M-sense: Mit Big Data gegen Migräne


44 likes

Die Medizin-App M-sense des Start-ups Newsenselab ermöglicht eine personalisierte Migräne- und Kopfschmerztherapie, ist lernfähig und liefert nebenbei neue Erkenntnisse für die Forschung.

Migräne und Spannungskopfschmerzen zählen zu den am weitesten verbreiteten Krankheiten der Welt: In Deutschland hat rund ein Drittel der Bevölkerung mindestens einmal pro Monat Spannungskopfschmerzen, drei Prozent von ihnen leiden sogar an chronischen Spannungskopfschmerzen.

Die Volkskrankheit Migräne betrifft 12 Prozent der Deutschen, doch nur wenige wissen, was genau passiert: Wenn ein Migräneanfall beginnt, kippt das Gehirn regelrecht um. Das konnte der Physiker und Migräneforscher Dr. rer. nat. Markus Dahlem im Jahr 2013 erstmals mit einem mathematischen Modell belegen: „Für Migräneanfälle sind anhaltende elektrische Entladungen von Nerven verantwortlich. Stress oder andere Auslöser legen einen Schalter im Gehirn um. Dieses Umkippen kann mit Hilfe von mathematischen Algorithmen analysiert, abgebildet und prognostiziert  werden”, so Dahlem.

Analyse und Therapie

Diese Technologie nutzt das von ihm mit gegründete Start-up Newsenselab für die App M-sense: Diese beobachtet Kopfschmerzen, analysiert individuelle Muster und bietet passende nicht-medikamentöse Therapien an. M-sense ist damit die erste digitale Anwendung gegen Migräne und Spannungskopfschmerzen, die sowohl Auslöser von Attacken mithilfe von mathematischen Modellen analysiert, als auch mobile Therapiemethoden bereitstellt. Außerdem ist M-sense die erste Migräne- und Kopfschmerz App, die in Deutschland als Medizinprodukt zertifiziert wurde und somit die CE-Richtlinien für digitale, medizinische Anwendungen einhält.

Als Medizin-App kann M-sense die Eingaben der User selbständig analysieren und, sowie bei der Diagnose und Therapie helfen. Kopfschmerzerkrankungen sind höchst individuell: Jeder hat andere Auslöser, jeder hat andere Schmerzen und nicht jeder spricht auf dieselben Therapiemaßnahmen an. Deshalb notieren Betroffene zunächst potenzielle Auslöser (wie Stress, Koffein, Ernährung, Aktivität u.v.m.) im integrierten Kopfschmerztagebuch. Das Wetter (Temperatur-, Luftfeuchtigkeits- und Luftdruckschwankungen) hält die App automatisch fest.

Zusätzlich werden die Schmerzattacken und deren Symptome festgehalten. Die App berechnet den Einfluss der unterschiedlichen Auslöser auf die Attacken des Nutzers und bietet passende nicht-medikamentöse Therapiemethoden an – ein sogenanntes multimodales Therapieangebot. Dazu gehören Entspannungsverfahren, Bewegungstraining und  gezielte Maßnahmen zur Reduktion von Kopfschmerzauslösern.

Das Therapiemodul M-sense Active bietet außerdem individuell auf die Betroffenen zugeschnittene Wissenslektionen an, und macht sie so zu Experten für ihre eigene Gesundheit. Während einer konkreten Attacke hilft die Akut-Hilfe mit vier verschiedenen nicht-medikamentösen Übungen, die Schmerzen zu lindern. Mit dem Medicheck behalten die Nutzer ihren Medikamentenkonsum im Blick.


Doch das Beste: Die App wird mit zunehmender Lebensdauer immer mehr können. Der selbstlernende Algorithmus geht auf jeden Nutzer individuell ein und verarbeitet die Eingaben zu immer besseren Tipps. Je mehr Eingaben gemacht werden, desto weitreichender sind die Erkenntnisse. Für Mitgründer und Datenwissenschaftler Simon Scholler ist das der spannende Beginn einer neuen Ära: „Die Eingaben helfen uns, die Forschung über Migräne und deren optimale Behandlungswege substantiell voranzubringen und darauf aufbauend eine völlig neue, ganzheitliche Migräne- und Kopfschmerz-Therapie zu entwickeln.“ Das Thema Datensicherheit ist dabei natürlich ebenfalls höchst relevant für das Start-up aus dem Gesundheitssektor. Das M-sense-Team setzt nach eigenen Angaben in allen Prozessen höchste Priorität auf den verantwortungsvollen Umgang mit Nutzerdaten.

Die Meilensteine vom Start bis hin zu 240.000 Usern

Erfunden und entwickelt hat die App ein vierköpfiges Gründerteam, das neben Markus Dahlem aus dem Experten für Mensch-Maschine Interaktion, Stefan Greiner, dem Datenwissenschaftler und Softwareentwickler Simon Scholler sowie dem Systemarchitekten Martin Späth besteht.

Die Idee zur App entstand bereits 2014. Stefan Greiner hatte sich im Studium mit der Schnittstelle von Mensch und Maschine beschäftigt und war fasziniert von den Möglichkeiten neuer Technologien in Bezug auf das Thema Gesundheit. In Gesprächen mit seiner Mitbewohnerin, die seit vielen Jahren unter Migräne leidet, kam er auf den Gedanken, eine passende Softwarelösung zu entwickeln. Kurze Zeit später entstand gemeinsam mit seinem Freund Markus Dahlem, der an der Humboldt- Universität zum Thema Migräne forschte, die Idee für die Migräne-App.

Im November 2015 stand der Prototyp, der in einer zweiwöchigen Studie mit 60 Patienten getestet wurde. Im Januar 2016 wurde die Newsenselab GmbH in Berlin gegründet. Im selben Jahr gewann das Start-up den Eugen Münch-Preis für Netzwerkmedizin. 2017 konnte M-sense mit der Barmer GEK und der Deutschen Telekom AG zwei starke Partner für das betriebliche Gesundheitsmanagement gewinnen.

2018 kam das bereits erwähnte Therapiemodul M-sense Active auf den Markt, welches M-sense in die Sparte Digital Therapeutics hebt. Ende 2019 erhielt das Unternehmen eine Finanzierung (2. Finanzierungsrunde) in siebenstelliger Höhe. Neben den bestehenden Investoren High-Tech Gründerfonds und Think.Health engagieren sich die Noaber Foundation und die IBB Beteiligungsgesellschaft. Das frische Kapital will Newsenselab nutzen, um seine App gemäß neuer Medical Device Regulation-Richtlinien weiterzuentwickeln.

Heute ist die App in Deutschland, Österreich und der Schweiz erhältlich und wird von rund 240.000 Menschen genutzt.

Diese Artikel könnten Sie auch interessieren:

KI erfolgreich industrialisieren

Warum 95 Prozent der KI-Pilotprojekte scheitern – und wie du deine Chancen erhöhst, zu den erfolgreichen fünf Prozent zu gehören.

Künstliche Intelligenz ist in der Industrie angekommen, doch zwischen Anspruch und Wirklichkeit klafft oft eine Lücke. Eine aktuelle Untersuchung des MIT - Massachusetts Institute of Technology („The GenAI Divide“) zeigt: Nur fünf Prozent der KI-Pilotprojekte schaffen tatsächlich den Sprung in die produktive Anwendung. Diese „Pilot-to-Production“-Falle ist eines der größten Risiken für Industrieunternehmen heute.

Der feine Unterschied

GenAI ist keine Produktions-KI Oft werden Äpfel mit Birnen verglichen. Generative KI (GenAI) ist fantastisch für kreative Aufgaben und Chatbots, scheitert aber oft an der Verlässlichkeit, die in der Produktion nötig ist. Industrietaugliche „Produktions-KI“ hingegen muss anders funktionieren: Sie lernt aus Maschinendaten, erkennt Zusammenhänge in Echtzeit und muss absolut robust laufen.

Besonders in der Kunststoffverarbeitung, etwa bei schwankenden Recyclingmaterialien oder Verschleiß, spielt Produktions-KI ihre Stärken aus: Sie gibt den Mitarbeitenden an der Maschine konkrete Handlungsempfehlungen, statt nur Daten zu sammeln.

Faktor Mensch und Organisation

Das MIT fand heraus: Technik ist selten das Problem. Es sind die organisatorischen Hürden. Unternehmen, die sich externe Expertise und spezialisierte Software-Partner ins Haus holen, verdoppeln ihre Chance, KI-Projekte erfolgreich in den Regelbetrieb zu überführen. Es geht darum, Fachwissen mit Technologie zu verheiraten.

Wie gelingt der Transfer in den Shopfloor?

  • Fokus statt Gießkanne: Identifiziere konkrete Probleme (z.B. Anfahrausschuss) und priorisiere diese nach wirtschaftlichem Mehrwert.
  • Integration planen: KI darf keine Insel sein. Die Anbindung an IT- und OT-Systeme muss von Anfang an stehen.
  • Externe Power nutzen: Setze auf Partner, die deine Industrie verstehen, um die Kinderkrankheiten von Pilotprojekten zu vermeiden.
  • Skalierung: Starte fokussiert, miss den Erfolg anhand harter Kennzahlen (OEE, Ausschussrate) und rolle sodann funktionierende Lösungen breit aus.

Fazit

Wer KI nicht als IT-Projekt, sondern als Werkzeug für den Shopfloor begreift und strategisch implementiert, sichert sich echte Wettbewerbsvorteile.

Die Autorin Dr. Louisa Desel ist Mitgründerin und CEO der OSPHIM GmbH. Das 2024 gegründete Unternehmen entwickelt spezialisierte KI-Lösungen für die Kunststoffindustrie.

to teach: Vom KI-Hype zur Schulinfrastruktur

Wie das 2022 gegründete EdTech to teach die Lücke zwischen Chatbot und Klassenzimmer schließt.

Vor drei Jahren begann mit dem öffentlichen Zugang zu generativer künstlicher Intelligenz ein weltweiter Hype, der auch vor den Schultoren nicht haltmachte. Doch im Bildungsmarkt entscheidet sich derzeit, ob die Technologie tatsächlich Produktivität schafft oder in einer digitalen Sackgasse endet. Das Hamburger EdTech to teach liefert hierzu eine Blaupause: Was 2022 als Experiment begann, hat sich innerhalb von drei Jahren zu einer Arbeitsplattform für hunderttausende Lehrkräfte entwickelt.

Das Problem: US-Tools verstehen deutsche Schulen nicht

Als generative KI erstmals verfügbar wurde, wirkte ihr Einsatz im Bildungsbereich naheliegend. Doch der Blick auf die internationale Konkurrenz zeigt das Dilemma: Während US-Platzhirsche wie MagicSchool AI oder Diffit den Markt mit hunderten Mikro-Tools fluten und technisch beeindrucken, fehlt ihnen der kulturelle Fit. „Einfach nur Texte aus ChatGPT zu kopieren, löst kein einziges Problem von Lehrkräften“, erklärt Felix Weiß, Co-Founder und CEO von to teach.

Die Diskrepanz zwischen dem Versprechen der KI und dem tatsächlichen Schulalltag war groß. US-Lösungen scheitern oft an spezifischen deutschen Lehrplänen oder liefern reine Multiple-Choice-Formate, die hierzulande kaum Anwendung finden. Lehrkräfte benötigten keine unstrukturierten Textwüsten, sondern didaktisch saubere, lehrplankonforme und sofort einsetzbare Materialien. Genau hier setzte das 2022 von Felix Weiß und Marius Lindenmeier gegründete Unternehmen an.

Der Pivot: Datenschutz als Burggraben

Der entscheidende Wendepunkt kam 2023. Das Start-up vollzog einen Strategiewechsel (Pivot) weg von einer SaaS-Lösung für Verlage hin zu einer direkten Plattform für Lehrkräfte. Anstatt Nutzer*innen mit freien Eingabefeldern (Prompts) allein zu lassen, entwickelte das Team feste Arbeitsblattvorlagen. Dies wurde zum entscheidenden Wettbewerbsvorteil gegenüber internationalen Anbietern: Während diese oft an der strikten DSGVO scheitern, bietet to teach durch Serverstandorte in der EU und Rechtssicherheit eine Lösung, die Schulträger akzeptieren.

Dabei mussten technische Kinderkrankheiten überwunden werden: Frühe KI-Modelle „halluzinierten“ Fakten. To teach reagierte mit der systematischen Integration von Quellen und profitierte zugleich von der rasanten Evolution der Sprachmodelle.

Skalierung im Ökosystem gegen nationale Konkurrenz

Der Markt nahm die Lösung schnell an: Im Januar 2023 meldete sich der erste Nutzer an, bis Ende des Jahres waren es laut Unternehmen bereits knapp 16.000 Lehrkräfte. Das Jahr 2024 markierte dann den Übergang vom Start-up zur Plattform: Durch die Übernahme von fobizz (101skills GmbH) wurde to teach Teil eines größeren Bildungsökosystems. Die Gründer blieben als Geschäftsführer an Bord.

Dieser Schritt war strategisch überlebenswichtig in einem sich konsolidierenden Markt. Einerseits gegenüber agilen Herausforderern, da Konkurrenten wie schulKI, Teachino, KIULY oder Kuraplan zum Teil aggressiv um Landeslizenzen kämpfen bzw. auf dem Markt für KI-gestützte Unterrichtsplanung und Materialerstellung durchgestartet sind.

Andererseits war der Schritte in Hinblick auf etablierte Verlage notwendig. Denn Häuser wie Cornelsen ziehen inzwischen mit eigenen KI-Assistenten nach, sperren ihre Inhalte jedoch oft in geschlossene Systeme, d.h. binden sie oft an die eigenen Verlagswerke.

Durch die erfolgreiche Integration in fobizz ist to teach kein isoliertes Insel-Tool mehr, sondern profitiert von bestehenden Landesrahmenverträgen und einem riesigen Vertriebsnetz. Die Nutzer*innenzahlen explodierten förmlich auf über 140.000 Lehrkräfte bis Ende 2024, so die Angaben von to teach.

Status Quo 2025: KI als neue Infrastruktur

Heute, im dritten Jahr nach der Gründung, hat sich der Fokus erneut verschoben. To teach versteht sich inzwischen als Arbeitsinfrastruktur. Die Zahlen unterstreichen diesen Anspruch: Nach Angaben von to teach nutzen über 300.000 Lehrkräfte die Plattform, und mehr als 4.000 Schulen sind angebunden. Das bedeutet: Millionen von Inhalten wurden so bereits KI-gestützt vorbereitet.

Das Unternehmen treibt nun den systematischen Schulvertrieb voran. Damit beweisen EdTechs wie to teach, dass sich Qualität und Personalisierung im sonst oft als innovationsresistent geltenden Bildungsmarkt skalieren lassen.

Für CEO Felix Weiß ist die Diskussion über das „Ob“ längst beendet: „Die Frage ist nicht mehr, ob KI im Klassenzimmer ankommt, sondern, wie und auf welche Weise sie dort wirklich hilft.“

Der industrielle Wasserkocher: Wie das Start-up SYPOX die Chemie grün färbt

Die chemische Industrie hat ein massives Emissionsproblem, denn ihre Prozesse verschlingen Unmengen an Erdgas. Das 2021 geründete Start-up SYPOX, ein Spin-off der TUM will das ändern – mit einer Technologie, die so simpel wie genial klingt: Ein riesiger, elektrischer Tauchsieder soll die fossile Verbrennung ersetzen. Nun meldet das junge Unternehmen den ersten Durchbruch auf dem Weltmarkt.

Wenn Dr. Martin Baumgärtl erklären will, wie er die chemische Industrie revolutionieren möchte, wählt er ein Bild, das jeder versteht: „Im Grunde ist es wie ein Wasserkocher in der heimischen Küche – nur im industriellen Maßstab.“ Baumgärtl ist CTO von SYPOX, und was er beschreibt, könnte einer der wichtigsten Hebel für die Dekarbonisierung einer der schmutzigsten Branchen der Welt sein.

Die chemische Industrie ist süchtig nach Energie. Um Basischemikalien wie Methanol oder Ammoniak herzustellen, wird sogenanntes Synthesegas benötigt – eine Mischung aus Wasserstoff und Kohlenmonoxid. Die Herstellung geschieht in gewaltigen Hochtemperaturprozessen. Bisher wird die dafür nötige Hitze fast ausschließlich durch das Verbrennen von Erdgas oder Öl erzeugt. Die Folge: Gigantische CO-Emissionen.

Strom statt Flamme

Genau hier setzt SYPOX an. Das 2021 in Freising gegründete Unternehmen ersetzt die offenen Gasflammen durch elektrischen Strom. In ihren Reaktoren, die von außen wie gewöhnliche Druckbehälter aussehen, stecken hochkomplexe elektrische Heizelemente, die direkt hinter den Katalysatoren platziert sind.

Der Effekt ist enorm: „In konventionellen Verfahren entfallen rund 40 Prozent der Emissionen allein auf die Wärmeerzeugung aus fossilen Energieträgern“, rechnet Baumgärtl vor. Durch die Elektrifizierung des Reaktors fallen diese Emissionen weg – vorausgesetzt, der Strom kommt aus erneuerbaren Quellen. Zudem lässt sich der Prozess laut den Gründern präziser und sicherer steuern.

Der Anti-Trend im Silicon Valley

Doch nicht nur technologisch, auch ökonomisch schwimmt SYPOX gegen den Strom. In der Tech-Szene ist es üblich, dass Start-ups jahrelang Verluste schreiben und sich von einer Venture-Capital-Runde zur nächsten hangeln, getrieben von Investoren, die schnelles Wachstum fordern.

Die bayerischen Gründer wählten einen konservativeren, fast schon mittelständischen Ansatz. „Es entsprach nicht unserem Stil, Geld einzuwerben – wir haben vielmehr von Anfang an versucht, auf Basis unserer Technologie ein tragfähiges Geschäft aufzubauen“, erklärt CEO Dr. Gianluca Pauletto. Man wolle bodenständig bleiben und sich aus Umsätzen finanzieren, statt sich in Abhängigkeiten zu begeben.

Vom Container im Altmühltal zum Großkunden

Die Wurzeln des Unternehmens liegen an der Technischen Universität München (TUM). Die Idee brachte Pauletto aus seiner Zeit in Montréal mit, an der TUM fand er in Prof. Johannes Lercher und dem damaligen Doktoranden Martin Baumgärtl die wissenschaftlichen Mitstreiter.

Der Weg zum marktreifen Produkt war – typisch für „Deep Tech“ – langwierig. „Vier Jahre Forschung und zahlreiche Versuchsreihen waren notwendig“, erinnert sich Lercher. Während andere Software im Co-Working-Space programmierten, baute das SYPOX-Team eine Pilotanlage in einem einfachen Stahlcontainer auf dem Gelände einer Biogasanlage im ländlichen Dollnstein (Altmühltal).

Diese Beharrlichkeit zahlt sich nun aus. Das Start-up hat, unterstützt durch den Spezialchemie-Konzern Clariant, seinen ersten Großkunden an Land gezogen. Ab 2026 soll eine erste industrielle Anlage in Betrieb gehen, die täglich 150 Tonnen Synthesegas produziert. „Das ist nicht nur ein Meilenstein für uns, sondern auch ein starkes Signal an die gesamte chemische Industrie“, so Baumgärtl.

Für das Team, das inzwischen in Langenbach bei Freising sitzt und weiterhin Labore auf dem Forschungscampus Garching betreibt, ist das der Beweis: Die Elektrifizierung der Chemie ist keine Zukunftsmusik mehr, sie beginnt jetzt.

Report: Inside Germany’s EnergyTech Market

Aktuelle Ein- und Ausblicke für Gründer*innen und Start-ups im EnergyTech-Markt.

EnergyTech gehört in Deutschland zu den spannendsten, aber auch herausforderndsten Märkten für Gründer*innen. Die Kombination aus technologischer Innovation, wirtschaftlichem Potenzial und der Dringlichkeit, das Energiesystem klimaneutral zu gestalten, schafft enorme Chancen. Gleichzeitig ist die Eintrittsbarriere hoch, denn der deutsche Energiemarkt ist einer der komplexesten und am stärksten regulierten weltweit.

Laut der Internationalen Energieagentur werden im Jahr 2025 weltweit rund 2,1 Billionen Euro in saubere Energien investiert. Damit übertreffen die Investitionen in erneuerbare Energien erstmals die in fossile Brennstoffe deutlich. Deutschland spielt dabei eine zentrale Rolle, denn kein anderes Land in Europa verfügt über eine vergleichbare Durchdringung mit erneuerbaren Energien. Diese Vorreiterrolle macht den Markt attraktiv, aber auch kompliziert.

Gründer*innen, die in diesem Umfeld aktiv werden, müssen verstehen, dass Erfolg hier weniger von reiner Technologie abhängt, sondern von der Fähigkeit, sich in einem vielschichtigen System aus Regularien, Netzstrukturen und politischen Rahmenbedingungen zu bewegen. Es reicht nicht, eine gute Idee zu haben. Entscheidend ist, wie diese Idee in ein System passt, das auf Stabilität, Versorgungssicherheit und langfristige Planung ausgelegt ist.

Deutschlands Energiemarkt zwischen Stabilität und Veränderung

Der deutsche Energiemarkt gilt als hoch reguliert, gleichzeitig aber auch als offen für neue Akteur*innen. Wer hier tätig werden will, findet klar definierte Wege, um als Energieversorger*in zugelassen zu werden. Doch der Weg dorthin ist gesäumt von Genehmigungen, Netzanschlussverfahren und Förderbedingungen.

Die Stabilität des Systems steht über allem. Jede Veränderung im Netz kann weitreichende Folgen haben, weshalb die Regulierung streng überwacht wird. Netzbetreiber*innen müssen ständig das Gleichgewicht zwischen Erzeugung und Verbrauch sichern, um Versorgungsstörungen zu vermeiden. Das führt dazu, dass Innovationen nur schrittweise eingeführt werden können.

Hinzu kommt die dezentrale Struktur des Energiesystems. Deutschland hat den Umbau seiner Energieversorgung regional organisiert, was zu einer Vielzahl von kleinen Akteur*innen führt. Ob Solaranlagen auf Privathäusern, Windparks in ländlichen Regionen oder Batteriespeicher in Städten, alle müssen an das öffentliche Netz angeschlossen werden. Dieses Netz ist die Lebensader des Systems, aber gleichzeitig ein Flaschenhals. Jede neue Installation benötigt einen Netzanschluss, und die Wartezeit kann sich über mehrere Jahre erstrecken.

Diese Verzögerungen sind eine der größten Herausforderungen für Start-ups. Klassische Wachstumsmodelle, die auf schnelle Skalierung ausgelegt sind, stoßen hier an ihre Grenzen. Gründer*innen müssen lernen, mit langen Planungszeiträumen zu arbeiten und ihre Finanzierungsstrategie darauf abzustimmen. Softwarelösungen können helfen, Prozesse zu vereinheitlichen und Transparenz zu schaffen. Doch auch hier gilt: Der deutsche Markt lässt sich nicht einfach durch Technologie beschleunigen. Erfolg entsteht durch Anpassungsfähigkeit, Vertrauen und Systemverständnis.

Innovation im System statt Disruption von außen

Viele Start-ups treten mit dem Ziel an, Märkte zu verändern oder bestehende Strukturen zu durchbrechen. In der Energiebranche stößt dieser Ansatz jedoch schnell an seine Grenzen. Das Energiesystem ist keine klassische Konsumlandschaft, sondern Teil der kritischen Infrastruktur. Es versorgt Millionen Menschen und Unternehmen mit Strom, Wärme und Mobilität. Jede Veränderung muss sorgfältig integriert werden, um Stabilität zu gewährleisten.

Statt auf radikale Umbrüche zu setzen, braucht es eine Haltung der systemischen Innovation. Erfolgreiche EnergyTech-Unternehmen arbeiten mit dem System, nicht gegen es. Sie schaffen Lösungen, die bestehende Prozesse verbessern und den Übergang zur Klimaneutralität erleichtern. Unternehmen wie Gridx, EV.Energy, Enspired, Reev oder Thermondo zeigen, wie das funktionieren kann. Sie haben ihre Geschäftsmodelle so aufgebaut, dass sie technologische Exzellenz mit regulatorischer Konformität und gesellschaftlicher Akzeptanz verbinden.Für Gründer*innen bedeutet das, sich früh mit Netzbetreiber*innen, Behörden und Installationsbetrieben zu vernetzen. Der Aufbau von Vertrauen ist im Energiesektor ein strategischer Vorteil. Wer die Abläufe in Kommunen, Stadtwerken und öffentlichen Einrichtungen versteht, kann die langen Vertriebszyklen besser steuern und Pilotprojekte realistisch planen.

Warum gute Ideen im Energiemarkt oft scheitern

Die Gründe für das Scheitern von EnergyTech-Start-ups liegen selten in der Technologie. Viel öfter sind es strukturelle oder strategische Fehler. Der Verkauf an Energieversorger*innen oder kommunale Betriebe dauert oft mehrere Jahre. Wer in dieser Zeit nicht über ausreichend Kapital und Geduld verfügt, läuft Gefahr, aufzugeben, bevor der Markteintritt gelingt.

Ein weiterer kritischer Punkt ist die Zusammensetzung des Teams. In vielen Fällen sind Teams stark technisch geprägt, während Marktverständnis, politische Kompetenz und regulatorisches Wissen fehlen.

Auch die Wahl der Investor*innen spielt eine entscheidende Rolle. Kapitalgeber*innen, die nur finanzielle Rendite erwarten, sind im Energiemarkt selten die richtige Wahl. Wichtiger sind Investor*innen, die strategischen Netzwerke öffnen, Kontakte zu Stadtwerken oder Netzbetreiber*innen vermitteln oder bei der Skalierung unterstützen. Eine gut strukturierte Cap Table mit klaren Verantwortlichkeiten schafft dabei Transparenz und Vertrauen.

Darüber hinaus müssen Gründer*innen ihre Wirkung belegen können. Im Energiemarkt zählt nicht nur der technologische Fortschritt, sondern auch der nachweisbare Beitrag zur Dekarbonisierung. Wer den Carbon Return on Investment klar beziffern kann, wer Pilotprojekte erfolgreich umsetzt und belastbare Daten liefert, überzeugt Kund*innen, Partner*innen und Investor*innen gleichermaßen. Greenwashing hingegen ist ein reales Risiko. Der Markt erkennt schnell, wer nur mit Nachhaltigkeit wirbt, ohne messbare Ergebnisse zu liefern.

Strategien und praxisnahe Tipps für Gründer*innen

Es gibt mehrere zentrale Hebel, mit denen Gründer*innen die typischen Hürden im deutschen Energiemarkt überwinden können. Einer der wichtigsten ist der Aufbau früher Partnerschaften. Kooperationen mit Netzbetreiber*innen, Stadtwerken oder kommunalen Einrichtungen schaffen Glaubwürdigkeit und erleichtern den Zugang zu Genehmigungsprozessen. Wer diese Partnerschaften schon in der Entwicklungsphase aufbaut, versteht die Marktmechanismen besser und kann Projekte effizienter realisieren.

Ebenso entscheidend ist die Zusammensetzung des Teams. Interdisziplinarität ist im Energiesektor kein Luxus, sondern Notwendigkeit. Erfolgreiche Teams vereinen technische, wirtschaftliche und politische Kompetenzen. Sie wissen, wie regulatorische Entscheidungen getroffen werden, welche Förderprogramme relevant sind und wie man Innovationsprojekte in bestehende Strukturen integriert. Ein divers aufgestelltes Team kann Risiken besser einschätzen und Investor*innen überzeugender ansprechen.

Auch die Gestaltung der Cap Table verdient besondere Aufmerksamkeit. Kapitalgeber*innen sollten nicht nur Geld mitbringen, sondern auch strategischen Mehrwert bieten. Kontakte zu Entscheidungsträger*innen, Branchenkenntnis und operative Unterstützung bei Pilotprojekten sind entscheidende Erfolgsfaktoren. Eine transparente Struktur, in der jede Partei klar definierte Rollen hat, fördert Vertrauen und beschleunigt Entscheidungen.

Ein weiterer zentraler Punkt ist die Nachweisbarkeit von Wirkung. Gründer*innen müssen ihren ökologischen und ökonomischen Mehrwert belegen können. Messbare Kennzahlen wie Emissionseinsparungen, Energieeffizienz oder Carbon ROI sind ausschlaggebend, um Glaubwürdigkeit zu schaffen. Pilotprojekte mit belastbaren Ergebnissen überzeugen nicht nur Investor*innen, sondern auch Kund*innen und öffentliche Partner*innen.

Nicht zuletzt braucht es realistische Planung. Genehmigungsprozesse und Netzanschlüsse dauern in Deutschland oft Jahre. Wer dies in der Finanzplanung berücksichtigt und seine Strategie auf gestaffelte Rollouts oder modulare Produktarchitekturen ausrichtet, vermeidet teure Fehlentscheidungen. Skalierung im Energiemarkt bedeutet nicht Geschwindigkeit um jeden Preis, sondern nachhaltiges Wachstum mit stabilem Fundament.

Blick nach vorn: Warum sich Ausdauer lohnt

Trotz aller Hürden bleibt der deutsche Energiemarkt für Gründer*innen besonders attraktiv. Die globalen Trends sprechen eine klare Sprache: Laut der Internationalen Energieagentur (IEA) wird sich die installierte Leistung aus erneuerbaren Energien weltweit bis 2030 voraussichtlich mehr als verdoppeln, angetrieben vor allem durch den rasanten Aufstieg der Solarenergie. Wind- und Speichertechnologien werden ebenfalls stark wachsen, während Start-ups gleichzeitig mit Herausforderungen in Lieferketten, Netzintegration, Finanzierung und politischen Veränderungen umgehen müssen.

Eine aktuelle Zwischenbilanz der Internationalen Agentur für erneuerbare Energien (Irena) zeigt, dass die weltweite neu installierte Leistung 2024 bei rund 582 Gigawatt lag – ein Rekordwert. Gleichzeitig reicht dies nicht aus, um die auf der Uno-Klimakonferenz von Dubai 2023 vereinbarten Ziele zu erreichen, die Kapazität bis 2030 auf 11,2 Terawatt zu verdreifachen. Dazu wären ab sofort jährlich zusätzlich 1.122 Gigawatt nötig. Auch bei der Energieeffizienz hinken die Fortschritte hinterher: Die jährliche Wachstumsrate liegt aktuell bei rund einem Prozent, während vier Prozent notwendig wären.

Für Gründer*innen bedeutet dies, dass die Nachfrage nach innovativen, zuverlässigen und systemgerechten Lösungen weiter steigen wird. Wer sich frühzeitig auf Pilotprojekte einlässt, Netzanschlüsse koordiniert und regulatorische Prozesse kennt, kann einen entscheidenden Vorsprung erzielen. Deutschland bietet durch klare Klimaziele, Förderprogramme und politische Unterstützung zudem ein Umfeld, in dem Innovationen nachhaltige Wirkung entfalten können.

Ausdauer zahlt sich aus, weil die Transformation der Energieversorgung Zeit braucht. Wer heute in Partnerschaften, systemgerechte Lösungen und messbare Wirkung investiert, legt das Fundament für langfristigen Markterfolg. Die Verbindung von Innovation, Skalierbarkeit und nachweisbarem ökologischen Mehrwert wird zum entscheidenden Wettbewerbsvorteil und ermöglicht Gründer*innen, die Energiewende aktiv mitzugestalten.

Der Autor Jan Lozek ist Geschäftsführer von Future Energy Ventures. Als Investor und Wegbereiter der Energiewende unterstützt er Gründer*innen dabei, Technologien für ein klimaneutrales Energiesystem zu entwickeln und fördert innovative Unternehmen.

Infinite Roots: Hamburger BioTech bringt pilzbasierte Gerichte ins Kühlregal

Das 2018 von Dr. Mazen Rizk, Anne-Cathrine Hutz und Dr. Thibault Godard als Mushlabs gegründete Hamburger Start-up Infinite Roots (ehemals Mushlabs) bringt die Vorteile der Pilzwelt erstmals als eigenständige Hauptzutat ins Kühlregal.

Infinite Roots ist ein forschungsgetriebenes BioTech-Unternehmen aus Hamburg. Seit 2018 entwickelt das Unternehmen (zunächst unter dem Namen Mushlab) neuartige Lebensmittel auf Basis von Pilzen – inspiriert vom Myzel, dem unterirdischen Wurzelgeflecht essbarer Pilze. Durch Fermentation schafft Infinite Roots Produkte, die über bloße Fleischalternativen hinausgehen. Das Ziel ist es, eine neue Kategorie zu etablieren: Lebensmittel, die echtes Umami und wertvolle Nährstoffe liefern, mit kurzen Zutatenlisten auskommen und die Umwelt entlasten.

Mit mehr als 60 Expert*innen aus Biotechnologie, Data, Lebensmittelwissenschaft und Kulinarik will das Team neue Standards für Geschmack, Qualität und Nachhaltigkeit setzen und zeigen, dass die Ernährung der Zukunft nicht Verzicht bedeutet, sondern Vielfalt und Genuss.

Die MushRoots-Produkte des Unternehmens sind keine Fleischimitate, sondern bieten ein eigenständiges, pilzbasiertes Geschmackserlebnis. Sie zeichnen sich durch einen saftigen, herzhaften Biss und ausgeprägte Umami-Noten aus. Die Hamburger setzen dabei auf Speisepilze, kombiniert mit vertrauten, hochwertigen Zutaten. Entsprechend bauen die Produkte auf einer natürlichen Zutatenliste auf und verzichten auf künstliche Aromen, Geschmacksverstärker und Farbstoffe. So entsteht ein Geschmackserlebnis, das an herzhafte Hausmannskost erinnert. Die Produkte lassen sich vielseitig im Alltag, etwa als Hack, Bällchen oder Patties.

„Im Kühlregal sehen Konsument*innen seit Jahren dieselbe Logik: Tierprotein hier, Pflanzenprotein dort“, sagt Philip Tigges, CCO/CFO von Infinite Roots. „Mit MushRoots bringen wir nicht nur eine dritte Option ins Regal, sondern kehren auch zu Lebensmitteln mit einer natürlichen Hauptzutat zurück. Pilze bieten einen herzhaften Geschmack, sind vielseitig, in allen gewohnten Rezepten einsetzbar und können kinderleicht zubereitet werden.“

MushRoots setzt dabei auf eine Proteinquelle mit vergleichsweise geringem ökologischen Fußabdruck. Pilze lassen sich lokal und ressourcenschonend kultivieren. „Wir wollten nie ein weiteres Fleischimitat herstellen, sondern eine eigene Kategorie umami-reicher Pilzprodukte schaffen, die durch Charakter und Geschmack überzeugen“, ergänzt Tigges. „Unser Ziel ist es jetzt, Menschen für Pilzprodukte zu gewinnen, ohne dass sie Fleisch vermissen.“

Jetzt meldet Infinite Roots, dass vier MushRoots-Produkte ab sofort bei REWE Nord in Norddeutschland und Billa Plus in Österreich erhältlich sind und damit eine neue Kategorie an Pilz-Produkten in die Kühlregale Einzug gehalten haben.

Report Gendermedizin

Auch mithilfe von FemTech- und HealthTech-Start-ups steigt in unserer Gesellschaft langsam das Bewusstsein dafür, dass der weibliche Körper medizinisch anders funktioniert als der männliche, und Frauengesundheit mehr ist als "nur" Zyklus, Schwangerschaft und Wechseljahre.

Alles, was speziell für die Frau ist und beim Mann nicht existiert“, erklärt Raoul Scherwitzl, Doktor der Philosophie, Festkörper- und Materialphysik sowie Co-Founder des FemTech-Start-ups Natural Cycles, was mit Frauenmedizin gemeint ist. Diese Aussage wird häufig innerhalb gesundheitspolitischer Debatten getätigt, wenn es darum geht, wie Frauenkrankheiten im Gegensatz zum männerzentrierten Usus in der Medizin behandelt werden: oftmals zweitrangig oder als Anhängsel an männerfokussiertem Wissen.

Der französische Soziologe Pierre Bourdieu beschrieb in seinem Werk „Die männliche Herrschaft“ bereits 1998, wie „kulturelle und wissenschaftliche Systeme männliche Normen als allgemeingültig setzen und alles, was weiblich ist, als Abweichung oder Sonderfall markieren“. Sieht man sich die Geschichte der westlichen Medizin an, drängt sich der Eindruck auf, dass Bourdieus Beschreibung für den Gesundheitsbereich ins Schwarze trifft.

Blickt man darüber hinaus in die (Fach-)Literatur der letzten Jahrzehnte, so erkennt man: Bis in die späten 80er-Jahre wurden weibliche Bedürfnisse, psychosoziale Belastungen und Körperbilder in der medizinischen Forschung und Praxis weitgehend ignoriert. Erst eine aufkeimende Frauengesundheitsbewegung durchbrach diese Mauer und etablierte den Begriff Frauengesundheit bzw. Gendermedizin. Seitdem schärft sich der Blick auf die Frau, und die Gesellschaft hat begonnen, in Publikationen und Debatten genauer hinzusehen – mit einer bewusstseinsschaffenden Agenda, warum dieses Thema wichtig ist.

Frauengesundheit ist mehr als Reproduktion

„Die Definition von Frauengesundheit wird oft sehr eng gefasst“, erklärt Scherwitzl das Problem; „nämlich als alles, was mit reproduktiver Gesundheit zu tun hat: Menstruations­zyklus, Pubertät, Schwangerschaft, Geburt, Wochenbett, Unfruchtbarkeit und Wechseljahre. Die klassische Definition spannt sich dabei meist über das reproduktive Zeitfenster einer Frau zwischen etwa 15 und 50 Jahren.“ Dabei werde oft übersehen, dass Frauengesundheit weit mehr umfasse: „Es geht auch darum, den gesamten Gesundheitsbereich aus der Perspektive von Frauen zu betrachten – und das wird bislang kaum getan“, so Scherwitzl. Ein großes Problem liegt laut dem Gründer darin, dass die meisten Medikamente auf Basis klinischer Studien mit Männern entwickelt wurden; mit der Annahme, dass sie bei Frauen gleich gut wirken – obwohl Frauen biologisch anders reagieren. Als Beispiel nennt Scherwitzl die Insulinresistenz, die sich bei Frauen im Lauf des Zyklus verändert. „Dies wird aber kaum berücksichtigt“, ergänzt er.

Im Gesundheitswesen fehle es häufig an passenden Tools und Produkten, um Frauen gezielt zu unterstützen. Ein Beispiel hier sei die Hormontherapie in den Wechseljahren, bei der oftmals lediglich hoch dosierte Varianten jahrzehntealter Medikamente zum Einsatz kämen. „Das Resultat ist, dass sich Frauen häufig selbst um ihre Beschwerden kümmern müssen. Viele suchen zunehmend online nach Hilfe. Große Pharmakonzerne haben diesen Mangel erkannt und investieren inzwischen in Forschung zu Themen wie Endometriose oder Wechseljahre“, sagt Scherwitzl. Sein Start-up Natural Cycles setzt auf ein datenbasiertes Modell mit Körperwerten und Algorithmen, kombiniert mit Aufklärung und individualisierter Medizin; mit dem Ziel, einen Beitrag dazu zu leisten, dass Frauen künftig Zugang zu besser abgestimmten Medikamenten und mehr effektiven Lösungen erhalten.

Es muss endlich in die Köpfe kommen

„Es muss endlich in die Köpfe kommen, dass der weibliche Körper anders funktioniert als der männliche“, mahnt Simone Mérey in diesem Sinn. Sie ist Founderin des 2022 gegründeten Pflege-Start-ups HeldYn. Mérey hat jahrelang im Krankenhaus gearbeitet und hatte dabei viel mit Schmerzpatient*innen zu tun. Sie erkannte dabei einen Gender-Bias: Frauen mit Schmerzen wurden oft als wehleidig abgestempelt – veraltete Vorstellungen in den Köpfen der Beteiligten –, mit der Folge, dass Patientinnen schnell einmal als depressiv oder psychisch labil eingestuft wurden. „Dies ist keine akkurate Einschätzung – es ist wissenschaftlich belegt, dass Frauen eine höhere Schmerzgrenze als Männer haben“, betont Mérey. „Hier merkt man, wie soziale Konstrukte wirken: Die Frau wird oft als die gesellschaftlich Schwächere wahrgenommen, obwohl ihr Körper viel aushält, Stichwort Geburt. So kommt es zu falschen Dosierungen und der Vernachlässigung von Symptomen.“

Chance für HealthTech-Start-ups?

Eine Vernachlässigung, die Akteur*innen und Start-ups im Health-Bereich Chancen eröffnet. Ähnlich denkt Scherwitzl, der Start-ups mit „großen Ambitionen“ im Entstehen sieht: „Das Funding ist da“, sagt er. „Vor allem in den letzten fünf Jahren hat sich einiges verbessert. Wenn Investoren merken, dass man hier viel Growth erreichen kann, wird noch mehr Geld fließen.“

Was jedoch aktuell noch fehle, sei der große Erfolg, der beweise, dass es sich lohne, in dieses Feld zu investieren. „Im Pharmabereich gibt es etwa die Pille oder Antidepressiva – im digitalen Bereich bin ich jedoch optimistisch, dass der nächste große Durchbruch bevorsteht“, so Scherwitzl. Der Founder zeigt sich überzeugt, dass es zu jedem pharmazeutischen Ansatz künftig auch eine digitale Alternative geben sollte, mit der Frauen medizinisch besser begleitet werden können. „Pharmakonzerne wie Bayer, Organon und Merck haben trotz Deinvestitionen weiterhin Pipelines im Bereich Frauengesundheit. Gleichzeitig gibt es Start-ups wie uns oder Flo in England, das eine neue Version des Kondoms für Frauen entwickelt. Die dänische Cirqle Biomedical arbeitet ebenfalls an einer Alternative zum Kondom, die den Uterus verschließt. Außerdem existieren Start-ups wie Endogene.Bio, das sich auf Endometriose fokussiert.“

Auch Mérey hat trotz aller Probleme bei der Frauenmedizin einen neuen Tenor in dieser Sache erkannt, der sich vom bisherigen „medizinischen Ratschlag“ an Frauen à la „Man muss da durch“ unterscheide: Das Thema der zweiten Lebenshälfte der Frauen werde mehr diskutiert, Tabuthemen wie Wechseljahre würden aufgebrochen. Mérey: „Der negative Anstrich wird langsam entfernt. Es hat in den letzten Jahren ein Umdenken gegeben.“

KI-Modelle erfolgreich im Unternehmen einführen

Worauf es bei der Implementierung von KI wirklich ankommt.

Künstliche Intelligenz (KI) gewinnt in Unternehmen zunehmend an Bedeutung. Sie kann Prozesse beschleunigen, große Datenmengen sinnvoll nutzbar machen und Entscheidungen unterstützen. Doch in der Praxis zeigt sich: Moderne Technologie allein führt noch nicht zum Erfolg. Entscheidend ist ein strukturiertes Vorgehen, bei dem Ziele klar definiert, Daten sorgfältig vorbereitet und organisatorische Rahmenbedingungen von Beginn an berücksichtigt werden. „Viele KI-Initiativen scheitern daran, dass am Anfang die Orientierung fehlt“, sagt Benedikt Weber, Geschäftsführer der applord GmbH. „Struktur schafft Entscheidungsfähigkeit – noch bevor über konkrete KI-Modelle gesprochen wird.“

Organisatorischer Wandel und Einbindung der Mitarbeitenden

Der Einsatz von KI verändert Arbeitsabläufe, Verantwortlichkeiten und Entscheidungswege. Mitarbeitende arbeiten verstärkt mit automatisierten Systemen zusammen, Aufgaben verschieben sich, Rollen entwickeln sich weiter. Wird dieser Wandel nicht aktiv begleitet, entstehen Unsicherheiten oder Ablehnung gegenüber neuen Technologien. Erfolgreiche Unternehmen setzen deshalb auf transparente Kommunikation und frühzeitige Einbindung der Mitarbeitenden. Sie erklären, warum KI eingesetzt wird, welche Aufgaben sie übernimmt und wo menschliche Expertise weiterhin unverzichtbar bleibt. Fehlt dieses gemeinsame Verständnis, werden neue Systeme häufig nur eingeschränkt genutzt. „KI-Projekte scheitern selten an der Technologie“, betont Weber. „Viel häufiger fehlt ein klares Bild davon, welchen konkreten Nutzen KI für Mitarbeitende und Organisation wirklich bringt.“

Auswahl der passenden KI-Lösung

Das Angebot an KI-Lösungen wächst rasant. Für Unternehmen besteht die Herausforderung darin, nicht der technischen Vielfalt zu folgen, sondern eine Lösung zu wählen, die zum eigenen Geschäftsprozess passt. Der Ausgangspunkt sollte immer ein klar definierter Anwendungsfall sein: Welche Aufgabe soll KI konkret unterstützen oder verbessern? Neben den Funktionen spielen auch Fragen der Nachvollziehbarkeit, Integration in bestehende Systeme und regulatorische Anforderungen eine Rolle. Werden diese Aspekte zu spät berücksichtigt, entstehen Lösungen, die technisch leistungsfähig sind, im Alltag aber keinen Mehrwert liefern. „Viele Unternehmen wählen KI nach dem Funktionsumfang aus und stellen später fest, dass sie nicht zum eigenen Prozess passt“, erklärt Weber. „Erfolgreich ist KI dann, wenn sie Abläufe sinnvoll ergänzt und verständliche Ergebnisse liefert.“

Datenqualität als Grundlage für verlässliche Ergebnisse

KI-Modelle sind vollständig von der Qualität ihrer Daten abhängig. In vielen Unternehmen existieren relevante Informationen zwar, sie sind jedoch über verschiedene Systeme verteilt, unterschiedlich gepflegt oder historisch gewachsen. Diese Ausgangslage erschwert nicht nur den Einsatz von KI, sondern kann zu fehlerhaften oder schwer nachvollziehbaren Ergebnissen führen. Datenmanagement ist daher keine einmalige Vorarbeit, sondern eine kontinuierliche Aufgabe. Dazu gehören klare Zuständigkeiten, regelmäßige Prüfungen und eine strukturierte Aufbereitung der Daten. „Der Aufwand für Datenqualität wird häufig unterschätzt“, sagt Weber. „Ohne geprüfte und konsistente Daten lassen sich keine stabilen und verlässlichen KI-Ergebnisse erzielen – unabhängig davon, wie gut das Modell ist.“

Schrittweise Einführung statt großer Umbruch

Statt KI sofort unternehmensweit einzusetzen, empfiehlt sich ein schrittweises Vorgehen. Unternehmen können so mit klar abgegrenzten Anwendungsfällen beginnen, Lösungen im Alltag testen und die Ergebnisse anhand messbarer Kriterien, wie Benutzerfreundlichkeit oder verständlicher Anleitungen, bewerten. So lassen sich Risiken reduzieren und Erkenntnisse gezielt nutzen. Pilotprojekte liefern nicht nur technische Erkenntnisse, sondern zeigen auch, wie gut KI im Arbeitsalltag akzeptiert wird. Auf dieser Basis lässt sich entscheiden, welche Lösungen ausgebaut werden sollten. „Unternehmen, die mit überschaubaren Anwendungsfällen starten, treffen langfristig fundiertere Entscheidungen“, so Weber. „Praxiserfahrungen sind dabei deutlich wertvoller als theoretische Annahmen.“

revel8: Mit Human Firewalls gegen KI-Angriffe

Wie die revel8-Gründer Robert Seilbeck, Tom Müller und Julius Muth KI-gestützte Cyberattacken mithilfe „menschlicher Schutzschilde“ abwehren und Unternehmen zu mehr Cyberresilienz verhelfen.

Das Ingenieurbüro Arup wurde im vergangenen Jahr Opfer eines spektakulären Deepfake-Betrugs. Ein Mitarbeiter aus Hongkong betrat eine Videokonferenz mit vermeintlichen Mitgliedern des Managements – tatsächlich handelte es sich um täuschend echte KI-Imitationen der Führungskräfte, die eine scheinbar legitime, vertrauliche M&A-Transaktion diskutierten. Der arglose Mitarbeiter überwies den Betrügern 25 Millionen US-Dollar. „Der Fall ist ein typisches Beispiel für sogenanntes Social Engineering und eine neue Ära von Cyberangriffen“, sagt Julius Muth, Co-Founder und CEO von revel8 in Berlin.

Das 2024 gegründete Start-up betreibt eine Software-Plattform, um Menschen und damit auch Unternehmen gegen solche Bedrohungen zu schützen. „Kriminelle nutzen heute die neuesten KI-Technologien für konzertierte Angriffe“, so Julius. Aus frei verfügbaren Datenquellen identifizieren sie Schwachstellen und nutzen diese mit realistisch wirkenden Deepfake-Audios oder -Videos gnadenlos aus. Sie erzeugen damit eine Illusion von Authentizität, welche die klassischer Phishing-E-Mails bei Weitem übersteigt – und kein Unternehmen ist davor sicher.

Jede(r) Mitarbeitende ist eine potenzielle Schwachstelle

Mitunter können die Schäden noch höher ausfallen und Unternehmen aller Größen in Existenznot bringen. Am 31. August 2025 musste beispielsweise der Automobilhersteller Jaguar Land Rover nach einem Cyberangriff alle IT-Systeme herunterfahren. Die Produktion stand wochenlang still. Der Schaden beläuft sich bislang auf über zwei Milliarden Euro, das Unternehmen erhielt sogar staatliche Hilfe. Doch selbst das ist nur die Spitze des Eisbergs, denn laut Expert*innen waren von dem Angriff über 5000 Organisationen betroffen – wer hinter der Attacke steckt, ist nach wie vor unklar. Viele Unternehmen möchten solche Angriffe aus Imagegründen nicht offenlegen, die Dunkelziffer ist entsprechend hoch. Die Einfallstore für solche Attacken sind meistens die Mitarbeitenden. „Chief Information Security Officers (CISOs) betrachten bei der IT-Sicherheit typischerweise die Dimensionen Technologie, Prozesse und Menschen“, so Julius. „Der Mensch ist dabei von zentraler Bedeutung. Denn mit der richtigen Unterstützung können Mitarbeitende zum wichtigsten Resilienzfaktor im Unternehmen werden.“

Klassische E-Learning-Ansätze seien nicht geeignet, um Mitarbeitende angemessen für die Gefahren zu sensibilisieren und ihnen effektiv Kompetenzen im Umgang damit zu vermitteln. Standardisierte Phishing-E-Mails und konventionelle Trainingsformate können weder aktuelle Angriffsformen abbilden noch zuverlässig die nötigen Lern­inhalte vermitteln. Hier setzt revel8 an und trainiert Mitarbeiter realitätsnah mit Replika tatsächlicher Angriffe, wie zum Beispiel Voice Phishing mit der Stimme eines bekannten Kollegen“, so Julius. Besonders die automatische Anreicherung mit öffentlich verfügbarem Kontext (OSINT) erhöhe die Relevanz und den Lern­effekt. So hilft revel8 Unternehmen dabei, die Widerstandsfähigkeit gegen Cyberbedrohungen zu stärken und darüber hinaus auch einschlägige Compliance-Anforderungen wie NIS2 und ISO 27001 zu erfüllen.

Individuelle Playlists mit neuesten Cyberattacken

„Wir setzen Menschen gezielt den aktuellen Angriffsmustern aus, sodass sie im Ernstfall richtig handeln können“, so Julius. Ein aktuell häufig zu beobachtender Angriff ist die Clickfix-Attacke. Dabei wird der/die Nutzer*in über eine täuschend echte Phishing-E-Mail auf eine gefälschte CAPTCHA-Seite gelotst. Sobald der/die Nutzer*in sich verifiziert, wird un­bemerkt ein Schadcode in die Zwischenablage kopiert. Viele Ahnungslose fügen diesen Code später unbewusst zum Beispiel im Terminal ein und aktivieren damit den Angriff. Der/die Nutzer*in bemerkt den Schaden erst, wenn es schon zu spät ist.

Damit das nicht passiert, spielt revel8 zu Trainings­zwecken genau solche Attacken aus. Tappt jemand die Falle, folgt sofort eine detaillierte Auswertung. Die Person erfährt, worauf sie hätte achten sollen, welche Hinweise es gab, und wie sich solche Vorfälle künftig vermeiden lassen. Da die Cyberkriminellen zunehmend sehr gezielt und hochgradig personalisiert angreifen, lassen sich auch die Trainingsinhalte bis ins Detail auf die User*innen zuschneiden. „Jeder Nutzer erhält von uns eine individuell auf seine Rolle zugeschnittene Playlist von Cyberattacken“, so Julius.

Praxisnahe Angriffssimulationen im Unternehmensalltag

Revel8 unterscheidet zwischen Nutzer*innen mit einem geringen Risiko und Hochrisikonutzer*innen, etwa im Management oder in der Finanzabteilung, und allgemein solchen Personen, die Zugang zu kritischen Daten haben. Julius beobachtet, dass die ohnehin stark gefährdeten Hochrisikonutzer*innen aktuell noch mehr ins Visier geraten. Ob SMS, WhatsApp, Teams oder LinkedIn – die Angreifenden orchestrieren ihre Attacken perfekt über mehrere Plattformen hinweg. „Zuerst ruft ein täuschend echter Stimmklon an, danach kommt die passende E-Mail“, sagt Julius. „Oder jemand schreibt dir auf LinkedIn, macht dir ein Jobangebot und schickt dir dann noch das Gehaltsangebot – da klickt man natürlich gern drauf.“

Um stets auf der Höhe der Zeit zu sein, kooperiert revel8 eng mit seinen Kund*innen. Das Training basiert auf echten Vorfällen aus deren Systemen. Jede erkannte Attacke wird kategorisiert, realistisch nachgebaut und gezielt ausgespielt. Trifft zum Beispiel eine Clickfix-Attacke Software Developer mit einem Mac in der Slowakei, fließt sie direkt in die Trainings-Playlist der betroffenen Zielgruppe ein. Das Ziel ist kontinuierliches Lernen, ohne zu überfordern. „Es ist wichtig, dass wir die Menschen nicht nerven“, erklärt Julius, „und wer gut reagiert, wird auch belohnt.“ Gamification-Elemente, wie zum Beispiel firmeninterne Rankings, halten das Training spielerisch und die Motivation hoch.

Keimzelle Celonis

Julius’ Karriere begann nach seinem Mathematikstudium in Darmstadt, bevor ihn sein Weg nach München zu Celonis führte. Das Unternehmen ist spezialisiert auf die Optimierung von Unternehmensprozessen und aktuell das wertvollste deutsche Start-up-Unicorn. Sein Job startete in Madrid, wo er zunächst ganz allein im Office saß. Doch das Team wuchs rasant, nach nur drei Jahren arbeiteten 500 Menschen am Standort. In dieser Zeit lernte er seine späteren Mitgründer kennen. Tom Müller ist gelernter Maschinenbauer, Robert Seilbeck war als Software-­Engineer von Anfang an bei Celonis dabei. „Diese unglaubliche Dynamik, die wir in Madrid erlebt haben, hat uns motiviert, etwas eigenes aufzubauen“, erinnert sich Julius.

Markttests und Durchbruch mit Stihl

Bevor sich die Gründer auf Cybersecurity fokussierten, überprüften sie abends und an Wochenenden unterschiedliche Märkte auf ihr Potenzial. Jeden Monat testeten sie eine neue Branche mit jeweils 100 persönlichen Briefen. Die Rücklaufquote lag in der Regel bei ein bis zwei Prozent und bestand überwiegend aus Absagen. „Beim Thema Cybersicherheit hatten wir plötzlich zehn Rückmeldungen – und eine Firma lud uns direkt nach München ein“, so Julius. Am folgenden Wochenende entwickelte das Team eine vorläufige Produktversion und handelte drei Monate Zeit heraus, bis das Projekt starten sollte. Es war der inoffizielle Startschuss für revel8.

Im Februar 2024 bezog Julius die erste Bürofläche in Berlin, Tom folgte im Mai. Zu diesem Zeitpunkt hatte revel8 bereits erste zahlende Kund*innen. „Weil Kunden im Softwarebereich typischerweise jährlich und im Voraus zahlen, konnten wir erste Freelancer engagieren – wir selbst haben auf Gehalt verzichtet und von unserem Ersparten gelebt“, sagt Julius. Das Team testete Ansätze mit kleineren Unternehmen. Einige sicher geglaubte Kund*innen sprangen trotz mündlicher Zusage wieder ab, sodass eingeplante Umsätze plötzlich wegfielen. „Für ein Start-up ist sowas Gift“, so Julius, „und das war für uns eine echte Herausforderung.“ Der Durchbruch kam mit dem Unternehmen Stihl. Der damalige CISO war sofort begeistert und unterstützte das Team nach Kräften. In enger Zusammenarbeit mit dem Werkzeughersteller entstand das heutige Konzept, Mitarbeitende realitätsnah auf digitale Angriffsszenarien vorzubereiten. Im Oktober stieß Robert nach zehn Jahren bei Celonis fest zum revel8-Team dazu.

Sprung auf Enterprise-Level

Im September 2024 stellte revel8 den ersten Praktikanten ein. Die Kombination der Themen Cybersecurity und KI weckte auch das Interesse von Investor*innen. „Unsere Seed-Finanzierung kam nicht durch klassisches Fundraising zustande, sondern dank einer frühzeitigen Initiative von Merantix Capital, die unsere Vision verstanden und teilten“, so Julius. Anfang 2025 gewann revel8 die ersten Großkund*innen. Heute nutzen Unternehmen wie der FC Bayern, OBI und mehrere DAX-Konzerne die Plattform. Mitunter trainiert revel8 dabei zehntausende Mitarbeitende. „Dass wir unser Angebot innerhalb eines Jahres auf Enterprise-Level gebracht haben, ist für uns ein Riesenerfolg“, sagt Julius.

Einen wichtigen Beitrag dazu leisten rund 20 Profis aus dem Cybersecurity-Umfeld, darunter mehrere ehemalige CISOs, die als Business Angels mit an Bord sind. Ihre Expertise ermöglicht es unter anderem, neue Ideen und Ansätze schnell zu validieren. „Die meisten von ihnen sind nicht nur Sparringspartner, sondern auch finanziell investiert und profitieren so von unserem Wachstum“, erzählt Julius. Im September 2025 schloss revel8 die Seed-Finanzierungsrunde mit einem Gesamtvolumen von 5,7 Millionen Euro, angeführt vom Berliner VC Peak Capital. Zudem investierten u.a. Fortino Capital und weitere Business Angels, darunter der Fußballspieler Mario Götze und der CISO von Adidas, Michael Schrank.

Gesucht: Lernwillige Teamplayer

Heute beschäftigt revel8 knapp 30 Mitarbeitende. Bei der Weiterentwicklung des Teams setzen Julius und seine Mitgründer auf lernwillige Talente: „Wir suchen Teamplayer, die klar denken und eigenverantwortlich handeln können – den Rest bringen wir ihnen bei.“ An Bewerbungen mangele es nicht, schließlich komme das Thema Cybersecurity gerade bei jungen Menschen sehr gut an. Doch mit der dynamischen Entwicklung gehen mitunter auch Wachstumsschmerzen einher. „Wir merken das zum Beispiel daran, dass wir nun auch mal unangenehme Gespräche führen müssen.“ Auch die Dauerbelastung, der man sich als Gründer aussetze, sei nicht zu unterschätzen. „Anfangs haben wir monatelang durchgearbeitet, oft bis tief in die Nacht“, so Julius. Für den langfristigen Erfolg sei es jedoch wichtig, für Ausgleich zu sorgen sowie seine Gesundheit und Leistungsfähigkeit zu erhalten – und dem eigenen Team ein Vorbild zu sein.

Schnelligkeit als Wettbewerbsvorteil

Der Markt für KI-gestützte Security-Trainings und damit auch die Zahl neuer Anbieter*innen wächst schnell. Durch die Konkurrenz sehen sich die Gründer von revel8 bestätigt. „Wir stehen durchaus auch in Kontakt mit anderen Gründern und Wettbewerbern“, so Julius. Eine wichtige Benchmark sei das Unternehmen Adaptive Security aus den USA, das mit 55 Millionen US-Dollar von OpenAI finanziert wurde. Im Tages­geschäft treffe man jedoch kaum auf andere Start-ups, sondern vielmehr auf etablierte Anbieter*innen wie etwa KnowBe4. „Diese Wettbewerber operieren auf alten Plattformen, sie entwickeln sich langsam und inkrementell“, so Julius. „Wir dagegen können unsere Ideen binnen Stunden validieren und umsetzen.“ Vor dem Hintergrund, dass IT-Abteilungen immer ausgefeiltere Deepfakes und KI-basierte Social-Engineering-Angriffe erkennen und abwehren müssen, sei das ein echter Wettbewerbsvorteil.

Umzug und neue Produkte

Ab dem kommenden Jahr soll die Plattform vollautomatisiert laufen und auch kleineren Unternehmen sowie Firmen ohne dezidiertes IT-Team dienen. Betriebe wie Notariate oder Arztpraxen seien besonders gefährdet, sagt Julius: „Die Frontdesks öffnen jeden Tag unzählige PDF-Dokumente und beantworten laufend externe Anfragen, da kann ein falscher Klick den gesamten Betrieb lahmlegen.“ Anfang 2026 wird revel8 nach München umziehen, wo Tom und Robert ursprünglich herstammen. Das gesamte Team wird mitkommen. Das ehemalige Flixbus-Office wird der neue Firmensitz. Von hier aus wird die Plattform weiterentwickelt und sollen die neuen Produkte gelauncht werden.

„Aktuell wird uns das Training für externe Kräfte mit Systemzugriff, zum Beispiel Call-Center-Teams, aus der Hand gerissen“, sagt Julius. Das Produkt entstand zunächst als Pilot mit einer globalen Versicherung – heute trifft es einen wunden Punkt vieler Unternehmen. Anfang 2025 wurde zum Beispiel bei Marks & Spencer über ein externes Dienstleisterteam ein Ransomware-Angriff eingeschleust – der Schaden betrug über 300 Millionen britische Pfund. „Darum bleiben wir in Bewegung“, so Julius, „damit Unternehmen auch künftig solche Angriffe erkennen und abwehren können.“

KI & Bewertungen: Sichtbarkeit in einer neuen Suchrealität

Tipps und To-dos: Wie du dein Bewertungsmanagement strategisch aufsetzt und Sichtbarkeit und Vertrauen im KI-Zeitalter steigerst.

Generative Antworten in Suchmaschinen und Assistenten verändern die Spielregeln der Online-Sichtbarkeit. Nicht mehr nur klassische Rankings entscheiden, sondern die Frage, wem die KI genug vertraut, um es überhaupt zu nennen. Aktuelle, glaubwürdige und inhaltlich konkrete Bewertungen werden dabei zum Schlüsselsignal. Für kleine und mittlere Unternehmen bedeutet das: Bewertungsmanagement ist kein Nice-to-have mehr, sondern ein Pflichtprogramm, das Auffindbarkeit, Auswahl und Conversion spürbar beeinflusst. Im Folgenden erfährst du, wie du dein Bewertungsmanagement strategisch aufsetzen solltest, um Sichtbarkeit und Vertrauen im KI-Zeitalter zu steigern.

Warum Bewertungen jetzt geschäftskritisch sind

KI-Modelle zerlegen Rezensionen in viele kleine Bedeutungseinheiten und ziehen daraus ein konsistentes Bild. Welche Leistung wurde erbracht, an welchem Ort, mit welcher Qualität und für welchen Anlass. Aus den einzelnen Stimmen entsteht so ein Vertrauensprofil, das über bloße Sternesummen hinausgeht. Entscheidend ist nicht die bloße Menge, sondern die Frische und die inhaltliche Dichte der Aussagen. Eine Rezension wie „Schnell geholfen am Sonntag, sehr kompetente Beratung zu Reiseimpfungen“ liefert gleich mehrere Signale. Zeitliche Verfügbarkeit, thematische Expertise und konkreter Nutzen. Genau solche Details erhöhen die Wahrscheinlichkeit, in generativen Antworten aufzutauchen, wenn Menschen in ihrer Nähe nach einer Lösung suchen. Wer regelmäßig neue, authentische und präzise Bewertungen erhält, verschafft der KI verlässliche Hinweise und sichert sich dadurch mehr Sichtbarkeit in genau den Momenten, in denen Entscheidungen vorbereitet werden.

Bewertungsmanagement als Prozess, nicht als Aktion

Wirksam wird Bewertungsarbeit, wenn sie selbstverständlich Teil der täglichen Abläufe ist. Nach dem Kontakt freundlich um Feedback bitten, den Weg zur passenden Plattform so kurz wie möglich machen, interne Zuständigkeiten klar regeln und Reaktionszeiten verbindlich festlegen. Aus diesen scheinbar kleinen Schritten entsteht ein stabiler Rhythmus, der kontinuierlich neue Kund*innenstimmen hervorbringt und der KI immer wieder frische Kontexte liefert. Ein solcher Prozess ist robuster als jede einmalige Kampagne, weil er verlässlich Vertrauen aufbaut und saisonale Schwankungen abfedert. Teams profitieren, wenn sie Zielkorridore definieren, etwa eine bestimmte Zahl neuer Rezensionen pro Woche und wenn sie Fortschritte sichtbar machen. So wird aus gutem Vorsatz ein gelebter Ablauf, der die gesamte Organisation stärkt.

Sprache der Kund*innen wirkt wie natürliches SEO

KI versteht Alltagssprache deutlich besser als Listen isolierter Schlagwörter. Unternehmen gewinnen, wenn sie um freie, aber konkrete Formulierungen bitten, ohne Vorgabetexte und ohne Druck. Eine höfliche Bitte wie: „Wenn es für Sie passt, nennen Sie gern, was Ihnen besonders geholfen hat“ öffnet den Raum für präzise Hinweise auf Leistungen, Erreichbarkeit, Barrierefreiheit oder Schnelligkeit. Solche natürlich entstandenen Details sind für Menschen überzeugend und zugleich für Maschinen gut interpretierbar. Sie zeigen, wofür ein Betrieb tatsächlich steht, und verankern die passenden Begriffe in einem echten Nutzungskontext. Das Ergebnis ist eine Sprache, die Vertrauen schafft und die Auffindbarkeit stärkt, ohne künstlich zu wirken.

Antworten trainieren Vertrauen für Menschen und Maschinen

Jede Reaktion auf eine Bewertung ist ein sichtbares Zeichen von Serviceorientierung und zugleich zusätzlicher Kontext für die KI. Gute Antworten bedanken sich aufrichtig, beziehen sich konkret auf das Erlebte und bieten einen klaren nächsten Schritt an. Bei Kritik zählt ein professioneller Umgang. Das Anliegen nachvollziehen, Verantwortung übernehmen, eine realistische Lösung anbieten und einen direkten Kontaktweg nennen. So entsteht ein Bild von Verlässlichkeit, das Hemmschwellen senkt und Wiederbesuche wahrscheinlicher macht. Die KI erkennt diesen Umgang ebenso und ordnet das Unternehmen eher als vertrauenswürdig ein. Mit der Zeit entsteht ein stabiler Kreislauf aus guter Erfahrung, konstruktiver Reaktion und wachsendem Vertrauen.

Lokaler Content und Social Proof gehören zusammen

Bewertungen entfalten ihre volle Wirkung, wenn sie auf eine solide Informationsbasis treffen. Konsistente Unternehmensdaten, vollständige Leistungsseiten pro Standort, klare Öffnungszeiten inklusive Ausnahmen und eine schnelle, mobil optimierte Webseite erleichtern die Einordnung für Nutzer*innen und Maschine. Wenn ausgewählte Zitate oder Bewertungsschnipsel an relevanten Stellen sichtbar werden, etwa auf der Startseite, in der Buchungsstrecke oder in den häufigen Fragen, entsteht ein schlüssiges Gesamtbild. Der lokale Bezug bleibt klar erkennbar, die Erwartungen sind gut gesetzt, und die nächsten Schritte sind ohne Umwege möglich. So wird aus Social Proof ein handfester Conversion Hebel.

Vom Feedback zur Verbesserungsschleife

Rezensionen sind fortlaufende Marktforschung aus erster Hand. Wer wiederkehrende Themen auswertet, etwa Wartezeiten, Erreichbarkeit oder Bezahloptionen, erkennt schnell die Stellschrauben mit der größten Wirkung. Wichtig ist, die daraus abgeleiteten Verbesserungen konsequent umzusetzen und sichtbar zu machen. Informieren, handeln, erneut um Rückmeldung bitten. Dieser offene Kreislauf wirkt nach innen und nach außen. Mitarbeitende erleben, dass Feedback Veränderungen anstößt, Kund*innen erleben, dass ihre Hinweise ernst genommen werden, und die KI registriert die fortlaufende Pflege der Qualität. Mit jeder Runde werden Erlebnisse besser und Bewertungen stärker, was die Sichtbarkeit weiter erhöht.

Fazit

Sichtbarkeit entsteht heute dort, wo Menschen nach konkreten Lösungen fragen und wo KIs verlässliche Hinweise zu Qualität und Relevanz finden. Unternehmen, die Bewertungen als strategischen, kontinuierlichen Prozess verstehen, erhöhen ihre Chance, in generativen Antworten genannt zu werden und gewinnen genau in den entscheidenden Momenten an Präsenz. Vieles davon ist eine Frage kluger Organisation und klarer Abläufe. Der finanzielle Aufwand bleibt überschaubar, der Nutzen für Auffindbarkeit, Vertrauen und Umsatz ist deutlich spürbar.

Die Autorin Franziska Ortner ist Produktmanagerin bei SELLWERK

NICAMA Naturkosmetik: Von der Studienidee zum nachhaltigen Erfolgsunternehmen

NICAMA Naturkosmetik feiert sein fünfjähriges Bestehen: Was mit kleinen Experimenten während des Studiums begann, ist heute ein etabliertes Naturkosmetikunternehmen mit über 600 Handelspartnern im DACH-Raum.

Was 2019 als mutige Idee von vier Studierenden begann, wurde rasch zu einem inspirierenden Beispiel für gelebte Nachhaltigkeit. In einer Zeit, in der Umweltschutz noch kein selbstverständlicher Trend war, experimentierten die Gründerinnen und Gründer mit festen Shampoos, um eine plastikfreie Alternative zu herkömmlicher Kosmetik zu schaffen. Das erste Produkt entstand mit viel Leidenschaft, Neugier und Improvisation. Damit war der Grundstein für den späteren Unternehmenserfolg gelegt.

Ein erfolgreiches Crowdfunding finanzierte 2019 die erste Produktcharge und machte den Traum vom eigenen Webshop möglich. Es folgten die ersten Partnerschaften mit Bioläden, Outdoorhändlern, Friseuren und Geschenkeläden, die an die Vision glaubten. Heute zählt NICAMA stolz über 600 Vertriebspartner und wächst weiter.

Ein entscheidender Meilenstein war die Entwicklung des 1plus1 Meeresschutz-Prinzips: Für jedes verkaufte Produkt werden 100 Gramm Plastik in Küstenregionen gesammelt. Dieses Prinzip ist transparent, messbar und von jedem/jeder Kund*in nachvollziehbar. Bis heute konnten so über 33.290 Kilogramm Plastik aus der Umwelt entfernt werden. Das entspricht mehr als 3,2 Millionen Plastikflaschen. Darüber hinaus hat das Team mehrere Elbreinigungen organisiert, unter anderem gemeinsam mit der Naturschutzjugend NAJU und Charlotte Meentzen.

Mit dem Schritt in die Upcycling Beauty wurde NICAMA zum Pionier in Deutschland. Dabei werden wertvolle Nebenprodukte aus der Lebensmittelproduktion wie Ingwertrester und Kaffeekirsche zu hochwertigen Inhaltsstoffen verarbeitet. Heute umfasst das Sortiment über 50 plastikfreie Produkte, darunter Seifen, Shampoos, Deocremes, Pflegeöle und Körperpeelings – alle minimalistisch verpackt und mit reduzierten, sorgfältig ausgewählten Rezepturen.

Die Reise war jedoch nicht ohne Herausforderungen: Die Corona Pandemie und die Inflationsfolgen des Ukraine-Krieges setzten auch NICAMA stark zu. Das einst 15-köpfige Team musste sich zwischenzeitlich deutlich verkleinern. Trotz dieser Rückschläge bewies das Unternehmen Durchhaltevermögen. Heute steht es so solide da wie nie zuvor. Seit zwei Jahren verzeichnet NICAMA wieder überdurchschnittliches Wachstum und das deutlich über dem allgemeinen Naturkosmetikmarkt in Deutschland.

Für sein Engagement und seine Innovationskraft wurde das Unternehmen mehrfach ausgezeichnet: 2021 gewann NICAMA den Sächsischen Gründerpreis und erhielt bereits viermal den eku Zukunftspreis des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft.

HR-Trends 2026

Die Arbeitswelt verändert sich, die Position der Unternehmen wird stärker, eine Rezession auf Management- und Führungsebene droht: die HR-Welt bleibt ein Schmelztiegel verschiedenster Strömungen. Das sind die fünf größten Herausforderungen für 2026.

Die Arbeitswelt verändert sich - sowohl für Personalmanager*innen als auch für die Belegschaft. Während sich vor wenigen Jahren die Arbeitnehmenden in einer starken Verhandlungsposition befanden, schlägt das Pendel jetzt immer stärker zugunsten der Unternehmen aus. Das eröffnet ihnen die Chance, die Arbeitswelt mehr nach ihren Vorstellungen zu gestalten, um ihren Unternehmenserfolg zu sichern. Gleichzeitig tragen sie auch die große Verantwortung, das Arbeitsumfeld ihrer Mitarbeitenden kontinuierlich zu verbessern, das Engagement zu fördern und die Rolle der KI für die kommenden Jahre mit Weitblick und Sorgfalt auszubalancieren.

Wir werfen einen Blick nach vorne und skizzieren die fünf wichtigsten HR-Trends für die DACH-Region im kommenden Jahr.

1. Kulturelle Transparenz – Strategiewechsel bei der Talentakquise

Die Stagnation der Wirtschaft, der angespannte Arbeitsmarkt, weniger Stellenangebote – all das führt dazu, dass Mitarbeitende lieber in ihren derzeitigen Positionen und Rollen verharren. Die Folge ist ein “Talentestau:” Mitarbeitende, die sonst das Unternehmen verlassen würden, bleiben und blockieren damit die Wechsel- und Entwicklungsmöglichkeiten derer, die eher bereit sind, ihre Karriere engagiert voranzubringen. Auf der Suche nach effektiven Möglichkeiten, diese Engpässe zu überwinden, werden Unternehmen im kommenden Jahr ihre Strategie hin zu mehr kultureller Transparenz ausrichten. Anstatt neue Talente mit einem Wertversprechen oder der einseitigen Hervorhebung positiver Alleinstellungsmerkmale zu gewinnen, kommunizieren sie ihre tatsächlichen Erwartungen und die Realität des Arbeitsalltags klar. Damit betonen sie bewusst auch Aspekte, die weniger passende Bewerbende eher abschrecken - damit sich die wirklich passenden umso stärker angesprochen fühlen. Beispiele dafür können u.a. die Erwartung, wieder vollständig zur Büropräsenz zurückzukehren, Prozessreife und Struktur der Unternehmen sowie die Nutzung von KI-Tools im Arbeitsalltag sein.

2. Neudefinition des Erfolgs – Leistung statt Leistungsschau?

Mitarbeitende haben oft das Gefühl, dass ihre tatsächlich geleistete Arbeit nicht richtig bewertet wird und sie nicht ausreichend Anerkennung erfahren. Analysen von Culture Amp ergaben, dass 2025 rund 20 Prozent der Mitarbeitenden nicht genau wissen, wie sich die Bewertung ihrer Performance zusammensetzt. Die Folge dieser Unkenntnis sind Mutmaßungen und die Fokussierung auf mehr Sichtbarkeit: Mitarbeitende betreiben eine Art Leistungsschau und arbeiten so, dass es vor allem produktiv aussieht. Wenn das Gefühl hinzukommt, einem passiven Monitoring ausgesetzt zu sein – in der DACH-Region nur unter strengen Auflagen erlaubt – konzentrieren sich Mitarbeitende auf das, was vermeintlich gemessen wird. Diese Kluft wird sich 2026 weiter vergrößern, wenn die Verantwortlichen ihre Leistungsbewertung nicht neu ausrichten, um ein vertrauenswürdiges und vollständigeres Bild von der Performance ihrer Mitarbeitenden zu erhalten. Wer hingegen menschzentrierte Feedbacksysteme wie Upward Feedback, 360GradFeedback und reflektierende Einzelgespräche verankert, kann das Vertrauen stärken und ein ganzheitlicheres Verständnis der Beiträge der Mitarbeitenden erhalten.

3. Mensch und KI – zwei Seiten der HR-Medaille

2026 werden KI-Tools verstärkt Einzug in den HR-Abteilungen halten. Routineaufgaben wie z.B. eine erste Bewerberauswahl oder die Beantwortung von häufig gestellten Fragen werden zunehmend automatisiert beantwortet. Doch mit den Möglichkeiten der KI wächst auch die Erkenntnis, dass sie nicht die Lösung für alles sein darf. Darüber hinaus tritt 2026 der EU AI Act vollständig in Kraft. Demzufolge werden KI-Tools im Zusammenhang mit Personaleinsatz als Hochrisiko eingestuft: Sie unterliegen sehr strengen Richtlinien bezüglich Transparenz, Kontrolle und Grenzen des KI-Einsatzes. Bei der Frage, welche Aufgaben der KI überlassen werden können und welche nach wie vor die Empathie, die Erfahrung und das Wissen echter HR-Expert*innen erfordern, ist Fingerspitzengefühl gefragt. Auch scheinbar administrative Aufgaben benötigen manchmal den direkten persönlichen Austausch. Unternehmen werden dazu übergehen, deutlicher zu definieren, welche Fragestellungen und Bereiche maschinenbezogene Fähigkeiten und welche menschliche Fähigkeiten erfordern. 2026 wird sich ein deutlicher Trend bemerkbar machen: Die verstärkte Integration von KI in den Personalabteilungen und gleichzeitig die permanente Überprüfung, welche Aufgabenbereiche zukünftig KI-gestützt erledigt werden sollen.

4. Führung neu denken – Managementpositionen verlieren an Attraktivität

Auch das verraten die Analysen von Culture Amp: 72 Prozent der Generation Z sind nicht an Führungspositionen interessiert. Die jungen Arbeitnehmenden bleiben lieber in ihren jeweiligen Rollen, manche entscheiden sich ganz bewusst gegen eine Managementkarriere. Der Reiz, eine Leitungsfunktion zu übernehmen, nimmt insbesondere im Bereich des mittleren Managements ab: Diese Manager*innen fühlen sich zwischen den Erwartungen der Unternehmensführung und den Erwartungen ihres Teams oft unter starkem Druck. In der Folge könnte es im kommenden Jahr zu einer weiteren Abflachung der Hierarchien in den Unternehmen kommen, manche befürchten gar eine Rezession auf der Management- und Führungsebene. Gleichzeitig eröffnen sich Manager*innen durch den Einsatz von KI-Tools neue Möglichkeiten, ihren Einfluss zu vergrößern. Für jene Talente, die sich darauf einlassen, werden Führungspositionen dadurch zugänglicher und nachhaltiger. In Anbetracht dessen werden sich die Dynamiken in den Teams verändern. Unternehmen werden Führungsrollen zunehmend überdenken und ihre Manager*innen besser unterstützen, statt weitere einzustellen. Denn wenn weniger Menschen führen wollen, braucht es nicht mehr, sondern besser unterstützte Manager*innen.

5. Ambitionen und Leistungsbereitschaft wird außerhalb der Arbeitswelt ausgelebt

Ob berufliche Nebentätigkeit, Ehrenamt oder leidenschaftliches Hobby – immer mehr Mitarbeitende bringen Energie und Motivation für Tätigkeiten auf, die außerhalb ihrer regulären Arbeit liegen. Sie erkennen, dass sie ihre Stärken auch anderswo verwirklichen können. Dieser Trend hin zu mehr Kreativität, Leidenschaft und Erfüllung durch sinnvolle Tätigkeiten nach Feierabend und am Wochenende wird sich auch 2026 fortsetzen. Das Risiko für Unternehmen geht dabei über bloße Ablenkung hinaus: Bleiben angemessene Antworten im kommenden Jahr aus, wandern Ambitionen nach außen ab. Führung muss etwas Besseres anbieten: Die Chance 2026 liegt darin, den Hauptjob so zu gestalten, dass er sich wieder energiegeladen, kreativ und investitionswürdig anfühlt.

Fazit

Die Strömungen und Entwicklungen in der HR-Welt bringen einen fortdauernden Wandel mit sich. Gespannt blicken die Personalabteilungen auf die für 2026 vorgesehene nationale Umsetzung der Entgelttransparenz-Richtlinie der EU (EU Pay Transparency Directive and Equal Pay). Die weitreichendsten Veränderungen verursacht aber der Einzug der KI in die Arbeits- und Lebenswelt der Mitarbeitenden. Dies wirft unablässig neue Fragen auf: Droht der Talentepool zu versiegen, wenn Aufgaben für Berufseinsteiger*innen von KI übernommen werden und sie infolgedessen keine Erfahrung aufbauen können? Wird sich die Belegschaft eines Unternehmens früher oder später in KI-resistente und KI-affine Gruppen aufspalten? Die HR-Welt bleibt ein Schmelztiegel verschiedenster Strömungen im Unternehmen, die datengestützte Strategien erfordern.

Der Autor Dr. Arne Sjöström ist Regional Director, People Science EMEA bei Culture Amp mit dem Schwerpunkt Organisationspsychologie und angewandte Forschung.

Vorsicht vor diesen KI-Versuchungen

Allzu großes Vertrauen in GenAI ist fahrlässig, dennoch prüfen nur rund ein Viertel der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit. Das sind die größten Gefahren und effektivsten Gegenmaßnahmen.

Die Leistung und die Zuverlässigkeit von KI-Assistenten nehmen gefühlt weiter zu. Doch wer in den letzten Wochen intensives Prompting bei ChatGPT, Perplexity und Co. betrieben und die Ergebnisse eingehend analysiert hat, fühlte sich in diesem Gefühl nicht bestätigt. Im Gegenteil: Die Qualität der generierten Antworten lässt neuerdings öfter zu wünschen übrig. Auf YouTube gibt es zahlreiche Videos zu diesem Phänomen, das sich offenbar auch die Herstellenden nicht so ganz erklären können, aber auch klassische Medien berichten darüber. In Anbetracht der Tatsache, wie abhängig sich viele Menschen im Berufsleben schon heute von GenAI-Tools gemacht haben, ist dieser Trend erschreckend und ernüchternd. Ein blindes Vertrauen in die digitalen Helfer aus der Familie generativer KI birgt zudem großes Schadenspotenzial, etwa dann, wenn sich Ärzt*innen bei der Diagnose auf sie stützen oder Entwickler*innen von der KI vorgeschlagene Frameworks ohne Sicherheitscheck implementieren.

Völliges Vertrauen in GenAI ist also, zurückhaltend formuliert, mindestens gewagt. Die Situation ist ernst und erfordert von GenAI-Anbietenden ein Mindestmaß an Qualitätssicherung – offenbar kein einfaches Unterfangen. Bis dahin ist es wichtig, eigene Maßnahmen zu ergreifen, um nicht in die Falle der folgenden vier Qualitätskiller zu geraten.

1. Halluzinationen

KI-Assistenten wie ChatGPT und Co. wurde die Aufgabe erteilt, Antworten zu liefern – koste es, was es wolle. Wenn die Wissensbibliothek nicht ausreicht, um komplexe Sachverhalte zu beantworten, fängt generative KI an, sich etwas auszudenken. Die von solchen Halluzinationen ausgehende Gefahr ist bekannt. Umso bedrückender ist die Tatsache, dass laut einer aktuellen Studie nur rund ein Viertel (27 %) der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit prüfen. Das sind zwar immerhin sieben Prozentpunkte mehr als bei gewöhnlichen Inhalten aus dem Internet, wie eine Studie des PR-COM Re­search Lab belegt, aber noch immer viel zu wenige.

Gegenmaßnahmen: Wer GenAI nutzt, sollte ausnahmslos alle von ihr produzierten Inhalte überprüfen. Dazu sollten User*innen insbesondere die von der KI verwendeten Primärquellen checken oder – wenn möglich – Expert*innen zur Prüfung der Korrektheit der Antworten zurate ziehen.

2. Bias

Die Anbieter*innen aktueller KI-Assistenten haben sehr viel Arbeit in ihre Produkte gesteckt, um den Bias, also die Voreingenommenheit ihrer Modelle auszumerzen und sie zur Vorurteilsfreiheit zu erziehen.

Verlassen sollten sich User*innen auf die moralische und ethische Unantastbarkeit ihrer Modelle dennoch nicht. Zwar ist es unwahrscheinlich, dass Produkte großer Hersteller*innen noch rassistische, sexistische oder sonstige ethisch fragwürdige Ansichten vertreten, aber komplett ausgeschlossen ist es eben nicht. Noch relativ hoch ist die Gefahr zudem bei der Nutzung von kostenlosen GenAI-Assistenten oder Nischen-Tools.

Gegenmaßnahmen: Auch im Zusammenhang mit Bias gilt es, die Ergebnisse einer KI-Befragung immer genauestens zu checken und mit geltenden Gesetzen und den vorherrschenden Wertevorstellungen unserer Gesellschaft abzugleichen. Wer dubiose KI-Tools meidet, kann sich zudem viel Ärger ersparen.

3. Content-Kannibalisierung

Immer mehr KI-generierter Content flutet das Internet – die logische Folge der zunehmenden Nutzung von GenAI-Assistenten. Leider trainieren KI-Entwickler*innen ihre Chatbots und deren zugrunde liegende Sprachmodelle unter anderem mit genau diesen Inhalten. Und schlimmer noch: Der exponentiell steigende KI-Inhalt ist darüber hinaus auch der Wissensschatz, auf den die KI für ihre Antworten zurückgreift. Dadurch entsteht ein Teufelskreis aus KI, die sich irgendwann nur noch mit von ihr selbst generierten Inhalten trainiert und auch nur noch von ihr produzierten Content als Basiswissen verwendet. Der Mensch wird aus dieser Gleichung immer weiter herausgekürzt. Die Qualität der Ergebnisse von Anfragen an die KI wird somit zunehmend abnehmen. Hinzu kommt, dass alle User*­innen irgendwann die gleichen Ergebnisse abrufen, nutzen und veröffentlichen.

Gegenmaßnahmen: Es ergibt Sinn, hin und wieder auch ohne KI zu agieren und Content zu produzieren, der frei von KI-generierten Inhalten ist und das Qualitätsmerkmal „Made in a human brain“ trägt.

4. Wissensoligopol

Der KI-Markt ist derzeit auf einige wenige Big Player geschrumpft, die sich die enormen Rechenressourcen und Entwicklungskosten für generative KI leisten können. Dadurch entsteht zunehmend ein Wissensoligopol, in dem die großen Anbieter*innen wie OpenAI, Google, Microsoft und DeepSeek zukünftig die Art und Weise bestimmen, welche Informationen überhaupt noch zugänglich sind. Schon jetzt gehen Suchanfragen auf den traditionellen Suchmaschinen deutlich zurück, die Ergebnisse zwar nach Algorithmen ranken, aber selten Treffer komplett ausblenden. Viel restriktiver agieren GenAI-Tools, deren implementierte Filter die freiheitliche Verbreitung von Wissen einzuschränken drohen: Was nicht mit den politischen und moralischen Ideen der Hersteller übereinstimmt, wird automatisch unterdrückt. Das erinnert ein wenig an das Wahrheitsministerium aus Orwells „1984“.

Gegenmaßnahmen: Es ist wichtig, dass Unternehmen und offizielle Stellen auch unabhängige Projekte fördern und deren Nutzer*innen- sowie Supporter*innen-Basis wächst. Gleichzeitig sollten User*innen es dringend verinnerlichen, dass KI- Assistenten nicht der Wahrheit letzter Schluss sind. Das Nutzen möglichst vieler Quellen, um das eigene Wissen aufzubauen, ist immer besser als ein vermeintlicher „Single Point of Truth“.

Fazit

Wir sind noch lange nicht so weit, dass ein blindes Vertrauen in generative KI zu rechtfertigen ist. Es ist zwar logisch, dass wir eine vermeintlich arbeitserleichternde Technologie erst einmal ungern hinterfragen – doch dieser Bequemlichkeit wohnt, je nach Einsatzzweck, ein erhebliches Schadenspotenzial inne. Zum jetzigen Zeitpunkt lautet also die Maxime, restlos jede von GenAI generierte Antwort genauestens auf den Prüfstand zu stellen.

Der Autor Alain Blaes ist CEO der Münchner Kommunikationsagentur PR-COM (mit Fokus auf High-tech- und IT-Industrie im B2B-Umfeld).

Code für die künstliche Intelligenz: technische Optimierung für die Ära der KI-Suche

Code für die KI: So optimierst du deine Website technisch mit strukturierten Daten und Protokollen für die besten generativen Suchergebnisse.

Die Regeln der Online-Sichtbarkeit werden neu geschrieben. Es geht nicht mehr nur darum, von einem herkömmlichen Algorithmus indiziert zu werden. Stattdessen müssen Websites so aufbereitet werden, dass sie von künstlicher Intelligenz (KI) und großen Sprachmodellen (LLMs) fehlerfrei interpretiert und verarbeitet werden können.

KI erstellt ihre Antworten, indem sie Inhalte blitzschnell liest, deren Bedeutung versteht und die wichtigsten Fakten daraus extrahiert. Wenn der technische Unterbau einer Website unsauber ist, kann die KI die Informationen entweder nicht zuverlässig finden oder sie falsch interpretieren.

Das bedeutet, die technische Seite der Website – der Code – wird zum Fundament für eine gute Platzierung in den generativen Suchergebnissen. Wer hier Nachholbedarf hat, riskiert, als vertrauenswürdige Quelle für die KI unsichtbar zu werden.

Dieser Artikel beleuchtet die entscheidenden technischen Anpassungen, die notwendig sind, um deine Website optimal für die neue Ära der KI-Suche vorzubereiten.

Kontrolle und Zugang: Die Regeln für Sprachmodelle

Der erste technische Schritt zur Optimierung für KI-Ergebnisse ist die Steuerung des Zugriffs durch die großen Sprachmodelle (LLMs). Traditionell wird der Zugang durch die robots.txt Datei geregelt, die festlegt, welche Bereiche der Website von herkömmlichen Suchmaschinen-Crawlern besucht werden dürfen.

Mit dem Aufkommen verschiedener, spezialisierter KI-Crawler (die nicht immer identisch mit dem Googlebot oder Bingbot sind) entsteht jedoch die Notwendigkeit, diesen neuen Akteuren eigene Regeln zu geben. Es geht darum, Transparenz darüber zu schaffen, welche Daten zur Generierung von Antworten verwendet werden dürfen und welche nicht.

Neue Protokolle für neue Crawler

Experten diskutieren und entwickeln neue Protokolle, um diese Unterscheidung zu ermöglichen. Ein viel diskutierter Ansatz ist die Einführung von Protokollen, die spezifisch den Umgang mit generativer KI regeln. Dies könnte die Einführung von Protokollen wie einer llms.txt Datei beinhalten. Solche spezifischen Dateien könnten festlegen, ob ein KI-Modell Inhalte zur Schulung oder zur generativen Beantwortung von Nutzeranfragen nutzen darf.

Diese Kontrollmechanismen sind entscheidend. Sie geben den Website-Betreibern die Autorität darüber zurück, wie ihre Inhalte in der KI-Ära verwendet werden. Wer hier klare Regeln setzt, schafft die technische Grundlage für eine kontrollierte und damit vertrauenswürdige Sichtbarkeit in den KI-Ergebnissen.

Strukturierte Daten als universelle KI-Sprache

Nach der Regelung des Zugangs durch Protokolle ist die Strukturierung der Inhalte der wichtigste technische Schritt. Suchmaschinen nutzen strukturierte Daten schon lange, um Rich Snippets in den klassischen Ergebnissen anzuzeigen. Für die KI sind diese Daten jedoch absolut essenziell.

Strukturierte Daten, die auf dem Vokabular von Schema.org basieren, sind im Grunde eine Übersetzungshilfe im Code, die dem Sprachmodell den Kontext des Inhalts direkt mitteilt. Sie sind die "Sprache", die die KI am schnellsten und präzisesten versteht.

Die Bedeutung für die Generierung

Wenn ein Nutzer eine Frage stellt, sucht die KI nicht nur nach Stichwörtern, sondern nach definierten Informationstypen. Mit strukturierten Daten liefert man der KI diese Informationen als fertige, fehlerfreie Bausteine.

  • Fehlerfreie Extraktion: Die KI muss keine Textpassagen interpretieren, um beispielsweise ein Rezept, die Bewertung eines Produkts oder einen FAQ-Abschnitt zu identifizieren. Die korrekte Auszeichnung macht die Daten sofort nutzbar.
  • Vertrauensbildung: Fehlerhafte oder inkonsistente strukturierte Daten führen zu einer falschen Interpretation und können bewirken, dass die KI deine Seite als unzuverlässig einstuft.

Die Implementierung muss fehlerfrei sein und sollte alle relevanten Inhaltstypen der Website abdecken. Nur eine saubere Schema-Implementierung garantiert, dass deine Fakten korrekt in die generativen Antworten der KI einfließen.

Ladezeit und Interaktivität als Vertrauenssignal

Die Geschwindigkeit und die Nutzbarkeit einer Website sind in der Ära der KI-Suche nicht mehr nur ein Komfortfaktor, sondern ein entscheidendes technisches Vertrauenssignal. Wenn deine Seite langsam lädt oder schlecht bedienbar ist, wird das von der KI als Indikator für mangelnde Qualität und niedrige Autorität gewertet.

Die Basis dafür sind die sogenannten Core Web Vitals (CWVs). Diese Messwerte, die sich auf das Nutzererlebnis konzentrieren, sind feste Ranking-Faktoren und haben direkten Einfluss darauf, ob eine KI deine Seite als zitierwürdig einstuft:

  • LCP (Largest Contentful Paint): Misst die Zeit, bis der größte sichtbare Inhalt geladen ist.
  • FID/INP (First Input Delay / Interaction to Next Paint): Misst die Zeit bis zur ersten Interaktion und die allgemeine Reaktionsfähigkeit der Seite.
  • CLS (Cumulative Layout Shift): Misst die visuelle Stabilität.

Mobile Performance ist der Schlüssel

Da ein Großteil der Online-Aktivität über mobile Geräte stattfindet, legt die KI höchsten Wert auf die Optimierung der Mobilversion. Eine schlechte mobile Performance kann das gesamte Ranking negativ beeinflussen.

Die technische Anpassung muss daher darauf abzielen, die CWVs zu perfektionieren. Dies beinhaltet die Optimierung von Bildern, das Bereinigen unnötiger Code-Lasten und das Priorisieren wichtiger Ressourcen. Eine schnell ladende und reaktionsfreudige Website signalisiert nicht nur dem Nutzer, sondern auch der KI, dass die Quelle professionell und damit vertrauenswürdig ist.

Redundanz vermeiden: kanonische Klarheit

Eines der größten technischen Probleme für KI-Modelle ist die Verwirrung durch doppelte Inhalte (Duplikate). Wenn die gleiche Information unter verschiedenen URLs verfügbar ist, weiß die KI nicht, welche die Originalquelle darstellt. Dies zersplittert deine Autorität.

Der technische Schlüssel zur Lösung ist der Canonical Tag (<link rel="canonical" ...>). Dieser Tag im Code muss auf jeder Seite korrekt auf die bevorzugte, indexierbare URL zeigen. Durch die Vermeidung von Duplikaten und die korrekte Nutzung dieses Tags stellst du technisch sicher, dass die KI deine Inhalte als eindeutig und autoritär wahrnimmt und dich als zuverlässigen Faktenlieferanten zitiert.

Schlussworte

Die Zukunft der Online-Sichtbarkeit wird durch künstliche Intelligenz neu definiert. Der Erfolg hängt von einer technisch sauberen Vorbereitung ab.

Die wichtigsten Schritte in der Generative Engine Optimization (GEO) sind:

1. Zugangskontrolle durch Protokolle wie die diskutierte llms.txt Datei.

2. Die Nutzung von strukturierten Daten als unverzichtbare KI-Sprache.

3. Die Perfektionierung der Core Web Vitals als Vertrauenssignal.

4. Die Vermeidung von Duplikaten durch kanonische Klarheit.

Investiere in diese technische Qualität, um Autorität und Sichtbarkeit in der Ära der KI-generierten Antworten zu sichern.