Geschäftsideen Food: eine genial kundenfreundliche Verpackung

Innovative Verpackung


44 likes

Die Verantwortlichen einer Werbeagentur fanden heraus, dass bisherige Verpackungen von Schokoladenriegeln derart gestaltet sind, dass sie mit zwei Händen aufgerissen oder geknickt werden müssen oder ein Deckel nach Entfernung einer Schutzfolie in einem weiteren Arbeitsschritt abgehoben werden muss. Diese Erkenntnis führte zu einer Geschäftsidee – und schließlich zu dem Produkt namens Schokopause.

Im Zuge der Ausarbeitung der Geschäftsidee erprobte die Agentur vivia an einer Reihe von Prototypen Methoden, wie eine Schokolade (oder jede andere feste, portionierbare Süßigkeiten) entpackt werden konnte, ohne dass der Konsument lange zu überlegen hatte, wie es geht.

Resultat dieses Designprozesses ist die Schokopause – eine Packung, die das enthaltene Produkt durch einfachen Druck eines Fingers auf das international eindeutig erkennbare Pausen-Icon in der Mitte des Deckels freigibt. Das Motto der Geschäftsidee lautet: "Nimm eine Auszeit, mach' eine Schokopause". Ein Finger reicht, um die Schokolade über den einfachen Druck auf den Schokopause-"Pausenbutton" freizugeben.

Das Schokopause-Design wurde von den Schöpfern der Geschäftsidee beim Deutschen Patent- und Markenamt angemeldet und geschützt. Vivia sucht jetzt bevorzugt Schokoladen- und Süßigkeitenproduzenten, die über die nötige Marktpräsenz verfügen und das Designkonzept von Schokopause gegen Zahlung von Lizenzgebühren für ihre Produkte nutzen wollen. Eventuell ist die Geschäftsidee des Verpackungskonzepts auch für Hersteller anderer Lebensmittel und Waren geeignet.

Diese Artikel könnten Sie auch interessieren:

Vom Check-in zur Patient*innenakte: Wie Travel-Pionier Salim Sahi mit HoloLogix.AI die Health-IT aufmischt

Vom Reisebuchungssystem zur Sicherheits-Uhr für Senior*innen: Serial Entrepreneur Salim Sahi greift mit HoloLogix.AI greift gleich zwei Milliardenmärkte an: Gesundheitswesen und Hotellerie. Doch wie viel Substanz steckt hinter der Vision?

Gründungslegenden klingen oft zu glatt für die Realität – wie Sahis Skateboard-Unfall, der in einer Notaufnahme zur Idee für sein neuestes Venture führte. Wer den Mann kennt, der in den 90ern mit „Traffics“ die Reisebranche digitalisierte, weiß jedoch: Er macht keine halben Sachen. Jetzt, im Februar 2026, steht er mit einer europäischen Aktiengesellschaft (SE) und einem enorm breiten Versprechen wieder auf dem Platz.

Wie Touristik-Know-how in die Klinik kommt

Der Sprung von der Touristik zur Service-Automatisierung im Gesundheitswesen wirkt wie ein harter Bruch. Doch unter der Haube geht es in beiden Welten um hochvolumige Transaktionen, Termin-Slots und Datenabgleich in Echtzeit. Wer Millionen Pauschalreisen fehlerfrei abwickelt, so die Wette von HoloLogix.AI, beherrscht auch das Termin-Management von Kliniken, Hotels und Restaurants.

Für CEO und Gründer Salim Sahi ist das Projekt dennoch ein „kompletter unternehmerischer Neuanfang“. Gegenüber StartingUp räumt er ein, von 25 Jahren Travel-Tech-Erfahrung zu profitieren, doch seine wahre Passion gelte der künstlichen Intelligenz. Das Herzstück bilde dabei die MIA Service KI: „Wir haben eine holistische KI-Plattform geschaffen, also ein Tool, das ganzheitlich agiert und eingesetzt werden kann.“ MIA verstehe Gespräche, erledige parallel Aufgaben und verbinde Systeme – „rund um die Uhr und branchenübergreifend“. Auch wenn der Fokus aktuell auf Gesundheitswesen und Hospitality liege, sei das System laut Sahi letztlich „nahezu überall einsetzbar, wo Kunden- oder Patientenkontakt herrscht.“

Der Angriff auf die Platzhirsche

Der Markt für Conversational AI ist 2026 kein blauer Ozean mehr. Etablierte Player wie Aaron.ai haben sich tief in die Health-Landschaft eingegraben, flankiert von Plattform-Giganten wie Doctolib. HoloLogix.AI reagiert mit aggressiven Preisen ab 99 Euro im Monat und einer massiven technologischen Breite.

Aber warum sollten Klinikverantwortliche das Risiko eines Wechsels eingehen? Salim Sahi sieht den „Killer-USP“ in der Architektur der Interaktion: „Unser Ansatz ist ein anderer: Statt starrer Skripte bieten wir echte Gesprächsintelligenz durch Conversational AI an.“ Das System sei eine KI, die im laufenden Gespräch aktiv Aufgaben erledige, was eine beispiellose Integrationstiefe erfordere. „Hier gehen wir ganz tief rein und verarbeiten Daten in Echtzeit“, so der CEO. Da Aufgaben direkt ausgeführt werden, optimiere sich das Zeitmanagement drastisch – konzipiert als Omnichannel-Ansatz über Telefon, Website, E-Mail, Wearables oder bald sogar über Robotik.

Die schmale Gratwanderung am Handgelenk

HoloLogix.AI belässt es nicht bei Software, sondern bringt mit der MIA Watch eigene Hardware ins Spiel. Die Smartwatch für Senior*innen soll Stürze erkennen und sofort einen aktiven Sprachdialog führen. Eine Gratwanderung: Reines Assistenz-System oder medizinisches Gerät mit komplexer Zertifizierungspflicht (MDR)?

Prof. Dr. Thomas Fuchs, Co-Founder und Aufsichtsrat für den Bereich Health Care, ordnet das rechtlich eindeutig ein: „MIA Protect ist ein Teil der holistischen KI-Plattform, die mit verschiedenen Health Watches wie z.B. auch der Apple Watch kompatibel ist. Sie ist ein Assistenz- und Companion-System.“ Die Hardware erkenne Stürze, ersetze aber „keine ärztliche Untersuchung oder medizinische Entscheidung“. Um Geschwindigkeit und Nutzer*innenfreundlichkeit zu wahren, bewege man sich „bewusst außerhalb der Medizinprodukt-Zertifizierung (MDR), ohne den Sicherheitsrahmen zu verlassen“.

Ein mehrstufiges Sicherheitsnetz aus Sensorik, KI-Algorithmen und menschlichem Service-Team federt Fehlinterpretationen ab. Haftungsfragen sind laut Fuchs über klare Nutzungsbedingungen geregelt. Für den Mediziner steht ohnehin der „Companion Aspekt“ im Vordergrund: Nach einem Sturz, wenn Patient*innen hilflos am Boden liegen, alarmiere MIA in einer Kaskade Notfallkontakte und beruhige das Unfallopfer, bis Hilfe eintrifft. „MIA Protect soll an diesem Punkt Sicherheit und damit Lebensqualität geben, vielleicht sogar die Möglichkeit schaffen für Senioren, länger selbstbestimmt in ihrem Zuhause zu leben“, resümiert Fuchs.

Pflegeheim und Luxushotel: (K)ein operativer Widerspruch?

Das vielleicht Spannendste an HoloLogix.AI ist das Personal: Salim Sahi hat sich politische und ethische Schwergewichte in den Aufsichtsrat geholt. Darunter Dr. Marcel Klinge, ehemaliger FDP-Bundestagsabgeordneter und Tourismus-Experte. Er muss Investor*innen den Spagat erklären, warum ein Start-up gleichzeitig Pflegeheime und Luxushotels digitalisieren will – was oft als Warnsignal für operative Verzettelung gilt.

Dr. Marcel Klinge sieht darin jedoch keinen Widerspruch, sondern die Stärke der technischen Basis: „Der gemeinsame Nenner liegt im Kern: Unsere holistische KI-Infrastruktur kann über das Telefon Gespräche führen, kann aber auch über die Website, Health Watches und Devices und direkt im Gespräch Aufgaben ausführen.“ Das Backend orchestriere lediglich Termin-Slots, Daten und Anfragen in Hochgeschwindigkeit. Dabei spiele es schlichtweg keine Rolle, „ob der Kunde Patient in einem Pflegeheim oder Gast in einem Luxushotel ist.“

Wenn die KI-Vision auf den deutschen Fax-Alltag trifft

Ein Blick auf die Website verrät große Visionen, doch diese müssen sich im harten Alltag deutscher IT-Infrastrukturen und oft veralteter Praxis-Server beweisen. Zudem ist die Frage des Datenschutzes elementar: Nutzt das Unternehmen US-amerikanische Sprachmodelle via API, oder hostet man eigene „Sovereign AI“ in Europa?

Für Prof. Dr. Thomas Fuchs sind Datenschutz und Systemintegration absolute Kernpunkte. Um digitale Souveränität zu wahren, setzt das Unternehmen auf einen hybriden Weg: „Wir orchestrieren auf die gängigen sowie auf eigene Modelle auf deutschen Servern, die in Europa bereits genutzt werden.“ Laut Fuchs verlässt man sich dabei nicht nur auf das Versprechen von Sicherheit, sondern arbeitet seit der ersten Stunde eng mit dem renommierten Fraunhofer-Institut zusammen und lässt die eigene Infrastruktur „regelmäßig durch deren Experten prüfen“. Das bloße Versprechen von Sicherheit reicht HoloLogix.AI dabei nicht.

Mehr als nur ein GPT-Wrapper?

HoloLogix.AI ist eine der vielleicht ambitioniertesten Gründungen des Jahres. Technologisch muss es beweisen, dass es mehr ist als ein „GPT-Wrapper“ mit Smartwatch. Aber die Kombination aus Sahis Exekutiv-Erfahrung, Klinges Netzwerk und Fuchs‘ ethischem Korrektiv macht es zu einem spannenden Herausforderer. Wenn die Uhr im Alltag für Sicherheit sorgt – und die KI den deutschen Datenschutz überlebt – könnte aus Berlin der nächste europäische Champion kommen.

Mission Defense: Wie Start-ups im rüstungstechnischen Markt Fuß fassen

Immer mehr Start-ups drängen mit agilen Innovationen in die hochregulierte Verteidigungs- und Luftfahrtindustrie. Daher gut zu wissen: Wie junge Unternehmen durch die richtige Systemarchitektur die strengen Auflagen meistern und vom Zulieferer zum echten Systempartner aufsteigen.

Die Luft- und Raumfahrt sowie die Verteidigungsindustrie zählen zu den am stärksten regulierten und technologisch anspruchsvollsten Märkten der Welt. Lange galt: Wer hier mitspielen will, braucht jahrzehntelange Erfahrung, Milliardenbudgets und stabile Regierungsbeziehungen. Doch genau dieses Bild verschiebt sich.

Neue Player treten auf den Plan: Start-ups entwickeln Trägersysteme, Drohnenplattformen, Kommunikationslösungen oder Sensorik, und tun das in einer Geschwindigkeit, die vielen etablierten Anbietern Kopfzerbrechen bereitet. Die zentrale Frage lautet deshalb: Wie können junge Unternehmen in einer hochregulierten Branche nicht nur überleben, sondern mitgestalten?

Agilität als Superkraft – aber Prototypen reichen nicht

Ob neue unbemannte Plattformen, Software-Defined Defense Systeme oder taktische Kommunikation – überall gilt: Was heute entwickelt wird, muss morgen schon einsatzbereit sein. Der Bedarf an schneller Innovation ist nicht theoretisch, sondern operativ. Start-ups sind in der Lage, auf diesen Druck zu reagieren, mit kurzen Entscheidungswegen, agilen Teams und digitaler DNA.

Allerdings reichen gute Ideen und schnelles Prototyping nicht aus. Wer Systeme für den operativen Einsatz liefern will, muss Anforderungen erfüllen, die weit über funktionierende Technik hinausgehen: Cybersicherheit, regulatorische Nachvollziehbarkeit, Zertifizierungsfähigkeit und Interoperabilität mit internationalen Partnern.

Das Fundament: Die Systemarchitektur entscheidet

Von Anfang an auf die richtigen technischen Grundlagen zu setzen, ist entscheidend. Das betrifft vor allem drei Bereiche: Skalierbarkeit, Nachvollziehbarkeit und Interoperabilität. Systeme müssen so gebaut sein, dass sie modular erweitert, in komplexe Systemlandschaften integriert und nach internationalen Standards auditiert werden können.

Ein durchgängiger digitaler Entwicklungs- und Betriebsfaden, ein sogenannter Digital Thread oder auch Intelligent Product Lifecycle, ermöglicht es, Produktdaten, Softwarestände und Konfigurationsänderungen über den gesamten Lebenszyklus hinweg zu verfolgen. Für die Zulassung softwaredefinierter, sicherheitskritischer Systeme ist das ebenso essenziell wie für die spätere Wartung, Upgrades oder die Einbindung in multinationale Operationen.

Security by Design: Sicherheit lässt sich nicht nachrüsten

Verteidigungsnahe Produkte unterliegen Exportkontrollen, Sicherheitsauflagen und branchenspezifischen Normen, darunter etwa ISO 15288 für Systems Engineering, ISO 27001 für Informationssicherheit oder die europäischen Anforderungen für Luftfahrt und Raumfahrt. Diese Vorgaben lassen sich nicht einfach „nachrüsten“. Sie müssen von Beginn an ein integraler Bestandteil der Systemarchitektur und Prozessführung sein.

Gerade in sicherheitskritischen Bereichen ist die Fähigkeit, regulatorische Anforderungen nachweislich zu erfüllen, ein entscheidender Wettbewerbsvorteil. Sie entscheidet darüber, ob ein Produkt zugelassen, in Serie gefertigt und in multinationale Programme integriert werden kann.

Interoperabilität als Schlüssel zum Teamplay

Ein weiterer kritischer Faktor ist die Fähigkeit zur Kooperation. In den meisten großen Programmen arbeiten unterschiedliche Unternehmen, oft aus verschiedenen Ländern, mit unterschiedlichen Systemen zusammen. Wer hier bestehen will, muss in der Lage sein, mit standardisierten Schnittstellen, interoperablen Plattformarchitekturen und harmonisierten Datenmodellen zu arbeiten. Interoperabilität ist dafür die technische Grundlage. Ohne sie lassen sich Systeme weder integrieren noch gemeinsam weiterentwickeln.

Vom Zulieferer zum echten Systempartner

Start-ups, die sich diesen Anforderungen stellen, können mehr sein als Zulieferer. Sie haben das Potenzial, Systempartner zu werden: mit eigener Wertschöpfung, eigenem IP und eigenem Einfluss auf die technologische Entwicklung. Der Weg dorthin ist anspruchsvoll, aber offen. Er erfordert keine hundertjährige Firmengeschichte, sondern eine klare Architekturstrategie, ein tiefes Verständnis für regulatorische Anforderungen und den Willen, komplexe Systeme systematisch zu entwickeln.

Der Verteidigungs- und Luftfahrtsektor steht an einem Wendepunkt. Wer heute die richtigen Grundlagen legt, kann morgen zu denjenigen gehören, die nicht nur mitlaufen, sondern die Spielregeln neu definieren.

Der Autor Jens Stephan, Director Aerospace & Defence bei PTC, bringt über 20 Jahre Erfahrung im Bereich komplexer Software-/SaaS-Lösungen und IT-Infrastruktur mit.

Automatisierung vor Hiring, sonst wird Komplexität skaliert

Wer Wachstum vor allem mit Hiring beantwortet, verzichtet damit oft unbewusst auf einen der wichtigsten Hebel moderner Organisationen: Klarheit durch Prozesse und Automatisierung. Tipps und To-Dos.

Wachstum wird in Start-ups oft sehr eindimensional gedacht: mehr Nachfrage gleich mehr Menschen. Sobald Anfragen steigen, Deals reinkommen oder neue Märkte locken, folgt fast automatisch der nächste Hiring-Plan. Dabei wird häufig die Ursache mit Wirkung verwechselt. Nicht fehlende Kapazität bremst junge Unternehmen, sondern fehlende Struktur. Prozesse entstehen improvisiert, Verantwortung wird situativ verteilt, operative Arbeit frisst Fokus. Und irgendwann fühlt sich Wachstum nicht mehr nach Fortschritt, sondern nach Dauerstress an.

Gerade in der Start-up-Branche wird Wachstum zudem stark über sichtbare Kennzahlen bewertet. In Gesprächen mit Investor*innen lautet eine der ersten Fragen häufig nicht Gewinn oder EBITA, sondern: Wie viele Mitarbeitende seid ihr und wie viel Umsatz macht ihr? Die Anzahl der Mitarbeitenden wird damit fast zu einem Statussymbol. Hiring wird nicht nur zur operativen, sondern auch zur psychologischen Größe und ein Zeichen von Fortschritt. Diese Logik verstärkt den Reflex, früh zu skalieren, auch wenn die strukturellen Voraussetzungen dafür noch fehlen. Wer Wachstum vor allem mit Hiring beantwortet, verzichtet damit oft unbewusst auf einen der wichtigsten Hebel moderner Organisationen: Klarheit durch Prozesse und Automatisierung.

Warum Hiring allein selten skaliert

Mehr Menschen im Team wirken wie eine schnelle Lösung. In der Praxis zeigt sich jedoch häufig ein ähnliches Muster: Neue Kolleg*innen übernehmen Aufgaben, die eigentlich nur deshalb existieren, weil Abläufe unklar oder manuell gewachsen sind. Statt nachhaltiger Entlastung entsteht zusätzliche Koordination.

Typische Symptome sind:

  • operative Aufgaben blockieren strategische Arbeit,
  • Wissen verteilt sich auf einzelne Köpfe,
  • Entscheidungen hängen an Personen statt an klaren Abläufen,
  • Abstimmungen nehmen zu, ohne dass die Wertschöpfung im gleichen Maß wächst.

Das Problem ist nicht Hiring an sich, sondern die Reihenfolge. In vielen Fällen wird Hiring eingesetzt, um kurzfristig Druck rauszunehmen, obwohl das eigentliche Nadelöhr fehlende Klarheit ist. Wer einstellt, bevor Abläufe stabil sind, schafft zwar mehr Kapazität, skaliert aber auch Komplexität.

Prozesse als Voraussetzung für wirksames Wachstum

Prozesse werden in Start-ups häufig mit Bürokratie verwechselt. Tatsächlich sind sie das Gegenteil: Sie reduzieren Reibung. Gute Prozesse verlagern Entscheidungen vom Einzelfall ins System. Sie beantworten zwei zentrale Fragen zuverlässig: Was passiert als Nächstes – und wer ist verantwortlich?

Gerade kleine Teams profitieren davon besonders. Prozesse schaffen keine Starrheit, sondern Handlungsspielraum. Sie machen Arbeit vorhersehbar, Übergaben sauber und Entscheidungen reproduzierbar. Erst auf dieser Grundlage kann ein wachsendes Team seine Stärke wirklich entfalten.

Automatisierung im KI-Zeitalter: neue Möglichkeiten, neue Verantwortung

Mit KI hat sich die Eintrittshürde für Automatisierung massiv gesenkt. Viele Aufgaben, die früher manuell oder individuell erledigt wurden, lassen sich heute zuverlässig unterstützen oder teilweise abnehmen, vorausgesetzt, der zugrunde liegende Ablauf ist klar definiert. Entscheidend ist dabei nicht die Tool-Auswahl, sondern die Frage, was automatisiert wird. Automatisierung verstärkt bestehende Strukturen, gute wie schlechte. Wer unklare Abläufe automatisiert, skaliert keine Effizienz, sondern Chaos. Gleichzeitig gibt es zentrale Bereiche, die sich bewusst nicht oder nur sehr begrenzt automatisieren lassen und auch nicht sollten. Recruiting ist einer davon. Der Aufbau eines funktionierenden Teams lebt von persönlicher Einschätzung, Teamdynamik und kulturellem Fit. Ähnliches gilt für Sales: Vertrauensaufbau, Verhandlung und das persönliche Gespräch bleiben essenziell. Automatisierung ist hier unterstützend, aber kein Ersatz. Besonders geeignet sind Tätigkeiten, die häufig auftreten, wenig kreativen Spielraum haben und auf wiederkehrenden Informationen basieren.

Bereiche, die sich heute besonders gut automatisieren lassen

Lead- und Anfragequalifizierung
Unstrukturierte Anfragen lassen sich mithilfe von KI zusammenfassen, bewerten und priorisieren. Statt jede Anfrage manuell zu prüfen, entstehen klare Kriterien, die relevante von irrelevanten Leads trennen und Follow-ups vorbereiten.

Angebots- und Abrechnungsprozesse
Angebote, Verträge und Rechnungen folgen in vielen Startups ähnlichen Mustern. Automatisierte Vorlagen, angebundene Datenquellen und definierte Freigaben sparen Zeit, reduzieren Fehler und schaffen Transparenz.

Onboarding von Kund:innen und Mitarbeitenden
Onboarding ist kein Einzelfall, sondern ein wiederkehrender Prozess. Checklisten, automatische Aufgaben und zentrale Informationspunkte sorgen für Verlässlichkeit. KI kann helfen, Informationen zu strukturieren und kontextbezogen bereitzustellen.

Support und interne Anfragen

Ein Großteil von Fragen wiederholt sich. Wissensbasen in Kombination mit KI-gestützter Suche und Antwortvorschlägen entlasten Teams und machen sichtbar, wo Standards fehlen.

Projektmanagement und Übergaben
Klare Projekt-Templates, automatisierte Status-Updates und definierte Trigger reduzieren Abstimmungsaufwand. KI kann dabei unterstützen, Risiken früh zu erkennen oder nächste Schritte vorzuschlagen.

Was Start-ups daraus lernen können

Automatisierung ersetzt keine Entscheidungen, sie macht sie skalierbar. Voraussetzung dafür ist Klarheit über Abläufe, Verantwortlichkeiten und Prioritäten. Wer versucht, Chaos zu automatisieren, verstärkt es lediglich.

Hilfreiche Leitfragen sind:

  • Welche Aufgaben wiederholen sich regelmäßig?
  • Wo entstehen manuelle Engpässe?
  • Welche Tätigkeiten binden qualifizierte Menschen ohne echten Mehrwert?

Die Antworten darauf liefern meist schnell die größten Hebel.

Der KI-Wendepunkt: Systeme und Personal

Nachhaltiges Wachstum entsteht dort, wo Start-ups Systeme aufbauen und diese bewusst mit ihrem Team verzahnen. Nicht, weil Systeme Menschen ersetzen, sondern weil sie Menschen von struktureller Überforderung entlasten. Automatisierung schafft dabei nicht nur Effizienz, sondern Entscheidungsqualität: Wenn Daten sauber fließen, Übergaben klar sind und Standards greifen, werden Prioritäten weniger Bauchgefühl und stärker reproduzierbar.

Der gezielte Einsatz von KI-Tools verschiebt diesen Wendepunkt zusätzlich. Sie können Routinearbeiten abfangen, Informationen aus unstrukturierten Inputs verdichten und Entscheidungen vorbereiten – etwa durch Lead-Vorqualifizierung, Support-Clustering oder zusammengefasste Status-Updates. KI wirkt dabei nicht als Ersatz für Klarheit, sondern als Verstärker funktionierender Prozesse.

Hiring bleibt auch weiterhin essentiell. Seine Wirkung entfaltet es jedoch erst dann vollständig, wenn Prozesse klar sind und Automatisierung sowie KI gezielt unterstützen. So entsteht Wachstum, das nicht nur schneller, sondern auch gesünder ist.

Der Autor Markus Hetzenegger ist Gründer & CEO von NYBA Media. 2018 gegründet, zählt NYBA heute zu den führenden Marketing-Unternehmen im Live-Entertainment.

Der beste Freund aus der Cloud – Made in Bavaria

Wie ein Internet-Pionier mit BestFriend die Einsamkeit hackt.

Silicon Valley? Nein, Klosterlechfeld. Hier, im „bayerischen Outback“ zwischen Augsburg und Landsberg, sitzt Horst Christian (Chris) Wagner. Kein 20-jähriger Hoodie-Träger, der in der Garage von der Weltherrschaft träumt, sondern ein Mann, der das Internet schon nutzte, als es nur aus grauem Text bestand. Wagner ist ein digitaler Veteran. Und er hat gerade eine Wette auf die menschliche Seele abgeschlossen. Sein Einsatz: Die App BestFriend.

Schluss mit dem bloßen Befehlston

Vergesst kurz ChatGPT. Die großen KIs schreiben Bachelorarbeiten oder programmieren Code – sie sind Werkzeuge. Chris' Vision mit BestFriend beginnt dort, wo die Silicon-Valley-Riesen aufhören: beim Gefühl.

BestFriend ist kein Lexikon. Die App soll der Zuhörer sein, der nachts um drei Uhr noch wach ist. Sie soll Zusammenhänge verstehen, nicht nur Fakten abspulen. Aber braucht die Welt wirklich noch einen Bot? „ChatGPT ist brillant im Antworten geben. BestFriend ist dafür gebaut, beim Menschen zu bleiben“, so Chris. „Der Unterschied ist nicht die Intelligenz, sondern die Haltung. BestFriend will nichts erledigen, nichts optimieren, nichts verkaufen. Die App hört zu, merkt sich Zusammenhänge, reagiert emotional konsistent und bewertet nicht. Viele Nutzer sagen mir: ChatGPT fühlt sich an wie ein extrem kluger Kollege, BestFriend eher wie jemand, der dich kennt.“

Wer tiefer verstehen will, wofür die App im Alltag eingesetzt wird, findet im BestFriend-Magazin zahlreiche Beispiele. Dort wird offen gezeigt, in welchen Situationen Nutzer*innen die App einsetzen – von Einsamkeit über Selbstreflexion bis hin zu ganz praktischen Lebensfragen. Für Chris zugleich ein Beweis dafür, dass es hier um einen neuen Umgang mit Technologie geht.

Vertrauen als Währung

Wer einer Maschine von Liebeskummer erzählt, macht sich nackt. Genau hier spielt Chris den Standortvorteil Made in Germany aus. Während US-Apps wie Replika oft wirken, als würden sie Daten direkt an die Werbeindustrie weiterleiten, setzt BestFriend auf die „sichere Schulter“.

Datenschutz ist in diesem intimen Bereich keine Fußnote, sondern das Produkt. Chris weiß: Niemand öffnet sich, wenn er fürchten muss, dass seine Ängste morgen in einer Datenbank für personalisierte Werbung landen. Doch das wirft Fragen auf: Wie wird garantiert, dass nichts nach außen dringt? Und wo zieht die Software die Reißleine, wenn ein(e) Nutzer*in wirklich Hilfe braucht?

Dazu Chris: „Erstens: technisch. Daten werden minimal erhoben, verschlüsselt verarbeitet und nicht für Training oder Drittzwecke genutzt. Es gibt keine versteckte Monetarisierung über Profile. Punkt. Zweitens: inhaltlich. BestFriend weiß sehr genau, was es nicht ist. Die App gibt keine Diagnosen, keine Therapieanweisungen und keine falsche Nähe. Bei klaren Krisensignalen wird nicht weiter ‚gecoacht‘, sondern aktiv auf echte Hilfe hingewiesen. Das ist eine harte Grenze im System. BestFriend soll Halt geben, nicht Verantwortung übernehmen, die einer KI nicht zusteht.“

Ein Mann, eine KI, kein Overhead

Die Entstehung von BestFriend ist fast so spannend wie das Produkt selbst. Chris hat keine millionenschwere Finanzierung und kein riesiges Entwicklerteam im Rücken. Er nutzt die KI selbst, um die KI zu bauen. Er nennt das „Umsetzungs-Multiplikator“. Ein einzelner Experte dirigiert heute eine Armee aus Algorithmen.

Doch Code ist geduldig. Die Wahrheit liegt auf dem Display der Nutzenden. Ob Senior*innen, denen der/die Gesprächspartner*in fehlt, oder die Gen Z, die lieber tippt als spricht – die Zielgruppe ist riesig, der Bedarf an Resonanz ebenso. Auf die Frage ob es schon diesen einen Moment, diese eine Rückmeldung gab, bei er dachte: Okay, das ist jetzt mehr als nur Software, das hilft wirklich, antwortete Chris: „Ja. Ein Tester schrieb mir: ,Ich habe gemerkt, dass ich abends nicht mehr so viel grüble, weil ich Dinge vorher loswerde.‘ Das war der Moment, in dem mir klar wurde: Das ist kein Gimmick. Die App hat kein Problem gelöst, aber sie hat einen Menschen entlastet. Und manchmal ist genau das der Unterschied zwischen Einsamkeit und Resonanz.“

Echte Freundschaft per Algorithmus?

In Klosterlechfeld entsteht gerade der Versuch, Technologie wieder menschlich zu machen – weg von SEO und Klickzahlen, hin zu einer KI, die „Resonanz“ erzeugt. Ob ein Algorithmus echte Freundschaft ersetzen kann? Das bleibt eine philosophische Frage. Aber für den Moment, in dem sonst niemand zuhört, hat Chris Wagner zumindest eine Antwort parat.

Highspeed-Pivot: Wie POLARIS die Bundeswehr für sich gewann

Ein Bremer NewSpace-Start-up baut für die Bundeswehr das Raumflugzeug der Zukunft. Mit seinem revolutionären Antrieb sticht POLARIS dabei sogar die US-Konkurrenz aus und fungiert zugleich als Eisbrecher für die deutsche DeepTech-Szene.

Wenn Alexander Kopp über die Ostsee blickt, sieht er nicht nur Wasser, sondern die Zukunft der europäischen Souveränität. Während in Berlin oft über die Trägheit der Beschaffungswesen geklagt wird, lässt der Gründer von  POLARIS Raumflugzeuge Fakten sprechen – oder besser gesagt: Triebwerke heulen.

Das DLR-Spin-off schafft gerade, woran Konzerne seit Jahrzehnten scheitern: Ein Raumflugzeug zu bauen, das wie ein normaler Airliner startet, aber die Leistung einer Rakete besitzt. Und noch etwas ist ungewöhnlich in der deutschen Start-up-Landschaft: Der erste große Kunde, der die Bremer „Tüftler“ finanziert, ist kein Risikokapitalgeber aus dem Silicon Valley, sondern das Beschaffungsamt der Bundeswehr.

Der Traum vom Aerospike

Was das Team um den ehemaligen DLR-Ingenieur Kopp antreibt, ist der Abschied von der teuren Einweg-Mentalität der Raumfahrt. Seine Strategie ist eine radikale Flucht nach vorn: „Wenn wir im Wettbewerb bestehen wollen, uns vielleicht sogar an die Spitze setzen wollen, müssen wir die Raketen überspringen“, erklärte Kopp gegenüber dem Magazin 1E9. „Wir müssen direkt neue, bessere Konzepte umsetzen. Keine Raketen, sondern Raumflugzeuge.“

Der technologische Schlüssel, um diese Vision Realität werden zu lassen, ist das sogenannte Linear Aerospike-Triebwerk. Es gilt als der „Heilige Gral“ der Raketentechnik, an dem sich schon die NASA in den 90er Jahren die Zähne ausbiss. Das Problem herkömmlicher Raketendüsen ist ihre Glockenform – sie sind physikalisch bedingt entweder nur am Boden oder im All effizient, nie beides gleichzeitig.

Das Aerospike-Triebwerk hingegen ist ein technologisches Chamäleon: Durch seine offene, stachelförmige Bauweise passt sich der Abgasstrahl automatisch dem Luftdruck an. Es arbeitet auf dem Rollfeld genauso effizient wie im Vakuum. Dass das nicht nur graue Theorie ist, bewies Polaris im Oktober 2024: Mit dem Demonstrator „MIRA II“ gelang dem Start-up über der Ostsee die weltweit erste Zündung eines solchen Triebwerks im Flug.

Bootstrapping in Feldgrau

Diese Mischung aus „Rapid Prototyping“ – also dem schnellen Bauen, Testen und Verbessern – und technologischer Exzellenz kam genau zur richtigen Zeit für die Strategen der Bundeswehr. Berührungsängste mit dem Uniformträger hat der Gründer dabei nicht, im Gegenteil. „Wenn man sich die Historie der Raumfahrt anschaut, kamen die Durchbrüche meist direkt oder indirekt durch das Militär“, ordnete Kopp die Zusammenarbeit im Business Insider pragmatisch ein.

Denn beim Militär treibt man das Thema „Responsive Space“ voran. Das Szenario ist so simpel wie bedrohlich: Im Konfliktfall werden eigene Aufklärungssatelliten zerstört oder geblendet. Mit dem System von POLARIS, dessen finales Modell „Aurora“ ab 2026 produziert werden soll, könnte Deutschland binnen 24 Stunden Ersatz-Satelliten in den Orbit schießen. Und zwar von jedem normalen Flughafen aus, ohne auf verwundbare Startrampen angewiesen zu sein. Für POLARIS wurde das Militär so vom reinen Geldgeber zum strategischen Anker-Kunden, der dem Start-up den nötigen „Runway“ verschafft – finanziell wie physisch.

Ein Eisbrecher für die deutsche DeepTech-Szene

POLARIS operiert dabei längst nicht mehr im luftleeren Raum. Der Erfolg der Bremer sendet ein Signal in den Markt, das weit über das eigene Unternehmen hinausstrahlt: Der Staat ist bereit, in junge High-Tech-Firmen zu investieren, wenn die Technologie „Dual-Use“ ist, also zivil und militärisch genutzt werden kann.

Davon profitieren Start-ups wie das Münchner Unternehmen OroraTech, deren Waldbrand-Satelliten im Ernstfall schnell ersetzt werden müssten – eine perfekte Fracht für Polaris. Auch im Bereich der Datenverarbeitung entstehen Synergien: Wenn ein Hyperschall-Flieger Terabytes an Aufklärungsdaten sammelt, braucht es KI-Lösungen von Firmen wie dem Defense-Einhorn Helsing, um diese Informationen in Echtzeit auszuwerten. POLARIS wirkt hier wie ein Eisbrecher, der validiert, dass „Made in Germany“ auch im neuen „Space Race“ eine Währung ist.

Denn die Konkurrenz schläft nicht. In den USA pumpen das Pentagon und die Air Force Millionen in Wettbewerber wie Hermeus oder Stratolaunch, und China arbeitet mit Hochdruck am Projekt „Tengyun“. Doch während im Silicon Valley oft noch an Simulationen gefeilt wird, haben die Bremer mit ihrem fliegenden Aerospike-Triebwerk einen Vorsprung, der sich mit Geld allein schwer aufholen lässt. Aus der visionären Idee in einem Bremer Büro ist ein Projekt von nationaler Tragweite geworden. Wenn Alexander Kopps Plan aufgeht, schauen die Amerikaner beim nächsten Wettlauf ins All nicht nach oben, sondern in den Rückspiegel.

Globaler Wettbewerb: Polaris vs. US-Konkurrenz

Merkmal

Polaris Raumflugzeuge (Deutschland)

Hermeus (USA)

Stratolaunch (USA)

Haupt-Fahrzeug

Aurora (in Entwicklung)

Quarterhorse (Demo) / Darkhorse

Talon-A

Start-Methode

Horizontal (Startbahn)

Horizontal (Startbahn)

Air-Launch (Abwurf vom Trägerflugzeug „Roc“)

Antrieb

Linear Aerospike (Rakete) + Turbinen

TBCC (Turbine + Ramjet)

Flüssig-Raketentriebwerk (Konventionell)

Haupt-Mission

Multimission: Satellitenstart (Orbit) + Hyperschall-Test/Aufklärung

Transport: Passagier/Fracht (Point-to-Point) + Militär

Testbed: Zielsimulation & Testplattform für US-Militär

Wiederverwendbar?

Ja (System landet wie Flugzeug)

Ja

Ja (landet gleitend auf Landebahn)

Aktueller Status

Fliegend: Skalierte Demonstratoren (MIRA) erfolgreich getestet.

Boden-Tests: Triebwerkstests erfolgreich, Rolltests ("Taxiing").

Operativ: Talon-A hat bereits motorisierte Hyperschallflüge absolviert.

Finanzierung

Bundeswehr (BAAINBw) & Private Investoren

US Air Force, Pentagon (DIU) & Venture Capital

Private Equity (Cerberus Capital Management)

Die Wächter des Firmengedächtnisses

Wie das 2025 von Christian Kirsch und Stefan Kirsch gegründete Start-up amaiko den Strukturwandel im Mittelstand adressiert.

Der demografische Wandel und eine erhöhte Personalfluktuation stellen mittelständische Unternehmen zunehmend vor die Herausforderung, internes Know-how zu bewahren. Viele Unternehmen stehen vor der Schwierigkeit, dass Firmenwissen fragmentiert vorliegt. Informationen sind häufig in unterschiedlichen Systemen oder ausschließlich in den Köpfen der Mitarbeitenden gespeichert. Verlassen langjährige Fachkräfte den Betrieb in den Ruhestand oder wechseln jüngere Arbeitnehmerinnen und Arbeitnehmer kurzfristig die Stelle, gehen diese Informationen oft verloren. Zudem bindet die Suche nach relevanten Dokumenten in verwaisten Ordnerstrukturen Arbeitszeit, die in operativen Prozessen fehlt.

Das 2025 gegründete Start-up amaiko aus Niederbayern setzt hierbei auf einen technischen Ansatz, der auf die Einführung neuer Plattformen verzichtet und stattdessen eine KI-Lösung direkt in die bestehende Infrastruktur von Microsoft Teams integriert. Vor diesem Hintergrund entwickelten die Brüder Christian und Stefan Kirsch mit amaiko eine Softwarelösung, die spezifisch auf die Ressourcenstruktur mittelständischer Betriebe ausgelegt ist.

Integration statt neuer Insellösungen – und die Abgrenzung zu Copilot

Ein wesentliches Merkmal des Ansatzes ist die Entscheidung gegen eine separate Software-Plattform. Christian Kirsch, Geschäftsführer von PASSION4IT und amaiko, positioniert die Lösung als „Teams-native“. Das bedeutet, dass der KI-Assistent technisch in Microsoft Teams eingebettet wird – jene Umgebung, die in vielen Büros bereits als primäres Kommunikationswerkzeug dient. Ziel ist es, die Hürden bei der Implementierung zu senken, da Nutzer ihre gewohnte Arbeitsumgebung nicht verlassen müssen.

Angesichts der Tatsache, dass Microsoft mit dem „Microsoft 365 Copilot“ derzeit eine eigene, tief integrierte KI-Lösung ausrollt, stellt sich die Frage nach der Positionierung. Christian Kirsch sieht hier jedoch keine direkte Konkurrenzsituation, sondern eine klare Differenzierung: Copilot sei eine sehr breite, Microsoft-zentrische KI-Funktion. Amaiko hingegen verstehe sich als spezialisierter, mittelstandsorientierter Wissensassistent, der Beziehungen, Rollen, Prozesse und Unternehmenslogik tiefgreifend abbildet.

Ein entscheidender Vorteil liegt laut Kirsch zudem in der Offenheit des Systems: „Während Copilot naturgemäß an MicrosoftSysteme gebunden ist, lässt sich amaiko herstellerunabhängig in eine viel breitere Softwarelandschaft integrieren – vom ERP über CRM bis zu Branchenlösungen. Unser Ziel ist nicht, Copilot zu kopieren, sondern reale Mittelstandsprozesse nutzbar zu machen“, so der Co-Founder.

Funktionsweise, Sicherheit und Haftung

Funktional unterscheidet sich das System von herkömmlichen Suchmasken durch eine agentenähnliche Logik. Die Software bündelt Wissen aus internen Quellen wie Richtlinien oder Projektdokumentationen und stellt diese kontextbezogen zur Verfügung. Ein Fokus liegt dabei auf der Datensouveränität. Hierbei betont Christian Kirsch, dass Kundendaten nicht in öffentlichen Modellen verarbeitet werden: „Die Modelle laufen in der europäischen Azure AI Foundry, unsere eigenen Dienste auf deutschen Servern. Die Daten des Kunden bleiben on rest vollständig im jeweiligen Microsoft365Tenant. Es findet kein Training der Foundation Models mit Kundendaten statt – weder bei Microsoft noch bei uns. Grundlage dafür sind die Azure OpenAI NonTraining Guarantees, die Microsoft in den Product Terms sowie in SOC2/SOC3 und ISO27001Reports dokumentiert.“

Auch rechtlich zieht das Start-up eine klare Grenze, sollte die KI einmal fehlerhafte Informationen, sogenannte Halluzinationen, liefern. „Amaiko generiert Vorschläge, keine rechts oder sicherheitsverbindlichen Anweisungen. Das stellen wir in unseren AGB klar: Die Entscheidungshoheit bleibt beim Unternehmen. Wir haften für den sicheren Betrieb der Plattform, nicht für kundenseitig freigegebene Inhalte oder daraus abgeleitete Maßnahmen. Es geht um eine saubere Abgrenzung – technische Verantwortung bei uns, inhaltliche Verantwortung beim Unternehmen“, so Christian Kirsch.

Geschäftsmodell und Markteintritt

Seit der Vorstellung der Version amaiko.ai im Juli 2025 wird das System nach Angaben des Unternehmens mittlerweile von über 200 Anwendern genutzt. Durch die Integration in die bestehende Microsoft-365-Landschaft entfällt für mittelständische Kunden eine aufwendige Systemmigration, was die technische Eintrittsbarriere gering hält.

Passend zu diesem Ansatz ist amaiko als reines SaaS-Produkt konzipiert, das Unternehmen ohne Einstiegshürde direkt online buchen können. Laut Kirsch sind keine Vorprojekte, individuellen Integrationspfade oder teuren Beratungspflichten notwendig: „Die Nutzung ist selbsterklärend und leichtgewichtig. Wer zusätzlich Unterstützung möchte – etwa zur Wissensstrukturierung oder Governance – kann sie bekommen. Aber die technische Einführung selbst ist bewusst so gestaltet, dass Mittelständler ohne Implementierungsaufwand starten können.“

Unterm Strich liefert amaiko damit eine pragmatische Antwort auf den drohenden Wissensverlust durch den demografischen Wandel: Statt auf komplexe IT-Großprojekte zu setzen, holt das bayerische Start-up die Mitarbeitenden dort ab, wo sie ohnehin kommunizieren. Ob sich die „Teams-native“-Strategie langfristig gegen die Feature-Macht von Microsoft behauptet, bleibt abzuwarten – doch mit dem Fokus auf Datensouveränität und mittelständische Prozesslogik hat amaiko gewichtige Argumente auf seiner Seite, um sich als spezialisierter Wächter des Firmengedächtnisses zu etablieren.

KI als neuer Ort für Kaufentscheidungen

Das Start-up publuence.ai zeigt am Beispiel der Automobilbranche, wie Marken in generativen KI-Antworten sichtbar werden und warum das zum neuen Erfolgsfaktor wird.

2025 haben wir euch das Start-up publuence.ai von Cevahir Ejder als "Gründer*in der Woche" präsentiert. Publuence.ai ist eine SaaS-Lösung für AI Search Analytics für Marken, die täglich analysiert, wie sichtbar Marken in generativen KI-Antworten sind: bei welchen Fragen erscheinen sie, wie werden sie erwähnt und welche Inhalte sowie Quellen beeinflussen die Antworten. Da die KI-Sichtbarkeit zunehmend darüber entscheidet, ob eine Marke in der engeren Auswahl der Konsumenten stattfindet, sind die Ergebnisse für Unternehmen strategisch sehr relevant.

Beispiel Automobilbrache: KI wird zum Verkaufsberater, Chatfenster zum Showroom

Während Marketing- und Kommunikationsbudgets weiterhin nach klassischen Logiken verteilt werden, fällt ein entscheidender Teil der Markenbildung inzwischen außerhalb des Mediaplans: KI-Systeme beantworten Kauf- und Vergleichsfragen oft lange bevor Kampagnen greifen. Anhand der Automobilbranche etwa, in der Marken wie Volkswagen für eine ganze Industrie stehen, zeigt sich, dass sich Sichtbarkeit im KI-Dialog zum neuen Machtfaktor entwickelt. Sie entscheidet zunehmend darüber, welche Hersteller überhaupt in die engere Auswahl kommen.

Was früher im Autohaus oder auf Herstellerwebsites stattfand, spielt sich heute in KI-gestützten Beratungsgesprächen ab. Nutzer*innen stellen dort Fragen wie: „Welche E-Autos sind familienfreundlich?“ „Wie gut ist die Reichweite im Winter?“ „Welche Modelle laden am schnellsten?“

In der Initialanalyse erzielt beispielsweise VW im Themenbereich E-Autos – je nach Fragestellung bzw. Prompt – Sichtbarkeitswerte zwischen 20 und 88 Prozent. Damit prägen die Antworten frühzeitig das Bild, das Konsument*innen von der Marke haben. Wer dort nicht vorkommt beziehungsweise seine Mehrwerte nicht sichtbar macht, wird in der Entscheidungsfindung schlicht nicht berücksichtigt.

Tesla und Hyundai vorn, VW im Mittelfeld

Das aktuelle Wettbewerbsranking der führenden Automobilhersteller – basierend auf 30 relevanten KI-Prompts rund um das Thema Elektromobilität – zeigt, wie präsent die einzelnen Marken im neuen digitalen Beratungsraum sind. Mit knapp 64 Prozent Sichtbarkeit führt Tesla klar und profitiert von seiner technologischen Positionierung sowie einer starken Medienpräsenz. Überraschend landet Hyundai insbesondere im E-Auto-Segment mit mehr als 58 Prozent dahinter. Volkswagen erreicht solide, aber deutlich ausbaufähige 51 Prozent.

Doch es geht nicht nur um Quantität, die Analyse zeigt auch, wo das Bild der Marken ins Wanken gerät. Im Fall von VW sind es vor allem Themen wie Winterreichweite, Ladeinfrastruktur und Schnellladekosten, die negative Ausschläge erzeugen. Diese kritischen Inhalte sind es allerdings, die die Markenwahrnehmung und dementsprechend auch die konkreten Kaufentscheidungen beeinflussen.

Die stille Macht der Quellen: Medien, die prägen

Eine zentrale Erkenntnis der Analyse von publuence.ai ist, dass KI-Systeme nicht auf Basis eines objektiven Querschnitts des Internets antworten. Vielmehr orientieren sie sich an bestimmten Medienquellen, deren Inhalte überproportional stark einfließen und so die Darstellung von Marken maßgeblich mitformen. Umso wichtiger ist es für Marken zu verstehen, auf welche Fragen sie reagieren müssen – und über welche vertrauenswürdigen Medien sie in den Wissensraum der KI gelangen.

Dabei zeigen sich je nach Medium erhebliche Unterschiede in der Tonalität. Während focus.de sowie adac.de E-Mobilität eher wohlwollend behandelt, sind andere Portale kritischer. Für Unternehmen bedeutet das: Wer verstehen will, wie KI über die eigene Marke spricht, muss wissen, welche Inhalte sie beeinflussen.

Warum Marken nicht an KI-Monitoring vorbeikommen

Publuence.ai bietet Unternehmen ein strukturiertes, datenbasiertes Werkzeug, um ihre Sichtbarkeit in KI-Systemen wie ChatGPT, Google oder Perplexity zu analysieren und darauf aufbauend gezielt zu steuern. Die Plattform zeigt, welche Fragen zur Marke führen, wie die Antworten ausfallen, welche Medien zugrunde liegen und wo Wettbewerber besser abschneiden.

Besonders wichtig ist die Identifikation von Content- und Sentiment-Gaps. Sie erkennt Themenfelder, in denen eine Marke kaum oder gar nicht auftaucht, obwohl sie dort relevant sein sollte. Gleichzeitig analysiert sie, ob etwas positiv, negativ oder neutral erwähnt wird. Dies macht publuence.ai für Kommunikations-, Marketing- und Markenverantwortliche zum zentralen Steuerungsinstrument. Nur wer versteht, wie KI antwortet, kann Inhalte gezielt darauf anpassen, Medienarbeit datenbasiert ausrichten und so die eigene Markenpräsenz dort stärken, wo die Entscheidungen heute vorbereitet werden.

KI-Sichtbarkeit wird zur Basis für Markterfolg

Cevahir Ejder, Gründer und GF der publuence GmbH, fasst zusammen: „Kaufentscheidungen beginnen heute und auch in Zukunft im Dialog mit KI-Systemen. Marken, die dort nicht auftauchen, sind raus.“ Volkswagen steht dabei stellvertretend für viele Unternehmen, die ihren Fokus noch auf klassische Marketingkanäle legen und den digitalen Showroom der KI bislang kaum berücksichtigen. Ejder warnt: „Wer jetzt nicht handelt, riskiert, neben Reichweitenverlusten, einen tiefgreifenden Bedeutungsverlust im Moment der Entscheidung.“

Optocycle: Bauschutt-Recycling auf KI-Basis

Die Optocycle-Gründer Max-Frederick Gerken und Lars Wolff Optocycle zeigen, wie aus Bauschutt neuer Rohstoff wird und erhalten dafür eine Förderung der Deutschen Bundesstiftung Umwelt (DBU).

Jährlich fallen in Deutschland laut Umweltbundesamt rund 86 Mio. Tonnen Schutt und Abfälle auf Baustellen an. Häufig landen diese Materialien auf Deponien. So gehen allerdings wertvolle Ressourcen verloren. Der Ausweg: Ein hochqualitatives Recycling des Schutts vermeidet klimaschädliche Emissionen und hält wertvolle Materialien im Wertstoffkreislauf – und das bei zertifiziert gleichwertiger Qualität.

Um das Recycling von Material im Bausektor zu automatisieren, entwickelt das 2022 von Max-Frederick Gerken und Lars Wolff gegründete Start-up Optocycle aus Tübingen ein System auf Grundlage künstlicher Intelligenz (KI) zum Echtzeit-Monitoring.

Echtzeit-Monitoring im Recycling-Prozess

Die Deutsche Bundesstiftung Umwelt (DBU) fördert das Projekt mit rund 170.000 Euro. Im Rahmen der DBU-Green Startup-Förderung haben die Gründer ein KI-basiertes System zur automatischen, reproduzierbaren Klassifizierung von Bauabfällen entwickelt. Darauf aufbauend soll nun ein Prototyp das Echtzeit-Monitoring von RC-Körnungen – also recycelten Gesteinskörnungen aus Bauschutt – ermöglichen.

 „Aktuell basiert in der Branche der Aufbereitungsprozess von Bauschutt meist auf subjektiven Schätzungen“, so Max-Frederick Gerken.  Auch das Endprodukt werde nur stichprobenartig im Labor überprüft. Mit dem System sei „Echtzeitmonitoring von Recycling-Gesteinskörnungen möglich. Somit können die Qualität der Körnung verbessert und mehr Material in die Beton-Produktion überführt werden“, so Gerken.

Die Qualität von Sekundärrohstoffen verbessern

Das System kombiniert laut Gerken moderne, optische Sensorik mit KI – und löse so ein altbekanntes Problem in der Baubranche. „Zurzeit schwankt oft die Beschaffenheit der recycelten Rohstoffe. Das bedeutet einerseits ein wirtschaftliches Risiko für Unternehmen und führt andererseits zum Verlust von wertvollen Materialien“, so Gerken. Optocycle erwartet mithilfe seiner Entwicklung eine 20 Prozent höhere Menge an recycelten, hochqualitativen Gesteinskörnungen sowie 15 Prozent geringere Abfallreste, die sonst auf Deponien landen würden. Dazu werden nach Gerkens Angaben sowohl der eingehende Schutt „optimal klassifiziert“ als auch das Ergebnis transparent überprüft. Kooperationspartner ist hierbei die Heinrich Feeß GmbH, die laut Gerken bereits seit vielen Jahren mit Optocycle zusammenarbeitet. Der Mitgründer weiter: „Die Technologie leistet einen Beitrag für Kreislaufwirtschaft im Bauwesen. Wir helfen dabei, die Qualität von Sekundärrohstoffen zu verbessern, die aus dem Bauschutt gewonnen werden. Diese Lösung lässt sich zudem perspektivisch auf alle Abfallströme übertragen."

Das System von Optocycle kann Gerken zufolge direkt in bereits bestehende Anlagen zur Verarbeitung von Bauabfällen installiert werden – „direkt über dem Fließband.“ Diese einfache Nachrüstung spare Kosten und ermögliche die schnelle Umsetzung eines innovativen Bauschutt-Recyclings. „Denn nur wenn das Recycling finanziell machbar ist, kann die Kreislaufwirtschaft in der Baubranche Erfolg haben“, so Gerken.

Kreislaufwirtschaft in der Baubranche ist aktiver Klimaschutz

Kreislaufwirtschaft in der Baubranche hat nach den Worten des zuständigen DBU-Referenten Dr. Volker Berding wichtige Effekte für den Klimaschutz: „Die Produktion von immer neuem Beton sorgt für hohen Ausstoß von klimaschädlichen Treibhausgasen.“ Einer WWF-Studie zufolge entstehen bei der Herstellung von Zement – dem wichtigsten Bestandteil von Beton – acht Prozent der gesamten globalen Treibhausgasemissionen. Berding: „Alles, was zur einer Emissionsreduzierung beiträgt, hat also bereits einen großen Effekt für den Klimaschutz.“ Eine Kreislaufwirtschaft funktioniere jedoch nur, „wenn die Sekundärrohstoffe sich qualitativ nicht von einer Neuproduktion unterscheiden. Genau diesen Schritt kann Optocycle mit einem skalierbaren, optimierten Prototypen gehen.“

Report: Inside Germany’s EnergyTech Market

Aktuelle Ein- und Ausblicke für Gründer*innen und Start-ups im EnergyTech-Markt.

EnergyTech gehört in Deutschland zu den spannendsten, aber auch herausforderndsten Märkten für Gründer*innen. Die Kombination aus technologischer Innovation, wirtschaftlichem Potenzial und der Dringlichkeit, das Energiesystem klimaneutral zu gestalten, schafft enorme Chancen. Gleichzeitig ist die Eintrittsbarriere hoch, denn der deutsche Energiemarkt ist einer der komplexesten und am stärksten regulierten weltweit.

Laut der Internationalen Energieagentur werden im Jahr 2025 weltweit rund 2,1 Billionen Euro in saubere Energien investiert. Damit übertreffen die Investitionen in erneuerbare Energien erstmals die in fossile Brennstoffe deutlich. Deutschland spielt dabei eine zentrale Rolle, denn kein anderes Land in Europa verfügt über eine vergleichbare Durchdringung mit erneuerbaren Energien. Diese Vorreiterrolle macht den Markt attraktiv, aber auch kompliziert.

Gründer*innen, die in diesem Umfeld aktiv werden, müssen verstehen, dass Erfolg hier weniger von reiner Technologie abhängt, sondern von der Fähigkeit, sich in einem vielschichtigen System aus Regularien, Netzstrukturen und politischen Rahmenbedingungen zu bewegen. Es reicht nicht, eine gute Idee zu haben. Entscheidend ist, wie diese Idee in ein System passt, das auf Stabilität, Versorgungssicherheit und langfristige Planung ausgelegt ist.

Deutschlands Energiemarkt zwischen Stabilität und Veränderung

Der deutsche Energiemarkt gilt als hoch reguliert, gleichzeitig aber auch als offen für neue Akteur*innen. Wer hier tätig werden will, findet klar definierte Wege, um als Energieversorger*in zugelassen zu werden. Doch der Weg dorthin ist gesäumt von Genehmigungen, Netzanschlussverfahren und Förderbedingungen.

Die Stabilität des Systems steht über allem. Jede Veränderung im Netz kann weitreichende Folgen haben, weshalb die Regulierung streng überwacht wird. Netzbetreiber*innen müssen ständig das Gleichgewicht zwischen Erzeugung und Verbrauch sichern, um Versorgungsstörungen zu vermeiden. Das führt dazu, dass Innovationen nur schrittweise eingeführt werden können.

Hinzu kommt die dezentrale Struktur des Energiesystems. Deutschland hat den Umbau seiner Energieversorgung regional organisiert, was zu einer Vielzahl von kleinen Akteur*innen führt. Ob Solaranlagen auf Privathäusern, Windparks in ländlichen Regionen oder Batteriespeicher in Städten, alle müssen an das öffentliche Netz angeschlossen werden. Dieses Netz ist die Lebensader des Systems, aber gleichzeitig ein Flaschenhals. Jede neue Installation benötigt einen Netzanschluss, und die Wartezeit kann sich über mehrere Jahre erstrecken.

Diese Verzögerungen sind eine der größten Herausforderungen für Start-ups. Klassische Wachstumsmodelle, die auf schnelle Skalierung ausgelegt sind, stoßen hier an ihre Grenzen. Gründer*innen müssen lernen, mit langen Planungszeiträumen zu arbeiten und ihre Finanzierungsstrategie darauf abzustimmen. Softwarelösungen können helfen, Prozesse zu vereinheitlichen und Transparenz zu schaffen. Doch auch hier gilt: Der deutsche Markt lässt sich nicht einfach durch Technologie beschleunigen. Erfolg entsteht durch Anpassungsfähigkeit, Vertrauen und Systemverständnis.

Innovation im System statt Disruption von außen

Viele Start-ups treten mit dem Ziel an, Märkte zu verändern oder bestehende Strukturen zu durchbrechen. In der Energiebranche stößt dieser Ansatz jedoch schnell an seine Grenzen. Das Energiesystem ist keine klassische Konsumlandschaft, sondern Teil der kritischen Infrastruktur. Es versorgt Millionen Menschen und Unternehmen mit Strom, Wärme und Mobilität. Jede Veränderung muss sorgfältig integriert werden, um Stabilität zu gewährleisten.

Statt auf radikale Umbrüche zu setzen, braucht es eine Haltung der systemischen Innovation. Erfolgreiche EnergyTech-Unternehmen arbeiten mit dem System, nicht gegen es. Sie schaffen Lösungen, die bestehende Prozesse verbessern und den Übergang zur Klimaneutralität erleichtern. Unternehmen wie Gridx, EV.Energy, Enspired, Reev oder Thermondo zeigen, wie das funktionieren kann. Sie haben ihre Geschäftsmodelle so aufgebaut, dass sie technologische Exzellenz mit regulatorischer Konformität und gesellschaftlicher Akzeptanz verbinden.Für Gründer*innen bedeutet das, sich früh mit Netzbetreiber*innen, Behörden und Installationsbetrieben zu vernetzen. Der Aufbau von Vertrauen ist im Energiesektor ein strategischer Vorteil. Wer die Abläufe in Kommunen, Stadtwerken und öffentlichen Einrichtungen versteht, kann die langen Vertriebszyklen besser steuern und Pilotprojekte realistisch planen.

Warum gute Ideen im Energiemarkt oft scheitern

Die Gründe für das Scheitern von EnergyTech-Start-ups liegen selten in der Technologie. Viel öfter sind es strukturelle oder strategische Fehler. Der Verkauf an Energieversorger*innen oder kommunale Betriebe dauert oft mehrere Jahre. Wer in dieser Zeit nicht über ausreichend Kapital und Geduld verfügt, läuft Gefahr, aufzugeben, bevor der Markteintritt gelingt.

Ein weiterer kritischer Punkt ist die Zusammensetzung des Teams. In vielen Fällen sind Teams stark technisch geprägt, während Marktverständnis, politische Kompetenz und regulatorisches Wissen fehlen.

Auch die Wahl der Investor*innen spielt eine entscheidende Rolle. Kapitalgeber*innen, die nur finanzielle Rendite erwarten, sind im Energiemarkt selten die richtige Wahl. Wichtiger sind Investor*innen, die strategischen Netzwerke öffnen, Kontakte zu Stadtwerken oder Netzbetreiber*innen vermitteln oder bei der Skalierung unterstützen. Eine gut strukturierte Cap Table mit klaren Verantwortlichkeiten schafft dabei Transparenz und Vertrauen.

Darüber hinaus müssen Gründer*innen ihre Wirkung belegen können. Im Energiemarkt zählt nicht nur der technologische Fortschritt, sondern auch der nachweisbare Beitrag zur Dekarbonisierung. Wer den Carbon Return on Investment klar beziffern kann, wer Pilotprojekte erfolgreich umsetzt und belastbare Daten liefert, überzeugt Kund*innen, Partner*innen und Investor*innen gleichermaßen. Greenwashing hingegen ist ein reales Risiko. Der Markt erkennt schnell, wer nur mit Nachhaltigkeit wirbt, ohne messbare Ergebnisse zu liefern.

Strategien und praxisnahe Tipps für Gründer*innen

Es gibt mehrere zentrale Hebel, mit denen Gründer*innen die typischen Hürden im deutschen Energiemarkt überwinden können. Einer der wichtigsten ist der Aufbau früher Partnerschaften. Kooperationen mit Netzbetreiber*innen, Stadtwerken oder kommunalen Einrichtungen schaffen Glaubwürdigkeit und erleichtern den Zugang zu Genehmigungsprozessen. Wer diese Partnerschaften schon in der Entwicklungsphase aufbaut, versteht die Marktmechanismen besser und kann Projekte effizienter realisieren.

Ebenso entscheidend ist die Zusammensetzung des Teams. Interdisziplinarität ist im Energiesektor kein Luxus, sondern Notwendigkeit. Erfolgreiche Teams vereinen technische, wirtschaftliche und politische Kompetenzen. Sie wissen, wie regulatorische Entscheidungen getroffen werden, welche Förderprogramme relevant sind und wie man Innovationsprojekte in bestehende Strukturen integriert. Ein divers aufgestelltes Team kann Risiken besser einschätzen und Investor*innen überzeugender ansprechen.

Auch die Gestaltung der Cap Table verdient besondere Aufmerksamkeit. Kapitalgeber*innen sollten nicht nur Geld mitbringen, sondern auch strategischen Mehrwert bieten. Kontakte zu Entscheidungsträger*innen, Branchenkenntnis und operative Unterstützung bei Pilotprojekten sind entscheidende Erfolgsfaktoren. Eine transparente Struktur, in der jede Partei klar definierte Rollen hat, fördert Vertrauen und beschleunigt Entscheidungen.

Ein weiterer zentraler Punkt ist die Nachweisbarkeit von Wirkung. Gründer*innen müssen ihren ökologischen und ökonomischen Mehrwert belegen können. Messbare Kennzahlen wie Emissionseinsparungen, Energieeffizienz oder Carbon ROI sind ausschlaggebend, um Glaubwürdigkeit zu schaffen. Pilotprojekte mit belastbaren Ergebnissen überzeugen nicht nur Investor*innen, sondern auch Kund*innen und öffentliche Partner*innen.

Nicht zuletzt braucht es realistische Planung. Genehmigungsprozesse und Netzanschlüsse dauern in Deutschland oft Jahre. Wer dies in der Finanzplanung berücksichtigt und seine Strategie auf gestaffelte Rollouts oder modulare Produktarchitekturen ausrichtet, vermeidet teure Fehlentscheidungen. Skalierung im Energiemarkt bedeutet nicht Geschwindigkeit um jeden Preis, sondern nachhaltiges Wachstum mit stabilem Fundament.

Blick nach vorn: Warum sich Ausdauer lohnt

Trotz aller Hürden bleibt der deutsche Energiemarkt für Gründer*innen besonders attraktiv. Die globalen Trends sprechen eine klare Sprache: Laut der Internationalen Energieagentur (IEA) wird sich die installierte Leistung aus erneuerbaren Energien weltweit bis 2030 voraussichtlich mehr als verdoppeln, angetrieben vor allem durch den rasanten Aufstieg der Solarenergie. Wind- und Speichertechnologien werden ebenfalls stark wachsen, während Start-ups gleichzeitig mit Herausforderungen in Lieferketten, Netzintegration, Finanzierung und politischen Veränderungen umgehen müssen.

Eine aktuelle Zwischenbilanz der Internationalen Agentur für erneuerbare Energien (Irena) zeigt, dass die weltweite neu installierte Leistung 2024 bei rund 582 Gigawatt lag – ein Rekordwert. Gleichzeitig reicht dies nicht aus, um die auf der Uno-Klimakonferenz von Dubai 2023 vereinbarten Ziele zu erreichen, die Kapazität bis 2030 auf 11,2 Terawatt zu verdreifachen. Dazu wären ab sofort jährlich zusätzlich 1.122 Gigawatt nötig. Auch bei der Energieeffizienz hinken die Fortschritte hinterher: Die jährliche Wachstumsrate liegt aktuell bei rund einem Prozent, während vier Prozent notwendig wären.

Für Gründer*innen bedeutet dies, dass die Nachfrage nach innovativen, zuverlässigen und systemgerechten Lösungen weiter steigen wird. Wer sich frühzeitig auf Pilotprojekte einlässt, Netzanschlüsse koordiniert und regulatorische Prozesse kennt, kann einen entscheidenden Vorsprung erzielen. Deutschland bietet durch klare Klimaziele, Förderprogramme und politische Unterstützung zudem ein Umfeld, in dem Innovationen nachhaltige Wirkung entfalten können.

Ausdauer zahlt sich aus, weil die Transformation der Energieversorgung Zeit braucht. Wer heute in Partnerschaften, systemgerechte Lösungen und messbare Wirkung investiert, legt das Fundament für langfristigen Markterfolg. Die Verbindung von Innovation, Skalierbarkeit und nachweisbarem ökologischen Mehrwert wird zum entscheidenden Wettbewerbsvorteil und ermöglicht Gründer*innen, die Energiewende aktiv mitzugestalten.

Der Autor Jan Lozek ist Geschäftsführer von Future Energy Ventures. Als Investor und Wegbereiter der Energiewende unterstützt er Gründer*innen dabei, Technologien für ein klimaneutrales Energiesystem zu entwickeln und fördert innovative Unternehmen.

LegalTech-Trends 2026

KI, strategische Fähigkeiten und mehr Technikverständnis stehen 2026 auf der Agenda der Rechtsbranche – gut zu wissen nicht nur für LegalTech-Start-ups und -Gründer*innen.

Die LegalTech-Trends des Jahres 2026 machen deutlich, dass die Rechtsbranche vor einem grundlegenden Wandel steht: Routinetätigkeiten werden zunehmend in den Hintergrund gedrängt, da sie automatisiert oder von KI übernommen werden. Gleichzeitig gewinnen neue Kompetenzen an Bedeutung und Up-Skilling wird zur Schlüsselqualifikation, während traditionelle Karrierepfade ins Wanken geraten. Dementsprechend werden 2026 das Technologieverständnis, Prozessdesign sowie strategische Fähigkeiten in der Rechtsbranche immer wichtiger.

1. Integrierte Cloud LegalTech-Plattformen etablieren sich

Die LegalTech-Landschaft befindet sich in einem tiefgreifenden Wandel und konsolidiert sich zunehmend zu integrierten Cloud-Ökosystemen. Diese vereinen zentrale Funktionen wie Mandats- und Fallmanagement, Dokumentenautomatisierung, Ausgaben- und Risikoanalysen sowie Kollaborations- und Workflow-Funktionen auf einer gemeinsamen Plattform. Sie lösen die bislang weitverbreiteten, voneinander getrennten Einzelsysteme ab. Diese integrierten Plattformen versetzen juristische Teams in die Lage, auf eine einheitliche, konsistente Datenbasis (Single Source of Truth) zuzugreifen und fundierte Analysen durchzuführen. Das Ergebnis sind deutlich schnellere Arbeitsabläufe, eine verbesserte Transparenz über Team- und Abteilungsgrenzen hinweg sowie eine höhere operative Resilienz der Rechtsorganisation.

2. Eingebettete agentenbasierte KI (embedded agentic AI)

Embedded Agentic AI entwickelt sich rasant zu einem der prägendsten Trends im LegalTech-Markt. Im Gegensatz zu klassischen KI-Assistenzsystemen agieren agentische KI-Module direkt innerhalb juristischer Fachanwendungen und übernehmen eigenständig klar definierte Aufgaben – etwa die Fristenüberwachung, Vertragsprüfung oder Aktenvorbereitung. Nahtlos in bestehende Workflows eingebettet, reduzieren sie manuellen Aufwand, minimieren Risiken und steigern die Produktivität spürbar. Für Kanzleien bedeutet Embedded Agentic AI einen strategischen Schritt hin zu skalierbaren, zukunftssicheren Prozessen, bei denen juristische Expertise gezielt durch autonome, kontextbewusste KI ergänzt wird.

3. KI-Sicherheit & Governance

KI ist längst mehr als nur ein Werkzeug – sie entwickelt sich zu einer operativen Notwendigkeit. Im Jahr 2026 werden LegalTech-Pioniere deshalb über reine Pilotprojekte hinausgehen und Rahmenwerke für die KI-Governance, Risikokontrollen, Compliance und ethische Rahmenbedingungen einführen. In diesem Kontext gilt es beispielsweise Transparenzanforderungen zu definieren, Prompt-Audits und Human-in-the-Loop-Kontrollen einzuführen sowie für die Nachverfolgbarkeit von Datenquellen zu sorgen. Kanzleien und Rechtsabteilungen, die eine strukturierte KI-Governance integrieren, reduzieren Haftungsrisiken, stärken das Vertrauen und können KI skalieren. Wenn sie dabei auch noch den ethischen und regulatorischen Compliance-Anforderungen gerecht werden, sind sie für die Herausforderungen der Zukunft gut aufgestellt.

4. Predictive Legal Analytics

KI steht 2026 nicht mehr nur für unterstützende oder automatisierende Funktionen, sondern entwickelt sich zunehmend zum strategischen Faktor. Generative KI und fortschrittliche Analyseverfahren werden gezielt zum Einsatz kommen, um den Ausgang von Gerichtsverfahren zu prognostizieren, umfangreiche Beweis- und E-Discovery-Daten auszuwerten und bislang verborgene Muster in der Rechtsprechung zu identifizieren. Im Jahr 2026 wird KI-generierter Content in immer mehr Verfahren eine zentrale Rolle bei der Sichtung, Bewertung und Einordnung von Beweismitteln spielen. Dadurch verändern sich die Vorgehensweisen bei der Vorbereitung von Fällen, dem Entwickeln von Argumentationsketten sowie der strategischen Entscheidungsfindung. All das führt dazu, dass Technologie vom reinen Hilfsmittel zum strategischen Entscheidungsfaktor aufsteigt.

5. Juristische Talente entwickeln sich zu technisch versierten Fachkräften

Anwältinnen und Anwälte müssen sich zunehmend zu technologieaffinen Gestaltern entwickeln, die digitale Tools, Automatisierung und KI souverän in ihre tägliche Arbeit integrieren. Statt reiner Rechtsanwendung rücken Prozessverständnis, Systemkompetenz und Dateninterpretation in den Fokus. Kanzleien profitieren von effizienteren Abläufen, höherer Skalierbarkeit und besserer Mandantenorientierung. Tech-fluente Legal Professionals werden damit zum entscheidenden Wettbewerbsfaktor in einem zunehmend digitalisierten Rechtsmarkt.

6. KI-gestütztes Smart Contracting & Compliance Automation

KI geht im Vertragswesen weit über einfache Prüfungsfunktionen hinaus und wird zum zentralen Instrument für umfassendes Contract Lifecycle Management, Compliance-Monitoring sowie eine automatisierte Vertragserstellung. Zudem lassen sich durch Predictive Analytics Risiken, Inkonsistenzen und Compliance-Probleme immer früher identifizieren – ein Trend, der insbesondere für Unternehmensrechtsabteilungen und international tätige Kanzleien von Bedeutung ist. Im Jahr 2026 werden sich vor allem diese drei Anwendungsszenarien etablieren:

  • KI-gestützte Vertragsanalysen, die potenzielle Risiken identifizieren und konkrete Korrekturvorschläge liefern.
  • Automatisierte Compliance-Berichte zur lückenlosen Nachverfolgung regulatorischer Vorgaben.
  • KI-Unterstützung bei der Erstellung von Dokumenten.

 7. Cybersicherheit wird zum Wettbewerbsvorteil

Mit der zunehmenden Nutzung von LegalTech steigen auch die Risiken im Bereich Cybersecurity. Umso wichtiger ist es, dass Jurist*innen die Daten ihrer Mandant*innen, vertrauliche Fallakten sowie ihre KI-Systeme vor Ransomware-Angriffe, Datenpannen und der unbefugten Offenlegung sensibler Informationen schützen. Robuste Cybersecurity-Tools und datenschutzorientierte LegalTech-Architekturen sind daher unverzichtbar und werden häufig direkt in die Plattformen integriert. Kanzleien und Rechtsabteilungen, die hier proaktiv investieren, schützen nicht nur ihre Reputation und das Vertrauen ihrer Mandant*innen, sondern erfüllen zugleich die zunehmend strengeren globalen Datenschutzvorschriften.

8. Ergebnisorientierte und ROI-nachweisbare KI-Einführung

2026 steht LegalTech nicht mehr im Testmodus – sie muss konkrete Mehrwerte nachweisen. Sowohl Anbietende als auch Anwendende sind zunehmend gefordert, Investitionen in Technologie klar mit messbaren Ergebnissen zu verknüpfen, etwa durch Zeit- und Kostenersparnis, Reduzierung von Fehlern oder eine höhere Mandant*innenzufriedenheit. Für die Praxis bedeutet das: Pilotprojekte sollten stets mit klar definierten KPIs starten, um den Erfolg messbar zu machen. Analysen spielen eine entscheidende Rolle, um den geschäftlichen Nutzen gegenüber Führungskräften und Mandant*innen transparent darzustellen. Gleichzeitig verlagern sich Budgetentscheidungen weg von „Innovation um der Innovation willen“ hin zu einer klaren ROI-orientierten Ausrichtung.

9. Innovation in der Rechtsberatung & alternative Business-Modelle

Die Veränderung in der Rechtsbranche betrifft die gesamte Struktur juristischer Dienstleistungen. Klassische Stundenhonorare verlieren an Bedeutung, während alternative Preismodelle wie Festpreise, Abonnements oder wertbasierte Vergütungen an Bedeutung gewinnen. Diese Entwicklung wird durch Technologien unterstützt, die Ergebnisse zuverlässig vorhersagen und standardisierte Leistungen effizient bereitstellen. Für Rechtsabteilungen und Mandant*innen wird Kalkulierbarkeit zunehmend zum Standard. Kanzleien, die ihre Liefermodelle entsprechend innovativ gestalten, sichern sich einen Wettbewerbsvorteil gegenüber Wettbewerber*innen, die weiterhin auf traditionelle Stundenhonorare setzen.

10. Lawbots & Vertikale Automatisierung

„Lawbots“ stehen kurz davor, zum festen Bestandteil der Rechtsbranche zu werden. Diese spezialisierten Bots sind darauf ausgelegt, spezifische juristische Aufgaben zu automatisieren – von der Mandantenaufnahme über Dokumentenautomatisierung und Compliance-Prüfungen bis hin zu rechtlicher Recherche. Typische Einsatzszenarien sind etwa maßgeschneiderte Bots für Einwanderungsanträge, Markenanmeldungen oder Routineverfahren in der Prozessführung. Sie übernehmen klar definierte, standardisierte Aufgaben auf höchst effiziente Weise. So gewinnen Anwält*innen wertvolle Zeit, um sich auf komplexe, urteilsbasierte Arbeiten zu konzentrieren und strategische Entscheidungen zu treffen.

Der Autor Oliver Bendig ist CEO von stp.one, einem der führenden Anbietern von Legal-Tech-Komplettlösungen.

Gaming & digitale Medien – eine Perspektive für Start-ups?

Diese Voraussetzungen sollten Gründerinnen und Gründer von Start-ups in der Gamingbranche oder der Gestaltung digitaler Medien mitbringen, um erfolgreich zu sein.

Digitale Start-ups verbinden attraktive Zukunftsperspektiven mit einem geringen Startkapital. Für die digitale Generation aktueller Schul- und Universitätsabgänger stellt sich die Frage, ob ein Einstieg in die Gamingbranche oder die Gestaltung digitaler Medien für die Gründung eines Start-ups ausreichen kann. Solche Perspektiven sind gegeben, die neben ausreichend Kreativität eine fundierte Ausbildung in Computertechnik und Business gleichermaßen voraussetzen.

Indie-Games – eine Perspektive für Entwickler?

Noch vor einigen Jahren war die Gamingbranche als Perspektive für Gründer eher unattraktiv. Die großen, internationalen Studios dominierten die Szene, wobei für Triple-A-Titel längst Tausende von Entwicklern an unterschiedlichen Standorten benötigt wurden. Unter dem Zeit- und Kostengrund vieler Studios sowie der Entlassungswelle der letzten Jahre ist es für immer mehr Developer uninteressant, auf die Anstellung in einem der großen Softwarehäuser zu hoffen.

Die unabhängige Entwicklung von digitalen Medien oder Spielen bleibt jedoch beliebt und kann zur Basis eines Start-ups werden. Immer mehr Gamer wenden sich von den überteuerten, großen Marken der Szene ab und vertrauen auf kleinere Entwickler mit mehr Freiheiten bei der Umsetzung. Selbst die großen Gaming-Plattformen halten regelmäßig eine Auswahl beliebter und neuer Indie-Games für Millionen Nutzer bereit.

Unabhängig von Größe und Art eines Studios bleibt die Gamingbranche international und setzt verschiedene Skills vom Development bis zum erfolgreichen Marketing voraus. Dies alles lässt sich längst in speziell abgestimmten Studiengängen erlernen.

Spielentwicklung der neuesten Generation als Studiengang

Studiengänge wie Games & Immersive Media an der Hochschule Furtwangen erlauben es, einen Bachelor im Gaming-Umfeld zu erlangen und alle relevanten Fähigkeiten für den zukünftigen Berufsweg zu gewinnen. Neben Computer Science und Anwendungen im spielerischen Bereich nehmen Business, Design und Medien als zweiter Bereich einen wesentlichen Stellenwert im Studium ein.

Diese Kombination des bilingualen Studiengangs ergibt Sinn. Schließlich ist nicht jeder kreative Programmierer und Spieleentwickler ein Geschäftsmann, genauso wenig wie Marketer gerne stundenlang mit Quellcode arbeiten. Moderne Studiengänge wie dieser führen beide Welten zusammen und sorgen für eine fundierte Ausbildung, um tiefe Einblicke in beide relevanten Arbeitsfelder zu gewinnen.

Starke Unterstützung für zukünftige Start-ups

Die Hochschule Furtwangen geht mit ihrer Unterstützung weit über den reinen Studiengang hinaus. Bewusst wird angehenden Start-ups unter die Arme gegriffen, die ihre ersten Schritte ins Gaming-Business mit kreativen Spielen und Studienprojekten gehen möchten.

Neben einer umfassenden Beratung auf dem Weg zum eigenen Business werden ein Support für Fördermittel sowie Räumlichkeiten für das gemeinschaftliche Arbeiten an Spielen oder digitalen Medien geboten. Viele Formalitäten und Unsicherheiten, die sich bei Start-ups unabhängig von Branche und Geschäftsfeld ergeben, werden so seitens der Hochschule kompetent und professionell unterstützt.

Für den Einstieg sind Kenntnisse im Gaming-Bereich ideal, die über die reine „Freude am Zocken“ hinausgehen. Kreativität in der Planung und Umsetzung eigener Projekte sollte nachgewiesen werden – anders als die zwingende Notwendigkeit, eine Programmiersprache zu beherrschen.

Sichtbarkeit im digitalen Umfeld entscheidend

Wie bei allen Produkten entscheidet weniger die tatsächliche Qualität, sondern die Sichtbarkeit und eine wirkungsvolle Werbung über Erfolg von Misserfolg von Games. Gerade das Marketing für digitale Produkte ist wegen der hohen Konkurrenz und einer Fülle an Informationen in der digitalen Welt eine immense Herausforderung. Hier eine fachkundige Unterstützung von Anfang an zu erhalten, bewahrt Entwickler und kreative Köpfe davor, grundlegende Fehler zu begehen und frühzeitig den Traum vom Gaming-Job zu begraben.

KI-Modelle erfolgreich im Unternehmen einführen

Worauf es bei der Implementierung von KI wirklich ankommt.

Künstliche Intelligenz (KI) gewinnt in Unternehmen zunehmend an Bedeutung. Sie kann Prozesse beschleunigen, große Datenmengen sinnvoll nutzbar machen und Entscheidungen unterstützen. Doch in der Praxis zeigt sich: Moderne Technologie allein führt noch nicht zum Erfolg. Entscheidend ist ein strukturiertes Vorgehen, bei dem Ziele klar definiert, Daten sorgfältig vorbereitet und organisatorische Rahmenbedingungen von Beginn an berücksichtigt werden. „Viele KI-Initiativen scheitern daran, dass am Anfang die Orientierung fehlt“, sagt Benedikt Weber, Geschäftsführer der applord GmbH. „Struktur schafft Entscheidungsfähigkeit – noch bevor über konkrete KI-Modelle gesprochen wird.“

Organisatorischer Wandel und Einbindung der Mitarbeitenden

Der Einsatz von KI verändert Arbeitsabläufe, Verantwortlichkeiten und Entscheidungswege. Mitarbeitende arbeiten verstärkt mit automatisierten Systemen zusammen, Aufgaben verschieben sich, Rollen entwickeln sich weiter. Wird dieser Wandel nicht aktiv begleitet, entstehen Unsicherheiten oder Ablehnung gegenüber neuen Technologien. Erfolgreiche Unternehmen setzen deshalb auf transparente Kommunikation und frühzeitige Einbindung der Mitarbeitenden. Sie erklären, warum KI eingesetzt wird, welche Aufgaben sie übernimmt und wo menschliche Expertise weiterhin unverzichtbar bleibt. Fehlt dieses gemeinsame Verständnis, werden neue Systeme häufig nur eingeschränkt genutzt. „KI-Projekte scheitern selten an der Technologie“, betont Weber. „Viel häufiger fehlt ein klares Bild davon, welchen konkreten Nutzen KI für Mitarbeitende und Organisation wirklich bringt.“

Auswahl der passenden KI-Lösung

Das Angebot an KI-Lösungen wächst rasant. Für Unternehmen besteht die Herausforderung darin, nicht der technischen Vielfalt zu folgen, sondern eine Lösung zu wählen, die zum eigenen Geschäftsprozess passt. Der Ausgangspunkt sollte immer ein klar definierter Anwendungsfall sein: Welche Aufgabe soll KI konkret unterstützen oder verbessern? Neben den Funktionen spielen auch Fragen der Nachvollziehbarkeit, Integration in bestehende Systeme und regulatorische Anforderungen eine Rolle. Werden diese Aspekte zu spät berücksichtigt, entstehen Lösungen, die technisch leistungsfähig sind, im Alltag aber keinen Mehrwert liefern. „Viele Unternehmen wählen KI nach dem Funktionsumfang aus und stellen später fest, dass sie nicht zum eigenen Prozess passt“, erklärt Weber. „Erfolgreich ist KI dann, wenn sie Abläufe sinnvoll ergänzt und verständliche Ergebnisse liefert.“

Datenqualität als Grundlage für verlässliche Ergebnisse

KI-Modelle sind vollständig von der Qualität ihrer Daten abhängig. In vielen Unternehmen existieren relevante Informationen zwar, sie sind jedoch über verschiedene Systeme verteilt, unterschiedlich gepflegt oder historisch gewachsen. Diese Ausgangslage erschwert nicht nur den Einsatz von KI, sondern kann zu fehlerhaften oder schwer nachvollziehbaren Ergebnissen führen. Datenmanagement ist daher keine einmalige Vorarbeit, sondern eine kontinuierliche Aufgabe. Dazu gehören klare Zuständigkeiten, regelmäßige Prüfungen und eine strukturierte Aufbereitung der Daten. „Der Aufwand für Datenqualität wird häufig unterschätzt“, sagt Weber. „Ohne geprüfte und konsistente Daten lassen sich keine stabilen und verlässlichen KI-Ergebnisse erzielen – unabhängig davon, wie gut das Modell ist.“

Schrittweise Einführung statt großer Umbruch

Statt KI sofort unternehmensweit einzusetzen, empfiehlt sich ein schrittweises Vorgehen. Unternehmen können so mit klar abgegrenzten Anwendungsfällen beginnen, Lösungen im Alltag testen und die Ergebnisse anhand messbarer Kriterien, wie Benutzerfreundlichkeit oder verständlicher Anleitungen, bewerten. So lassen sich Risiken reduzieren und Erkenntnisse gezielt nutzen. Pilotprojekte liefern nicht nur technische Erkenntnisse, sondern zeigen auch, wie gut KI im Arbeitsalltag akzeptiert wird. Auf dieser Basis lässt sich entscheiden, welche Lösungen ausgebaut werden sollten. „Unternehmen, die mit überschaubaren Anwendungsfällen starten, treffen langfristig fundiertere Entscheidungen“, so Weber. „Praxiserfahrungen sind dabei deutlich wertvoller als theoretische Annahmen.“

KI-Hype: mittel- bis langfristiger Weg zur Monetarisierung noch unklar

Aktueller Marktkommentar zum KI-Hype und den möglichen Folgen von Justin Thomson, Head Investment Institute and CIO bei T. Rowe Price.

Die Investitionsausgaben für künstliche Intelligenz (KI) haben ein erstaunliches Niveau erreicht, aber der Weg zur Monetarisierung bleibt unklar. Der Markt-Hype schaukelt sich selbst hoch, und die Tech-Giganten greifen nun zu Krediten, um ihre Expansion zu finanzieren. Blasen sind nicht immer schädlich und können zu erheblichen Produktivitätssteigerungen führen, aber Überkapazitäten sind ein reales Risiko, das beobachtet werden sollte.

Während eines hochkarätigen Finanzgipfels, an dem ich kürzlich in Hongkong teilgenommen habe, sagte der CEO einer führenden Vermögensverwaltungsgesellschaft, der es eigentlich besser wissen müsste: „Im Kontext der Ausstattung von Hyperscalern sind 2,5 Billionen US-Dollar [für Investitionen] über fünf Jahre keine große Summe.“ Ich war über diese Bemerkung erstaunt. In welchem Paralleluniversum sind 2,5 Billionen US-Dollar eine unbedeutende Summe? Antwort: in einem, in dem Nvidia innerhalb von drei Monaten eine Marktkapitalisierung von 1 Billion US-Dollar erreichen kann. Aber wie erzielt man eine Rendite auf Investitionen in Höhe von 2,5 Billionen US-Dollar, wenn der mittel- bis langfristige Weg zur Monetarisierung der KI noch unklar ist?

Dies deutet auf zwei verschiedene AI-Investitionsbooms hin: einen relativ kurzfristigen, der durch eine erkennbare tatsächliche Nachfrage gestützt wird, und einen längerfristigen spekulativen Boom, der mit einem quasi-religiösen Glauben an exponentielles Wachstum verbunden ist.

Betrachten wir zunächst einige beeindruckende Zahlen. Die Ausgaben für KI erreichten gerade 1 % des US-Bruttoinlandsprodukts (BIP) in einer Wirtschaft mit 1,8 % Wachstum – das ist mehr als die Hälfte der gesamten neuen Nachfrage. Allein Nividia erreichte Ende Oktober einen Wert von 5 Billionen US-Dollar, was 15 % der gesamten US-Wirtschaft entspricht. Zum Vergleich: Als Cisco im Jahr 2000 als weltweit größtes Unternehmen seinen Höhepunkt erreichte, betrug sein Anteil am BIP nur 5,5 %. Während viel Aufsehen um den 3 Milliarden US-Dollar teuren Hauptsitz von JP Morgan in Manhattan gemacht wurde, werden in Texas still und leise 40 Milliarden US-Dollar teure Rechenzentrumsprojekte gestartet. Niemand scheint sich dafür zu interessieren.

Sind wir also in einer Blase? Es gibt sicherlich eine Blase von Menschen, die über Blasen sprechen – werfen Sie einfach einen Blick auf Google Trends.

Unterdessen gibt es diejenigen, die glauben, dass wir uns gerade deshalb nicht in einer Blase befinden können, weil wir über eine solche sprechen. Meiner Meinung nach gibt es drei Schlüsselwörter in den jüngsten Marktentwicklungen, die Beachtung verdienen: Reflexivität, Zirkularität und Verschuldung. Reflexivität besagt, dass Preise tatsächlich die Fundamentaldaten beeinflussen und dass diese neu beeinflussten Fundamentaldaten dann die Erwartungen verändern und somit die Preise beeinflussen. Dieser Prozess setzt sich in einem sich selbst verstärkenden Muster fort. Die lebhafte Reaktion des Marktes auf die jüngsten KI-Megadeals ist ein Beispiel für einen solchen Feedback-Kreislauf. Hinzu kommt der zirkuläre Charakter dieser Deals. Im Wesentlichen investieren die Anbieter von Recheninfrastruktur in native KI-Akteure, die sich in einer Investitionsphase befinden. In der Dotcom-Ära war dies als „Vendor Financing” bekannt und wurde zu einer Art Schimpfwort.

Schließlich gibt es noch die Verschuldung. Bislang haben die finanzstarken Tech-Giganten diesen KI-Boom mit ihren eigenen tiefen Taschen und Eigenkapitalfinanzierungen finanziert. Aber jetzt treten wir in die Kreditphase ein – Unternehmen wenden sich den Schuldenmärkten zu, oft außerhalb der Bilanz, und die Kreditaufnahme wird sich wahrscheinlich beschleunigen. Wir wissen, dass wir mit generativer KI und später mit künstlicher Superintelligenz vor einem neuen technologischen Paradigma stehen – und möglicherweise vor einem massiven Produktivitätssprung. Das sind alles großartige Dinge, und es ist leicht zu verstehen, dass man der Versuchung erliegt, weiter auf der lukrativen KI-Welle zu reiten, die mit der Einführung von ChatGPT im November 2022 begann. Angesichts der aktuellen Indexkonzentration würde es in der Tat Mut erfordern, auszusteigen.

Schnelles Wachstum kann zu einem Überschuss führen

Eine wichtige Lehre aus der Geschichte ist, dass es zu Blasen kommt, wenn wir schöne Dinge erfinden. Aber nicht alle Blasen sind gleich. Es gibt „schlechte“ Blasen (Tulpen, Gold, Grundstücke), und wenn schlechte Blasen durch Schulden finanziert werden, kann dies ein systemisches Risiko für die Wirtschaft darstellen. Es gibt auch „gute“ Blasen, die zu Überkapazitäten bei Produktionsmitteln führen – man denke an die Eisenbahnen im goldenen Zeitalter der Expansion der USA zwischen 1870 und 1900, die Elektrizität in den frühen 1900er Jahren und den Dotcom-Boom Ende der 1990er Jahre. Letztendlich wurde in jedem Fall Wohlstand geschaffen, aber die frühen Investoren verloren viel Geld.

Es ist noch zu früh, um vorherzusagen, zu welcher Art von Blase sich der AI-Investitionsboom entwickeln wird. Die langfristigen Auswirkungen werden davon abhängen, ob die heutigen massiven Investitionen letztendlich die Grundlage für dauerhafte Produktivitätssteigerungen schaffen oder ob sie zu Überkapazitäten führen, die keine nachhaltigen Renditen erzielen. Wenn die Kapazitäten so schnell wachsen, ist es immer wahrscheinlich, dass sich das Ungleichgewicht zwischen Angebot und Nachfrage von einem Mangel zu einem Überschuss umkehrt. In der Dotcom-Ära verloren Investoren viel Geld mit Glasfaserkabeln und Switches, die in den Boden verlegt wurden, und etwas Ähnliches könnte mit KI passieren, wenn durch Überbauung riesige Kapitalmengen in Anlagen gebunden werden, die möglicherweise nicht annähernd mit voller Effizienz betrieben werden können – oder noch schlimmer, wenn die Schnelllebigkeit des Chip-Zyklus die Rechenleistung obsolet macht.

Erschwerend kommt hinzu, dass die Anreize für Infrastrukturanbieter („Picks and Shovels”-Akteure) und Entwickler von KI-Anwendungen nicht aufeinander abgestimmt sind. Während Infrastrukturunternehmen von einer kontinuierlichen Expansion und Investitionen profitieren, konzentrieren sich Anwendungsentwickler auf die Verbesserung der Effizienz und die Senkung der Kosten. Um den Kommentar des Dodos nach dem Caucus-Rennen in Lewis Carrolls Alice im Wunderland umzukehren: „Nicht jeder kann gewinnen, und nicht jeder kann einen Preis bekommen.” Die optimistischen Prognosen für die KI-Infrastruktur zeigen, wie viel Hype in den heutigen Bewertungen der Hyperscaler steckt. Es ist ironisch, dass Rechenzentrumsprojekte nach den griechischen Titanen Prometheus und Hyperion benannt werden. In der griechischen Mythologie folgt auf Hybris immer Nemesis. Um noch ein bisschen Latein mit einzubringen: caveat emptor.

Pflanzentheke: Vertical-Farming-Start-up erhält DBU-Förderung

Das 2022 gegründete Start-up Pflanzentheke ermöglicht vertikales Gemüsewachstum in nährstoffreichem Wasser statt in Erde und wird dafür mit 175.000 Euro durch die Deutsche Bundesstiftung Umwelt (DBU) gefördert.

Der Großteil des in Deutschland konsumierten Obsts und Gemüses wird importiert. Laut Zahlen des Bundesministeriums für Ernährung, Landwirtschaft und Heimat (BMLEH) liegt die Selbstversorgungsrate – also der Anteil der im Land produzierten im Vergleich zu den insgesamt verbrauchten Gütern – für Gemüse bei 36 Prozent, für Obst lediglich bei 20 Prozent. Besonders große Städte sind auf die Versorgung durch Lebensmittellieferungen über weite Distanzen angewiesen. DBU-Generalsekretär Alexander Bonde: „Nahrungsmittelanbau nah an urbanen Zentren mit hohem Bedarf spart teure und klimaschädliche Transportwege. Das geht jedoch nur mit einer effizienten Nutzung der knappen Flächen.“

Genau dieses Ziel verfolgt das 2022 von Dr. Michael Müller, Dr. Julia Dubowy, Lasse Olliges und Leon Welker gegründete Start-up Pflanzentheke aus dem hessischen Lorsch mit sogenannten Vertical-Farming-Systemen für den geschützten Anbau – also dem vertikalen Anbau von Lebensmitteln in geschlossenen Anlagen wie Gewächshäusern oder Folientunneln. Pflanzentheke-Mitgründer Leon Welker: „Das Gemüse wächst in A-förmigen Regalen in einem sogenannten hydroponischen System – Pflanzen gedeihen also in nährstoffhaltigem Wasser anstatt in Erde auf im Schnitt sieben Stufen pro Anlage.“ Nun nimmt das Unternehmen mit der DBU-Förderung in Höhe von 175.000 Euro die Automatisierung des Systems ins Visier – für einen effizienteren Einsatz von Zeit, Ressourcen und Energie.

Automatisiertes und datenbasiertes Pflanzenwachstum

Nach den Worten von Welker erfolgte die Bestückung mit Jungpflanzen der vertikalen Anlagen sowie die Ernte bislang manuell. Nun arbeitet das Start-up an einer vollständigen Automatisierung des Produktionsprozesses – bei minimalem Energieverbrauch und niedrigen Betriebskosten. „Wir setzen auf praxisnahe Automatisierungsschritte, die konkret dort ansetzen, wo kleine und mittlere Betriebe heute an ihre Grenzen stoßen: bei Ernte, Wiederbepflanzung und Systempflege“, so Welker. Das Ziel sei, die tägliche Arbeit „deutlich zu erleichtern – mit einem modularen System, das ressourcenschonend arbeitet, Wasser spart und Arbeitszeit reduziert“. Welker: „Damit machen wir effiziente Hydroponik auch für kleinere Betriebe wirtschaftlich zugänglich.“

Dazu werde das vorhandene A-förmige Anbaumodell in Bewegung versetzt und an eine intelligente Steuerung angeschlossen. „Mit Sensoren zur Überwachung werden die Pflanzenreihen mit den passenden Nährstoffen für die jeweilige Wachstumsphase versorgt – vollständig datenbasiert“, so der Mitgründer. Jede Reihe beherberge ein Gemüse in einem anderen Wachstumsstadium. Welker: „Durch die bewegliche Anlage optimieren wir auch den Zugang zum Sonnenlicht je nach Reifegrad.“ Schließlich könne eine Reihe geerntet und wiederbestückt werden, während die anderen Pflanzen durch die Umpositionierung ungestört wachsen.

Anlage soll Böden schonen sowie Wasser- und Düngerverbrauch reduzieren

Die von dem Start-up entwickelte Anlage ermöglicht Welker zufolge, Böden zu schonen, den Wasser- und Düngerverbrauch zu reduzieren und auf kleinen Flächen möglichst viele Lebensmittel anzubauen. „Das System kommt bei gleichem Ertrag mit rund 90 Prozent weniger Wasser und 85 Prozent weniger Dünger aus als die konventionelle Landwirtschaft,“ so der Pflanzentheke-Mitgründer. „Wir verbinden die Vorteile des Indoor-Vertical-Farmings – etwa bei Nährstoffnutzung und Wassereffizienz – mit einem entscheidenden Plus: Unsere Anlagen nutzen natürliches Sonnenlicht und kommen daher mit einem Bruchteil der Energiekosten aus“, sagt Welker. „Das macht den ressourcenschonenden Anbau wirtschaftlich tragfähig – auch ohne energieintensive Beleuchtungssysteme.“ Welker weiter: „Weite Transporte erzeugen hohe Mengen klimaschädlicher Treibhausgase. Der Anbau nah an Städten mithilfe solcher Vertical-Farming-Systeme reduziert die Lieferwege sowie die je nach Lebensmittel energieintensiven Kühlketten.“

DBU-Förderung ermöglicht klima- und umweltschonenden Lebensmittelanbau

Das Start-up war bereits bis Ende 2024 Teil der Green Startup-Förderung der DBU. Dadurch wurde nach Welkers Worten die Marktreife des Produkts erfolgreich erreicht. Die Entwicklung der Anlage sei zudem mit fachlicher Unterstützung durch die Hochschule Osnabrück erfolgt. „Die Automatisierung ist nun ein neues, zeitintensives Forschungsprojekt – eine Entwicklung, die wir im laufenden Betrieb nicht leisten könnten“, so Welker. Die erneute Förderung ermögliche mehr klima- und umweltschonenden Lebensmittelanbau mithilfe der automatisierten Pflanzentheke-Anlagen. Zielgruppen sind dem Unternehmen zufolge vor allem kleine und mittelgroße Betriebe. „Die Pflanzentheken sind schnell installierbar, da sie an bestehender Infrastruktur befestigt werden können“, so Welker. Neben den ökologischen Vorteilen des Systems solle die Automatisierung auch den steigenden Fachkräftemangel im Gartenbau in Teilen kompensieren.