umzuwandeln, das fossile Rohstoffe ersetzen kann; Radical Dot extrahiert Monomere, um sie erneut verwenden zu können.

Zu chemischem Recycling hat Circular Valley in diesem Jahr einen Informationsfilm veröffentlicht, der die Möglichkeiten dieser Methode erklärt und verdeutlicht.

Humanoide Roboter: Vision und Realität

Der Weltroboterverband IFR veröffentlicht sein Positionspapier zu Trends, Chancen und möglichen Grenzen rund um das Thema humanoide Roboter.

Menschenähnliche Roboter gelten als die nächste große Innovation in der Robotik: Der weltweit größte Markt für Industrieroboter, China, hat bereits konkrete Pläne für die Massenproduktion von Humanoiden festgelegt. Gleichzeitig kündigten Technologieunternehmen in den USA und Europa große Investitionsvorhaben in diesem Bereich an. Die Vision ist, Allzweckroboter zu entwickeln, die auf menschlicher Mechanik basieren. Einblicke in Trends, Chancen und mögliche Grenzen humanoider Roboter bietet das neue Positionspapier der International Federation of Robotics.

„Futuristisch anmutende humanoide Roboter, die in unserem Zuhause, in Unternehmen und in der Öffentlichkeit arbeiten, faszinieren die Menschen“, sagt Takayuki Ito, Präsident der International Federation of Robotics. „Da die Welt in der wir leben auf den menschlichen Körper zugeschnitten ist, liegt die Idee eines schnellen, universellen Helfers in der Produktion und bei Dienstleistungen auf der Hand. Ob und wann es aber zu einer massenhaften Nutzung von Humanoiden kommen wird, bleibt ungewiss. Nicht zu erwarten ist jedenfalls, dass Humanoide in Zukunft die derzeit auf dem Markt befindlichen Robotertypen ersetzen. Stattdessen werden sie bestehende Technologien ergänzen und erweitern.“

Einsatz von Humanoiden in den Regionen

In den Vereinigten Staaten arbeiten Tech-Unternehmen wie NVIDIA, Amazon und Tesla intensiv an KI- und Robotertechnologien. Neben der Finanzierung durch das Militär wird diese Entwicklung auch durch zahlreiche private Investitionen unterstützt. Das führt zu einer bedeutenden Start-up-Szene, die sich auf humanoide Roboter spezialisiert. Besonders groß ist das Interesse an Humanoiden in Branchen wie der Logistik und in der Fertigung. Dabei werden humanoide Roboter weniger als soziale Begleiter gesehen, sondern eher als Werkzeuge, die dabei helfen, Produktivität und Effizienz zu steigern. So liegt der Schwerpunkt verstärkt auf praktischen Anwendungen und weniger auf der Integration von Robotern in das tägliche soziale Leben.

In China nehmen die Humanoiden eine zentrale Stellung in der nationalen Robotik-Strategie ein. Die Regierung möchte in diesem Technologiebereich Kompetenz und globale Wettbewerbsfähigkeit unter Beweis stellen. Der Einsatzschwerpunkt liegt dabei im Dienstleistungssektor, beispielsweise für die Kundenbetreuung. Die Automatisierung von Produktionslinien in der Fertigung und der Einsatz von Humanoiden, um weniger von menschlichen Arbeitskräften abhängig zu sein, scheint nur auf zweiter Ebene wichtig zu sein. Kernelement der chinesischen Strategie ist der Aufbau einer skalierbaren Lieferkette für Schlüsselkomponenten.

Japan ist ein Pionier in der Entwicklung humanoider Roboter. Als frühes Beispiel wurde Hondas Asimo bereits im Oktober 2000 vorgestellt. Roboter werden in Japan eher als Gefährten, denn als bloße Werkzeuge gesehen. Humanoide Roboter wie Pepper und Palro sind demzufolge in erster Linie als Sozialroboter konzipiert und kommen in Bildungseinrichtungen, Geschäften und Altenpflegeeinrichtungen zum Einsatz. Diese Ausrichtung spiegelt die Nachfrage einer alternden Gesellschaft wider, mit der Japan konfrontiert ist. Ein wichtiger Schwerpunkt der Projekte liegt auf Robotern, die harmonisch mit Menschen zusammenleben können und als Teil der Gesellschaft akzeptiert sind. Führende Unternehmen wie Kawasaki entwickeln humanoide Roboter als eine Forschungsplattform.

In Europa wird auf die ethischen Implikationen von Robotik und KI besonderes viel Wert gelegt. Im Fokus stehen kollaborative Roboter, die im industriellen Umfeld mit Menschen zusammenarbeiten. Kernthemen sind die Verbesserung der Sicherheit und Effizienz und die Nachahmung menschlicher Fähigkeiten. Die Arbeitskraft von Menschen zu kompensieren, steht dagegen nicht im Fokus. Der Schwerpunkt liegt vielmehr auf einem menschenzentrierten Design und den sozialen und gesellschaftlichen Auswirkungen von Robotern. Die europäischen Unternehmen stehen dem Einsatz von Humanoiden generell eher zurückhaltend gegenüber, wenn es um die kurz- bis mittelfristigen Automatisierungsaufgaben im Fertigungs- und Dienstleistungssektor geht.

+++ Ein bahnbrechendes Robotik Start-up aus Deutschland ist NEURA-Robotics: Hier geht’s zu unserer Gründerstory von NEURA Robotics +++

Ausblick

Dank ihrer menschenähnlichen Geschicklichkeit und Anpassungsfähigkeit sind die Humanoiden prädestiniert, komplexe Aufgaben zu automatisieren, mit denen heutige Roboter durch herkömmliche Programmiermethoden Schwierigkeiten haben. Einen massenhaften Einsatz als universelle Haushaltshelfer dürfte es jedoch kurz- bis mittelfristig nicht geben.

Das POSITION PAPER Humanoid Robots - Vision and Reality von IFR gibt's hier zum freien Download

Food-Innovation-Report

Wie Food-Start-up-Gründer*innen im herausfordernden Lebensmittelmarkt erfolgreich durchstarten und worauf Investor*innen besonders achten.

Food-Start-ups haben in den vergangenen Jahren einen bemerkenswerten Aufschwung erlebt. Der zunehmende Wunsch nach nachhaltiger, gesunder und funktionaler Ernährung, das wachsende Bewusstsein für Klima- und Umweltschutz sowie der Trend zur Individualisierung der Ernährung haben eine neue Gründungswelle ausgelöst. Dennoch: Der Markteintritt im deutschen Lebensmittelmarkt zählt zu den anspruchsvollsten Herausforderungen, denen sich Gründer*innen stellen können. Wer als Start-up nicht durch außergewöhnliche Innovation oder gezielte Nischenstrategie punktet, hat kaum eine Chance, hier gelistet zu werden.

Ohne klare Zielgruppenfokussierung, glaubwürdiges Produktversprechen und professionelle Umsetzung funktionieren auch gute Ideen nicht – wie es u.a. die Frosta-Tochter elbdeli (trotz starker Marke keine Resonanz) und Bonaverde (Kaffeemaschine mit Röstfunktion, die trotz Kickstarter-Erfolg) scheiterte zeigen.

Da dieser Markt so groß ist, ist er auch stark reguliert, hochkonkurrenzfähig und von mächtigen Einzelhandelsstruk­turen dominiert. Zu den größten Hürden zählen die komplexe Regulatorik, Logistik und Produktion, Finanzierung sowie die Konsument*innenakzeptanz.

Laut dem Deutschen Startup Monitor nennen 43 Prozent aller Start-ups die Finanzierung als größte Hürde. Kapitalbedarf entsteht früh – für Verpackungen, Lebensmittelsicherheit, Produktion, Mindestabnahmemengen und Vertrieb.

Ein typisches Seed-Investment liegt zwischen 250.000 und 1,5 Millionen Euro. In späteren Phasen steigen institutionelle VCs mit Ticketgrößen von bis zu fünf Millionen Euro ein. Erfolgreiche Exits wie der Verkauf von yfood an Nestlé (2023) zeigen: Der Markt ist in Bewegung, aber selektiv.

Functional Food als Innovationsmotor – aber nicht der einzige

Functional Food ist längst mehr als ein Trend: Es ist ein wachsendes Segment mit wissenschaftlicher Fundierung. Produkte wie funktionale Riegel, Drinks oder Functional Coffee verbinden Geschmack mit gesundheitlichem Mehrwert. Besonders gefragt sind derzeit Inhaltsstoffe wie Adaptogene, Pro- und Präbiotika, pflanzliche Proteine und weitere Mikronährstoffe.

Zugleich gewinnen auch alternative Proteinquellen (Pilze, Algen, Fermentation), klimapositive Lebensmittel und Zero-­Waste-Konzepte an Bedeutung. Konsument*innen wollen Ernährung, die nachhaltig und leistungsfördernd ist.

Worauf Investor*innen achten – und was sie abschreckt

Aus Sicht eines/einer Investor*in zählen nicht nur Produkt­idee und Branding. Entscheidender ist:

  • Ist das Team umsetzungsstark, resilient, multidisziplinär?
  • Gibt es Traktion (z.B. Verkaufszahlen, Feedback, D2C-Erfolge)?
  • Wie realistisch ist der Finanzplan? Sind Margen und Logistik durchdacht?
  • Ist das Produkt skalierbar – auch international?

Abschreckend wirken hingegen: überschätzte Umsatzpro­gnosen, fehlende Markteinblicke, instabile Lieferketten oder reine Marketingblasen ohne echte Substanz.

Es ist unschwer zu erkennen: Wer im Food-Bereich gründen will, braucht mehr als eine gute Idee. Der deutsche Markt ist selektiv, komplex und durch hohe Einstiegshürden geprägt. Gleichzeitig ist er enorm spannend für alle, die bereit sind, langfristig zu denken, regulatorisch sauber zu arbeiten und echten Mehrwert zu schaffen.

Food-Start-ups, die ihre Zielgruppe kennen, finanziell solide aufgestellt sind und wissenschaftlich fundierte Produkte entwickeln, haben reale Chancen auf Marktdurchdringung – besonders, wenn sie es schaffen, Handelspartner*innen und Konsument*innen gleichermaßen zu überzeugen.

Investor*innen sind bereit, in solche Konzepte zu investieren, aber sie erwarten mehr als Visionen: Sie erwarten belastbare, integrierte Geschäftsmodelle mit echtem Impact.

Internationaler Vergleich: Was Food-Start-ups in den USA anders machen

Die USA gelten als Vorreiter für Food-Innovation. Der Markt ist schneller, risikofreudiger und deutlich kapitalintensiver. Allein im Jahr 2023 flossen in den USA rund 30 Milliarden US-Dollar Wagniskapital in FoodTech und AgriFood-Start-ups – ein Vielfaches im Vergleich zu Deutschland. Start-ups wie Beyond Meat, Impossible Foods oder Perfect Day konnten in kurzer Zeit hunderte Millionen Dollar einsammeln, skalieren und international expandieren. Die wesentlichen Unterschiede zur deutschen Szene sind:

  • Zugang zu Kapital: Amerikanische Gründer*innen profitieren von einer ausgeprägten Investor*innenlandschaft mit spezialisierten VCs, Family Offices und Corporate Funds. In Deutschland dominiert oft konservative Zurückhaltung.
  • Marktzugang: Der US-Markt ist dezentraler organisiert. Start-ups können regional Fuß fassen und wachsen, ohne gleich auf landesweite Listungen angewiesen zu sein.
  • Regulatorik: Die U.S. Food and Drug Administration (FDA) ist in vielen Bereichen offener gegenüber neuen Inhaltsstoffen und Health Claims – das ermöglicht schnellere Markteinführungen.
  • Kultur & Narrative: Amerikanische Konsument*innen sind innovationsfreudiger. Sie schätzen Storytelling, Vision und Purpose deutlich mehr als europäische Kund*innen.

Das bedeutet nicht, dass der US-Markt einfacher ist. Er ist aber zugänglicher für disruptive Ideen, insbesondere wenn sie skalierbar und investor*innentauglich aufgesetzt sind.

Operative Herausforderungen: vom Prototyp zur Produktion

Die operative Skalierung ist einer der größten Stolpersteine für Food-Start-ups. Eine Rezeptur im Labormaßstab oder im Handwerk zu entwickeln, ist vergleichsweise einfach. Sie jedoch für den industriellen Maßstab zu adaptieren, bringt komplexe Fragestellungen mit sich:

  • Wo finde ich einen Co-Packer mit Kapazitäten für Kleinserien?
  • Wie skaliert mein Produkt ohne Qualitätsverlust?
  • Wie optimiere ich Haltbarkeit ohne künstliche Zusätze?
  • Welche Verpackung schützt das Produkt, erfüllt die Nachhaltigkeitsansprüche und passt zu den Preisvorgaben des Handels?

In Deutschland ist die Infrastruktur für Food-Start-ups im Vergleich zu den USA oder den Niederlanden unterentwickelt. Während es in den USA Inkubatoren mit angeschlossenen Produktionsstätten (z.B. The Hatchery in Chicago oder Pilotworks in New York) gibt, fehlt es hierzulande oft an bezahl­baren, flexiblen Produktionslösungen.

Gerade nachhaltige Verpackungen stellen viele Gründer*­innen vor Probleme: Biologisch abbaubare Alternativen sind teuer, nicht immer kompatibel mit Logistikprozessen und oft nicht lagerstabil genug. Ein Spagat, der Investitionen und viel Know-how erfordert.

Erfolgsfaktor Vertrieb: Wie Produkte wirklich in den Handel kommen

Viele unterschätzen den Aufwand, der hinter einem erfolgreichen Listungsgespräch steht. Händler*innen erwarten nicht nur ein gutes Produkt – sie wollen einen Business Case:

  • Wie hoch ist die Spanne für den Handel?
  • Wie ist die Wiederkaufsquote?
  • Wie sieht das Launch-Marketing aus?
  • Gibt es POS-Materialien oder begleitende Werbekampagnen?

Ein Listungsgespräch ist kein Pitch – es ist ein Verhandlungstermin auf Basis knallharter Zahlen. Ohne überzeugende Umsatzplanung, Distributionserfahrung und schnelle Liefer­- fähigkeit hat ein Start-up kaum Chancen auf eine langfristige Platzierung im Regal. Viele Gründer*innen lernen das schmerzhaft erst nach dem Launch.

Zukunftstechnologien im Food-Bereich

Die Food-Branche steht am Beginn einer technologischen Revolution. Neue Verfahren wie Präzisionsfermentation, Zellkultivierung, 3D-Food-Printing oder molekulare Funktionalisierung eröffnen völlig neue Produktkategorien. Beispiele sind:

  • Perfect Day (USA) stellt Milchprotein via Mikroorganismen her – völlig ohne Kuh.
  • Formo (Deutschland) produziert Käseproteine durch Fermentation.
  • Revo Foods (Österreich) bringt 3D-gedruckten Fisch auf pflanzlicher Basis in die Gastronomie und Handel.

Diese Technologien sind kapitalintensiv, regulatorisch komplex, aber langfristig zukunftsweisend. Wer heute die Brücke zwischen Wissenschaft, Verbraucher*innenbedürfnis und industrieller Machbarkeit schlägt, wird zu den Innova­tionsführer*innen von morgen zählen.

Neben dem klassischen Lebensmitteleinzelhandel gewinnen alternative Vertriebskanäle zunehmend an Bedeutung. Insbesondere spezialisierte Bio- und Reformhäuser wie Alnatura, Denns oder basic bieten innovativen Start-ups einen niedrigschwelligen Einstieg, da sie auf trendaffine Sortimente, nachhaltige Werte und kleinere Produzent*innen setzen. Hier zählen Authentizität, Zertifizierungen und persönliche Beziehungen mehr als reine Umsatzversprechen.

Auch der Onlinehandel wächst rasant: Der Anteil von E-Commerce im deutschen Lebensmitteleinzelhandel liegt zwar erst bei etwa drei bis vier Prozent, doch Plattformen wie Amazon Fresh, Picnic, Knuspr oder Getir bieten zunehmend Raum für neue Marken. Gerade Quick-Commerce-Anbietende ermöglichen kurzfristige Testmärkte und agile Vertriebspiloten in urbanen Zielgruppen.

Der Blick in die USA zeigt, was in Europa bevorsteht: Dort erzielt TikTok bereits über seinen eigenen TikTok Shop mehr als 20 Milliarden US-Dollar Umsatz – Tendenz stark steigend. Immer mehr Food-Start-ups nutzen die Plattform direkt als Verkaufs- und Marketingkanal. Es ist nur eine Frage der Zeit, bis ähnliche Social-Commerce-Strukturen auch in Europa an Relevanz gewinnen – sei es über TikTok, Instagram oder neue, native D2C-Plattformen.

Weitere Trendfelder, die aktuell in den Fokus rücken, sind unter anderem:

  • Regeneratives Essen: Lebensmittel, die nicht nur neutral, sondern positiv auf Umwelt und Biodiversität wirken. Beispiele: Produkte mit Zutaten aus regenerativer Landwirtschaft oder CO-bindende Algen.
  • Blutzuckerfreundliche Ernährung: Start-ups wie Levels (USA) oder NEOH (Österreich) zeigen, wie personalisierte Ernährung über Glukose-Monitoring neue Märkte erschließen kann.
  • „Food as Medicine“: Produkte, die gezielt auf chronische Beschwerden oder Prävention ausgelegt sind – beispielsweise bei Menstruationsbeschwerden, Wechseljahren oder Verdauungsstörungen.
  • Zero-Waste-Produkte: Verwertung von Nebenströmen (z.B. aus Brauereien oder Obstpressen) zur Herstellung von Lebensmitteln mit Nachhaltigkeitsanspruch.
  • Biohacking-Produkte: hochfunktionale Lebensmittel für kognitive Leistung, Schlaf, Erholung oder hormonelle Balance wie zum Beispiel der Marke Moments – by Biogena.

Die Zukunft von Food liegt in der Synthese aus Wissenschaft, Individualisierung und Nachhaltigkeit. Start-ups, die diese Megatrends frühzeitig besetzen, positionieren sich als Pioniere für eine neue Esskultur. Besonders wichtig in der Investor*innenansprache sind:

  • Fundierte Zahlenkenntnis: Gründer*innen sollten Unit Economics, Break-Even-Szenarien und Roherträge detailliert erklären können. Vage Aussagen über Marktpotenzial reichen nicht – es braucht belastbare Szenarien.
  • Proof of Concept: Idealerweise liegt bereits ein MVP (Minimum Viable Product) mit echter Kund*innenvalidierung vor. Pilotprojekte mit Handelspartner*innen oder Online-­Abverkäufe liefern harte Daten.
  • Storytelling mit Substanz: Purpose ist gut – aber er muss betriebswirtschaftlich verankert sein. Was motiviert das Team? Wo liegt der USP? Wie stark ist der Wettbewerb?
  • Team-Komplementarität: Ein starkes Gründer*innen-Team vereint Produkt- und Marktwissen, betriebswirtschaft­liches Denken und Leadership-Kompetenz.
  • Exit-Szenario: Investor*innen wollen eine Perspektive: Wird es ein strategischer Verkauf, ein Buy- & Build-Modell oder ein langfristiger Wachstums-Case?

Wer Investor*innen mit klarer Struktur, realistischen Annahmen und ehrlicher Kommunikation begegnet, hat bessere Chancen auf Kapital – inbesondere in einem Markt, der aktuell selektiver denn je agiert. Genau hier liegt die Kernkompetenz von Food-Start-up-Helfer*innen wie der Alimentastic Food Innovation GmbH, die nicht nur in innovative Unternehmen investiert, sondern ihnen aktiv dabei hilft, die oben genannte operative Komplexität zu überwinden und den Time to Market signifikant zu verkürzen – von der Produktidee bis hin zur Umsetzung im Handel.

Fazit

Der deutsche Food-Start-up-Markt ist herausfordernd, aber voller Chancen. Wer heute erfolgreich gründen will, braucht nicht nur eine starke Produktidee, sondern ein tiefes Verständnis für Produktion, Vertrieb, Kapitalstruktur und Markenaufbau. Functional Food, nachhaltige Innovationen und technologiegetriebene Konzepte bieten enorme Wachstumsmöglichkeiten – vorausgesetzt, sie werden professionell umgesetzt und skalierbar gedacht.

Der Autor Laurenz Hoffmann ist CEO & Shareholder der Alimentastic Food Innovation GmbH und bringt langjährige Erfahrung aus dem Lebensmitteleinzelhandel mit.

„Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing“

Mit planqc verfolgt Dr. Alexander Glätzle die Mission, hochskalierbare Quantencomputer für wirtschaftliche Anwendungen zu bauen. Warum das Unternehmen dabei auf Standorte wie München und Innsbruck setzt und welche Rolle Österreichs Talentpool spielt, verrät er im Interview.

Dr. Alexander Glätzle ist Quantenphysiker und Mitgründer von planqc. Er studierte und promovierte an der Universität Innsbruck, forschte an renommierten Instituten wie Oxford, Harvard sowie in Singapur und war als Unternehmensberater tätig. 2022 gründete er planqc als Ausgründung aus dem Max-Planck-Institut in München.

Herr Dr. Glätzle, wie entstand die Unternehmensidee und welche Meilensteine haben Sie mit planqc bisher erreicht?

Die Idee zu planqc ist bereits während meines Studiums an der Universität Innsbruck entstanden. Dort habe ich intensiv im Bereich Quantentechnologie geforscht und das enorme Potenzial erkannt, aus diesen Erkenntnissen ein Start-up zu gründen. Bis zur Gründung hat es allerdings noch einige Jahre gedauert – nicht zuletzt, weil die technologische Entwicklung im Labor ebenfalls voranschreiten musste. 2022 sind wir dann als Ausgründung aus dem Max-Planck-Institut offiziell gestartet. Zu den wichtigsten Meilensteinen zählen zwei große öffentlich geförderte Projekte: Für das Deutsche Zentrum für Luft- und Raumfahrt bauen wir einen Quantencomputer mit einem Volumen von 30 Mio. EUR, ein weiteres Projekt mit dem Leibniz-Rechenzentrum umfasst 20 Mio. EUR, beide mit Abschluss bis Ende 2026 bzw. 2027. Dann werden an diesen beiden Standorten voll funktionsfähige Quantencomputer von planqc installiert sein.

Sie haben bereits Venture Capital mit an Bord. Wer zählt zu Ihren Investoren?

Gestartet sind wir 2022 mit einer Seed-Runde, an der unter anderem UVC Partners, Speedinvest und Apex Ventures beteiligt waren – also bereits starke Partner auch aus Österreich. Diese Basis konnten wir in der Series-A im letzten Jahr weiter ausbauen. Die CATRON Holding, ein Wiener Family Office, ist als Lead-Investor eingestiegen. Dazu kamen weitere Partner wie der DeepTech & Climate Fonds sowie Bayern Kapital. Besonders erfreulich ist, dass auch unsere Bestandsinvestoren erneut signifikant investiert haben. Damit verfügen wir über eine starke, rein mitteleuropäische, deutsch-österreichische Investorenbasis – was in unserem Sektor tatsächlich selten ist.

Ihr Headquarter befindet sich in der Nähe von München. Was hat Sie dazu bewegt, zusätzlich einen Standort in Innsbruck zu eröffnen?

Ursprünglich haben wir planqc in München gegründet – als Ausgründung aus dem Max-Planck-Institut. Doch bereits innerhalb eines Jahres haben wir ein zweites Büro in Innsbruck eröffnet. Der Grund liegt auf der Hand: Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing. Mit renommierten Instituten wie dem Institut für Quantenoptik und Quanteninformation (IQOQI) und Persönlichkeiten wie Peter Zoller und Rainer Blatt gibt es dort eine kritische Masse an international anerkannten Wissenschaftlern. Zudem ist es in der Praxis oft schwierig, hochqualifizierte Talente aus der Region nach München zu bringen. Deshalb haben wir entschieden, ihnen vor Ort ein attraktives Arbeitsumfeld zu bieten – mit einem eigenen Standort in Innsbruck.

Welche Vorteile bietet der Standort Österreich speziell für Unternehmen im Bereich Quantencomputing?

Österreich hat eine lange und starke Tradition in der Quantenphysik. Universitäten wie Innsbruck und Wien, das IQOQI und eine ganze Generation exzellenter Wissenschaftler prägen diese Landschaft. Viele bahnbrechende theoretische und experimentelle Arbeiten wurden hier in den vergangenen Jahren geleistet. Gerade für junge Start-ups bietet das Land enorme Vorteile: Der Talentpool ist außergewöhnlich – mit hervorragend ausgebildeten, dynamischen Fachkräften. Darüber hinaus ist die Nähe zu sogenannten „Industry First Movern“ gegeben, was den Standort besonders spannend macht. Und nicht zuletzt hat Österreich eine historische Verbindung zur Physik – Namen wie Schrödinger, Pauli oder Hess stehen sinnbildlich für diese wissenschaftliche Tiefe.

Welche Unterstützung erhielten Sie bei der Ansiedlung durch die Austrian Business Agency?

Die Austrian Business Agency sowie die Standortagentur Tirol haben uns außerordentlich engagiert unterstützt – sei es bei der Suche nach Büroflächen, bei der Eröffnung des ersten Bankkontos oder in bürokratischen Fragen. Sie standen uns nicht nur beratend zur Seite, sondern haben uns tatkräftig geholfen, Hürden aus dem Weg zu räumen. Genau so stelle ich mir die Zusammenarbeit mit einer lokalen Agentur vor: nah dran, lösungsorientiert und mit exzellentem Netzwerk. Wir hatten wirklich großes Glück mit der Unterstützung vor Ort.

Sie selbst sind in Österreich geboren, haben in Innsbruck promoviert und weltweit Forschungsaufenthalte absolviert – bevor Sie als Unternehmensberater und Gründer nach München gingen. Mit welchen Qualitäten punktet Österreich allgemein, auch als Arbeits- und Wohnort?

Ich habe viele Jahre im Ausland gelebt und gearbeitet – in Oxford, Singapur und Deutschland. Was Innsbruck und Tirol für mich besonders macht, ist die Kombination aus wissenschaftlicher Exzellenz und hoher Lebensqualität. Die Stadt liegt inmitten der Alpen, bietet eine hervorragende Infrastruktur und ein ausgewogenes Verhältnis zwischen Studierenden und Einwohnern. Das schafft ein inspirierendes Umfeld – zum Leben, Forschen und Arbeiten gleichermaßen.

Dr. Alexander Glätzle, vielen Dank für das Gespräch.

Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin

Was sollten Eigentümer in Bezug auf Gewerbeimmobilien beachten?

Entdecken Sie wichtige Tipps für Gewerbeimmobilien-Eigentümer. Infos und wichtige Details.

Gewerbeimmobilien stellen eine wichtige Anlageklasse dar, die sowohl attraktive Renditen als auch besondere Herausforderungen mit sich bringt. Der deutsche Gewerbeimmobilienmarkt erlebt derzeit nicht nur einen zyklischen Abschwung, sondern einen dauerhaften strukturellen Wandel durch die Zinswende. Diese Entwicklung verändert die Rahmenbedingungen für Eigentümer grundlegend und erfordert eine Anpassung der Investitionsstrategien.

Neben den klassischen Überlegungen zu Standort, Mieterstruktur und Rendite gewinnen neue Aspekte wie Nachhaltigkeit, Energieeffizienz und regulatorische Anforderungen zunehmend an Bedeutung. Eine fundierte Kenntnis aller relevanten Faktoren ist daher essentiell für erfolgreiche Gewerbeimmobilien-Investments. Die folgenden Abschnitte liefern eine praktische Übersicht.

Frühzeitig Verpflichtungen rund um das Thema Gebäude prüfen

Neben den klassischen Überlegungen zu Standort, Mieterstruktur und Rendite gewinnen auch technische und infrastrukturelle Aspekte zunehmend an Bedeutung. Insbesondere Kanalservicearbeiten, wie die Wartung und Instandhaltung der unterirdischen Versorgungsnetze, spielen eine wesentliche Rolle bei der Sicherstellung der langfristigen Werthaltigkeit von Gewerbeimmobilien.

Unter anderem liefert das Kanalservice Magazin hierzu wertvolle Informationen rund um Anbieter und Co. Regelmäßige Inspektionen und Reparaturen von Abwasser- und Entwässerungssystemen sind nicht nur aus rechtlichen und sicherheitstechnischen Gründen wichtig, sondern auch für die Betriebskosten und die Nutzungseffizienz einer Immobilie entscheidend.

Eigentümer sollten sich daher frühzeitig mit den Anforderungen an den Kanalservice auseinandersetzen und sicherstellen, dass diese regelmäßig und vorausschauend durchgeführt werden, um teure Notfalleinsätze und mögliche Wertverluste zu vermeiden.

Steuerliche Vorteile optimal nutzen: Abschreibungen und Umsatzsteuer

Gewerbeimmobilien bieten gegenüber Wohnimmobilien deutliche steuerliche Vorteile, die Eigentümer unbedingt nutzen sollten. Der wichtigste Vorteil liegt in der höheren Abschreibungsrate von 3% jährlich statt der üblichen 2% bei Wohnimmobilien. Diese zusätzliche Abschreibung reduziert die Steuerlast erheblich und verbessert die Rendite nachhaltig.

Ein weiterer bedeutender Vorteil ist die Möglichkeit der 19% Umsatzsteuer-Erstattung beim Erwerb der Immobilie. Voraussetzung hierfür ist die ordnungsgemäße Anmeldung als Unternehmer und die entsprechende Verwendung der Immobilie.

Diese Steuervorteile können die Wirtschaftlichkeit einer Gewerbeimmobilie maßgeblich beeinflussen und sollten bereits in der Planungsphase berücksichtigt werden. Eine professionelle steuerliche Beratung ist dabei unerlässlich. Besonders praktisch ist es in diesem Zusammenhang natürlich auch, dass Studien zufolge aktuell Gründungen in verschiedenen deutschen Städten generell vergleichsweise günstig sind.

Neue Heizungspflicht: Vorgaben rund um erneuerbare Energien seit 2024

Seit 2024 müssen neu installierte Heizungen zu 65% mit erneuerbaren Energien betrieben werden – eine Regelung, die erhebliche Auswirkungen auf Gewerbeimmobilien hat. Diese Vorgabe betrifft sowohl Neubauten als auch den Austausch bestehender Heizungsanlagen und erfordert eine frühzeitige Planung.

Mögliche Lösungen umfassen:

  • Wärmepumpen
  • Fernwärme
  • Biomasseheizungen
  • Hybrid-Systeme

Die Investitionskosten sind oft höher als bei konventionellen Systemen, jedoch können staatliche Förderungen einen Teil der Mehrkosten abfedern.

Langfristig ergeben sich durch niedrigere Betriebskosten und steigende CO2-Preise wirtschaftliche Vorteile. Eigentümer sollten rechtzeitig prüfen, welche Technologie für ihre Immobilie am besten geeignet ist, und entsprechende Budgets einplanen. Eine professionelle Energieberatung hilft bei der optimalen Lösung.

Photovoltaik-Potenziale: Chancen und rechtliche Hürden

Die geplante Verdreifachung des Photovoltaik-Ausbaus bis 2030 eröffnet Gewerbeimmobilien-Eigentümern interessante Chancen zur zusätzlichen Wertschöpfung. Gewerbedächer bieten oft ideale Voraussetzungen für Solaranlagen: große, unverschattete Flächen und hoher Eigenverbrauch während der Tagesstunden.

Die Eigenverbrauchsquote kann bei Gewerbeimmobilien deutlich höher liegen als bei Wohngebäuden, was die Wirtschaftlichkeit verbessert. Allerdings bestehen auch rechtliche Hürden, insbesondere bei der Direktvermarktung von Strom an Mieter. Das Mieterstromgesetz und energierechtliche Bestimmungen schaffen komplexe Rahmenbedingungen.

Trotz dieser Herausforderungen können Photovoltaik-Anlagen die Attraktivität einer Gewerbeimmobilie steigern und zusätzliche Einnahmen generieren. Eine sorgfältige Prüfung der rechtlichen und wirtschaftlichen Aspekte ist dabei unerlässlich. Der Faktor „Nachhaltigkeit“ spielt generell aber auch in vielerlei Hinsicht eine wichtige Rolle. So entscheiden sich nicht nur im privaten, sondern auch im gewerblichen Bereich viele dafür, nicht direkt neu zu kaufen, sondern zu reparieren. Ideal für alle, die den ökologischen Fußabdruck ihres Betriebes reduzieren möchten.

Erfolgreich investieren: Wichtige Erkenntnisse für Gewerbeimmobilien-Eigentümer

Erfolgreiche Gewerbeimmobilien-Investments erfordern heute mehr denn je eine ganzheitliche Betrachtung aller relevanten Faktoren. Die steuerlichen Vorteile mit 3% Abschreibung und Umsatzsteuer-Erstattung bleiben wichtige Argumente für diese Anlageklasse.

Gleichzeitig steigen die Anforderungen durch neue Regelungen wie die Heizungspflicht und ESG-Kriterien erheblich. Der strukturelle Wandel des Marktes erfordert angepasste Strategien und eine sorgfältige Auswahl der Immobilien.

Chancen ergeben sich insbesondere in zukunftsorientierten Segmenten wie Logistik und bei der Integration erneuerbarer Energien. Eine professionelle Beratung und kontinuierliche Marktbeobachtung sind unerlässlich. Das Kanalservice Magazin bietet hierfür wertvolle Unterstützung mit fundierten Informationen und praktischen Tipps für alle Aspekte des Gewerbeimmobilien-Investments.

5 Tipps für GPT-Sichtbarkeit im Netz

Warum klassisches SEO allein nicht mehr ausreicht und wie Unternehmen für die KI-Antworten der GPT-Modelle sichtbar werden.

Die Spielregeln der digitalen Sichtbarkeit werden gerade neu geschrieben – und die Unternehmen müssen sich neu aufstellen. Denn während viele Unternehmen ihre Strategien noch immer ausschließlich auf Google-Rankings und SEO-Kriterien ausrichten, verlagert sich die digitale Aufmerksamkeit längst in Richtung KI: Sprachmodelle wie ChatGPT, Claude oder Gemini ersetzen zunehmend die klassische Suche. Sie liefern keine Trefferlisten mehr, sondern direkte, aufbereitete Antworten – oft mit konkreten Empfehlungen und Verlinkungen. Für Marken, Produkte und Unternehmen wird es damit entscheidend, in diesen zusammengefassten Antworten stattzufinden. Das Stichwort hierfür ist technisches SEO für KI-Rankings.

Suchmaschinen waren gestern das führende Element in der Sortierung von Wissen im Netz und vor allem das Google-Ranking war entscheidend für die Sichtbarkeit von Informationen und Seiten. In Zukunft entscheiden dagegen Sprachmodelle darüber, welche Inhalte gesehen, zitiert und empfohlen werden. Und wer in diesen Systemen nicht genannt wird, verliert den direkten Draht zur Zielgruppe.

Diesen Paradigmenwechsel vom Google-Ranking zur Antwortlogik hat die SMAWAX, die auf Strategieberatung spezialisierte Agentur der Smarketer Group, erstmals systematisch im Rahmen eines Whitepapers analysiert (s. Link am Ende des Beitrags). Die Expert*innen erklären dabei detailliert, wie GPT-Modelle Inhalte auswählen – und welche Inhalte von den Systemen überhaupt referenziert werden dürfen. Die zentrale Erkenntnis: Suchmaschinenoptimierung nach alten Regeln greift zu kurz, ist aber weiterhin die Sichtbarkeitsgrundlage. Denn Sprachmodelle wie ChatGPT denken nicht in Keywords und Rankings, sondern in semantischen Relevanzräumen, Entitätenbeziehungen und struktureller Klarheit.

Inhalte müssen modular und semantisch präzise sein – doch das reicht nicht

Es geht nicht mehr um Top-Rankings – es geht darum, die richtige Antwort zu sein. Wir müssen SEO neu denken – als Schnittstelle zwischen Struktur, Relevanz und maschinellem Verstehen. Inhalte müssen dazu maschinenlesbar, modular aufgebaut und semantisch präzise sein. Nur dann haben Unternehmen eine Chance, in den Empfehlungslogiken von Claude, GPT & Co. aufzutauchen.

Besonders überraschend ist dabei aber, dass viele Unternehmen in GPT-Antworten zwar durchaus latent präsent, aber nicht sichtbar sind. Der Grund hierfür sind unscharfe Entitäten, fehlende „About“-Seiten, keine Verankerung in externen Quellen wie Wikidata, Trustpilot oder LinkedIn. Die Folgen wirken sich negativ auf die Marken aus und sorgen für Fehlinformationen: KI-Modelle verwechseln Marken, halluzinieren Funktionen oder verschweigen relevante Angebote. Halluzinationen sind in Wahrheit ein strategischer Hinweis auf Unsichtbarkeit. Wenn GPT ein Produkt falsch beschreibt oder dich mit einem Mitbewerber verwechselt, zeigt das: Deine Inhalte sind zwar irgendwo im Modell – aber nicht stabil genug verankert, um korrekt genannt zu werden.

Fünf konkrete Hebel für bessere GPT-Sichtbarkeit

Diese praxisnahe Handlungsempfehlungen können Unternehmen sofort umsetzen können – unabhängig davon, ob sie im B2B- oder B2C-Bereich aktiv sind.

1. Entitäten definieren: Jede Marke braucht heute eine kanonische „About“-Seite, ergänzt um ein Wikidata-Profil, semantische Markups und gleiche Namensverwendungen auf Plattformen wie LinkedIn oder Handelsregister.

2. Aktualität signalisieren: GPT-Modelle bevorzugen Inhalte mit klaren Update-Daten (z.B. dateModified). Ohne erkennbaren Pflegezustand gelten Inhalte als veraltet – und werden ausgefiltert.

3. Bing wird zum Gateway: Weil GPT seine Websuche auf Bing stützt, ist dessen Indexierung entscheidend. Wer dort nicht sauber auffindbar ist, existiert in GPT-Antworten nicht.

4. Content chunkbar machen: Inhalte sollten nicht mehr aus langen Fließtexten bestehen, sondern in modularen Blöcken mit H2-Strukturen, Listen und Zwischenfazits aufgebaut sein.

5. Externe Signale einbinden: Erwähnungen auf Trustpilot, Reddit oder in der Fachpresse stärken die semantische Autorität – und erhöhen die Chance, von Sprachmodellen zitiert zu werden.

Fazit

Die neue Sichtbarkeit entsteht durch das, was das Modell nicht selbst erzeugen kann – sie entsteht also nicht über Rankings, sondern über Relevanzräume. Wer auf Standard-Content setzt, wird paraphrasiert oder übergangen. Wer dagegen einzigartigen, strukturierten und technisch klaren Content liefert, wird empfohlen.

Zum Weiterlesen: Das Whitepaper steht zum kostenlosen Download bereit unter www.smawax.com/whitepaper-ki-sichtbarkeit