Aktuelle Events
Geschäftsideen Food: eine genial kundenfreundliche Verpackung
Innovative Verpackung
Die Verantwortlichen einer Werbeagentur fanden heraus, dass bisherige Verpackungen von Schokoladenriegeln derart gestaltet sind, dass sie mit zwei Händen aufgerissen oder geknickt werden müssen oder ein Deckel nach Entfernung einer Schutzfolie in einem weiteren Arbeitsschritt abgehoben werden muss. Diese Erkenntnis führte zu einer Geschäftsidee – und schließlich zu dem Produkt namens Schokopause.
Im Zuge der Ausarbeitung der Geschäftsidee erprobte die Agentur vivia an einer Reihe von Prototypen Methoden, wie eine Schokolade (oder jede andere feste, portionierbare Süßigkeiten) entpackt werden konnte, ohne dass der Konsument lange zu überlegen hatte, wie es geht.
Resultat dieses Designprozesses ist die Schokopause – eine Packung, die das enthaltene Produkt durch einfachen Druck eines Fingers auf das international eindeutig erkennbare Pausen-Icon in der Mitte des Deckels freigibt. Das Motto der Geschäftsidee lautet: "Nimm eine Auszeit, mach' eine Schokopause". Ein Finger reicht, um die Schokolade über den einfachen Druck auf den Schokopause-"Pausenbutton" freizugeben.
Das Schokopause-Design wurde von den Schöpfern der Geschäftsidee beim Deutschen Patent- und Markenamt angemeldet und geschützt. Vivia sucht jetzt bevorzugt Schokoladen- und Süßigkeitenproduzenten, die über die nötige Marktpräsenz verfügen und das Designkonzept von Schokopause gegen Zahlung von Lizenzgebühren für ihre Produkte nutzen wollen. Eventuell ist die Geschäftsidee des Verpackungskonzepts auch für Hersteller anderer Lebensmittel und Waren geeignet.
Diese Artikel könnten Sie auch interessieren:
KI und Selbstreflexion: Was macht KI mit dir?
Wie du innovative KI-Technologie und persönliche Entwicklung strategisch geschickt kombinierst, um dein Start-up nachhaltig zu skalieren.
Künstliche Intelligenz (KI) gilt als Wachstumsbooster. Doch wer dabei nur auf Technik setzt, lässt ein entscheidendes Potenzial ungenutzt – die eigene persönliche Entwicklung. Warum es gerade die Verbindung aus KI und Selbstreflexion ist, die Gründer*innen und Start-ups langfristig erfolgreich macht, liest du hier.
Gründen bedeutet, Entscheidungen unter Unsicherheit zu treffen
Wer ein Start-up aufbaut, bewegt sich im Spannungsfeld von Vision und Verantwortung. Geschäftsmodell, Finanzierung, Teamführung, Produktentwicklung – all das passiert meist parallel und unter enormem Zeitdruck. Technologie wird dabei oft als Hebel gesehen, um schneller und effizienter zu arbeiten. Und das stimmt: Tools, die auf KI basieren, können Prozesse automatisieren, Muster erkennen, Kund*innenbeziehungen vertiefen. Doch Technik allein garantiert keinen Erfolg. Entscheidend ist, wer sie wie einsetzt. Und hier kommt ein oft unterschätzter Faktor ins Spiel: der/die Gründer*in selbst mit den Mustern seiner/ihrer Persönlichkeit.
Jede einzelne Erfahrung, die die Marke rund um eine(n) Gründer*in prägt, kann niemals von einer KI erzeugt werden. Diese kann im zweiten Schritt sachlich analysieren, wie Erlebnisse für zukünftige Prozesse genutzt werden, die dazugehörigen Werte oder Ängste aber stecken in der Person selbst als Fundament.
Markenkern, Werte und Identität – das unsichtbare Fundament des Erfolgs
Jede Marke beginnt mit einer Geschichte, und diese umfasst den Menschen als Dreh- und Angelpunkt. Die Erfahrungen, Werte und Überzeugungen der Gründer*in formen den Kern eines Start-ups weit vor dem ersten Pitchdeck. Während KI dabei helfen kann, diese Identität greifbar zu machen, zu analysieren oder in die Kommunikation zu übersetzen, erzeugen kann sie diese nicht.
Gerade in der frühen Phase entscheidet nicht nur das Produkt über den Erfolg, sondern die Haltung dahinter: Wofür steht das Unternehmen? Welche Werte prägen die Entscheidungen? Welches Bedürfnis treibt den/die Gründer*in auch jenseits der KPIs an? Eine klare Positionierung entsteht nicht im Workshop, sondern im inneren Prozess. Es ist die Fähigkeit zur Selbstreflexion, die hier als Kompass dient:
- Was ist mir wirklich wichtig?
- Was darf sich nie ändern, selbst wenn wir skalieren?
- Was wäre ein Deal, den ich nie eingehen würde – egal wie lukrativ er erscheint?
Wer diesen Markenkern kennt, trifft strategische Entscheidungen konsistenter, kommuniziert authentischer und baut Vertrauen bei Investor*innen, Mitarbeitenden und Kund*innen auf. Und erst dann lohnt sich der Einsatz von KI wirklich, um diese klare Positionierung zum Beispiel zu verstärken, nicht aber zu ersetzen.
KI – mehr als nur Effizienzmaschine
KI hat längst ihren Platz in der Start-up-Welt gefunden. Vom Recruiting über Sales bis hin zum Customer Support. KI-gestützte Tools erleichtern die Arbeit und verschaffen jungen Unternehmen echte Wettbewerbsvorteile:
- Automatisierung: Mithilfe von KI lassen sich zeitintensive Prozesse wie Terminplanung, Rechnungsstellung oder E-Mail-Korrespondenz automatisieren. Das schafft Raum für strategische Aufgaben.
- Personalisierung: Wer seine Kund*innen wirklich verstehen will, profitiert von datenbasierten Insights. KI hilft dabei, Verhalten zu analysieren, Bedürfnisse vorherzusagen und Inhalte gezielt auszuspielen.
- Recruiting: Im „War for Talents“ zählt Geschwindigkeit, ergänzend aber unbedingt auch Qualität. KI-Tools unterstützen dabei, Bewerber*innen effizient zu sichten und unbewusste Bias zu reduzieren.
Richtig eingesetzt, ermöglicht KI mehr Fokus, schnellere Iterationen und datengestützte Entscheidungen. Aber genau hier beginnt auch das Problem: Technologie kann nur das verstärken, was ohnehin vorhanden ist oder eben (noch) nicht.
Selbstreflexion – der unterschätzte Erfolgsfaktor
Gründer*innen stehen täglich vor Entscheidungen mit Tragweite. Doch unter Druck, Unsicherheit und Wachstumsschmerz wird oft reaktiv gehandelt statt reflektiert geführt. Genau hier setzt Selbstreflexion an. Wer sich seiner Stärken, Muster und blinden Flecken bewusst ist, trifft bessere Entscheidungen – für sich, das Team und das Unternehmen. Selbstreflexion ist kein esoterisches Extra, sondern ein pragmatisches Führungsinstrument. Einige wirkungsvolle Methoden:
- Regelmäßige Selbstchecks: Was hat in dieser Woche funktioniert und warum? Was nicht? Was sagt das über meine Prioritäten aus?
- Feedback aktiv einholen: nicht nur von Mitgründer*innen oder Coaches, sondern auch vom Team. Nicht defensiv reagieren, sondern neugierig auf das Feedback sein.
- Mentoring und Coaching: Externe Sparringspartner*innen helfen, Perspektiven zu erweitern und Denkfehler zu entlarven.
- Reflexionstools nutzen: vom (digitalen) Journal bis zur strukturierten Entscheidungsanalyse gibt es einfache Hilfsmittel, die Klarheit schaffen.
Wer bereit ist, sich selbst zu hinterfragen, entwickelt nicht nur sich, sondern auch sein Start-up weiter. Denn Führung beginnt nicht mit der Verantwortung für andere, sondern mit der Verantwortung für sich selbst.
Die Synergie – wenn KI auf Selbstreflexion trifft
Die wirklich erfolgreichen Gründer*innen sind nicht entweder Tech-Expert*innen oder People-Leader*innen. Sie verbinden beides. Sie nutzen KI, um operative Exzellenz zu schaffen und reflektieren gleichzeitig, wie sie führen, entscheiden, kommunizieren. Diese Kombination erzeugt eine Form von unternehmerischer Klarheit, die sowohl innovativ als auch resilient ist.
KI kann Erkenntnisse liefern. Aber nur, wer sie richtig einordnet, profitiert davon. Selbstreflexion schafft den Raum, um mit Technologie sinnvoll umzugehen. Umgekehrt kann KI helfen, Reflexionsprozesse zu unterstützen, etwa durch gezielte Feedback-Auswertung oder datengestützte Teamanalysen.
Ein Beispiel aus der Praxis: Ein Start-up im HR-Tech-Bereich nutzt KI, um Kund*innenfeedback in Echtzeit zu analysieren. Gleichzeitig reflektieren die Gründer*innen wöchentlich im Führungsteam, welche Learnings daraus für Produkt und Kommunikation folgen und welche persönlichen Muster sie bei sich selbst erkennen. Diese Kombination aus technologischem Blick nach außen und menschlichem Blick nach innen führt dazu, dass das Unternehmen nicht nur schneller wächst, sondern dabei auch klar bleibt.
Skalierung braucht Klarheit in der Technik und im Kopf
Start-ups, die skalieren wollen, müssen effizient sein, gleichzeitig aber auch fokussiert, werteorientiert und anpassungsfähig. KI ist dabei ein mächtiges Werkzeug. Doch ohne die Fähigkeit zur Selbstreflexion bleibt sie oft bloß ein weiteres Tool im Tech-Stack.
Deshalb gilt: Die Kombination aus klugem KI-Einsatz und bewusster persönlicher Entwicklung ist kein Luxus, sondern unternehmerische Notwendigkeit. Wer beides ernst nimmt, schafft ein Unternehmen, das nicht nur wächst, sondern dabei auch „gesund“ bleibt.
Die Autorin Lea Baptista ist Geschäftsführerin der GG Consulting Agency und unterstützt Unternehmer*innen, Führungskräfte und Teams dabei, ihren Führungsstil klar zu definieren, Selbstreflexion als Werkzeug zu nutzen und authentisch erfolgreich zu sein.
Code für die künstliche Intelligenz: technische Optimierung für die Ära der KI-Suche
Code für die KI: So optimierst du deine Website technisch mit strukturierten Daten und Protokollen für die besten generativen Suchergebnisse.
Die Regeln der Online-Sichtbarkeit werden neu geschrieben. Es geht nicht mehr nur darum, von einem herkömmlichen Algorithmus indiziert zu werden. Stattdessen müssen Websites so aufbereitet werden, dass sie von künstlicher Intelligenz (KI) und großen Sprachmodellen (LLMs) fehlerfrei interpretiert und verarbeitet werden können.
KI erstellt ihre Antworten, indem sie Inhalte blitzschnell liest, deren Bedeutung versteht und die wichtigsten Fakten daraus extrahiert. Wenn der technische Unterbau einer Website unsauber ist, kann die KI die Informationen entweder nicht zuverlässig finden oder sie falsch interpretieren.
Das bedeutet, die technische Seite der Website – der Code – wird zum Fundament für eine gute Platzierung in den generativen Suchergebnissen. Wer hier Nachholbedarf hat, riskiert, als vertrauenswürdige Quelle für die KI unsichtbar zu werden.
Dieser Artikel beleuchtet die entscheidenden technischen Anpassungen, die notwendig sind, um deine Website optimal für die neue Ära der KI-Suche vorzubereiten.
Kontrolle und Zugang: Die Regeln für Sprachmodelle
Der erste technische Schritt zur Optimierung für KI-Ergebnisse ist die Steuerung des Zugriffs durch die großen Sprachmodelle (LLMs). Traditionell wird der Zugang durch die robots.txt Datei geregelt, die festlegt, welche Bereiche der Website von herkömmlichen Suchmaschinen-Crawlern besucht werden dürfen.
Mit dem Aufkommen verschiedener, spezialisierter KI-Crawler (die nicht immer identisch mit dem Googlebot oder Bingbot sind) entsteht jedoch die Notwendigkeit, diesen neuen Akteuren eigene Regeln zu geben. Es geht darum, Transparenz darüber zu schaffen, welche Daten zur Generierung von Antworten verwendet werden dürfen und welche nicht.
Neue Protokolle für neue Crawler
Experten diskutieren und entwickeln neue Protokolle, um diese Unterscheidung zu ermöglichen. Ein viel diskutierter Ansatz ist die Einführung von Protokollen, die spezifisch den Umgang mit generativer KI regeln. Dies könnte die Einführung von Protokollen wie einer llms.txt Datei beinhalten. Solche spezifischen Dateien könnten festlegen, ob ein KI-Modell Inhalte zur Schulung oder zur generativen Beantwortung von Nutzeranfragen nutzen darf.
Diese Kontrollmechanismen sind entscheidend. Sie geben den Website-Betreibern die Autorität darüber zurück, wie ihre Inhalte in der KI-Ära verwendet werden. Wer hier klare Regeln setzt, schafft die technische Grundlage für eine kontrollierte und damit vertrauenswürdige Sichtbarkeit in den KI-Ergebnissen.
Strukturierte Daten als universelle KI-Sprache
Nach der Regelung des Zugangs durch Protokolle ist die Strukturierung der Inhalte der wichtigste technische Schritt. Suchmaschinen nutzen strukturierte Daten schon lange, um Rich Snippets in den klassischen Ergebnissen anzuzeigen. Für die KI sind diese Daten jedoch absolut essenziell.
Strukturierte Daten, die auf dem Vokabular von Schema.org basieren, sind im Grunde eine Übersetzungshilfe im Code, die dem Sprachmodell den Kontext des Inhalts direkt mitteilt. Sie sind die "Sprache", die die KI am schnellsten und präzisesten versteht.
Die Bedeutung für die Generierung
Wenn ein Nutzer eine Frage stellt, sucht die KI nicht nur nach Stichwörtern, sondern nach definierten Informationstypen. Mit strukturierten Daten liefert man der KI diese Informationen als fertige, fehlerfreie Bausteine.
- Fehlerfreie Extraktion: Die KI muss keine Textpassagen interpretieren, um beispielsweise ein Rezept, die Bewertung eines Produkts oder einen FAQ-Abschnitt zu identifizieren. Die korrekte Auszeichnung macht die Daten sofort nutzbar.
- Vertrauensbildung: Fehlerhafte oder inkonsistente strukturierte Daten führen zu einer falschen Interpretation und können bewirken, dass die KI deine Seite als unzuverlässig einstuft.
Die Implementierung muss fehlerfrei sein und sollte alle relevanten Inhaltstypen der Website abdecken. Nur eine saubere Schema-Implementierung garantiert, dass deine Fakten korrekt in die generativen Antworten der KI einfließen.
Ladezeit und Interaktivität als Vertrauenssignal
Die Geschwindigkeit und die Nutzbarkeit einer Website sind in der Ära der KI-Suche nicht mehr nur ein Komfortfaktor, sondern ein entscheidendes technisches Vertrauenssignal. Wenn deine Seite langsam lädt oder schlecht bedienbar ist, wird das von der KI als Indikator für mangelnde Qualität und niedrige Autorität gewertet.
Die Basis dafür sind die sogenannten Core Web Vitals (CWVs). Diese Messwerte, die sich auf das Nutzererlebnis konzentrieren, sind feste Ranking-Faktoren und haben direkten Einfluss darauf, ob eine KI deine Seite als zitierwürdig einstuft:
- LCP (Largest Contentful Paint): Misst die Zeit, bis der größte sichtbare Inhalt geladen ist.
- FID/INP (First Input Delay / Interaction to Next Paint): Misst die Zeit bis zur ersten Interaktion und die allgemeine Reaktionsfähigkeit der Seite.
- CLS (Cumulative Layout Shift): Misst die visuelle Stabilität.
Mobile Performance ist der Schlüssel
Da ein Großteil der Online-Aktivität über mobile Geräte stattfindet, legt die KI höchsten Wert auf die Optimierung der Mobilversion. Eine schlechte mobile Performance kann das gesamte Ranking negativ beeinflussen.
Die technische Anpassung muss daher darauf abzielen, die CWVs zu perfektionieren. Dies beinhaltet die Optimierung von Bildern, das Bereinigen unnötiger Code-Lasten und das Priorisieren wichtiger Ressourcen. Eine schnell ladende und reaktionsfreudige Website signalisiert nicht nur dem Nutzer, sondern auch der KI, dass die Quelle professionell und damit vertrauenswürdig ist.
Redundanz vermeiden: kanonische Klarheit
Eines der größten technischen Probleme für KI-Modelle ist die Verwirrung durch doppelte Inhalte (Duplikate). Wenn die gleiche Information unter verschiedenen URLs verfügbar ist, weiß die KI nicht, welche die Originalquelle darstellt. Dies zersplittert deine Autorität.
Der technische Schlüssel zur Lösung ist der Canonical Tag (<link rel="canonical" ...>). Dieser Tag im Code muss auf jeder Seite korrekt auf die bevorzugte, indexierbare URL zeigen. Durch die Vermeidung von Duplikaten und die korrekte Nutzung dieses Tags stellst du technisch sicher, dass die KI deine Inhalte als eindeutig und autoritär wahrnimmt und dich als zuverlässigen Faktenlieferanten zitiert.
Schlussworte
Die Zukunft der Online-Sichtbarkeit wird durch künstliche Intelligenz neu definiert. Der Erfolg hängt von einer technisch sauberen Vorbereitung ab.
Die wichtigsten Schritte in der Generative Engine Optimization (GEO) sind:
1. Zugangskontrolle durch Protokolle wie die diskutierte llms.txt Datei.
2. Die Nutzung von strukturierten Daten als unverzichtbare KI-Sprache.
3. Die Perfektionierung der Core Web Vitals als Vertrauenssignal.
4. Die Vermeidung von Duplikaten durch kanonische Klarheit.
Investiere in diese technische Qualität, um Autorität und Sichtbarkeit in der Ära der KI-generierten Antworten zu sichern.
eleQtron: It's MAGIC
In nur fünf Jahren vom Laborgerät zum 24/7-betriebenen Quantencomputer: Wie das 2020 von Jan Leisse, Christof Wunderlich und Michael Johanning gegründete eleQtron mit seiner MAGIC-Technologie neue Wege ebnet.
Was ihr da macht, ist der Wahnsinn – und genau deswegen bin ich dabei.“ Mit diesen Worten beschreibt Jan Leisse, einer der Gründer von eleQtron, die Anfänge des Unternehmens. Das erste Treffen mit dem Physiker Christof Wunderlich war geprägt von einer Mischung aus Skepsis und Begeisterung. Der Wissenschaftler hatte an der Universität Siegen einen Quantencomputer gebaut – mitten in der deutschen Provinz und ohne das Millionenbudget, das Konzernen wie Google oder IBM zur Verfügung steht. Doch genau das reizte Leisse: „Hier wurde nicht einfach nachgemacht, was andere tun. Hier wurde Neuland betreten.“
Es war ein ungewöhnlicher Ort für eine bahnbrechende
Innovation in der Quantentechnologie. Siegen, eine Mittelstadt im Süden Nordrhein-Westfalens, ist nicht gerade als Hotspot für Hochtechnologie bekannt. Doch manchmal entstehen die Top-Innovationen fernab der etablierten Zentren; die Universität Siegen hatte über Jahre hinweg eine bemerkenswerte Expertise in der Quantenphysik aufgebaut, ohne große mediale Aufmerksamkeit.
Von der Universität ...
Im Jahr 2020, als das globale Interesse an Quantentechnologien exponentiell zunahm, erwuchs aus dieser mutigen Pionierarbeit das Start-up eleQtron – als Spin-off der Universität Siegen. Die Gründer – Jan Leisse, Christof Wunderlich und Michael Johanning – verbindet eine Vision: Quantencomputer für industrielle Anwendungen nutzbar zu machen.
Die Anfangsjahre waren geprägt von Experimentierfreude, Improvisation und dem festen Glauben an die eigene technologische Innovationskraft. Während Tech-Giganten wie IBM, Google und Amazon Milliarden Euro in ihre Quantenprogramme investierten und viele Start-ups auf bekannte Technologien setzten, wagte eleQtron den Schritt in eine völlig neue Richtung.
In den Laboren der Gründer entstand die sogenannte MAGIC-Technologie (Magnetic Gradient Induced Coupling), eine Methode, Qubits (das Quantencomputing-Äquivalent zum klassischen Bit in der Digitaltechnik) nicht wie bislang üblich mit Lasern, sondern mit Mikrowellen zu steuern.
... zum technologischen Durchbruch
Die MAGIC-Technologie basiert auf einem raffinierten Zusammenspiel physikalischer Prinzipien: Magnetische Gradienten (räumliche Veränderungen der Magnetfeldstärke) ermöglichen es als lokale Felder, einzelne Ionen in einer sogenannten Falle selektiv anzusprechen. Die technischen Vorteile sind beeindruckend: Die Fidelity (Genauigkeit) bei Operationen an einzelnen Qubits liegt bei etwa 99,95 Prozent, die Gate-Zeiten (Gate-Zeit steht für die Dauer, die ein Quanten-Gate benötigt, um eine Operation auf einem Qubit auszuführen) betragen nur wenige Mikrosekunden. Gleichzeitig ermöglicht die Technologie eine bessere Skalierbarkeit, da sich Mikrowellenfelder einfacher erzeugen und verteilen lassen als komplexe Lasersysteme. „Der Vorteil liegt nicht nur in der höheren Präzision, sondern auch in der deutlich geringeren Komplexität der Systeme“, erklärt Johanning. „Wir brauchen keine aufwändigen Optiken oder ultrastabile Umgebungen. Unsere Technologie funktioniert auch unter realen Bedingungen.“
Früh erkannten die drei Forscher das große Potenzial ihrer Technologie für praktische Anwendungen. „Durch das gezielte Ersetzen sensibler High-End-Komponenten – insbesondere Lasertechnologie – durch bewährte Mikrowellentechnik und Elektronik, vermeiden wir unnötige Komplexität, minimieren Aufwand und senken die Kosten“, fasst es Leisse zusammen.
Wachstumsschub und strategische Entwicklung
2022 gelang eleQtron ein entscheidender Schritt: Durch Earlybird und den Siegerlandfonds als Investoren sowie das vom BMBF geförderte Projekt „MAGIC App“ sicherte sich das Start-up eine Finanzierung in Höhe von 16 Millionen Euro. Diese Finanzierungsrunde war ein Wendepunkt für das Unternehmen und signalisierte das Vertrauen der Investor*innen in die MAGIC-Technologie.
„Mit diesem Kapitalschub konnten wir von einer reinen Forschungsorganisation zu einem echten Technologieunternehmen werden“, erklärt Leisse. Die Mittel flossen in den Ausbau der Produktionskapazitäten, die Vergrößerung des Teams und die Weiterentwicklung der Technologie-Roadmap. Auch die Mitwirkung von Infineon im Rahmen von MAGIC App war strategisch von Bedeutung: „Die Zusammenarbeit mit Infineon hat uns die Augen für die Realitäten des Industriemarkts geöffnet“, erklärt Leisse.
EU KI-Gesetz wird scharf gestellt
Diese Strafen für KI-Verstöße drohen ab dem 2. August 2025 – was Personalverantwortliche und Arbeitnehmende jetzt wissen und beachten müssen.
Das KI-Gesetz der Europäischen Union, die weltweit erste umfassende KI-Verordnung, erreicht am 2. August 2025 einen entscheidenden Meilenstein. Ab diesem Stichtag gelten für Unternehmen, Behörden und KI-Anbieter*innen in der EU zahlreiche zentrale Verpflichtungen, bei deren Nichteinhaltung Strafmaßnahmen eingeleitet und verhängt werden können. Was das für Unternehmen und ihre Mitarbeitenden bedeutet, erfährst du hier.
Der AI Act, der am 2. Februar dieses Jahres in Kraft getreten ist, schafft einen einheitlichen Rechtsrahmen für Künstliche Intelligenz (KI) in der EU. Zwar werden viele Regelungen erst 2026 wirksam, doch bereits am 2. August 2025 beginnt eine neue Phase, die sich auf drei Bereiche fokussiert:
- Strafmaßnahmen bei Nichteinhaltung
- Verpflichtungen für allgemeine General-Purpose-AI-Modelle (GPAI)
- Aufbau von Aufsicht und Governance auf nationaler und europäischer Ebene
Strafen bis zu 35 Millionen Euro
Seit dem 2. Februar dieses Jahres sind KI-Systeme mit unannehmbaren Risiken verboten. Ab dem 2. August 2025 können zusätzlich nun Geldbußen für Verstöße gegen bereits bestehende Verpflichtungen verhängt werden, die bis zu 35 Millionen Euro oder 7 Prozent ihres gesamten Jahresumsatzes betragen können. Unternehmen müssen dazu beispielsweise sicherstellen, dass ihre Mitarbeitenden über KI-Kenntnisse verfügen. Die Europäische Union erwartet von ihren Mitgliedstaaten, dass sie eigene wirksame, verhältnismäßige und abschreckende Strafmaßnahmen festlegen. Dabei sollen die besonderen Umstände von KMUs und Start-ups berücksichtigt werden, um deren wirtschaftliche Lebensfähigkeit nicht zu gefährden.
Neue Verpflichtungen für Anbieter*innen von GPAI-Modellen
GPAI-Modelle, die ab dem 2. August 2025 in der Europäischen Union vermarktet werden, unterliegen gesetzlichen Verpflichtungen. Das Europäische Amt für Künstliche Intelligenz hat dazu am 10. Juli 2025 die endgültige Fassung der Verhaltenskodizes veröffentlicht. Anbieter*innen solcher GPAI-Modelle müssen unter anderem technische Dokumentationen erstellen, Urheberrechte beachten und Transparenz über die verwendeten Trainingsdaten sicherstellen.
GPAI-Modelle sind KI-Systeme mit besonders breitem Einsatzspektrum und sind darauf ausgelegt, eine Vielzahl von Aufgaben zu erfüllen. Sie werden mit riesigen Datenmengen trainiert und sind entsprechend vielseitig einsetzbar. Das bekannteste Beispiel sind große Sprachmodelle (Large Language Models, LLM), etwa das generative Sprachmodell GPT-4o, das in ChatGPT integriert ist. Für GPAI-Modelle, die bereits vor dem 2. August 2025 in der Europäischen Union auf dem Markt waren, gilt eine Übergangsfirst bis zum 2. August 2027.
Aufsicht und Governance
Die KI-Verordnung schafft einen Rahmen mit Durchführungs- und Durchsetzungsbefugnissen auf zwei Ebenen.
Auf nationaler Ebene muss jeder EU-Mitgliedstaat bis zum 2. August 2025 mindestens eine Marktüberwachungsbehörde sowie eine notifizierende Behörde benennen. Erstere ist für die Überwachung von KI-Systemen zuständig, letztere für die Notifizierung unabhängiger Konformitätsbewertungsstellen. Die Mitgliedstaaten müssen bis dem Stichtag Informationen zu den nationalen Behörden und deren Kontaktdaten veröffentlichen.
Auf EU-Ebene koordinieren das Europäische Amt für KI und der Europäische KI-Ausschuss die Aufsicht. Zusätzlich werden ein Beratungsforum und ein wissenschaftlicher Ausschuss aus unabhängigen Experten eingerichtet.
Was bedeutet das für Personalabteilungen und Arbeitnehmende?
Das KI-Gesetz hat direkte Auswirkungen darauf, wie KI in den Bereichen Rekrutierung, Performance-Management, Personalanalyse und Mitarbeitenden-Monitoring eingesetzt wird. Personalverantwortliche müssen sicherstellen, dass KI-Tools in diesen Bereichen transparent, fair und konform sind.
- Fairness und Antidiskriminierung: KI-Systeme, die bei Einstellungs- oder Beförderungsentscheidungen eingesetzt werden, müssen nachvollziehbar und frei von Bias sein. Personalabteilungen sollten ihre Tools und Anbieter*innen regelmäßig überprüfen, um die Einhaltung der Vorschriften sicherzustellen.
- Vertrauen und Transparenz: Mitarbeitende erhalten einen besseren Einblick, wie KI-Systeme ihre Arbeit beeinflussen, zum Beispiel bei der Einsatzplanung, Leistungsbewertung oder bei der Arbeitssicherheit. Personalabteilung können Vertrauen schaffen, indem sie offen kommunizieren, wie KI eingesetzt wird und wie die Daten der Mitarbeitenden geschützt werden.
- Verantwortlichkeit von Drittanbieter*innen: Werden KI-Tools von Drittanbieter*innen genutzt, müssen Personalabteilungen sicherstellen, dass diese Anbieter*innen die Anforderungen an Transparenz und Dokumentation erfüllen. Verträge und Beschaffungsprozesse sollten entsprechend angepasst werden.
- Training und Change Management: Mit stärkeren Regulierungen von KI wird die Personalabteilung eine Schlüsselrolle bei der Schulung von Führungskräften und Mitarbeitenden übernehmen. Ziel ist es, einen verantwortungsvollen Umgang mit KI zu fördern und ethische Standards in der Unternehmenskultur zu verankern.
Fazit
Anbieter*innen von GPAI-Modellen, die bereits vor dem 2. August 2025 auf dem Markt waren, haben bis zum 2. August 2027 Zeit, die neuen Vorschriften vollständig umzusetzen. Weitere Verpflichtungen für KI-Systeme mit hohem Risiko werden 2026 und 2027 folgen. Dieser Meilenstein spiegelt das Bestreben der EU wider, Innovationen zu fördern und gleichzeitig sicherzustellen, dass KI sicher, transparent und mit den europäischen Werten im Einklang steht. Damit rückt die Personalabteilung in den Mittelpunkt einer verantwortungsvollen Einführung von KI am Arbeitsplatz.
Der Autor Tom Saeys ist Chief Operations Officer bei SD Worx, einem international tätigen Dienstleistungsunternehmen im HR-Bereich.
Careertune: Vergleichsplattform für Weiterbildungsangebote gestartet
Das 2025 von Felix Hüsgen und Finn Prietzel in Mannheim gegründete Start-up Careertune hat eine Vergleichsplattform für staatlich geförderte Weiterbildungen gestartet. Ziel ist es, Arbeitssuchenden den Zugang zu passenden Kursen zu erleichtern – und so den Weg in zukunftssichere Jobs zu ebnen.
Erst vor wenigen Tagen ging durch die Medien: Die Zahl der Arbeitslosen in Deutschland ist zum ersten Mal seit 2015 wieder auf über 3 Millionen gestiegen. Gleichzeitig verändert sich der Arbeitsmarkt rasant: Automatisierung und künstliche Intelligenz lassen traditionelle Tätigkeiten verschwinden, während neue Berufsbilder wie etwa „Prompt Engineer“ entstehen.
Allein 2024 nutzten über 200.000 Menschen einen Bildungsgutschein der Bundesagentur für Arbeit, um sich für neue Jobs zu qualifizieren. Doch bisher mussten Arbeitssuchende geeignete Kurse mühsam selbst recherchieren – Erfahrungsberichte sind oft unübersichtlich, Bewertungen fehlen, und die Vielzahl an Bildungsträgern erschwert die Entscheidung.
Careertune: Mit wenigen Klicks zum passenden Kurs
Genau hier setzt Careertune an: Nutzer*innen geben ihre Interessen, Vorerfahrungen, den gewünschten Zeitrahmen und Standort an. Ein Algorithmus schlägt daraufhin passende, geförderte Weiterbildungen vor. Anbietende und Kurse können anschließend transparent nach Inhalten, Dauer, Lernform (Präsenz oder Online) sowie Bewertungen verglichen werden.
Zum Start sind bereits über 20 Bildungsträger mit mehr als 500 Kursen auf der Plattform vertreten – von IT-Weiterbildungen über kaufmännische Angebote bis hin zu Pflege- und Handwerksqualifikationen.
„Bislang mussten Arbeitslose stundenlang Kurse recherchieren – wir wollen, dass sie mit wenigen Klicks den passenden Weg in ihre berufliche Zukunft finden“, erklärt Mitgründer Felix Hüsgen.
Die Plattform ist für Nutzer*innen kostenlos. Careertune vermittelt lediglich die Kursanfragen an die Bildungsträger.
Mehr Transparenz in der Weiterbildung schaffen
Careertune wurde im April 2025 von Felix Hüsgen und Finn Prietzel in Mannheim gegründet. Nach ersten Erfahrungen als Gründer und App-Entwickler entwickelten die beiden ihre Idee gemeinsam mit Arbeitslosen und Bildungsträgern.
„Wir brennen für das, was wir beruflich machen“, sagt Finn Prietzel. „Genau das wünschen wir uns auch für unsere Nutzer: eine Weiterbildung, die wirklich passt – und die Chance auf einen Job, für den sie selbst brennen.“
Neben Arbeitslosen sollen auch Mitarbeitende von Jobcentern und Arbeitsagenturen profitieren: Die Plattform soll sie bei der zeitaufwändigen Beratung entlasten. Langfristig plant das Start-up, zusätzlich die Vermittlung in passende Jobs aufzubauen.
Humanoide Roboter: Vision und Realität
Der Weltroboterverband IFR veröffentlicht sein Positionspapier zu Trends, Chancen und möglichen Grenzen rund um das Thema humanoide Roboter.
Menschenähnliche Roboter gelten als die nächste große Innovation in der Robotik: Der weltweit größte Markt für Industrieroboter, China, hat bereits konkrete Pläne für die Massenproduktion von Humanoiden festgelegt. Gleichzeitig kündigten Technologieunternehmen in den USA und Europa große Investitionsvorhaben in diesem Bereich an. Die Vision ist, Allzweckroboter zu entwickeln, die auf menschlicher Mechanik basieren. Einblicke in Trends, Chancen und mögliche Grenzen humanoider Roboter bietet das neue Positionspapier der International Federation of Robotics.
„Futuristisch anmutende humanoide Roboter, die in unserem Zuhause, in Unternehmen und in der Öffentlichkeit arbeiten, faszinieren die Menschen“, sagt Takayuki Ito, Präsident der International Federation of Robotics. „Da die Welt in der wir leben auf den menschlichen Körper zugeschnitten ist, liegt die Idee eines schnellen, universellen Helfers in der Produktion und bei Dienstleistungen auf der Hand. Ob und wann es aber zu einer massenhaften Nutzung von Humanoiden kommen wird, bleibt ungewiss. Nicht zu erwarten ist jedenfalls, dass Humanoide in Zukunft die derzeit auf dem Markt befindlichen Robotertypen ersetzen. Stattdessen werden sie bestehende Technologien ergänzen und erweitern.“
Einsatz von Humanoiden in den Regionen
In den Vereinigten Staaten arbeiten Tech-Unternehmen wie NVIDIA, Amazon und Tesla intensiv an KI- und Robotertechnologien. Neben der Finanzierung durch das Militär wird diese Entwicklung auch durch zahlreiche private Investitionen unterstützt. Das führt zu einer bedeutenden Start-up-Szene, die sich auf humanoide Roboter spezialisiert. Besonders groß ist das Interesse an Humanoiden in Branchen wie der Logistik und in der Fertigung. Dabei werden humanoide Roboter weniger als soziale Begleiter gesehen, sondern eher als Werkzeuge, die dabei helfen, Produktivität und Effizienz zu steigern. So liegt der Schwerpunkt verstärkt auf praktischen Anwendungen und weniger auf der Integration von Robotern in das tägliche soziale Leben.
In China nehmen die Humanoiden eine zentrale Stellung in der nationalen Robotik-Strategie ein. Die Regierung möchte in diesem Technologiebereich Kompetenz und globale Wettbewerbsfähigkeit unter Beweis stellen. Der Einsatzschwerpunkt liegt dabei im Dienstleistungssektor, beispielsweise für die Kundenbetreuung. Die Automatisierung von Produktionslinien in der Fertigung und der Einsatz von Humanoiden, um weniger von menschlichen Arbeitskräften abhängig zu sein, scheint nur auf zweiter Ebene wichtig zu sein. Kernelement der chinesischen Strategie ist der Aufbau einer skalierbaren Lieferkette für Schlüsselkomponenten.
Japan ist ein Pionier in der Entwicklung humanoider Roboter. Als frühes Beispiel wurde Hondas Asimo bereits im Oktober 2000 vorgestellt. Roboter werden in Japan eher als Gefährten, denn als bloße Werkzeuge gesehen. Humanoide Roboter wie Pepper und Palro sind demzufolge in erster Linie als Sozialroboter konzipiert und kommen in Bildungseinrichtungen, Geschäften und Altenpflegeeinrichtungen zum Einsatz. Diese Ausrichtung spiegelt die Nachfrage einer alternden Gesellschaft wider, mit der Japan konfrontiert ist. Ein wichtiger Schwerpunkt der Projekte liegt auf Robotern, die harmonisch mit Menschen zusammenleben können und als Teil der Gesellschaft akzeptiert sind. Führende Unternehmen wie Kawasaki entwickeln humanoide Roboter als eine Forschungsplattform.
In Europa wird auf die ethischen Implikationen von Robotik und KI besonderes viel Wert gelegt. Im Fokus stehen kollaborative Roboter, die im industriellen Umfeld mit Menschen zusammenarbeiten. Kernthemen sind die Verbesserung der Sicherheit und Effizienz und die Nachahmung menschlicher Fähigkeiten. Die Arbeitskraft von Menschen zu kompensieren, steht dagegen nicht im Fokus. Der Schwerpunkt liegt vielmehr auf einem menschenzentrierten Design und den sozialen und gesellschaftlichen Auswirkungen von Robotern. Die europäischen Unternehmen stehen dem Einsatz von Humanoiden generell eher zurückhaltend gegenüber, wenn es um die kurz- bis mittelfristigen Automatisierungsaufgaben im Fertigungs- und Dienstleistungssektor geht.
+++ Ein bahnbrechendes Robotik Start-up aus Deutschland ist NEURA-Robotics: Hier geht’s zu unserer Gründerstory von NEURA Robotics +++
Ausblick
Dank ihrer menschenähnlichen Geschicklichkeit und Anpassungsfähigkeit sind die Humanoiden prädestiniert, komplexe Aufgaben zu automatisieren, mit denen heutige Roboter durch herkömmliche Programmiermethoden Schwierigkeiten haben. Einen massenhaften Einsatz als universelle Haushaltshelfer dürfte es jedoch kurz- bis mittelfristig nicht geben.
Das POSITION PAPER Humanoid Robots - Vision and Reality von IFR gibt's hier zum freien Download
„Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing“
Mit planqc verfolgt Dr. Alexander Glätzle die Mission, hochskalierbare Quantencomputer für wirtschaftliche Anwendungen zu bauen. Warum das Unternehmen dabei auf Standorte wie München und Innsbruck setzt und welche Rolle Österreichs Talentpool spielt, verrät er im Interview.
Dr. Alexander Glätzle ist Quantenphysiker und Mitgründer von planqc. Er studierte und promovierte an der Universität Innsbruck, forschte an renommierten Instituten wie Oxford, Harvard sowie in Singapur und war als Unternehmensberater tätig. 2022 gründete er planqc als Ausgründung aus dem Max-Planck-Institut in München.
Herr Dr. Glätzle, wie entstand die Unternehmensidee und welche Meilensteine haben Sie mit planqc bisher erreicht?
Die Idee zu planqc ist bereits während meines Studiums an der Universität Innsbruck entstanden. Dort habe ich intensiv im Bereich Quantentechnologie geforscht und das enorme Potenzial erkannt, aus diesen Erkenntnissen ein Start-up zu gründen. Bis zur Gründung hat es allerdings noch einige Jahre gedauert – nicht zuletzt, weil die technologische Entwicklung im Labor ebenfalls voranschreiten musste. 2022 sind wir dann als Ausgründung aus dem Max-Planck-Institut offiziell gestartet. Zu den wichtigsten Meilensteinen zählen zwei große öffentlich geförderte Projekte: Für das Deutsche Zentrum für Luft- und Raumfahrt bauen wir einen Quantencomputer mit einem Volumen von 30 Mio. EUR, ein weiteres Projekt mit dem Leibniz-Rechenzentrum umfasst 20 Mio. EUR, beide mit Abschluss bis Ende 2026 bzw. 2027. Dann werden an diesen beiden Standorten voll funktionsfähige Quantencomputer von planqc installiert sein.
Sie haben bereits Venture Capital mit an Bord. Wer zählt zu Ihren Investoren?
Gestartet sind wir 2022 mit einer Seed-Runde, an der unter anderem UVC Partners, Speedinvest und Apex Ventures beteiligt waren – also bereits starke Partner auch aus Österreich. Diese Basis konnten wir in der Series-A im letzten Jahr weiter ausbauen. Die CATRON Holding, ein Wiener Family Office, ist als Lead-Investor eingestiegen. Dazu kamen weitere Partner wie der DeepTech & Climate Fonds sowie Bayern Kapital. Besonders erfreulich ist, dass auch unsere Bestandsinvestoren erneut signifikant investiert haben. Damit verfügen wir über eine starke, rein mitteleuropäische, deutsch-österreichische Investorenbasis – was in unserem Sektor tatsächlich selten ist.
Ihr Headquarter befindet sich in der Nähe von München. Was hat Sie dazu bewegt, zusätzlich einen Standort in Innsbruck zu eröffnen?
Ursprünglich haben wir planqc in München gegründet – als Ausgründung aus dem Max-Planck-Institut. Doch bereits innerhalb eines Jahres haben wir ein zweites Büro in Innsbruck eröffnet. Der Grund liegt auf der Hand: Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing. Mit renommierten Instituten wie dem Institut für Quantenoptik und Quanteninformation (IQOQI) und Persönlichkeiten wie Peter Zoller und Rainer Blatt gibt es dort eine kritische Masse an international anerkannten Wissenschaftlern. Zudem ist es in der Praxis oft schwierig, hochqualifizierte Talente aus der Region nach München zu bringen. Deshalb haben wir entschieden, ihnen vor Ort ein attraktives Arbeitsumfeld zu bieten – mit einem eigenen Standort in Innsbruck.
Welche Vorteile bietet der Standort Österreich speziell für Unternehmen im Bereich Quantencomputing?
Österreich hat eine lange und starke Tradition in der Quantenphysik. Universitäten wie Innsbruck und Wien, das IQOQI und eine ganze Generation exzellenter Wissenschaftler prägen diese Landschaft. Viele bahnbrechende theoretische und experimentelle Arbeiten wurden hier in den vergangenen Jahren geleistet. Gerade für junge Start-ups bietet das Land enorme Vorteile: Der Talentpool ist außergewöhnlich – mit hervorragend ausgebildeten, dynamischen Fachkräften. Darüber hinaus ist die Nähe zu sogenannten „Industry First Movern“ gegeben, was den Standort besonders spannend macht. Und nicht zuletzt hat Österreich eine historische Verbindung zur Physik – Namen wie Schrödinger, Pauli oder Hess stehen sinnbildlich für diese wissenschaftliche Tiefe.
Welche Unterstützung erhielten Sie bei der Ansiedlung durch die Austrian Business Agency?
Die Austrian Business Agency sowie die Standortagentur Tirol haben uns außerordentlich engagiert unterstützt – sei es bei der Suche nach Büroflächen, bei der Eröffnung des ersten Bankkontos oder in bürokratischen Fragen. Sie standen uns nicht nur beratend zur Seite, sondern haben uns tatkräftig geholfen, Hürden aus dem Weg zu räumen. Genau so stelle ich mir die Zusammenarbeit mit einer lokalen Agentur vor: nah dran, lösungsorientiert und mit exzellentem Netzwerk. Wir hatten wirklich großes Glück mit der Unterstützung vor Ort.
Sie selbst sind in Österreich geboren, haben in Innsbruck promoviert und weltweit Forschungsaufenthalte absolviert – bevor Sie als Unternehmensberater und Gründer nach München gingen. Mit welchen Qualitäten punktet Österreich allgemein, auch als Arbeits- und Wohnort?
Ich habe viele Jahre im Ausland gelebt und gearbeitet – in Oxford, Singapur und Deutschland. Was Innsbruck und Tirol für mich besonders macht, ist die Kombination aus wissenschaftlicher Exzellenz und hoher Lebensqualität. Die Stadt liegt inmitten der Alpen, bietet eine hervorragende Infrastruktur und ein ausgewogenes Verhältnis zwischen Studierenden und Einwohnern. Das schafft ein inspirierendes Umfeld – zum Leben, Forschen und Arbeiten gleichermaßen.
Dr. Alexander Glätzle, vielen Dank für das Gespräch.
Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin
„Österreich hat einen langen Atem – und das zahlt sich im Bereich Applied AI aus“
Als führende Standorte in Sachen Künstliche Intelligenz liegen die USA und Asien auf der Hand, doch auch in Österreich gibt es eine vielfältige AI-Landschaft. Welche Vorteile der Standort für künstliche Intelligenz mit sich bringt und welche Rolle dabei Applied AI spielt, weiß Clemens Wasner, Gründer von AI Austria und CEO der EnliteAI.
Clemens Wasner ist Gründer des österreichischen Verbandes für Künstliche Intelligenz, AI Austria und CEO des Wiener Venture Studios EnliteAI. Der studierte Informatiker arbeitete über ein Jahrzehnt in Asien, bevor er 2017 EnliteAI gründete.
Herr Wasner, Sie kennen die AI-Szene aus erster Hand. Wie gut ist Österreich im internationalen Vergleich aktuell aufgestellt, wenn es um Applied AI geht?
Gemessen an seiner Größe steht Österreich erstaunlich gut da. Unsere AI–Landscape verzeichnet mittlerweile über 450 Unternehmen, die aktiv mit KI arbeiten – nicht nur Start-ups, sondern auch klassische Industrieunternehmen, Dienstleister und der öffentliche Sektor. Gerade im Bereich der industriellen Anwendungen ist Österreich breit aufgestellt: Es gibt zahlreiche Corporates, die eigene Competence Center gegründet, Ausgründungen vorgenommen oder Lizenzmodelle für KI aufgebaut haben. Auch die Zahl der Inkubatoren und Corporate Venture Capitalisten ist beachtlich. Das Thema ist in der Realwirtschaft angekommen – und das nicht erst seit gestern. Bereits 2018 gab es hierzulande einen deutlichen Aufschwung. Im Bereich der Spitzenforschung sind wir ebenfalls stark: Mit drei sogenannten ELLIS-Hubs – European Laboratory for Learning and Intelligent Systems – gehören wir zur europäischen Spitze, gemessen an der Größe des Landes.
Sie sprechen beim Blick auf Österreich oftmals vom „AI-Standort mit langem Atem“. Was genau meinen Sie damit und was macht aus Ihrer Sicht einen exzellenten Standort für AI-Start-ups aus?
Der „lange Atem“ ist positiv gemeint und beschreibt das, was Österreich im Bereich Forschung & Entwicklung auszeichnet: kontinuierliche Investitionen, strategischer Weitblick und langfristige Förderstrukturen. Die Steiermark war lange OECD-Spitzenreiter bei F&E-Ausgaben, Wien verfügt über eine dichte Forschungslandschaft. Das sind keine kurzfristigen Hypes, sondern über Jahrzehnte gewachsene Strukturen. Österreich verfügt zudem über eine differenzierte Förderarchitektur, die alle TRL-Stufen abdeckt – von der Grundlagenforschung bis zur Markteintrittsunterstützung. Auch Clusterstrukturen spielen eine Rolle: In Life Sciences etwa gibt es in Wien und Graz funktionierende Ökosysteme, in denen zunehmend auch KI eine Rolle spielt. Diese Verankerung ermöglicht Planbarkeit, die gerade in technologieintensiven Bereichen entscheidend ist.
Zu den Schlüsselfaktoren einen erfolgreichen Standorts zählen Infrastruktur, Talent Pool und Anwendungsmöglichkeiten. Wo sehen Sie hier derzeit die größten Hebel – und auch die größten Defizite – in Österreich?
Ein klarer Vorteil liegt in der Verfügbarkeit von Talenten: Wien zieht seit Jahren hochqualifizierte Developer aus dem osteuropäischen Raum an. Der AI-Fachkräftemangel ist hier weniger ausgeprägt als in anderen europäischen Hauptstädten. Hinzu kommt: Österreich bildet mehr AI-Absolventen aus, als die Wirtschaft derzeit absorbieren kann. Das schafft einen Bewerbermarkt, der gerade für Start-ups günstig ist. Auch Standortfaktoren wie Lebensqualität und erschwingliche Mieten machen zum Beispiel die Hauptstadt Wien attraktiv. Als Besonderheit sehe ich zudem den aktiven Zugang der Stadt: Wien versteht sich als First Client für KI-Anwendungen, etwa in der Analyse von Geodaten, IoT oder der Digitalisierung von Baueinreichprozessen. Hier ist wesentlich mehr Offenheit für politische Vergabe zu finden als in anderen Ländern. Weniger stark ist Wien in der Spitzenforschung vertreten, hier liegt Linz mit der JKU vorn. Aber man kann als kleines Land nicht alles abdecken – und sollte dort Schwerpunkte setzen, wo bestehende Stärken ausbaubar sind.
Was war der Gründungsimpuls für EnliteAI und wie ist Ihr Venture Studio heute aufgestellt?
Ich kam 2016 nach zehn Jahren in Asien zurück nach Österreich. In China und Japan war KI allgegenwärtig, ein regelrechter Hype. Zurück in Europa herrschte Funkstille – das war ein Kulturschock. Ich wollte dem Thema hierzulande Schub geben: 2017 gründete ich den Verband AI Austria und kurz darauf EnliteAI. Unsere Erkenntnis aus früheren Projekten zeigte, dass viele Unternehmen gute Ideen, aber keine Ressourcen zur Umsetzung hatten. Daraus entstand das Venture Studio: Wir entwickeln Prototypen gemeinsam mit Unternehmen und gründen darauf spezialisierte Start-ups. Aktuell sind wir 20 Personen und verfolgen zwei Themen – Detekt, das sich auf den Bereich Mobile Mapping spezialisiert hat, und ein weiteres im Stromnetzmanagement. Mit EnliteAI möchten wir künftig weitere Projekte unterstützen und bereiten dafür eine Dual-Entity-Struktur mit einem eigenen Fonds vor. Ziel ist es, das Modell professionell zu skalieren und Investoren direkt in die Spin-outs zu bringen.
Rechenleistung zählen zu den Schlüsselressourcen in der AI. Was braucht es aus Ihrer Sicht, damit europäische Standorte hier nicht dauerhaft in Abhängigkeit geraten?
Realistisch betrachtet: Die Abhängigkeit besteht bereits. Die großen Hyperscaler sind US-dominiert, ebenso Chips, Kommunikationstools, Social Networks. Europa muss in die digitale Souveränität investieren. Erste Schritte wie AI Factories sind wichtig, aber nicht ausreichend. Wir brauchen europäische Cloud-Anbieter, Chipproduktion auf europäischem Boden und eine nachhaltige Energiepolitik. Frankreichs KI-Boom basiert auf Atomstrom – weil er langfristig planbar ist. Diese Planbarkeit fehlt in vielen europäischen Ländern derzeit. Ohne Strom gibt es keine KI. Auch das zeigen Stimmen von Sam Altman, Elon Musk und anderen. Hier ist ein strategischer Paradigmenwechsel notwendig.
Sie sprachen bereits die vielfältige Landschaft von kleinen und mittleren Unternehmen in Österreich an, die offen für KI sind. Wie gut funktioniert das Matching zwischen Start-ups und klassischen Industrieunternehmen?
Österreich macht hier sehr viel richtig. Es gibt ein breites Netz an Förderinstrumenten – von der Österreichischen Forschungsförderungsgesellschaft FFG über die Austria Wirtschaftsservice bis hin zu regionalen Wirtschaftskammern. Zudem bietet Österreich eine Forschungsförderungsprämie an, bei der 14 Prozent der F&E-Ausgaben quasi mit einem Blankoschein gefördert werden können. Zudem organisieren viele Institutionen aktiv Matchmaking-Events, etwa im Rahmen von PreSeed-, AI-Adoption- oder Innovationsprogrammen. Hinzu kommt der Industry-Startup-Marktplatz mit mehreren Tausend registrierten Unternehmen. Auch Pitchings werden gefördert. Das Ziel ist stets, AI nicht nur in der Theorie zu belassen, sondern in die Realwirtschaft zu bringen. Trotzdem: Viele Unternehmen wissen noch immer nichts davon. Hier braucht es also noch mehr Aufklärung.
Welcher KI-Standort – in Österreich und darüber hinaus – hat Sie zuletzt positiv überrascht?
In Österreich ist Linz für mich der Hotspot schlechthin – die Kombination aus Spitzenforschung und erfolgreichem Technologietransfer ist dort besonders gut gelungen. International beeindruckt mich Twente in den Niederlanden: kein großer Name, aber mit klarer Strategie. Sie haben das Spin-out-Modell von Oxford und Cambridge adaptiert und konsequent umgesetzt – mit IP-Offices, Gründungsberatung und Infrastruktur für Start-ups. Ein weiteres Vorbild ist Heilbronn mit den Campus Founders: Sie haben, unterstützt durch die Dieter Schwarz Stiftung, einen Ort für Unternehmertum und Innovationen geschaffen und könnten Vorbild für viele europäische Regionen werden. Viele Stiftungen schaffen Parks oder Schlösser, aber wesentlich gewinnbringender wäre die Förderung von Entrepreneurship wie es in Heilbronn passiert statt Museumsstiftung. Europa braucht diese neue Denkweise.
Clemens Wasner, vielen Dank für das Gespräch.
Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin
Was Unternehmen über KI-Agenten wissen müssen
Künstliche Intelligenz in Form autonomer Agenten gewinnt rasant an Bedeutung. Doch wie arbeiten diese KI-Agenten? Was ist bei der Umsetzung zu beachten? Hier gibt's die Antworten.
Die Idee, dass autonome Systeme eng mit Menschen zusammenarbeiten und sie gezielt unterstützen, ist keine Vision mehr, sondern Realität. Während bisher eine umfassende Problemlösungskompetenz im Hintergrund fehlte, bringen KI-Agenten genau diese Fähigkeit mit und übernehmen zunehmend vielfältige Aufgaben in der Arbeitswelt. Wir erklären, was Unternehmen über KI-Agenten wissen müssen.
Was sind KI-Agenten und auf welcher Technologie basieren sie?
KI-Agenten sind Softwaresysteme, die eigenständig Aufgaben ausführen, aus Erfahrungen lernen und dynamisch mit ihrer Umgebung interagieren. Ihr Ziel ist es, Aufgaben autonom zu lösen, ohne dass ein kontinuierliches menschliches Eingreifen notwendig ist. Im Unterschied zu herkömmlichen Automatisierungslösungen bewältigen KI-Agenten selbst komplexe Anforderungen, indem sie sich an neue Bedingungen anpassen. Auch werden sie im Gegensatz zu universellen LLMs in der Regel fein abgestimmt, um Relevanz und Datenschutz zu gewährleisten. Sinnvoll ist eine kontextbezogene Architektur, die kausale KI, Document AI und multimodale Logik kombiniert und damit optimal auf geschäftliche Anwendungsfälle zugeschnitten ist.
In welchen Bereichen der Arbeitswelt entfalten KI-Agenten ihr Potenzial?
KI-Agenten finden in nahezu allen Unternehmensbereichen Einsatzmöglichkeiten – von der Beantwortung einfacher Anfragen bis hin zur Steuerung komplexer Prozesse. Eingebettet in CRM-Plattformen analysieren sie riesige Datenmengen, die Unternehmen manuell nicht mehr auswerten können. Anstatt die Ergebnisse lediglich zu präsentieren oder Kontakte nach Prioritäten zu sortieren, qualifizieren KI-Agenten auch noch automatisch Leads, schlagen passende Angebote vor und beantworten Kundenanfragen. Oder anders formuliert: Während herkömmliche Tools in der Regel auf statischen Wenn-dann-Regeln basieren, führt die neue Generation hyperpersonalisierte Aktionen nahezu in Echtzeit aus. Diese Entwicklung entlastet Mitarbeiter von Routineaufgaben und gibt ihnen Raum, sich auf strategisch wichtige Aufgaben zu konzentrieren. Unternehmen wiederum können ohne großen Aufwand Tausende von Kunden individuell betreuen.
Werden KI-Agenten den Arbeitsmarkt verändern?
Diese Frage lässt sich nicht pauschal beantworten. Es entstehen durch den verstärkten Einsatz von KI-Lösungen neue Berufsfelder – insbesondere bei der Entwicklung, Integration und Wartung solcher Agentensysteme werden qualifizierte Fachkräfte benötigt. Gleichzeitig stellt sich die Herausforderung, bestehende Mitarbeitende gezielt im Umgang mit diesen Technologien weiterzubilden und deren digitale Kompetenzen auszubauen. Eines muss klar sein: Das Ziel von KI-Agenten ist es nicht, menschliche Arbeitskraft zu ersetzen, sondern deren Fähigkeiten zu erweitern. Mitarbeitende können sich somit stärker auf komplexe Kundeninteraktionen oder die Entwicklung innovativer Kampagnen konzentrieren, während ihnen die KI zur Hand geht.
Worauf müssen Unternehmen bei der Auswahl von KI-Agenten-Lösungen achten?
In erster Linie benötigen sie eine digital ausgereifte Umgebung mit einheitlichen Datenformaten, optimierten Prozessen und regelbasierten Automatisierungen, um den ROI steigern zu können. Anschließend müssen sie sicherstellen, dass ihre KI-Systeme den geltenden Datenschutzbestimmungen entsprechen und sensible Kund*innendaten optimal geschützt sind. Transparenz und Nachvollziehbarkeit der KI-Entscheidungen sind ebenfalls essenziell, um das Vertrauen von Kunden und Mitarbeitenden nicht zu gefährden. Auf technischer Seite ist eine interoperable Lösung notwendig, die sich so nahtlos wie möglich in die bestehende IT-Umgebung integrieren lässt. Zu den weiteren Aspekten zählen die Priorisierung der kontextuellen Abstimmung, da Agenten geschäftsspezifische Arbeitsabläufe und Datenformate verstehen müssen, sowie die Nutzung eines Federated-Model-Ansatzes statt einheitlicher LLM-Frameworks, um Effizienz, Erklärbarkeit und Kosten zu optimieren.
Wie binden Unternehmen ihre Mitarbeitenden am besten ein?
Zunächst einmal ist ein grundlegendes Change Management erforderlich. Die Mitarbeiterinnen und Mitarbeiter müssen verstehen, dass die KI ihnen nicht die Arbeit wegnimmt, sondern sie unterstützen soll. Sinnvoll ist auch ein Low-Code-Ansatz: Maßgeschneiderte KI-Applikationen und automatisierte Workflows steigern die Arbeitseffizienz in Abteilungen um ein Vielfaches – sogar Mini-Anwendungen, die lediglich einfache Aufgaben übernehmen. Jedoch können zentrale IT-Abteilungen, die mit Entwicklungsanfragen aus verschiedenen Abteilungen überhäuft werden, diese kaum bewältigen. Mit einer Low-Code-Application-Plattform (LCAP) können auch Mitarbeiter ohne Programmierkenntnisse einfache KI-Anwendungen selbst erstellen. Möglich machen das einfache Drag-and-Drop-Optionen und vorgebaute Module, die je nach Wunsch kombinierbar sind.
Fazit
KI-Agenten sind als kollaborative Partner zu verstehen, nicht als Ersatz für den Menschen. Künftig werden wir eine Multi-Agent Collaboration sehen. Hierbei übernehmen verschiedene KI-Agenten jeweils Spezialaufgaben und koordinieren sich untereinander, um selbst die komplexesten Herausforderungen effizient zu lösen.
Der Autor Sridhar Iyengar ist Managing Director von Zoho Europe.
5 Tipps für GPT-Sichtbarkeit im Netz
Warum klassisches SEO allein nicht mehr ausreicht und wie Unternehmen für die KI-Antworten der GPT-Modelle sichtbar werden.
Die Spielregeln der digitalen Sichtbarkeit werden gerade neu geschrieben – und die Unternehmen müssen sich neu aufstellen. Denn während viele Unternehmen ihre Strategien noch immer ausschließlich auf Google-Rankings und SEO-Kriterien ausrichten, verlagert sich die digitale Aufmerksamkeit längst in Richtung KI: Sprachmodelle wie ChatGPT, Claude oder Gemini ersetzen zunehmend die klassische Suche. Sie liefern keine Trefferlisten mehr, sondern direkte, aufbereitete Antworten – oft mit konkreten Empfehlungen und Verlinkungen. Für Marken, Produkte und Unternehmen wird es damit entscheidend, in diesen zusammengefassten Antworten stattzufinden. Das Stichwort hierfür ist technisches SEO für KI-Rankings.
Suchmaschinen waren gestern das führende Element in der Sortierung von Wissen im Netz und vor allem das Google-Ranking war entscheidend für die Sichtbarkeit von Informationen und Seiten. In Zukunft entscheiden dagegen Sprachmodelle darüber, welche Inhalte gesehen, zitiert und empfohlen werden. Und wer in diesen Systemen nicht genannt wird, verliert den direkten Draht zur Zielgruppe.
Diesen Paradigmenwechsel vom Google-Ranking zur Antwortlogik hat die SMAWAX, die auf Strategieberatung spezialisierte Agentur der Smarketer Group, erstmals systematisch im Rahmen eines Whitepapers analysiert (s. Link am Ende des Beitrags). Die Expert*innen erklären dabei detailliert, wie GPT-Modelle Inhalte auswählen – und welche Inhalte von den Systemen überhaupt referenziert werden dürfen. Die zentrale Erkenntnis: Suchmaschinenoptimierung nach alten Regeln greift zu kurz, ist aber weiterhin die Sichtbarkeitsgrundlage. Denn Sprachmodelle wie ChatGPT denken nicht in Keywords und Rankings, sondern in semantischen Relevanzräumen, Entitätenbeziehungen und struktureller Klarheit.
Inhalte müssen modular und semantisch präzise sein – doch das reicht nicht
Es geht nicht mehr um Top-Rankings – es geht darum, die richtige Antwort zu sein. Wir müssen SEO neu denken – als Schnittstelle zwischen Struktur, Relevanz und maschinellem Verstehen. Inhalte müssen dazu maschinenlesbar, modular aufgebaut und semantisch präzise sein. Nur dann haben Unternehmen eine Chance, in den Empfehlungslogiken von Claude, GPT & Co. aufzutauchen.
Besonders überraschend ist dabei aber, dass viele Unternehmen in GPT-Antworten zwar durchaus latent präsent, aber nicht sichtbar sind. Der Grund hierfür sind unscharfe Entitäten, fehlende „About“-Seiten, keine Verankerung in externen Quellen wie Wikidata, Trustpilot oder LinkedIn. Die Folgen wirken sich negativ auf die Marken aus und sorgen für Fehlinformationen: KI-Modelle verwechseln Marken, halluzinieren Funktionen oder verschweigen relevante Angebote. Halluzinationen sind in Wahrheit ein strategischer Hinweis auf Unsichtbarkeit. Wenn GPT ein Produkt falsch beschreibt oder dich mit einem Mitbewerber verwechselt, zeigt das: Deine Inhalte sind zwar irgendwo im Modell – aber nicht stabil genug verankert, um korrekt genannt zu werden.
Fünf konkrete Hebel für bessere GPT-Sichtbarkeit
Diese praxisnahe Handlungsempfehlungen können Unternehmen sofort umsetzen können – unabhängig davon, ob sie im B2B- oder B2C-Bereich aktiv sind.
1. Entitäten definieren: Jede Marke braucht heute eine kanonische „About“-Seite, ergänzt um ein Wikidata-Profil, semantische Markups und gleiche Namensverwendungen auf Plattformen wie LinkedIn oder Handelsregister.
2. Aktualität signalisieren: GPT-Modelle bevorzugen Inhalte mit klaren Update-Daten (z.B. dateModified). Ohne erkennbaren Pflegezustand gelten Inhalte als veraltet – und werden ausgefiltert.
3. Bing wird zum Gateway: Weil GPT seine Websuche auf Bing stützt, ist dessen Indexierung entscheidend. Wer dort nicht sauber auffindbar ist, existiert in GPT-Antworten nicht.
4. Content chunkbar machen: Inhalte sollten nicht mehr aus langen Fließtexten bestehen, sondern in modularen Blöcken mit H2-Strukturen, Listen und Zwischenfazits aufgebaut sein.
5. Externe Signale einbinden: Erwähnungen auf Trustpilot, Reddit oder in der Fachpresse stärken die semantische Autorität – und erhöhen die Chance, von Sprachmodellen zitiert zu werden.
Fazit
Die neue Sichtbarkeit entsteht durch das, was das Modell nicht selbst erzeugen kann – sie entsteht also nicht über Rankings, sondern über Relevanzräume. Wer auf Standard-Content setzt, wird paraphrasiert oder übergangen. Wer dagegen einzigartigen, strukturierten und technisch klaren Content liefert, wird empfohlen.
Zum Weiterlesen: Das Whitepaper steht zum kostenlosen Download bereit unter www.smawax.com/whitepaper-ki-sichtbarkeit
EU AI Act: Bürokratisch, unpraktisch, schlecht
Ein Kommentar von Dominik Mohilo, Redakteur und IT-Experte bei der auf High-Tech spezialisierten Münchner PR- und Kommunikationsagentur PR-COM.
Die Luft auf dem hohen moralischen Ross, auf dem Deutschland vorreitet und Europa folgt, wird dünner und dünner. Ja, der EU AI Act ist eine Errungenschaft. Und ja, ethische Grundsätze sollten wir keinesfalls missachten, wenn es darum geht, künstliche Intelligenz zu entwickeln, zu betreiben und zu verwenden. Fair enough. Doch darf’s vielleicht trotzdem ein bisschen weniger Bürokratie sein, liebe EU? Artikel 5 des KI-Regelwerks der EU besagt beispielsweise, dass die folgende KI-Praktik verboten ist: „Das Inverkehrbringen, die Inbetriebnahme oder die Verwendung eines KI-Systems, das unterschwellige Techniken, die sich dem Bewusstsein einer Person entziehen, oder absichtlich manipulative oder täuschende Techniken einsetzt, mit dem Ziel oder der Wirkung, das Verhalten einer Person oder einer Personengruppe dadurch wesentlich zu beeinflussen, dass ihre Fähigkeit, eine sachkundige Entscheidung zu treffen, spürbar beeinträchtigt wird, wodurch sie veranlasst wird, eine Entscheidung zu treffen, die sie andernfalls nicht getroffen hätte, und zwar in einer Weise, die dieser Person, einer anderen Person oder einer Personengruppe einen erheblichen Schaden zufügt oder mit hinreichender Wahrscheinlichkeit zufügen wird.“ (Kapitel II, Artikel 5, 1a)
Sperrig und überregulatorisch
Verstanden worum es geht? Ich auch nicht. Ähnlich sperrig und überregulatorisch ist der Abschnitt über sogenannte Hochrisiko-KI-Systeme formuliert. Gemeint sind damit jene KI-Anwendungen, die etwa im Gesundheitswesen, in der Bildung oder kritischen Infrastrukturen eingesetzt werden sollen – also genau den Bereichen, wo sie dringend benötigte Verbesserungen und Entlastungen für die in diesen Bereichen arbeitenden Menschen mit sich bringen könnten. Was genau mit Hochrisiko gemeint ist, ist allerdings wieder nicht glasklar definiert: was hat denn nun „erheblichen Einfluss auf Grundrechte“? Diese Unsicherheit im Hinblick auf die rechtliche Grundlage ist oft Grund genug für potenzielle Investoren, sich nach anderen Gelegenheiten umzusehen. Wer will schon exorbitante Kosten für juristische Verfahren locker machen und Zertifizierungen noch und nöcher erwerben, nur um am Ende dann möglicherweise doch gegen geltende Gesetze zu verstoßen? Eben.
Start-ups sind von Hürden überproportional heftig betroffen
Gerade kleine und mittelständische Unternehmen (KMU) sowie Start-ups sind von diesen Hürden überproportional heftig betroffen, sodass viele gute und wegweisende Ideen nicht oder zumindest nicht hier in der EU auf den Weg gebracht werden. Wirtschaftlich ist das fatal – das auch noch in diesen schwierigen Zeiten. In diesen Zeiten wäre es eigentlich wichtig, die Wirtschaft voranzutreiben, insbesondere in zukunftsweisenden Bereichen wie dem KI-Markt. Eine gute Möglichkeit wäre, die Technologie hierzulande staatlich zu subventionieren, wie das in den USA und in China bereits in großem Stil passiert. Stattdessen werfen wir uns selbst Stöcke in die Speichen unserer Räder – unter anderem mit Regulierung und ethischen Grundsätzen, sondern insbesondere durch schwammige Gesetzestexte und Undurchsichtigkeit von Compliance-Vorschriften.
Zusammenfassend ist festzustellen, dass die alte Forderung „rebellischer“ (mancher würde sagen: „vernünftiger“) Politiker, Bürokratie abzubauen, selten so eine hohe Relevanz wie aktuell hatte. Europa geht es wirtschaftlich schlecht, gleichzeitig verlassen High-Tech-Unternehmen scharenweise unsere Breitengerade, da das Regulierungskorsett so eng geschnürt ist, dass Innovation keine Luft mehr zum Atmen hat. Es gilt also, Maßnahmen zu ergreifen, um wettbewerbsfähig zu werden.
Was könnte die EU nun machen, da das Regulations-Kind in den Brunnen gefallen ist?
Zunächst einmal wäre es hilfreich, aus unserem Elfenbeinturm herauszukommen. Ethik ist wichtig, aber kein Altar, auf dem wir unsere Wirtschaft opfern sollten. Haben wir das verinnerlicht, braucht der EU AI Act eine Überarbeitung die Unklarheiten auflöst und die Hürden (gerade für Start-ups und KMU) verringert. Sinnvoll wäre zudem, wenn die EU KI-Sandboxes zur Prüfung von innovativen Technologien bereitstellen würde, in denen Unternehmen ihre Entwicklungen testen können, ohne gegen Gesetze zu verstoßen. Zudem muss die EU-Gelder und Mittel zur Verfügung stellen, Zertifizierungsverfahren deutlich zu beschleunigen. Auch eine Zentralisierung dieser Verfahren würde Sinn ergeben. Die entsprechende ISO-Norm (ISO/IEC 42001) gibt es bereits, was fehlt sind offizielle Tools, um die Konformität der eigenen Anwendung zu checken.
Ziel muss es sein, Europa als attraktives Umfeld für den Einsatz und die Entwicklung von KI-Anwendungen zu positionieren. KI wird in den kommenden Jahren über wirtschaftlichen Erfolg nicht nur von Unternehmen, sondern von Staaten avancieren. Wenn wir nicht die gleichen Katastrophen wie aus der Schwerindustrie und der Automobilbranche erleben, sondern wieder vorne mitspielen wollen, dürfen wir uns nicht selbst behindern. Das Gebot der Stunde ist also Bürokratieabbau und Mut zu moderaterer Ethik – so werden wir vielleicht irgendwann doch wieder Exportweltmeister.
Wie digitale Unternehmen Alltagsprobleme systematisch lösen – Ein Blick auf Parkos
Parkos zeigt, wie ein digitales Unternehmen Herausforderungen beim Flughafenparken meistert.
Es gibt sie überall, diese kleinen alltäglichen Ärgernisse, die erst einmal banal erscheinen, im Alltag aber schnell zu echten Zeitfressern und Stressquellen werden können. Die Parkplatzsuche an Flughäfen gehört dazu – gerade in stark frequentierten Städten, wo jeder Parkplatz ein kostbares Gut ist. Genau hier setzt Parkos an, ein digitales Unternehmen mit Start-up-Wurzeln, das seit über einem Jahrzehnt den Markt für Parkplatzvermittlung revolutioniert. Parkos.de macht es möglich, entspannt einen Parkplatz zu buchen und so lästige Suchfahrten zu vermeiden.
Vom Alltagsproblem zur digitalen Lösung
Das Beispiel der Parkplatzsuche zeigt exemplarisch, wie digitale Unternehmen Alltagsprobleme systematisch angehen. Nicht immer ist es die große Innovation, die den Markt verändert, sondern die konsequente und nutzerzentrierte Verbesserung bestehender Prozesse. Die Gründer von Parkos erkannten früh, dass der Prozess des Parkplatzfindens in der Nähe von Flughäfen ineffizient und für Reisende oft belastend ist. Überfüllte Parkplätze, lange Fußwege oder teure Kurzzeitangebote waren die Regel.
Diese Herausforderungen boten die perfekte Ausgangslage für eine digitale Plattform, die Anbieter von Parkplätzen und Kunden unkompliziert zusammenbringt. Dabei geht es nicht nur um die reine Vermittlung, sondern um Transparenz, Vergleichbarkeit und Nutzerfreundlichkeit. Das ist der Kern der Plattformökonomie, die heute zahlreiche Branchen prägt – von der Mobilität über die Gastronomie bis hin zum Einzelhandel.
Parkos als Beispiel für Plattformökonomie
Plattformen funktionieren nach dem Prinzip, Angebot und Nachfrage in einem digitalen Marktplatz zu verknüpfen. Für Parkos bedeutet das: Parkplätze von verschiedensten Anbietern – private Parkflächen, Hotels, bewachte Parkhäuser – werden auf einer übersichtlichen Website zusammengeführt. Kunden können Preise, Entfernung zum Flughafen und Bewertungen vergleichen. Die Buchung erfolgt direkt online, oft mit flexiblen Stornierungsbedingungen.
Dieser transparente und einfache Zugang löst ein grundlegendes Problem: Wer kennt schon die besten Parkmöglichkeiten in Flughafennähe? Vorbei sind die Zeiten der langen Suchfahrten und Unsicherheiten. Eine entsprechende Plattform steigert nicht nur die Effizienz, sondern reduziert durch die bessere Planung auch den Stress für Reisende.
Interessant ist dabei auch, dass das Unternehmen selbst kein Parkplatzbetreiber ist. Das Unternehmen agiert als Vermittler – und zeigt damit, wie wichtig digitale Infrastruktur und Vertrauensbildung für moderne Geschäftsmodelle sind. Die Nutzerbewertungen auf der Plattform tragen dazu bei, das Angebot ständig zu verbessern.
Technologie als Enabler für bessere Nutzererfahrung
Ein weiterer wichtiger Baustein im Erfolg ist der gezielte Einsatz von Technologie. Eine übersichtliche Website, eine mobile App und einfache Bezahlmethoden sind heute Standard, doch wie diese Tools eingesetzt werden, macht den Unterschied. Die Plattform bietet nicht nur Such- und Buchungsmöglichkeiten, sondern auch Informationen zu Services wie Shuttle-Bussen, Öffnungszeiten und Sicherheitsstandards der Parkplätze.
Die Integration von Kundenbewertungen schafft eine soziale Kontrollinstanz, die Vertrauen aufbaut. So können Nutzer anhand von Erfahrungen anderer Reisender einschätzen, ob ein Parkplatz ihren Erwartungen entspricht. Dieses Feedback wird von Unternehmen genutzt, um Anbieter zu prüfen und kontinuierlich zu verbessern.
Nicht zuletzt erleichtern digitale Services auch die Reiseplanung insgesamt. Verbindliche Buchungen minimieren Überraschungen vor Ort und tragen dazu bei, den gesamten Ablauf stressfreier zu gestalten.
Digitales Angebot im Alltag – mehr als nur Bequemlichkeit
Das Beispiel Parkos zeigt, dass digitale Lösungen oft mehr leisten als reine Bequemlichkeit. Sie greifen in gesellschaftlich relevante Bereiche ein – hier etwa die Mobilität. Bessere Parkplatzplanung bedeutet weniger Suchverkehr, weniger Emissionen und damit einen Beitrag zur Entlastung urbaner Verkehrsräume.
Auch für Unternehmen eröffnen Plattformen wie Parkos neue Chancen. Kleine und mittelgroße Parkplatzanbieter können so ein größeres Publikum erreichen, ihre Auslastung verbessern und wirtschaftlicher arbeiten. Dies steht im Zeichen einer funktionierenden Sharing Economy, die Ressourcen besser nutzt.
Die Relevanz digitaler Vermittlungsplattformen
Digitale Vermittlungsplattformen sind längst mehr als reine Serviceangebote. Sie verändern zunehmend die Art, wie Menschen sich fortbewegen, arbeiten oder ihre Freizeit gestalten. Die Vermittlung von Parkplätzen am Flughafen ist ein kleines, aber anschauliches Beispiel dafür, wie digitale Geschäftsmodelle dazu beitragen können, den Alltag effizienter zu gestalten und Ressourcen besser zu nutzen.
Indem sie Buchung und Planung vereinfachen, tragen solche Plattformen dazu bei, dass unnötige Suchfahrten entfallen. Das hat nicht nur eine Zeitersparnis für den Einzelnen zur Folge, sondern auch einen spürbaren Effekt auf den Verkehr rund um stark frequentierte Orte. Weniger Staus bedeuten weniger Emissionen – ein relevanter Beitrag zum Klimaschutz, der auf den ersten Blick vielleicht unspektakulär wirkt, bei genauerem Hinsehen jedoch enorm.
Außerdem profitieren kleine Anbieter von Parkplätzen von der Reichweite solcher digitalen Marktplätze. Sie können ihre freien Kapazitäten besser auslasten und so wirtschaftlicher arbeiten. Damit entsteht eine Win-Win-Situation, die durch die Vernetzung und Digitalisierung erst möglich wird.
Praxisnahe Erkenntnisse für Gründer und Unternehmer
Für Unternehmer, die digitale Geschäftsmodelle entwickeln oder optimieren wollen, steckt in diesem Beispiel einiges an Praxiswissen. Erstens: Das genaue Erkennen eines echten Alltagsproblems ist entscheidend. Hier war es die Parkplatzsuche – eine scheinbar kleine Herausforderung mit großem Frustpotenzial.
Zweitens zeigt sich, wie wichtig eine konsequente Nutzerzentrierung ist. Transparente Preise, Vergleichbarkeit und unkomplizierte Buchungsprozesse schaffen Vertrauen. Gerade in Zeiten, in denen Konsumenten eine nahtlose User Experience erwarten, entscheidet die Qualität der digitalen Schnittstellen oft über Erfolg oder Misserfolg.
Drittens wird deutlich, wie wichtig Vertrauen im Plattformgeschäft ist. Nutzerbewertungen, transparente Kommunikation und klare Buchungsbedingungen helfen, Unsicherheiten abzubauen. Das gilt nicht nur für die Parkplatzvermittlung, sondern für alle digitalen Vermittler.
Viertens: Flexibilität und kontinuierliche Verbesserung sind ein Muss. Digitale Geschäftsmodelle müssen sich an wechselnde Anforderungen und neue technische Möglichkeiten anpassen, um relevant zu bleiben.
Wo liegen die Herausforderungen?
Trotz aller Vorteile stehen digitale Plattformen auch vor Herausforderungen. Zum Beispiel die Frage nach Datenschutz und Sicherheit der Kundendaten, die immer sensibler wahrgenommen wird. Auch die Balance zwischen Anbieterinteressen und Nutzerbedürfnissen ist oft ein Balanceakt.
Nicht zuletzt sind digitale Unternehmen auf stabile und schnelle Internetverbindungen angewiesen – was vor allem auf dem Land oder in entlegenen Gebieten nicht selbstverständlich ist. Gerade hier zeigt sich, dass digitale Innovationen nicht automatisch alle gesellschaftlichen Schieflagen beheben.
Fazit: Digitalisierung als Werkzeug für pragmatische Lösungen
Der Blick auf die Vermittlung von Parkplätzen an Flughäfen macht eines klar: Digitalisierung funktioniert dann am besten, wenn sie echte, greifbare Probleme löst. Es geht nicht um bloße Technik, sondern um den Mehrwert, den Unternehmen und Plattformen schaffen – für Nutzer, Anbieter und die Gesellschaft.
Ein erfolgreicher digitaler Vermittler zeichnet sich dadurch aus, dass er Transparenz, Vertrauen und Nutzerfreundlichkeit in den Mittelpunkt stellt. Die Kombination aus technischer Innovation und konsequenter Orientierung an den Bedürfnissen der Kunden bildet das Fundament für nachhaltiges Wachstum.
Für Gründer und Unternehmer ist die Botschaft: Kleine, präzise Lösungen können große Wirkung entfalten. Wer genau hinschaut und mit digitaler Intelligenz Alltagssituationen verbessert, schafft nicht nur Mehrwert, sondern auch ein tragfähiges Geschäftsmodell.
KI-Übergangsphase: Fluch und Segen
Zwischen Wundermaschine und Blackbox – Warum wir gerade in einer KI-Übergangsphase leben und was das generell für das Marketing bedeutet.
Künstliche Intelligenz (KI) verändert gerade in rasantem Tempo unsere Welt. Sie automatisiert Prozesse, entlastet Teams, liefert Analysen in Echtzeit und ermöglicht einen bisher nicht gekannten Grad an Personalisierung. Wer heute im Marketing arbeitet, kommt an KI nicht mehr vorbei – sei es beim Texten von Werbebotschaften, beim Targeting, in der Bildgenerierung oder der Erfolgsmessung.
KI verspricht Effizienz, Präzision und neue kreative Möglichkeiten. Doch die Euphorie wird zunehmend begleitet von einer neuen, ernüchternden Erfahrung: Künstliche Intelligenz kann auch Nutzererlebnisse verschlechtern, Prozesse intransparent machen – oder gar ganze Geschäftsmodelle gefährden. Der technologische Fortschritt ist zweifellos da, doch gesellschaftlich, wirtschaftlich und kulturell befinden wir uns noch mitten in einer Übergangsphase. Und das birgt Risiken – nicht nur für Plattformen, sondern auch für Unternehmen, die sie nutzen.
Beispiel Pinterest: Wenn der Algorithmus plötzlich entscheidet
Ein aktuelles Beispiel liefert Pinterest: Die visuelle Such- und Inspirationsplattform setzt verstärkt auf KI, um Inhalte effizient zu kategorisieren, Hassrede zu erkennen, urheberrechtlich geschützte Werke zu markieren oder Spam zu unterbinden. Was auf dem Papier sinnvoll und zukunftsgerichtet klingt – ein moderner „Content Safety Stack“ mit automatisierter Moderation –, hat in der Praxis zahlreiche Creator*innen und Unternehmen auf dem falschen Fuß erwischt.
Accounts wurden gelöscht, Pins blockiert oder ganze Seiten unsichtbar gemacht – oft ohne erkennbare Begründung. Was ist passiert? Die KI-Modelle bei Pinterest wurden darauf trainiert, problematische Inhalte automatisiert zu erkennen und Plattformregeln durchzusetzen. Doch wie in vielen KI-Systemen liegt der Teufel im Detail: Die Modelle sind noch nicht präzise genug, um zwischen legitimen und grenzwertigen Inhalten zuverlässig zu unterscheiden – vor allem in einem visuellen Umfeld wie Pinterest. Besonders problematisch wird es, wenn Nutzer*innen keine Möglichkeit haben, die Entscheidungen nachzuvollziehen oder effektiv dagegen vorzugehen.
Für Unternehmen, die Pinterest als Marketingplattform nutzen, ist das ein unkalkulierbares Risiko. Wer auf Sichtbarkeit und Reichweite angewiesen ist, kann es sich kaum leisten, dass automatisierte Systeme ohne Vorwarnung Inhalte sperren. Der Vertrauensschaden ist enorm.
Im Spannungsfeld der KI-Nutzung
Dieser Fall steht exemplarisch für ein zentrales Spannungsfeld der KI-Nutzung: Auf der einen Seite die große Hoffnung auf Automatisierung, Kostenersparnis und Kontrolle – auf der anderen Seite die Realität einer noch nicht vollständig ausgereiften Technologie, die häufig wie eine Blackbox agiert. Für Nutzer*innen bedeutet das: weniger Transparenz, weniger Kontrolle, mehr Frustration. Ähnliche Phänomene beobachten wir auch bei großen Social-Media-Plattformen wie Meta oder TikTok. Auch hier sorgen KI-basierte Moderationssysteme regelmäßig für Unmut – sei es durch falsch erkannte Verstöße, Einschränkungen der Reichweite oder Verzögerungen im Kundenservice, der durch automatisierte Antworten ersetzt wurde. Dabei geht es nicht um generelle Ablehnung von KI – sondern um die Art und Weise, wie sie implementiert und kommuniziert wird.
Gute KI ist unsichtbar – weil sie funktioniert
Das Marketing der Zukunft soll nicht nur effizient, sondern muss auch verantwortungsvoll sein. Es wird davon abhängen, wie gut Unternehmen die Balance finden zwischen Automatisierung und menschlicher Kontrolle. Zwischen der Verlockung, Prozesse zu beschleunigen, und der Notwendigkeit, Vertrauen zu erhalten. Gute KI ist unsichtbar – weil sie funktioniert. Sie analysiert, aber entscheidet nicht alleine. Zukunftsfähiges Marketing ist also geprägt von einer Kombination aus technologischer Intelligenz und menschlicher Relevanz. KI, Automatisierung und Datenanalyse ermöglichen eine bisher unerreichte Präzision: Zielgruppen werden individueller angesprochen, Inhalte in Echtzeit ausgespielt und Customer Journeys automatisiert optimiert. Personalisierung ist dabei kein Zusatz mehr, sondern Standard.
Gleichzeitig verändern sich die Erwartungen der Konsument*innen: Sie wollen authentische Marken, klare Haltung, Datenschutz und echte Mehrwerte – keine leeren Werbeversprechen. Deshalb wird Marketing künftig nicht nur effizient, sondern auch ethisch und wertebasiert sein müssen. Vertrauen wird zur zentralen Währung. Auch deshalb ist das Marketing der Zukunft vor allem Inhouse zu verorten. Agenturen befinden sich auf dem absteigenden Ast – sie sind teuer und liefern nicht die Ergebnisse, die Unternehmen und Marken wirklich benötigen. Zu dieser Entwicklung gehört auch, dass Inhouse-Marketing-Verantwortliche umfassend geschult werden müssen, damit sich der Einsatz von KI maximal einfach gestaltet und gleichzeitig äußerst produktiv ist.
KI ist weder Fluch noch Segen – sie ist ein mächtiges Werkzeug, das mit Bedacht eingesetzt werden muss. Wer KI einfach laufen lässt, riskiert Vertrauensverluste. Wer sie aber erklärt, einbettet und begleitet, kann gewinnen – an Effizienz, Qualität und Glaubwürdigkeit. Das Marketing der Zukunft ist nicht einfach KI-gesteuert. Es ist menschenzentriert – mit KI als starkem, aber verantwortungsbewusstem Assistenten.
Der Autor Bastian Sens gründete Sensational Marketing im Jahr 2010 – zunächst als klassische Onlinemarketing-Agentur. Im Laufe der Jahre kristallisierte sich jedoch ein alternativer Weg heraus, sodass sich das Unternehmen zu einer Onlinemarketing-Academy wandelte.

