Abenteuerliche Geschäftsideen: Reisen in die Vergangenheit

Vermittlung von Zeitreisen


44 likes

Wer würde nicht gern eine Zeitmaschine betreten und in der Zeit zurückreisen? Das Start-up Kulevo will das mit seiner Geschäftsidee schon heute möglich machen, ohne dass es eine Zeitmaschine besitzt.

Die Kulevo-Reisen sind zweigeteilt. Während der Tage des Selbsterlebens übernachten die Reisenden in Höhlen, Zelten oder Palästen. Sie lernen typische Aktivitäten kennen. Vom Feuermachen bis hin zum Segeln mit einem originalgetreuen Nachbau.

Während der anderen Hälfte der Reise besuchen die Reisenden Originalschauplätze, Museen und schöne Orte, die das jeweilige Reiseland zu bieten hat. Kulevo engagiert dafür zum Beispiel Archäologen als Reiseführer. Sie bringen die Kunden zu Ausgrabungsstätten und erläutern vor Ort, wie die Menschen dort früher gelebt haben. Durch diese Geschäftsidee soll die Zeitreise zum Bildungsabenteuer werden.

Diese Artikel könnten Sie auch interessieren:

Vom Elevator Pitch zum echten Kontakt: So bleibst du auf Events in Erinnerung

Events sind voll, laut und schnell. Viele Pitches klingen gleich. Was bleibt, sind oft die Zweifel, ob jemand zuhört und ob die Story hängen bleibt. Hier ist ein klarer Plan, mit dem du als Gründer*in nicht nur sprichst, sondern auch lange in Erinnerung bleibst.

Welche Events für Start-ups wichtig sind

Nicht jedes Event bringt dir Reichweite. Große Messen sind gut, um Trends zu sehen und zufällig Investor*innen zu treffen. Kleine Meetups sind oft besser, um echte Gespräche zu führen. Pitch-Wettbewerbe helfen, deine Story zu testen und Sichtbarkeit zu bekommen. Branchenevents bringen dich nah an Kund*innen, die deine Lösung wirklich gebrauchen können. Und dann gibt es noch Netzwerktreffen von Acceleratoren oder Coworking-Spaces - da findest du oft Mentor*innen oder erste Geschäftspartner*innen. Überlege dir vorher: Willst du Investor*innen, Kund*innen oder Sparringspartner*innen treffen? Danach entscheidest du, wo du hingehst.

Vor dem Event: Ziele setzen, Fokus halten

Ein Event ist keine Bühne für endlose Pitches. Es ist ein Spielfeld für Beziehungen. Wer ohne Plan kommt, wirkt schnell beliebig. Deshalb gilt: Vorbereitung ist deine größte Stärke.

Strategische To-dos

1. Definiere dein Ziel: Willst du Investor*innen ansprechen, Kund*innen gewinnen oder Geschäftspartner*innen finden? Du kannst nicht alles gleichzeitig schaffen. Konzentriere dich auf maximal zwei Ziele. So weißt du, wen du ansprechen solltest und wen nicht.

2. Recherchiere die Gästeliste: Viele Events veröffentlichen Speaker*innen oder Sponsor*innen vorab. Schau dir an, wer interessant für dich ist. Markiere drei bis fünf Personen, die du wirklich treffen willst. Bereite eine kurze, persönliche Anknüpfung für jede Person vor. So bist du nicht eine/r von vielen, sondern jemand, die/der sich Mühe gibt.

3. Arbeite an deinem Auftritt: Damit ist nicht nur dein Pitch gemeint. Denk an dein Gesamtbild: Kleidung, Körpersprache, wie du dich vorstellst. Professionell wirkt nicht steif, sondern klar. Auch kleine Dinge zählen, zum Beispiel, ob du leicht erklärst, was dein Startup macht, oder ob du dich in Fachjargon verstrickst.

4. Trainiere deinen Pitch – aber nicht auswendig: Du brauchst keine perfekte Rede. Besser ist, wenn du deine Kernbotschaft so verinnerlicht hast, dass du sie flexibel rüberbringen kannst. Drei klare Punkte reichen: Problem - Lösung - Nutzen. Wenn du das frei variieren kannst, wirkst du authentisch und nicht einstudiert.

5. Plane deinen Erinnerungsanker: Menschen erinnern sich an kleine, konkrete Dinge. Das kann eine Zahl sein, eine kurze Story oder ein visueller Anker wie ein ungewöhnliches Beispiel. Überlege dir vorher, was du nutzen willst, damit dein Gegenüber dich später noch zuordnen kann.

6. Bereite dein Material vor: Visitenkarten wirken altmodisch, sind aber praktisch. Smarter wird es mit einem QR-Code: der führt direkt zu deiner Webseite, deinem Kalender oder einer One-Pager-Landingpage. Wenn du kleine Giveaways einsetzt, dann nur Dinge, die wirklich nützlich sind, z. B. Kugelschreiber oder Notizbücher. Weitere Inspiration findest du hier.

Auf dem Event: Präsenz zeigen, Kontakte knüpfen

Ein Event ist kein Marathon, bei dem du möglichst viele Visitenkarten einsammeln musst. Es geht darum, wie du dich präsentierst, wie du zuhörst und ob andere dich in Erinnerung behalten. Qualität schlägt Quantität – drei gute Kontakte bringen dir mehr als dreißig flüchtige Gespräche.

Sichtbar sein, ohne zu nerven

Stell dich nicht in die Ecke und warte darauf, dass dich jemand anspricht. Such dir bewusst Momente, um auf Leute zuzugehen. Gleichzeitig: niemand mag aufdringliche Monologe oder aggressive Visitenkartenverteilung. Halte die Balance zwischen aktiv und angenehm.

  • Stell dich in die Nähe des Buffets oder der Kaffeemaschine. Dort entstehen oft spontane Gespräche.
  • Lieber fragen „Kann ich mich kurz dazu stellen?“ als ungefragt in eine Gruppe platzen.

Mit einfachen Fragen starten

Small Talk ist nicht belanglos, er ist der Türöffner. Eine einfache Frage reicht, um ins Gespräch zu kommen: „Was hat dich heute hergebracht?“ oder „Welche Session war für dich bisher die spannendste?“. So entsteht ein natürlicher Einstieg, ohne dass du sofort pitchen musst.

Den Pitch flexibel einsetzen

Dein Kurzpitch bleibt wichtig, aber er sollte sich an die Situation anpassen. Investor*innen wollen etwas anderes hören als potenzielle Kund*innen oder Mentor*innen. Die Grundstruktur ist immer gleich – Problem, Lösung, Ergebnis - aber die Betonung wählst du passend zur Person.

  • Beispiel für Investor*innen: „Wir adressieren einen Markt von 2,5 Mrd. € und wachsen aktuell 20% pro Monat.“
  • Beispiel für Kund*innen: „Du verlierst weniger Zeit mit Bestandsplanung, weil alles automatisch läuft.“
  • Beispiel für Mentor*innen: „Wir haben es geschafft, unser MVP in 6 Wochen zu launchen - aber das Onboarding ist noch unser Schwachpunkt.“

Geschichten bleiben hängen

Zahlen sind nützlich, aber Geschichten prägen sich ein. Ein Beispiel aus dem Alltag deiner Nutzer*innen macht dich viel greifbarer als jede Statistik. „Eine Bäckerei, die wir betreuen, musste keine Kund*innen mehr wegschicken, weil die Croissants nie mehr ausgingen.“ Solche Bilder bleiben im Kopf.

Gespräche klar beenden

Viele Gründer*innen wissen nicht, wann sie ein Gespräch beenden sollen. Aber genau das macht dich professionell: Bedanke dich kurz, kündige an, dass du dich meldest, und geh den nächsten Schritt. Zum Beispiel: „Schön, dich kennenzulernen. Ich schicke dir morgen den Link, wie besprochen.“ oder „Ich will dich nicht länger aufhalten, lass uns gern später weiterreden.”. Das zeigt Respekt und macht den Weg frei für ein Follow-up.

Nach dem Event: Dranbleiben statt abtauchen

Das Wichtigste passiert oft erst nach dem Event. Melde dich innerhalb von ein bis zwei Tagen, solange ihr euch beide noch erinnert. Halte deine Zusagen ein und mach es konkret: ein Link, eine Case Study oder ein Termin. Schreib persönlich und nicht generisch. Ein kurzer Bezug zum Gespräch reicht. Und bleib locker: Nicht jede Begegnung führt sofort zu einem Deal, aber wer sich verlässlich meldet, bleibt im Kopf. So machst du aus einem ersten Pitch eine echte Verbindung, die weit über das Event hinausgeht.

Die Rolle von natürlichem Licht in modernen Architekturkonzepten

Natürliches Licht gilt als einer der zentralen Bausteine zeitgemäßer Baugestaltung. Wie moderne Gebäudeplanungen Licht gezielt als formgebendes Element einsetzt.

Architekten und Bauherren setzen zunehmend auf großflächige Fensterfronten, Dachverglasungen oder offene Raumkonzepte, um Innenräume mit ausreichend Helligkeit zu versorgen. Dabei spielt nicht nur die ästhetische Komponente eine Rolle: Tageslicht wird auch mit einem gesunden Lebensumfeld, größerem Wohlbefinden und einer verbesserten Leistungsfähigkeit in Verbindung gebracht. Diese Erkenntnis hat dazu geführt, dass moderne Gebäudeplanungen das Licht gezielt als formgebendes Element einsetzen. Insbesondere in urbanen Gebieten ist der kluge Umgang mit Sonnenlicht eine anspruchsvolle, aber lohnende Aufgabe.

Das wachsende Bewusstsein für Lichtqualität

In jüngster Zeit interessieren sich immer mehr Fachleute für die Optimierung von Gebäudehüllen und deren lichttechnische Eigenschaften. Passende Lösungen entstehen unter anderem durch hochwertige Tageslichtsysteme, die sowohl in ökologischer als auch ökonomischer Hinsicht von Vorteil sind. Dabei wird den Bewohnern oder Nutzern eine angenehme, gleichmäßige Belichtung geboten, ohne dass sie von übermäßigem Wärmeeintrag oder blendendem Sonnenlicht beeinträchtigt werden. Neben der visuellen Wirkung zählt hier auch die thermische Performance: Ein strukturiertes Vorgehen bei der Auswahl von Filtern, Glasarten und Verschattungslösungen begünstigt ein stimmiges Raumklima, das einen hohen Wohn- und Arbeitskomfort generiert.

Architektonische Vielfalt dank Tageslicht

Die Integration von Fenstern, Oberlichtern und transparenten Fassadenelementen ermöglicht eine außergewöhnliche Flexibilität in der Raumgestaltung. Spezialisierte Fachleute beschäftigen sich mit Tageslichtarchitektur, um neue Wege zu eröffnen, Lichtstreuung und -lenkung auf innovative Art zu realisieren. Nicht zuletzt profitieren junge Unternehmen davon, wenn sie derartige Belichtungsaspekte geschickt einsetzen und im Rahmen ihres Marketing-Konzepts die Attraktivität ihrer Räumlichkeiten sichtbar hervorheben. Hohe Räume, diverse Lichtquellen und die gezielte Einbindung von Fassadenelementen geben Bauherren die Möglichkeit, sich an die Bedürfnisse der Nutzerinnen und Nutzer anzupassen und ein stimmiges, einladendes Gesamtbild zu erschaffen.

Energieeffizienz und Gesundheit

Wer auf eine durchdachte Tageslichtplanung setzt, profitiert von einer gewinnbringenden Symbiose aus ökologischem und ökonomischem Mehrwert. Die angemessene Einbindung von Sonnenstrahlen reduziert künstliche Beleuchtung und kann durch sinnvolle Bauphysik -Konzepte auch den Heiz- und Kühlaufwand minimieren. Gleichzeitig enden die Vorzüge nicht bei nachhaltig niedrigen Energiekosten: Studien legen nahe, dass natürliches Licht das Wohlbefinden fördert und geistige Prozesse positiv beeinflussen kann. Indem Räume gleichmäßig und blendfrei ausgeleuchtet werden, profitieren Angestellte oder Bewohner von einer entspannten Atmosphäre, die Stress mindert und Konzentration steigert. Darüber hinaus wirkt ein gutes Lichtkonzept stimmungsvoll und angenehm, was sich auf Motivation und Produktivität auswirken kann.

Materialauswahl und technologische Innovationen

Moderne Bauprojekte setzen häufig auf spezifische Gläser, Membranen und Metallkonstruktionen, um diffuses, aber dennoch ausreichendes Sonnenlicht zu gewinnen. Eine ausgeglichene Balance zwischen Wärmeschutz und Belichtungsintensität bedeutet für Investoren und Planer zugleich höhere Miet- oder Verkaufschancen. Wer in die Praxis blickt, stellt fest, dass sich die Materialinnovation stetig weiterentwickelt: Von mehrschichtigen Isoliergläsern bis hin zu smarten Beschichtungen ist das Angebot überaus reichhaltig. Diese Vielfalt erlaubt Bauherren, ein maßgeschneidertes Konzept zu wählen, das exakte Vorstellungen hinsichtlich Energieeffizienz, Komfort und Design berücksichtigt. Dabei ist die umfassende Beratung durch Spezialisten wesentlich, um jedes Detail zu perfektionieren.

Planungsaspekte für moderne Gebäude

Bei modernen Bauvorhaben lässt sich beobachten, dass Architektinnen und Architekten natürliche Lichtquellen bereits frühzeitig in die Entwürfe einbeziehen. Die Lichtführung, das Zusammenspiel von Ausrichtung und Verschattung sowie die räumlichen Proportionen sind nur einige Faktoren, die für das Gesamtergebnis entscheidend sind. Auch städtebauliche Gegebenheiten wie benachbarte Gebäude oder der vorhandene Baumbestand spielen eine Rolle. Darüber hinaus sind bauordnungsrechtliche Vorschriften zu berücksichtigen, damit der Lichteinfall technisch und rechtlich harmonisch umgesetzt wird. Ein kompetentes Team aus Statikern, Bauphysikern und Designern gleicht diese Parameter untereinander ab.

Gestalterische Freiheit durch Tageslichtlösungen

Da Sonnenlicht eine natürliche Dynamik besitzt, verändert es sich abhängig von Tages- und Jahreszeit. Dieses Wechselspiel bietet Raum für gestalterische Experimente – etwa durch transparente Innenwände, gläserne Verbindungselemente oder spezielle Deckenaufbauten. Somit werden Lichtakzente geschaffen, die verschiedene Bereiche eines Raums hervorheben und ihm eine lebendige, wandelbare Gestalt verleihen. Ob industriell anmutende Lofts oder repräsentative Büroräume mit hellen Gemeinschaftsflächen: Die Anpassungsfähigkeit naturlichter Planungen erlaubt es, Konzepte zu entwickeln, die so einzigartig sind wie ihre Nutzer selbst. Gleichzeitig können Farben, Oberflächenstrukturen und Möblierung die Lichtwirkung verstärken oder abschwächen.

Inspirierende Beispiele aus der Gegenwart

Rund um den Globus existieren Bauwerke, deren Ausstrahlung wesentlich auf der klugen Verwendung von Tageslicht beruht. Museumsbauten, deren Ausstellungsräume großflächig mit Oberlichtern ausgestattet sind, erzeugen eine fast sakrale Atmosphäre. Ebenso gibt es Wohnbaufassaden, die durch neuartige Verglasungstechniken sowohl stilvoll als auch energieeffizient wirken. In vielen Ländern nimmt die öffentliche Hand aktiv Einfluss und fördert Projekte, die eine nachhaltige Lichtgestaltung ermöglichen. Auf diese Weise entsteht eine vielgestaltige Palette architektonischer Ausdrucksformen, bei denen ästhetische und gesundheitliche Bedürfnisse gleichermaßen berücksichtigt werden.

Ausblick auf künftige Entwicklungen

Künftige Baukonzepte werden das Zusammenspiel von Umweltschutz, Nutzungsflexibilität und gesundheitsfördernder Tageslichtgestaltung weiter ausbauen. Forschung und Praxis streben an, energieeffiziente Systeme mit noch intelligenteren Steuerungen zu verknüpfen und so den Lichteinfall in Echtzeit zu regulieren. Überdies ist zu erwarten, dass sich die Verbindung von wetterabhängigen Sensoren, automatisierter Beschattung und innovativen Materialien weiter professionalisiert – was Gebäude für die Bewohnerinnen und Bewohner noch attraktiver macht. So bleibt die Rolle des natürlichen Lichts auch in der kommenden Generation der Architektur ein beständiger Motor für Kreativität, Wohlbefinden und Effizienz.

EU KI-Gesetz wird scharf gestellt

Diese Strafen für KI-Verstöße drohen ab dem 2. August 2025 – was Personalverantwortliche und Arbeitnehmende jetzt wissen und beachten müssen.

Das KI-Gesetz der Europäischen Union, die weltweit erste umfassende KI-Verordnung, erreicht am 2. August 2025 einen entscheidenden Meilenstein. Ab diesem Stichtag gelten für Unternehmen, Behörden und KI-Anbieter*innen in der EU zahlreiche zentrale Verpflichtungen, bei deren Nichteinhaltung Strafmaßnahmen eingeleitet und verhängt werden können. Was das für Unternehmen und ihre Mitarbeitenden bedeutet, erfährst du hier.

Der AI Act, der am 2. Februar dieses Jahres in Kraft getreten ist, schafft einen einheitlichen Rechtsrahmen für Künstliche Intelligenz (KI) in der EU. Zwar werden viele Regelungen erst 2026 wirksam, doch bereits am 2. August 2025 beginnt eine neue Phase, die sich auf drei Bereiche fokussiert:

  • Strafmaßnahmen bei Nichteinhaltung
  • Verpflichtungen für allgemeine General-Purpose-AI-Modelle (GPAI)
  • Aufbau von Aufsicht und Governance auf nationaler und europäischer Ebene

Strafen bis zu 35 Millionen Euro

Seit dem 2. Februar dieses Jahres sind KI-Systeme mit unannehmbaren Risiken verboten. Ab dem 2. August 2025 können zusätzlich nun Geldbußen für Verstöße gegen bereits bestehende Verpflichtungen verhängt werden, die bis zu 35 Millionen Euro oder 7 Prozent ihres gesamten Jahresumsatzes betragen können. Unternehmen müssen dazu beispielsweise sicherstellen, dass ihre Mitarbeitenden über KI-Kenntnisse verfügen. Die Europäische Union erwartet von ihren Mitgliedstaaten, dass sie eigene wirksame, verhältnismäßige und abschreckende Strafmaßnahmen festlegen. Dabei sollen die besonderen Umstände von KMUs und Start-ups berücksichtigt werden, um deren wirtschaftliche Lebensfähigkeit nicht zu gefährden.

Neue Verpflichtungen für Anbieter*innen von GPAI-Modellen

GPAI-Modelle, die ab dem 2. August 2025 in der Europäischen Union vermarktet werden, unterliegen gesetzlichen Verpflichtungen. Das Europäische Amt für Künstliche Intelligenz hat dazu am 10. Juli 2025 die endgültige Fassung der Verhaltenskodizes veröffentlicht. Anbieter*innen solcher GPAI-Modelle müssen unter anderem technische Dokumentationen erstellen, Urheberrechte beachten und Transparenz über die verwendeten Trainingsdaten sicherstellen.

GPAI-Modelle sind KI-Systeme mit besonders breitem Einsatzspektrum und sind darauf ausgelegt, eine Vielzahl von Aufgaben zu erfüllen. Sie werden mit riesigen Datenmengen trainiert und sind entsprechend vielseitig einsetzbar. Das bekannteste Beispiel sind große Sprachmodelle (Large Language Models, LLM), etwa das generative Sprachmodell GPT-4o, das in ChatGPT integriert ist. Für GPAI-Modelle, die bereits vor dem 2. August 2025 in der Europäischen Union auf dem Markt waren, gilt eine Übergangsfirst bis zum 2. August 2027.

Aufsicht und Governance

Die KI-Verordnung schafft einen Rahmen mit Durchführungs- und Durchsetzungsbefugnissen auf zwei Ebenen.

Auf nationaler Ebene muss jeder EU-Mitgliedstaat bis zum 2. August 2025 mindestens eine Marktüberwachungsbehörde sowie eine notifizierende Behörde benennen. Erstere ist für die Überwachung von KI-Systemen zuständig, letztere für die Notifizierung unabhängiger Konformitätsbewertungsstellen. Die Mitgliedstaaten müssen bis dem Stichtag Informationen zu den nationalen Behörden und deren Kontaktdaten veröffentlichen.

Auf EU-Ebene koordinieren das Europäische Amt für KI und der Europäische KI-Ausschuss die Aufsicht. Zusätzlich werden ein Beratungsforum und ein wissenschaftlicher Ausschuss aus unabhängigen Experten eingerichtet.

Was bedeutet das für Personalabteilungen und Arbeitnehmende?

Das KI-Gesetz hat direkte Auswirkungen darauf, wie KI in den Bereichen Rekrutierung, Performance-Management, Personalanalyse und Mitarbeitenden-Monitoring eingesetzt wird. Personalverantwortliche müssen sicherstellen, dass KI-Tools in diesen Bereichen transparent, fair und konform sind.

  • Fairness und Antidiskriminierung: KI-Systeme, die bei Einstellungs- oder Beförderungsentscheidungen eingesetzt werden, müssen nachvollziehbar und frei von Bias sein. Personalabteilungen sollten ihre Tools und Anbieter*innen regelmäßig überprüfen, um die Einhaltung der Vorschriften sicherzustellen.
  • Vertrauen und Transparenz: Mitarbeitende erhalten einen besseren Einblick, wie KI-Systeme ihre Arbeit beeinflussen, zum Beispiel bei der Einsatzplanung, Leistungsbewertung oder bei der Arbeitssicherheit. Personalabteilung können Vertrauen schaffen, indem sie offen kommunizieren, wie KI eingesetzt wird und wie die Daten der Mitarbeitenden geschützt werden.
  • Verantwortlichkeit von Drittanbieter*innen: Werden KI-Tools von Drittanbieter*innen genutzt, müssen Personalabteilungen sicherstellen, dass diese Anbieter*innen die Anforderungen an Transparenz und Dokumentation erfüllen. Verträge und Beschaffungsprozesse sollten entsprechend angepasst werden.
  • Training und Change Management: Mit stärkeren Regulierungen von KI wird die Personalabteilung eine Schlüsselrolle bei der Schulung von Führungskräften und Mitarbeitenden übernehmen. Ziel ist es, einen verantwortungsvollen Umgang mit KI zu fördern und ethische Standards in der Unternehmenskultur zu verankern.

Fazit

Anbieter*innen von GPAI-Modellen, die bereits vor dem 2. August 2025 auf dem Markt waren, haben bis zum 2. August 2027 Zeit, die neuen Vorschriften vollständig umzusetzen. Weitere Verpflichtungen für KI-Systeme mit hohem Risiko werden 2026 und 2027 folgen. Dieser Meilenstein spiegelt das Bestreben der EU wider, Innovationen zu fördern und gleichzeitig sicherzustellen, dass KI sicher, transparent und mit den europäischen Werten im Einklang steht. Damit rückt die Personalabteilung in den Mittelpunkt einer verantwortungsvollen Einführung von KI am Arbeitsplatz.

Der Autor Tom Saeys ist Chief Operations Officer bei SD Worx, einem international tätigen Dienstleistungsunternehmen im HR-Bereich.

Zeit für ein neues Leistungsnarrativ

Warum wir Ambitionen neu denken müssen. Ein Kommentar von Benedikt Sons, Co-Founder und CEO der Cansativa Group.

In Deutschland ist Leistung ein stilles Ver­sprechen. Man bringt sie, spricht aber selten darüber. Wer es doch tut, wird schnell als selbstverliebt, unsolidarisch oder toxisch abgestempelt. Ambition? Gilt bei uns oft als Ego-Trip.

Dabei trifft genau das Gegenteil zu: Ambitionen sind der Motor des Fortschritts. Will heißen – ohne Ambitionen treten wir auf der Stelle. Können wir uns das, können wir uns ein Denken, dass Leistung ein Ego-Trip ist, heute noch erlauben? In einer Zeit, die von multiplen geopolitischen Spannungen geprägt ist?

Wir diskutieren über die Vier-Tage-Woche. Obwohl wir international an Boden verlieren und andere Länder Tempo machen, Innovation finanzieren und mutig skalieren. Deutschland? Spricht über „Entschleunigung“ und über Work-Life-Balance als übergeordnetes Ziel. Dabei geht es meiner Meinung nach nicht um weniger Arbeit, sondern um die Frage: Wofür lohnt es sich, Leistung zu bringen – und wie schaffen wir es, das Beste aus Menschen herauszuholen, ohne sie zu verheizen?

Also: Wie kommen wir da hin, dass sich Leistung wieder gut anfühlt?

Leistung: Zwischen Burnout-Mythos und Selbstoptimierungswahn

Das gegenwärtige Leistungsbild pendelt zwischen zwei Polen: Auf der einen Seite der ausgebrannte Consultant, der sein Leben für ein Projekt opfert. Auf der anderen Seite die Influencer-Ästhetik, in der jeder Tag „High Performance“ verspricht, solange die richtige Morgenroutine stimmt.

Beides ist Unsinn. Beides ist egozentriert. Beides ignoriert, worum es wirklich geht: Leistung als kollektives Ziel, als Ausdruck von Sinn, von Teamgeist, von etwas, das größer ist als man selbst. Wenn wir es schaffen, Leistung als etwas Verbindendes zu begreifen, als Teamgedanken – nicht als Konkurrenz –, dann entsteht neben Erfolg auch Identifika­tion.

Ambitionen sind kein Makel – sie sind Orientierung

Wir müssen wieder lernen, uns mit ambitioniertem Handeln zu identifizieren. Deutschland ist ein Land voller Talente – aber oft auch voller Zweifel. Was fehlt, ist ein klarer Rahmen: Wo wollen wir hin? Wer sind unsere Vorbilder? Und warum lohnt es sich überhaupt, den Sprint aufzunehmen?

Diese Fragen betreffen unser gesamtes Wirtschaftsverständnis. Wir brauchen mehr Mut, klare Ziele zu formulieren. Und wir brauchen den Willen, sie offen zu verfolgen.

Start-up-Kultur: Hardcore oder Heilsbringer?

Start-ups sind Meister darin, ein klares, übergeordnetes Ziel zu formulieren – und mit dem unerschütterlichen Antrieb einer Rakete arbeiten sie gerade zu Beginn mit vollem Schub darauf hin. Gleichzeitig sind Start-ups der Inbegriff von Überforderung: lange Tage, kurze Nächte, wenig Absicherung. Manche glorifizieren diesen Zustand, andere verdammen ihn. Die Wahrheit ist: Start-up ist ein Überlebenskampf, aber auch eine Schule für Fokus, Disziplin und Priorisierung. Mein alter Physiklehrer sagte: „Leistung ist Arbeit pro Zeit.“ Und genau darum geht es. Nicht um den Dauer-Hustle, sondern um kluge, fokussierte Arbeit.

Daher braucht die deutsche Wirtschaft ein Ökosystem, das Hochleistung fördert – ohne Burnout zu belohnen. In dem man mit hoher Schlagzahl arbeitet, aber nicht daran zerbricht. Studien zeigen: Ja, die Belastung im Start-up-Sektor ist hoch – längere Arbeitszeiten, geringere Gehälter, weniger Sicherheit. Besonders Frauen sind oft benachteiligt.

Aber: Die Offenheit für neue Arbeitsmodelle ist ebenfalls höher. Viele Start-ups bieten flexiblere Strukturen, Homeoffice, Fokus-Zeiten, Purpose-getriebenes Arbeiten – also eine Umgebung, die mehr bietet als den klassischen „9-to-5“-Job. Damit machen sie einen entscheidenden Unterschied gegenüber Traditionsunternehmen, die eher auf feste Arbeitszeiten und Bürokultur setzen.

Innovation braucht Raum, kein Sicherheitsdenken

Apropos Traditionsunternehmen: Ich glaube, dass in einem überregulierten Ökosystem die Innovation auf der Strecke bleibt. Wer bei jedem Schritt Angst vor Fehlern hat, wird keine Risiken eingehen. Doch Innovation ohne Risiko gibt es nicht. Unternehmen, die keine Fehler machen wollen, machen auch keine Fortschritte.

Hier ist ein Umdenken gefragt – auch politisch. Wer heute in Deutschland ein Unternehmen gründet, sieht sich mit einer Bürokratie konfrontiert, die oft mehr lähmt als schützt. Gleichzeitig verlieren wir im internationalen Wettbewerb – weil andere Länder schneller, pragmatischer und technologieoffener agieren. Innovation verlangt Raum, Geschwindigkeit – und eine Kultur für Gründer*innen und Investor*innen, in der sie schnell skalieren können.

Europas Chance: Der Weg der Qualität

Der Inbegriff für schnelles Skalieren sind China und die USA. Während China auf Masse setzt und die USA auf Kommerzialisierung, hat Europa die Chance, einen eigenen Weg zu gehen: mit Qualität und gesellschaftlicher Einheit als Alleinstellungsmerkmal. Europa ist eine der wenigen Regionen, in der wirtschaftlicher Erfolg mit sozialer Verantwortung verbunden wird. Wir haben Zugang zu Spitzenforschung, zu klugen Köpfen, zu funktionierenden Institutionen. Was uns fehlt, ist der Mut zur schnellen Umsetzung.

Wir brauchen mehr Kommerzialisierung, ohne unsere Werte zu verlieren. Wir brauchen mehr Tempo, ohne Menschen zu überfordern. Und wir benötigen ein neues Narrativ, das Leistung nicht als toxisch, sondern als Teil einer starken Gesellschaft begreift.

Warum der Leistungsanspruch tief im Unternehmen verankert sein muss

Mehr Tempo, kluge Köpfe, ein Team: Wie gut dieser Dreiklang für mehr Leistung funktioniert, zeigt die Geschichte von Cansativa selbst. 2017 mit wenig Kapital gegründet, haben mein Bruder Jakob und ich früh auf Geschwindigkeit und Umsetzung gesetzt. Während andere noch in Businessplänen dachten, organisierten wir die ersten Importe von Medizinalcannabis, navigierten durch eine regulatorisch hochkomplexe Landschaft und bauten eine Plattform auf, die heute Marktführer in Deutschland ist.

Dass wir vom Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM) den Zuschlag für die Distribution von in Deutschland angebautem Cannabis erhielten, war kein Zufall, sondern Ergebnis von Expertise, strategischer Schärfe und kompromissloser Arbeit. Inzwischen haben wir über 2500 B2B-Kund*innen, ein eigenes Produktportfolio, ein starkes Partnerschaftsnetzwerk und wachsen mit jeder regulatorischen Veränderung weiter. Nicht weil wir Glück hatten, sondern weil wir Leistung als Haltung verstehen.

Ambition braucht Anerkennung

Deshalb fordere ich: Deutschland muss lernen, Ambitionen nicht zu fürchten, sondern zu fördern. Denn wer Leistung immer nur mit Egoismus, Selbstausbeutung oder Ellenbogenmentalität gleichsetzt, nimmt sich die Chance auf echten Fortschritt. Leistung ist kein Selbstzweck – sie ist ein Beitrag zum Wirtschaftswachstum Europas. Sie ist Ausdruck von Haltung, Verantwortung und dem Willen, Dinge besser zu machen. Gefragt ist ein gesellschaftliches Klima, in dem es willkommen ist, Großes zu wollen. Und in dem diejenigen, die sich anstrengen, auch Rückenwind bekommen – nicht Gegenwind.

Unser Unternehmen ist nur ein Beispiel dafür, was möglich ist, wenn Menschen Verantwortung übernehmen und mit einem klaren Ziel handeln. Der Erfolg ist kein Zufall, sondern das Ergebnis einer gelebten Leistungskultur, die nicht auf Kontrolle, sondern auf Klarheit basiert. Und auf dem Mut weiter­zumachen, gerade wenn der Weg steinig ist.

Es ist Zeit, dass wir in Deutschland – und in Europa – ein neues Kapitel aufschlagen. Eines, in dem Ambition der Antrieb ist, in dem Leistung nicht verdächtig, sondern wertvoll ist. Und in dem wir verstehen: Zukunft entsteht dort, wo Menschen nicht fragen, was gerade bequem, sondern was möglich ist.

Was Unternehmen über KI-Agenten wissen müssen

Künstliche Intelligenz in Form autonomer Agenten gewinnt rasant an Bedeutung. Doch wie arbeiten diese KI-Agenten? Was ist bei der Umsetzung zu beachten? Hier gibt's die Antworten.

Die Idee, dass autonome Systeme eng mit Menschen zusammenarbeiten und sie gezielt unterstützen, ist keine Vision mehr, sondern Realität. Während bisher eine umfassende Problemlösungskompetenz im Hintergrund fehlte, bringen KI-Agenten genau diese Fähigkeit mit und übernehmen zunehmend vielfältige Aufgaben in der Arbeitswelt. Wir erklären, was Unternehmen über KI-Agenten wissen müssen.

Was sind KI-Agenten und auf welcher Technologie basieren sie?

KI-Agenten sind Softwaresysteme, die eigenständig Aufgaben ausführen, aus Erfahrungen lernen und dynamisch mit ihrer Umgebung interagieren. Ihr Ziel ist es, Aufgaben autonom zu lösen, ohne dass ein kontinuierliches menschliches Eingreifen notwendig ist. Im Unterschied zu herkömmlichen Automatisierungslösungen bewältigen KI-Agenten selbst komplexe Anforderungen, indem sie sich an neue Bedingungen anpassen. Auch werden sie im Gegensatz zu universellen LLMs in der Regel fein abgestimmt, um Relevanz und Datenschutz zu gewährleisten. Sinnvoll ist eine kontextbezogene Architektur, die kausale KI, Document AI und multimodale Logik kombiniert und damit optimal auf geschäftliche Anwendungsfälle zugeschnitten ist.

In welchen Bereichen der Arbeitswelt entfalten KI-Agenten ihr Potenzial?

KI-Agenten finden in nahezu allen Unternehmensbereichen Einsatzmöglichkeiten – von der Beantwortung einfacher Anfragen bis hin zur Steuerung komplexer Prozesse. Eingebettet in CRM-Plattformen analysieren sie riesige Datenmengen, die Unternehmen manuell nicht mehr auswerten können. Anstatt die Ergebnisse lediglich zu präsentieren oder Kontakte nach Prioritäten zu sortieren, qualifizieren KI-Agenten auch noch automatisch Leads, schlagen passende Angebote vor und beantworten Kundenanfragen. Oder anders formuliert: Während herkömmliche Tools in der Regel auf statischen Wenn-dann-Regeln basieren, führt die neue Generation hyperpersonalisierte Aktionen nahezu in Echtzeit aus. Diese Entwicklung entlastet Mitarbeiter von Routineaufgaben und gibt ihnen Raum, sich auf strategisch wichtige Aufgaben zu konzentrieren. Unternehmen wiederum können ohne großen Aufwand Tausende von Kunden individuell betreuen.

Werden KI-Agenten den Arbeitsmarkt verändern?

Diese Frage lässt sich nicht pauschal beantworten. Es entstehen durch den verstärkten Einsatz von KI-Lösungen neue Berufsfelder – insbesondere bei der Entwicklung, Integration und Wartung solcher Agentensysteme werden qualifizierte Fachkräfte benötigt. Gleichzeitig stellt sich die Herausforderung, bestehende Mitarbeitende gezielt im Umgang mit diesen Technologien weiterzubilden und deren digitale Kompetenzen auszubauen. Eines muss klar sein: Das Ziel von KI-Agenten ist es nicht, menschliche Arbeitskraft zu ersetzen, sondern deren Fähigkeiten zu erweitern. Mitarbeitende können sich somit stärker auf komplexe Kundeninteraktionen oder die Entwicklung innovativer Kampagnen konzentrieren, während ihnen die KI zur Hand geht.

Worauf müssen Unternehmen bei der Auswahl von KI-Agenten-Lösungen achten?

In erster Linie benötigen sie eine digital ausgereifte Umgebung mit einheitlichen Datenformaten, optimierten Prozessen und regelbasierten Automatisierungen, um den ROI steigern zu können. Anschließend müssen sie sicherstellen, dass ihre KI-Systeme den geltenden Datenschutzbestimmungen entsprechen und sensible Kund*innendaten optimal geschützt sind. Transparenz und Nachvollziehbarkeit der KI-Entscheidungen sind ebenfalls essenziell, um das Vertrauen von Kunden und Mitarbeitenden nicht zu gefährden. Auf technischer Seite ist eine interoperable Lösung notwendig, die sich so nahtlos wie möglich in die bestehende IT-Umgebung integrieren lässt. Zu den weiteren Aspekten zählen die Priorisierung der kontextuellen Abstimmung, da Agenten geschäftsspezifische Arbeitsabläufe und Datenformate verstehen müssen, sowie die Nutzung eines Federated-Model-Ansatzes statt einheitlicher LLM-Frameworks, um Effizienz, Erklärbarkeit und Kosten zu optimieren.

Wie binden Unternehmen ihre Mitarbeitenden am besten ein?

Zunächst einmal ist ein grundlegendes Change Management erforderlich. Die Mitarbeiterinnen und Mitarbeiter müssen verstehen, dass die KI ihnen nicht die Arbeit wegnimmt, sondern sie unterstützen soll. Sinnvoll ist auch ein Low-Code-Ansatz: Maßgeschneiderte KI-Applikationen und automatisierte Workflows steigern die Arbeitseffizienz in Abteilungen um ein Vielfaches – sogar Mini-Anwendungen, die lediglich einfache Aufgaben übernehmen. Jedoch können zentrale IT-Abteilungen, die mit Entwicklungsanfragen aus verschiedenen Abteilungen überhäuft werden, diese kaum bewältigen. Mit einer Low-Code-Application-Plattform (LCAP) können auch Mitarbeiter ohne Programmierkenntnisse einfache KI-Anwendungen selbst erstellen. Möglich machen das einfache Drag-and-Drop-Optionen und vorgebaute Module, die je nach Wunsch kombinierbar sind.

Fazit

KI-Agenten sind als kollaborative Partner zu verstehen, nicht als Ersatz für den Menschen. Künftig werden wir eine Multi-Agent Collaboration sehen. Hierbei übernehmen verschiedene KI-Agenten jeweils Spezialaufgaben und koordinieren sich untereinander, um selbst die komplexesten Herausforderungen effizient zu lösen.

Der Autor Sridhar Iyengar ist Managing Director von Zoho Europe.

5 Tipps für GPT-Sichtbarkeit im Netz

Warum klassisches SEO allein nicht mehr ausreicht und wie Unternehmen für die KI-Antworten der GPT-Modelle sichtbar werden.

Die Spielregeln der digitalen Sichtbarkeit werden gerade neu geschrieben – und die Unternehmen müssen sich neu aufstellen. Denn während viele Unternehmen ihre Strategien noch immer ausschließlich auf Google-Rankings und SEO-Kriterien ausrichten, verlagert sich die digitale Aufmerksamkeit längst in Richtung KI: Sprachmodelle wie ChatGPT, Claude oder Gemini ersetzen zunehmend die klassische Suche. Sie liefern keine Trefferlisten mehr, sondern direkte, aufbereitete Antworten – oft mit konkreten Empfehlungen und Verlinkungen. Für Marken, Produkte und Unternehmen wird es damit entscheidend, in diesen zusammengefassten Antworten stattzufinden.

Suchmaschinen waren gestern das führende Element in der Sortierung von Wissen im Netz und vor allem das Google-Ranking war entscheidend für die Sichtbarkeit von Informationen und Seiten. In Zukunft entscheiden dagegen Sprachmodelle darüber, welche Inhalte gesehen, zitiert und empfohlen werden. Und wer in diesen Systemen nicht genannt wird, verliert den direkten Draht zur Zielgruppe.

Diesen Paradigmenwechsel vom Google-Ranking zur Antwortlogik hat die SMAWAX, die auf Strategieberatung spezialisierte Agentur der Smarketer Group, erstmals systematisch im Rahmen eines Whitepapers analysiert (s. Link am Ende des Beitrags). Die Expert*innen erklären dabei detailliert, wie GPT-Modelle Inhalte auswählen – und welche Inhalte von den Systemen überhaupt referenziert werden dürfen. Die zentrale Erkenntnis: Suchmaschinenoptimierung nach alten Regeln greift zu kurz, ist aber weiterhin die Sichtbarkeitsgrundlage. Denn Sprachmodelle wie ChatGPT denken nicht in Keywords und Rankings, sondern in semantischen Relevanzräumen, Entitätenbeziehungen und struktureller Klarheit.

Inhalte müssen modular und semantisch präzise sein – doch das reicht nicht

Es geht nicht mehr um Top-Rankings – es geht darum, die richtige Antwort zu sein. Wir müssen SEO neu denken – als Schnittstelle zwischen Struktur, Relevanz und maschinellem Verstehen. Inhalte müssen dazu maschinenlesbar, modular aufgebaut und semantisch präzise sein. Nur dann haben Unternehmen eine Chance, in den Empfehlungslogiken von Claude, GPT & Co. aufzutauchen.

Besonders überraschend ist dabei aber, dass viele Unternehmen in GPT-Antworten zwar durchaus latent präsent, aber nicht sichtbar sind. Der Grund hierfür sind unscharfe Entitäten, fehlende „About“-Seiten, keine Verankerung in externen Quellen wie Wikidata, Trustpilot oder LinkedIn. Die Folgen wirken sich negativ auf die Marken aus und sorgen für Fehlinformationen: KI-Modelle verwechseln Marken, halluzinieren Funktionen oder verschweigen relevante Angebote. Halluzinationen sind in Wahrheit ein strategischer Hinweis auf Unsichtbarkeit. Wenn GPT ein Produkt falsch beschreibt oder dich mit einem Mitbewerber verwechselt, zeigt das: Deine Inhalte sind zwar irgendwo im Modell – aber nicht stabil genug verankert, um korrekt genannt zu werden.

Fünf konkrete Hebel für bessere GPT-Sichtbarkeit

Diese praxisnahe Handlungsempfehlungen können Unternehmen sofort umsetzen können – unabhängig davon, ob sie im B2B- oder B2C-Bereich aktiv sind.

1. Entitäten definieren: Jede Marke braucht heute eine kanonische „About“-Seite, ergänzt um ein Wikidata-Profil, semantische Markups und gleiche Namensverwendungen auf Plattformen wie LinkedIn oder Handelsregister.

2. Aktualität signalisieren: GPT-Modelle bevorzugen Inhalte mit klaren Update-Daten (z.B. dateModified). Ohne erkennbaren Pflegezustand gelten Inhalte als veraltet – und werden ausgefiltert.

3. Bing wird zum Gateway: Weil GPT seine Websuche auf Bing stützt, ist dessen Indexierung entscheidend. Wer dort nicht sauber auffindbar ist, existiert in GPT-Antworten nicht.

4. Content chunkbar machen: Inhalte sollten nicht mehr aus langen Fließtexten bestehen, sondern in modularen Blöcken mit H2-Strukturen, Listen und Zwischenfazits aufgebaut sein.

5. Externe Signale einbinden: Erwähnungen auf Trustpilot, Reddit oder in der Fachpresse stärken die semantische Autorität – und erhöhen die Chance, von Sprachmodellen zitiert zu werden.

Fazit

Die neue Sichtbarkeit entsteht durch das, was das Modell nicht selbst erzeugen kann – sie entsteht also nicht über Rankings, sondern über Relevanzräume. Wer auf Standard-Content setzt, wird paraphrasiert oder übergangen. Wer dagegen einzigartigen, strukturierten und technisch klaren Content liefert, wird empfohlen.

Zum Weiterlesen: Das Whitepaper steht zum kostenlosen Download bereit unter www.smawax.com/whitepaper-ki-sichtbarkeit

KI clever eingesetzt: Können deutsche Entwickler ihre App-Ideen mit Vibe Coding umsetzen?

Wie Vibe Coding, eine neue KI-gestützte Methode der App-Entwicklung, es heute deutlich einfacher macht, aus einer Idee ein funktionierendes digitales Produkt entstehen zu lassen.

Die Zeiten, in denen man für die Umsetzung einer App monatelang ein Entwicklerteam zusammenstellen, riesige Budgets planen und unzählige Meetings überstehen musste, scheinen langsam zu verblassen. Vibe Coding, eine neue KI-gestützte Methode der App-Entwicklung, macht es Gründern und kreativen Köpfen in Deutschland heute deutlich einfacher, aus einer Idee ein funktionierendes digitales Produkt entstehen zu lassen.

Was steckt hinter Vibe Coding?

Vibe Coding nutzt künstliche Intelligenz, um auf Basis einfacher Sprache Code zu erzeugen. Statt eine App Zeile für Zeile zu programmieren, beschreibt man, was sie können soll. Die KI wandelt diese Wünsche in Code um, der sich dann weiter anpassen und verfeinern lässt. Anders als bei klassischen No-Code-Plattformen entstehen keine bloßen Baukastenlösungen, sondern anpassbarer, individuell nutzbarer Code.

Im Unterschied zu Low-Code-Ansätzen braucht es keine aufwendige UI und keine grafische Umgebung, in der man mühsam Komponenten zusammensetzt. Stattdessen genügt es, der KI präzise zu erklären, welches Ergebnis angestrebt wird. Das spart nicht nur Zeit, sondern eröffnet auch Menschen ohne tiefgehendes Technikverständnis ganz neue Möglichkeiten.

Aktuell eignet sich dieser Ansatz besonders für die Entwicklung von Prototypen, Minimum Viable Products und überschaubaren Business-Apps. Wer dagegen komplexe Anwendungen mit tiefen Backend-Strukturen, Hochsicherheitsanforderungen oder extrem hoher Nutzerlast plant, stößt mit Vibe Coding derzeit noch an natürliche Grenzen. Doch für den ersten Schritt in die App-Welt ist dieses Werkzeug so vielversprechend wie kaum ein anderes.

Wie KI-basierte Entwicklung neue Möglichkeiten für Gründer eröffnet

In der Praxis bedeutet das: Was früher ein ganzes Entwicklerteam beschäftigt hätte, kann heute oft in wenigen Tagen oder sogar Stunden entstehen. Vibe Coding verkürzt die Entwicklungszeiten deutlich, die ersten funktionsfähigen Entwürfe stehen schneller zur Verfügung als je zuvor.

Nicht zu unterschätzen ist dabei auch die finanzielle Seite. Wo man früher fünfstellige Summen investieren musste, genügt heute oft ein Bruchteil davon, um einen ersten lauffähigen Prototypen zu testen. Damit wird der Einstieg in die App-Entwicklung auch für Gründer ohne Tech-Hintergrund realistischer. Kein Zwang mehr, einen CTO an Bord zu holen oder teure Agenturen zu engagieren.

Gerade in Deutschland, wo Gründungsteams häufig an fehlender Entwicklerkapazität scheitern, eröffnet diese Entwicklung eine völlig neue Dynamik. Wer eine gute Idee hat, kann sie dank Vibe Coding sehr viel leichter in die Realität umsetzen. Das fördert die Innovationskultur und macht Platz für mehr mutige Experimente.

Ein Beispiel, das hier besonders hervorsticht, ist die Founders Foundation in Ostwestfalen-Lippe. Mit gezielten Programmen und Workshops unterstützt sie Gründerinnen und Gründer dabei, KI-gestützte Methoden sinnvoll einzusetzen und so eigene digitale Produkte schneller auf die Straße zu bringen. Genau solche Impulse tragen dazu bei, dass sich der Trend immer stärker durchsetzt.

Welche deutschen Start-ups zeigen bereits, was mit KI und No-Code möglich ist?

Dass das alles keine Theorie mehr ist, sondern in deutschen Gründungszentren längst gelebt wird, zeigen einige aktuelle Beispiele sehr anschaulich. Leaping AI aus Berlin etwa entwickelt Voicebots, die im Kundenservice 70 Prozent aller Anfragen automatisiert beantworten. Eine Anwendung, die ohne moderne KI-Tools in dieser Geschwindigkeit und Qualität wohl kaum möglich wäre.

Auch qru aus Stuttgart beweist, was möglich ist. Mit ihren Videomarketing-Tools, die auf einem cleveren Mix aus Low-Code und KI basieren, können selbst kleinere Unternehmen ihre Marketingprozesse automatisieren und professionell gestalten, ohne dafür eine eigene IT-Abteilung zu benötigen.

Ein drittes Beispiel: Paul’s Job, ein Berliner Startup, das HR-Prozesse mit agentischer KI unterstützt. Recruiting und Personalverwaltung laufen dort in weiten Teilen automatisiert, was Gründern wie Personalabteilungen jede Menge Zeit und Nerven spart.

Diese und ähnliche Projekte zeigen deutlich, dass Vibe Coding und vergleichbare Methoden längst ihren Weg in die praktische Nutzung gefunden haben. Die Technologie entwickelt sich dabei so schnell weiter, dass immer mehr Gründer den Mut fassen, ihre App-Ideen mit solchen Ansätzen umzusetzen.

Warum die App-Entwicklung perspektivisch günstiger wird

Ein Blick auf die allgemeine Marktentwicklung macht schnell deutlich: App-Entwicklung wird in den kommenden Jahren noch günstiger und einfacher werden. Mit jedem Fortschritt der KI sinken die Kosten für die technische Umsetzung, gleichzeitig steigen die Möglichkeiten, individualisierte Lösungen zu entwickeln.

Das hat Folgen, insbesondere für kleinere und spezialisierte Anbieter. Wo früher nur große Unternehmen eigene Apps auf den Markt bringen konnten, öffnet sich der Zugang nun auch für kleinere Player. Gerade in Nischenmärkten entstehen so neue Chancen.

Ein besonders interessantes Feld ist aktuell der Gambling-Sektor. Lange Zeit galten die hohen Entwicklungskosten als Einstiegshürde für viele Anbieter. Inzwischen zeigt sich jedoch, dass speziell in diesem Bereich vermehrt Apps auf den Markt kommen, weil die technische Umsetzung dank KI-Tools deutlich günstiger geworden ist.

Aber nicht nur im Glücksspiel-Markt tut sich etwas. Health und Fitness, E-Learning, Content Creation sowie regionale Dienstleistungen profitieren in ähnlicher Weise von den neuen Möglichkeiten. Über Smartphones und Tablets gelangen viele dieser Lösungen direkt zu den Nutzern und ermöglichen eine viel engere Bindung als klassische Webanwendungen.

Wo klassische Entwicklerkompetenz weiterhin unverzichtbar bleibt

Natürlich hat auch Vibe Coding seine Grenzen. Gerade wenn es um anspruchsvolle Architektur, komplexe Backend-Systeme oder hochskalierbare Anwendungen geht, kommt man ohne erfahrene Entwickler nach wie vor nicht aus.

KI generiert Code auf Basis von Wahrscheinlichkeiten, was in der Praxis immer wieder zu fehlerhaften oder ineffizienten Strukturen führen kann. Qualitätssicherung, Testing und fundiertes Architekturwissen bleiben deshalb unerlässlich, sobald eine App mehr sein soll als ein einfaches MVP.

Auch bei Themen wie Performance, Sicherheit und Datenschutz kann KI derzeit noch nicht mithalten. Hier braucht es das Know-how klassischer Entwickler, um Anwendungen stabil und vertrauenswürdig zu machen.

Gerade für Anwendungen im Finanz- oder Gesundheitsbereich, wo hohe regulatorische Standards erfüllt werden müssen, bleibt der menschliche Faktor entscheidend. Vibe Coding ist ein fantastisches Werkzeug für den schnellen Einstieg und die Umsetzung erster Ideen, doch auf dem Weg zu einem ausgereiften Produkt wird klassisches Engineering weiterhin eine tragende Rolle spielen.

Vibe Coding bringt frischen Wind in die App-Entwicklung

Vibe Coding verändert die Art, wie in Deutschland Apps entstehen, in rasantem Tempo. Prototypen und erste marktfähige Tools lassen sich heute so schnell und günstig umsetzen wie nie zuvor. Für viele Gründer ohne Tech-Hintergrund eröffnen sich dadurch Möglichkeiten, die es vor wenigen Jahren schlicht nicht gab.

Die Beispiele aus der Startup-Szene zeigen eindrucksvoll, wie die neuen Werkzeuge bereits eingesetzt werden. Gleichzeitig bleibt klar: Für echte Skalierung, Sicherheit und Performance führt an klassischem Entwicklerwissen kein Weg vorbei.

Die Zukunft gehört wahrscheinlich zu einem hybriden Ansatz, bei dem KI als mächtiges Assistenzwerkzeug fungiert und Entwickler sich auf das konzentrieren, was KI noch nicht zuverlässig beherrscht. So entsteht Raum für mehr Innovation, mehr mutige Ideen und letztlich mehr spannende Apps. Und genau das dürfte der deutschen Tech-Szene mehr als guttun.

Circunomics startet eigenes Batterie-Testlabor

Die Circunomics-Gründer Felix Wagner und Jan Born haben sich das Ziel gesetzt, eine zirkuläre Batteriewirtschaft zu etablieren, indem sie einen digitalen Marktplatz für den Second-Life-Einsatz und das Recycling gebrauchter Batterien bieten. Mit der Einrichtung des eigenen Batterie-Testlabors setzt das Start-up mit Hauptsitz Mainz seine Expansion fort.

„Die Kreislaufwirtschaft ist in Zukunft von immer größerer Bedeutung. Dies ist für uns die große Chance, mit dem digitalen Marktplatz für gebrauchte Batterien, Module und Zellen eine herausragende Position einzunehmen“, sagt Felix Wagner, Co-Founder und CEO von Circunomics. „Im Jahr 2030 werden alleine im Automobilsektor zwischen 200 und 300 Millionen Elektrofahrzeuge auf den Straßen der Welt unterwegs sein. Das bedeutet, dass dann jedes Jahr etwa sechs Millionen gebrauchte Batterien als Rückläufer aus Altfahrzeugen auf den Markt kommen. Diese wiederzuverwenden oder gezielt zu recyclen ist eine Mega-Aufgabe, die gelöst werden muss. Schließlich haben wir alle ein Ziel: Weniger CO2 zu produzieren und weniger der wertvollen, seltenen Rohstoffe zu verbrauchen.“

Battery Lifecycle Management Solution

Die Ergebnisse KI-basierter Analysen von gebrauchten Batterien, die beispielsweise in elektrischen Fahrzeugen verwendet werden, mit selbst ermittelten Laborwerten aus einer Real-Life-Simulation abgleichen, trainieren und verifizieren: Das ist die Aufgabe des neuen Batterie-Testlabors, das vom Start-up Circunomics in Roßdorf bei Darmstadt eingerichtet wurde und jetzt seinen Betrieb vollumfänglich aufgenommen hat.

Die 2019 gegründete Circunomics GmbH ist damit in der Lage, eine Datenbasis für die selbst entwickelte Software aufzubauen, die wiederum genutzt wird, um den Gesundheitszustand (State of Health) einer gebrauchten Batterie während und nach einer Erstverwendung (First Life) sehr präzise zu ermitteln. Vielmehr aber kann detailliert simuliert und hochgerechnet werden, wie sich die gebrauchte Batterie bei einer Zweitverwendung (Second Life) zum Beispiel in einem stationären Speichersystem verhält. Zudem kann eine Empfehlung ausgesprochen werden, welche Batterien für das jeweilige Projekt am besten geeignet sind.

Mit der Einrichtung des Batterie-Testlabors setzt das Start-up mit Hauptsitz Mainz seine Expansion fort, die nach einer erfolgreich durchgeführten Series-A-Finanzierungsrunde möglich ist. Zu Jahresbeginn 2025 hatte Circunomics von Investor*innen über acht Millionen Euro erhalten.

Real-Life-Simulation im Testlabor

Im neuen Batterie-Testlabor in Roßdorf können je nach Bedarf und Programm verschiedene Zellen gleichzeitig in einer sicher abgeschirmten Prüfeinrichtung untergebracht und unterschiedlichsten Belastungen ausgesetzt werden. Es erfolgt eine umfangreiche Real-Life-Simulation täglicher Batterienutzungssituationen beispielsweise in einem Elektrofahrzeug: Schnell oder langsam aufeinander folgende Ladezyklen, unterschiedliche Ladestromstärken mit bis zu 300 Ampere Gleichstrom, verschiedene Degradierungszustände der Batterie und das Ganze – wenn notwendig – bei unterschiedlichen Temperaturen. Möglich ist eine Temperaturspanne von minus 20 bis plus 60 Grad Celsius. Die jeweiligen Tests der Zellen können über einen kurzen, mittleren oder längeren Zeitraum durchgeführt werden. Das können wenige Tage, Wochen und Monate, aber auch bis zu zwei Jahre sein.

„Bisher haben wir die Zellen von einem externen Dienstleister analysieren lassen. Diese Aufgaben nehmen wir jetzt selbst in die Hand, erhöhen damit unsere Effizienz, sind schneller mit dem Abgleich von Daten, wodurch wir in der Lage sind, unsere Simulationen und Hochrechnungen für eine Verwendung im Second Life noch genauer und zuverlässiger anbieten zu können“, erklärt Jan Born, Co-Founder und CTO von Circunomics. Und ergänzt: „Wir haben einerseits Millionen von Daten, die während des First Life einer Batterie gesammelt werden und die uns zur Verfügung gestellt werden. Auf dieser Basis haben wir bisher mit der KI-unterstützten Software am Computer analysiert, was die gebrauchte Batterie noch im Stande ist, im Second Life zu leisten, bevor sie dann endgültig dem Recycling zugeführt wird. Im neuen Labor und mit den eigenen Analysen sehen wir nun, wie sich eine Zelle im simulierten Batterieleben verhält und wir können die dabei ermittelten Ergebnisse, mit denen aus der Software abgleichen und verifizieren.“

KI-Übergangsphase: Fluch und Segen

Zwischen Wundermaschine und Blackbox – Warum wir gerade in einer KI-Übergangsphase leben und was das generell für das Marketing bedeutet.

Künstliche Intelligenz (KI) verändert gerade in rasantem Tempo unsere Welt. Sie automatisiert Prozesse, entlastet Teams, liefert Analysen in Echtzeit und ermöglicht einen bisher nicht gekannten Grad an Personalisierung. Wer heute im Marketing arbeitet, kommt an KI nicht mehr vorbei – sei es beim Texten von Werbebotschaften, beim Targeting, in der Bildgenerierung oder der Erfolgsmessung.

KI verspricht Effizienz, Präzision und neue kreative Möglichkeiten. Doch die Euphorie wird zunehmend begleitet von einer neuen, ernüchternden Erfahrung: Künstliche Intelligenz kann auch Nutzererlebnisse verschlechtern, Prozesse intransparent machen – oder gar ganze Geschäftsmodelle gefährden. Der technologische Fortschritt ist zweifellos da, doch gesellschaftlich, wirtschaftlich und kulturell befinden wir uns noch mitten in einer Übergangsphase. Und das birgt Risiken – nicht nur für Plattformen, sondern auch für Unternehmen, die sie nutzen.

Beispiel Pinterest: Wenn der Algorithmus plötzlich entscheidet

Ein aktuelles Beispiel liefert Pinterest: Die visuelle Such- und Inspirationsplattform setzt verstärkt auf KI, um Inhalte effizient zu kategorisieren, Hassrede zu erkennen, urheberrechtlich geschützte Werke zu markieren oder Spam zu unterbinden. Was auf dem Papier sinnvoll und zukunftsgerichtet klingt – ein moderner „Content Safety Stack“ mit automatisierter Moderation –, hat in der Praxis zahlreiche Creator*innen und Unternehmen auf dem falschen Fuß erwischt.

Accounts wurden gelöscht, Pins blockiert oder ganze Seiten unsichtbar gemacht – oft ohne erkennbare Begründung. Was ist passiert? Die KI-Modelle bei Pinterest wurden darauf trainiert, problematische Inhalte automatisiert zu erkennen und Plattformregeln durchzusetzen. Doch wie in vielen KI-Systemen liegt der Teufel im Detail: Die Modelle sind noch nicht präzise genug, um zwischen legitimen und grenzwertigen Inhalten zuverlässig zu unterscheiden – vor allem in einem visuellen Umfeld wie Pinterest. Besonders problematisch wird es, wenn Nutzer*innen keine Möglichkeit haben, die Entscheidungen nachzuvollziehen oder effektiv dagegen vorzugehen.

Für Unternehmen, die Pinterest als Marketingplattform nutzen, ist das ein unkalkulierbares Risiko. Wer auf Sichtbarkeit und Reichweite angewiesen ist, kann es sich kaum leisten, dass automatisierte Systeme ohne Vorwarnung Inhalte sperren. Der Vertrauensschaden ist enorm.

Im Spannungsfeld der KI-Nutzung

Dieser Fall steht exemplarisch für ein zentrales Spannungsfeld der KI-Nutzung: Auf der einen Seite die große Hoffnung auf Automatisierung, Kostenersparnis und Kontrolle – auf der anderen Seite die Realität einer noch nicht vollständig ausgereiften Technologie, die häufig wie eine Blackbox agiert. Für Nutzer*innen bedeutet das: weniger Transparenz, weniger Kontrolle, mehr Frustration. Ähnliche Phänomene beobachten wir auch bei großen Social-Media-Plattformen wie Meta oder TikTok. Auch hier sorgen KI-basierte Moderationssysteme regelmäßig für Unmut – sei es durch falsch erkannte Verstöße, Einschränkungen der Reichweite oder Verzögerungen im Kundenservice, der durch automatisierte Antworten ersetzt wurde. Dabei geht es nicht um generelle Ablehnung von KI – sondern um die Art und Weise, wie sie implementiert und kommuniziert wird.

Gute KI ist unsichtbar – weil sie funktioniert

Das Marketing der Zukunft soll nicht nur effizient, sondern muss auch verantwortungsvoll sein. Es wird davon abhängen, wie gut Unternehmen die Balance finden zwischen Automatisierung und menschlicher Kontrolle. Zwischen der Verlockung, Prozesse zu beschleunigen, und der Notwendigkeit, Vertrauen zu erhalten. Gute KI ist unsichtbar – weil sie funktioniert. Sie analysiert, aber entscheidet nicht alleine. Zukunftsfähiges Marketing ist also geprägt von einer Kombination aus technologischer Intelligenz und menschlicher Relevanz. KI, Automatisierung und Datenanalyse ermöglichen eine bisher unerreichte Präzision: Zielgruppen werden individueller angesprochen, Inhalte in Echtzeit ausgespielt und Customer Journeys automatisiert optimiert. Personalisierung ist dabei kein Zusatz mehr, sondern Standard.

Gleichzeitig verändern sich die Erwartungen der Konsument*innen: Sie wollen authentische Marken, klare Haltung, Datenschutz und echte Mehrwerte – keine leeren Werbeversprechen. Deshalb wird Marketing künftig nicht nur effizient, sondern auch ethisch und wertebasiert sein müssen. Vertrauen wird zur zentralen Währung. Auch deshalb ist das Marketing der Zukunft vor allem Inhouse zu verorten. Agenturen befinden sich auf dem absteigenden Ast – sie sind teuer und liefern nicht die Ergebnisse, die Unternehmen und Marken wirklich benötigen. Zu dieser Entwicklung gehört auch, dass Inhouse-Marketing-Verantwortliche umfassend geschult werden müssen, damit sich der Einsatz von KI maximal einfach gestaltet und gleichzeitig äußerst produktiv ist.

KI ist weder Fluch noch Segen – sie ist ein mächtiges Werkzeug, das mit Bedacht eingesetzt werden muss. Wer KI einfach laufen lässt, riskiert Vertrauensverluste. Wer sie aber erklärt, einbettet und begleitet, kann gewinnen – an Effizienz, Qualität und Glaubwürdigkeit. Das Marketing der Zukunft ist nicht einfach KI-gesteuert. Es ist menschenzentriert – mit KI als starkem, aber verantwortungsbewusstem Assistenten.

Der Autor Bastian Sens gründete Sensational Marketing im Jahr 2010 – zunächst als klassische Onlinemarketing-Agentur. Im Laufe der Jahre kristallisierte sich jedoch ein alternativer Weg heraus, sodass sich das Unternehmen zu einer Onlinemarketing-Academy wandelte.

Solarstrom für Gründer*innen: Wie Balkonkraftwerke die Energiezukunft dezentralisieren

Balkonkraftwerke boomen – und bieten Start-ups und Selbständigen eine einfache Lösung für mehr Energieunabhängigkeit.

Steigende Energiepreise, wachsende Klimasorgen und der Wunsch nach Unabhängigkeit verändern die Art, wie wir Strom erzeugen und nutzen. In Deutschland gewinnt dabei eine Lösung besonders an Fahrt: das Balkonkraftwerk. Diese kompakten Mini-Photovoltaikanlagen machen es möglich, auch ohne eigenes Dach und mit wenig Aufwand selbst Strom zu produzieren – ideal für Mietwohnungen, urbane Start-ups oder das Homeoffice.

Was früher vor allem ein Nischenthema war, wird jetzt zur massentauglichen Option – nicht nur für Privathaushalte, sondern auch für junge Unternehmen, Freelancer*innen und digital arbeitende Selbständige.

Was ist ein Balkonkraftwerk?

Ein Balkonkraftwerk ist eine kleine Photovoltaik-Anlage, die auf dem Balkon, an der Fassade oder auf der Terrasse montiert wird. Sie besteht in der Regel aus ein bis zwei Solarmodulen und einem Wechselrichter, der den erzeugten Strom direkt ins Hausnetz einspeist – über eine herkömmliche Steckdose.

Der Clou: Die Anlagen sind steckerfertig, benötigen keine baulichen Veränderungen und lassen sich einfach anmelden. So können auch Mieter*innen oder Menschen ohne Zugang zum Hausdach Teil der Energiewende werden – unabhängig und mit geringem Investitionsaufwand.

Wie kann beispielsweise das EcoFlow Balkonkraftwerk für eine nachhaltige Energiezukunft dabei unterstützen, möglichst effizient, nutzerfreundlich und flexibel Strom zu erzeugen? Solche Systeme kombinieren moderne Solartechnik mit smarter Steuerung und lassen sich auch ohne Vorkenntnisse schnell in Betrieb nehmen – ideal für urbane Haushalte und mobile Arbeitswelten.

Warum Balkonkraftwerke besonders für Gründer*innen spannend sind

Gerade Start-ups und Solo-Selbständige arbeiten häufig flexibel – mal im Homeoffice, mal im Co-Working-Space. Energie ist dabei ein nicht zu unterschätzender Kostenfaktor. Gleichzeitig erwarten Kund*innen und Investor*innen zunehmend ein klares Nachhaltigkeitsprofil.

Ein eigenes Balkonkraftwerk kann hier gleich mehrfach punkten:

  • Kosten senken: Der selbst erzeugte Strom reduziert die Stromrechnung messbar.
  • Kalkulierbarkeit schaffen: Energiekosten werden planbarer – ein Vorteil in der Gründungsphase.
  • Nachhaltigkeit leben: Umweltfreundliches Wirtschaften wird sichtbar – auch im Pitch oder auf Social Media.
  • Flexibel bleiben: Viele Systeme lassen sich bei einem Umzug einfach mitnehmen oder erweitern.

Kurz gesagt: Wer klein anfängt, kann dennoch groß denken – auch in Sachen Energie.

Rechtlicher Rahmen: Was gilt in Deutschland?

Deutschland hat in den letzten Jahren die Nutzung von Balkonkraftwerken deutlich vereinfacht. Seit 2024 dürfen Anlagen mit bis zu 800 Watt Ausgangsleistung unkompliziert beim Netzbetreiber registriert werden – Genehmigungen oder Installationspflichten entfallen in vielen Fällen.

Wichtig ist, dass die Geräte den gängigen Sicherheits- und Qualitätsnormen entsprechen (z B. VDE-zertifiziert sind) und fachgerecht installiert werden. Auch Förderprogramme oder lokale Zuschüsse machen den Einstieg zunehmend attraktiver – gerade für junge Haushalte oder Gründer*innen mit begrenztem Budget.

Prognosen gehen davon aus, dass bis Ende 2025 über eine Million solcher Anlagen in Deutschland in Betrieb sein werden.

Smart, vernetzt und mobil

Moderne Balkonkraftwerke – wie die von EcoFlow – bieten mehr als reine Stromproduktion. Über Apps lässt sich in Echtzeit verfolgen, wie viel Energie erzeugt und verbraucht wird. Die Kombination mit Batteriespeichern oder mobilen Powerstations macht die Systeme noch flexibler – ideal für ortsunabhängiges Arbeiten, Workshops oder Eventeinsätze.

Gerade für technologieaffine Start-ups ist das ein großer Vorteil: Wer Daten und Verbrauch jederzeit im Blick hat, kann Prozesse optimieren, Stromfresser identifizieren oder gezielt Lastspitzen ausgleichen.

Nachhaltigkeit trifft Unternehmertum

Der Einstieg in die eigene Stromproduktion ist nicht nur ökologisch sinnvoll – er zeigt Haltung. Wer heute gründet, tut das oft mit dem Anspruch, Ressourcen zu schonen, Verantwortung zu übernehmen und langfristig zu denken. Ein Balkonkraftwerk ist dabei ein sichtbares Statement – gegenüber Team, Kund*innen und Partner*innen.

Zugleich bietet es einen Einstieg in ein größeres Thema: dezentrale Energieversorgung. In Zukunft könnten sich daraus Peer-to-Peer-Netzwerke, flexible Stromtarife oder gemeinschaftlich genutzte Speicherlösungen entwickeln. Wer heute startet, ist morgen Teil dieser Entwicklung.

Die Digitalisierung verändert unser Leben – und wie wir arbeiten. Die Energiewende verändert, wie wir leben. Balkonkraftwerke verbinden beides: Sie bringen Technologie, Nachhaltigkeit und Unabhängigkeit zusammen – ganz ohne großen Aufwand.

Denn wer selbst produziert, bleibt flexibel. Und wer Energie smart nutzt, hat mehr Spielraum für das, was wirklich zählt: Ideen, Wachstum und Wirkung.

charles: DSGVO-konformer KI-Agent für WhatsApp gelauncht

Noch bevor Tech-Riesen wie Meta ihre Angebote auf den Markt bringen, bietet das Berliner Start-up charles erprobte, skalierbare und regulatorisch abgesicherte KI-Agent-Lösungen.

Während Meta LLM-gestützte Agenten auf WhatsApp für Verbraucher*innen einführt, will das Berliner Start-up charles Marken einen entscheidenden Vorsprung verschaffen. Mit der Einführung seines AI Agent Squad will sich charles als führender europäischer Anbieter markensicherer, hochspezialisierter KI-Agenten auf WhatsApp mit integrierter Sicherheit und Compliance etablieren – und damit den weltweit meistgenutzten Messenger in einen echten Handels- und Servicekanal transformieren.

Die KI-Agenten von charles nutzen WhatsApps Interaktivität, proprietäres Markenwissen und die Leistungsfähigkeit moderner KI, um Kund*innen direkt in WhatsApp anzusprechen - kontextbezogen, personalisiert und autonom. Von intelligenten Produktempfehlungen bis zu Support soll die Interaktion Kund*innen ein äußerst persönliches Gefühl vermitteln.

„Unsere KI-Agenten übernehmen echte Aufgaben wie Produktempfehlungen, Beantwortung von Fragen oder Reklamationsbearbeitung. Sie agieren wie echte Mitarbeiter: Man weist ihnen eine echte Aufgabe zu und gibt alle Mittel an die Hand, die sie benötigen, um diese Aufgabe zu erfüllen – sei es durch Zugriff auf Daten oder klare Vorgaben geben“, sagt Andreas Tussing, CEO von charles. “So ermöglichen wir Gespräche, die heute aufgrund von Ressourcen noch nicht möglich sind, und bieten gleichzeitig ein personalisiertes und innovatives Kundenerlebnis.“

WhatsApps native Interaktivität trifft auf markensichere KI

Mit den Berliner KI-Agenten soll WhatsApp zur leistungsstärksten Plattform für Kundenbeziehungen werden - und die Herausforderungen von Marken in Bezug auf Konversion und Kundenbindung lösen, ohne Authentizitätsverlust. Durch die Kombination der hohen Engagement-Raten von WhatsApp mit KI-gesteuerter Automatisierung und Personalisierung sollen Marken gleichzeitig Kundenzufriedenheit und Umsätze steigern sowie Betriebskosten senken können.

Fokus auf markenspezifisches Know-how, Security und Compliance

Der AI Agent Squad nutzt modernste KI-Technologien und verbindet generative Sprachmodelle mit markenspezifischen Datenquellen wie Produktkatalogen, CRM-Systemen und Kundenpräferenzen. Integrierte Schutzvorkehrungen und Tonalitätskontrollen gewährleisten Markensicherheit, während alle Daten auf europäischen Servern verarbeitet werden, ohne externe API-Aufrufe oder Datenextraktion - DSGVO-konform und markensicher.

What's next? Der Wettlauf um eigene Messaging-KI

Mit der Einführung von Memory durch OpenAI und Meta‘s Llama-basierte Agenten auf WhatsApp, heizt sich der Markt für personalisierte, generative Kundenkommunikation auf. Der EU AI Act und das aktuelle Handelsklima erhöhen die Dringlichkeit – Lösungen mit starker Data Governance und Auditierbarkeit sind daher unerlässlich. Charles will sich vor diesem Hintergrund als skalierbare, europäische Alternative zu generischen LLM-Lösungen positionieren – in Europa entwickelt und gehostet.

Mode als Ausdruck von Selbstbewusstsein: Empowerment durch Stil

Mode als Werkzeug für Body Positivity und Female Empowerment – wie der richtige Style das Selbstbewusstsein stärkt und neue Maßstäbe setzt.

In der heutigen Zeit ist Mode viel mehr als nur das, was wir tragen. Sie ist ein Ausdruck von Individualität, einem Lebensstil und vor allem – Selbstbewusstsein. Besonders in einer Welt, in der gesellschaftliche Normen zunehmend infrage gestellt werden, wird Mode zu einem mächtigen Werkzeug, das uns hilft, uns selbst zu definieren und unser wahres Ich zu leben. Doch was passiert, wenn Mode über bloßen Stil hinausgeht und tatsächlich zum Vehikel für Empowerment und Body Positivity wird? Es ist eine Entwicklung, die immer mehr Menschen in ihren Bann zieht und dazu beiträgt, den eigenen Körper zu schätzen und zu lieben.

Female Empowerment und Body Positivity: Ein wachsender Trend

Der gesellschaftliche Wandel hin zu mehr Akzeptanz und Vielfalt ist auch in der Modeindustrie angekommen. In den letzten Jahren hat der Fokus auf Female Empowerment und Body Positivity an Bedeutung gewonnen. Immer mehr Marken setzen auf inklusivere und realistischere Darstellungen von Körpern und bieten eine breite Palette von Größen und Designs an. Dieser Trend geht über die bloße Anpassung der Modeindustrie an den Markt hinaus – es geht darum, Frauen in ihrem Selbstbewusstsein zu stärken und die Idee zu fördern, dass jede Frau ihren eigenen Körper lieben sollte, unabhängig von Konventionen und gesellschaftlichen Erwartungen.

Mode ist ein kraftvolles Tool, das dazu beiträgt, dieses Selbstbewusstsein zu stärken. Sie ermöglicht es, sich in der eigenen Haut wohlzufühlen und den eigenen Körper so zu akzeptieren, wie er ist. Der Fokus verschiebt sich immer mehr von der „perfekten“ Körperform hin zu einem authentischen Ausdruck des individuellen Stils, der zu einem positiven Körperbild beiträgt.

Wie Mode das Selbstbewusstsein stärkt

Mode kann das Selbstwertgefühl erheblich beeinflussen. Die Wahl der richtigen Kleidung hat eine direkte Auswirkung auf unsere Stimmung und auf die Art, wie wir uns selbst sehen. Besonders gut designte Kleidungsstücke, die die eigenen Stärken betonen und den persönlichen Stil widerspiegeln, können das Vertrauen in den eigenen Körper stärken. Wenn Frauen sich gut fühlen, in dem, was sie tragen, kann das einen enormen Einfluss auf ihre Selbstwahrnehmung und ihr Auftreten haben.

Ein sehr praktisches Beispiel ist die Auswahl von Kleidung, die sowohl komfortabel als auch stilvoll ist. Die BH's von creamy fabrics bieten nicht nur Unterstützung, sondern vermitteln auch ein Gefühl von Selbstbewusstsein, das jede Frau stärkt. Wer sich in seiner Kleidung gut fühlt, wirkt selbstbewusster und kann das Leben in vollen Zügen genießen.

Die Bedeutung von Vielfalt in der Mode

Vielfalt ist ein wesentlicher Bestandteil des Body Positivity-Trends, und auch die Modeindustrie hat diese Tatsache erkannt. Marken und Designer erweitern ihre Auswahl an Größen, um Frauen aus allen Gesellschaftsschichten und allen Körperformen gerecht zu werden. Das bedeutet nicht nur, dass die Mode für alle zugänglich wird, sondern auch, dass mehr Menschen die Möglichkeit haben, sich in ihrer Kleidung selbst zu verwirklichen und ihren eigenen Stil zu finden.

Eine Mode, die auf Vielfalt setzt, signalisiert eine neue Ära der Inklusion. Es wird ein Raum geschaffen, in dem jeder Körper gefeiert wird und Frauen sich unabhängig von ihrer Form oder Größe selbstbewusst in ihrer Kleidung fühlen können. Dieser Trend hat auch Auswirkungen auf die Gesellschaft: Frauen sehen, dass sie sich nicht an unrealistische Schönheitsideale anpassen müssen, sondern dass wahre Schönheit in der Authentizität und Vielfalt liegt.

Warum Vielfalt in der Mode die Gesellschaft verändert

Die Veränderung, die durch Body Positivity und Female Empowerment angestoßen wird, hat nicht nur Auswirkungen auf die Modeindustrie, sondern auch auf die Gesellschaft als Ganzes. Wenn Frauen sich selbst lieben und stolz auf ihre Körper sind, verändert sich nicht nur ihre Wahrnehmung von sich selbst, sondern auch die Art und Weise, wie sie miteinander umgehen und wie sie sich in der Welt bewegen. Sie fühlen sich ermächtigt, ihre Meinungen zu äußern, Entscheidungen zu treffen und das zu tun, was sie glücklich macht.

In dieser neuen Ära geht es nicht mehr nur darum, was wir tragen, sondern warum wir es tragen. Es geht darum, unsere Individualität zu feiern, uns von gesellschaftlichen Normen zu befreien und die Mode als Ausdruck unseres Selbst zu nutzen. Ein stilvolles Outfit, das die eigene Persönlichkeit widerspiegelt, kann ein Statement für Selbstliebe und Empowerment sein.

Fazit: Mode als Ausdruck von Individualität und Empowerment

Mode hat sich in den letzten Jahren von einem bloßen Konsumgut zu einem Werkzeug für Selbstbewusstsein und Body Positivity entwickelt. Sie hilft nicht nur dabei, den eigenen Körper zu schätzen, sondern stärkt auch das Selbstbewusstsein und fördert den individuellen Ausdruck. Marken wie Creamy Fabrics bieten eine große Auswahl an Designs, die sowohl komfortabel als auch stilvoll sind und Frauen die Möglichkeit geben, sich in ihrer Kleidung zu verwirklichen.

Body Positivity und Female Empowerment sind nicht nur gesellschaftliche Trends, sondern eine Bewegung, die Mode als mächtiges Instrument nutzt, um positive Veränderungen in der Wahrnehmung von Körpern und der eigenen Identität herbeizuführen.

Nach dem KI-Hype: Diese vier Trends bleiben

KI entwickelt sich rasant weiter. Doch welche Trends bleiben und setzen sich wirklich durch? Diese Entwicklungen sollten Unternehmen 2025 weiterhin im Blick behalten.

Die vergangenen zwei Jahre haben einen regelrechten KI-Boom erlebt. Insbesondere generative Modelle (GenAI) haben sich rasant weiterentwickelt und etablieren sich zunehmend als feste Größe in den Arbeitsprozessen von Organisationen weltweit. Angesichts dieser Dynamik fragen sich nun viele Unternehmen, welche Entwicklungen das Jahr 2025 bestimmen werden und welche Potenziale sich daraus ergeben. Diese vier wichtigen KI-Trends werden uns 2025 maßgeblich begleiten.

Ob automatisierte Textproduktion, interaktive Chatbots oder KI-gestützte Analysen für Logistik und Finanzen: KIist längst im Tagesgeschäft angekommen. Diese Dynamik setzt sich 2025 fort. Dabei verschieben sich die Schwerpunkte zunehmend hin zu spezialisierten, effizienteren und flexibleren KI-Anwendungen.

Modular AI: Kleine Bausteine, große Wirkung

Modulare KI-Systeme werden zum Schlüssel für Unternehmen, die domänenspezifische Lösungen benötigen. Diese spezialisierten KI-Module sind genau auf einzelne Aufgabenbereiche zugeschnitten, etwa auf den Kundenservice oder auf Betrugserkennung im Bankwesen. Plug-and-Play-Architekturen beschleunigen hierbei die Implementierung: Statt monolithische Modelle einzuführen, integrieren Unternehmen bedarfsgerecht nur jene Module, die sie wirklich benötigen. Auf diese Weise lässt sich der zeitliche und finanzielle Aufwand für die Implementierung in Organisationen erheblich senken. Damit das Zusammenspiel verschiedener Module funktioniert, treiben Hersteller*innen und Standardisierungsgremien die Entwicklung einheitlicher APIs und Kommunikationsprotokolle weiter voran. Diese Interoperabilität ebnet den Weg für dynamische KI-Systeme, die sich je nach Anforderung in bestehende IT-Landschaften integrieren lassen.

Edge AI und On-Device Intelligence: Schneller zum Ergebnis

Während KI-Anwendungen bislang oft auf starke Cloud-Infrastrukturen angewiesen waren, verlagert sich die Intelligenz nun zunehmend an den Netzwerkrand. Dadurch können Daten in Echtzeit analysiert werden, um schnell fundierte Entscheidungen zu treffen. Gerade in sensiblen Bereichen wie der medizinischen Bildgebung oder in Branchen mit hoher Zeitkritikalität, beispielsweise bei autonomen Fahrzeugen, minimiert eine Edge-basierte KI-Analyse Latenzzeiten und ist somit wettbewerbsentscheidend. Parallel dazu treten neue, energieeffiziente KI-Chips wie neuromorphe Prozessoren oder TPUs (Tensor Processing Units) auf den Plan. Sie ermöglichen leistungsstarke KI-Anwendungen in Systemen mit begrenztem Platz oder Energiebudget – ein wichtiger Fortschritt für Wearables und sogar Satelliten.

Foundation Models: Optimieren statt komplett neu trainieren

Große KI-Basismodelle, sogenannte Foundation Models, haben 2024 ihren Nutzen in zahlreichen Branchen bewiesen. 2025 rücken jedoch kosten- und ressourcenschonende Optimierungen stärker in den Vordergrund. Verfahren wie Parameter-effizientes Tuning oder LoRA (Low-Rank Adaptation) ermöglichen es, aus umfassenden Basismodellen spezialisierte Teilmodelle zu erzeugen, ohne sie von Grund auf neu trainieren zu müssen. Kleinere, spezialisierte Modelle behalten die Leistungsfähigkeit der großen Systeme oft zu einem Bruchteil der nötigen Rechenleistung. Das senkt nicht nur die Kosten, sondern trägt auch zur Nachhaltigkeit bei, da der Energieverbrauch bei Training und Einsatz von KI zunehmend kritisch hinterfragt wird. Darüber hinaus entstehen lokalisierte Modelle, die speziell auf bestimmte Regionen oder Sprachen zugeschnitten sind und dadurch genauere Ergebnisse liefern.

Fortschrittliche KI-Agenten: Mehr Kontext, mehr Kollaboration

KI-Agenten erreichen 2025 eine neue Evolutionsstufe und können nuancierte Kontexte immer besser erfassen. Das steigert die Personalisierung von Interaktionen im Kund*innenservice, Gesundheitswesen oder Bildungsbereich. Zugleich werden Self-Improving Agents immer wichtiger: Sie enthalten eingebaute Feedbackschleifen, lernen aus ihren Erfahrungen und optimieren ihre Fähigkeiten – ganz ohne Eingreifen von außen. Darüber hinaus setzt sich das Konzept der Multi-Agent Collaboration durch. Hierbei übernehmen verschiedene KI-Agenten jeweils Spezialaufgaben und koordinieren sich untereinander, um komplexe Probleme wie logistische Planungen oder den Ablauf bei Großschadenslagen effizient zu lösen.

Fazit

Das laufende Jahr wird wie das letzte – und vermutlich wie noch viele kommende Jahre – von künstlicher Intelligenz geprägt sein. Zwar müssen wir bei Aspekten wie Datensicherheit, Transparenz und dem Schutz persönlicher Informationen weiterhin aufmerksam bleiben, doch gleichzeitig eröffnen sich durch KI ganz neue Chancen für Innovation, Effizienz und Wachstum. Schon jetzt arbeiten Unternehmen, Regierungen und Forschungseinrichtungen verstärkt Hand in Hand, um Standards zu definieren und verantwortungsvolle Lösungen zu entwickeln. Damit können wir das enorme Potenzial dieser Technologie nutzen und zugleich sicherstellen, dass Fortschritt und Vertrauen im Einklang stehen.

Der Autor Ramprakash Ramamoorthy ist Director of AI Research bei Zoho.

Generative KI – Chancen für Startups

Wie Startups mit drei Tipps die Kosten und Performance für ihren KI-Case optimieren können.

Das deutsche KI-Startup-Ökosystem befindet sich 2025 weiter im Gründungsboom. Nie gab es mehr KI-Gründer in Deutschland und alleine im vergangenen Jahr wuchs die Zahl der KI-Startups um 35 Prozent. Auch für Investoren bleibt KI eines der vielversprechendsten Themen. Sie investierten 2024 fast 200 Millionen mehr in deutsche KI-Jungunternehmen als im Vorjahr. Vor allem deutsche KI-Startups im B2B-Bereich mit branchenspezifischen Lösungen für die Fertigung, Logistik und das Gesundheitswesen haben aktuell ausgezeichnete Wachstumschancen. Sie können von einer engen Vernetzung mit dem Mittelstand und führenden Forschungseinrichtungen in Deutschland profitieren. Typische KI-Anwendungsfelder von aufstrebenden deutschen Startups wie BlueAvenir, PlanA, Smart Reporting oder nnamu liegen dabei u.a. in der Softwareentwicklung, Sprach- und Bilderkennung oder datenbasierten Analyseverfahren zur Entscheidungsunterstützung.

KI-Chancen und die häufigsten Hürden

Während die Gesamtfinanzierung für KI-Projekte wächst, scheitern in der Praxis vielversprechende Ideen von Startups aber auch immer wieder am konkreten Business Case. Langfristig können sich insbesondere unterschätzte Kosten und eine schwache Performance der Anwendungen wie ein Bremsklotz auswirken. Die Nutzung von Sprachmodellen ist dank API-basierten Diensten sehr einfach geworden, dennoch können sich hier bei großen Volumina und ungeschickter Modell-Wahl schnell höhere Kosten aufsummieren. Gleichzeitig spielt die Performance des KI-Systems eine wichtige Rolle für eine langfristige Profitabilität. So führen besonders hohe Latenzzeiten bei der Model-Inference zu trägeren Systemen, die Nutzeranfragen nicht schnell genug verbreiten und die Attraktivität der Anwendung erheblich mindern.

Gerade Startups setzen oft auf die Cloud, da sie unabhängig vom technischen Hintergrund einfachen Zugang zu KI und die nötige Flexibilität ermöglicht. Drei innovative Methoden erweisen sich in der Cloud als besonders hilfreich, um eine optimale Balance zwischen Leistungsfähigkeit, Kosten und Nutzerfreundlichkeit für die Umsetzung des eigenen KI-Anwendungsfalls zu finden. So kann jeder Gründer seine KI-Ideen schnell, kosteneffizient und sicher umsetzen.

KI-Modellauswahl: Kleiner, aber schneller

Für Startups ist es entscheidend, das richtige KI-Modell für ihren Anwendungsfall zu wählen, um Kosten und Leistung optimal auszubalancieren. Anbieter wie Anthropic, AI21 Labs, Meta, Cohere, Mistral und Amazon bieten Modelle in verschiedenen Größen an – kleinere Varianten sind oft günstiger und reagieren mit kürzerer Antwortzeit. Nach einer ersten Validierung mit einem leistungsstarken Modell können Startups Tools wie Amazon Bedrock Evaluations nutzen, um herauszufinden, welches Modell in welcher Größe ähnliche Ergebnisse bei geringeren Kosten oder höherer Geschwindigkeit liefert. Diese Evaluierungen helfen dabei, die Leistungsfähigkeit und Effizienz zu beurteilen, indem Metriken wie semantische Robustheit und Genauigkeit bei der Informationsabfrage analysiert werden. Durch eine Kombination aus automatisierten Bewertungen mit Large Language Models (LLMs) und menschlicher Prüfung können Startups die beste Balance zwischen Leistung, Kosten und Geschwindigkeit für ihre individuellen Bedürfnisse finden.

Prompt Caching: Zwischenspeicherung für wiederkehrende Anfragen

Eine weitere smarte Methode, um die Antwortzeiten von KI-Modellen zu verkürzen und Kosten zu senken, ist das Prompt-Caching. Wenn ein digitaler Assistent sich bei jeder Frage immer wieder die gleichen Grundinformationen durchlesen müsste, dann wäre das extrem ineffizient. Genau hier setzt das Prompt-Caching an und speichert feste Teile des Prompts, wie grundlegende Anweisungen für das LLM, direkt in der Inferenz-Hardware zwischen. Nur die variablen, nutzerspezifischen Daten, die sich von Aufruf zu Aufruf verändern, werden bei jeder Anfrage neu übermittelt. Das spart nicht nur Rechenleistung, sondern sorgt auch für schnellere Antworten – ideal für Anwendungen wie Chatbots oder personalisierte KI-Assistenten, die häufig wiederkehrende Anfragen verarbeiten. Mit Amazon Bedrock lässt sich diese Technik einfach nutzen, indem das Caching und das Setzen von Cache-Checkpoints automatisch verwaltet werden können. Sobald das Caching aktiviert ist, übernimmt der Service das gesamte Cache-Management automatisch. So lassen sich bis zu 90 Prozent kosteneffiziente KI-Anwendungen mit minimalem Konfigurationsaufwand realisieren.

Model Distillation: KI-Wissen auf das Wesentliche fokussieren

Eine dritte bewährte Option ist Model Distillation. Das Prinzip ist einfach und kann vereinfacht als ein intelligenter Wissenstransfer in der Welt der KI beschrieben werden. Also so, als ob ein erfahrener Lehrer (ein großes, leistungsstarkes KI-Modell) seinem Schüler (einem kleineren, schnelleren Modell) die wichtigsten Konzepte beibringt. Dabei nutzt dieser Prozess synthetische Trainingsdaten, die auf realen Anwendungsbeispielen basieren. Das Ergebnis ist ein kompakteres Modell, das für einen spezifischen Anwendungsfall ähnlich gute Ergebnisse liefert wie das größere Modell, dabei aber deutlich schneller und kostengünstiger arbeitet. Destillierte Modelle in Amazon Bedrock können bis zu fünfmal schneller arbeiten und die Kosten um bis zu 75 Prozent senken im Vergleich zu den Originalmodellen – bei Genauigkeitsverlust von weniger als zwei Prozent.

Fazit

Erfolgreiche KI-Lösungen können mit der Cloud kosteneffizienter und performanter umgesetzt werden. Das erfordert zwar ein wenig technisches Know-how, aber die Cloud reduziert die Einstiegshürden erheblich und ermöglicht es auch kleineren Unternehmen, mit drei bewährten Methoden das KI-Potenzial effektiver auszuschöpfen. Startups haben mit der Cloud die maximale Flexibilität, um entweder von den leistungsfähigsten vortrainierten LLMs zu profitieren oder alternativ eigene LLMs mit maßgeschneiderter Infrastruktur zu entwickeln bzw. auf fertige Dienste mit integrierter generativer KI zuzugreifen.

Der Autor Constantin Gonzalez ist Principal Solutions Architect bei Amazon Web Services (AWS) in München.
Die Autorin 
Jennifer Grün ist Senior Specialist - Machine Learning bei AWS in München.