Aktuelle Events
MyBreo: Hilfe zur Selbsthilfe bei chronischen Lungenerkrankungen
Das 2023 von Florian Bahm gegründete Start-up MyBreo ist ein Anbieter digitaler, mobiler Angebote rund um Atemtherapie und Lungengesundheit.
Mehr als 750 Millionen Menschen leiden an Beeinträchtigungen ihrer Lunge; chronische Lungenerkrankungen zählen zu den häufigsten Todesursachen weltweit. Auch in Deutschland sind schätzungsweise 14 Millionen Menschen von Volkskrankheiten wie COPD, Asthma, Long- und Post Covid betroffen. Was viele Betroffene nicht wissen: Man kann mit Atemtraining und Atemtherapie einen erheblichen Einfluss auf seinen Gesundheitszustand nehmen – genau hier setzt MyBreo mit seinem Angebot an.
Online-Programm für selbst durchführbare Atemtherapie
Das Berliner Start-up hat es sich zum Ziel gesetzt, digitale und mobile Gesundheitsangebote auf Basis einer individuell durchführbaren Atemtherapie anzubieten. Florian Bahm, Gründer und CEO von MyBreo, betont die Dringlichkeit des Themas: „Auch in Deutschland haben nicht alle Menschen uneingeschränkten Zugang zum Gesundheitssystem. Mit unserem ersten Produkt, einem Online-Programm für selbst durchführbare Atemtherapie, bieten wir Betroffenen eine einfach zugängliche und wissenschaftlich fundierte Möglichkeit, ihre Atmung und damit ihre Lebensqualität nachhaltig zu verbessern.“ Dies ist jedoch nur der erste Schritt: „Die Entwicklung weiterer Angebote als individuelle Begleiter für Betroffene ist bereits gestartet“, so Bahm.
Digitaler Atemkurs: Mehr Lebensqualität durch Technologie
Das MyBreo-Programm wurde gemeinsam mit Expert*innen für Lungenkrankheiten, darunter Pulmolog*innen, Psycholog*innen, Atem- und Physiotherapeut*innen, auf Basis neuster Forschungsergebnisse und zahlreicher Interviews mit Betroffenen entwickelt. Die Vorteile des Angebotes sind dabei nicht nur auf die Lungengesundheit beschränkt. Auch im Bereich der Senior*innenpflege, in der Vor- und Nachbereitung von klinischen Aufenthalten und in anderen klinischen Fachbereichen gibt es Anwendungsmöglichkeiten. Das Angebot ersetzt natürlich nicht den Besuch beim Facharzt bzw. der Fachärztin, doch es kann für viele Betroffene eine wertvolle Ergänzung darstellen.
Digitale Gesundheitslösungen im Aufwind
Die Gesundheitskosten steigen immer weiter an, die Versorgungssituation verschlechtert sich. Bahm ist daher davon überzeugt, dass digitale Angebote für das deutsche und auch internationale Gesundheits- und auch Pflegesystem in der Zukunft alternativlos sein werden. Die Notwendigkeit liegt auf der Hand: Programme wie der Atemkurs von MyBreo sind jederzeit verfügbar, individuell anpassbar und können von zu Hause oder unterwegs absolviert werden.
Expansion und Entwicklung weiterer digitaler Produkte
Bereits jetzt sind weitere Produkte in Planung, die Lösungen rund um Atemtherapie mit mobilen Apps und Künstlicher Intelligenz gestützt für Nutzende zugänglich machen. Parallel werden Patientenstudien vorbereitet und die Internationalisierung des bestehenden Angebotes durchgeführt. So wurden Bahm und MyBreo zur „MedTech“ in Toronto, Kanada, eingeladen. Auf der weltweit größten Gesundheitsmesse werden sie ihr Unternehmen und ihr Produkt einem internationalen Fachpublikum vorstellen und Kontakte in den internationalen Markt aufbauen.
Diese Artikel könnten Sie auch interessieren:
19 Start-up-Geschenkideen für Xmas
Die Teilnehmer*innen des Hessischen Gründerpreises haben pfiffige, nutzwertige und stylische Produkte im Angebot, die bestens unter den Weihnachtsbaum passen.
Socken oder ein Buch? Gutschein oder Bargeld? Für viele Menschen ist die Weihnachtszeit auch stressig, denn sie müssen Geschenke für ihre Liebsten finden – und nicht immer nur für die. Für ein wenig Inspiration präsentieren wir geschenktaugliche Produkte und Dienstleistungen von jungen Unternehmen. Sie alle haben sich 2025 beim Hessischen Gründerpreis beworben, manche von ihnen sind ins Halbfinale gekommen, wurden als Preisträger*innen oder Sieger*innen ausgezeichnet.
19 Start-up-Inspirationen für Weihnachten
Häkelsets für Anfänger mit Video-Anleitungen hat Willy Wolle entworfen. Perfekt für gemütliche Nachmittage auf dem Sofa www.willywolle.com
Kurse rund um den Obstbaumschnitt und Erlebnisse auf der Streuobstwiese ermöglicht www.obstbaumglück.de
Musikgarten, Babymassage und Yoga für Kinder, liebevolle Kurse bietet www.mainglueckskind.de
An Weihnachten kommt gerne mal ein festlicher Hirsch- oder Rehbraten auf den Tisch. Das Fleisch dafür gibt es bei www.wildvonotto.de
Monatliche, von Montessori inspirierte Themenboxen mit liebevoll gestalteten Lern- und Bastelaktivitäten für Kinder von 3 bis 6 Jahren www.foxbox.kids
Ätherische Öle, Raumdüfte und Basisöle in Bio-Qualität liefert www.advanced-essentials.com
Sprechende Wanduhr erinnert Kinder automatisch per Sprachausgabe an Aufgaben und Termine und fördert Selbstständigkeit auf spielerische Weise www.routime.de
Tassen und andere 3D-gedruckte Keramik in herausragendem Design von www.additivum.de
Innovative Mundziehöle, basierend auf Phyto-Science und ayurvedischer Medizin, stellt www.maemaecare.com her
Professionelle Haarkosmetik mit hoher Hautverträglichkeit, produziert in Deutschland, von www.rndetail.com
www.schmunzelgeist.de ist eine Schokoladenmanufaktur, die außer leckeren Pralinen und Schokoladen auch Workshops und Tastings im Programm hat
Bio-Tees, ayurvedische Tees und Gewürze sowie Workshops und Tastings gibt es bei www.oktopus-tee.de
Weihnachten und der Winter sind die klassische Backsaison. Bio-Backmischungen ohne Industriezucker gibt es bei www.hasenzaehnchen.de
Komplette Nähprojekte in einer Box – das ideale Geschenk für kreative Köpfe von www.ankes-naehbox.de
Tagesplaner, Notizblöcke, Schreibtischunterlagen, Wochenplaner für Schüler, Studentinnen, und alle, die im Büro arbeiten: www.lemonplan.de
Maßgeschneiderte BHs, bei denen nichts mehr zwickt, zu erschwinglichen Preisen gibt es bei www.cupped.de
Brettspiel oder per App zocken? Off- und online verbindet www.playnconnect.de
Neon ist das neue Schwarz – auch bei Hundebekleidung www.lumiies.com
Handgefertigte Netztaschen & Lifestyle-Produkte gibt es bei www.netzeallerart.shop
KI-Agenten als Transformationstreiber 2026
Eine aktuelle DeepL-Studie zeigt: 69 % der globalen Führungskräfte erwarten für 2026 tiefgreifende Veränderungen durch KI-Agenten; KI-Sprachtechnologie wird zur unverzichtbaren Infrastruktur.
Eine neue Studie von DeepL, einem globalen Unternehmen für KI‑Produkte und ‑Forschung, zeigt: 2026 wird für viele Organisationen den Übergang vom Experimentieren mit KI hin zu agentischer Automatisierung markieren. So erwartet die Mehrheit der weltweit befragten Führungskräfte (69 %), dass agentenbasierte KI ihre Geschäftsabläufe im kommenden Jahr deutlich verändern wird.
Die Studie wurde im September 2025 von Censuswide im Auftrag von DeepL durchgeführt. Befragt wurden 5.000 Führungskräfte in Deutschland, Frankreich, den USA, Großbritannien und Japan. Die Ergebnisse deuten darauf hin, dass Unternehmen verstärkt planen, autonome KI-Agenten im großen Umfang einzusetzen – etwa zur Unterstützung von Wissensarbeit, zur Effizienzsteigerung oder zur Anpassung organisatorischer Strukturen. Damit zeichnet sich die bedeutendste operative Veränderung in der Wirtschaft seit der Einführung der Cloud an.
„KI-Agenten sind längst nicht mehr experimentell, sie sind unumgänglich.“ sagt Jarek Kutylowski, CEO und Gründer von DeepL. „Die nächste Phase besteht darin, sie tiefgreifend in unsere Arbeitsweisen zu integrieren. In 2026 werden KI-Agenten das mühsame Umschalten zwischen verschiedenen Kontexten und repetitive Aufgaben übernehmen, sodass sich Menschen auf das konzentrieren können, was Unternehmen tatsächlich voranbringt.“
KI-Agenten werden zum nächsten Disruptor für Unternehmen
Nach ersten Pilot- und Anwendungsfällen rücken KI-Agenten zunehmend in den produktiven Einsatz:
- Fast die Hälfte der globalen Führungskräfte (44 %) erwartet für 2026 einen tiefgreifenden Wandel durch agentische KI; ein Viertel (25 %) sieht diesen Wandel bereits heute. Nur 7 % glauben, dass KI-Agenten ihre Betriebsabläufe nicht verändern werden, was die hohe Geschwindigkeit der Implementierungen unterstreicht.
- Als die drei wichtigsten Voraussetzungen für den sinnvollen und vertrauenswürdigen Einsatz von KI-Agenten nennen die Befragten nachweisbare Effizienz- und ROI-Effekte (22 %), Anpassungsfähigkeit der Belegschaft (18 %) und zunehmende organisatorische Bereitschaft (18 %).
- Als wesentliche Herausforderungen bei der Einführung von KI-Agenten nennen die Befragten Kosten (16 %), Bereitschaft der Belegschaft (13 %) und Reife der Technologie (12 %).
KI als zentraler Wachstumstreiber für globale Unternehmen
Über Agenten hinaus gilt KI insgesamt als wichtigster Motor für das Wirtschaftswachstum in 2026:
- Über zwei Drittel (67 %) der Befragten geben an, dass sich der ROI ihrer KI-Initiativen in diesem Jahr erhöht hat; mehr als die Hälfte (52 %) erwartet, dass KI im kommenden Jahr mehr zum Unternehmenswachstum beitragen wird als jede andere Technologie.
- Wenn es um messbare Verbesserungen durch KI geht, liegt Deutschland (78 %) zusammen mit Großbritannien (80 %) an der Spitze, gefolgt von den USA (71 %) und Frankreich (70 %). Japan verzeichnet mit 35 % deutlich niedrigere Werte, was auf langsamere Implementierungen und Bereitschaften hindeutet.
- Über die Hälfte der globalen Führungskräfte (51 %) rechnet damit, dass KI im kommenden Jahr mehr neue Rollen schafft als ersetzt. 52 % geben an, dass KI-Kenntnisse für die meisten Neueinstellungen vorausgesetzt werden.
KI-Sprachtechnologie entwickelt sich vom Werkzeug zur zentralen Infrastruktur
Die Studie zeigt zudem, wie KI-Sprachtechnologie zur entscheidenden Komponente der Unternehmensinfrastruktur wird:
- Fast zwei Drittel der globalen Unternehmen (64 %) planen 2026 steigende Investitionen in KI-Sprachtechnologie – angeführt von Großbritannien (76 %) und Deutschland (74 %), gefolgt von den USA (67 %) und Frankreich (65 %) werden mehrsprachige Kommunikation und Inhalte zu zentralen Faktoren für globales Wachstum. Im Gegensatz dazu bleibt Japan (38 %) vergleichsweise konservativ, was auf eine langsamere Dynamik hindeutet, gleichzeitig aber das wachsende Interesse von mehr als einem Drittel der Führungskräfte widerspiegelt.
In diesem Zusammenhang wird Echtzeit-Sprachübersetzung 2026 unverzichtbar:
- Über die Hälfte der globalen Führungskräfte (54 %) sieht Echtzeit-Sprachübersetzung im kommenden Jahr als unverzichtbar an – derzeit sind es ein Drittel (32 %).
- Großbritannien (48 %) und Frankreich (33 %) sind Vorreiter bei der Nutzung von Tools für die Echtzeit-Sprachübersetzung; Japan liegt derzeit nur bei 11 %.
- Die Nachfrage wird angetrieben von technologischen Fortschritten in der Echtzeit-Sprachübersetzung (46 %), Kundenerwartungen (40 %) und marktübergreifender Expansion (38 %).
Die Erkenntnisse der Studie liefern wichtige Einblicke in die Zukunft der KI und zeigen, wie diese Veränderungen Branchen umgestalten, Kundenerwartungen neu definieren und sich auf das Wettbewerbsumfeld auswirken.
GreenTech – der Boom geht zu Ende
Zwar zählt Deutschland rund 3000 Start-ups aus dem GreenTech-Bereich, doch viele kämpfen mit Kapitalmangel, Fachkräftedefizit und einer überlasteten Infrastruktur. Der Boom ist vorbei – eine Einschätzung von Seriengründer und Transformationsexperte Daniel Fellhauer.
Die deutsche Wirtschaft steht vor einer ihrer größten Transformationen seit der Industrialisierung. Jahrzehntelang galten Auto- und Stahlindustrie als Rückgrat des Wohlstands. Nun rückt Nachhaltigkeit in den Mittelpunkt. Daniel Fellhauer sieht die GreenTech-Branche an einem kritischen Punkt: „GreenTech ist kein Hype, sondern Realität mit echten Herausforderungen. Die Frage ist: Wer bleibt übrig, wenn die Subventionen verschwinden?“ Seine Aussage bringt auf den Punkt, was viele Brancheninsider beschäftigt: der Übergang von gefördertem Wachstum zu marktwirtschaftlicher Reife. Jetzt entscheidet sich, welche Unternehmen Innovation und Wirtschaftlichkeit in Einklang bringen können – und wer an überzogenen Erwartungen scheitert.
Der Boom geht zu Ende
„Der Anteil grüner Gründungen ist zuletzt deutlich gesunken“, sagt Daniel Fellhauer. „Vor zwei Jahren war noch jedes dritte neue Start-up nachhaltig ausgerichtet. Heute ist es nicht einmal mehr jedes Vierte. Das ist ein deutliches Warnsignal. Der Markt sortiert sich, Kapital wird selektiver, und viele Ideen schaffen es nicht mehr über die Pilotphase hinaus.“ In den vergangenen fünf Jahren flossen zwar rund 11,7 Milliarden Euro in grüne Start-ups – etwa ein Viertel aller deutschen Risikoinvestitionen –, doch das Geld konzentriert sich zunehmend auf wenige, große Player. „Das zeigt eine Reifung, aber auch eine gefährliche Schieflage“, so Fellhauer. „Wir brauchen Breite, nicht nur Leuchttürme. Wenn die Finanzierungsströme versiegen, bevor Skalierung einsetzt, kippt der ganze Innovationspfad.“ Hinzu kommen steigende Zinsen, langwierige Genehmigungen und überlastete Netze. „Viele unterschätzen, wie stark Infrastruktur über Wachstum entscheidet“, erklärt er. „Eine Solarfirma kann heute Aufträge für 1.000 Anlagen im Jahr haben. Aber wenn der Netzanschluss neun Monate dauert, bleibt sie auf halber Strecke stehen.“
Deutschland ist längst auf dem Weg zur nachhaltigen Wirtschaft – doch der Anstieg wird steiler. Die entscheidende Frage lautet: Wird GreenTech zum Fundament der nächsten industriellen Ära, oder zur vertanen Chance einer Generation? Laut einer aktuellen Analyse fließt ein erheblicher Teil staatlicher Investitionen und Subventionen in Deutschland weiterhin in fossile Strukturen – über 60 Milliarden Euro jährlich. Da-bei hatte sich die Bundesregierung bereits 2009 gemeinsam mit anderen Industrieländern verpflichtet, ineffiziente Förderungen für fossile Energieträger bis 2025 zu beenden. Ein Ziel, das laut Fachleuten von Fraunhofer ISI, ZEW und Umweltbundesamt klar verfehlt wird. Daniel Fellhauer warnt: „Das ist kein ideologisches, sondern ein ökonomisches Problem. Solange Kapital und Fördermittel in alte Industrien gelenkt werden, anstatt in skalierbare GreenTech-Lösungen, bleibt Deutschland in der Vergangenheit verhaftet.“
Herausforderungen im deutschen GreenTech-Sektor
Trotz technologischer Fortschritte wird das Wachstum der Branche weiterhin durch strukturelle Probleme gebremst. Zu den größten Hindernissen zählen laut Fellhauer vor allem die unzureichende Netzinfrastruktur, die hohe Kapitalintensität sowie fragmentierte Märkte. Hochqualifizierte Arbeitskräfte in den Bereichen Energie, Elektronik und Software sind rar, wodurch die Entwicklung und Umsetzung neuer Technologien verlangsamt wird. Gleichzeitig behindert der schleppende Ausbau der Strom- und Wärmenetze eine schnelle Skalierung innovativer Lösungen. Daniel Fellhauer erklärt: „Hinzu kommt, dass viele GreenTech-Unternehmen aufgrund langer Entwicklungszeiten und hoher Anfangsinvestitionen auf beträchtliches Kapital angewiesen sind. Schließlich sorgen unterschiedliche Förderprogramme und komplexe regulatorische Vorgaben dafür, dass Innovationen und Markteintritte ausgebremst werden. Diese Faktoren erschweren nicht nur das Wachstum bereits bestehender Firmen, sondern machen auch den Einstieg für neue Gründerinnen und Gründer deutlich schwieriger.“
Zweite Generation der Nachhaltigkeit für mehr wirtschaftliche Tragfähigkeit
„Nur wer wirtschaftlich denkt, kann nachhaltig handeln“, sagt Daniel Fellhauer. Für ihn ist klar: Die nächste Phase der GreenTech-Bewegung entscheidet sich nicht an Visionen, sondern an Umsetzungsdisziplin. „Wir haben die Ideen, die Technologien und den gesellschaftlichen Rückhalt – jetzt geht es um Strukturen, Prozesse und betriebswirtschaftliche Fitness.“ Er spricht damit vor allem zu Gründerinnen und Gründern, die gerade überlegen, in den Markt einzusteigen. „Ich sehe viele junge Teams, die voller Energie starten – aber ohne belastbares Geschäftsmodell. Das ist gefährlich, weil GreenTech kapitalintensiv ist und die Anlaufphase oft Jahre dauert. Wer heute gründet, braucht einen klaren Plan für Cashflow, Partnerschaften und Skalierung, nicht nur für Storytelling.“
Fellhauer plädiert für eine zweite Generation der Nachhaltigkeit: weniger Ideologie, mehr Industriekompetenz. „Wir müssen wieder lernen, wie man produziert, automatisiert und skaliert, nicht nur, wie man pitcht. Nachhaltigkeit ist kein Marketingbegriff, sondern eine Frage des industriellen Könnens.“ Er empfiehlt, früh Kooperationen mit etablierten Mittelständlern oder Industriebetrieben zu suchen, um Skaleneffekte und Erfahrung zu nutzen. Statt auf Subventionen zu bauen, rät er zu robusten Wertschöpfungsmodellen, die auch ohne politische Förderung bestehen können. „Die besten Green-Tech-Firmen der nächsten Jahre werden die sein, die unabhängig funktionieren – weil sie echte Marktprobleme lösen, nicht weil sie im Förderdschungel überleben.“
Politik und Wirtschaft in gemeinsamer Verantwortung
Damit Nachhaltigkeit tatsächlich zum tragfähigen Standbein der deutschen Wirtschaft wird, braucht es planbare Rahmenbedingungen – aber auch Eigeninitiative. Fellhauer betont, dass Gründerinnen und Gründer nicht auf die perfekte Politik warten dürfen. „Wir brauchen beides: verlässliche Energie- und Förderpolitik und unternehmerischen Pragmatismus.“ Politik müsse langfristige Investitionen ermöglichen, den Kapitalzugang vereinfachen und Fachkräfte mobilisieren. Fellhauer nennt staatlich unterstützte Risikokapitalfonds und europäische GreenTech-Programme als zentrale Hebel, damit Innovationen nicht im Frühstadium scheitern. Zugleich müsse Deutschland die Infrastruktur modernisieren: Netze, Standards, Digitalisierung. „Solange ein Windpark genehmigt, aber nicht ans Netz angeschlossen werden kann, bleibt das alles Theorie“, warnt er. Sein Fazit fällt entsprechend klar aus: „GreenTech wird die neue industrielle Basis – wenn wir sie als solche behandeln. Gründer müssen rechnen, Politiker müssen liefern, und die Gesellschaft muss akzeptieren, dass Nachhaltigkeit ein Geschäftsmodell braucht, keinen Idealismuspreis.“
Daniel Fellhauer hat mehrere Unternehmen im Bereich Solar, Wärmepumpen und erneuerbare Energien erfolgreich aufgebaut. Heute ist er Chief Transformation Officer bei Thermondo und eingesetzter CEO seiner ursprünglich gegründeten Firma FEBESOL.
HR-Trends 2026
Die Arbeitswelt verändert sich, die Position der Unternehmen wird stärker, eine Rezession auf Management- und Führungsebene droht: die HR-Welt bleibt ein Schmelztiegel verschiedenster Strömungen. Das sind die fünf größten Herausforderungen für 2026.
Die Arbeitswelt verändert sich - sowohl für Personalmanager*innen als auch für die Belegschaft. Während sich vor wenigen Jahren die Arbeitnehmenden in einer starken Verhandlungsposition befanden, schlägt das Pendel jetzt immer stärker zugunsten der Unternehmen aus. Das eröffnet ihnen die Chance, die Arbeitswelt mehr nach ihren Vorstellungen zu gestalten, um ihren Unternehmenserfolg zu sichern. Gleichzeitig tragen sie auch die große Verantwortung, das Arbeitsumfeld ihrer Mitarbeitenden kontinuierlich zu verbessern, das Engagement zu fördern und die Rolle der KI für die kommenden Jahre mit Weitblick und Sorgfalt auszubalancieren.
Wir werfen einen Blick nach vorne und skizzieren die fünf wichtigsten HR-Trends für die DACH-Region im kommenden Jahr.
1. Kulturelle Transparenz – Strategiewechsel bei der Talentakquise
Die Stagnation der Wirtschaft, der angespannte Arbeitsmarkt, weniger Stellenangebote – all das führt dazu, dass Mitarbeitende lieber in ihren derzeitigen Positionen und Rollen verharren. Die Folge ist ein “Talentestau:” Mitarbeitende, die sonst das Unternehmen verlassen würden, bleiben und blockieren damit die Wechsel- und Entwicklungsmöglichkeiten derer, die eher bereit sind, ihre Karriere engagiert voranzubringen. Auf der Suche nach effektiven Möglichkeiten, diese Engpässe zu überwinden, werden Unternehmen im kommenden Jahr ihre Strategie hin zu mehr kultureller Transparenz ausrichten. Anstatt neue Talente mit einem Wertversprechen oder der einseitigen Hervorhebung positiver Alleinstellungsmerkmale zu gewinnen, kommunizieren sie ihre tatsächlichen Erwartungen und die Realität des Arbeitsalltags klar. Damit betonen sie bewusst auch Aspekte, die weniger passende Bewerbende eher abschrecken - damit sich die wirklich passenden umso stärker angesprochen fühlen. Beispiele dafür können u.a. die Erwartung, wieder vollständig zur Büropräsenz zurückzukehren, Prozessreife und Struktur der Unternehmen sowie die Nutzung von KI-Tools im Arbeitsalltag sein.
2. Neudefinition des Erfolgs – Leistung statt Leistungsschau?
Mitarbeitende haben oft das Gefühl, dass ihre tatsächlich geleistete Arbeit nicht richtig bewertet wird und sie nicht ausreichend Anerkennung erfahren. Analysen von Culture Amp ergaben, dass 2025 rund 20 Prozent der Mitarbeitenden nicht genau wissen, wie sich die Bewertung ihrer Performance zusammensetzt. Die Folge dieser Unkenntnis sind Mutmaßungen und die Fokussierung auf mehr Sichtbarkeit: Mitarbeitende betreiben eine Art Leistungsschau und arbeiten so, dass es vor allem produktiv aussieht. Wenn das Gefühl hinzukommt, einem passiven Monitoring ausgesetzt zu sein – in der DACH-Region nur unter strengen Auflagen erlaubt – konzentrieren sich Mitarbeitende auf das, was vermeintlich gemessen wird. Diese Kluft wird sich 2026 weiter vergrößern, wenn die Verantwortlichen ihre Leistungsbewertung nicht neu ausrichten, um ein vertrauenswürdiges und vollständigeres Bild von der Performance ihrer Mitarbeitenden zu erhalten. Wer hingegen menschzentrierte Feedbacksysteme wie Upward Feedback, 360‑Grad‑Feedback und reflektierende Einzelgespräche verankert, kann das Vertrauen stärken und ein ganzheitlicheres Verständnis der Beiträge der Mitarbeitenden erhalten.
3. Mensch und KI – zwei Seiten der HR-Medaille
2026 werden KI-Tools verstärkt Einzug in den HR-Abteilungen halten. Routineaufgaben wie z.B. eine erste Bewerberauswahl oder die Beantwortung von häufig gestellten Fragen werden zunehmend automatisiert beantwortet. Doch mit den Möglichkeiten der KI wächst auch die Erkenntnis, dass sie nicht die Lösung für alles sein darf. Darüber hinaus tritt 2026 der EU AI Act vollständig in Kraft. Demzufolge werden KI-Tools im Zusammenhang mit Personaleinsatz als Hochrisiko eingestuft: Sie unterliegen sehr strengen Richtlinien bezüglich Transparenz, Kontrolle und Grenzen des KI-Einsatzes. Bei der Frage, welche Aufgaben der KI überlassen werden können und welche nach wie vor die Empathie, die Erfahrung und das Wissen echter HR-Expert*innen erfordern, ist Fingerspitzengefühl gefragt. Auch scheinbar administrative Aufgaben benötigen manchmal den direkten persönlichen Austausch. Unternehmen werden dazu übergehen, deutlicher zu definieren, welche Fragestellungen und Bereiche maschinenbezogene Fähigkeiten und welche menschliche Fähigkeiten erfordern. 2026 wird sich ein deutlicher Trend bemerkbar machen: Die verstärkte Integration von KI in den Personalabteilungen und gleichzeitig die permanente Überprüfung, welche Aufgabenbereiche zukünftig KI-gestützt erledigt werden sollen.
4. Führung neu denken – Managementpositionen verlieren an Attraktivität
Auch das verraten die Analysen von Culture Amp: 72 Prozent der Generation Z sind nicht an Führungspositionen interessiert. Die jungen Arbeitnehmenden bleiben lieber in ihren jeweiligen Rollen, manche entscheiden sich ganz bewusst gegen eine Managementkarriere. Der Reiz, eine Leitungsfunktion zu übernehmen, nimmt insbesondere im Bereich des mittleren Managements ab: Diese Manager*innen fühlen sich zwischen den Erwartungen der Unternehmensführung und den Erwartungen ihres Teams oft unter starkem Druck. In der Folge könnte es im kommenden Jahr zu einer weiteren Abflachung der Hierarchien in den Unternehmen kommen, manche befürchten gar eine Rezession auf der Management- und Führungsebene. Gleichzeitig eröffnen sich Manager*innen durch den Einsatz von KI-Tools neue Möglichkeiten, ihren Einfluss zu vergrößern. Für jene Talente, die sich darauf einlassen, werden Führungspositionen dadurch zugänglicher und nachhaltiger. In Anbetracht dessen werden sich die Dynamiken in den Teams verändern. Unternehmen werden Führungsrollen zunehmend überdenken und ihre Manager*innen besser unterstützen, statt weitere einzustellen. Denn wenn weniger Menschen führen wollen, braucht es nicht mehr, sondern besser unterstützte Manager*innen.
5. Ambitionen und Leistungsbereitschaft wird außerhalb der Arbeitswelt ausgelebt
Ob berufliche Nebentätigkeit, Ehrenamt oder leidenschaftliches Hobby – immer mehr Mitarbeitende bringen Energie und Motivation für Tätigkeiten auf, die außerhalb ihrer regulären Arbeit liegen. Sie erkennen, dass sie ihre Stärken auch anderswo verwirklichen können. Dieser Trend hin zu mehr Kreativität, Leidenschaft und Erfüllung durch sinnvolle Tätigkeiten nach Feierabend und am Wochenende wird sich auch 2026 fortsetzen. Das Risiko für Unternehmen geht dabei über bloße Ablenkung hinaus: Bleiben angemessene Antworten im kommenden Jahr aus, wandern Ambitionen nach außen ab. Führung muss etwas Besseres anbieten: Die Chance 2026 liegt darin, den Hauptjob so zu gestalten, dass er sich wieder energiegeladen, kreativ und investitionswürdig anfühlt.
Fazit
Die Strömungen und Entwicklungen in der HR-Welt bringen einen fortdauernden Wandel mit sich. Gespannt blicken die Personalabteilungen auf die für 2026 vorgesehene nationale Umsetzung der Entgelttransparenz-Richtlinie der EU (EU Pay Transparency Directive and Equal Pay). Die weitreichendsten Veränderungen verursacht aber der Einzug der KI in die Arbeits- und Lebenswelt der Mitarbeitenden. Dies wirft unablässig neue Fragen auf: Droht der Talentepool zu versiegen, wenn Aufgaben für Berufseinsteiger*innen von KI übernommen werden und sie infolgedessen keine Erfahrung aufbauen können? Wird sich die Belegschaft eines Unternehmens früher oder später in KI-resistente und KI-affine Gruppen aufspalten? Die HR-Welt bleibt ein Schmelztiegel verschiedenster Strömungen im Unternehmen, die datengestützte Strategien erfordern.
Der Autor Dr. Arne Sjöström ist Regional Director, People Science EMEA bei Culture Amp mit dem Schwerpunkt Organisationspsychologie und angewandte Forschung.
KI und Selbstreflexion: Was macht KI mit dir?
Wie du innovative KI-Technologie und persönliche Entwicklung strategisch geschickt kombinierst, um dein Start-up nachhaltig zu skalieren.
Künstliche Intelligenz (KI) gilt als Wachstumsbooster. Doch wer dabei nur auf Technik setzt, lässt ein entscheidendes Potenzial ungenutzt – die eigene persönliche Entwicklung. Warum es gerade die Verbindung aus KI und Selbstreflexion ist, die Gründer*innen und Start-ups langfristig erfolgreich macht, liest du hier.
Gründen bedeutet, Entscheidungen unter Unsicherheit zu treffen
Wer ein Start-up aufbaut, bewegt sich im Spannungsfeld von Vision und Verantwortung. Geschäftsmodell, Finanzierung, Teamführung, Produktentwicklung – all das passiert meist parallel und unter enormem Zeitdruck. Technologie wird dabei oft als Hebel gesehen, um schneller und effizienter zu arbeiten. Und das stimmt: Tools, die auf KI basieren, können Prozesse automatisieren, Muster erkennen, Kund*innenbeziehungen vertiefen. Doch Technik allein garantiert keinen Erfolg. Entscheidend ist, wer sie wie einsetzt. Und hier kommt ein oft unterschätzter Faktor ins Spiel: der/die Gründer*in selbst mit den Mustern seiner/ihrer Persönlichkeit.
Jede einzelne Erfahrung, die die Marke rund um eine(n) Gründer*in prägt, kann niemals von einer KI erzeugt werden. Diese kann im zweiten Schritt sachlich analysieren, wie Erlebnisse für zukünftige Prozesse genutzt werden, die dazugehörigen Werte oder Ängste aber stecken in der Person selbst als Fundament.
Markenkern, Werte und Identität – das unsichtbare Fundament des Erfolgs
Jede Marke beginnt mit einer Geschichte, und diese umfasst den Menschen als Dreh- und Angelpunkt. Die Erfahrungen, Werte und Überzeugungen der Gründer*in formen den Kern eines Start-ups weit vor dem ersten Pitchdeck. Während KI dabei helfen kann, diese Identität greifbar zu machen, zu analysieren oder in die Kommunikation zu übersetzen, erzeugen kann sie diese nicht.
Gerade in der frühen Phase entscheidet nicht nur das Produkt über den Erfolg, sondern die Haltung dahinter: Wofür steht das Unternehmen? Welche Werte prägen die Entscheidungen? Welches Bedürfnis treibt den/die Gründer*in auch jenseits der KPIs an? Eine klare Positionierung entsteht nicht im Workshop, sondern im inneren Prozess. Es ist die Fähigkeit zur Selbstreflexion, die hier als Kompass dient:
- Was ist mir wirklich wichtig?
- Was darf sich nie ändern, selbst wenn wir skalieren?
- Was wäre ein Deal, den ich nie eingehen würde – egal wie lukrativ er erscheint?
Wer diesen Markenkern kennt, trifft strategische Entscheidungen konsistenter, kommuniziert authentischer und baut Vertrauen bei Investor*innen, Mitarbeitenden und Kund*innen auf. Und erst dann lohnt sich der Einsatz von KI wirklich, um diese klare Positionierung zum Beispiel zu verstärken, nicht aber zu ersetzen.
KI – mehr als nur Effizienzmaschine
KI hat längst ihren Platz in der Start-up-Welt gefunden. Vom Recruiting über Sales bis hin zum Customer Support. KI-gestützte Tools erleichtern die Arbeit und verschaffen jungen Unternehmen echte Wettbewerbsvorteile:
- Automatisierung: Mithilfe von KI lassen sich zeitintensive Prozesse wie Terminplanung, Rechnungsstellung oder E-Mail-Korrespondenz automatisieren. Das schafft Raum für strategische Aufgaben.
- Personalisierung: Wer seine Kund*innen wirklich verstehen will, profitiert von datenbasierten Insights. KI hilft dabei, Verhalten zu analysieren, Bedürfnisse vorherzusagen und Inhalte gezielt auszuspielen.
- Recruiting: Im „War for Talents“ zählt Geschwindigkeit, ergänzend aber unbedingt auch Qualität. KI-Tools unterstützen dabei, Bewerber*innen effizient zu sichten und unbewusste Bias zu reduzieren.
Richtig eingesetzt, ermöglicht KI mehr Fokus, schnellere Iterationen und datengestützte Entscheidungen. Aber genau hier beginnt auch das Problem: Technologie kann nur das verstärken, was ohnehin vorhanden ist oder eben (noch) nicht.
Selbstreflexion – der unterschätzte Erfolgsfaktor
Gründer*innen stehen täglich vor Entscheidungen mit Tragweite. Doch unter Druck, Unsicherheit und Wachstumsschmerz wird oft reaktiv gehandelt statt reflektiert geführt. Genau hier setzt Selbstreflexion an. Wer sich seiner Stärken, Muster und blinden Flecken bewusst ist, trifft bessere Entscheidungen – für sich, das Team und das Unternehmen. Selbstreflexion ist kein esoterisches Extra, sondern ein pragmatisches Führungsinstrument. Einige wirkungsvolle Methoden:
- Regelmäßige Selbstchecks: Was hat in dieser Woche funktioniert und warum? Was nicht? Was sagt das über meine Prioritäten aus?
- Feedback aktiv einholen: nicht nur von Mitgründer*innen oder Coaches, sondern auch vom Team. Nicht defensiv reagieren, sondern neugierig auf das Feedback sein.
- Mentoring und Coaching: Externe Sparringspartner*innen helfen, Perspektiven zu erweitern und Denkfehler zu entlarven.
- Reflexionstools nutzen: vom (digitalen) Journal bis zur strukturierten Entscheidungsanalyse gibt es einfache Hilfsmittel, die Klarheit schaffen.
Wer bereit ist, sich selbst zu hinterfragen, entwickelt nicht nur sich, sondern auch sein Start-up weiter. Denn Führung beginnt nicht mit der Verantwortung für andere, sondern mit der Verantwortung für sich selbst.
Die Synergie – wenn KI auf Selbstreflexion trifft
Die wirklich erfolgreichen Gründer*innen sind nicht entweder Tech-Expert*innen oder People-Leader*innen. Sie verbinden beides. Sie nutzen KI, um operative Exzellenz zu schaffen und reflektieren gleichzeitig, wie sie führen, entscheiden, kommunizieren. Diese Kombination erzeugt eine Form von unternehmerischer Klarheit, die sowohl innovativ als auch resilient ist.
KI kann Erkenntnisse liefern. Aber nur, wer sie richtig einordnet, profitiert davon. Selbstreflexion schafft den Raum, um mit Technologie sinnvoll umzugehen. Umgekehrt kann KI helfen, Reflexionsprozesse zu unterstützen, etwa durch gezielte Feedback-Auswertung oder datengestützte Teamanalysen.
Ein Beispiel aus der Praxis: Ein Start-up im HR-Tech-Bereich nutzt KI, um Kund*innenfeedback in Echtzeit zu analysieren. Gleichzeitig reflektieren die Gründer*innen wöchentlich im Führungsteam, welche Learnings daraus für Produkt und Kommunikation folgen und welche persönlichen Muster sie bei sich selbst erkennen. Diese Kombination aus technologischem Blick nach außen und menschlichem Blick nach innen führt dazu, dass das Unternehmen nicht nur schneller wächst, sondern dabei auch klar bleibt.
Skalierung braucht Klarheit in der Technik und im Kopf
Start-ups, die skalieren wollen, müssen effizient sein, gleichzeitig aber auch fokussiert, werteorientiert und anpassungsfähig. KI ist dabei ein mächtiges Werkzeug. Doch ohne die Fähigkeit zur Selbstreflexion bleibt sie oft bloß ein weiteres Tool im Tech-Stack.
Deshalb gilt: Die Kombination aus klugem KI-Einsatz und bewusster persönlicher Entwicklung ist kein Luxus, sondern unternehmerische Notwendigkeit. Wer beides ernst nimmt, schafft ein Unternehmen, das nicht nur wächst, sondern dabei auch „gesund“ bleibt.
Die Autorin Lea Baptista ist Geschäftsführerin der GG Consulting Agency und unterstützt Unternehmer*innen, Führungskräfte und Teams dabei, ihren Führungsstil klar zu definieren, Selbstreflexion als Werkzeug zu nutzen und authentisch erfolgreich zu sein.
Code für die künstliche Intelligenz: technische Optimierung für die Ära der KI-Suche
Code für die KI: So optimierst du deine Website technisch mit strukturierten Daten und Protokollen für die besten generativen Suchergebnisse.
Die Regeln der Online-Sichtbarkeit werden neu geschrieben. Es geht nicht mehr nur darum, von einem herkömmlichen Algorithmus indiziert zu werden. Stattdessen müssen Websites so aufbereitet werden, dass sie von künstlicher Intelligenz (KI) und großen Sprachmodellen (LLMs) fehlerfrei interpretiert und verarbeitet werden können.
KI erstellt ihre Antworten, indem sie Inhalte blitzschnell liest, deren Bedeutung versteht und die wichtigsten Fakten daraus extrahiert. Wenn der technische Unterbau einer Website unsauber ist, kann die KI die Informationen entweder nicht zuverlässig finden oder sie falsch interpretieren.
Das bedeutet, die technische Seite der Website – der Code – wird zum Fundament für eine gute Platzierung in den generativen Suchergebnissen. Wer hier Nachholbedarf hat, riskiert, als vertrauenswürdige Quelle für die KI unsichtbar zu werden.
Dieser Artikel beleuchtet die entscheidenden technischen Anpassungen, die notwendig sind, um deine Website optimal für die neue Ära der KI-Suche vorzubereiten.
Kontrolle und Zugang: Die Regeln für Sprachmodelle
Der erste technische Schritt zur Optimierung für KI-Ergebnisse ist die Steuerung des Zugriffs durch die großen Sprachmodelle (LLMs). Traditionell wird der Zugang durch die robots.txt Datei geregelt, die festlegt, welche Bereiche der Website von herkömmlichen Suchmaschinen-Crawlern besucht werden dürfen.
Mit dem Aufkommen verschiedener, spezialisierter KI-Crawler (die nicht immer identisch mit dem Googlebot oder Bingbot sind) entsteht jedoch die Notwendigkeit, diesen neuen Akteuren eigene Regeln zu geben. Es geht darum, Transparenz darüber zu schaffen, welche Daten zur Generierung von Antworten verwendet werden dürfen und welche nicht.
Neue Protokolle für neue Crawler
Experten diskutieren und entwickeln neue Protokolle, um diese Unterscheidung zu ermöglichen. Ein viel diskutierter Ansatz ist die Einführung von Protokollen, die spezifisch den Umgang mit generativer KI regeln. Dies könnte die Einführung von Protokollen wie einer llms.txt Datei beinhalten. Solche spezifischen Dateien könnten festlegen, ob ein KI-Modell Inhalte zur Schulung oder zur generativen Beantwortung von Nutzeranfragen nutzen darf.
Diese Kontrollmechanismen sind entscheidend. Sie geben den Website-Betreibern die Autorität darüber zurück, wie ihre Inhalte in der KI-Ära verwendet werden. Wer hier klare Regeln setzt, schafft die technische Grundlage für eine kontrollierte und damit vertrauenswürdige Sichtbarkeit in den KI-Ergebnissen.
Strukturierte Daten als universelle KI-Sprache
Nach der Regelung des Zugangs durch Protokolle ist die Strukturierung der Inhalte der wichtigste technische Schritt. Suchmaschinen nutzen strukturierte Daten schon lange, um Rich Snippets in den klassischen Ergebnissen anzuzeigen. Für die KI sind diese Daten jedoch absolut essenziell.
Strukturierte Daten, die auf dem Vokabular von Schema.org basieren, sind im Grunde eine Übersetzungshilfe im Code, die dem Sprachmodell den Kontext des Inhalts direkt mitteilt. Sie sind die "Sprache", die die KI am schnellsten und präzisesten versteht.
Die Bedeutung für die Generierung
Wenn ein Nutzer eine Frage stellt, sucht die KI nicht nur nach Stichwörtern, sondern nach definierten Informationstypen. Mit strukturierten Daten liefert man der KI diese Informationen als fertige, fehlerfreie Bausteine.
- Fehlerfreie Extraktion: Die KI muss keine Textpassagen interpretieren, um beispielsweise ein Rezept, die Bewertung eines Produkts oder einen FAQ-Abschnitt zu identifizieren. Die korrekte Auszeichnung macht die Daten sofort nutzbar.
- Vertrauensbildung: Fehlerhafte oder inkonsistente strukturierte Daten führen zu einer falschen Interpretation und können bewirken, dass die KI deine Seite als unzuverlässig einstuft.
Die Implementierung muss fehlerfrei sein und sollte alle relevanten Inhaltstypen der Website abdecken. Nur eine saubere Schema-Implementierung garantiert, dass deine Fakten korrekt in die generativen Antworten der KI einfließen.
Ladezeit und Interaktivität als Vertrauenssignal
Die Geschwindigkeit und die Nutzbarkeit einer Website sind in der Ära der KI-Suche nicht mehr nur ein Komfortfaktor, sondern ein entscheidendes technisches Vertrauenssignal. Wenn deine Seite langsam lädt oder schlecht bedienbar ist, wird das von der KI als Indikator für mangelnde Qualität und niedrige Autorität gewertet.
Die Basis dafür sind die sogenannten Core Web Vitals (CWVs). Diese Messwerte, die sich auf das Nutzererlebnis konzentrieren, sind feste Ranking-Faktoren und haben direkten Einfluss darauf, ob eine KI deine Seite als zitierwürdig einstuft:
- LCP (Largest Contentful Paint): Misst die Zeit, bis der größte sichtbare Inhalt geladen ist.
- FID/INP (First Input Delay / Interaction to Next Paint): Misst die Zeit bis zur ersten Interaktion und die allgemeine Reaktionsfähigkeit der Seite.
- CLS (Cumulative Layout Shift): Misst die visuelle Stabilität.
Mobile Performance ist der Schlüssel
Da ein Großteil der Online-Aktivität über mobile Geräte stattfindet, legt die KI höchsten Wert auf die Optimierung der Mobilversion. Eine schlechte mobile Performance kann das gesamte Ranking negativ beeinflussen.
Die technische Anpassung muss daher darauf abzielen, die CWVs zu perfektionieren. Dies beinhaltet die Optimierung von Bildern, das Bereinigen unnötiger Code-Lasten und das Priorisieren wichtiger Ressourcen. Eine schnell ladende und reaktionsfreudige Website signalisiert nicht nur dem Nutzer, sondern auch der KI, dass die Quelle professionell und damit vertrauenswürdig ist.
Redundanz vermeiden: kanonische Klarheit
Eines der größten technischen Probleme für KI-Modelle ist die Verwirrung durch doppelte Inhalte (Duplikate). Wenn die gleiche Information unter verschiedenen URLs verfügbar ist, weiß die KI nicht, welche die Originalquelle darstellt. Dies zersplittert deine Autorität.
Der technische Schlüssel zur Lösung ist der Canonical Tag (<link rel="canonical" ...>). Dieser Tag im Code muss auf jeder Seite korrekt auf die bevorzugte, indexierbare URL zeigen. Durch die Vermeidung von Duplikaten und die korrekte Nutzung dieses Tags stellst du technisch sicher, dass die KI deine Inhalte als eindeutig und autoritär wahrnimmt und dich als zuverlässigen Faktenlieferanten zitiert.
Schlussworte
Die Zukunft der Online-Sichtbarkeit wird durch künstliche Intelligenz neu definiert. Der Erfolg hängt von einer technisch sauberen Vorbereitung ab.
Die wichtigsten Schritte in der Generative Engine Optimization (GEO) sind:
1. Zugangskontrolle durch Protokolle wie die diskutierte llms.txt Datei.
2. Die Nutzung von strukturierten Daten als unverzichtbare KI-Sprache.
3. Die Perfektionierung der Core Web Vitals als Vertrauenssignal.
4. Die Vermeidung von Duplikaten durch kanonische Klarheit.
Investiere in diese technische Qualität, um Autorität und Sichtbarkeit in der Ära der KI-generierten Antworten zu sichern.
eleQtron: It's MAGIC
In nur fünf Jahren vom Laborgerät zum 24/7-betriebenen Quantencomputer: Wie das 2020 von Jan Leisse, Christof Wunderlich und Michael Johanning gegründete eleQtron mit seiner MAGIC-Technologie neue Wege ebnet.
Was ihr da macht, ist der Wahnsinn – und genau deswegen bin ich dabei.“ Mit diesen Worten beschreibt Jan Leisse, einer der Gründer von eleQtron, die Anfänge des Unternehmens. Das erste Treffen mit dem Physiker Christof Wunderlich war geprägt von einer Mischung aus Skepsis und Begeisterung. Der Wissenschaftler hatte an der Universität Siegen einen Quantencomputer gebaut – mitten in der deutschen Provinz und ohne das Millionenbudget, das Konzernen wie Google oder IBM zur Verfügung steht. Doch genau das reizte Leisse: „Hier wurde nicht einfach nachgemacht, was andere tun. Hier wurde Neuland betreten.“
Es war ein ungewöhnlicher Ort für eine bahnbrechende
Innovation in der Quantentechnologie. Siegen, eine Mittelstadt im Süden Nordrhein-Westfalens, ist nicht gerade als Hotspot für Hochtechnologie bekannt. Doch manchmal entstehen die Top-Innovationen fernab der etablierten Zentren; die Universität Siegen hatte über Jahre hinweg eine bemerkenswerte Expertise in der Quantenphysik aufgebaut, ohne große mediale Aufmerksamkeit.
Von der Universität ...
Im Jahr 2020, als das globale Interesse an Quantentechnologien exponentiell zunahm, erwuchs aus dieser mutigen Pionierarbeit das Start-up eleQtron – als Spin-off der Universität Siegen. Die Gründer – Jan Leisse, Christof Wunderlich und Michael Johanning – verbindet eine Vision: Quantencomputer für industrielle Anwendungen nutzbar zu machen.
Die Anfangsjahre waren geprägt von Experimentierfreude, Improvisation und dem festen Glauben an die eigene technologische Innovationskraft. Während Tech-Giganten wie IBM, Google und Amazon Milliarden Euro in ihre Quantenprogramme investierten und viele Start-ups auf bekannte Technologien setzten, wagte eleQtron den Schritt in eine völlig neue Richtung.
In den Laboren der Gründer entstand die sogenannte MAGIC-Technologie (Magnetic Gradient Induced Coupling), eine Methode, Qubits (das Quantencomputing-Äquivalent zum klassischen Bit in der Digitaltechnik) nicht wie bislang üblich mit Lasern, sondern mit Mikrowellen zu steuern.
... zum technologischen Durchbruch
Die MAGIC-Technologie basiert auf einem raffinierten Zusammenspiel physikalischer Prinzipien: Magnetische Gradienten (räumliche Veränderungen der Magnetfeldstärke) ermöglichen es als lokale Felder, einzelne Ionen in einer sogenannten Falle selektiv anzusprechen. Die technischen Vorteile sind beeindruckend: Die Fidelity (Genauigkeit) bei Operationen an einzelnen Qubits liegt bei etwa 99,95 Prozent, die Gate-Zeiten (Gate-Zeit steht für die Dauer, die ein Quanten-Gate benötigt, um eine Operation auf einem Qubit auszuführen) betragen nur wenige Mikrosekunden. Gleichzeitig ermöglicht die Technologie eine bessere Skalierbarkeit, da sich Mikrowellenfelder einfacher erzeugen und verteilen lassen als komplexe Lasersysteme. „Der Vorteil liegt nicht nur in der höheren Präzision, sondern auch in der deutlich geringeren Komplexität der Systeme“, erklärt Johanning. „Wir brauchen keine aufwändigen Optiken oder ultrastabile Umgebungen. Unsere Technologie funktioniert auch unter realen Bedingungen.“
Früh erkannten die drei Forscher das große Potenzial ihrer Technologie für praktische Anwendungen. „Durch das gezielte Ersetzen sensibler High-End-Komponenten – insbesondere Lasertechnologie – durch bewährte Mikrowellentechnik und Elektronik, vermeiden wir unnötige Komplexität, minimieren Aufwand und senken die Kosten“, fasst es Leisse zusammen.
Wachstumsschub und strategische Entwicklung
2022 gelang eleQtron ein entscheidender Schritt: Durch Earlybird und den Siegerlandfonds als Investoren sowie das vom BMBF geförderte Projekt „MAGIC App“ sicherte sich das Start-up eine Finanzierung in Höhe von 16 Millionen Euro. Diese Finanzierungsrunde war ein Wendepunkt für das Unternehmen und signalisierte das Vertrauen der Investor*innen in die MAGIC-Technologie.
„Mit diesem Kapitalschub konnten wir von einer reinen Forschungsorganisation zu einem echten Technologieunternehmen werden“, erklärt Leisse. Die Mittel flossen in den Ausbau der Produktionskapazitäten, die Vergrößerung des Teams und die Weiterentwicklung der Technologie-Roadmap. Auch die Mitwirkung von Infineon im Rahmen von MAGIC App war strategisch von Bedeutung: „Die Zusammenarbeit mit Infineon hat uns die Augen für die Realitäten des Industriemarkts geöffnet“, erklärt Leisse.
EU KI-Gesetz wird scharf gestellt
Diese Strafen für KI-Verstöße drohen ab dem 2. August 2025 – was Personalverantwortliche und Arbeitnehmende jetzt wissen und beachten müssen.
Das KI-Gesetz der Europäischen Union, die weltweit erste umfassende KI-Verordnung, erreicht am 2. August 2025 einen entscheidenden Meilenstein. Ab diesem Stichtag gelten für Unternehmen, Behörden und KI-Anbieter*innen in der EU zahlreiche zentrale Verpflichtungen, bei deren Nichteinhaltung Strafmaßnahmen eingeleitet und verhängt werden können. Was das für Unternehmen und ihre Mitarbeitenden bedeutet, erfährst du hier.
Der AI Act, der am 2. Februar dieses Jahres in Kraft getreten ist, schafft einen einheitlichen Rechtsrahmen für Künstliche Intelligenz (KI) in der EU. Zwar werden viele Regelungen erst 2026 wirksam, doch bereits am 2. August 2025 beginnt eine neue Phase, die sich auf drei Bereiche fokussiert:
- Strafmaßnahmen bei Nichteinhaltung
- Verpflichtungen für allgemeine General-Purpose-AI-Modelle (GPAI)
- Aufbau von Aufsicht und Governance auf nationaler und europäischer Ebene
Strafen bis zu 35 Millionen Euro
Seit dem 2. Februar dieses Jahres sind KI-Systeme mit unannehmbaren Risiken verboten. Ab dem 2. August 2025 können zusätzlich nun Geldbußen für Verstöße gegen bereits bestehende Verpflichtungen verhängt werden, die bis zu 35 Millionen Euro oder 7 Prozent ihres gesamten Jahresumsatzes betragen können. Unternehmen müssen dazu beispielsweise sicherstellen, dass ihre Mitarbeitenden über KI-Kenntnisse verfügen. Die Europäische Union erwartet von ihren Mitgliedstaaten, dass sie eigene wirksame, verhältnismäßige und abschreckende Strafmaßnahmen festlegen. Dabei sollen die besonderen Umstände von KMUs und Start-ups berücksichtigt werden, um deren wirtschaftliche Lebensfähigkeit nicht zu gefährden.
Neue Verpflichtungen für Anbieter*innen von GPAI-Modellen
GPAI-Modelle, die ab dem 2. August 2025 in der Europäischen Union vermarktet werden, unterliegen gesetzlichen Verpflichtungen. Das Europäische Amt für Künstliche Intelligenz hat dazu am 10. Juli 2025 die endgültige Fassung der Verhaltenskodizes veröffentlicht. Anbieter*innen solcher GPAI-Modelle müssen unter anderem technische Dokumentationen erstellen, Urheberrechte beachten und Transparenz über die verwendeten Trainingsdaten sicherstellen.
GPAI-Modelle sind KI-Systeme mit besonders breitem Einsatzspektrum und sind darauf ausgelegt, eine Vielzahl von Aufgaben zu erfüllen. Sie werden mit riesigen Datenmengen trainiert und sind entsprechend vielseitig einsetzbar. Das bekannteste Beispiel sind große Sprachmodelle (Large Language Models, LLM), etwa das generative Sprachmodell GPT-4o, das in ChatGPT integriert ist. Für GPAI-Modelle, die bereits vor dem 2. August 2025 in der Europäischen Union auf dem Markt waren, gilt eine Übergangsfirst bis zum 2. August 2027.
Aufsicht und Governance
Die KI-Verordnung schafft einen Rahmen mit Durchführungs- und Durchsetzungsbefugnissen auf zwei Ebenen.
Auf nationaler Ebene muss jeder EU-Mitgliedstaat bis zum 2. August 2025 mindestens eine Marktüberwachungsbehörde sowie eine notifizierende Behörde benennen. Erstere ist für die Überwachung von KI-Systemen zuständig, letztere für die Notifizierung unabhängiger Konformitätsbewertungsstellen. Die Mitgliedstaaten müssen bis dem Stichtag Informationen zu den nationalen Behörden und deren Kontaktdaten veröffentlichen.
Auf EU-Ebene koordinieren das Europäische Amt für KI und der Europäische KI-Ausschuss die Aufsicht. Zusätzlich werden ein Beratungsforum und ein wissenschaftlicher Ausschuss aus unabhängigen Experten eingerichtet.
Was bedeutet das für Personalabteilungen und Arbeitnehmende?
Das KI-Gesetz hat direkte Auswirkungen darauf, wie KI in den Bereichen Rekrutierung, Performance-Management, Personalanalyse und Mitarbeitenden-Monitoring eingesetzt wird. Personalverantwortliche müssen sicherstellen, dass KI-Tools in diesen Bereichen transparent, fair und konform sind.
- Fairness und Antidiskriminierung: KI-Systeme, die bei Einstellungs- oder Beförderungsentscheidungen eingesetzt werden, müssen nachvollziehbar und frei von Bias sein. Personalabteilungen sollten ihre Tools und Anbieter*innen regelmäßig überprüfen, um die Einhaltung der Vorschriften sicherzustellen.
- Vertrauen und Transparenz: Mitarbeitende erhalten einen besseren Einblick, wie KI-Systeme ihre Arbeit beeinflussen, zum Beispiel bei der Einsatzplanung, Leistungsbewertung oder bei der Arbeitssicherheit. Personalabteilung können Vertrauen schaffen, indem sie offen kommunizieren, wie KI eingesetzt wird und wie die Daten der Mitarbeitenden geschützt werden.
- Verantwortlichkeit von Drittanbieter*innen: Werden KI-Tools von Drittanbieter*innen genutzt, müssen Personalabteilungen sicherstellen, dass diese Anbieter*innen die Anforderungen an Transparenz und Dokumentation erfüllen. Verträge und Beschaffungsprozesse sollten entsprechend angepasst werden.
- Training und Change Management: Mit stärkeren Regulierungen von KI wird die Personalabteilung eine Schlüsselrolle bei der Schulung von Führungskräften und Mitarbeitenden übernehmen. Ziel ist es, einen verantwortungsvollen Umgang mit KI zu fördern und ethische Standards in der Unternehmenskultur zu verankern.
Fazit
Anbieter*innen von GPAI-Modellen, die bereits vor dem 2. August 2025 auf dem Markt waren, haben bis zum 2. August 2027 Zeit, die neuen Vorschriften vollständig umzusetzen. Weitere Verpflichtungen für KI-Systeme mit hohem Risiko werden 2026 und 2027 folgen. Dieser Meilenstein spiegelt das Bestreben der EU wider, Innovationen zu fördern und gleichzeitig sicherzustellen, dass KI sicher, transparent und mit den europäischen Werten im Einklang steht. Damit rückt die Personalabteilung in den Mittelpunkt einer verantwortungsvollen Einführung von KI am Arbeitsplatz.
Der Autor Tom Saeys ist Chief Operations Officer bei SD Worx, einem international tätigen Dienstleistungsunternehmen im HR-Bereich.
Start-ups gegen Plastikmüll
Während die Verhandlungen zu einem globalen Plastikabkommen ergebnislos bleiben, entwickeln Start-ups weltweit innovative Technologien gegen Plastikmüll. Wir stellen eine Auswahl davon vor.
Die jüngsten Verhandlungen in Genf über ein globales Plastikabkommen sind wieder ohne Ergebnis geblieben. Die mehr als 180 verhandelnden Nationen konnten sich nicht einigen. Seit mehr als 50 Jahren sind die Gefahren durch Plastikmüll bekannt – und doch wird immer mehr davon produziert. Jedes Jahr entstehen rund 460 Millionen Tonnen Plastik, weniger als 10 Prozent davon werden recycelt und über 30 Millionen Tonnen gelangen in die Ozeane.
Auf politischer Ebene zeichnet sich bislang keine Lösung ab, auf die man sich global einigen könnte. Neue Vorgaben wie die Pflicht zu fixierten Flaschendeckeln in der EU sorgen eher für Frust. „Seit Jahrzehnten reden wir über das Plastikproblem. Um es zu lösen braucht es technologische Ansätze“, sagt Dr. Carsten Gerhardt, Vorsitzender der gemeinnützigen Circular Valley Stiftung. Solche Ansätze liegen längst auf dem Tisch. „Start-ups aus aller Welt zeigen, dass Innovation schneller sein kann als Verhandlungen.“
Start-ups aus aller Welt arbeiten an Lösungen
Einige dieser Unternehmen hat der Circular Economy Accelerator der Circular Valley Stiftung bereits unterstützt. Das Start-up PROSERVATION etwa stellt Polsterverpackungen aus Nebenprodukten der Getreideindustrie her, BIOWEG ersetzt Mikroplastik durch Biomaterialien aus Lebensmittelabfällen und das Unternehmen Biomyc verwendet Myzel-Verbundwerkstoffe aus Pilzwurzeln und Pflanzen.
Daüber hinaus stellt NYUNGU AFRIKA Damenhygieneprodukte aus Ananasblatt- und Maisschalenfasern her, Midwest Composites nutzt Ernteabfälle für die Herstellung von Textilien und Vlastic bietet eine Alternative zu geschäumten Kunststoffen auf Flachsbasis.
Wenn Produkte das Ende ihrer Lebensdauer erreichen, können sie durch Recycling ein zweites erhalten. Ecoplastile verwandelt Abfälle in langlebige Dachziegel, Gescol macht Bauplatten aus Schuhsohlen und Novoloop nutzt schwer zu recycelndes Polyethylen zur Produktion von thermoplastischen Hochleistungs-Polyurethanen.
Chemisches Recycling zerlegt Kunststoffe in molekulare Bausteine. Das Unternehmen CARBOLIQ verwendet ein katalytisches Niedertemperaturverfahren, um gemischte Kunststoffe in Öl umzuwandeln, das fossile Rohstoffe ersetzen kann; Radical Dot extrahiert Monomere, um sie erneut verwenden zu können.
Zu chemischem Recycling hat Circular Valley in diesem Jahr einen Informationsfilm veröffentlicht, der die Möglichkeiten dieser Methode erklärt und verdeutlicht.
Warum KI bei Förderanträgen versagt
Fünf Gründe, warum Unternehmen auf menschliche Intelligenz setzen sollten.
Ob steuerliche Forschungszulage, Investitionsförderung oder EU-Programme. Künstliche Intelligenz (KI) wie ChatGPT liefert in Sekundenschnelle eine Vielzahl möglicher Förderprogramme. Doch zwischen der reinen Information und der tatsächlichen Erschließung von Fördermitteln liegt ein erheblicher Unterschied. Hier gilt es, Unternehmen zu sensibilisieren.
Fördermittel sind heute ein strategischer Bestandteil moderner Unternehmensfinanzierung. Es reicht daher nicht, die Programme zu kennen. Entscheidend ist, sie rechtssicher, vollständig und förderlogisch aufeinander abgestimmt umzusetzen, um die vollen Förderpotenziale zu heben. Genau hier beginnt die Arbeit von Fördermittelexpert*innen.
Fünf Gründe, warum KI-Tools nicht als Fördermittelberater funktionieren
1. KI erkennt die wahren Förderpotenziale nicht
ChatGPT kann erklären, was ein Förderprogramm leistet. Doch welche Kosten eines konkreten Vorhabens tatsächlich und wie hoch förderfähig sind, lässt sich so nicht beurteilen. Gerade bei komplexen Programmen wie der steuerlichen Forschungszulage sind Erfahrung, Struktur und rechtssichere Abgrenzung entscheidend. Eine gute Fördermittelberatung prüft jedes Vorhaben systematisch: von der Förderfähigkeit nach dem Forschungszulagengesetz (FZulG), AGVO oder De-minimis-Verordnung bis hin zur klaren Trennung förderfähiger und nicht förderfähiger Aufwände.
2. KI kann keine Förderstrategien entwickeln
Eine Liste von Förderprogrammen ersetzt keine Strategie. KI kann nur Optionen nennen, aber keine Strategien zur Umsetzung im Unternehmen entwickeln. Eine gute Fördermittelberatung integriert die Forschungszulage sinnvoll in laufende Projekte und strukturiert Innovations- sowie Investitionsprozesse auf Bundes-, Landes- und EU-Ebene. So entstehen nicht nur Optionen, sondern belastbare, wirtschaftlich wirksame Lösungen.
3. KI kann nicht mit Menschen kommunizieren
Ein Antrag ist mehr als ein Formular. Er muss Anforderungen erfüllen und überzeugen. KI liefert Textbausteine, aber führt keine Gespräche und reagiert nicht auf Rückfragen mit der notwendigen Erfahrung in der Verwaltungspraxis der verschiedenen Förderprogramme. Eine gute Fördermittelberatung übernimmt die gesamte Kommunikation mit Förderstellen, koordiniert mit Bescheinigungsstellen und entwickelt formal korrekte und überzeugende Argumentationen.
4. KI endet beim Prompt – Fördermittelberatung bei der erfolgreichen Projektprüfung
Nach dem Antrag geht die Arbeit oft erst richtig los. Rückfragen, Prüfungen, Nachweise. KI kann Unternehmen dabei nicht unterstützen und keine Verantwortung übernehmen. Eine gute Fördermittelberatung hingegen begleitet die Kund*innen durch den gesamten Förderzyklus mit sauberer Dokumentation, revisionssicherer Aufbereitung und Unterstützung bei Audits und Außenprüfungen.
5. KI zeigt nur den Dschungel – Förderexperten finden den Schatz
Datenbanken geben einen Überblick, aber keine Richtung. Eine gute Fördermittelberatung bewertet alle denkbar möglichen Förderprogramme im konkreten Unternehmenskontext und entwickelt daraus konkrete Maßnahmen, um das Maximum an Fördermöglichkeiten für die Kund*innen rauszuholen. Eine gute Fördermittelberatung schafft so echte wirtschaftliche Vorteile statt der bloßen Auflistung von Fördermöglichkeiten.
Der Autor Efe Duran Sarikaya ist CEO der Fördermittelberatung EPSA Deutschland.
Kurz mal die Welt retten
Wie GreenTech-Start-ups aus dem DACH-Raum dazu beitragen, die Auswirkungen des Klimawandels zu mildern.
Ist es bereits zu spät, den Klimawandel aufzuhalten? Während diese Frage unablässig für hitzige Debatten sorgt, arbeiten Start-ups unermüdlich an Lösungen für die dringendsten Umweltprobleme. Die DACH-Region erlebt einen rasanten Anstieg von GreenTech-Start-ups, angetrieben durch technologische Innovationen und zunehmenden regulatorischen Druck. Dies zeigt u.a. das DACH GreenTech Software Mapping 2025 von Hi Inov und veranschaulicht, welche vielversprechenden Ansätze und Technologien die Zukunft des GreenTech-Ökosystems in Europa prägen.
Mapping der Herausforderungen und Lösungen
Das Mapping bietet einen umfassenden Überblick über die Softwarelösungen von GreenTech-Start-ups im DACH-Raum. Sie umfassen eine Vielzahl von Ansätzen, um den Anstieg der globalen Temperaturen einzudämmen und die damit einhergehenden wirtschaftlichen und gesellschaftlichen Herausforderungen zu bewältigen.
1. Messung und Optimierung des CO2-Fußabdrucks
Fortgeschrittene Techniken zur Datenerfassung und KI-gesteuerte Analysen helfen Organisationen, ihre Effizienz zu steigern und ihren CO₂-Fußabdruck zu reduzieren. Sie helfen Unternehmen, jährlich Emissionen von über 216.000 Tonnen CO₂-Äquivalenten zu vermeiden. Horizontale Plattformen bieten allgemeine Monitoring-Tools für branchenübergreifende Messdienste. Vertikale Lösungen wie die für die Immobilienbranche maßgeschneiderte ESG-Datenplattform Deepki integrieren branchenspezifische Anforderungen.
2. Beschleunigung der Energiewende
Softwarelösungen spielen eine entscheidende Rolle bei der Optimierung der Standortauswahl für die Produktion erneuerbarer Energien, der vorausschauenden Wartung von Infrastruktur und der Verbesserung der Energiespeicherung. Sie können die Schwankungen in der Stromeinspeisung erneuerbarer Energien mindern und somit die Abhängigkeit von fossilen Brennstoffen reduzieren. Das Stuttgarter Start-up metergrid ermöglicht es beispielsweise Mieter*innen in Mehrfamilienhäusern, umweltfreundlichen Solarstrom zu nutzen, der im selben Gebäude produziert wird (mehr dazu in der StartingUp 01/25).
3. Förderung der Kreislaufwirtschaft und Ressourcenoptimierung
Digitale Lösungen erleichtern die Schonung von natürlichen Ressourcen durch intelligentes Ressourcenmanagement, indem sie die Planung und Nutzung von Ressourcen verbessern. Durch den Einsatz von KI lassen sich viele Prozesse optimieren, darunter Recycling, Landwirtschaft und Wassermanagement. So reduziert das Berliner Start-up Freshflow Abfall, indem es die Nachbestellung von frischen Lebensmitteln mit Machine Learning automatisiert und optimiert. Darüber hinaus verbinden digitale Marktplätze Produzent*innen überschüssiger Ware mit potenziellen Abnehmer*innen, um Ressourcen effizierter zu nutzen.
4. Förderung von Nachhaltigkeitsinitiativen in Unternehmen
Unternehmen nutzen digitale Werkzeuge, um ihre Nachhaltigkeit über die regulatorischen Anforderungen hinaus zu verbessern. Zu den eingesetzten Lösungen zählen CO₂-Kreditbörsen, die es Organisationen ermöglichen, Emissionen durch strukturierte Märkte auszugleichen, und Mitarbeiterengagement-Plattformen, die die Teilnahme der Belegschaft an ESG-Initiativen fördern. Start-ups wie das Hamburger CarbonStack unterstützen Unternehmen bei der Erstellung von Nachhaltigkeitsberichten und dabei die relevanten Richtlinien einzuhalten.
Die Entwicklung von 2023 bis heute
Insgesamt zeigt das Mapping ein reiferes und strukturierteres GreenTech-Ökosystem, das Europas Position als Pionier in digitalen Klimaschutzlösungen stärkt. Die Entwicklung zwischen den Mappings aus den Jahren 2023 und 2025 verdeutlicht drei wichtige Trends:
1. Anstieg der Anzahl der angebotenen Softwarelösungen
Die steigende Nachfrage nach nachhaltigkeitsorientierten Innovationen in verschiedenen Branchen hat das Wachstum des GreenTech-Ökosystems beschleunigt und zu einem rasanten Anstieg der angebotenen Softwarelösungen geführt.
2. Regulatorisch getriebene Fortschritte
Aufgrund des zunehmenden regulatorischen Drucks wächst der Anteil der angebotenen Lösungen, die auf Compliance-Bedürfnisse wie CSRD, die Rückverfolgbarkeit von Produkten und transparente CO₂-Buchhaltung eingehen. Es werden zunehmend vertikalisierte Monitoring-Tools entwickelt, um spezialisierte Datensätze und branchenspezifische Algorithmen zu erstellen.
3. Einfluss von generativer KI
Der Einsatz von generativer KI nimmt zu. Neue Anwendungsfälle im Bereich Nachhaltigkeit umfassen verbesserte Datenanalyse, automatisierte Compliance-Berichterstattung, sowie die Echtzeit-Optimierung von CO₂-Fußabdrücken und Ressourcenmanagement.
Fazit: Ein florierendes Ökosystem mit starker europäischer Führung
Der Klimawandel stellt eine immense Herausforderung dar, deren Bewältigung innovative technologische Lösungen erfordert. Das GreenTech Mapping 2025 verdeutlicht die führende Rolle Europas bei der Entwicklung dieser Lösungen und zeigt ein reiferes GreenTech-Ökosystem mit großer Dynamik. Durch den Einsatz fortschrittlicher Datenanalysen, KI und Automatisierung sind Start-ups in der DACHRegion gut positioniert, um sowohl wirtschaftlichen als auch ökologischen Mehrwert zu schaffen. Sie werden Unternehmen und politischen Entscheidungsträger*innen dabei helfen, den Übergang zu einer nachhaltigeren Wirtschaft zu beschleunigen und die Folgen des Klimawandels einzudämmen.
Der Autor Dr. Wolfgang Krause leitet als Managing Partner das Deutschlandgeschäft des auf B2B-Digitallösungen spezialisierten VC-Fonds von Hi Inov.
„Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing“
Mit planqc verfolgt Dr. Alexander Glätzle die Mission, hochskalierbare Quantencomputer für wirtschaftliche Anwendungen zu bauen. Warum das Unternehmen dabei auf Standorte wie München und Innsbruck setzt und welche Rolle Österreichs Talentpool spielt, verrät er im Interview.
Dr. Alexander Glätzle ist Quantenphysiker und Mitgründer von planqc. Er studierte und promovierte an der Universität Innsbruck, forschte an renommierten Instituten wie Oxford, Harvard sowie in Singapur und war als Unternehmensberater tätig. 2022 gründete er planqc als Ausgründung aus dem Max-Planck-Institut in München.
Herr Dr. Glätzle, wie entstand die Unternehmensidee und welche Meilensteine haben Sie mit planqc bisher erreicht?
Die Idee zu planqc ist bereits während meines Studiums an der Universität Innsbruck entstanden. Dort habe ich intensiv im Bereich Quantentechnologie geforscht und das enorme Potenzial erkannt, aus diesen Erkenntnissen ein Start-up zu gründen. Bis zur Gründung hat es allerdings noch einige Jahre gedauert – nicht zuletzt, weil die technologische Entwicklung im Labor ebenfalls voranschreiten musste. 2022 sind wir dann als Ausgründung aus dem Max-Planck-Institut offiziell gestartet. Zu den wichtigsten Meilensteinen zählen zwei große öffentlich geförderte Projekte: Für das Deutsche Zentrum für Luft- und Raumfahrt bauen wir einen Quantencomputer mit einem Volumen von 30 Mio. EUR, ein weiteres Projekt mit dem Leibniz-Rechenzentrum umfasst 20 Mio. EUR, beide mit Abschluss bis Ende 2026 bzw. 2027. Dann werden an diesen beiden Standorten voll funktionsfähige Quantencomputer von planqc installiert sein.
Sie haben bereits Venture Capital mit an Bord. Wer zählt zu Ihren Investoren?
Gestartet sind wir 2022 mit einer Seed-Runde, an der unter anderem UVC Partners, Speedinvest und Apex Ventures beteiligt waren – also bereits starke Partner auch aus Österreich. Diese Basis konnten wir in der Series-A im letzten Jahr weiter ausbauen. Die CATRON Holding, ein Wiener Family Office, ist als Lead-Investor eingestiegen. Dazu kamen weitere Partner wie der DeepTech & Climate Fonds sowie Bayern Kapital. Besonders erfreulich ist, dass auch unsere Bestandsinvestoren erneut signifikant investiert haben. Damit verfügen wir über eine starke, rein mitteleuropäische, deutsch-österreichische Investorenbasis – was in unserem Sektor tatsächlich selten ist.
Ihr Headquarter befindet sich in der Nähe von München. Was hat Sie dazu bewegt, zusätzlich einen Standort in Innsbruck zu eröffnen?
Ursprünglich haben wir planqc in München gegründet – als Ausgründung aus dem Max-Planck-Institut. Doch bereits innerhalb eines Jahres haben wir ein zweites Büro in Innsbruck eröffnet. Der Grund liegt auf der Hand: Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing. Mit renommierten Instituten wie dem Institut für Quantenoptik und Quanteninformation (IQOQI) und Persönlichkeiten wie Peter Zoller und Rainer Blatt gibt es dort eine kritische Masse an international anerkannten Wissenschaftlern. Zudem ist es in der Praxis oft schwierig, hochqualifizierte Talente aus der Region nach München zu bringen. Deshalb haben wir entschieden, ihnen vor Ort ein attraktives Arbeitsumfeld zu bieten – mit einem eigenen Standort in Innsbruck.
Welche Vorteile bietet der Standort Österreich speziell für Unternehmen im Bereich Quantencomputing?
Österreich hat eine lange und starke Tradition in der Quantenphysik. Universitäten wie Innsbruck und Wien, das IQOQI und eine ganze Generation exzellenter Wissenschaftler prägen diese Landschaft. Viele bahnbrechende theoretische und experimentelle Arbeiten wurden hier in den vergangenen Jahren geleistet. Gerade für junge Start-ups bietet das Land enorme Vorteile: Der Talentpool ist außergewöhnlich – mit hervorragend ausgebildeten, dynamischen Fachkräften. Darüber hinaus ist die Nähe zu sogenannten „Industry First Movern“ gegeben, was den Standort besonders spannend macht. Und nicht zuletzt hat Österreich eine historische Verbindung zur Physik – Namen wie Schrödinger, Pauli oder Hess stehen sinnbildlich für diese wissenschaftliche Tiefe.
Welche Unterstützung erhielten Sie bei der Ansiedlung durch die Austrian Business Agency?
Die Austrian Business Agency sowie die Standortagentur Tirol haben uns außerordentlich engagiert unterstützt – sei es bei der Suche nach Büroflächen, bei der Eröffnung des ersten Bankkontos oder in bürokratischen Fragen. Sie standen uns nicht nur beratend zur Seite, sondern haben uns tatkräftig geholfen, Hürden aus dem Weg zu räumen. Genau so stelle ich mir die Zusammenarbeit mit einer lokalen Agentur vor: nah dran, lösungsorientiert und mit exzellentem Netzwerk. Wir hatten wirklich großes Glück mit der Unterstützung vor Ort.
Sie selbst sind in Österreich geboren, haben in Innsbruck promoviert und weltweit Forschungsaufenthalte absolviert – bevor Sie als Unternehmensberater und Gründer nach München gingen. Mit welchen Qualitäten punktet Österreich allgemein, auch als Arbeits- und Wohnort?
Ich habe viele Jahre im Ausland gelebt und gearbeitet – in Oxford, Singapur und Deutschland. Was Innsbruck und Tirol für mich besonders macht, ist die Kombination aus wissenschaftlicher Exzellenz und hoher Lebensqualität. Die Stadt liegt inmitten der Alpen, bietet eine hervorragende Infrastruktur und ein ausgewogenes Verhältnis zwischen Studierenden und Einwohnern. Das schafft ein inspirierendes Umfeld – zum Leben, Forschen und Arbeiten gleichermaßen.
Dr. Alexander Glätzle, vielen Dank für das Gespräch.
Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin
Was Unternehmen über KI-Agenten wissen müssen
Künstliche Intelligenz in Form autonomer Agenten gewinnt rasant an Bedeutung. Doch wie arbeiten diese KI-Agenten? Was ist bei der Umsetzung zu beachten? Hier gibt's die Antworten.
Die Idee, dass autonome Systeme eng mit Menschen zusammenarbeiten und sie gezielt unterstützen, ist keine Vision mehr, sondern Realität. Während bisher eine umfassende Problemlösungskompetenz im Hintergrund fehlte, bringen KI-Agenten genau diese Fähigkeit mit und übernehmen zunehmend vielfältige Aufgaben in der Arbeitswelt. Wir erklären, was Unternehmen über KI-Agenten wissen müssen.
Was sind KI-Agenten und auf welcher Technologie basieren sie?
KI-Agenten sind Softwaresysteme, die eigenständig Aufgaben ausführen, aus Erfahrungen lernen und dynamisch mit ihrer Umgebung interagieren. Ihr Ziel ist es, Aufgaben autonom zu lösen, ohne dass ein kontinuierliches menschliches Eingreifen notwendig ist. Im Unterschied zu herkömmlichen Automatisierungslösungen bewältigen KI-Agenten selbst komplexe Anforderungen, indem sie sich an neue Bedingungen anpassen. Auch werden sie im Gegensatz zu universellen LLMs in der Regel fein abgestimmt, um Relevanz und Datenschutz zu gewährleisten. Sinnvoll ist eine kontextbezogene Architektur, die kausale KI, Document AI und multimodale Logik kombiniert und damit optimal auf geschäftliche Anwendungsfälle zugeschnitten ist.
In welchen Bereichen der Arbeitswelt entfalten KI-Agenten ihr Potenzial?
KI-Agenten finden in nahezu allen Unternehmensbereichen Einsatzmöglichkeiten – von der Beantwortung einfacher Anfragen bis hin zur Steuerung komplexer Prozesse. Eingebettet in CRM-Plattformen analysieren sie riesige Datenmengen, die Unternehmen manuell nicht mehr auswerten können. Anstatt die Ergebnisse lediglich zu präsentieren oder Kontakte nach Prioritäten zu sortieren, qualifizieren KI-Agenten auch noch automatisch Leads, schlagen passende Angebote vor und beantworten Kundenanfragen. Oder anders formuliert: Während herkömmliche Tools in der Regel auf statischen Wenn-dann-Regeln basieren, führt die neue Generation hyperpersonalisierte Aktionen nahezu in Echtzeit aus. Diese Entwicklung entlastet Mitarbeiter von Routineaufgaben und gibt ihnen Raum, sich auf strategisch wichtige Aufgaben zu konzentrieren. Unternehmen wiederum können ohne großen Aufwand Tausende von Kunden individuell betreuen.
Werden KI-Agenten den Arbeitsmarkt verändern?
Diese Frage lässt sich nicht pauschal beantworten. Es entstehen durch den verstärkten Einsatz von KI-Lösungen neue Berufsfelder – insbesondere bei der Entwicklung, Integration und Wartung solcher Agentensysteme werden qualifizierte Fachkräfte benötigt. Gleichzeitig stellt sich die Herausforderung, bestehende Mitarbeitende gezielt im Umgang mit diesen Technologien weiterzubilden und deren digitale Kompetenzen auszubauen. Eines muss klar sein: Das Ziel von KI-Agenten ist es nicht, menschliche Arbeitskraft zu ersetzen, sondern deren Fähigkeiten zu erweitern. Mitarbeitende können sich somit stärker auf komplexe Kundeninteraktionen oder die Entwicklung innovativer Kampagnen konzentrieren, während ihnen die KI zur Hand geht.
Worauf müssen Unternehmen bei der Auswahl von KI-Agenten-Lösungen achten?
In erster Linie benötigen sie eine digital ausgereifte Umgebung mit einheitlichen Datenformaten, optimierten Prozessen und regelbasierten Automatisierungen, um den ROI steigern zu können. Anschließend müssen sie sicherstellen, dass ihre KI-Systeme den geltenden Datenschutzbestimmungen entsprechen und sensible Kund*innendaten optimal geschützt sind. Transparenz und Nachvollziehbarkeit der KI-Entscheidungen sind ebenfalls essenziell, um das Vertrauen von Kunden und Mitarbeitenden nicht zu gefährden. Auf technischer Seite ist eine interoperable Lösung notwendig, die sich so nahtlos wie möglich in die bestehende IT-Umgebung integrieren lässt. Zu den weiteren Aspekten zählen die Priorisierung der kontextuellen Abstimmung, da Agenten geschäftsspezifische Arbeitsabläufe und Datenformate verstehen müssen, sowie die Nutzung eines Federated-Model-Ansatzes statt einheitlicher LLM-Frameworks, um Effizienz, Erklärbarkeit und Kosten zu optimieren.
Wie binden Unternehmen ihre Mitarbeitenden am besten ein?
Zunächst einmal ist ein grundlegendes Change Management erforderlich. Die Mitarbeiterinnen und Mitarbeiter müssen verstehen, dass die KI ihnen nicht die Arbeit wegnimmt, sondern sie unterstützen soll. Sinnvoll ist auch ein Low-Code-Ansatz: Maßgeschneiderte KI-Applikationen und automatisierte Workflows steigern die Arbeitseffizienz in Abteilungen um ein Vielfaches – sogar Mini-Anwendungen, die lediglich einfache Aufgaben übernehmen. Jedoch können zentrale IT-Abteilungen, die mit Entwicklungsanfragen aus verschiedenen Abteilungen überhäuft werden, diese kaum bewältigen. Mit einer Low-Code-Application-Plattform (LCAP) können auch Mitarbeiter ohne Programmierkenntnisse einfache KI-Anwendungen selbst erstellen. Möglich machen das einfache Drag-and-Drop-Optionen und vorgebaute Module, die je nach Wunsch kombinierbar sind.
Fazit
KI-Agenten sind als kollaborative Partner zu verstehen, nicht als Ersatz für den Menschen. Künftig werden wir eine Multi-Agent Collaboration sehen. Hierbei übernehmen verschiedene KI-Agenten jeweils Spezialaufgaben und koordinieren sich untereinander, um selbst die komplexesten Herausforderungen effizient zu lösen.
Der Autor Sridhar Iyengar ist Managing Director von Zoho Europe.
ARX Robotics: Tech for Defense
Wie die ARX-Robotics-Gründer Maximilian Wied, Marc A. Wietfeld und Stefan Röbel Europas führendes DefTech-Start-up für unbemannte autonome Landsysteme gebaut haben.
Ein Start-up aus München denkt Europas Sicherheit neu – mit modularen Robotern, digitalen Aufklärungssystemen und einem iterativen Entwicklungsansatz, der hinsichtlich Flexibilität und Geschwindigkeit in der Branche neue Maßstäbe setzt. „Wir nutzen das transformative Potenzial von Robotik und KI, um die Leistungsfähigkeit der europäischen Landstreitkräfte zu stärken“, sagt Marc A. Wietfeld, Mitgründer und CEO von ARX Robotics in München. „Mit unserem Betriebssystem Mithra OS ermöglichen wir fernoperierbare, kettenbetriebene Landfahrzeuge sowie die Digitalisierung bestehender Flotten.“
Die Roboter entstehen auf einer einheitlichen technologischen Plattform mit flexiblem, modularem Aufbau. Sie lassen sich einfach anpassen und aufrüsten, was das Einsatzspektrum enorm erweitert. „Unsere Plattform ist wie das Schweizer Taschenmesser für Militäreinsätze“, so der Gründer. Neben der Hardware und dem KI-gestützten Betriebssystem liefert das Start-up auch Schnittstellen, um bestehende analoge Rüstungstechnologie und softwaregetriebene Systeme zu integrieren.
Drei Offiziere nehmen die Entwicklung selbst in die Hand
Gegründet wurde ARX Robotics von drei ehemaligen Bundeswehroffizieren. Marcs Weg begann mit einer Schlosserlehre, bevor er 2010 für den Wehrdienst eingezogen wurde. Damals konnte er kaum glauben, wie veraltet die Technologie der Truppe war. „Eine Playstation hatte bessere Software als viele Waffensysteme, und Drohnen aus dem Elektrofachmarkt waren leistungsfähiger als die im Kampfeinsatz.“ Während Marc in New York ein militärisches Programm absolvierte, lernte er Maximilian (Max) Wied kennen, der zu dieser Zeit an der Militärakademie West Point studierte. Beide hatten den Innovationsstau jahrelang erlebt und durch ihre Zeit in der Kampftruppe die Realität von Häuser-, Wald- und Grabenkämpfen hautnah kennengelernt.
In Robotik und Automatisierung sahen sie enormes ungenutztes Potenzial, um Soldat*innen zu schützen und Einsätze effizienter zu gestalten. „Am Anfang ging es uns gar nicht darum, Roboter zu bauen“, so Marc, „sondern darum, wie wir neue Technologie schneller in die Hand der Soldatinnen und Soldaten bekommen.“ Rund zwei Jahre arbeiteten sie am Konzept und an der Umsetzung. Die ersten Prototypen entstanden in Eigenregie, finanziert aus privaten Mitteln.
Stefan Röbel stieß dazu, als klar wurde, dass aus dem Projekt ein Unternehmen werden sollte. Neben dem militärischen Hintergrund bringt er Erfahrung im Aufbau und in der Skalierung von Start-ups mit. Zuvor war Stefan bereits bei Tech-Unternehmen an Bord, darunter Amazon, ASOS und Grover, wo er den Weg von der Series-A-Finanzierung bis zum Unicorn begleitete.
Als die Ersparnisse aufgebraucht waren, erhielt das Gründungsteam Unterstützung vom Innovation Hub der Bundeswehr und der Universität der Bundeswehr in München. Ende 2022 gründeten die drei schließlich ihr Unternehmen.
Die Brücke zur vernetzten Zukunft des Militärs
ARX Robotics füllt eine kritische Lücke in der militärischen Technologielandschaft, zwischen der analogen Vergangenheit und der softwaregesteuerten Zukunft. Viele bestehende Systeme wie etwa Panzer, Transportfahrzeuge und Helikopter operieren noch weitgehend analog und damit isoliert voneinander. Doch bewaffnete Konflikte werden heute vernetzt, KI-gestützt und mithilfe unbemannter Systeme entschieden. Die militärische Ausrüstung ist in vielen Ländern Europas noch nicht auf der Höhe der Zeit. „Mit unseren Lösungen bauen wir die Brücke zwischen den beiden Welten“, sagt Marc.
ARX Robotics überträgt die moderne technologische Architektur auf bestehende Militärfahrzeuge. Die analogen Bestandssysteme werden damit robotisiert, sodass sie mit modernen Drohnen und digitalen Einheiten zusammenarbeiten können – ein entscheidender Faktor für die Digitalisierung der Landstreitkräfte und Interoperabilität. „Früher war das Militär die Technologieschmiede der Gesellschaft, doch in den 1980er-Jahren hat die zivile Forschung die Streitkräfte überholt, auch bei den sicherheitsrelevanten Anwendungen“, so Marc.
Die etablierte Verteidigungsindustrie hat sich unterdessen auf immer komplexere und schwerfällige Großsysteme konzentriert. Bei einem größeren militärischen Entwicklungsprojekt ist in der Regel der gesamte militärische Apparat involviert, mit Planungs- und Beschaffungsämtern, langen Prozessen und seitenlangen Anforderungskatalogen. Erhält ein Ausrüster den Zuschlag, bekommt dieser Steuergelder, um einen Prototyp zu bauen „Die Entwicklung neuer Plattformen dauert dadurch oft ein Jahrzehnt, und die Produktion braucht weitere fünf Jahre“, sagt Marc. Schon bei der Indienststellung ist das Material zwangsläufig technologisch veraltet. ARX Robotics will den Prozess vom Kopf auf die Füße stellen. „Wir sind davon überzeugt, dass unsere Systeme den Soldatinnen und Soldaten im Einsatz sofort Mehrwert liefern“, so Marc. „Darum übertragen wir die neuen Technologien so schnell wie möglich ins Militär.“
Zurückhaltende Investor*innen und hohe Eintrittsbarrieren
Der Weg zur ersten externen Finanzierung war jedoch alles andere als einfach. „Kaum ein Risikokapitalgeber hat sich 2022 für DefenseTech und Hardware interessiert“, sagt Marc. Unter europäischen VCs dominierte das Dogma, dass nur Software skalierbar sei, idealerweise als SaaS-Modell. „Als Start-up mit einer physischen Technologie, noch dazu geführt von drei Soldaten ohne Gründungserfahrung, passten wir nicht ins Schema“, erinnert sich Marc.
Zudem war das Thema Verteidigung als Investment noch sehr negativ behaftet. VCs wollten nicht in Systeme investieren, die potenziell im Kampfeinsatz genutzt werden können. Sie sorgten sich um das öffentliche Bild und mögliche Bedenken institutioneller Geldgeber*innen. Mitte 2023 konnte ARX Robotics dann mit dem Risikokapitalgeber Project A Ventures als Lead Investor die Seed-Finanzierungsrunde schließen.
„Die anfänglich größte Hürde für uns war, nicht als Start-up, sondern als ernstzunehmender Anbieter wahrgenommen zu werden“, so Marc. Der Rüstungsmarkt ist stark konsolidiert und protektiv. Etablierte Player wie Rheinmetall, BAE Systems oder Krauss-Maffei Wegmann arbeiten seit Jahrzehnten fest mit ihren Kund*innen zusammen und bewegen sich in gewachsenen Strukturen. „Das Vertrauen der Streitkräfte zu gewinnen und die Beteiligung an einem großen Rüstungsprojekt zu erhalten, ist eine Schallmauer, die nur sehr wenige Start-ups durchbrechen“, sagt Marc.
Iterative Entwicklung und Tests im Feld
ARX Robotics punktet im Markt unter anderem mit dem radikal nutzer*innenzentrierten Entwicklungsansatz. Das Team setzt auf schnelle Iterationen mit voll funktionsfähigen Prototypen. Diese werden von Soldat*innen zeitnah getestet, häufig direkt in der Kampfzone. Das Feedback fließt sofort in die Weiterentwicklung ein, sodass in kürzester Zeit gebrauchsfertige Systeme entstehen. Der Fokus in der Entwicklung liegt stets auf der Software. „Das Betriebssystem ist der Kern unserer Lösungen, ob es am Ende einen Roboter oder einen Panzer steuert, ist zweitrangig“, sagt Marc.
Anders als der Wettbewerb setzt ARX Robotics auf offene Schnittstellen, modulare Komponenten und flexible Integration. Die großen Rüstungsfirmen mit ihren etablierten, geschützten Ökosystemen können dieses Modell nur schwer adaptieren. Stattdessen setzen sie auf Partnerschaften.
Mit Rheinmetall zum Beispiel arbeiten die Gründer derzeit an mehreren Projekten, und Daimler nutzt die ARX-Technologie, um die gesamte militärische Fahrzeugflotte zu digitalisieren. Um sicherzustellen, dass das Know-how und die Technologie in europäischer Hand bleiben, hat das Team frühzeitig den NATO Innovation Fund mit ins Boot geholt.

