Aktuelle Events
KI-Start-up-Report
Der (Start-up-)Hype um die KI-Technologie ist ungebrochen. Wir zeigen, wie breit gefächert sowohl die Anwendungsgebiete als auch die Geschäftsmodelle von KI sind.
Einmal im Jahr veröffentlicht Deutschlands führende Initiative für künstliche Intelligenz (KI), appliedAI, ihr Update der „KI-Start-up-Landkarte“. AppliedAI ist eine Initiative der UnternehmerTUM. Sie dient Unternehmen jeder Größenordnung, Start-ups, öffentlichen Einrichtungen und Wissenschaftlern als gemeinnützige, neutrale Plattform, um die Anwendung neuester Methoden und Technologien im Bereich KI zu beschleunigen. AppliedAI ist mit derzeit 52 Partnern aus Wissenschaft und Industrie, öffentlichem Sektor und ausgewählten Start-ups die größte Initiative ihrer Art in Europa.
Die aktuellen Ergebnisse der Studie zeigen, dass der Hype um die Technologie weiter anhält. Hier die wichtigsten Fakten und Zahlen im Überblick: Deutschen KI-Start-ups geht es gut. Insgesamt gibt es in Deutschland 247 junge Unternehmen, die KI in signifikantem Umfang einsetzen. Verglichen mit den Ergebnissen aus dem Vorjahr entspricht dies einer Zunahme von 15 Prozent. 54 Start-ups kamen seitdem hinzu; entweder weil sie neu gegründet wurden oder weil sie inzwischen die Kriterien für die Aufnahme in die Landkarte erfüllen.
Nur wenig Start-ups aus dem Vorjahr – insgesamt 21 Unternehmen – sind nicht mehr Teil der diesjährigen Landkarte; entweder weil sie nicht mehr aktiv sind oder weil sie inzwischen einen anderen Technologiefokus haben. „Die Überlebensrate der inkludierten Start-ups liegt bei 90 Prozent“, sagt Dr. Andreas Liebl, Managing Director von appliedAI. „Das ist ein großartiger Wert und zeigt, dass sich Start-ups mit KI-Fokus auch in Deutschland positiv entwickeln. Da Start-ups die Innovationsfähigkeit von Ländern widerspiegeln, ist es wichtig, ihre Entwicklung in Deutschland genau zu verfolgen.“
KI-Start-ups scheitern seltener
In Sachen Finanzierung legen die Start-ups ebenfalls zu. Während sie sich im Vorjahr insgesamt 1,2 Mrd. Euro sichern konnten, sind es dieses Mal bereits 2,2 Mrd. Euro. Dies entspricht einem durchschnittlichen Plus von 24 Prozent. Auch hinsichtlich der Mitarbeiterzahl setzt sich der Skalierungstrend fort: Bereits 23 KI-Start-ups beschäftigen über 100 Mitarbeiter, im Vorjahr traf dies auf nur neun Start-ups zu. Der Münchner Process-Mining-Vorreiter Celonis kann aktuell als einziges deutsches Start-up auf mehr als 500 Mitarbeiter zählen. „Diese Zahlen belegen, dass deutsche KI-Start-ups zunehmend ‚erwachsen‘ werden und sich am Markt etablieren. Sie erhalten mehr Kapital, beschäftigen mehr Mitarbeiter und scheitern – verglichen mit anderen Start-ups – seltener“, so Dr. Liebl.
Branchentrends setzen sich fort
Wie im Vorjahr sind die meisten KI-Start-ups der Fertigung, dem Transport und der Mobilität sowie dem Gesundheitswesen zuzuordnen und haben einen B2B-Fokus. Besonders die Fertigung legt im Vergleich zum Vorjahr zu. Schlusslichter sind die Logistik- und die Pharmabranche (Letztere erhielt in der Corona-Krise wichtige Wachstumsimpulse), während der Handel und das Finanzwesen im Mittelfeld stagnieren. Nur wenige deutsche KI-Start-ups beschäftigen sich mit Deep-Tech-Themen wie IT und Cybersecurity. „Dies könnte an einer gewissen Skepsis deutscher Unternehmen liegen, die es scheinbar vermeiden, in strategisch sensiblen Angelegenheiten mit Start-ups zusammenzuarbeiten, und hier große, etablierte Unternehmen bevorzugen“, so Dr. Liebl. Vergleicht man die Zahlen im Bereich Deep-Tech mit den USA oder Israel, so zeigt sich, dass hier durchaus Aufholbedarf besteht. Die meisten Start-ups sind hierzulande weiterhin den Unternehmensbereichen Marketing und Customer Service zuzuordnen.
Regionales Gefälle bleibt bestehen
Weiterhin sind rund zwei Drittel aller deutschen KI-Start-ups in Berlin und München ansässig. Spitzenreiter bleibt Berlin mit 95 Start-ups, München kommt auf 61 Unternehmen. Deutlich hinterher hinken auf Platz drei und vier Hamburg mit 14 und Karlsruhe mit neun Start-ups. Alle anderen Städte bleiben im einstelligen Bereich. In Sachen Finanzierung bietet München aufgrund seiner Wirtschaftskraft weiterhin ein ideales Ökosystem für Start-ups: 27 Mio. Euro erhielten Start-ups in der diesjährigen Untersuchung dort im Schnitt. In Berlin waren es nur 9 Mio. Euro.
KI-Start-ups in allen Branchen aktiv
Wie breit gefächert sowohl die Anwendungsgebiete als auch die Geschäftsmodelle von KI sind, zeigen die folgenden acht Start-ups. Sie nutzen KI im Straßenverkehr, berechnen Preiselastizität, wollen den Kundenservice revolutionieren oder analysieren digitales Produktdesign. Auch intelligente Kameras und Bewässerungssysteme zeigen, wie wenig sich KI von Branchengrenzen einengen lässt, und das bei bemerkenswert hoher Praxisorientierung.
7Learnings
Felix Hoffmann, Eiko van Hettinga und Martin Nowak, die Gründer des 2019 in Berlin aus der Taufe gehobenen Start-ups 7Learnings, setzen mit ihrem Geschäftsmodell auf die Tatsache, dass der Onlinehandel immer komplexer wird. „Jeder Händler steht heute in direkter Konkurrenz mit den anderen Händlern und jeder Akteur spürt jedwede Veränderung in der Marktumgebung“, so van Hettinga. Zudem seien auch Kunden preisbewusster und anspruchsvoller geworden. Damit E-Commercler mit dieser Dynamik besser umgehen können, zapft 7Learnings eine Vielzahl von Datenquellen an: unter anderem solche von vergangenen Käufen, Kosten, Preisverhalten in bestimmten Jahreszeiten bzw. Zeitfenstern sowie Wettbewerbs- oder auch Wetterdaten. Auf dieser Basis erstellt die KI schließlich eine Gewinn-, Umsatz- und Absatzvorhersage pro Produkt und Preispunkt.
Die Vorhersage werde durch neuronale Netze möglich, so der Co-Founder. Diese identifizieren punktgenau Absatz- und Elastizitätstreiber. Danach kommt die Software für Dynamic Pricing zum Einsatz. „Der Händler legt fest, welchen Umsatz er erreichen will“, hält van Hettinga fest. Von diesen Parametern ausgehend werde das optimale Preisszenario erstellt. „Daraus errechnet sich die Preiselastizität“, so van Hettinga. Entscheidender Faktor sei dabei die Preisbereitschaft der Kunden. „Es kommt immer wieder vor, dass Profitpotenzial nicht genutzt wird, weil den Kunden voreilig Discount gegeben wird“, erläutert der Co-Founder. „Letztlich geht es dabei aber auch um die Frage der Unternehmensstrategie: Wie stelle ich mich als Unternehmen auf, welche Discounts gebe ich und wie kann ich als Unternehmen wachsen?“
Kimoknow
Künstliche Intelligenz macht es möglich, dass auch Maschinen Objekte erkennen können. Hierfür bedarf es großer Mengen an qualitativ hochwertigen Bilddaten, mit denen die Algorithmen manuell trainiert werden. Das am Karlsruher Institut für Technologie (KIT) entstandene Start-up Kimoknow hat eine Technologie entwickelt, um dieses Training zu automatisieren. „KI-Systeme für die Erkennung von Objekten zu trainieren, ist nach wie vor zeitaufwändig, unflexibel, teuer, stark umgebungsabhängig und erfordert einen hohen Rechenaufwand“, erklärt Mitgründer Lukas Kriete. Das Start-up greift deswegen auf Bilddaten zurück, die bei computerunterstützten Entwicklungsprozessen (CAD) und im Produktionsdatenmanagement (PDM) ohnehin für alle Objekte entstehen. Sie geben unter anderem Aufschluss über Material, Geometrie und Position des jeweiligen Gegenstandes. Die CAD- und PDM-Daten werden extrahiert und für das automatisierte Training der KI genutzt. Das auf diese Weise geschulte Objekterkennungssystem kann vielfältig eingesetzt werden, unter anderem in Augmented-Reality-Brillen (AR-Brillen). Sie erfassen relevante Gegenstände im Sichtfeld des Nutzers in Echtzeit und verfügen zudem über notwendige Kontextinformationen zum betreffenden Objekt.
Als ersten Use Case für solche AR-Brillen hat Kimoknow ein Assistenzsystem entwickelt, das Fachkräfte bei der Montage komplexer Geräte unterstützen soll. Der virtuelle Assistent führt die Nutzer durch den gesamten Montageprozess, visualisiert ohne zusätzliches Display Schritt für Schritt die Bauanleitung und zeigt so, in welcher Reihenfolge welches Teil mit welchen Werkzeugen und Montagematerialien verarbeitet wird. Er wiederholt einzelne Schritte, wenn Fehler auftauchen, und dokumentiert den Prozess. Der Monteur hat beide Hände frei und kommuniziert über Blickkontakt, Handzeichen oder Sprachbefehl mit dem System. „Der Montageassistent macht den Prozess bei besserer Qualität effizienter, produktiver, schneller und kostengünstiger“, sagt Kriete. Der Assistent eignet sich für alle Industrien, in denen hochkomplexe Produkte in geringer Stückzahl hergestellt werden. Der Prototyp wird für die Endmontage hoch spezialisierter Messgeräte eingesetzt und derzeit im Center for Artificial Intelligence Talents (CAIT) am Institut für Informationsmanagement im Ingenieurwesen (IMI) des KIT erprobt. Kimoknow ist eine Ausgründung des IMI und im Mai 2020 an den Start gegangen. Neben Lukas Kriete gehören Roman Wiegand, Aaron Boll, Michael Grethler und Vesa Klumpp zum Gründungsteam.
Natix
Natix aus Hamburg macht ein Netzwerk aus analogen und IP-Kameras zu einem intelligenten Schwarm, wie es Co- Founder Alireza Ghods ausdrückt. Dieser Schwarm könne dann Situationen besser analysieren, einzelne Kameras können Aktionen leichter identifizieren und auslösen. Insgesamt führt das Kombinieren von Daten mehrerer Kameras dazu, dass eine bessere Erkennung, Vorhersage und Planung möglich werde. Die KI von Natix klinkt sich dabei gewissermaßen in eine bereits vorhandene Infrastruktur ein, etwa in jene von Städten. „Wir glauben, dass die dortige Kamerainfrastruktur in Kombination mit Computer-Visions-Technologie dabei helfen kann, schnellere und bessere Entscheidungen zu treffen, Prozesse zu optimieren und die öffentliche Sicherheit zu verbessern“, so Ghods. Schließlich sei man mit der firmeneigenen KI u.a. in der Lage, Berichte zu erstellen oder auch Alarme auszulösen.
Eine weitere zeitgemäße Anwendungsmöglichkeit hat man bei Natix parat: „Wir haben an einer Covid-Lösung gearbeitet, um Kommunen und Geschäftsinhabern bei der Überwachung des Gesichtsmaskenschutzes, der Abstandsregeln und der maximalen Belegung zu helfen.“ Das bedeutet im Kontext der Überwachung von Covid-19-Schutzmaßnahmen, dass die KI-Lösung Videos in Echtzeit anonymisiert und dabei erkennt, ob Personen Gesichtsmasken tragen oder nicht. Trägt jemand keine Gesichtsmaske, kann diese Person beispielsweise am Eingang eines Geschäfts via Display darüber informiert oder ein Verantwortlicher darüber in Kenntnis gesetzt werden. Dabei ist Natix die Wahrung der Privatsphäre wichtig. Das wird dadurch garantiert, dass die Ereigniserkennung auf der Kamera erfolgt und somit GDPR-konform ist. Zudem kann die Echtzeit-Anonymisierungs-KI vor der Kamera vertrauliche Daten filtern, bevor sie gespeichert oder weitergegeben werden.
Dies ist ein Auszug aus einem aktuellen Artikel unseres Printmagazins StartingUp: Den vollständigen Artikel liest du in der StartingUp - Heft 03/20 - ab dem 20. August 2020 im Handel oder jederzeit online bestellbar - auch als ePaper erhältlich - über unseren Bestellservice
Verkaufen ohne Shop: Zahlungen erhalten mit PayPal Open
Sie verkaufen digitale Kunst, Online-Kurse oder Handgemachtes? Dafür ist ein Shop nicht zwingend nötig. Mit Zahlungslinks und Kaufen-Buttons von PayPal erhalten Sie Ihre Zahlungen, wo die Verkäufe entstehen – schnell, sicher und unkompliziert.
Zahlungen empfangen, wo Ihre Community ist
Viele Soloselbständige nutzen Social Media, E-Mails oder Messenger nicht nur zur Kommunikation, sondern auch zur Vermarktung ihrer Produkte. Mit den passenden Tools können sie dort zusätzlich direkt Zahlungen empfangen – ganz ohne Onlineshop oder technisches Setup.
PayPal Open bietet drei flexible Möglichkeiten, Zahlungen zu erhalten:
- Zahlungslinks, die schnell geteilt werden können, etwa per E-Mail, DM, Post oder QR-Code.
- Kaufen-Buttons, die sich in eine bestehende Seite integrieren lassen, zum Beispiel in ein Link-in-Bio-Tool oder eine Landingpage.
- Tap to Pay macht Ihr Smartphone zum Zahlungsterminal (kompatibles Smartphone vorausgesetzt).
Alle Varianten funktionieren schnell, mobiloptimiert und bieten eine vertraute Nutzererfahrung. Damit wird der Ort, an dem Interesse entsteht, direkt zum Verkaufsort.
Zahlungslinks: Vom Post zur Bezahlung in Sekunden
Ein Kauf beginnt nicht im Warenkorb, sondern dort, wo Interesse entsteht: in einem Post, einer Story oder einer E-Mail. Genau hier setzen Zahlungslinks von PayPal an: Sie führen direkt von der Produktinfo zur Zahlung, ohne Umwege über externe Plattformen.
Das ist besonders hilfreich bei:
- digitalen Produkten
- E-Book-, Kurs- oder Software-Verkäufen
- (Online-)Vorbestellungen oder Trinkgeld-Modellen
Ein Zahlungslink erzeugt eine eigene Bezahlseite mit Titel, Preis, Beschreibung und Produktbild. Varianten wie Größen oder Farben sind ebenso integrierbar wie frei wählbare Preise. Versandkosten und Steuern können automatisch berechnet werden.
Der fertige Zahlunglink lässt sich flexibel teilen: per Messenger, E-Mail, Social Media oder als QR-Code auf einem Produktetikett oder Tischaufsteller. Die Zahlungsseite unterstützt gängige Zahlarten wie Kreditkarte, Wallets sowie ausgewählte regionale Methoden wie SEPA-Lastschrift, iDEAL oder Swish – je nach Land und Verfügbarkeit für die jeweiligen Käufer:innen.
Besonders praktisch: Ihre Kund:innen brauchen dafür kein eigenes PayPal-Konto. So können Zahlungen sicher und bequem online abgewickelt werden.
Für Selbständige, die regelmäßig digitale Inhalte verkaufen, ist das eine einfache Möglichkeit, Zahlungen mit PayPal zu empfangen, ohne ein klassisches Shopsystem aufsetzen zu müssen.
Kaufen-Buttons: Ihre Seite wird zur Verkaufsfläche
Wer bereits eine Website oder ein Link-in-Bio-Tool nutzt, kann PayPals Warenkorb- oder Kaufen-Buttons mit wenigen Zeilen Code integrieren. Damit verwandeln Sie eine einfache Landingpage in eine funktionale Verkaufsfläche. Sie erstellen den Button in Ihrem PayPal-Konto und erhalten automatisch den passenden HTML-Code, der nur noch kopiert und in die Website eingefügt wird. Kund:innen klicken, zahlen mit ihrer bevorzugten Methode und der Betrag wird direkt gutgeschrieben.
Sie behalten die volle Kontrolle über Ihre Gestaltung, Storytelling und Nutzerführung und profitieren gleichzeitig von einem verlässlichen Check-out, der hilft Vertrauen zu schaffen. Eine schlanke Lösung für alle, die ihr Angebot online präsentieren und Zahlungen direkt abwickeln möchten.
Mit Tap to Pay ganz einfach vor Ort verkaufen
Neben den digitalen Optionen können Sie auch vor Ort Zahlungen annehmen: direkt über Ihr Smartphone. Mit der PayPal-Funktion „Tap to Pay“ akzeptieren Sie kontaktlose Zahlungen per Karte oder Wallet ohne separates Kartenlesegerät. Alles, was Sie benötigen, ist ein kompatibles iPhone oder Android-Gerät mit NFC-Funktion (Tap to Pay funktioniert auf Geräten mit Android 8.0, NFC-Funktionen und Google Play Services. iOS ab iPhone XS und höher).
Besonders praktisch ist das beispielsweise für:
- Märkte, Pop-up-Stores
- Workshops und Live-Events
- Verkäufe im kleinen Rahmen, bei denen Flexibilität zählt
DIONYS: Schluss mit Event-Chaos
Events und Offsites erleben ein massives Comeback. Doch hinter den Kulissen vieler Locations herrscht oft noch analoges Chaos. Das Münchner Start-up DIONYS will genau das ändern: Schluss mit dem E-Mail-Pingpong, hin zu echten Buchungen.
Die steigende Nachfrage nach Firmen-Events und privaten Feiern stellt die Hospitality-Branche vor administrative Herausforderungen. Während Hotelzimmer und Tischreservierungen weitgehend digitalisiert sind, erfolgt die Bearbeitung von Gruppenanfragen und Event-Konfigurationen in vielen Betrieben noch manuell. Das 2025 gegründete Software-Start-up DIONYS tritt an, um diesen Prozess durch Standardisierung zu beschleunigen.
Konfigurator statt E-Mail-Pingpong
Das Kernprodukt des Unternehmens ist eine Softwarelösung, die den Angebotsprozess für Veranstaltungen digitalisiert. Anstatt individuelle Angebote manuell zu tippen, sollen Kunden ihre Events – von Menüs bis zu Getränkepaketen – über eine Online-Oberfläche selbst konfigurieren können.
CEO Folke Mehrtens beschreibt den aktuellen Zustand der Branche als paradox: „Es ist absurd: Gerade dort, wo Events den meisten Umsatz bringen, fehlt oft jede Struktur. Solange Events wie Sonderfälle behandelt werden, bleiben sie ein operativer Schmerz.“
Die Software von DIONYS zielt darauf ab, diesen „Schmerz“ zu lindern, indem sie Events von der manuellen Ausnahme zum standardisierten Produkt wandelt – buchbar und transparent wie im E-Commerce.
Technik trifft auf operative Erfahrung
Technisch steht das Unternehmen vor der Hürde, die individuellen Parameter von Gastronomiebetrieben – etwa spezifische Stornoregeln oder variable Menüfolgen – in einen Algorithmus zu überführen. CTO Gregor Matte betont, dass die Herausforderung weniger in der reinen Buchung, sondern in der Abbildung der operativen Vielfalt liege.
Um die Praxistauglichkeit sicherzustellen, setzt das Gründungsteam auf Mitstreiter mit Branchenhintergrund. Neben Mehrtens (Strategie) und Matte (Technik) sind unter anderem Ekkehard Bay (ehemals Manager im Mandarin Oriental) sowie Daniel Simon (ehemals OpenTable) an Bord.
Wettbewerb und der Faktor „Mensch“
DIONYS positioniert sich in einem dichten Marktumfeld zwischen etablierten Back-Office-Lösungen wie Bankettprofi und modernen Reservierungssystemen wie aleno. Die Münchner suchen ihre Nische bei individuellen Event-Locations und Restaurants, die sich von reinen Tagungshotels abgrenzen.
Die in der Branche verbreitete Sorge, dass durch die Digitalisierung die persönliche Note leide, versucht Head of Hospitality Ekkehard Bay zu entkräften: „Wenn Standardfragen digital geklärt sind, bleibt im echten Gespräch mehr Zeit für das, was wirklich zählt: besondere Wünsche und echte Aufmerksamkeit.“
Erste Marktdaten und Ausblick
Seit dem Start im Herbst 2025 wurden nach Angaben des Unternehmens Anfragen mit einem Volumen von rund 400.000 Euro über das System abgewickelt. Zu den ersten Nutzern zählen bekannte Münchner Betriebe wie Kustermann und die Bar Valentin. Das Erlösmodell basiert auf einer Kombination aus monatlicher Softwaregebühr und umsatzabhängigen Komponenten.
Für die nächste Wachstumsphase strebt DIONYS die Akquise von 100 „Pionier-Betrieben“ in der DACH-Region an. Ob sich der Ansatz als neuer Industriestandard durchsetzen kann, wird davon abhängen, ob die Software die komplexen Anforderungen einer breiten Masse an unterschiedlichen Betrieben tatsächlich ohne manuelles Nachsteuern abbilden kann. Daniel Simon gibt sich zuversichtlich: „In drei Jahren wird Event-Management nicht mehr improvisiert, sondern datenbasiert gesteuert.“
Europa kann KI!
Was wir von den besten EU-AI-Companies lernen können, erläutert KI-Experte Fabian Westerheide.
Europa muss sich bei KI nicht kleinreden. Wir sehen gerade sehr deutlich: Aus Europa heraus entstehen Unternehmen, die Kategorien besetzen – und dann auch das große Kapital anziehen. Beispiele gibt es genug: Mistral AI, DeepL, Black Forest Labs, Parloa, Helsing, Lovable oder n8n.
Ich schreibe das aus drei Blickwinkeln: als Investor (AI.FUND), als Konferenz-Initiator (Rise of AI Conference) und als Autor von „Die KI-Nation“. Was du hier bekommst, ist kein „Europa-hat-ein-Problem“-Essay – sondern eine Analyse plus ein Execution-Set an Empfehlungen, das du direkt auf dein Start-up übertragen kannst.
Die Realität: Seed geht oft – Scale ist das Spiel
Am Anfang brauchst du selten „zu viel“ Geld. MVP, erste Kunden, Iteration: Das klappt in Deutschland in vielen Fällen mit Seed. Die echte Trennlinie kommt später – wenn du aus einem starken Start-up einen Kategorie-Gewinner bauen willst.
Denn KI ist zunehmend Winner-takes-most. Und das gilt auch fürs Kapital: In vielen Fällen ist die Growth-Finanzierung in den USA grob 25-mal größer – bei den aktuellen Front-Runnern (Modelle, Infrastruktur, Distribution) wirkt es teilweise wie 100-mal, weil Kapital sich auf die vermuteten Sieger stapelt. (Nicht „fair“, aber Marktmechanik.)
Die gute Nachricht: Genau die EU-Vorbilder oben zeigen, dass du das nicht wegdiskutieren musst – du musst es exekutieren.
Was die EU-Winner gemeinsam haben: 6 Execution-Prinzipien
1. Starkes Gründerteam – aber vor allem: vollständig
Alle genannten Vorbilder hatten (oder bauten sehr schnell) ein Team, das drei Dinge gleichzeitig kann:
- Tech & Produkt (nicht nur „Model-IQ“, sondern Produktgeschmack)
- Go-to-Market (Vertrieb, Buyer-Verständnis, Pricing)
- Tempo (entscheiden, shippen, lernen)
Wenn eine Säule fehlt, zahlst du später mit Zeit. Und Zeit ist in KI eine Währung, die dir niemand schenkt.
Founder-Move: Benenne eine Person, die Umsatz genauso hart verantwortet wie Modellqualität. Wenn das „später“ ist, ist das sehr wahrscheinlich dein Bottleneck.
2. Global denken – aber spitz: KI-Nische statt Bauchladen
Die EU-Winner sind nicht „KI für alles“. Sie besetzen klare Nischen:
Language-AI (DeepL), Customer-Experience-Agents (Parloa), GenAI-Modelle (Black Forest Labs), Defence-Tech (Helsing), Builder/Vibe-Coding (Lovable), Orchestration & Automation (n8n), Foundation-Model-Ambition (Mistral).
Founder-Move: Formuliere deinen Claim so, dass er in einem Satz sagt, welche Kategorie du dominierst. Wenn du drei Absätze brauchst, bist du noch zu breit.
3. Umsatz ist keine Nebenwirkung – Umsatz ist Souveränität
Der schnellste Weg zu Growth-Capital ist nicht „noch ein Pilot“, sondern Revenue, der deine Kategorie glaubwürdig macht.
Parloa kommuniziert z.B. ARR > 50 Mio. USD und wächst international – genau die Art Signal, die große Runden freischaltet.
Founder-Move (gegen Pilotitis): Kein PoC ohne schriftlichen Pfad in einen Vertrag (Budget, KPI, Entscheidungstermin). Sonst finanzierst du mit deiner Runway den Lernprozess des Kunden.
4. Internationales Kapital früh anbahnen – bevor du es brauchst
Das Muster ist klar: Erst Kategorie-Story + Traktion, dann große Checks.
Mistral (Series C 1,7 Mrd. €) oder Lovable (330 Mio. USD bei 6,6 Mrd. Bewertung) sind kein „Glück“ – das ist Momentum + Positionierung + Timing.
Founder-Move (90-Tage-Plan):
- Baue eine Capital Map deiner Nische (wer zahlt Growth-Checks?)
- Definiere die drei Metriken, die diese Investor:innen sehen wollen
- Organisiere zehn Intros jetzt, nicht erst bei sechs Monaten Runway
5. Compute ist keine IT-Zeile – es ist ein Wachstumshebel
In KI ist Compute Teil deiner Wettbewerbsfähigkeit. Geschwindigkeit beim Trainieren, Testen und Deployen entscheidet, wie schnell du am Markt lernst.
Founder-Move: Plane Compute-Runway wie Cash-Runway. Verhandle früh Kontingente, bevor dein Verbrauch explodiert – sonst wird Wachstum plötzlich zur Margen-Frage.
6. Trust & Compliance als Verkaufsargument – nicht als Ausrede
Gerade in DACH gilt: Wer secure, audit-fähig, enterprise-ready wirklich liefern kann, gewinnt Deals.
DeepL betont genau diesen Business-Wert: verlässliche, sichere Lösungen statt Hype.
Founder-Move: Baue Trust-Artefakte früh – Dokumentation, Governance, Datenflüsse, Rollen, Audit-Spuren. Das beschleunigt Enterprise-Vertrieb, statt ihn zu bremsen.
Kurz-Checkliste: Wenn du in Europa KI gewinnen willst
- Kategorie in einem Satz (spitze Nische, globaler Anspruch)
- Klarer Revenue-Pfad (weniger Piloten, mehr Verträge)
- Capital Map (international früh andocken)
- Compute-Runway (wie Cash planen)
- Trust by Design (verkaufsfähig machen)
- Tempo als Kultur (shippen, messen, nachschärfen)
Europa kann KI. Die Frage ist nicht, ob hier Talent existiert – das ist bewiesen.
Die Frage ist, ob du Execution so aufsetzt, dass aus Talent Marktführerschaft wird.
Der Autor Fabian Westerheide gestaltet als KI-Vordenker, Investor, Ökosystem-Pionier und Keynote Speaker seit über einem Jahrzehnt die Debatte um KI, Macht und digitale Zukunft mit.
Die Wächter des Firmengedächtnisses
Wie das 2025 von Christian Kirsch und Stefan Kirsch gegründete Start-up amaiko den Strukturwandel im Mittelstand adressiert.
Der demografische Wandel und eine erhöhte Personalfluktuation stellen mittelständische Unternehmen zunehmend vor die Herausforderung, internes Know-how zu bewahren. Viele Unternehmen stehen vor der Schwierigkeit, dass Firmenwissen fragmentiert vorliegt. Informationen sind häufig in unterschiedlichen Systemen oder ausschließlich in den Köpfen der Mitarbeitenden gespeichert. Verlassen langjährige Fachkräfte den Betrieb in den Ruhestand oder wechseln jüngere Arbeitnehmerinnen und Arbeitnehmer kurzfristig die Stelle, gehen diese Informationen oft verloren. Zudem bindet die Suche nach relevanten Dokumenten in verwaisten Ordnerstrukturen Arbeitszeit, die in operativen Prozessen fehlt.
Das 2025 gegründete Start-up amaiko aus Niederbayern setzt hierbei auf einen technischen Ansatz, der auf die Einführung neuer Plattformen verzichtet und stattdessen eine KI-Lösung direkt in die bestehende Infrastruktur von Microsoft Teams integriert. Vor diesem Hintergrund entwickelten die Brüder Christian und Stefan Kirsch mit amaiko eine Softwarelösung, die spezifisch auf die Ressourcenstruktur mittelständischer Betriebe ausgelegt ist.
Integration statt neuer Insellösungen – und die Abgrenzung zu Copilot
Ein wesentliches Merkmal des Ansatzes ist die Entscheidung gegen eine separate Software-Plattform. Christian Kirsch, Geschäftsführer von PASSION4IT und amaiko, positioniert die Lösung als „Teams-native“. Das bedeutet, dass der KI-Assistent technisch in Microsoft Teams eingebettet wird – jene Umgebung, die in vielen Büros bereits als primäres Kommunikationswerkzeug dient. Ziel ist es, die Hürden bei der Implementierung zu senken, da Nutzer ihre gewohnte Arbeitsumgebung nicht verlassen müssen.
Angesichts der Tatsache, dass Microsoft mit dem „Microsoft 365 Copilot“ derzeit eine eigene, tief integrierte KI-Lösung ausrollt, stellt sich die Frage nach der Positionierung. Christian Kirsch sieht hier jedoch keine direkte Konkurrenzsituation, sondern eine klare Differenzierung: Copilot sei eine sehr breite, Microsoft-zentrische KI-Funktion. Amaiko hingegen verstehe sich als spezialisierter, mittelstandsorientierter Wissensassistent, der Beziehungen, Rollen, Prozesse und Unternehmenslogik tiefgreifend abbildet.
Ein entscheidender Vorteil liegt laut Kirsch zudem in der Offenheit des Systems: „Während Copilot naturgemäß an Microsoft‑Systeme gebunden ist, lässt sich amaiko herstellerunabhängig in eine viel breitere Softwarelandschaft integrieren – vom ERP über CRM bis zu Branchenlösungen. Unser Ziel ist nicht, Copilot zu kopieren, sondern reale Mittelstandsprozesse nutzbar zu machen“, so der Co-Founder.
Funktionsweise, Sicherheit und Haftung
Funktional unterscheidet sich das System von herkömmlichen Suchmasken durch eine agentenähnliche Logik. Die Software bündelt Wissen aus internen Quellen wie Richtlinien oder Projektdokumentationen und stellt diese kontextbezogen zur Verfügung. Ein Fokus liegt dabei auf der Datensouveränität. Hierbei betont Christian Kirsch, dass Kundendaten nicht in öffentlichen Modellen verarbeitet werden: „Die Modelle laufen in der europäischen Azure AI Foundry, unsere eigenen Dienste auf deutschen Servern. Die Daten des Kunden bleiben on rest vollständig im jeweiligen Microsoft‑365‑Tenant. Es findet kein Training der Foundation Models mit Kundendaten statt – weder bei Microsoft noch bei uns. Grundlage dafür sind die Azure OpenAI Non‑Training Guarantees, die Microsoft in den Product Terms sowie in SOC‑2/SOC‑3‑ und ISO‑27001‑Reports dokumentiert.“
Auch rechtlich zieht das Start-up eine klare Grenze, sollte die KI einmal fehlerhafte Informationen, sogenannte Halluzinationen, liefern. „Amaiko generiert Vorschläge, keine rechts‑ oder sicherheitsverbindlichen Anweisungen. Das stellen wir in unseren AGB klar: Die Entscheidungshoheit bleibt beim Unternehmen. Wir haften für den sicheren Betrieb der Plattform, nicht für kundenseitig freigegebene Inhalte oder daraus abgeleitete Maßnahmen. Es geht um eine saubere Abgrenzung – technische Verantwortung bei uns, inhaltliche Verantwortung beim Unternehmen“, so Christian Kirsch.
Geschäftsmodell und Markteintritt
Seit der Vorstellung der Version amaiko.ai im Juli 2025 wird das System nach Angaben des Unternehmens mittlerweile von über 200 Anwendern genutzt. Durch die Integration in die bestehende Microsoft-365-Landschaft entfällt für mittelständische Kunden eine aufwendige Systemmigration, was die technische Eintrittsbarriere gering hält.
Passend zu diesem Ansatz ist amaiko als reines SaaS-Produkt konzipiert, das Unternehmen ohne Einstiegshürde direkt online buchen können. Laut Kirsch sind keine Vorprojekte, individuellen Integrationspfade oder teuren Beratungspflichten notwendig: „Die Nutzung ist selbsterklärend und leichtgewichtig. Wer zusätzlich Unterstützung möchte – etwa zur Wissensstrukturierung oder Governance – kann sie bekommen. Aber die technische Einführung selbst ist bewusst so gestaltet, dass Mittelständler ohne Implementierungsaufwand starten können.“
Unterm Strich liefert amaiko damit eine pragmatische Antwort auf den drohenden Wissensverlust durch den demografischen Wandel: Statt auf komplexe IT-Großprojekte zu setzen, holt das bayerische Start-up die Mitarbeitenden dort ab, wo sie ohnehin kommunizieren. Ob sich die „Teams-native“-Strategie langfristig gegen die Feature-Macht von Microsoft behauptet, bleibt abzuwarten – doch mit dem Fokus auf Datensouveränität und mittelständische Prozesslogik hat amaiko gewichtige Argumente auf seiner Seite, um sich als spezialisierter Wächter des Firmengedächtnisses zu etablieren.
Diese 10 Start-ups bauen an der Zukunft der AgriFood-Branche
Die deutsche Start-up-Landschaft verzeichnete 2025 ein Rekordhoch bei Neugründungen. Doch gerade im AgriFood-Sektor ist der Weg vom Prototyp zum Marktführer steinig. Kapitalintensive Hardware und strenge Regulatorik bremsen viele aus. Der Growth Alliance Accelerator zeigt, wie Gründer*innen diese Hürden überspringen – und präsentiert zehn Akteure, die auf der Erfolgsspur sind.
Es ist ein Paradoxon: Die Nachfrage nach nachhaltigen Lebensmitteln und effizienter Landwirtschaft ist so hoch wie nie, doch für Gründer*innen und junge Unternehmen in der AgriFood-Branche bleibt der Markteintritt ein Hürdenlauf. Während Software-Start-ups oft mit geringem Kapital skalieren, kämpfen Food- und AgTech-Pioniere mit der „Hardware-Falle“. Sie benötigen teure Produktionsanlagen, Labore und müssen langwierige Zulassungsverfahren (z.B. Novel-Food-Verordnung) durchlaufen.
Dennoch ist die Branche im Aufwind: Laut dem Deutschen Startup Monitor und aktuellen Zahlen des Startup-Verbands stiegen die Gründungszahlen 2025 um beachtliche 29 Prozent. Das Kapital ist da, doch es fließt selektiv. Investor*innen suchen heute keine reinen Ideen mehr, sondern validierte Geschäftsmodelle mit technologischem Tiefgang (DeepTech). Genau hier setzte das Finale des Growth Alliance Accelerator 2025 am 28. Januar 2026 in Frankfurt/Main an.
Brückenschlag zwischen Acker und Finanzwelt
Initiiert vom TechQuartier und der Landwirtschaftlichen Rentenbank, hat sich der Accelerator als Schmiede für die „Scale-up“-Phase etabliert. Vier Monate lang wurden zehn Start-ups, die bereits eine Nutzer*innenbasis vorweisen konnten, fit für die nächste Finanzierungsrunde gemacht.
Das Programm adressierte genau die Pain Points der Branche: Verhandlungstaktik, Rechtsfragen und vor allem den Zugang zu Kapital. Ein Highlight war das Investor Dinner im November 2025, bei dem die Gründer*innen direkten Zugang zu Risikokapitalgeber*innen erhielten – in der aktuellen Marktphase ein entscheidender Wettbewerbsvorteil.
Die „Class of 2025“: Wer die Transformation treibt
Die zehn Absolvent*innen decken die gesamte Wertschöpfungskette ab – vom Boden über das Labor bis zum Supermarktregal. Hier ein Blick auf die Köpfe hinter den Innovationen:
1. High-Tech auf dem Acker: Robotik und Daten
Die Digitalisierung der Landwirtschaft (Smart Farming) ist der stärkste Hebel für mehr Effizienz.
Paltech GmbH
Die Brüder Felix und Florian Schiegg gründeten 2022 Paltech zusammen mit Jorge Decombe im Allgäu. Ihr autonomer Roboter für chemiefreie Unkrautbekämpfung im Grünland ist eine Antwort auf strengere Pestizid-Gesetze und Personalmangel.
Bacchus Software GmbH
Das 2023 gegründete Start-up bacchus Weinbau-Software um das Trio Maximilian Dick, Julian Herrlich und Philipp Bletzer digitalisiert den Weinbau. Ihre Software ersetzt das händische Fahrtenbuch und koordiniert die komplette Weinbergsarbeit.
Agrario Energy
Die Energiewende macht Landwirt*innen zu Energiewirt*innen. Seit 2023 bieten die Gründer Alexander von Breitenbach und Chris Weber mit Agrario Energy eine unabhängige Vergleichsplattform, die Flächeneigentümer mit Betreiber*innen von Erneuerbare-Energien-Anlagen zusammenbringt.
2. Deep Tech & Sicherheit: Das Labor als Wächter
Lebensmittelsicherheit wird durch globale Lieferketten immer komplexer. Hier setzen wissenschaftsbasierte Ausgründungen an.
NanoStruct GmbH
NanoStruct wurde 2021 als Spin-off der Universität Würzburg gegründet. Das Team nutzt Nanotechnologie, um gefährliche Bakterien in Lebensmitteln in Minuten statt Tagen aufzuspüren.
SAFIA Technologies
Gegründet 2020 von Timm Schwaar (aus der Bundesanstalt für Materialforschung), entwickelt das Berliner Start-up SAFIA Technologies Schnelltests für Mykotoxine (Schimmelpilzgifte). Ihre Technologie ermöglicht Laborqualität im Schnelltest-Format.
Landman.Bio
Das noch junge Unternehmen (Gründung 2023) Landman.Bio nutzt Bakteriophagen (Viren, die Bakterien fressen) als natürliche Waffe gegen Pflanzenkrankheiten – eine dringend benötigte Alternative zu Antibiotika und klassischen Pestiziden in der Nutzpflanzenzucht.
3. Sustainability & Climate: Kohlenstoff als Währung
CO2-Tracking ist kein Marketing-Gimmick mehr, sondern ökonomische Notwendigkeit.
CinSOIL
Das 2024 in Berlin gegründete CinSOIL-Team um Dr. Giorgi Shuradze, Dr. Antonella Succurro und Dr. Tavseef Shah kommt aus der Wissenschaft. Ihr KI-Tool nutzt Satellitendaten, um Bodenkohlenstoff zu erfassen. Das ermöglicht Agrarunternehmen, Dekarbonisierung nicht nur zu behaupten, sondern zu beweisen.
Niatsu
Gegründet 2023 von Marius Semm und Jakob Tresch in Zürich, adressiert Niatsu die Lebensmittelindustrie. Ihre Software berechnet den Product Carbon Footprint (PCF) automatisiert und kostengünstig, was gerade für den Mittelstand entscheidend ist.
4. Future Food
Was wir morgen essen (und trinken).
VANOZZA
Eines der etabliertesten Start-ups der Runde. Gegründet 2019 von Nico Hansen in Hamburg, hat sich Vanozza mit fermentierten Käsealternativen auf Cashew-Basis einen Namen gemacht und arbeitet nun an der „zweiten Generation“ ihrer Produkte.
food42morrow/JUMA
Die Frankfurter Gründer Raoul und Max Kammann sowie Carlos Lopez Granado gründeten die GmbH bereits 2020 und brachten 2022 ihre Marke JUMA (Tee-Eistees auf Guayusa-Basis) auf den Markt. Sie bedienen den Trend zu „Functional Food“.
Fazit
Die AgriFood-Start-ups des Abschlussjahrgangs des Growth Alliance Accelerators 2025 haben die Phase der reinen Ideen-Findung bereits eindrucksvoll gemeistert. Jetzt geht es um Skalierung, industrielle Anwendung und messbaren Impact. Programme wie die Growth Alliance sind dabei der Katalysator, der wissenschaftliche Exzellenz mit dem nötigen Geschäftssinn verbindet.
Der industrielle Wasserkocher: Wie das Start-up SYPOX die Chemie grün färbt
Die chemische Industrie hat ein massives Emissionsproblem, denn ihre Prozesse verschlingen Unmengen an Erdgas. Das 2021 geründete Start-up SYPOX, ein Spin-off der TUM will das ändern – mit einer Technologie, die so simpel wie genial klingt: Ein riesiger, elektrischer Tauchsieder soll die fossile Verbrennung ersetzen. Nun meldet das junge Unternehmen den ersten Durchbruch auf dem Weltmarkt.
Wenn Dr. Martin Baumgärtl erklären will, wie er die chemische Industrie revolutionieren möchte, wählt er ein Bild, das jeder versteht: „Im Grunde ist es wie ein Wasserkocher in der heimischen Küche – nur im industriellen Maßstab.“ Baumgärtl ist CTO von SYPOX, und was er beschreibt, könnte einer der wichtigsten Hebel für die Dekarbonisierung einer der schmutzigsten Branchen der Welt sein.
Die chemische Industrie ist süchtig nach Energie. Um Basischemikalien wie Methanol oder Ammoniak herzustellen, wird sogenanntes Synthesegas benötigt – eine Mischung aus Wasserstoff und Kohlenmonoxid. Die Herstellung geschieht in gewaltigen Hochtemperaturprozessen. Bisher wird die dafür nötige Hitze fast ausschließlich durch das Verbrennen von Erdgas oder Öl erzeugt. Die Folge: Gigantische CO₂-Emissionen.
Strom statt Flamme
Genau hier setzt SYPOX an. Das 2021 in Freising gegründete Unternehmen ersetzt die offenen Gasflammen durch elektrischen Strom. In ihren Reaktoren, die von außen wie gewöhnliche Druckbehälter aussehen, stecken hochkomplexe elektrische Heizelemente, die direkt hinter den Katalysatoren platziert sind.
Der Effekt ist enorm: „In konventionellen Verfahren entfallen rund 40 Prozent der Emissionen allein auf die Wärmeerzeugung aus fossilen Energieträgern“, rechnet Baumgärtl vor. Durch die Elektrifizierung des Reaktors fallen diese Emissionen weg – vorausgesetzt, der Strom kommt aus erneuerbaren Quellen. Zudem lässt sich der Prozess laut den Gründern präziser und sicherer steuern.
Der Anti-Trend im Silicon Valley
Doch nicht nur technologisch, auch ökonomisch schwimmt SYPOX gegen den Strom. In der Tech-Szene ist es üblich, dass Start-ups jahrelang Verluste schreiben und sich von einer Venture-Capital-Runde zur nächsten hangeln, getrieben von Investoren, die schnelles Wachstum fordern.
Die bayerischen Gründer wählten einen konservativeren, fast schon mittelständischen Ansatz. „Es entsprach nicht unserem Stil, Geld einzuwerben – wir haben vielmehr von Anfang an versucht, auf Basis unserer Technologie ein tragfähiges Geschäft aufzubauen“, erklärt CEO Dr. Gianluca Pauletto. Man wolle bodenständig bleiben und sich aus Umsätzen finanzieren, statt sich in Abhängigkeiten zu begeben.
Vom Container im Altmühltal zum Großkunden
Die Wurzeln des Unternehmens liegen an der Technischen Universität München (TUM). Die Idee brachte Pauletto aus seiner Zeit in Montréal mit, an der TUM fand er in Prof. Johannes Lercher und dem damaligen Doktoranden Martin Baumgärtl die wissenschaftlichen Mitstreiter.
Der Weg zum marktreifen Produkt war – typisch für „Deep Tech“ – langwierig. „Vier Jahre Forschung und zahlreiche Versuchsreihen waren notwendig“, erinnert sich Lercher. Während andere Software im Co-Working-Space programmierten, baute das SYPOX-Team eine Pilotanlage in einem einfachen Stahlcontainer auf dem Gelände einer Biogasanlage im ländlichen Dollnstein (Altmühltal).
Diese Beharrlichkeit zahlt sich nun aus. Das Start-up hat, unterstützt durch den Spezialchemie-Konzern Clariant, seinen ersten Großkunden an Land gezogen. Ab 2026 soll eine erste industrielle Anlage in Betrieb gehen, die täglich 150 Tonnen Synthesegas produziert. „Das ist nicht nur ein Meilenstein für uns, sondern auch ein starkes Signal an die gesamte chemische Industrie“, so Baumgärtl.
Für das Team, das inzwischen in Langenbach bei Freising sitzt und weiterhin Labore auf dem Forschungscampus Garching betreibt, ist das der Beweis: Die Elektrifizierung der Chemie ist keine Zukunftsmusik mehr, sie beginnt jetzt.
SPEIKI: das Spucktuch zum Anziehen
SPEIKI wurde von Dr. Karin Mehling entwickelt – als ihr eigenes Kind ein sogenanntes Spuckbaby war und gängige Hilfsmittel im Alltag nicht funktionierten. Aus dieser Erfahrung entstand ein durchdachtes Spucktuch, das genau auf die Bedürfnisse von Eltern und das Verhalten der betroffenen Babys abgestimmt ist.
Was tun, wenn das eigene Baby ständig spuckt – und keine Lösung wirklich hilft? Genau diese Frage hat sich Gründerin Dr. Karin Mehling 2020 gestellt, als sie selbst mitten in der herausfordernden Spuckphase ihres zweiten Kindes steckte. Rund 70 Prozent der Säuglinge spucken in den ersten vier bis sechs Lebensmonaten – ein häufiges Phänomen, das durch den noch unreifen Magenpförtner, einem Muskel am Mageneingang, verursacht wird.
Der Alltag ist in dieser Zeit vor allem geprägt durch Flecken wischen und Wäsche waschen, unangenehme Gerüche und feuchte Textilien. Aus ihrer persönlichen Erfahrung entstand das SPEIKI Original (Kurzform für Speikind): Ein „Spucktuch zum Anziehen“, das Eltern von Speikindern spürbar entlastet, da es die ausgespuckte Milch fast vollständig auffängt.
Per Bootstrapping aus dem Wohnzimmer in den Markt
Entwickelt wurde das SPEIKI Original am Wohnzimmertisch für den eigenen Sohn. 2021 meldete die promovierte Germanistin, Verlagskauffrau sowie PR- und Marketing-Managerin ihr Gewerbe als Einzelunternehmerin, wenig später konnte das Spucktuch bereits in Serie gehen.
In der per Bootstrapping finanzierten Startphase war es laut der Gründerin die größte Challenge, zu akzeptieren, nicht alles sofort schaffen zu können. Während sie als Angestellte ihren Fokus auf die klar definierten Projekte und Tätigkeiten legen konnte, kamen nun als Solo-Selbständige die Notwendigkeiten rund um Buchhaltung, Herstellung, Verwaltung und vieles mehr hinzu.
„Mit zwei Kindern zu Hause und bald einen weiteren Buben im Bauch gründete ich mein Einzelunternehmen. Entwicklung, Vermarktung, Vertrieb – alles stemmte ich allein und ,nebenbei‘. Nachts, zwischen Windeln und Weinen, auf dem Boden neben der Badewanne, in der die Buben sitzen – es gab fast keinen Ort und keine Zeit, die ich nicht versuchte zu nutzen, um meine Vision voranzutreiben: Mit meinem Textil-Label kluge Lösungen für den Baby-Alltag zu schaffen, die wirklich unterstützen. Dabei leiteten und leiten mich mein Ehrgeiz, mein Allrounder-Gemüt und meine Zielstrebigkeit, ebenso wie meine Werte, die dem Prinzip der ökonomischen Nachhaltigkeit folgen.“
Gefertigt wird das Spucktuch in einer bayerischen Nähmanufaktur. Regionalität ist Karin Mehling wichtig, als Unternehmerin sieht sie sich in der Verantwortung, nachhaltig zu wirtschaften.
Fünf Jahre erfolgreich im stark umkämpften Babyausstattungsmarkt
Der Weg von der ersten Idee bis zum etablierten Produkt zeigt den typischen Werdegang vieler Einzelunternehmen: handgemachte Prototypen, lokale Produktionswege und ein wachsendes Sortiment, das sich an den alltäglichen Bedürfnissen von Familien orientiert. Der Hauptfokus liegt bis heute auf dem SPEIKI selbst. Ergänzende Produkte runden das Portfolio ab, bleiben aber klar am Bedarf von Familien mit Spuck- und Stillthemen ausgerichtet.
Das Ergebnis: Ein Sortiment, das trotz spitzer Positionierung breit genug ist, um relevant zu bleiben. Das Wachstum der Marke basiert vor allem auf organischer Sichtbarkeit, Community-Nähe und authentischer Kommunikation.
„Ich habe mich bewusst auf das Kernprodukt konzentriert – und ergänze nur dort, wo Familien echte Bedürfnisse haben“, erklärt die Gründerin. Die Nachfrage zeigt, dass dieser Ansatz funktioniert: Das Unternehmen feiert in diesem Jahr sein fünfjähriges Jubiläum und blickt auf eine Entwicklung zurück, die weit über die Region hinaus Wirkung zeigt. Als Direct-to-Customer-Unternehmen mit jährlich wachsenden Umsätzen ein Meilenstein im stark umkämpften Babyausstattungsmarkt. „Dass aus einer spontanen Idee so viel werden kann, hätte ich selbst nicht zu träumen gewagt“, sagt Karin Mehling. „Aber offensichtlich haben viele Eltern genau das gebraucht.“
LegalTech-Trends 2026
KI, strategische Fähigkeiten und mehr Technikverständnis stehen 2026 auf der Agenda der Rechtsbranche – gut zu wissen nicht nur für LegalTech-Start-ups und -Gründer*innen.
Die LegalTech-Trends des Jahres 2026 machen deutlich, dass die Rechtsbranche vor einem grundlegenden Wandel steht: Routinetätigkeiten werden zunehmend in den Hintergrund gedrängt, da sie automatisiert oder von KI übernommen werden. Gleichzeitig gewinnen neue Kompetenzen an Bedeutung und Up-Skilling wird zur Schlüsselqualifikation, während traditionelle Karrierepfade ins Wanken geraten. Dementsprechend werden 2026 das Technologieverständnis, Prozessdesign sowie strategische Fähigkeiten in der Rechtsbranche immer wichtiger.
1. Integrierte Cloud LegalTech-Plattformen etablieren sich
Die LegalTech-Landschaft befindet sich in einem tiefgreifenden Wandel und konsolidiert sich zunehmend zu integrierten Cloud-Ökosystemen. Diese vereinen zentrale Funktionen wie Mandats- und Fallmanagement, Dokumentenautomatisierung, Ausgaben- und Risikoanalysen sowie Kollaborations- und Workflow-Funktionen auf einer gemeinsamen Plattform. Sie lösen die bislang weitverbreiteten, voneinander getrennten Einzelsysteme ab. Diese integrierten Plattformen versetzen juristische Teams in die Lage, auf eine einheitliche, konsistente Datenbasis (Single Source of Truth) zuzugreifen und fundierte Analysen durchzuführen. Das Ergebnis sind deutlich schnellere Arbeitsabläufe, eine verbesserte Transparenz über Team- und Abteilungsgrenzen hinweg sowie eine höhere operative Resilienz der Rechtsorganisation.
2. Eingebettete agentenbasierte KI (embedded agentic AI)
Embedded Agentic AI entwickelt sich rasant zu einem der prägendsten Trends im LegalTech-Markt. Im Gegensatz zu klassischen KI-Assistenzsystemen agieren agentische KI-Module direkt innerhalb juristischer Fachanwendungen und übernehmen eigenständig klar definierte Aufgaben – etwa die Fristenüberwachung, Vertragsprüfung oder Aktenvorbereitung. Nahtlos in bestehende Workflows eingebettet, reduzieren sie manuellen Aufwand, minimieren Risiken und steigern die Produktivität spürbar. Für Kanzleien bedeutet Embedded Agentic AI einen strategischen Schritt hin zu skalierbaren, zukunftssicheren Prozessen, bei denen juristische Expertise gezielt durch autonome, kontextbewusste KI ergänzt wird.
3. KI-Sicherheit & Governance
KI ist längst mehr als nur ein Werkzeug – sie entwickelt sich zu einer operativen Notwendigkeit. Im Jahr 2026 werden LegalTech-Pioniere deshalb über reine Pilotprojekte hinausgehen und Rahmenwerke für die KI-Governance, Risikokontrollen, Compliance und ethische Rahmenbedingungen einführen. In diesem Kontext gilt es beispielsweise Transparenzanforderungen zu definieren, Prompt-Audits und Human-in-the-Loop-Kontrollen einzuführen sowie für die Nachverfolgbarkeit von Datenquellen zu sorgen. Kanzleien und Rechtsabteilungen, die eine strukturierte KI-Governance integrieren, reduzieren Haftungsrisiken, stärken das Vertrauen und können KI skalieren. Wenn sie dabei auch noch den ethischen und regulatorischen Compliance-Anforderungen gerecht werden, sind sie für die Herausforderungen der Zukunft gut aufgestellt.
4. Predictive Legal Analytics
KI steht 2026 nicht mehr nur für unterstützende oder automatisierende Funktionen, sondern entwickelt sich zunehmend zum strategischen Faktor. Generative KI und fortschrittliche Analyseverfahren werden gezielt zum Einsatz kommen, um den Ausgang von Gerichtsverfahren zu prognostizieren, umfangreiche Beweis- und E-Discovery-Daten auszuwerten und bislang verborgene Muster in der Rechtsprechung zu identifizieren. Im Jahr 2026 wird KI-generierter Content in immer mehr Verfahren eine zentrale Rolle bei der Sichtung, Bewertung und Einordnung von Beweismitteln spielen. Dadurch verändern sich die Vorgehensweisen bei der Vorbereitung von Fällen, dem Entwickeln von Argumentationsketten sowie der strategischen Entscheidungsfindung. All das führt dazu, dass Technologie vom reinen Hilfsmittel zum strategischen Entscheidungsfaktor aufsteigt.
5. Juristische Talente entwickeln sich zu technisch versierten Fachkräften
Anwältinnen und Anwälte müssen sich zunehmend zu technologieaffinen Gestaltern entwickeln, die digitale Tools, Automatisierung und KI souverän in ihre tägliche Arbeit integrieren. Statt reiner Rechtsanwendung rücken Prozessverständnis, Systemkompetenz und Dateninterpretation in den Fokus. Kanzleien profitieren von effizienteren Abläufen, höherer Skalierbarkeit und besserer Mandantenorientierung. Tech-fluente Legal Professionals werden damit zum entscheidenden Wettbewerbsfaktor in einem zunehmend digitalisierten Rechtsmarkt.
6. KI-gestütztes Smart Contracting & Compliance Automation
KI geht im Vertragswesen weit über einfache Prüfungsfunktionen hinaus und wird zum zentralen Instrument für umfassendes Contract Lifecycle Management, Compliance-Monitoring sowie eine automatisierte Vertragserstellung. Zudem lassen sich durch Predictive Analytics Risiken, Inkonsistenzen und Compliance-Probleme immer früher identifizieren – ein Trend, der insbesondere für Unternehmensrechtsabteilungen und international tätige Kanzleien von Bedeutung ist. Im Jahr 2026 werden sich vor allem diese drei Anwendungsszenarien etablieren:
- KI-gestützte Vertragsanalysen, die potenzielle Risiken identifizieren und konkrete Korrekturvorschläge liefern.
- Automatisierte Compliance-Berichte zur lückenlosen Nachverfolgung regulatorischer Vorgaben.
- KI-Unterstützung bei der Erstellung von Dokumenten.
7. Cybersicherheit wird zum Wettbewerbsvorteil
Mit der zunehmenden Nutzung von LegalTech steigen auch die Risiken im Bereich Cybersecurity. Umso wichtiger ist es, dass Jurist*innen die Daten ihrer Mandant*innen, vertrauliche Fallakten sowie ihre KI-Systeme vor Ransomware-Angriffe, Datenpannen und der unbefugten Offenlegung sensibler Informationen schützen. Robuste Cybersecurity-Tools und datenschutzorientierte LegalTech-Architekturen sind daher unverzichtbar und werden häufig direkt in die Plattformen integriert. Kanzleien und Rechtsabteilungen, die hier proaktiv investieren, schützen nicht nur ihre Reputation und das Vertrauen ihrer Mandant*innen, sondern erfüllen zugleich die zunehmend strengeren globalen Datenschutzvorschriften.
8. Ergebnisorientierte und ROI-nachweisbare KI-Einführung
2026 steht LegalTech nicht mehr im Testmodus – sie muss konkrete Mehrwerte nachweisen. Sowohl Anbietende als auch Anwendende sind zunehmend gefordert, Investitionen in Technologie klar mit messbaren Ergebnissen zu verknüpfen, etwa durch Zeit- und Kostenersparnis, Reduzierung von Fehlern oder eine höhere Mandant*innenzufriedenheit. Für die Praxis bedeutet das: Pilotprojekte sollten stets mit klar definierten KPIs starten, um den Erfolg messbar zu machen. Analysen spielen eine entscheidende Rolle, um den geschäftlichen Nutzen gegenüber Führungskräften und Mandant*innen transparent darzustellen. Gleichzeitig verlagern sich Budgetentscheidungen weg von „Innovation um der Innovation willen“ hin zu einer klaren ROI-orientierten Ausrichtung.
9. Innovation in der Rechtsberatung & alternative Business-Modelle
Die Veränderung in der Rechtsbranche betrifft die gesamte Struktur juristischer Dienstleistungen. Klassische Stundenhonorare verlieren an Bedeutung, während alternative Preismodelle wie Festpreise, Abonnements oder wertbasierte Vergütungen an Bedeutung gewinnen. Diese Entwicklung wird durch Technologien unterstützt, die Ergebnisse zuverlässig vorhersagen und standardisierte Leistungen effizient bereitstellen. Für Rechtsabteilungen und Mandant*innen wird Kalkulierbarkeit zunehmend zum Standard. Kanzleien, die ihre Liefermodelle entsprechend innovativ gestalten, sichern sich einen Wettbewerbsvorteil gegenüber Wettbewerber*innen, die weiterhin auf traditionelle Stundenhonorare setzen.
10. Lawbots & Vertikale Automatisierung
„Lawbots“ stehen kurz davor, zum festen Bestandteil der Rechtsbranche zu werden. Diese spezialisierten Bots sind darauf ausgelegt, spezifische juristische Aufgaben zu automatisieren – von der Mandantenaufnahme über Dokumentenautomatisierung und Compliance-Prüfungen bis hin zu rechtlicher Recherche. Typische Einsatzszenarien sind etwa maßgeschneiderte Bots für Einwanderungsanträge, Markenanmeldungen oder Routineverfahren in der Prozessführung. Sie übernehmen klar definierte, standardisierte Aufgaben auf höchst effiziente Weise. So gewinnen Anwält*innen wertvolle Zeit, um sich auf komplexe, urteilsbasierte Arbeiten zu konzentrieren und strategische Entscheidungen zu treffen.
Der Autor Oliver Bendig ist CEO von stp.one, einem der führenden Anbietern von Legal-Tech-Komplettlösungen.
Report Gendermedizin
Auch mithilfe von FemTech- und HealthTech-Start-ups steigt in unserer Gesellschaft langsam das Bewusstsein dafür, dass der weibliche Körper medizinisch anders funktioniert als der männliche, und Frauengesundheit mehr ist als "nur" Zyklus, Schwangerschaft und Wechseljahre.
Alles, was speziell für die Frau ist und beim Mann nicht existiert“, erklärt Raoul Scherwitzl, Doktor der Philosophie, Festkörper- und Materialphysik sowie Co-Founder des FemTech-Start-ups Natural Cycles, was mit Frauenmedizin gemeint ist. Diese Aussage wird häufig innerhalb gesundheitspolitischer Debatten getätigt, wenn es darum geht, wie Frauenkrankheiten im Gegensatz zum männerzentrierten Usus in der Medizin behandelt werden: oftmals zweitrangig oder als Anhängsel an männerfokussiertem Wissen.
Der französische Soziologe Pierre Bourdieu beschrieb in seinem Werk „Die männliche Herrschaft“ bereits 1998, wie „kulturelle und wissenschaftliche Systeme männliche Normen als allgemeingültig setzen und alles, was weiblich ist, als Abweichung oder Sonderfall markieren“. Sieht man sich die Geschichte der westlichen Medizin an, drängt sich der Eindruck auf, dass Bourdieus Beschreibung für den Gesundheitsbereich ins Schwarze trifft.
Blickt man darüber hinaus in die (Fach-)Literatur der letzten Jahrzehnte, so erkennt man: Bis in die späten 80er-Jahre wurden weibliche Bedürfnisse, psychosoziale Belastungen und Körperbilder in der medizinischen Forschung und Praxis weitgehend ignoriert. Erst eine aufkeimende Frauengesundheitsbewegung durchbrach diese Mauer und etablierte den Begriff Frauengesundheit bzw. Gendermedizin. Seitdem schärft sich der Blick auf die Frau, und die Gesellschaft hat begonnen, in Publikationen und Debatten genauer hinzusehen – mit einer bewusstseinsschaffenden Agenda, warum dieses Thema wichtig ist.
Frauengesundheit ist mehr als Reproduktion
„Die Definition von Frauengesundheit wird oft sehr eng gefasst“, erklärt Scherwitzl das Problem; „nämlich als alles, was mit reproduktiver Gesundheit zu tun hat: Menstruationszyklus, Pubertät, Schwangerschaft, Geburt, Wochenbett, Unfruchtbarkeit und Wechseljahre. Die klassische Definition spannt sich dabei meist über das reproduktive Zeitfenster einer Frau zwischen etwa 15 und 50 Jahren.“ Dabei werde oft übersehen, dass Frauengesundheit weit mehr umfasse: „Es geht auch darum, den gesamten Gesundheitsbereich aus der Perspektive von Frauen zu betrachten – und das wird bislang kaum getan“, so Scherwitzl. Ein großes Problem liegt laut dem Gründer darin, dass die meisten Medikamente auf Basis klinischer Studien mit Männern entwickelt wurden; mit der Annahme, dass sie bei Frauen gleich gut wirken – obwohl Frauen biologisch anders reagieren. Als Beispiel nennt Scherwitzl die Insulinresistenz, die sich bei Frauen im Lauf des Zyklus verändert. „Dies wird aber kaum berücksichtigt“, ergänzt er.
Im Gesundheitswesen fehle es häufig an passenden Tools und Produkten, um Frauen gezielt zu unterstützen. Ein Beispiel hier sei die Hormontherapie in den Wechseljahren, bei der oftmals lediglich hoch dosierte Varianten jahrzehntealter Medikamente zum Einsatz kämen. „Das Resultat ist, dass sich Frauen häufig selbst um ihre Beschwerden kümmern müssen. Viele suchen zunehmend online nach Hilfe. Große Pharmakonzerne haben diesen Mangel erkannt und investieren inzwischen in Forschung zu Themen wie Endometriose oder Wechseljahre“, sagt Scherwitzl. Sein Start-up Natural Cycles setzt auf ein datenbasiertes Modell mit Körperwerten und Algorithmen, kombiniert mit Aufklärung und individualisierter Medizin; mit dem Ziel, einen Beitrag dazu zu leisten, dass Frauen künftig Zugang zu besser abgestimmten Medikamenten und mehr effektiven Lösungen erhalten.
Es muss endlich in die Köpfe kommen
„Es muss endlich in die Köpfe kommen, dass der weibliche Körper anders funktioniert als der männliche“, mahnt Simone Mérey in diesem Sinn. Sie ist Founderin des 2022 gegründeten Pflege-Start-ups HeldYn. Mérey hat jahrelang im Krankenhaus gearbeitet und hatte dabei viel mit Schmerzpatient*innen zu tun. Sie erkannte dabei einen Gender-Bias: Frauen mit Schmerzen wurden oft als wehleidig abgestempelt – veraltete Vorstellungen in den Köpfen der Beteiligten –, mit der Folge, dass Patientinnen schnell einmal als depressiv oder psychisch labil eingestuft wurden. „Dies ist keine akkurate Einschätzung – es ist wissenschaftlich belegt, dass Frauen eine höhere Schmerzgrenze als Männer haben“, betont Mérey. „Hier merkt man, wie soziale Konstrukte wirken: Die Frau wird oft als die gesellschaftlich Schwächere wahrgenommen, obwohl ihr Körper viel aushält, Stichwort Geburt. So kommt es zu falschen Dosierungen und der Vernachlässigung von Symptomen.“
Chance für HealthTech-Start-ups?
Eine Vernachlässigung, die Akteur*innen und Start-ups im Health-Bereich Chancen eröffnet. Ähnlich denkt Scherwitzl, der Start-ups mit „großen Ambitionen“ im Entstehen sieht: „Das Funding ist da“, sagt er. „Vor allem in den letzten fünf Jahren hat sich einiges verbessert. Wenn Investoren merken, dass man hier viel Growth erreichen kann, wird noch mehr Geld fließen.“
Was jedoch aktuell noch fehle, sei der große Erfolg, der beweise, dass es sich lohne, in dieses Feld zu investieren. „Im Pharmabereich gibt es etwa die Pille oder Antidepressiva – im digitalen Bereich bin ich jedoch optimistisch, dass der nächste große Durchbruch bevorsteht“, so Scherwitzl. Der Founder zeigt sich überzeugt, dass es zu jedem pharmazeutischen Ansatz künftig auch eine digitale Alternative geben sollte, mit der Frauen medizinisch besser begleitet werden können. „Pharmakonzerne wie Bayer, Organon und Merck haben trotz Deinvestitionen weiterhin Pipelines im Bereich Frauengesundheit. Gleichzeitig gibt es Start-ups wie uns oder Flo in England, das eine neue Version des Kondoms für Frauen entwickelt. Die dänische Cirqle Biomedical arbeitet ebenfalls an einer Alternative zum Kondom, die den Uterus verschließt. Außerdem existieren Start-ups wie Endogene.Bio, das sich auf Endometriose fokussiert.“
Auch Mérey hat trotz aller Probleme bei der Frauenmedizin einen neuen Tenor in dieser Sache erkannt, der sich vom bisherigen „medizinischen Ratschlag“ an Frauen à la „Man muss da durch“ unterscheide: Das Thema der zweiten Lebenshälfte der Frauen werde mehr diskutiert, Tabuthemen wie Wechseljahre würden aufgebrochen. Mérey: „Der negative Anstrich wird langsam entfernt. Es hat in den letzten Jahren ein Umdenken gegeben.“
KI-Modelle erfolgreich im Unternehmen einführen
Worauf es bei der Implementierung von KI wirklich ankommt.
Künstliche Intelligenz (KI) gewinnt in Unternehmen zunehmend an Bedeutung. Sie kann Prozesse beschleunigen, große Datenmengen sinnvoll nutzbar machen und Entscheidungen unterstützen. Doch in der Praxis zeigt sich: Moderne Technologie allein führt noch nicht zum Erfolg. Entscheidend ist ein strukturiertes Vorgehen, bei dem Ziele klar definiert, Daten sorgfältig vorbereitet und organisatorische Rahmenbedingungen von Beginn an berücksichtigt werden. „Viele KI-Initiativen scheitern daran, dass am Anfang die Orientierung fehlt“, sagt Benedikt Weber, Geschäftsführer der applord GmbH. „Struktur schafft Entscheidungsfähigkeit – noch bevor über konkrete KI-Modelle gesprochen wird.“
Organisatorischer Wandel und Einbindung der Mitarbeitenden
Der Einsatz von KI verändert Arbeitsabläufe, Verantwortlichkeiten und Entscheidungswege. Mitarbeitende arbeiten verstärkt mit automatisierten Systemen zusammen, Aufgaben verschieben sich, Rollen entwickeln sich weiter. Wird dieser Wandel nicht aktiv begleitet, entstehen Unsicherheiten oder Ablehnung gegenüber neuen Technologien. Erfolgreiche Unternehmen setzen deshalb auf transparente Kommunikation und frühzeitige Einbindung der Mitarbeitenden. Sie erklären, warum KI eingesetzt wird, welche Aufgaben sie übernimmt und wo menschliche Expertise weiterhin unverzichtbar bleibt. Fehlt dieses gemeinsame Verständnis, werden neue Systeme häufig nur eingeschränkt genutzt. „KI-Projekte scheitern selten an der Technologie“, betont Weber. „Viel häufiger fehlt ein klares Bild davon, welchen konkreten Nutzen KI für Mitarbeitende und Organisation wirklich bringt.“
Auswahl der passenden KI-Lösung
Das Angebot an KI-Lösungen wächst rasant. Für Unternehmen besteht die Herausforderung darin, nicht der technischen Vielfalt zu folgen, sondern eine Lösung zu wählen, die zum eigenen Geschäftsprozess passt. Der Ausgangspunkt sollte immer ein klar definierter Anwendungsfall sein: Welche Aufgabe soll KI konkret unterstützen oder verbessern? Neben den Funktionen spielen auch Fragen der Nachvollziehbarkeit, Integration in bestehende Systeme und regulatorische Anforderungen eine Rolle. Werden diese Aspekte zu spät berücksichtigt, entstehen Lösungen, die technisch leistungsfähig sind, im Alltag aber keinen Mehrwert liefern. „Viele Unternehmen wählen KI nach dem Funktionsumfang aus und stellen später fest, dass sie nicht zum eigenen Prozess passt“, erklärt Weber. „Erfolgreich ist KI dann, wenn sie Abläufe sinnvoll ergänzt und verständliche Ergebnisse liefert.“
Datenqualität als Grundlage für verlässliche Ergebnisse
KI-Modelle sind vollständig von der Qualität ihrer Daten abhängig. In vielen Unternehmen existieren relevante Informationen zwar, sie sind jedoch über verschiedene Systeme verteilt, unterschiedlich gepflegt oder historisch gewachsen. Diese Ausgangslage erschwert nicht nur den Einsatz von KI, sondern kann zu fehlerhaften oder schwer nachvollziehbaren Ergebnissen führen. Datenmanagement ist daher keine einmalige Vorarbeit, sondern eine kontinuierliche Aufgabe. Dazu gehören klare Zuständigkeiten, regelmäßige Prüfungen und eine strukturierte Aufbereitung der Daten. „Der Aufwand für Datenqualität wird häufig unterschätzt“, sagt Weber. „Ohne geprüfte und konsistente Daten lassen sich keine stabilen und verlässlichen KI-Ergebnisse erzielen – unabhängig davon, wie gut das Modell ist.“
Schrittweise Einführung statt großer Umbruch
Statt KI sofort unternehmensweit einzusetzen, empfiehlt sich ein schrittweises Vorgehen. Unternehmen können so mit klar abgegrenzten Anwendungsfällen beginnen, Lösungen im Alltag testen und die Ergebnisse anhand messbarer Kriterien, wie Benutzerfreundlichkeit oder verständlicher Anleitungen, bewerten. So lassen sich Risiken reduzieren und Erkenntnisse gezielt nutzen. Pilotprojekte liefern nicht nur technische Erkenntnisse, sondern zeigen auch, wie gut KI im Arbeitsalltag akzeptiert wird. Auf dieser Basis lässt sich entscheiden, welche Lösungen ausgebaut werden sollten. „Unternehmen, die mit überschaubaren Anwendungsfällen starten, treffen langfristig fundiertere Entscheidungen“, so Weber. „Praxiserfahrungen sind dabei deutlich wertvoller als theoretische Annahmen.“
KI-Hype: mittel- bis langfristiger Weg zur Monetarisierung noch unklar
Aktueller Marktkommentar zum KI-Hype und den möglichen Folgen von Justin Thomson, Head Investment Institute and CIO bei T. Rowe Price.
Die Investitionsausgaben für künstliche Intelligenz (KI) haben ein erstaunliches Niveau erreicht, aber der Weg zur Monetarisierung bleibt unklar. Der Markt-Hype schaukelt sich selbst hoch, und die Tech-Giganten greifen nun zu Krediten, um ihre Expansion zu finanzieren. Blasen sind nicht immer schädlich und können zu erheblichen Produktivitätssteigerungen führen, aber Überkapazitäten sind ein reales Risiko, das beobachtet werden sollte.
Während eines hochkarätigen Finanzgipfels, an dem ich kürzlich in Hongkong teilgenommen habe, sagte der CEO einer führenden Vermögensverwaltungsgesellschaft, der es eigentlich besser wissen müsste: „Im Kontext der Ausstattung von Hyperscalern sind 2,5 Billionen US-Dollar [für Investitionen] über fünf Jahre keine große Summe.“ Ich war über diese Bemerkung erstaunt. In welchem Paralleluniversum sind 2,5 Billionen US-Dollar eine unbedeutende Summe? Antwort: in einem, in dem Nvidia innerhalb von drei Monaten eine Marktkapitalisierung von 1 Billion US-Dollar erreichen kann. Aber wie erzielt man eine Rendite auf Investitionen in Höhe von 2,5 Billionen US-Dollar, wenn der mittel- bis langfristige Weg zur Monetarisierung der KI noch unklar ist?
Dies deutet auf zwei verschiedene AI-Investitionsbooms hin: einen relativ kurzfristigen, der durch eine erkennbare tatsächliche Nachfrage gestützt wird, und einen längerfristigen spekulativen Boom, der mit einem quasi-religiösen Glauben an exponentielles Wachstum verbunden ist.
Betrachten wir zunächst einige beeindruckende Zahlen. Die Ausgaben für KI erreichten gerade 1 % des US-Bruttoinlandsprodukts (BIP) in einer Wirtschaft mit 1,8 % Wachstum – das ist mehr als die Hälfte der gesamten neuen Nachfrage. Allein Nividia erreichte Ende Oktober einen Wert von 5 Billionen US-Dollar, was 15 % der gesamten US-Wirtschaft entspricht. Zum Vergleich: Als Cisco im Jahr 2000 als weltweit größtes Unternehmen seinen Höhepunkt erreichte, betrug sein Anteil am BIP nur 5,5 %. Während viel Aufsehen um den 3 Milliarden US-Dollar teuren Hauptsitz von JP Morgan in Manhattan gemacht wurde, werden in Texas still und leise 40 Milliarden US-Dollar teure Rechenzentrumsprojekte gestartet. Niemand scheint sich dafür zu interessieren.
Sind wir also in einer Blase? Es gibt sicherlich eine Blase von Menschen, die über Blasen sprechen – werfen Sie einfach einen Blick auf Google Trends.
Unterdessen gibt es diejenigen, die glauben, dass wir uns gerade deshalb nicht in einer Blase befinden können, weil wir über eine solche sprechen. Meiner Meinung nach gibt es drei Schlüsselwörter in den jüngsten Marktentwicklungen, die Beachtung verdienen: Reflexivität, Zirkularität und Verschuldung. Reflexivität besagt, dass Preise tatsächlich die Fundamentaldaten beeinflussen und dass diese neu beeinflussten Fundamentaldaten dann die Erwartungen verändern und somit die Preise beeinflussen. Dieser Prozess setzt sich in einem sich selbst verstärkenden Muster fort. Die lebhafte Reaktion des Marktes auf die jüngsten KI-Megadeals ist ein Beispiel für einen solchen Feedback-Kreislauf. Hinzu kommt der zirkuläre Charakter dieser Deals. Im Wesentlichen investieren die Anbieter von Recheninfrastruktur in native KI-Akteure, die sich in einer Investitionsphase befinden. In der Dotcom-Ära war dies als „Vendor Financing” bekannt und wurde zu einer Art Schimpfwort.
Schließlich gibt es noch die Verschuldung. Bislang haben die finanzstarken Tech-Giganten diesen KI-Boom mit ihren eigenen tiefen Taschen und Eigenkapitalfinanzierungen finanziert. Aber jetzt treten wir in die Kreditphase ein – Unternehmen wenden sich den Schuldenmärkten zu, oft außerhalb der Bilanz, und die Kreditaufnahme wird sich wahrscheinlich beschleunigen. Wir wissen, dass wir mit generativer KI und später mit künstlicher Superintelligenz vor einem neuen technologischen Paradigma stehen – und möglicherweise vor einem massiven Produktivitätssprung. Das sind alles großartige Dinge, und es ist leicht zu verstehen, dass man der Versuchung erliegt, weiter auf der lukrativen KI-Welle zu reiten, die mit der Einführung von ChatGPT im November 2022 begann. Angesichts der aktuellen Indexkonzentration würde es in der Tat Mut erfordern, auszusteigen.
Schnelles Wachstum kann zu einem Überschuss führen
Eine wichtige Lehre aus der Geschichte ist, dass es zu Blasen kommt, wenn wir schöne Dinge erfinden. Aber nicht alle Blasen sind gleich. Es gibt „schlechte“ Blasen (Tulpen, Gold, Grundstücke), und wenn schlechte Blasen durch Schulden finanziert werden, kann dies ein systemisches Risiko für die Wirtschaft darstellen. Es gibt auch „gute“ Blasen, die zu Überkapazitäten bei Produktionsmitteln führen – man denke an die Eisenbahnen im goldenen Zeitalter der Expansion der USA zwischen 1870 und 1900, die Elektrizität in den frühen 1900er Jahren und den Dotcom-Boom Ende der 1990er Jahre. Letztendlich wurde in jedem Fall Wohlstand geschaffen, aber die frühen Investoren verloren viel Geld.
Es ist noch zu früh, um vorherzusagen, zu welcher Art von Blase sich der AI-Investitionsboom entwickeln wird. Die langfristigen Auswirkungen werden davon abhängen, ob die heutigen massiven Investitionen letztendlich die Grundlage für dauerhafte Produktivitätssteigerungen schaffen oder ob sie zu Überkapazitäten führen, die keine nachhaltigen Renditen erzielen. Wenn die Kapazitäten so schnell wachsen, ist es immer wahrscheinlich, dass sich das Ungleichgewicht zwischen Angebot und Nachfrage von einem Mangel zu einem Überschuss umkehrt. In der Dotcom-Ära verloren Investoren viel Geld mit Glasfaserkabeln und Switches, die in den Boden verlegt wurden, und etwas Ähnliches könnte mit KI passieren, wenn durch Überbauung riesige Kapitalmengen in Anlagen gebunden werden, die möglicherweise nicht annähernd mit voller Effizienz betrieben werden können – oder noch schlimmer, wenn die Schnelllebigkeit des Chip-Zyklus die Rechenleistung obsolet macht.
Erschwerend kommt hinzu, dass die Anreize für Infrastrukturanbieter („Picks and Shovels”-Akteure) und Entwickler von KI-Anwendungen nicht aufeinander abgestimmt sind. Während Infrastrukturunternehmen von einer kontinuierlichen Expansion und Investitionen profitieren, konzentrieren sich Anwendungsentwickler auf die Verbesserung der Effizienz und die Senkung der Kosten. Um den Kommentar des Dodos nach dem Caucus-Rennen in Lewis Carrolls Alice im Wunderland umzukehren: „Nicht jeder kann gewinnen, und nicht jeder kann einen Preis bekommen.” Die optimistischen Prognosen für die KI-Infrastruktur zeigen, wie viel Hype in den heutigen Bewertungen der Hyperscaler steckt. Es ist ironisch, dass Rechenzentrumsprojekte nach den griechischen Titanen Prometheus und Hyperion benannt werden. In der griechischen Mythologie folgt auf Hybris immer Nemesis. Um noch ein bisschen Latein mit einzubringen: caveat emptor.
KI-Agenten als Transformationstreiber 2026
Eine aktuelle DeepL-Studie zeigt: 69 % der globalen Führungskräfte erwarten für 2026 tiefgreifende Veränderungen durch KI-Agenten; KI-Sprachtechnologie wird zur unverzichtbaren Infrastruktur.
Eine neue Studie von DeepL, einem globalen Unternehmen für KI‑Produkte und ‑Forschung, zeigt: 2026 wird für viele Organisationen den Übergang vom Experimentieren mit KI hin zu agentischer Automatisierung markieren. So erwartet die Mehrheit der weltweit befragten Führungskräfte (69 %), dass agentenbasierte KI ihre Geschäftsabläufe im kommenden Jahr deutlich verändern wird.
Die Studie wurde im September 2025 von Censuswide im Auftrag von DeepL durchgeführt. Befragt wurden 5.000 Führungskräfte in Deutschland, Frankreich, den USA, Großbritannien und Japan. Die Ergebnisse deuten darauf hin, dass Unternehmen verstärkt planen, autonome KI-Agenten im großen Umfang einzusetzen – etwa zur Unterstützung von Wissensarbeit, zur Effizienzsteigerung oder zur Anpassung organisatorischer Strukturen. Damit zeichnet sich die bedeutendste operative Veränderung in der Wirtschaft seit der Einführung der Cloud an.
„KI-Agenten sind längst nicht mehr experimentell, sie sind unumgänglich.“ sagt Jarek Kutylowski, CEO und Gründer von DeepL. „Die nächste Phase besteht darin, sie tiefgreifend in unsere Arbeitsweisen zu integrieren. In 2026 werden KI-Agenten das mühsame Umschalten zwischen verschiedenen Kontexten und repetitive Aufgaben übernehmen, sodass sich Menschen auf das konzentrieren können, was Unternehmen tatsächlich voranbringt.“
KI-Agenten werden zum nächsten Disruptor für Unternehmen
Nach ersten Pilot- und Anwendungsfällen rücken KI-Agenten zunehmend in den produktiven Einsatz:
- Fast die Hälfte der globalen Führungskräfte (44 %) erwartet für 2026 einen tiefgreifenden Wandel durch agentische KI; ein Viertel (25 %) sieht diesen Wandel bereits heute. Nur 7 % glauben, dass KI-Agenten ihre Betriebsabläufe nicht verändern werden, was die hohe Geschwindigkeit der Implementierungen unterstreicht.
- Als die drei wichtigsten Voraussetzungen für den sinnvollen und vertrauenswürdigen Einsatz von KI-Agenten nennen die Befragten nachweisbare Effizienz- und ROI-Effekte (22 %), Anpassungsfähigkeit der Belegschaft (18 %) und zunehmende organisatorische Bereitschaft (18 %).
- Als wesentliche Herausforderungen bei der Einführung von KI-Agenten nennen die Befragten Kosten (16 %), Bereitschaft der Belegschaft (13 %) und Reife der Technologie (12 %).
KI als zentraler Wachstumstreiber für globale Unternehmen
Über Agenten hinaus gilt KI insgesamt als wichtigster Motor für das Wirtschaftswachstum in 2026:
- Über zwei Drittel (67 %) der Befragten geben an, dass sich der ROI ihrer KI-Initiativen in diesem Jahr erhöht hat; mehr als die Hälfte (52 %) erwartet, dass KI im kommenden Jahr mehr zum Unternehmenswachstum beitragen wird als jede andere Technologie.
- Wenn es um messbare Verbesserungen durch KI geht, liegt Deutschland (78 %) zusammen mit Großbritannien (80 %) an der Spitze, gefolgt von den USA (71 %) und Frankreich (70 %). Japan verzeichnet mit 35 % deutlich niedrigere Werte, was auf langsamere Implementierungen und Bereitschaften hindeutet.
- Über die Hälfte der globalen Führungskräfte (51 %) rechnet damit, dass KI im kommenden Jahr mehr neue Rollen schafft als ersetzt. 52 % geben an, dass KI-Kenntnisse für die meisten Neueinstellungen vorausgesetzt werden.
KI-Sprachtechnologie entwickelt sich vom Werkzeug zur zentralen Infrastruktur
Die Studie zeigt zudem, wie KI-Sprachtechnologie zur entscheidenden Komponente der Unternehmensinfrastruktur wird:
- Fast zwei Drittel der globalen Unternehmen (64 %) planen 2026 steigende Investitionen in KI-Sprachtechnologie – angeführt von Großbritannien (76 %) und Deutschland (74 %), gefolgt von den USA (67 %) und Frankreich (65 %) werden mehrsprachige Kommunikation und Inhalte zu zentralen Faktoren für globales Wachstum. Im Gegensatz dazu bleibt Japan (38 %) vergleichsweise konservativ, was auf eine langsamere Dynamik hindeutet, gleichzeitig aber das wachsende Interesse von mehr als einem Drittel der Führungskräfte widerspiegelt.
In diesem Zusammenhang wird Echtzeit-Sprachübersetzung 2026 unverzichtbar:
- Über die Hälfte der globalen Führungskräfte (54 %) sieht Echtzeit-Sprachübersetzung im kommenden Jahr als unverzichtbar an – derzeit sind es ein Drittel (32 %).
- Großbritannien (48 %) und Frankreich (33 %) sind Vorreiter bei der Nutzung von Tools für die Echtzeit-Sprachübersetzung; Japan liegt derzeit nur bei 11 %.
- Die Nachfrage wird angetrieben von technologischen Fortschritten in der Echtzeit-Sprachübersetzung (46 %), Kundenerwartungen (40 %) und marktübergreifender Expansion (38 %).
Die Erkenntnisse der Studie liefern wichtige Einblicke in die Zukunft der KI und zeigen, wie diese Veränderungen Branchen umgestalten, Kundenerwartungen neu definieren und sich auf das Wettbewerbsumfeld auswirken.
NICAMA Naturkosmetik: Von der Studienidee zum nachhaltigen Erfolgsunternehmen
NICAMA Naturkosmetik feiert sein fünfjähriges Bestehen: Was mit kleinen Experimenten während des Studiums begann, ist heute ein etabliertes Naturkosmetikunternehmen mit über 600 Handelspartnern im DACH-Raum.
Was 2019 als mutige Idee von vier Studierenden begann, wurde rasch zu einem inspirierenden Beispiel für gelebte Nachhaltigkeit. In einer Zeit, in der Umweltschutz noch kein selbstverständlicher Trend war, experimentierten die Gründerinnen und Gründer mit festen Shampoos, um eine plastikfreie Alternative zu herkömmlicher Kosmetik zu schaffen. Das erste Produkt entstand mit viel Leidenschaft, Neugier und Improvisation. Damit war der Grundstein für den späteren Unternehmenserfolg gelegt.
Ein erfolgreiches Crowdfunding finanzierte 2019 die erste Produktcharge und machte den Traum vom eigenen Webshop möglich. Es folgten die ersten Partnerschaften mit Bioläden, Outdoorhändlern, Friseuren und Geschenkeläden, die an die Vision glaubten. Heute zählt NICAMA stolz über 600 Vertriebspartner und wächst weiter.
Ein entscheidender Meilenstein war die Entwicklung des 1plus1 Meeresschutz-Prinzips: Für jedes verkaufte Produkt werden 100 Gramm Plastik in Küstenregionen gesammelt. Dieses Prinzip ist transparent, messbar und von jedem/jeder Kund*in nachvollziehbar. Bis heute konnten so über 33.290 Kilogramm Plastik aus der Umwelt entfernt werden. Das entspricht mehr als 3,2 Millionen Plastikflaschen. Darüber hinaus hat das Team mehrere Elbreinigungen organisiert, unter anderem gemeinsam mit der Naturschutzjugend NAJU und Charlotte Meentzen.
Mit dem Schritt in die Upcycling Beauty wurde NICAMA zum Pionier in Deutschland. Dabei werden wertvolle Nebenprodukte aus der Lebensmittelproduktion wie Ingwertrester und Kaffeekirsche zu hochwertigen Inhaltsstoffen verarbeitet. Heute umfasst das Sortiment über 50 plastikfreie Produkte, darunter Seifen, Shampoos, Deocremes, Pflegeöle und Körperpeelings – alle minimalistisch verpackt und mit reduzierten, sorgfältig ausgewählten Rezepturen.
Die Reise war jedoch nicht ohne Herausforderungen: Die Corona Pandemie und die Inflationsfolgen des Ukraine-Krieges setzten auch NICAMA stark zu. Das einst 15-köpfige Team musste sich zwischenzeitlich deutlich verkleinern. Trotz dieser Rückschläge bewies das Unternehmen Durchhaltevermögen. Heute steht es so solide da wie nie zuvor. Seit zwei Jahren verzeichnet NICAMA wieder überdurchschnittliches Wachstum und das deutlich über dem allgemeinen Naturkosmetikmarkt in Deutschland.
Für sein Engagement und seine Innovationskraft wurde das Unternehmen mehrfach ausgezeichnet: 2021 gewann NICAMA den Sächsischen Gründerpreis und erhielt bereits viermal den eku Zukunftspreis des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft.
Happy Homeoffice Club gestartet
Gründerin Caterina Hirt startet ein digitales Netzwerk als kollaborative Kommunikationsplattform für selbständige Mütter im Homeoffice.
Mit dem Start des Happy Homeoffice Clubs entsteht ein neues digitales Angebot für selbständige Mütter – mit Liveformaten, Co-Working, einer innovativen Softwareplattform und vielen nützlichen Business-Hacks. Die Gründerin Caterina Hirt bringt damit ein strukturiertes, unterstützendes Netzwerk an den Start, das den oft isolierten Homeoffice-Alltag in einen Ort der Verbindung, Motivation und echten Weiterentwicklung verwandelt. „Ich habe selbst erlebt, wie herausfordernd es ist, Beruf, Familie und Selbstverwirklichung unter einen Hut zu bringen – vor allem im Homeoffice. Mit dem Happy Homeoffice Club möchte ich Frauen zeigen, dass sie nicht alleine sind“, so die Gründerin. Caterina Hirt ist Unternehmerin, Autorin, systemische Coachin und Mutter von zwei Kindern. Mit ihrem Agenturbackground und über zehn Jahren Erfahrung im Homeoffice weiß die Marketingspezialistin aus erster Hand, welche Chancen – aber auch welche Herausforderungen – dieser Arbeitsalltag birgt.
Kern der Zusammenarbeit ist eine kollaborative Kommunikationsplattform, über die die Mütter dauerhaft in einem echten Netzwerk verbunden sind. Dazu setzt das Angebot auf Livecalls, Community-Austausch, Expertenvorträge und snackable Businesstipps, die den Workflow im Homeoffice effizienter machen. Das Angebot richtet sich explizit an selbständige Frauen oder Mütter im Homeoffice. „Bei uns fühlt sich keine Teilnehmerin mehr allein. Hier treffen sich Frauen, die genau wissen, wie es ist, mit Laptop, Kaffee, Kind und manchmal ein bisschen Chaos zu jonglieren. Sie arbeiten, lachen, tauschen sich aus und motivieren sich gegenseitig. So modern, vernetzt und unterstützend, wie man es sich als Selbstständige immer gewünscht hat “, sagt Caterina Hirt.
Die zugrundeliegende Softwarelösung bietet eine hochmoderne Nutzeroberfläche, Chats, Calls in einer geschützten Umgebung sowie Daten- und Wissensaustausch an. So gibt es zum Beispiel den Monday Motivation Call mit allen Teilnehmerinnen oder eine interaktive Kaffeeküche, in der man sich einfach mal über alle Themen abseits des Business interaktiv austauschen kann. Die Plattform wird jeder Teilnehmerin zur Verfügung gestellt, die Nutzung ist in der monatlichen Mitgliedsgebühr von 49 Euro (Einführungspreis) enthalten. Interessentinnen können die Community inklusive aller Angebote zwei Wochen kostenlos testen.

