Aktuelle Events
InsurTech - die Evolution einer Branche
Digitale Technologien verändern zunehmend auch das Prinzip Versicherung. Produkte werden zukünftig in der Lage sein, Risikosituationen präzise zu analysieren und so Schäden zu vermeiden, noch bevor sie auftreten. Diese Entwicklungen bringen große Chancen und Herausforderungen auch für InsurTech-Gründer mit sich.
Ein sonniger Februartag im Jahr 2030. Sophia könnte glücklich sein: Der Frühling kündigt sich bereits in ersten Frühblühern an, die kurzen, grauen Wintertage scheinen passé. Doch Sophia ist unglücklich. Vor einigen Tagen ist überraschend ihr Großvater gestorben und keine Sonne und keine Blumen können sie über ihren Verlust hinwegtrösten.
Solche Schicksalsschläge gehören zum Menschsein dazu, diese Erfahrung muss nun auch Sophia machen. Doch dann passiert etwas, das frühere Generationen nicht kannten; etwas, das viele Menschen in früheren Zeiten mit Angst erfüllt hätte. Sophia ruft ihren Großvater an – und mit seiner vertrauten Stimme antwortet er ihr am anderen Ende und für eine Weile ist es, als wäre der alte Mann nicht tot, sondern nur verreist.
Natürlich ist es nicht der Großvater, der ihr antwortet. Dieser aber hat in den letzten Monaten seines Lebens eine künstliche Intelligenz (KI) trainiert, die jetzt in der Lage ist, Stimme, Wissensstand und selbst den Humor des Verstorbenen täuschend echt zu simulieren.
Diese Szene klingt nach Science Fiction, sie könnte direkt aus der vielgelobten amerikanischen Serie Black Mirror stammen. Doch wenn es nach Sven Gábor Jànszky geht, Zukunftsforscher und Leiter des 2b AHEAD ThinkTanks, handelt es sich um einen realistischen Blick in die technologische Entwicklung der nächsten zehn Jahre. Und dabei könnten Versicherungen eine ganz große Rolle spielen. Aber wie?
Drei Säulen der Zukunftsforschung
Um die Bedeutung zu verstehen, die KI einmal haben wird, kann man sich laut Jànszky an drei Säulen orientieren. Deren erste ist die exponentielle technologische Entwicklung. So werden die enormen Fortschritte in den letzten und in den kommenden Jahren mit hoher Wahrscheinlichkeit dafür sorgen, dass entsprechend geschulte Software im Jahre 2030 in der Lage sein wird, präzisere Risikoprofile zu erstellen, als dies den menschlichen Kollegen möglich ist.
Hierfür verantwortlich sind die beiden weiteren Säulen, nämlich die Prädiktion und die Adaption. Bei der Prädiktion geht es um die computergestützte Vorhersage der nahen Zukunft. Prognostiziert werden kann praktisch alles, wofür ein ausreichender Datenpool zur Verfügung steht. Durch die ausgefeilte Sensorik, die in vielen technischen Geräten verbaut ist, werden solche Daten in immer größerem Ausmaß produziert. Man denke an das eigene Smartphone: Hier lesen nicht nur Kameralinse und GPS Daten aus ihrer Umwelt, hinzu kommen Sensoren für Helligkeit, Neigung, Beschleunigung, ein Thermometer und ein Kompass, um nur einige zu nennen.
Ihre wahre Bedeutung erhalten die Daten aber erst dann, wenn aus der Prognose die richtigen Folgerungen abgeleitet werden: Dies beschreibt die Adaption. Ein einfaches Beispiel ist der Verkehr. Aufgrund der in Echtzeit übermittelten Fahrzeugdaten können Prognosen über Verkehrssituationen in der nahen Zukunft getroffen werden. Der wesentliche Mehrwert der neuen Technologie besteht nun darin, die prognostizierten Daten zu nutzen, um auf deren Basis situative und individuelle Anpassungen vorzunehmen. Erkennt die Software, dass an einer bestimmten Stelle ein Stau entstehen wird, leitet sie einen Teil der Autofahrer auf eine alternative Route. Würde sie alle Autos umlenken, würde sie den Stau nur verlagern; adaptive Technologie ermöglicht es aber, genau den Anteil der Verkehrsteilnehmer umzulenken, der für eine bestmögliche Entspannung der Gesamtsituation sorgen wird. Eine Entscheidung, deren Komplexität für einen Menschen enorm wäre, für eine entsprechend trainierte KI aber eine einfache Wahrscheinlichkeitsrechnung darstellt.
Ein neues Nachdenken über Solidarität
Für die Versicherungsbranche haben diese Möglichkeiten eine dramatische Bedeutung. Denn abhängig von den Situationen, in denen Menschen sich befinden, sind sie ganz unterschiedlichen Risiken ausgesetzt. Ein Versicherungsprodukt, das diese Risiken situativ und individuell einschätzen kann, unterscheidet sich fundamental von einer traditionellen Versicherung, die im Wesentlichen jene Schäden regulierte, die bereits eingetreten waren. Nun tritt eine ganz neue Möglichkeit auf den Plan: die Prävention. Kaum vorstellbar, welche Bedeutung ein Versicherungsprodukt hätte, das seine Kunden in brenzligen Situationen warnt und sogar Handlungsempfehlungen geben kann, wie man einer potenziellen Gefahr aus dem Weg geht.
Diese Entwicklung hat allerdings nicht nur positive Seiten. So warnen Datenschützer vor den Konsequenzen, die mit der übermäßigen Verwendung personenbezogener Daten einhergehen könnten. Für die Versicherungsbranche steht dabei auch ein bislang konstitutives Merkmal auf der Kippe: Denn der Solidaritätsgedanke der traditionellen Assekuranz spielt bei Versicherungslösungen, die auf Basis individueller Risikoprofile individuelle Tarifierungen errechnen, kaum noch eine Rolle. Wohlverhalten wird schon jetzt von einigen Versicherungsprodukten belohnt; dass im Gegenzug auch Fehlverhalten eines Tages von automatisierten Algorithmen sanktioniert werden könnte, scheint eine logische Weiterführung desselben Prinzips.
Dazu Daniel Domscheit-Berg, ehemaliger Sprecher der Whistleblower-Plattform WikiLeaks: „Wollen wir die Menschen so sehr vermessen in Zukunft, dass die einen sich keine Krankenkasse mehr leisten können und es für die anderen sehr billig wird, weil man sehr konform ist mit den Werten und Normen? Oder ist nicht die Errungenschaft eigentlich auch, dass es diese Art von Solidarität gibt in der Gesellschaft? Das ist eine der Fragen, über die man reden müsste.“
Eine ehrliche Diskussion über die Anwendung der neuen Technologien in der Versicherungswirtschaft muss sich daher auch damit auseinandersetzen, bis zu welchem Grad wir an unserem aktuellen Sozialsystem festhalten wollen oder wie alternative Lösungen aussehen könnten. Noch einmal Domscheit-Berg:
„Ich glaube, wenn wir solche Verhaltensnormen haben und man sofort sanktioniert wird, sobald man sich außerhalb bewegt, dann wird das eine sehr langweilige Gesellschaft, die auch an ihrer Vielfältigkeit verliert. Und das fände ich sehr schade, und ich glaube, das wäre auch sehr gefährlich.“
Kulturwandel ist notwendig
Dennoch ist Domscheit-Berg von den Potenzialen überzeugt, die digitale Datenverarbeitung für die Assekuranz ermöglicht. Es gebe ausreichend personenunabhängige Daten, durch die Mehrwerte generiert werden könnten, ohne die Individualität der Versicherten einzuschränken. Auch Andreas Klug, Vorsitzender des Arbeitskreises „Artificial Intelligence“ des Bitcom e.V., ist sich sicher: „Künstliche Intelligenz ist kein Hype, sondern eine Kerntechnologie der Digitalisierung.“ Die Versicherungsbranche, so Klug, sei bei diesem Thema bereits recht weit fortgeschritten, habe, „in Abgrenzung zu anderen Industrien, die Zeichen der Zeit erkannt.“
Das größte Hemmnis bei der Entwicklung sieht er in einem „Vakuum“ an Mitarbeitern mit dem notwendigen Know-how von der technischen und der operativen Seite von KI: „Ich bin persönlich davon überzeugt, wir werden keine Arbeitsplätze verlieren, im Gegenteil, wir werden einen Transfer von Arbeitsplätzen haben. Wir werden über die große Herausforderung sprechen müssen, wie wir alle mitnehmen, und wie wir Leute, die heute mehrheitlich für Aushilfstätigkeiten verantwortlich sind, vorbilden und weiterbilden.“
Dass in Zukunft präventiv einschreitende Versicherungsprodukte das Leben der Menschen begleiten werden, ist aus heutiger Sicht äußerst wahrscheinlich – wer aber diese Leistungen anbieten wird, kann noch nicht mit Sicherheit gesagt werden. Wenn die heutigen Versicherungsunternehmen diese neue Rolle übernehmen möchten, so Jànszky, muss zunächst ein umfangreicher Wandel von Denkmustern, Geschäftsmodellen und im Umgang mit Daten erfolgen. Die Konkurrenz stellen dabei weniger die anderen Versicherer, sondern eher branchenfremde Unternehmen dar, die im Rahmen ihrer Kompetenzen und Datenpools maßgeschneiderte Versicherungslösungen anbieten könnten.
Jànszkys hat für die Branche daher eine klare Botschaft: Die großen Unternehmen müssen für geschützte Räume sorgen, in denen ohne festgefahrene Strukturen und Altlasten über zukunftsfähige Produkte nachgedacht werden kann. Denn die zu bewältigende Aufgabe ist groß: Für die Assekuranz geht es nicht mehr vorrangig darum, alte Produktklassen zu digitalisieren, sondern ganz neue Leistungen zu erbringen, die genau in die Lebensrealität ihrer Kunden eingepasst sind.
Solche Räume existieren bereits. Ein Beispiel ist das insurHUB Innovation Lab, in dem sich mehrere Versicherungsunternehmen zusammengetan haben, um innovative Ansätze in interdisziplinären Teams zu entwickeln. Das Fundament für eine notwendige Evolution der Versicherungsbranche ist also gelegt. Ob der hierfür nötige Kulturwandel konsequent vollzogen wird oder nicht, das werden wir erst in Jahren sagen können. Doch die Chance ist heute real – und sie sollte genutzt werden.
Mehr zu dem Thema: Basis dieses Artikels sind Interviews mit Sven Gábor Jànszky, Daniel Domscheit-Berg und Andreas Klug, die auf der letzten InnoVario geführt wurden. Zum Vormerken: Die InnoVario 2019 findet am 19. und 20. November 2019 in Bonn statt. StartingUp ist Medienpartner des Events.
Sie möchten selbst ein Unternehmen gründen oder sich nebenberuflich selbständig machen? Nutzen Sie jetzt Gründerberater.de. Dort erhalten Sie kostenlos u.a.:
- Rechtsformen-Analyser zur Überprüfung Ihrer Entscheidung
- Step-by-Step Anleitung für Ihre Gründung
- Fördermittel-Sofort-Check passend zu Ihrem Vorhaben
Niedersachsens Labor der Zukunft ist digital
Zwei mit dem niedersächsischen DurchSTARTer-Preis 2025 ausgezeichnete Spin-offs aus Göttingen zeigen, wie hochkomplexe Forschung zu marktreifer Technologie wird – und dass Niedersachsen sich zu einem Knotenpunkt der Biomedizin entwickelt.
Die medizinische Diagnostik steht an einem Wendepunkt. Digitale wissenschaftliche Werkzeuge helfen beispielsweise dabei, Tumore besser und schneller zu erkennen sowie gezielter zu therapieren. Zwei mit dem niedersächsischen DurchSTARTer-Preis 2025 ausgezeichnete Spin-offs aus Göttingen, Histomography und GliTTher, zeigen, wie hochkomplexe Forschung zu marktreifer Technologie wird – und dass Niedersachsen sich zu einem Knotenpunkt der Biomedizin entwickelt.
Histomography digitalisiert komplette Pathologie-Proben zerstörungsfrei in 3D. Dazu nutzt das Laborsystem Röntgen-Phasenkontrast-Tomographie, eine Technologie, die feinste Strukturen sichtbar macht – ohne Gewebe zu färben oder zu schneiden. Die entstehenden 3D-Datensätze lassen sich direkt im Browser erkunden und auswerten. So werden kleinste Veränderungen und Tumore im Gewebe erkannt, die in 2D-Schnitten leicht übersehen werden. Histomography entwickelt dafür eine durchgängige Plattform: kompakter 3D-Scanner, Cloud-Infrastruktur und KI-gestützte Analysen greifen nahtlos ineinander. Langfristig soll die Technologie in Kliniken Routineuntersuchungen standardisieren – und die Diagnostik von der subjektiven Mikroskopie zu objektiven, datengetriebenen Entscheidungen führen.
revel8: Mit Human Firewalls gegen KI-Angriffe
Wie die revel8-Gründer Robert Seilbeck, Tom Müller und Julius Muth KI-gestützte Cyberattacken mithilfe „menschlicher Schutzschilde“ abwehren und Unternehmen zu mehr Cyberresilienz verhelfen.
Das Ingenieurbüro Arup wurde im vergangenen Jahr Opfer eines spektakulären Deepfake-Betrugs. Ein Mitarbeiter aus Hongkong betrat eine Videokonferenz mit vermeintlichen Mitgliedern des Managements – tatsächlich handelte es sich um täuschend echte KI-Imitationen der Führungskräfte, die eine scheinbar legitime, vertrauliche M&A-Transaktion diskutierten. Der arglose Mitarbeiter überwies den Betrügern 25 Millionen US-Dollar. „Der Fall ist ein typisches Beispiel für sogenanntes Social Engineering und eine neue Ära von Cyberangriffen“, sagt Julius Muth, Co-Founder und CEO von revel8 in Berlin.
Das 2024 gegründete Start-up betreibt eine Software-Plattform, um Menschen und damit auch Unternehmen gegen solche Bedrohungen zu schützen. „Kriminelle nutzen heute die neuesten KI-Technologien für konzertierte Angriffe“, so Julius. Aus frei verfügbaren Datenquellen identifizieren sie Schwachstellen und nutzen diese mit realistisch wirkenden Deepfake-Audios oder -Videos gnadenlos aus. Sie erzeugen damit eine Illusion von Authentizität, welche die klassischer Phishing-E-Mails bei Weitem übersteigt – und kein Unternehmen ist davor sicher.
Jede(r) Mitarbeitende ist eine potenzielle Schwachstelle
Mitunter können die Schäden noch höher ausfallen und Unternehmen aller Größen in Existenznot bringen. Am 31. August 2025 musste beispielsweise der Automobilhersteller Jaguar Land Rover nach einem Cyberangriff alle IT-Systeme herunterfahren. Die Produktion stand wochenlang still. Der Schaden beläuft sich bislang auf über zwei Milliarden Euro, das Unternehmen erhielt sogar staatliche Hilfe. Doch selbst das ist nur die Spitze des Eisbergs, denn laut Expert*innen waren von dem Angriff über 5000 Organisationen betroffen – wer hinter der Attacke steckt, ist nach wie vor unklar. Viele Unternehmen möchten solche Angriffe aus Imagegründen nicht offenlegen, die Dunkelziffer ist entsprechend hoch. Die Einfallstore für solche Attacken sind meistens die Mitarbeitenden. „Chief Information Security Officers (CISOs) betrachten bei der IT-Sicherheit typischerweise die Dimensionen Technologie, Prozesse und Menschen“, so Julius. „Der Mensch ist dabei von zentraler Bedeutung. Denn mit der richtigen Unterstützung können Mitarbeitende zum wichtigsten Resilienzfaktor im Unternehmen werden.“
Klassische E-Learning-Ansätze seien nicht geeignet, um Mitarbeitende angemessen für die Gefahren zu sensibilisieren und ihnen effektiv Kompetenzen im Umgang damit zu vermitteln. Standardisierte Phishing-E-Mails und konventionelle Trainingsformate können weder aktuelle Angriffsformen abbilden noch zuverlässig die nötigen Lerninhalte vermitteln. Hier setzt revel8 an und trainiert Mitarbeiter realitätsnah mit Replika tatsächlicher Angriffe, wie zum Beispiel Voice Phishing mit der Stimme eines bekannten Kollegen“, so Julius. Besonders die automatische Anreicherung mit öffentlich verfügbarem Kontext (OSINT) erhöhe die Relevanz und den Lerneffekt. So hilft revel8 Unternehmen dabei, die Widerstandsfähigkeit gegen Cyberbedrohungen zu stärken und darüber hinaus auch einschlägige Compliance-Anforderungen wie NIS2 und ISO 27001 zu erfüllen.
Individuelle Playlists mit neuesten Cyberattacken
„Wir setzen Menschen gezielt den aktuellen Angriffsmustern aus, sodass sie im Ernstfall richtig handeln können“, so Julius. Ein aktuell häufig zu beobachtender Angriff ist die Clickfix-Attacke. Dabei wird der/die Nutzer*in über eine täuschend echte Phishing-E-Mail auf eine gefälschte CAPTCHA-Seite gelotst. Sobald der/die Nutzer*in sich verifiziert, wird unbemerkt ein Schadcode in die Zwischenablage kopiert. Viele Ahnungslose fügen diesen Code später unbewusst zum Beispiel im Terminal ein und aktivieren damit den Angriff. Der/die Nutzer*in bemerkt den Schaden erst, wenn es schon zu spät ist.
Damit das nicht passiert, spielt revel8 zu Trainingszwecken genau solche Attacken aus. Tappt jemand die Falle, folgt sofort eine detaillierte Auswertung. Die Person erfährt, worauf sie hätte achten sollen, welche Hinweise es gab, und wie sich solche Vorfälle künftig vermeiden lassen. Da die Cyberkriminellen zunehmend sehr gezielt und hochgradig personalisiert angreifen, lassen sich auch die Trainingsinhalte bis ins Detail auf die User*innen zuschneiden. „Jeder Nutzer erhält von uns eine individuell auf seine Rolle zugeschnittene Playlist von Cyberattacken“, so Julius.
Praxisnahe Angriffssimulationen im Unternehmensalltag
Revel8 unterscheidet zwischen Nutzer*innen mit einem geringen Risiko und Hochrisikonutzer*innen, etwa im Management oder in der Finanzabteilung, und allgemein solchen Personen, die Zugang zu kritischen Daten haben. Julius beobachtet, dass die ohnehin stark gefährdeten Hochrisikonutzer*innen aktuell noch mehr ins Visier geraten. Ob SMS, WhatsApp, Teams oder LinkedIn – die Angreifenden orchestrieren ihre Attacken perfekt über mehrere Plattformen hinweg. „Zuerst ruft ein täuschend echter Stimmklon an, danach kommt die passende E-Mail“, sagt Julius. „Oder jemand schreibt dir auf LinkedIn, macht dir ein Jobangebot und schickt dir dann noch das Gehaltsangebot – da klickt man natürlich gern drauf.“
Um stets auf der Höhe der Zeit zu sein, kooperiert revel8 eng mit seinen Kund*innen. Das Training basiert auf echten Vorfällen aus deren Systemen. Jede erkannte Attacke wird kategorisiert, realistisch nachgebaut und gezielt ausgespielt. Trifft zum Beispiel eine Clickfix-Attacke Software Developer mit einem Mac in der Slowakei, fließt sie direkt in die Trainings-Playlist der betroffenen Zielgruppe ein. Das Ziel ist kontinuierliches Lernen, ohne zu überfordern. „Es ist wichtig, dass wir die Menschen nicht nerven“, erklärt Julius, „und wer gut reagiert, wird auch belohnt.“ Gamification-Elemente, wie zum Beispiel firmeninterne Rankings, halten das Training spielerisch und die Motivation hoch.
Keimzelle Celonis
Julius’ Karriere begann nach seinem Mathematikstudium in Darmstadt, bevor ihn sein Weg nach München zu Celonis führte. Das Unternehmen ist spezialisiert auf die Optimierung von Unternehmensprozessen und aktuell das wertvollste deutsche Start-up-Unicorn. Sein Job startete in Madrid, wo er zunächst ganz allein im Office saß. Doch das Team wuchs rasant, nach nur drei Jahren arbeiteten 500 Menschen am Standort. In dieser Zeit lernte er seine späteren Mitgründer kennen. Tom Müller ist gelernter Maschinenbauer, Robert Seilbeck war als Software-Engineer von Anfang an bei Celonis dabei. „Diese unglaubliche Dynamik, die wir in Madrid erlebt haben, hat uns motiviert, etwas eigenes aufzubauen“, erinnert sich Julius.
Markttests und Durchbruch mit Stihl
Bevor sich die Gründer auf Cybersecurity fokussierten, überprüften sie abends und an Wochenenden unterschiedliche Märkte auf ihr Potenzial. Jeden Monat testeten sie eine neue Branche mit jeweils 100 persönlichen Briefen. Die Rücklaufquote lag in der Regel bei ein bis zwei Prozent und bestand überwiegend aus Absagen. „Beim Thema Cybersicherheit hatten wir plötzlich zehn Rückmeldungen – und eine Firma lud uns direkt nach München ein“, so Julius. Am folgenden Wochenende entwickelte das Team eine vorläufige Produktversion und handelte drei Monate Zeit heraus, bis das Projekt starten sollte. Es war der inoffizielle Startschuss für revel8.
Im Februar 2024 bezog Julius die erste Bürofläche in Berlin, Tom folgte im Mai. Zu diesem Zeitpunkt hatte revel8 bereits erste zahlende Kund*innen. „Weil Kunden im Softwarebereich typischerweise jährlich und im Voraus zahlen, konnten wir erste Freelancer engagieren – wir selbst haben auf Gehalt verzichtet und von unserem Ersparten gelebt“, sagt Julius. Das Team testete Ansätze mit kleineren Unternehmen. Einige sicher geglaubte Kund*innen sprangen trotz mündlicher Zusage wieder ab, sodass eingeplante Umsätze plötzlich wegfielen. „Für ein Start-up ist sowas Gift“, so Julius, „und das war für uns eine echte Herausforderung.“ Der Durchbruch kam mit dem Unternehmen Stihl. Der damalige CISO war sofort begeistert und unterstützte das Team nach Kräften. In enger Zusammenarbeit mit dem Werkzeughersteller entstand das heutige Konzept, Mitarbeitende realitätsnah auf digitale Angriffsszenarien vorzubereiten. Im Oktober stieß Robert nach zehn Jahren bei Celonis fest zum revel8-Team dazu.
Sprung auf Enterprise-Level
Im September 2024 stellte revel8 den ersten Praktikanten ein. Die Kombination der Themen Cybersecurity und KI weckte auch das Interesse von Investor*innen. „Unsere Seed-Finanzierung kam nicht durch klassisches Fundraising zustande, sondern dank einer frühzeitigen Initiative von Merantix Capital, die unsere Vision verstanden und teilten“, so Julius. Anfang 2025 gewann revel8 die ersten Großkund*innen. Heute nutzen Unternehmen wie der FC Bayern, OBI und mehrere DAX-Konzerne die Plattform. Mitunter trainiert revel8 dabei zehntausende Mitarbeitende. „Dass wir unser Angebot innerhalb eines Jahres auf Enterprise-Level gebracht haben, ist für uns ein Riesenerfolg“, sagt Julius.
Einen wichtigen Beitrag dazu leisten rund 20 Profis aus dem Cybersecurity-Umfeld, darunter mehrere ehemalige CISOs, die als Business Angels mit an Bord sind. Ihre Expertise ermöglicht es unter anderem, neue Ideen und Ansätze schnell zu validieren. „Die meisten von ihnen sind nicht nur Sparringspartner, sondern auch finanziell investiert und profitieren so von unserem Wachstum“, erzählt Julius. Im September 2025 schloss revel8 die Seed-Finanzierungsrunde mit einem Gesamtvolumen von 5,7 Millionen Euro, angeführt vom Berliner VC Peak Capital. Zudem investierten u.a. Fortino Capital und weitere Business Angels, darunter der Fußballspieler Mario Götze und der CISO von Adidas, Michael Schrank.
Gesucht: Lernwillige Teamplayer
Heute beschäftigt revel8 knapp 30 Mitarbeitende. Bei der Weiterentwicklung des Teams setzen Julius und seine Mitgründer auf lernwillige Talente: „Wir suchen Teamplayer, die klar denken und eigenverantwortlich handeln können – den Rest bringen wir ihnen bei.“ An Bewerbungen mangele es nicht, schließlich komme das Thema Cybersecurity gerade bei jungen Menschen sehr gut an. Doch mit der dynamischen Entwicklung gehen mitunter auch Wachstumsschmerzen einher. „Wir merken das zum Beispiel daran, dass wir nun auch mal unangenehme Gespräche führen müssen.“ Auch die Dauerbelastung, der man sich als Gründer aussetze, sei nicht zu unterschätzen. „Anfangs haben wir monatelang durchgearbeitet, oft bis tief in die Nacht“, so Julius. Für den langfristigen Erfolg sei es jedoch wichtig, für Ausgleich zu sorgen sowie seine Gesundheit und Leistungsfähigkeit zu erhalten – und dem eigenen Team ein Vorbild zu sein.
Schnelligkeit als Wettbewerbsvorteil
Der Markt für KI-gestützte Security-Trainings und damit auch die Zahl neuer Anbieter*innen wächst schnell. Durch die Konkurrenz sehen sich die Gründer von revel8 bestätigt. „Wir stehen durchaus auch in Kontakt mit anderen Gründern und Wettbewerbern“, so Julius. Eine wichtige Benchmark sei das Unternehmen Adaptive Security aus den USA, das mit 55 Millionen US-Dollar von OpenAI finanziert wurde. Im Tagesgeschäft treffe man jedoch kaum auf andere Start-ups, sondern vielmehr auf etablierte Anbieter*innen wie etwa KnowBe4. „Diese Wettbewerber operieren auf alten Plattformen, sie entwickeln sich langsam und inkrementell“, so Julius. „Wir dagegen können unsere Ideen binnen Stunden validieren und umsetzen.“ Vor dem Hintergrund, dass IT-Abteilungen immer ausgefeiltere Deepfakes und KI-basierte Social-Engineering-Angriffe erkennen und abwehren müssen, sei das ein echter Wettbewerbsvorteil.
Umzug und neue Produkte
Ab dem kommenden Jahr soll die Plattform vollautomatisiert laufen und auch kleineren Unternehmen sowie Firmen ohne dezidiertes IT-Team dienen. Betriebe wie Notariate oder Arztpraxen seien besonders gefährdet, sagt Julius: „Die Frontdesks öffnen jeden Tag unzählige PDF-Dokumente und beantworten laufend externe Anfragen, da kann ein falscher Klick den gesamten Betrieb lahmlegen.“ Anfang 2026 wird revel8 nach München umziehen, wo Tom und Robert ursprünglich herstammen. Das gesamte Team wird mitkommen. Das ehemalige Flixbus-Office wird der neue Firmensitz. Von hier aus wird die Plattform weiterentwickelt und sollen die neuen Produkte gelauncht werden.
„Aktuell wird uns das Training für externe Kräfte mit Systemzugriff, zum Beispiel Call-Center-Teams, aus der Hand gerissen“, sagt Julius. Das Produkt entstand zunächst als Pilot mit einer globalen Versicherung – heute trifft es einen wunden Punkt vieler Unternehmen. Anfang 2025 wurde zum Beispiel bei Marks & Spencer über ein externes Dienstleisterteam ein Ransomware-Angriff eingeschleust – der Schaden betrug über 300 Millionen britische Pfund. „Darum bleiben wir in Bewegung“, so Julius, „damit Unternehmen auch künftig solche Angriffe erkennen und abwehren können.“
KI-Agenten als Transformationstreiber 2026
Eine aktuelle DeepL-Studie zeigt: 69 % der globalen Führungskräfte erwarten für 2026 tiefgreifende Veränderungen durch KI-Agenten; KI-Sprachtechnologie wird zur unverzichtbaren Infrastruktur.
Eine neue Studie von DeepL, einem globalen Unternehmen für KI‑Produkte und ‑Forschung, zeigt: 2026 wird für viele Organisationen den Übergang vom Experimentieren mit KI hin zu agentischer Automatisierung markieren. So erwartet die Mehrheit der weltweit befragten Führungskräfte (69 %), dass agentenbasierte KI ihre Geschäftsabläufe im kommenden Jahr deutlich verändern wird.
Die Studie wurde im September 2025 von Censuswide im Auftrag von DeepL durchgeführt. Befragt wurden 5.000 Führungskräfte in Deutschland, Frankreich, den USA, Großbritannien und Japan. Die Ergebnisse deuten darauf hin, dass Unternehmen verstärkt planen, autonome KI-Agenten im großen Umfang einzusetzen – etwa zur Unterstützung von Wissensarbeit, zur Effizienzsteigerung oder zur Anpassung organisatorischer Strukturen. Damit zeichnet sich die bedeutendste operative Veränderung in der Wirtschaft seit der Einführung der Cloud an.
„KI-Agenten sind längst nicht mehr experimentell, sie sind unumgänglich.“ sagt Jarek Kutylowski, CEO und Gründer von DeepL. „Die nächste Phase besteht darin, sie tiefgreifend in unsere Arbeitsweisen zu integrieren. In 2026 werden KI-Agenten das mühsame Umschalten zwischen verschiedenen Kontexten und repetitive Aufgaben übernehmen, sodass sich Menschen auf das konzentrieren können, was Unternehmen tatsächlich voranbringt.“
KI-Agenten werden zum nächsten Disruptor für Unternehmen
Nach ersten Pilot- und Anwendungsfällen rücken KI-Agenten zunehmend in den produktiven Einsatz:
- Fast die Hälfte der globalen Führungskräfte (44 %) erwartet für 2026 einen tiefgreifenden Wandel durch agentische KI; ein Viertel (25 %) sieht diesen Wandel bereits heute. Nur 7 % glauben, dass KI-Agenten ihre Betriebsabläufe nicht verändern werden, was die hohe Geschwindigkeit der Implementierungen unterstreicht.
- Als die drei wichtigsten Voraussetzungen für den sinnvollen und vertrauenswürdigen Einsatz von KI-Agenten nennen die Befragten nachweisbare Effizienz- und ROI-Effekte (22 %), Anpassungsfähigkeit der Belegschaft (18 %) und zunehmende organisatorische Bereitschaft (18 %).
- Als wesentliche Herausforderungen bei der Einführung von KI-Agenten nennen die Befragten Kosten (16 %), Bereitschaft der Belegschaft (13 %) und Reife der Technologie (12 %).
KI als zentraler Wachstumstreiber für globale Unternehmen
Über Agenten hinaus gilt KI insgesamt als wichtigster Motor für das Wirtschaftswachstum in 2026:
- Über zwei Drittel (67 %) der Befragten geben an, dass sich der ROI ihrer KI-Initiativen in diesem Jahr erhöht hat; mehr als die Hälfte (52 %) erwartet, dass KI im kommenden Jahr mehr zum Unternehmenswachstum beitragen wird als jede andere Technologie.
- Wenn es um messbare Verbesserungen durch KI geht, liegt Deutschland (78 %) zusammen mit Großbritannien (80 %) an der Spitze, gefolgt von den USA (71 %) und Frankreich (70 %). Japan verzeichnet mit 35 % deutlich niedrigere Werte, was auf langsamere Implementierungen und Bereitschaften hindeutet.
- Über die Hälfte der globalen Führungskräfte (51 %) rechnet damit, dass KI im kommenden Jahr mehr neue Rollen schafft als ersetzt. 52 % geben an, dass KI-Kenntnisse für die meisten Neueinstellungen vorausgesetzt werden.
KI-Sprachtechnologie entwickelt sich vom Werkzeug zur zentralen Infrastruktur
Die Studie zeigt zudem, wie KI-Sprachtechnologie zur entscheidenden Komponente der Unternehmensinfrastruktur wird:
- Fast zwei Drittel der globalen Unternehmen (64 %) planen 2026 steigende Investitionen in KI-Sprachtechnologie – angeführt von Großbritannien (76 %) und Deutschland (74 %), gefolgt von den USA (67 %) und Frankreich (65 %) werden mehrsprachige Kommunikation und Inhalte zu zentralen Faktoren für globales Wachstum. Im Gegensatz dazu bleibt Japan (38 %) vergleichsweise konservativ, was auf eine langsamere Dynamik hindeutet, gleichzeitig aber das wachsende Interesse von mehr als einem Drittel der Führungskräfte widerspiegelt.
In diesem Zusammenhang wird Echtzeit-Sprachübersetzung 2026 unverzichtbar:
- Über die Hälfte der globalen Führungskräfte (54 %) sieht Echtzeit-Sprachübersetzung im kommenden Jahr als unverzichtbar an – derzeit sind es ein Drittel (32 %).
- Großbritannien (48 %) und Frankreich (33 %) sind Vorreiter bei der Nutzung von Tools für die Echtzeit-Sprachübersetzung; Japan liegt derzeit nur bei 11 %.
- Die Nachfrage wird angetrieben von technologischen Fortschritten in der Echtzeit-Sprachübersetzung (46 %), Kundenerwartungen (40 %) und marktübergreifender Expansion (38 %).
Die Erkenntnisse der Studie liefern wichtige Einblicke in die Zukunft der KI und zeigen, wie diese Veränderungen Branchen umgestalten, Kundenerwartungen neu definieren und sich auf das Wettbewerbsumfeld auswirken.
GreenTech – der Boom geht zu Ende
Zwar zählt Deutschland rund 3000 Start-ups aus dem GreenTech-Bereich, doch viele kämpfen mit Kapitalmangel, Fachkräftedefizit und einer überlasteten Infrastruktur. Der Boom ist vorbei – eine Einschätzung von Seriengründer und Transformationsexperte Daniel Fellhauer.
Die deutsche Wirtschaft steht vor einer ihrer größten Transformationen seit der Industrialisierung. Jahrzehntelang galten Auto- und Stahlindustrie als Rückgrat des Wohlstands. Nun rückt Nachhaltigkeit in den Mittelpunkt. Daniel Fellhauer sieht die GreenTech-Branche an einem kritischen Punkt: „GreenTech ist kein Hype, sondern Realität mit echten Herausforderungen. Die Frage ist: Wer bleibt übrig, wenn die Subventionen verschwinden?“ Seine Aussage bringt auf den Punkt, was viele Brancheninsider beschäftigt: der Übergang von gefördertem Wachstum zu marktwirtschaftlicher Reife. Jetzt entscheidet sich, welche Unternehmen Innovation und Wirtschaftlichkeit in Einklang bringen können – und wer an überzogenen Erwartungen scheitert.
Der Boom geht zu Ende
„Der Anteil grüner Gründungen ist zuletzt deutlich gesunken“, sagt Daniel Fellhauer. „Vor zwei Jahren war noch jedes dritte neue Start-up nachhaltig ausgerichtet. Heute ist es nicht einmal mehr jedes Vierte. Das ist ein deutliches Warnsignal. Der Markt sortiert sich, Kapital wird selektiver, und viele Ideen schaffen es nicht mehr über die Pilotphase hinaus.“ In den vergangenen fünf Jahren flossen zwar rund 11,7 Milliarden Euro in grüne Start-ups – etwa ein Viertel aller deutschen Risikoinvestitionen –, doch das Geld konzentriert sich zunehmend auf wenige, große Player. „Das zeigt eine Reifung, aber auch eine gefährliche Schieflage“, so Fellhauer. „Wir brauchen Breite, nicht nur Leuchttürme. Wenn die Finanzierungsströme versiegen, bevor Skalierung einsetzt, kippt der ganze Innovationspfad.“ Hinzu kommen steigende Zinsen, langwierige Genehmigungen und überlastete Netze. „Viele unterschätzen, wie stark Infrastruktur über Wachstum entscheidet“, erklärt er. „Eine Solarfirma kann heute Aufträge für 1.000 Anlagen im Jahr haben. Aber wenn der Netzanschluss neun Monate dauert, bleibt sie auf halber Strecke stehen.“
Deutschland ist längst auf dem Weg zur nachhaltigen Wirtschaft – doch der Anstieg wird steiler. Die entscheidende Frage lautet: Wird GreenTech zum Fundament der nächsten industriellen Ära, oder zur vertanen Chance einer Generation? Laut einer aktuellen Analyse fließt ein erheblicher Teil staatlicher Investitionen und Subventionen in Deutschland weiterhin in fossile Strukturen – über 60 Milliarden Euro jährlich. Da-bei hatte sich die Bundesregierung bereits 2009 gemeinsam mit anderen Industrieländern verpflichtet, ineffiziente Förderungen für fossile Energieträger bis 2025 zu beenden. Ein Ziel, das laut Fachleuten von Fraunhofer ISI, ZEW und Umweltbundesamt klar verfehlt wird. Daniel Fellhauer warnt: „Das ist kein ideologisches, sondern ein ökonomisches Problem. Solange Kapital und Fördermittel in alte Industrien gelenkt werden, anstatt in skalierbare GreenTech-Lösungen, bleibt Deutschland in der Vergangenheit verhaftet.“
Herausforderungen im deutschen GreenTech-Sektor
Trotz technologischer Fortschritte wird das Wachstum der Branche weiterhin durch strukturelle Probleme gebremst. Zu den größten Hindernissen zählen laut Fellhauer vor allem die unzureichende Netzinfrastruktur, die hohe Kapitalintensität sowie fragmentierte Märkte. Hochqualifizierte Arbeitskräfte in den Bereichen Energie, Elektronik und Software sind rar, wodurch die Entwicklung und Umsetzung neuer Technologien verlangsamt wird. Gleichzeitig behindert der schleppende Ausbau der Strom- und Wärmenetze eine schnelle Skalierung innovativer Lösungen. Daniel Fellhauer erklärt: „Hinzu kommt, dass viele GreenTech-Unternehmen aufgrund langer Entwicklungszeiten und hoher Anfangsinvestitionen auf beträchtliches Kapital angewiesen sind. Schließlich sorgen unterschiedliche Förderprogramme und komplexe regulatorische Vorgaben dafür, dass Innovationen und Markteintritte ausgebremst werden. Diese Faktoren erschweren nicht nur das Wachstum bereits bestehender Firmen, sondern machen auch den Einstieg für neue Gründerinnen und Gründer deutlich schwieriger.“
Zweite Generation der Nachhaltigkeit für mehr wirtschaftliche Tragfähigkeit
„Nur wer wirtschaftlich denkt, kann nachhaltig handeln“, sagt Daniel Fellhauer. Für ihn ist klar: Die nächste Phase der GreenTech-Bewegung entscheidet sich nicht an Visionen, sondern an Umsetzungsdisziplin. „Wir haben die Ideen, die Technologien und den gesellschaftlichen Rückhalt – jetzt geht es um Strukturen, Prozesse und betriebswirtschaftliche Fitness.“ Er spricht damit vor allem zu Gründerinnen und Gründern, die gerade überlegen, in den Markt einzusteigen. „Ich sehe viele junge Teams, die voller Energie starten – aber ohne belastbares Geschäftsmodell. Das ist gefährlich, weil GreenTech kapitalintensiv ist und die Anlaufphase oft Jahre dauert. Wer heute gründet, braucht einen klaren Plan für Cashflow, Partnerschaften und Skalierung, nicht nur für Storytelling.“
Fellhauer plädiert für eine zweite Generation der Nachhaltigkeit: weniger Ideologie, mehr Industriekompetenz. „Wir müssen wieder lernen, wie man produziert, automatisiert und skaliert, nicht nur, wie man pitcht. Nachhaltigkeit ist kein Marketingbegriff, sondern eine Frage des industriellen Könnens.“ Er empfiehlt, früh Kooperationen mit etablierten Mittelständlern oder Industriebetrieben zu suchen, um Skaleneffekte und Erfahrung zu nutzen. Statt auf Subventionen zu bauen, rät er zu robusten Wertschöpfungsmodellen, die auch ohne politische Förderung bestehen können. „Die besten Green-Tech-Firmen der nächsten Jahre werden die sein, die unabhängig funktionieren – weil sie echte Marktprobleme lösen, nicht weil sie im Förderdschungel überleben.“
Politik und Wirtschaft in gemeinsamer Verantwortung
Damit Nachhaltigkeit tatsächlich zum tragfähigen Standbein der deutschen Wirtschaft wird, braucht es planbare Rahmenbedingungen – aber auch Eigeninitiative. Fellhauer betont, dass Gründerinnen und Gründer nicht auf die perfekte Politik warten dürfen. „Wir brauchen beides: verlässliche Energie- und Förderpolitik und unternehmerischen Pragmatismus.“ Politik müsse langfristige Investitionen ermöglichen, den Kapitalzugang vereinfachen und Fachkräfte mobilisieren. Fellhauer nennt staatlich unterstützte Risikokapitalfonds und europäische GreenTech-Programme als zentrale Hebel, damit Innovationen nicht im Frühstadium scheitern. Zugleich müsse Deutschland die Infrastruktur modernisieren: Netze, Standards, Digitalisierung. „Solange ein Windpark genehmigt, aber nicht ans Netz angeschlossen werden kann, bleibt das alles Theorie“, warnt er. Sein Fazit fällt entsprechend klar aus: „GreenTech wird die neue industrielle Basis – wenn wir sie als solche behandeln. Gründer müssen rechnen, Politiker müssen liefern, und die Gesellschaft muss akzeptieren, dass Nachhaltigkeit ein Geschäftsmodell braucht, keinen Idealismuspreis.“
Daniel Fellhauer hat mehrere Unternehmen im Bereich Solar, Wärmepumpen und erneuerbare Energien erfolgreich aufgebaut. Heute ist er Chief Transformation Officer bei Thermondo und eingesetzter CEO seiner ursprünglich gegründeten Firma FEBESOL.
Happy Homeoffice Club gestartet
Gründerin Caterina Hirt startet ein digitales Netzwerk als kollaborative Kommunikationsplattform für selbständige Mütter im Homeoffice.
Mit dem Start des Happy Homeoffice Clubs entsteht ein neues digitales Angebot für selbständige Mütter – mit Liveformaten, Co-Working, einer innovativen Softwareplattform und vielen nützlichen Business-Hacks. Die Gründerin Caterina Hirt bringt damit ein strukturiertes, unterstützendes Netzwerk an den Start, das den oft isolierten Homeoffice-Alltag in einen Ort der Verbindung, Motivation und echten Weiterentwicklung verwandelt. „Ich habe selbst erlebt, wie herausfordernd es ist, Beruf, Familie und Selbstverwirklichung unter einen Hut zu bringen – vor allem im Homeoffice. Mit dem Happy Homeoffice Club möchte ich Frauen zeigen, dass sie nicht alleine sind“, so die Gründerin. Caterina Hirt ist Unternehmerin, Autorin, systemische Coachin und Mutter von zwei Kindern. Mit ihrem Agenturbackground und über zehn Jahren Erfahrung im Homeoffice weiß die Marketingspezialistin aus erster Hand, welche Chancen – aber auch welche Herausforderungen – dieser Arbeitsalltag birgt.
Kern der Zusammenarbeit ist eine kollaborative Kommunikationsplattform, über die die Mütter dauerhaft in einem echten Netzwerk verbunden sind. Dazu setzt das Angebot auf Livecalls, Community-Austausch, Expertenvorträge und snackable Businesstipps, die den Workflow im Homeoffice effizienter machen. Das Angebot richtet sich explizit an selbständige Frauen oder Mütter im Homeoffice. „Bei uns fühlt sich keine Teilnehmerin mehr allein. Hier treffen sich Frauen, die genau wissen, wie es ist, mit Laptop, Kaffee, Kind und manchmal ein bisschen Chaos zu jonglieren. Sie arbeiten, lachen, tauschen sich aus und motivieren sich gegenseitig. So modern, vernetzt und unterstützend, wie man es sich als Selbstständige immer gewünscht hat “, sagt Caterina Hirt.
Die zugrundeliegende Softwarelösung bietet eine hochmoderne Nutzeroberfläche, Chats, Calls in einer geschützten Umgebung sowie Daten- und Wissensaustausch an. So gibt es zum Beispiel den Monday Motivation Call mit allen Teilnehmerinnen oder eine interaktive Kaffeeküche, in der man sich einfach mal über alle Themen abseits des Business interaktiv austauschen kann. Die Plattform wird jeder Teilnehmerin zur Verfügung gestellt, die Nutzung ist in der monatlichen Mitgliedsgebühr von 49 Euro (Einführungspreis) enthalten. Interessentinnen können die Community inklusive aller Angebote zwei Wochen kostenlos testen.
Jakob Koenen: Mit 18 zum LegalTech-Start-up-Gründer
Die Sovereign AI Betriebs GmbH – 2025 von Jakob Koenen und seinem Vater Prof. Dr. Andreas Koenen mit Sitz in Berlin gegründet – entwickelt spezialisierte KI-Plattformen für die juristische Praxis.
Ein Technologie-begeisterter Abiturient, der schon mit 15 Jahren Jura-Vorlesungen besucht, gründet ein LegalTech-Start-up. Partnerschaftlich an seiner Seite agiert sein Vater, ein renommierter Professor für Baurecht. Das ist das Fundament der Sovereign AI Betriebs GmbH, die in Berlin antritt, das Rechtswissen ganzer Berufs-Generationen in eine juristisch kuratierte KI zu überführen. Herzstück des Unternehmens ist Sovereign Legal AI. Die Plattform bereitet juristische Fragen systematisch, verständlich und nachvollziehbar auf.
„Wir wollen das Recht aus der Blackbox holen“, sagt Jakob Koenen, Gründer und Geschäftsführer der Sovereign AI Betriebs GmbH. „Unsere KI soll kein Ersatz für Anwältinnen und Anwälte sein, sondern ein intelligentes Werkzeug, das Wissen strukturiert, Orientierung gibt und den Zugang zum Recht demokratisiert.“
Rechtspraxis-Know-how, digitalisiert für den Alltag
Die Idee zu Sovereign Legal AI entstand in einem Generationenprojekt. Prof. Dr. Andreas Koenen, Kanzleiinhaber, Fachanwalt und Herausgeber zahlreicher Werke zum Bau- und Architektenrecht, hat über Jahrzehnte beobachtet, wie Rechtswissen in der Praxis verloren geht, weil es zu spät, zu komplex oder zu exklusiv vermittelt wird.
„Das Recht wird beim Bauen oft erst dann herangezogen, wenn es knallt“, sagt Koenen. „Juristinnen und Juristen gelten als Ausputzer, nicht als Geburtshelfer. Sovereign Legal AI will das ändern. "Wir liefern Projektbeteiligten vom Architekten, Planer bis zum Bauherrn einen Kompass, der schon vor Konflikten Orientierung bietet; mit juristisch fundierter Systematik, aber barrierefrei zugänglich“, so Koenen weiter.
Die Wissensbasis der Sovereign Legal AI umfasst unter anderem kommentierte Urteile, systematisch aufbereitete Rechtsinformationen sowie Fachbeiträge von Anwältinnen und Anwälten zu typischen Praxisproblemen. Alle Inhalte sind mit Originalquellen aus Gesetz, Rechtsprechung und Literatur belegt, was den entscheidenden Unterschied zu generativen „Blackbox-Systemen“ markiert.
Neue Plattform für juristische Teilhabe
Sovereign Legal AI entstand in Zusammenarbeit mit den Anwältinnen und Anwälten der Kanzlei Koenen Bauanwälte. Die künstliche Intelligenz (KI) wurde entlang echter Fallarbeit trainiert und in einer Beta-Phase getestet. Dabei versteht sich die KI als Community-Projekt: Nutzende geben Feedback, benennen Lücken und tragen so zur Weiterentwicklung bei. Auf diese Weise wächst die KI mit der Praxis. Im Wissens-Ökosystem von Sovereign befinden sich auch die Austausch-Plattform Sovereign Community und der stationäre Sovereign Store in Münster. Beide sind Teil derselben Markenfamilie und werden von der Sovereign GmbH betrieben. Partner-, Lizenz- und Servicemodelle finanzieren das Projekt. „Wir schaffen eine KI-Plattform, die juristisches Wissen lebendig hält“, so Jakob Koenen. „Das ist Unternehmensnachfolge im besten Sinne. Das Wissen einer Generation wird nicht vererbt, sondern transformiert.“
Junger Gründer mit Tech-DNA
Dass Jakob Koenen früh Verantwortung übernimmt, überrascht kaum. Mit 11 wollte er bereits eine Web-Agentur gründen, erschuf in diesem Zuge den Digitalauftritt eines Handwerksunternehmens. Mit 15 hat er mit Unterstützung seiner Eltern beantragt, frühzeitig als geschäftsfähig erklärt zu werden und gründete nach der Bewilligung sein erstes Unternehmen. Heute ist er Gründer, App-Entwickler und Geschäftsführer des Berliner LegalTech-Unternehmens. Er arbeitet mit einem Netzwerk aus externen Entwicklerinnen und Entwicklern sowie Fachleuten an der technischen Weiterentwicklung von Sovereign Legal AI. Aktuell suchen er und sein Vater als Herausgeber der Inhalte nach Co-Autor*innen und Partner*innen, die weitere juristische Rechtsbereiche wie Energierecht oder IT-Recht innerhalb der KI für sich erschließen.
Code für die künstliche Intelligenz: technische Optimierung für die Ära der KI-Suche
Code für die KI: So optimierst du deine Website technisch mit strukturierten Daten und Protokollen für die besten generativen Suchergebnisse.
Die Regeln der Online-Sichtbarkeit werden neu geschrieben. Es geht nicht mehr nur darum, von einem herkömmlichen Algorithmus indiziert zu werden. Stattdessen müssen Websites so aufbereitet werden, dass sie von künstlicher Intelligenz (KI) und großen Sprachmodellen (LLMs) fehlerfrei interpretiert und verarbeitet werden können.
KI erstellt ihre Antworten, indem sie Inhalte blitzschnell liest, deren Bedeutung versteht und die wichtigsten Fakten daraus extrahiert. Wenn der technische Unterbau einer Website unsauber ist, kann die KI die Informationen entweder nicht zuverlässig finden oder sie falsch interpretieren.
Das bedeutet, die technische Seite der Website – der Code – wird zum Fundament für eine gute Platzierung in den generativen Suchergebnissen. Wer hier Nachholbedarf hat, riskiert, als vertrauenswürdige Quelle für die KI unsichtbar zu werden.
Dieser Artikel beleuchtet die entscheidenden technischen Anpassungen, die notwendig sind, um deine Website optimal für die neue Ära der KI-Suche vorzubereiten.
Kontrolle und Zugang: Die Regeln für Sprachmodelle
Der erste technische Schritt zur Optimierung für KI-Ergebnisse ist die Steuerung des Zugriffs durch die großen Sprachmodelle (LLMs). Traditionell wird der Zugang durch die robots.txt Datei geregelt, die festlegt, welche Bereiche der Website von herkömmlichen Suchmaschinen-Crawlern besucht werden dürfen.
Mit dem Aufkommen verschiedener, spezialisierter KI-Crawler (die nicht immer identisch mit dem Googlebot oder Bingbot sind) entsteht jedoch die Notwendigkeit, diesen neuen Akteuren eigene Regeln zu geben. Es geht darum, Transparenz darüber zu schaffen, welche Daten zur Generierung von Antworten verwendet werden dürfen und welche nicht.
Neue Protokolle für neue Crawler
Experten diskutieren und entwickeln neue Protokolle, um diese Unterscheidung zu ermöglichen. Ein viel diskutierter Ansatz ist die Einführung von Protokollen, die spezifisch den Umgang mit generativer KI regeln. Dies könnte die Einführung von Protokollen wie einer llms.txt Datei beinhalten. Solche spezifischen Dateien könnten festlegen, ob ein KI-Modell Inhalte zur Schulung oder zur generativen Beantwortung von Nutzeranfragen nutzen darf.
Diese Kontrollmechanismen sind entscheidend. Sie geben den Website-Betreibern die Autorität darüber zurück, wie ihre Inhalte in der KI-Ära verwendet werden. Wer hier klare Regeln setzt, schafft die technische Grundlage für eine kontrollierte und damit vertrauenswürdige Sichtbarkeit in den KI-Ergebnissen.
Strukturierte Daten als universelle KI-Sprache
Nach der Regelung des Zugangs durch Protokolle ist die Strukturierung der Inhalte der wichtigste technische Schritt. Suchmaschinen nutzen strukturierte Daten schon lange, um Rich Snippets in den klassischen Ergebnissen anzuzeigen. Für die KI sind diese Daten jedoch absolut essenziell.
Strukturierte Daten, die auf dem Vokabular von Schema.org basieren, sind im Grunde eine Übersetzungshilfe im Code, die dem Sprachmodell den Kontext des Inhalts direkt mitteilt. Sie sind die "Sprache", die die KI am schnellsten und präzisesten versteht.
Die Bedeutung für die Generierung
Wenn ein Nutzer eine Frage stellt, sucht die KI nicht nur nach Stichwörtern, sondern nach definierten Informationstypen. Mit strukturierten Daten liefert man der KI diese Informationen als fertige, fehlerfreie Bausteine.
- Fehlerfreie Extraktion: Die KI muss keine Textpassagen interpretieren, um beispielsweise ein Rezept, die Bewertung eines Produkts oder einen FAQ-Abschnitt zu identifizieren. Die korrekte Auszeichnung macht die Daten sofort nutzbar.
- Vertrauensbildung: Fehlerhafte oder inkonsistente strukturierte Daten führen zu einer falschen Interpretation und können bewirken, dass die KI deine Seite als unzuverlässig einstuft.
Die Implementierung muss fehlerfrei sein und sollte alle relevanten Inhaltstypen der Website abdecken. Nur eine saubere Schema-Implementierung garantiert, dass deine Fakten korrekt in die generativen Antworten der KI einfließen.
Ladezeit und Interaktivität als Vertrauenssignal
Die Geschwindigkeit und die Nutzbarkeit einer Website sind in der Ära der KI-Suche nicht mehr nur ein Komfortfaktor, sondern ein entscheidendes technisches Vertrauenssignal. Wenn deine Seite langsam lädt oder schlecht bedienbar ist, wird das von der KI als Indikator für mangelnde Qualität und niedrige Autorität gewertet.
Die Basis dafür sind die sogenannten Core Web Vitals (CWVs). Diese Messwerte, die sich auf das Nutzererlebnis konzentrieren, sind feste Ranking-Faktoren und haben direkten Einfluss darauf, ob eine KI deine Seite als zitierwürdig einstuft:
- LCP (Largest Contentful Paint): Misst die Zeit, bis der größte sichtbare Inhalt geladen ist.
- FID/INP (First Input Delay / Interaction to Next Paint): Misst die Zeit bis zur ersten Interaktion und die allgemeine Reaktionsfähigkeit der Seite.
- CLS (Cumulative Layout Shift): Misst die visuelle Stabilität.
Mobile Performance ist der Schlüssel
Da ein Großteil der Online-Aktivität über mobile Geräte stattfindet, legt die KI höchsten Wert auf die Optimierung der Mobilversion. Eine schlechte mobile Performance kann das gesamte Ranking negativ beeinflussen.
Die technische Anpassung muss daher darauf abzielen, die CWVs zu perfektionieren. Dies beinhaltet die Optimierung von Bildern, das Bereinigen unnötiger Code-Lasten und das Priorisieren wichtiger Ressourcen. Eine schnell ladende und reaktionsfreudige Website signalisiert nicht nur dem Nutzer, sondern auch der KI, dass die Quelle professionell und damit vertrauenswürdig ist.
Redundanz vermeiden: kanonische Klarheit
Eines der größten technischen Probleme für KI-Modelle ist die Verwirrung durch doppelte Inhalte (Duplikate). Wenn die gleiche Information unter verschiedenen URLs verfügbar ist, weiß die KI nicht, welche die Originalquelle darstellt. Dies zersplittert deine Autorität.
Der technische Schlüssel zur Lösung ist der Canonical Tag (<link rel="canonical" ...>). Dieser Tag im Code muss auf jeder Seite korrekt auf die bevorzugte, indexierbare URL zeigen. Durch die Vermeidung von Duplikaten und die korrekte Nutzung dieses Tags stellst du technisch sicher, dass die KI deine Inhalte als eindeutig und autoritär wahrnimmt und dich als zuverlässigen Faktenlieferanten zitiert.
Schlussworte
Die Zukunft der Online-Sichtbarkeit wird durch künstliche Intelligenz neu definiert. Der Erfolg hängt von einer technisch sauberen Vorbereitung ab.
Die wichtigsten Schritte in der Generative Engine Optimization (GEO) sind:
1. Zugangskontrolle durch Protokolle wie die diskutierte llms.txt Datei.
2. Die Nutzung von strukturierten Daten als unverzichtbare KI-Sprache.
3. Die Perfektionierung der Core Web Vitals als Vertrauenssignal.
4. Die Vermeidung von Duplikaten durch kanonische Klarheit.
Investiere in diese technische Qualität, um Autorität und Sichtbarkeit in der Ära der KI-generierten Antworten zu sichern.
eleQtron: It's MAGIC
In nur fünf Jahren vom Laborgerät zum 24/7-betriebenen Quantencomputer: Wie das 2020 von Jan Leisse, Christof Wunderlich und Michael Johanning gegründete eleQtron mit seiner MAGIC-Technologie neue Wege ebnet.
Was ihr da macht, ist der Wahnsinn – und genau deswegen bin ich dabei.“ Mit diesen Worten beschreibt Jan Leisse, einer der Gründer von eleQtron, die Anfänge des Unternehmens. Das erste Treffen mit dem Physiker Christof Wunderlich war geprägt von einer Mischung aus Skepsis und Begeisterung. Der Wissenschaftler hatte an der Universität Siegen einen Quantencomputer gebaut – mitten in der deutschen Provinz und ohne das Millionenbudget, das Konzernen wie Google oder IBM zur Verfügung steht. Doch genau das reizte Leisse: „Hier wurde nicht einfach nachgemacht, was andere tun. Hier wurde Neuland betreten.“
Es war ein ungewöhnlicher Ort für eine bahnbrechende
Innovation in der Quantentechnologie. Siegen, eine Mittelstadt im Süden Nordrhein-Westfalens, ist nicht gerade als Hotspot für Hochtechnologie bekannt. Doch manchmal entstehen die Top-Innovationen fernab der etablierten Zentren; die Universität Siegen hatte über Jahre hinweg eine bemerkenswerte Expertise in der Quantenphysik aufgebaut, ohne große mediale Aufmerksamkeit.
Von der Universität ...
Im Jahr 2020, als das globale Interesse an Quantentechnologien exponentiell zunahm, erwuchs aus dieser mutigen Pionierarbeit das Start-up eleQtron – als Spin-off der Universität Siegen. Die Gründer – Jan Leisse, Christof Wunderlich und Michael Johanning – verbindet eine Vision: Quantencomputer für industrielle Anwendungen nutzbar zu machen.
Die Anfangsjahre waren geprägt von Experimentierfreude, Improvisation und dem festen Glauben an die eigene technologische Innovationskraft. Während Tech-Giganten wie IBM, Google und Amazon Milliarden Euro in ihre Quantenprogramme investierten und viele Start-ups auf bekannte Technologien setzten, wagte eleQtron den Schritt in eine völlig neue Richtung.
In den Laboren der Gründer entstand die sogenannte MAGIC-Technologie (Magnetic Gradient Induced Coupling), eine Methode, Qubits (das Quantencomputing-Äquivalent zum klassischen Bit in der Digitaltechnik) nicht wie bislang üblich mit Lasern, sondern mit Mikrowellen zu steuern.
... zum technologischen Durchbruch
Die MAGIC-Technologie basiert auf einem raffinierten Zusammenspiel physikalischer Prinzipien: Magnetische Gradienten (räumliche Veränderungen der Magnetfeldstärke) ermöglichen es als lokale Felder, einzelne Ionen in einer sogenannten Falle selektiv anzusprechen. Die technischen Vorteile sind beeindruckend: Die Fidelity (Genauigkeit) bei Operationen an einzelnen Qubits liegt bei etwa 99,95 Prozent, die Gate-Zeiten (Gate-Zeit steht für die Dauer, die ein Quanten-Gate benötigt, um eine Operation auf einem Qubit auszuführen) betragen nur wenige Mikrosekunden. Gleichzeitig ermöglicht die Technologie eine bessere Skalierbarkeit, da sich Mikrowellenfelder einfacher erzeugen und verteilen lassen als komplexe Lasersysteme. „Der Vorteil liegt nicht nur in der höheren Präzision, sondern auch in der deutlich geringeren Komplexität der Systeme“, erklärt Johanning. „Wir brauchen keine aufwändigen Optiken oder ultrastabile Umgebungen. Unsere Technologie funktioniert auch unter realen Bedingungen.“
Früh erkannten die drei Forscher das große Potenzial ihrer Technologie für praktische Anwendungen. „Durch das gezielte Ersetzen sensibler High-End-Komponenten – insbesondere Lasertechnologie – durch bewährte Mikrowellentechnik und Elektronik, vermeiden wir unnötige Komplexität, minimieren Aufwand und senken die Kosten“, fasst es Leisse zusammen.
Wachstumsschub und strategische Entwicklung
2022 gelang eleQtron ein entscheidender Schritt: Durch Earlybird und den Siegerlandfonds als Investoren sowie das vom BMBF geförderte Projekt „MAGIC App“ sicherte sich das Start-up eine Finanzierung in Höhe von 16 Millionen Euro. Diese Finanzierungsrunde war ein Wendepunkt für das Unternehmen und signalisierte das Vertrauen der Investor*innen in die MAGIC-Technologie.
„Mit diesem Kapitalschub konnten wir von einer reinen Forschungsorganisation zu einem echten Technologieunternehmen werden“, erklärt Leisse. Die Mittel flossen in den Ausbau der Produktionskapazitäten, die Vergrößerung des Teams und die Weiterentwicklung der Technologie-Roadmap. Auch die Mitwirkung von Infineon im Rahmen von MAGIC App war strategisch von Bedeutung: „Die Zusammenarbeit mit Infineon hat uns die Augen für die Realitäten des Industriemarkts geöffnet“, erklärt Leisse.
EU KI-Gesetz wird scharf gestellt
Diese Strafen für KI-Verstöße drohen ab dem 2. August 2025 – was Personalverantwortliche und Arbeitnehmende jetzt wissen und beachten müssen.
Das KI-Gesetz der Europäischen Union, die weltweit erste umfassende KI-Verordnung, erreicht am 2. August 2025 einen entscheidenden Meilenstein. Ab diesem Stichtag gelten für Unternehmen, Behörden und KI-Anbieter*innen in der EU zahlreiche zentrale Verpflichtungen, bei deren Nichteinhaltung Strafmaßnahmen eingeleitet und verhängt werden können. Was das für Unternehmen und ihre Mitarbeitenden bedeutet, erfährst du hier.
Der AI Act, der am 2. Februar dieses Jahres in Kraft getreten ist, schafft einen einheitlichen Rechtsrahmen für Künstliche Intelligenz (KI) in der EU. Zwar werden viele Regelungen erst 2026 wirksam, doch bereits am 2. August 2025 beginnt eine neue Phase, die sich auf drei Bereiche fokussiert:
- Strafmaßnahmen bei Nichteinhaltung
- Verpflichtungen für allgemeine General-Purpose-AI-Modelle (GPAI)
- Aufbau von Aufsicht und Governance auf nationaler und europäischer Ebene
Strafen bis zu 35 Millionen Euro
Seit dem 2. Februar dieses Jahres sind KI-Systeme mit unannehmbaren Risiken verboten. Ab dem 2. August 2025 können zusätzlich nun Geldbußen für Verstöße gegen bereits bestehende Verpflichtungen verhängt werden, die bis zu 35 Millionen Euro oder 7 Prozent ihres gesamten Jahresumsatzes betragen können. Unternehmen müssen dazu beispielsweise sicherstellen, dass ihre Mitarbeitenden über KI-Kenntnisse verfügen. Die Europäische Union erwartet von ihren Mitgliedstaaten, dass sie eigene wirksame, verhältnismäßige und abschreckende Strafmaßnahmen festlegen. Dabei sollen die besonderen Umstände von KMUs und Start-ups berücksichtigt werden, um deren wirtschaftliche Lebensfähigkeit nicht zu gefährden.
Neue Verpflichtungen für Anbieter*innen von GPAI-Modellen
GPAI-Modelle, die ab dem 2. August 2025 in der Europäischen Union vermarktet werden, unterliegen gesetzlichen Verpflichtungen. Das Europäische Amt für Künstliche Intelligenz hat dazu am 10. Juli 2025 die endgültige Fassung der Verhaltenskodizes veröffentlicht. Anbieter*innen solcher GPAI-Modelle müssen unter anderem technische Dokumentationen erstellen, Urheberrechte beachten und Transparenz über die verwendeten Trainingsdaten sicherstellen.
GPAI-Modelle sind KI-Systeme mit besonders breitem Einsatzspektrum und sind darauf ausgelegt, eine Vielzahl von Aufgaben zu erfüllen. Sie werden mit riesigen Datenmengen trainiert und sind entsprechend vielseitig einsetzbar. Das bekannteste Beispiel sind große Sprachmodelle (Large Language Models, LLM), etwa das generative Sprachmodell GPT-4o, das in ChatGPT integriert ist. Für GPAI-Modelle, die bereits vor dem 2. August 2025 in der Europäischen Union auf dem Markt waren, gilt eine Übergangsfirst bis zum 2. August 2027.
Aufsicht und Governance
Die KI-Verordnung schafft einen Rahmen mit Durchführungs- und Durchsetzungsbefugnissen auf zwei Ebenen.
Auf nationaler Ebene muss jeder EU-Mitgliedstaat bis zum 2. August 2025 mindestens eine Marktüberwachungsbehörde sowie eine notifizierende Behörde benennen. Erstere ist für die Überwachung von KI-Systemen zuständig, letztere für die Notifizierung unabhängiger Konformitätsbewertungsstellen. Die Mitgliedstaaten müssen bis dem Stichtag Informationen zu den nationalen Behörden und deren Kontaktdaten veröffentlichen.
Auf EU-Ebene koordinieren das Europäische Amt für KI und der Europäische KI-Ausschuss die Aufsicht. Zusätzlich werden ein Beratungsforum und ein wissenschaftlicher Ausschuss aus unabhängigen Experten eingerichtet.
Was bedeutet das für Personalabteilungen und Arbeitnehmende?
Das KI-Gesetz hat direkte Auswirkungen darauf, wie KI in den Bereichen Rekrutierung, Performance-Management, Personalanalyse und Mitarbeitenden-Monitoring eingesetzt wird. Personalverantwortliche müssen sicherstellen, dass KI-Tools in diesen Bereichen transparent, fair und konform sind.
- Fairness und Antidiskriminierung: KI-Systeme, die bei Einstellungs- oder Beförderungsentscheidungen eingesetzt werden, müssen nachvollziehbar und frei von Bias sein. Personalabteilungen sollten ihre Tools und Anbieter*innen regelmäßig überprüfen, um die Einhaltung der Vorschriften sicherzustellen.
- Vertrauen und Transparenz: Mitarbeitende erhalten einen besseren Einblick, wie KI-Systeme ihre Arbeit beeinflussen, zum Beispiel bei der Einsatzplanung, Leistungsbewertung oder bei der Arbeitssicherheit. Personalabteilung können Vertrauen schaffen, indem sie offen kommunizieren, wie KI eingesetzt wird und wie die Daten der Mitarbeitenden geschützt werden.
- Verantwortlichkeit von Drittanbieter*innen: Werden KI-Tools von Drittanbieter*innen genutzt, müssen Personalabteilungen sicherstellen, dass diese Anbieter*innen die Anforderungen an Transparenz und Dokumentation erfüllen. Verträge und Beschaffungsprozesse sollten entsprechend angepasst werden.
- Training und Change Management: Mit stärkeren Regulierungen von KI wird die Personalabteilung eine Schlüsselrolle bei der Schulung von Führungskräften und Mitarbeitenden übernehmen. Ziel ist es, einen verantwortungsvollen Umgang mit KI zu fördern und ethische Standards in der Unternehmenskultur zu verankern.
Fazit
Anbieter*innen von GPAI-Modellen, die bereits vor dem 2. August 2025 auf dem Markt waren, haben bis zum 2. August 2027 Zeit, die neuen Vorschriften vollständig umzusetzen. Weitere Verpflichtungen für KI-Systeme mit hohem Risiko werden 2026 und 2027 folgen. Dieser Meilenstein spiegelt das Bestreben der EU wider, Innovationen zu fördern und gleichzeitig sicherzustellen, dass KI sicher, transparent und mit den europäischen Werten im Einklang steht. Damit rückt die Personalabteilung in den Mittelpunkt einer verantwortungsvollen Einführung von KI am Arbeitsplatz.
Der Autor Tom Saeys ist Chief Operations Officer bei SD Worx, einem international tätigen Dienstleistungsunternehmen im HR-Bereich.
Start-ups gegen Plastikmüll
Während die Verhandlungen zu einem globalen Plastikabkommen ergebnislos bleiben, entwickeln Start-ups weltweit innovative Technologien gegen Plastikmüll. Wir stellen eine Auswahl davon vor.
Die jüngsten Verhandlungen in Genf über ein globales Plastikabkommen sind wieder ohne Ergebnis geblieben. Die mehr als 180 verhandelnden Nationen konnten sich nicht einigen. Seit mehr als 50 Jahren sind die Gefahren durch Plastikmüll bekannt – und doch wird immer mehr davon produziert. Jedes Jahr entstehen rund 460 Millionen Tonnen Plastik, weniger als 10 Prozent davon werden recycelt und über 30 Millionen Tonnen gelangen in die Ozeane.
Auf politischer Ebene zeichnet sich bislang keine Lösung ab, auf die man sich global einigen könnte. Neue Vorgaben wie die Pflicht zu fixierten Flaschendeckeln in der EU sorgen eher für Frust. „Seit Jahrzehnten reden wir über das Plastikproblem. Um es zu lösen braucht es technologische Ansätze“, sagt Dr. Carsten Gerhardt, Vorsitzender der gemeinnützigen Circular Valley Stiftung. Solche Ansätze liegen längst auf dem Tisch. „Start-ups aus aller Welt zeigen, dass Innovation schneller sein kann als Verhandlungen.“
Start-ups aus aller Welt arbeiten an Lösungen
Einige dieser Unternehmen hat der Circular Economy Accelerator der Circular Valley Stiftung bereits unterstützt. Das Start-up PROSERVATION etwa stellt Polsterverpackungen aus Nebenprodukten der Getreideindustrie her, BIOWEG ersetzt Mikroplastik durch Biomaterialien aus Lebensmittelabfällen und das Unternehmen Biomyc verwendet Myzel-Verbundwerkstoffe aus Pilzwurzeln und Pflanzen.
Daüber hinaus stellt NYUNGU AFRIKA Damenhygieneprodukte aus Ananasblatt- und Maisschalenfasern her, Midwest Composites nutzt Ernteabfälle für die Herstellung von Textilien und Vlastic bietet eine Alternative zu geschäumten Kunststoffen auf Flachsbasis.
Wenn Produkte das Ende ihrer Lebensdauer erreichen, können sie durch Recycling ein zweites erhalten. Ecoplastile verwandelt Abfälle in langlebige Dachziegel, Gescol macht Bauplatten aus Schuhsohlen und Novoloop nutzt schwer zu recycelndes Polyethylen zur Produktion von thermoplastischen Hochleistungs-Polyurethanen.
Chemisches Recycling zerlegt Kunststoffe in molekulare Bausteine. Das Unternehmen CARBOLIQ verwendet ein katalytisches Niedertemperaturverfahren, um gemischte Kunststoffe in Öl umzuwandeln, das fossile Rohstoffe ersetzen kann; Radical Dot extrahiert Monomere, um sie erneut verwenden zu können.
Zu chemischem Recycling hat Circular Valley in diesem Jahr einen Informationsfilm veröffentlicht, der die Möglichkeiten dieser Methode erklärt und verdeutlicht.
Warum KI bei Förderanträgen versagt
Fünf Gründe, warum Unternehmen auf menschliche Intelligenz setzen sollten.
Ob steuerliche Forschungszulage, Investitionsförderung oder EU-Programme. Künstliche Intelligenz (KI) wie ChatGPT liefert in Sekundenschnelle eine Vielzahl möglicher Förderprogramme. Doch zwischen der reinen Information und der tatsächlichen Erschließung von Fördermitteln liegt ein erheblicher Unterschied. Hier gilt es, Unternehmen zu sensibilisieren.
Fördermittel sind heute ein strategischer Bestandteil moderner Unternehmensfinanzierung. Es reicht daher nicht, die Programme zu kennen. Entscheidend ist, sie rechtssicher, vollständig und förderlogisch aufeinander abgestimmt umzusetzen, um die vollen Förderpotenziale zu heben. Genau hier beginnt die Arbeit von Fördermittelexpert*innen.
Fünf Gründe, warum KI-Tools nicht als Fördermittelberater funktionieren
1. KI erkennt die wahren Förderpotenziale nicht
ChatGPT kann erklären, was ein Förderprogramm leistet. Doch welche Kosten eines konkreten Vorhabens tatsächlich und wie hoch förderfähig sind, lässt sich so nicht beurteilen. Gerade bei komplexen Programmen wie der steuerlichen Forschungszulage sind Erfahrung, Struktur und rechtssichere Abgrenzung entscheidend. Eine gute Fördermittelberatung prüft jedes Vorhaben systematisch: von der Förderfähigkeit nach dem Forschungszulagengesetz (FZulG), AGVO oder De-minimis-Verordnung bis hin zur klaren Trennung förderfähiger und nicht förderfähiger Aufwände.
2. KI kann keine Förderstrategien entwickeln
Eine Liste von Förderprogrammen ersetzt keine Strategie. KI kann nur Optionen nennen, aber keine Strategien zur Umsetzung im Unternehmen entwickeln. Eine gute Fördermittelberatung integriert die Forschungszulage sinnvoll in laufende Projekte und strukturiert Innovations- sowie Investitionsprozesse auf Bundes-, Landes- und EU-Ebene. So entstehen nicht nur Optionen, sondern belastbare, wirtschaftlich wirksame Lösungen.
3. KI kann nicht mit Menschen kommunizieren
Ein Antrag ist mehr als ein Formular. Er muss Anforderungen erfüllen und überzeugen. KI liefert Textbausteine, aber führt keine Gespräche und reagiert nicht auf Rückfragen mit der notwendigen Erfahrung in der Verwaltungspraxis der verschiedenen Förderprogramme. Eine gute Fördermittelberatung übernimmt die gesamte Kommunikation mit Förderstellen, koordiniert mit Bescheinigungsstellen und entwickelt formal korrekte und überzeugende Argumentationen.
4. KI endet beim Prompt – Fördermittelberatung bei der erfolgreichen Projektprüfung
Nach dem Antrag geht die Arbeit oft erst richtig los. Rückfragen, Prüfungen, Nachweise. KI kann Unternehmen dabei nicht unterstützen und keine Verantwortung übernehmen. Eine gute Fördermittelberatung hingegen begleitet die Kund*innen durch den gesamten Förderzyklus mit sauberer Dokumentation, revisionssicherer Aufbereitung und Unterstützung bei Audits und Außenprüfungen.
5. KI zeigt nur den Dschungel – Förderexperten finden den Schatz
Datenbanken geben einen Überblick, aber keine Richtung. Eine gute Fördermittelberatung bewertet alle denkbar möglichen Förderprogramme im konkreten Unternehmenskontext und entwickelt daraus konkrete Maßnahmen, um das Maximum an Fördermöglichkeiten für die Kund*innen rauszuholen. Eine gute Fördermittelberatung schafft so echte wirtschaftliche Vorteile statt der bloßen Auflistung von Fördermöglichkeiten.
Der Autor Efe Duran Sarikaya ist CEO der Fördermittelberatung EPSA Deutschland.
Kurz mal die Welt retten
Wie GreenTech-Start-ups aus dem DACH-Raum dazu beitragen, die Auswirkungen des Klimawandels zu mildern.
Ist es bereits zu spät, den Klimawandel aufzuhalten? Während diese Frage unablässig für hitzige Debatten sorgt, arbeiten Start-ups unermüdlich an Lösungen für die dringendsten Umweltprobleme. Die DACH-Region erlebt einen rasanten Anstieg von GreenTech-Start-ups, angetrieben durch technologische Innovationen und zunehmenden regulatorischen Druck. Dies zeigt u.a. das DACH GreenTech Software Mapping 2025 von Hi Inov und veranschaulicht, welche vielversprechenden Ansätze und Technologien die Zukunft des GreenTech-Ökosystems in Europa prägen.
Mapping der Herausforderungen und Lösungen
Das Mapping bietet einen umfassenden Überblick über die Softwarelösungen von GreenTech-Start-ups im DACH-Raum. Sie umfassen eine Vielzahl von Ansätzen, um den Anstieg der globalen Temperaturen einzudämmen und die damit einhergehenden wirtschaftlichen und gesellschaftlichen Herausforderungen zu bewältigen.
1. Messung und Optimierung des CO2-Fußabdrucks
Fortgeschrittene Techniken zur Datenerfassung und KI-gesteuerte Analysen helfen Organisationen, ihre Effizienz zu steigern und ihren CO₂-Fußabdruck zu reduzieren. Sie helfen Unternehmen, jährlich Emissionen von über 216.000 Tonnen CO₂-Äquivalenten zu vermeiden. Horizontale Plattformen bieten allgemeine Monitoring-Tools für branchenübergreifende Messdienste. Vertikale Lösungen wie die für die Immobilienbranche maßgeschneiderte ESG-Datenplattform Deepki integrieren branchenspezifische Anforderungen.
2. Beschleunigung der Energiewende
Softwarelösungen spielen eine entscheidende Rolle bei der Optimierung der Standortauswahl für die Produktion erneuerbarer Energien, der vorausschauenden Wartung von Infrastruktur und der Verbesserung der Energiespeicherung. Sie können die Schwankungen in der Stromeinspeisung erneuerbarer Energien mindern und somit die Abhängigkeit von fossilen Brennstoffen reduzieren. Das Stuttgarter Start-up metergrid ermöglicht es beispielsweise Mieter*innen in Mehrfamilienhäusern, umweltfreundlichen Solarstrom zu nutzen, der im selben Gebäude produziert wird (mehr dazu in der StartingUp 01/25).
3. Förderung der Kreislaufwirtschaft und Ressourcenoptimierung
Digitale Lösungen erleichtern die Schonung von natürlichen Ressourcen durch intelligentes Ressourcenmanagement, indem sie die Planung und Nutzung von Ressourcen verbessern. Durch den Einsatz von KI lassen sich viele Prozesse optimieren, darunter Recycling, Landwirtschaft und Wassermanagement. So reduziert das Berliner Start-up Freshflow Abfall, indem es die Nachbestellung von frischen Lebensmitteln mit Machine Learning automatisiert und optimiert. Darüber hinaus verbinden digitale Marktplätze Produzent*innen überschüssiger Ware mit potenziellen Abnehmer*innen, um Ressourcen effizierter zu nutzen.
4. Förderung von Nachhaltigkeitsinitiativen in Unternehmen
Unternehmen nutzen digitale Werkzeuge, um ihre Nachhaltigkeit über die regulatorischen Anforderungen hinaus zu verbessern. Zu den eingesetzten Lösungen zählen CO₂-Kreditbörsen, die es Organisationen ermöglichen, Emissionen durch strukturierte Märkte auszugleichen, und Mitarbeiterengagement-Plattformen, die die Teilnahme der Belegschaft an ESG-Initiativen fördern. Start-ups wie das Hamburger CarbonStack unterstützen Unternehmen bei der Erstellung von Nachhaltigkeitsberichten und dabei die relevanten Richtlinien einzuhalten.
Die Entwicklung von 2023 bis heute
Insgesamt zeigt das Mapping ein reiferes und strukturierteres GreenTech-Ökosystem, das Europas Position als Pionier in digitalen Klimaschutzlösungen stärkt. Die Entwicklung zwischen den Mappings aus den Jahren 2023 und 2025 verdeutlicht drei wichtige Trends:
1. Anstieg der Anzahl der angebotenen Softwarelösungen
Die steigende Nachfrage nach nachhaltigkeitsorientierten Innovationen in verschiedenen Branchen hat das Wachstum des GreenTech-Ökosystems beschleunigt und zu einem rasanten Anstieg der angebotenen Softwarelösungen geführt.
2. Regulatorisch getriebene Fortschritte
Aufgrund des zunehmenden regulatorischen Drucks wächst der Anteil der angebotenen Lösungen, die auf Compliance-Bedürfnisse wie CSRD, die Rückverfolgbarkeit von Produkten und transparente CO₂-Buchhaltung eingehen. Es werden zunehmend vertikalisierte Monitoring-Tools entwickelt, um spezialisierte Datensätze und branchenspezifische Algorithmen zu erstellen.
3. Einfluss von generativer KI
Der Einsatz von generativer KI nimmt zu. Neue Anwendungsfälle im Bereich Nachhaltigkeit umfassen verbesserte Datenanalyse, automatisierte Compliance-Berichterstattung, sowie die Echtzeit-Optimierung von CO₂-Fußabdrücken und Ressourcenmanagement.
Fazit: Ein florierendes Ökosystem mit starker europäischer Führung
Der Klimawandel stellt eine immense Herausforderung dar, deren Bewältigung innovative technologische Lösungen erfordert. Das GreenTech Mapping 2025 verdeutlicht die führende Rolle Europas bei der Entwicklung dieser Lösungen und zeigt ein reiferes GreenTech-Ökosystem mit großer Dynamik. Durch den Einsatz fortschrittlicher Datenanalysen, KI und Automatisierung sind Start-ups in der DACHRegion gut positioniert, um sowohl wirtschaftlichen als auch ökologischen Mehrwert zu schaffen. Sie werden Unternehmen und politischen Entscheidungsträger*innen dabei helfen, den Übergang zu einer nachhaltigeren Wirtschaft zu beschleunigen und die Folgen des Klimawandels einzudämmen.
Der Autor Dr. Wolfgang Krause leitet als Managing Partner das Deutschlandgeschäft des auf B2B-Digitallösungen spezialisierten VC-Fonds von Hi Inov.
„Österreich hat einen langen Atem – und das zahlt sich im Bereich Applied AI aus“
Als führende Standorte in Sachen Künstliche Intelligenz liegen die USA und Asien auf der Hand, doch auch in Österreich gibt es eine vielfältige AI-Landschaft. Welche Vorteile der Standort für künstliche Intelligenz mit sich bringt und welche Rolle dabei Applied AI spielt, weiß Clemens Wasner, Gründer von AI Austria und CEO der EnliteAI.
Clemens Wasner ist Gründer des österreichischen Verbandes für Künstliche Intelligenz, AI Austria und CEO des Wiener Venture Studios EnliteAI. Der studierte Informatiker arbeitete über ein Jahrzehnt in Asien, bevor er 2017 EnliteAI gründete.
Herr Wasner, Sie kennen die AI-Szene aus erster Hand. Wie gut ist Österreich im internationalen Vergleich aktuell aufgestellt, wenn es um Applied AI geht?
Gemessen an seiner Größe steht Österreich erstaunlich gut da. Unsere AI–Landscape verzeichnet mittlerweile über 450 Unternehmen, die aktiv mit KI arbeiten – nicht nur Start-ups, sondern auch klassische Industrieunternehmen, Dienstleister und der öffentliche Sektor. Gerade im Bereich der industriellen Anwendungen ist Österreich breit aufgestellt: Es gibt zahlreiche Corporates, die eigene Competence Center gegründet, Ausgründungen vorgenommen oder Lizenzmodelle für KI aufgebaut haben. Auch die Zahl der Inkubatoren und Corporate Venture Capitalisten ist beachtlich. Das Thema ist in der Realwirtschaft angekommen – und das nicht erst seit gestern. Bereits 2018 gab es hierzulande einen deutlichen Aufschwung. Im Bereich der Spitzenforschung sind wir ebenfalls stark: Mit drei sogenannten ELLIS-Hubs – European Laboratory for Learning and Intelligent Systems – gehören wir zur europäischen Spitze, gemessen an der Größe des Landes.
Sie sprechen beim Blick auf Österreich oftmals vom „AI-Standort mit langem Atem“. Was genau meinen Sie damit und was macht aus Ihrer Sicht einen exzellenten Standort für AI-Start-ups aus?
Der „lange Atem“ ist positiv gemeint und beschreibt das, was Österreich im Bereich Forschung & Entwicklung auszeichnet: kontinuierliche Investitionen, strategischer Weitblick und langfristige Förderstrukturen. Die Steiermark war lange OECD-Spitzenreiter bei F&E-Ausgaben, Wien verfügt über eine dichte Forschungslandschaft. Das sind keine kurzfristigen Hypes, sondern über Jahrzehnte gewachsene Strukturen. Österreich verfügt zudem über eine differenzierte Förderarchitektur, die alle TRL-Stufen abdeckt – von der Grundlagenforschung bis zur Markteintrittsunterstützung. Auch Clusterstrukturen spielen eine Rolle: In Life Sciences etwa gibt es in Wien und Graz funktionierende Ökosysteme, in denen zunehmend auch KI eine Rolle spielt. Diese Verankerung ermöglicht Planbarkeit, die gerade in technologieintensiven Bereichen entscheidend ist.
Zu den Schlüsselfaktoren einen erfolgreichen Standorts zählen Infrastruktur, Talent Pool und Anwendungsmöglichkeiten. Wo sehen Sie hier derzeit die größten Hebel – und auch die größten Defizite – in Österreich?
Ein klarer Vorteil liegt in der Verfügbarkeit von Talenten: Wien zieht seit Jahren hochqualifizierte Developer aus dem osteuropäischen Raum an. Der AI-Fachkräftemangel ist hier weniger ausgeprägt als in anderen europäischen Hauptstädten. Hinzu kommt: Österreich bildet mehr AI-Absolventen aus, als die Wirtschaft derzeit absorbieren kann. Das schafft einen Bewerbermarkt, der gerade für Start-ups günstig ist. Auch Standortfaktoren wie Lebensqualität und erschwingliche Mieten machen zum Beispiel die Hauptstadt Wien attraktiv. Als Besonderheit sehe ich zudem den aktiven Zugang der Stadt: Wien versteht sich als First Client für KI-Anwendungen, etwa in der Analyse von Geodaten, IoT oder der Digitalisierung von Baueinreichprozessen. Hier ist wesentlich mehr Offenheit für politische Vergabe zu finden als in anderen Ländern. Weniger stark ist Wien in der Spitzenforschung vertreten, hier liegt Linz mit der JKU vorn. Aber man kann als kleines Land nicht alles abdecken – und sollte dort Schwerpunkte setzen, wo bestehende Stärken ausbaubar sind.
Was war der Gründungsimpuls für EnliteAI und wie ist Ihr Venture Studio heute aufgestellt?
Ich kam 2016 nach zehn Jahren in Asien zurück nach Österreich. In China und Japan war KI allgegenwärtig, ein regelrechter Hype. Zurück in Europa herrschte Funkstille – das war ein Kulturschock. Ich wollte dem Thema hierzulande Schub geben: 2017 gründete ich den Verband AI Austria und kurz darauf EnliteAI. Unsere Erkenntnis aus früheren Projekten zeigte, dass viele Unternehmen gute Ideen, aber keine Ressourcen zur Umsetzung hatten. Daraus entstand das Venture Studio: Wir entwickeln Prototypen gemeinsam mit Unternehmen und gründen darauf spezialisierte Start-ups. Aktuell sind wir 20 Personen und verfolgen zwei Themen – Detekt, das sich auf den Bereich Mobile Mapping spezialisiert hat, und ein weiteres im Stromnetzmanagement. Mit EnliteAI möchten wir künftig weitere Projekte unterstützen und bereiten dafür eine Dual-Entity-Struktur mit einem eigenen Fonds vor. Ziel ist es, das Modell professionell zu skalieren und Investoren direkt in die Spin-outs zu bringen.
Rechenleistung zählen zu den Schlüsselressourcen in der AI. Was braucht es aus Ihrer Sicht, damit europäische Standorte hier nicht dauerhaft in Abhängigkeit geraten?
Realistisch betrachtet: Die Abhängigkeit besteht bereits. Die großen Hyperscaler sind US-dominiert, ebenso Chips, Kommunikationstools, Social Networks. Europa muss in die digitale Souveränität investieren. Erste Schritte wie AI Factories sind wichtig, aber nicht ausreichend. Wir brauchen europäische Cloud-Anbieter, Chipproduktion auf europäischem Boden und eine nachhaltige Energiepolitik. Frankreichs KI-Boom basiert auf Atomstrom – weil er langfristig planbar ist. Diese Planbarkeit fehlt in vielen europäischen Ländern derzeit. Ohne Strom gibt es keine KI. Auch das zeigen Stimmen von Sam Altman, Elon Musk und anderen. Hier ist ein strategischer Paradigmenwechsel notwendig.
Sie sprachen bereits die vielfältige Landschaft von kleinen und mittleren Unternehmen in Österreich an, die offen für KI sind. Wie gut funktioniert das Matching zwischen Start-ups und klassischen Industrieunternehmen?
Österreich macht hier sehr viel richtig. Es gibt ein breites Netz an Förderinstrumenten – von der Österreichischen Forschungsförderungsgesellschaft FFG über die Austria Wirtschaftsservice bis hin zu regionalen Wirtschaftskammern. Zudem bietet Österreich eine Forschungsförderungsprämie an, bei der 14 Prozent der F&E-Ausgaben quasi mit einem Blankoschein gefördert werden können. Zudem organisieren viele Institutionen aktiv Matchmaking-Events, etwa im Rahmen von PreSeed-, AI-Adoption- oder Innovationsprogrammen. Hinzu kommt der Industry-Startup-Marktplatz mit mehreren Tausend registrierten Unternehmen. Auch Pitchings werden gefördert. Das Ziel ist stets, AI nicht nur in der Theorie zu belassen, sondern in die Realwirtschaft zu bringen. Trotzdem: Viele Unternehmen wissen noch immer nichts davon. Hier braucht es also noch mehr Aufklärung.
Welcher KI-Standort – in Österreich und darüber hinaus – hat Sie zuletzt positiv überrascht?
In Österreich ist Linz für mich der Hotspot schlechthin – die Kombination aus Spitzenforschung und erfolgreichem Technologietransfer ist dort besonders gut gelungen. International beeindruckt mich Twente in den Niederlanden: kein großer Name, aber mit klarer Strategie. Sie haben das Spin-out-Modell von Oxford und Cambridge adaptiert und konsequent umgesetzt – mit IP-Offices, Gründungsberatung und Infrastruktur für Start-ups. Ein weiteres Vorbild ist Heilbronn mit den Campus Founders: Sie haben, unterstützt durch die Dieter Schwarz Stiftung, einen Ort für Unternehmertum und Innovationen geschaffen und könnten Vorbild für viele europäische Regionen werden. Viele Stiftungen schaffen Parks oder Schlösser, aber wesentlich gewinnbringender wäre die Förderung von Entrepreneurship wie es in Heilbronn passiert statt Museumsstiftung. Europa braucht diese neue Denkweise.
Clemens Wasner, vielen Dank für das Gespräch.
Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin
“Digitalisierung ist kein Nice-to-have mehr, sondern strukturelle Voraussetzung für Wettbewerbsfähigkeit”
„Made in Steel. Built on Data.“ Mit diesem Leitsatz positioniert sich die EMR Dynamics GmbH als strategische Antwort auf die zunehmende Komplexität globaler Lieferketten – und auf die wachsenden Anforderungen an Geschwindigkeit, Transparenz und Resilienz in industriellen Wertschöpfungsnetzwerken.
Unter der Leitung von Emrullah Görsoy geht EMR Dynamics aus einem Berliner Familienunternehmen hervor, das seit 2005 als verlässlicher Partner für mechanische Komponenten in Europa etabliert ist. Nun markiert das Unternehmen den nächsten Entwicklungssprung der Unternehmensgeschichte: von der Fertigung zur Plattform.
Fragen dazu an Emrullah Görsoy, Managing Director at EMR:
Seit mehr als 20 Jahren seid ihr mit EMR am Markt. Man könnte sagen, ihr macht vieles richtig – Wie lautet euer Erfolgsrezept?
Unser Erfolgsrezept liegt in der konsequenten Weiterentwicklung. Wir haben uns nie auf bestehenden Strukturen ausgeruht, sondern das Unternehmen immer wieder neu gedacht – operativ, strategisch und technologisch. Besonders in Zeiten des Wandels war unser pragmatischer Unternehmergeist entscheidend. Dabei kombinieren wir mittelständische Robustheit mit einer agilen Denkweise – anpassungsfähig, resilient und wachstumsorientiert.
Zeitnah startet ihr mit eurer Neugründung EMR Dynamics am Markt. Was steckt dahinter?
EMR Dynamics ist unsere Antwort auf ein fragmentiertes Marktumfeld und wachsende Anforderungen an Geschwindigkeit, Transparenz und Resilienz in industriellen Lieferketten. Wir verbinden vertikal integrierte Fertigungskompetenz mit einer digitalen Prozessarchitektur – eine B2B-Plattform für die intelligente Steuerung und Vermittlung industrieller Produktions- und Beschaffungsprozesse. Das Ziel: maximale Skalierbarkeit, reduzierte Time-to-Market und durchgängige Prozesssicherheit für unsere Kunden.
Damit schlagen wir die Brücke zwischen Mittelstand und digitaler Ökonomie – resilient, effizient und kundennah. Wir wollen EMR Dynamics als Plattformmarke im industriellen Mittelstand etablieren – mit eigener Fertigung, digitalem Backbone und strategischer Nähe zum Kunden.
An wen richtet sich euer Angebot?
Unsere Zielgruppen sind OEMs, Tier-1-Zulieferer und Systempartner aus hoch regulierten und qualitätskritischen Industrien – etwa Rail, Aerospace, Defense oder Industrial Tech. Wir liefern nicht nur Komponenten, sondern vernetzen Prozesse, sichern Supply Chains ab und schaffen Plattformlösungen für beschleunigte Wertschöpfung – alles aus einer Hand.
Wie unterscheidet sich euer Angebot von klassischen Fertigungsdienstleistern?
Wir sind kein reiner Teilelieferant. Wir verstehen uns als Lösungsanbieter entlang der industriellen Wertschöpfung – von Co-Engineering und Prototyping über skalierbare Serienfertigung bis hin zur integrierten Lieferkette. Durch die Plattformlogik können wir unsere Prozesse mit denen unserer Kunden synchronisieren und so Time-to-Market und Lieferperformance signifikant verbessern – gerade für komplexe und hochqualifizierte Baugruppen.
Seit mehreren Jahren bist du Geschäftsführer des Unternehmens EMR Industrial. Wie fühlt es sich an, als Young Professional bereits in einer solchen verantwortungsvollen Rolle zu sein?
Herausfordernd, aber erfüllend. Ich hatte das Privileg, früh Verantwortung zu übernehmen – besonders während der Transformation von EMR in der Pandemie. Die Krise 2020 hat uns gezwungen, unser gesamtes Geschäftsmodell zu pivotieren. Diese Erfahrung hat mich geprägt: Strategisch zu denken, unternehmerisch zu handeln und nie den Kontakt zur operativen Realität zu verlieren.
Welche Bedeutung hat die Digitalisierung aus deiner Sicht für den Mittelstand und was können sich Mittelständler von Start-ups abschauen?
Digitalisierung ist kein Nice-to-have mehr, sondern strukturelle Voraussetzung für Wettbewerbsfähigkeit. Der Mittelstand kann von Start-ups besonders eines lernen: den Mut, Prozesse radikal neu zu denken – und den Fokus auf Geschwindigkeit, Automatisierung und User Experience.
Emrullah Görsoy, Danke für die Insights

