Aktuelle Events
Geschäftsideen Umzugshilfen: die praktische Mehrweg-Umzugskiste
Umzug ohne Pappkarton
Die Gründer der Turtlebox GmbH wollen die Umzugskartons aus Pappe durch ihre Turtleboxen ersetzen. Sie vermieten ihre grünen Umzugskisten wochenweise und liefern diese im Raum München und Augsburg bzw. holen sie dort ab.
Im Gegensatz zu dem "Wegwerfprodukt" Umzugskarton, kann man die Turtleboxen viele 100 Male wiederverwenden, und am Ende Ihres Lebenszyklus' werden sie recycelt. Die Turtle Umzugskisten lassen sich perfekt stapeln und können nicht eingedrückt werden.
Pro Kiste und Woche verlangen die Gründer eine Mietgebühr von 1,75 Euro. Die umweltfreundlichen grünen Umzugskisten werden in München ab einem Bestellwert von 70 Euro und in Augsburg ab einem Bestellwert von 150 Euro kostenlos geliefert und abgeholt. Eine wahrhaft "grüne" Geschäftsidee!
Diese Artikel könnten Sie auch interessieren:
KI-Agenten als Transformationstreiber 2026
Eine aktuelle DeepL-Studie zeigt: 69 % der globalen Führungskräfte erwarten für 2026 tiefgreifende Veränderungen durch KI-Agenten; KI-Sprachtechnologie wird zur unverzichtbaren Infrastruktur.
Eine neue Studie von DeepL, einem globalen Unternehmen für KI‑Produkte und ‑Forschung, zeigt: 2026 wird für viele Organisationen den Übergang vom Experimentieren mit KI hin zu agentischer Automatisierung markieren. So erwartet die Mehrheit der weltweit befragten Führungskräfte (69 %), dass agentenbasierte KI ihre Geschäftsabläufe im kommenden Jahr deutlich verändern wird.
Die Studie wurde im September 2025 von Censuswide im Auftrag von DeepL durchgeführt. Befragt wurden 5.000 Führungskräfte in Deutschland, Frankreich, den USA, Großbritannien und Japan. Die Ergebnisse deuten darauf hin, dass Unternehmen verstärkt planen, autonome KI-Agenten im großen Umfang einzusetzen – etwa zur Unterstützung von Wissensarbeit, zur Effizienzsteigerung oder zur Anpassung organisatorischer Strukturen. Damit zeichnet sich die bedeutendste operative Veränderung in der Wirtschaft seit der Einführung der Cloud an.
„KI-Agenten sind längst nicht mehr experimentell, sie sind unumgänglich.“ sagt Jarek Kutylowski, CEO und Gründer von DeepL. „Die nächste Phase besteht darin, sie tiefgreifend in unsere Arbeitsweisen zu integrieren. In 2026 werden KI-Agenten das mühsame Umschalten zwischen verschiedenen Kontexten und repetitive Aufgaben übernehmen, sodass sich Menschen auf das konzentrieren können, was Unternehmen tatsächlich voranbringt.“
KI-Agenten werden zum nächsten Disruptor für Unternehmen
Nach ersten Pilot- und Anwendungsfällen rücken KI-Agenten zunehmend in den produktiven Einsatz:
- Fast die Hälfte der globalen Führungskräfte (44 %) erwartet für 2026 einen tiefgreifenden Wandel durch agentische KI; ein Viertel (25 %) sieht diesen Wandel bereits heute. Nur 7 % glauben, dass KI-Agenten ihre Betriebsabläufe nicht verändern werden, was die hohe Geschwindigkeit der Implementierungen unterstreicht.
- Als die drei wichtigsten Voraussetzungen für den sinnvollen und vertrauenswürdigen Einsatz von KI-Agenten nennen die Befragten nachweisbare Effizienz- und ROI-Effekte (22 %), Anpassungsfähigkeit der Belegschaft (18 %) und zunehmende organisatorische Bereitschaft (18 %).
- Als wesentliche Herausforderungen bei der Einführung von KI-Agenten nennen die Befragten Kosten (16 %), Bereitschaft der Belegschaft (13 %) und Reife der Technologie (12 %).
KI als zentraler Wachstumstreiber für globale Unternehmen
Über Agenten hinaus gilt KI insgesamt als wichtigster Motor für das Wirtschaftswachstum in 2026:
- Über zwei Drittel (67 %) der Befragten geben an, dass sich der ROI ihrer KI-Initiativen in diesem Jahr erhöht hat; mehr als die Hälfte (52 %) erwartet, dass KI im kommenden Jahr mehr zum Unternehmenswachstum beitragen wird als jede andere Technologie.
- Wenn es um messbare Verbesserungen durch KI geht, liegt Deutschland (78 %) zusammen mit Großbritannien (80 %) an der Spitze, gefolgt von den USA (71 %) und Frankreich (70 %). Japan verzeichnet mit 35 % deutlich niedrigere Werte, was auf langsamere Implementierungen und Bereitschaften hindeutet.
- Über die Hälfte der globalen Führungskräfte (51 %) rechnet damit, dass KI im kommenden Jahr mehr neue Rollen schafft als ersetzt. 52 % geben an, dass KI-Kenntnisse für die meisten Neueinstellungen vorausgesetzt werden.
KI-Sprachtechnologie entwickelt sich vom Werkzeug zur zentralen Infrastruktur
Die Studie zeigt zudem, wie KI-Sprachtechnologie zur entscheidenden Komponente der Unternehmensinfrastruktur wird:
- Fast zwei Drittel der globalen Unternehmen (64 %) planen 2026 steigende Investitionen in KI-Sprachtechnologie – angeführt von Großbritannien (76 %) und Deutschland (74 %), gefolgt von den USA (67 %) und Frankreich (65 %) werden mehrsprachige Kommunikation und Inhalte zu zentralen Faktoren für globales Wachstum. Im Gegensatz dazu bleibt Japan (38 %) vergleichsweise konservativ, was auf eine langsamere Dynamik hindeutet, gleichzeitig aber das wachsende Interesse von mehr als einem Drittel der Führungskräfte widerspiegelt.
In diesem Zusammenhang wird Echtzeit-Sprachübersetzung 2026 unverzichtbar:
- Über die Hälfte der globalen Führungskräfte (54 %) sieht Echtzeit-Sprachübersetzung im kommenden Jahr als unverzichtbar an – derzeit sind es ein Drittel (32 %).
- Großbritannien (48 %) und Frankreich (33 %) sind Vorreiter bei der Nutzung von Tools für die Echtzeit-Sprachübersetzung; Japan liegt derzeit nur bei 11 %.
- Die Nachfrage wird angetrieben von technologischen Fortschritten in der Echtzeit-Sprachübersetzung (46 %), Kundenerwartungen (40 %) und marktübergreifender Expansion (38 %).
Die Erkenntnisse der Studie liefern wichtige Einblicke in die Zukunft der KI und zeigen, wie diese Veränderungen Branchen umgestalten, Kundenerwartungen neu definieren und sich auf das Wettbewerbsumfeld auswirken.
Happy Homeoffice Club gestartet
Gründerin Caterina Hirt startet ein digitales Netzwerk als kollaborative Kommunikationsplattform für selbständige Mütter im Homeoffice.
Mit dem Start des Happy Homeoffice Clubs entsteht ein neues digitales Angebot für selbständige Mütter – mit Liveformaten, Co-Working, einer innovativen Softwareplattform und vielen nützlichen Business-Hacks. Die Gründerin Caterina Hirt bringt damit ein strukturiertes, unterstützendes Netzwerk an den Start, das den oft isolierten Homeoffice-Alltag in einen Ort der Verbindung, Motivation und echten Weiterentwicklung verwandelt. „Ich habe selbst erlebt, wie herausfordernd es ist, Beruf, Familie und Selbstverwirklichung unter einen Hut zu bringen – vor allem im Homeoffice. Mit dem Happy Homeoffice Club möchte ich Frauen zeigen, dass sie nicht alleine sind“, so die Gründerin. Caterina Hirt ist Unternehmerin, Autorin, systemische Coachin und Mutter von zwei Kindern. Mit ihrem Agenturbackground und über zehn Jahren Erfahrung im Homeoffice weiß die Marketingspezialistin aus erster Hand, welche Chancen – aber auch welche Herausforderungen – dieser Arbeitsalltag birgt.
Kern der Zusammenarbeit ist eine kollaborative Kommunikationsplattform, über die die Mütter dauerhaft in einem echten Netzwerk verbunden sind. Dazu setzt das Angebot auf Livecalls, Community-Austausch, Expertenvorträge und snackable Businesstipps, die den Workflow im Homeoffice effizienter machen. Das Angebot richtet sich explizit an selbständige Frauen oder Mütter im Homeoffice. „Bei uns fühlt sich keine Teilnehmerin mehr allein. Hier treffen sich Frauen, die genau wissen, wie es ist, mit Laptop, Kaffee, Kind und manchmal ein bisschen Chaos zu jonglieren. Sie arbeiten, lachen, tauschen sich aus und motivieren sich gegenseitig. So modern, vernetzt und unterstützend, wie man es sich als Selbstständige immer gewünscht hat “, sagt Caterina Hirt.
Die zugrundeliegende Softwarelösung bietet eine hochmoderne Nutzeroberfläche, Chats, Calls in einer geschützten Umgebung sowie Daten- und Wissensaustausch an. So gibt es zum Beispiel den Monday Motivation Call mit allen Teilnehmerinnen oder eine interaktive Kaffeeküche, in der man sich einfach mal über alle Themen abseits des Business interaktiv austauschen kann. Die Plattform wird jeder Teilnehmerin zur Verfügung gestellt, die Nutzung ist in der monatlichen Mitgliedsgebühr von 49 Euro (Einführungspreis) enthalten. Interessentinnen können die Community inklusive aller Angebote zwei Wochen kostenlos testen.
Jakob Koenen: Mit 18 zum LegalTech-Start-up-Gründer
Die Sovereign AI Betriebs GmbH – 2025 von Jakob Koenen und seinem Vater Prof. Dr. Andreas Koenen mit Sitz in Berlin gegründet – entwickelt spezialisierte KI-Plattformen für die juristische Praxis.
Ein Technologie-begeisterter Abiturient, der schon mit 15 Jahren Jura-Vorlesungen besucht, gründet ein LegalTech-Start-up. Partnerschaftlich an seiner Seite agiert sein Vater, ein renommierter Professor für Baurecht. Das ist das Fundament der Sovereign AI Betriebs GmbH, die in Berlin antritt, das Rechtswissen ganzer Berufs-Generationen in eine juristisch kuratierte KI zu überführen. Herzstück des Unternehmens ist Sovereign Legal AI. Die Plattform bereitet juristische Fragen systematisch, verständlich und nachvollziehbar auf.
„Wir wollen das Recht aus der Blackbox holen“, sagt Jakob Koenen, Gründer und Geschäftsführer der Sovereign AI Betriebs GmbH. „Unsere KI soll kein Ersatz für Anwältinnen und Anwälte sein, sondern ein intelligentes Werkzeug, das Wissen strukturiert, Orientierung gibt und den Zugang zum Recht demokratisiert.“
Rechtspraxis-Know-how, digitalisiert für den Alltag
Die Idee zu Sovereign Legal AI entstand in einem Generationenprojekt. Prof. Dr. Andreas Koenen, Kanzleiinhaber, Fachanwalt und Herausgeber zahlreicher Werke zum Bau- und Architektenrecht, hat über Jahrzehnte beobachtet, wie Rechtswissen in der Praxis verloren geht, weil es zu spät, zu komplex oder zu exklusiv vermittelt wird.
„Das Recht wird beim Bauen oft erst dann herangezogen, wenn es knallt“, sagt Koenen. „Juristinnen und Juristen gelten als Ausputzer, nicht als Geburtshelfer. Sovereign Legal AI will das ändern. "Wir liefern Projektbeteiligten vom Architekten, Planer bis zum Bauherrn einen Kompass, der schon vor Konflikten Orientierung bietet; mit juristisch fundierter Systematik, aber barrierefrei zugänglich“, so Koenen weiter.
Die Wissensbasis der Sovereign Legal AI umfasst unter anderem kommentierte Urteile, systematisch aufbereitete Rechtsinformationen sowie Fachbeiträge von Anwältinnen und Anwälten zu typischen Praxisproblemen. Alle Inhalte sind mit Originalquellen aus Gesetz, Rechtsprechung und Literatur belegt, was den entscheidenden Unterschied zu generativen „Blackbox-Systemen“ markiert.
Neue Plattform für juristische Teilhabe
Sovereign Legal AI entstand in Zusammenarbeit mit den Anwältinnen und Anwälten der Kanzlei Koenen Bauanwälte. Die künstliche Intelligenz (KI) wurde entlang echter Fallarbeit trainiert und in einer Beta-Phase getestet. Dabei versteht sich die KI als Community-Projekt: Nutzende geben Feedback, benennen Lücken und tragen so zur Weiterentwicklung bei. Auf diese Weise wächst die KI mit der Praxis. Im Wissens-Ökosystem von Sovereign befinden sich auch die Austausch-Plattform Sovereign Community und der stationäre Sovereign Store in Münster. Beide sind Teil derselben Markenfamilie und werden von der Sovereign GmbH betrieben. Partner-, Lizenz- und Servicemodelle finanzieren das Projekt. „Wir schaffen eine KI-Plattform, die juristisches Wissen lebendig hält“, so Jakob Koenen. „Das ist Unternehmensnachfolge im besten Sinne. Das Wissen einer Generation wird nicht vererbt, sondern transformiert.“
Junger Gründer mit Tech-DNA
Dass Jakob Koenen früh Verantwortung übernimmt, überrascht kaum. Mit 11 wollte er bereits eine Web-Agentur gründen, erschuf in diesem Zuge den Digitalauftritt eines Handwerksunternehmens. Mit 15 hat er mit Unterstützung seiner Eltern beantragt, frühzeitig als geschäftsfähig erklärt zu werden und gründete nach der Bewilligung sein erstes Unternehmen. Heute ist er Gründer, App-Entwickler und Geschäftsführer des Berliner LegalTech-Unternehmens. Er arbeitet mit einem Netzwerk aus externen Entwicklerinnen und Entwicklern sowie Fachleuten an der technischen Weiterentwicklung von Sovereign Legal AI. Aktuell suchen er und sein Vater als Herausgeber der Inhalte nach Co-Autor*innen und Partner*innen, die weitere juristische Rechtsbereiche wie Energierecht oder IT-Recht innerhalb der KI für sich erschließen.
Code für die künstliche Intelligenz: technische Optimierung für die Ära der KI-Suche
Code für die KI: So optimierst du deine Website technisch mit strukturierten Daten und Protokollen für die besten generativen Suchergebnisse.
Die Regeln der Online-Sichtbarkeit werden neu geschrieben. Es geht nicht mehr nur darum, von einem herkömmlichen Algorithmus indiziert zu werden. Stattdessen müssen Websites so aufbereitet werden, dass sie von künstlicher Intelligenz (KI) und großen Sprachmodellen (LLMs) fehlerfrei interpretiert und verarbeitet werden können.
KI erstellt ihre Antworten, indem sie Inhalte blitzschnell liest, deren Bedeutung versteht und die wichtigsten Fakten daraus extrahiert. Wenn der technische Unterbau einer Website unsauber ist, kann die KI die Informationen entweder nicht zuverlässig finden oder sie falsch interpretieren.
Das bedeutet, die technische Seite der Website – der Code – wird zum Fundament für eine gute Platzierung in den generativen Suchergebnissen. Wer hier Nachholbedarf hat, riskiert, als vertrauenswürdige Quelle für die KI unsichtbar zu werden.
Dieser Artikel beleuchtet die entscheidenden technischen Anpassungen, die notwendig sind, um deine Website optimal für die neue Ära der KI-Suche vorzubereiten.
Kontrolle und Zugang: Die Regeln für Sprachmodelle
Der erste technische Schritt zur Optimierung für KI-Ergebnisse ist die Steuerung des Zugriffs durch die großen Sprachmodelle (LLMs). Traditionell wird der Zugang durch die robots.txt Datei geregelt, die festlegt, welche Bereiche der Website von herkömmlichen Suchmaschinen-Crawlern besucht werden dürfen.
Mit dem Aufkommen verschiedener, spezialisierter KI-Crawler (die nicht immer identisch mit dem Googlebot oder Bingbot sind) entsteht jedoch die Notwendigkeit, diesen neuen Akteuren eigene Regeln zu geben. Es geht darum, Transparenz darüber zu schaffen, welche Daten zur Generierung von Antworten verwendet werden dürfen und welche nicht.
Neue Protokolle für neue Crawler
Experten diskutieren und entwickeln neue Protokolle, um diese Unterscheidung zu ermöglichen. Ein viel diskutierter Ansatz ist die Einführung von Protokollen, die spezifisch den Umgang mit generativer KI regeln. Dies könnte die Einführung von Protokollen wie einer llms.txt Datei beinhalten. Solche spezifischen Dateien könnten festlegen, ob ein KI-Modell Inhalte zur Schulung oder zur generativen Beantwortung von Nutzeranfragen nutzen darf.
Diese Kontrollmechanismen sind entscheidend. Sie geben den Website-Betreibern die Autorität darüber zurück, wie ihre Inhalte in der KI-Ära verwendet werden. Wer hier klare Regeln setzt, schafft die technische Grundlage für eine kontrollierte und damit vertrauenswürdige Sichtbarkeit in den KI-Ergebnissen.
Strukturierte Daten als universelle KI-Sprache
Nach der Regelung des Zugangs durch Protokolle ist die Strukturierung der Inhalte der wichtigste technische Schritt. Suchmaschinen nutzen strukturierte Daten schon lange, um Rich Snippets in den klassischen Ergebnissen anzuzeigen. Für die KI sind diese Daten jedoch absolut essenziell.
Strukturierte Daten, die auf dem Vokabular von Schema.org basieren, sind im Grunde eine Übersetzungshilfe im Code, die dem Sprachmodell den Kontext des Inhalts direkt mitteilt. Sie sind die "Sprache", die die KI am schnellsten und präzisesten versteht.
Die Bedeutung für die Generierung
Wenn ein Nutzer eine Frage stellt, sucht die KI nicht nur nach Stichwörtern, sondern nach definierten Informationstypen. Mit strukturierten Daten liefert man der KI diese Informationen als fertige, fehlerfreie Bausteine.
- Fehlerfreie Extraktion: Die KI muss keine Textpassagen interpretieren, um beispielsweise ein Rezept, die Bewertung eines Produkts oder einen FAQ-Abschnitt zu identifizieren. Die korrekte Auszeichnung macht die Daten sofort nutzbar.
- Vertrauensbildung: Fehlerhafte oder inkonsistente strukturierte Daten führen zu einer falschen Interpretation und können bewirken, dass die KI deine Seite als unzuverlässig einstuft.
Die Implementierung muss fehlerfrei sein und sollte alle relevanten Inhaltstypen der Website abdecken. Nur eine saubere Schema-Implementierung garantiert, dass deine Fakten korrekt in die generativen Antworten der KI einfließen.
Ladezeit und Interaktivität als Vertrauenssignal
Die Geschwindigkeit und die Nutzbarkeit einer Website sind in der Ära der KI-Suche nicht mehr nur ein Komfortfaktor, sondern ein entscheidendes technisches Vertrauenssignal. Wenn deine Seite langsam lädt oder schlecht bedienbar ist, wird das von der KI als Indikator für mangelnde Qualität und niedrige Autorität gewertet.
Die Basis dafür sind die sogenannten Core Web Vitals (CWVs). Diese Messwerte, die sich auf das Nutzererlebnis konzentrieren, sind feste Ranking-Faktoren und haben direkten Einfluss darauf, ob eine KI deine Seite als zitierwürdig einstuft:
- LCP (Largest Contentful Paint): Misst die Zeit, bis der größte sichtbare Inhalt geladen ist.
- FID/INP (First Input Delay / Interaction to Next Paint): Misst die Zeit bis zur ersten Interaktion und die allgemeine Reaktionsfähigkeit der Seite.
- CLS (Cumulative Layout Shift): Misst die visuelle Stabilität.
Mobile Performance ist der Schlüssel
Da ein Großteil der Online-Aktivität über mobile Geräte stattfindet, legt die KI höchsten Wert auf die Optimierung der Mobilversion. Eine schlechte mobile Performance kann das gesamte Ranking negativ beeinflussen.
Die technische Anpassung muss daher darauf abzielen, die CWVs zu perfektionieren. Dies beinhaltet die Optimierung von Bildern, das Bereinigen unnötiger Code-Lasten und das Priorisieren wichtiger Ressourcen. Eine schnell ladende und reaktionsfreudige Website signalisiert nicht nur dem Nutzer, sondern auch der KI, dass die Quelle professionell und damit vertrauenswürdig ist.
Redundanz vermeiden: kanonische Klarheit
Eines der größten technischen Probleme für KI-Modelle ist die Verwirrung durch doppelte Inhalte (Duplikate). Wenn die gleiche Information unter verschiedenen URLs verfügbar ist, weiß die KI nicht, welche die Originalquelle darstellt. Dies zersplittert deine Autorität.
Der technische Schlüssel zur Lösung ist der Canonical Tag (<link rel="canonical" ...>). Dieser Tag im Code muss auf jeder Seite korrekt auf die bevorzugte, indexierbare URL zeigen. Durch die Vermeidung von Duplikaten und die korrekte Nutzung dieses Tags stellst du technisch sicher, dass die KI deine Inhalte als eindeutig und autoritär wahrnimmt und dich als zuverlässigen Faktenlieferanten zitiert.
Schlussworte
Die Zukunft der Online-Sichtbarkeit wird durch künstliche Intelligenz neu definiert. Der Erfolg hängt von einer technisch sauberen Vorbereitung ab.
Die wichtigsten Schritte in der Generative Engine Optimization (GEO) sind:
1. Zugangskontrolle durch Protokolle wie die diskutierte llms.txt Datei.
2. Die Nutzung von strukturierten Daten als unverzichtbare KI-Sprache.
3. Die Perfektionierung der Core Web Vitals als Vertrauenssignal.
4. Die Vermeidung von Duplikaten durch kanonische Klarheit.
Investiere in diese technische Qualität, um Autorität und Sichtbarkeit in der Ära der KI-generierten Antworten zu sichern.
Hamburger FoodTech-Start-up goodBytz bringt Roboterküchen in den Mittelstand
Das Tech-Start-up goodBytz, das führend in der Entwicklung autonomer Roboterinfrastruktur für bessere Lebensmittelversorgung ist, geht eine Partnerschaft mit avitea Industrieservice, einem auf Logistik-, Facility- und Produktionsservices spezialisierten Industrie-Dienstleister ein, um automatisierte Verpflegungslösungen im industriellen Mittelstand voranzutreiben.
Gegründet wurde goodBytz 2021 von Dr. Hendrik Susemihl, Kevin Deutmarg und Philipp von Stürmer. Die Unternehmer lernten sich zuvor beim Robotik-Unternehmen NEURA kennen, wo sie mehrere Jahre gemeinsam an innovativen Technologien gearbeitet haben. Seit der Gründung hat sich goodBytz nach eigenen Angaben zum weltweit am schnellsten wachsenden Unternehmen für Lebensmittelautomatisierung entwickelt.
Die modularen Automatisierungssysteme betreiben aktuell zahlreiche Verpflegungslösungen im B2B-Catering und in der Systemgastronomie. Als Herzstück dient eine intelligente Middleware Software, eine hardwareunabhängige, flexible Plattform, die die Effizienz in traditionellen Küchenumgebungen maximiert. GoodBytz verfolgt die Mission, frische Lebensmittel jederzeit und für jede(n) zugänglich zu machen und treibt damit den technologischen Wandel in der Gastronomiebranche voran.
Neue Chancen für den deutschen Mittelstand
Mit der strategischen Partnerschaft mit avitea Industrieservice, einem auf Logistik-, Facility- und Produktionsservices spezialisierten Industrie-Dienstleister, erschließt goodBytz ein neues Marktsegment: Viele Produktionsbetriebe arbeiten im Drei-Schicht-System und stoßen bei der Versorgung von Mitarbeitenden an ihre Grenzen. Durch die Kombination aus aviteas Marktzugang und dem technologischen Know-how von goodBytz soll diese Lücke künftig geschlossen werden. Gerade für den deutschen Mittelstand ergeben sich daraus enorme Chancen – das Potenzial liegt bei über 10.000 möglichen Installationen.
Als Operations-Partner betreibt avitea künftig Roboterküchen direkt bei seinen Kund*innen. So sind Unternehmen in der Lage, ihren Mitarbeitenden zu jeder Tages- und Nachtzeit eine gesunde, planbare und abwechslungsreiche, regelmäßig wechselnde sowie stets frische Küche anzubieten – ganz ohne eigenes Küchenpersonal und mit komfortabler Vorbestellbarkeit.
„Das Konzept von goodBytz hat uns sofort überzeugt“, ergänzt Markus Humpert, Geschäftsführer von avitea Industrieservice. „Gerade dort, wo sich der Betrieb einer Kantine wirtschaftlich nicht rechnet oder Personal fehlt, können wir gemeinsam eine echte Lücke schließen. Die Qualität der Gerichte ist hervorragend, der Ansatz innovativ. Als Dienstleister und Flexibilisierungspartner für industrielle Kunden können wir gemeinsam mit goodBytz für genau diese Betriebe eine innovative Lösung für tägliche Herausforderungen bieten.“
Robotik schlägt Brücke zwischen Industrie und Alltag
Nils Tersteegen, Marketingleiter der FANUC Deutschland GmbH, sagt dazu: „Für FANUC ist es schön zu sehen, wie unsere bewährte Industrierobotik immer näher an den Alltag der Menschen rückt. GoodBytz schlägt eine Brücke zwischen Industrie und Alltag und zeigt, wie Robotik echten Mehrwert für Mitarbeitende schaffen kann. Viele avitea-Kund*innen setzen bereits heute auf FANUC-Roboter in der Produktion. Wenn künftig einer dieser Roboter für sie das Mittagessen zubereitet, schließt sich auf besonders schöne Weise ein Kreis. Durch Automation kann dem Fachkräftemangel in der Industrie schon heute wirksam begegnet werden. Wenn künftig auch in der Küche Roboter unterstützen, zeigt das, welches Potenzial in dieser Technologie noch steckt.“
Als nächster Schritt ist eine erste Umsetzung im Hotelumfeld geplant, um das Betriebskonzept zu verfeinern und Kund*innen den Mehrwert der Lösung zu zeigen. Anschließend wird der Marktausbau mit weiteren Industrieunternehmen fortgesetzt.
Durch die Kooperation mit avitea will goodBytz Verpflegung zum festen Bestandteil moderner Industrieprozesse machen. Die automatisierten Roboterküchen zeigen, wie sich Effizienz, Gesundheit und Arbeitgeberattraktivität in der industriellen Arbeitswelt verbinden lassen.
„Mit avitea Industrieservice haben wir einen Partner gewonnen, der den industriellen Mittelstand seit Jahrzehnten begleitet und direkten Zugang zu Produktionsbetrieben mit großem Versorgungsbedarf hat“, sagt Dr. Hendrik Susemihl, CEO und Co-Founder von goodBytz. „Gemeinsam verbinden wir unsere Technologie mit dem Marktzugang und der operativen Erfahrung von avitea. So entsteht eine Partnerschaft, die den breiten Einsatz automatisierter Verpflegungslösungen im industriellen Mittelstand ermöglicht und Unternehmen im Wettbewerb um Fachkräfte stärkt.“
Indirekter Einkauf: Versteckter Kostenfresser oder unentdeckter Goldschatz?
Im Interview sprechen wir mit Bettina Fischer, Gründerin von Hivebuy, über die Chancen und Risiken des indirekten Einkaufs und darüber, wie Unternehmen mit der richtigen Software Kosten senken und Prozesse optimieren können.
In vielen Unternehmen wird der indirekte Einkauf häufig unterschätzt – dabei liegen hier oft erhebliche Einsparpotenziale verborgen. Durch die wachsende Digitalisierung und die zunehmende Verfügbarkeit von B2B eCommerce-Plattformen bestellen Mitarbeitende Waren und Dienstleistungen immer häufiger außerhalb klassischer Einkaufsprozesse. Diese Entwicklung bringt einerseits Flexibilität und Effizienz, stellt Unternehmen aber auch vor neue Herausforderungen: Wie lassen sich Ausgaben kontrollieren und Transparenz über die gesamte Einkaufskette sicherstellen?
Die beste Einkaufssoftware für den Mittelstand adressiert genau diese Herausforderungen. Hivebuy hat sich als moderne, benutzerfreundliche Lösung etabliert, die den indirekten Einkaufsprozess von der Bestellung bis zur Rechnungsprüfung digitalisiert und automatisiert. Die Software integriert sich nahtlos in bestehende ERP-, Buchhaltungs- und Kommunikationstools wie SAP, Microsoft Dynamics, Teams oder Slack – und das ohne aufwändige technische Implementierung.
Gegründet von erfahrenen Einkaufs- und Finanzexpert*innen aus Frustration über bisherige Lösungen, verfolgt Hivebuy die Mission, versteckte Kosten sichtbar zu machen, Budgets in Echtzeit zu kontrollieren und Einkaufsprozesse effizienter zu gestalten. Mit höchsten Sicherheitsstandards, inklusive ISO/IEC 27001-Zertifizierung und DSGVO-konformer Datenhaltung in Deutschland, schafft Hivebuy Transparenz und Vertrauen entlang der gesamten Einkaufskette.
Im Interview sprechen wir mit Bettina Fischer, Gründerin von Hivebuy, über die Chancen und Risiken des indirekten Einkaufs und darüber, wie Unternehmen mit der richtigen Software Kosten senken und Prozesse optimieren können.
StartingUp: Frau Fischer, viele Unternehmen sehen im indirekten Einkauf eher einen Kostenfaktor, der schwer zu kontrollieren ist. Was macht den indirekten Einkauf aus Ihrer Sicht zu einem versteckten Kostenfresser?
Bettina Fischer: Die große Herausforderung im indirekten Einkauf liegt darin, dass die einkaufenden Personen über das gesamte Unternehmen verteilt sind – anders als im direkten Einkauf, wo spezialisierte Einkaufsabteilungen tätig sind. Das bedeutet: Jede*r Mitarbeitende, der oder die einmal etwas bestellt, wird zum Einkäufer oder zur Einkäuferin – oft ohne die notwendige Erfahrung in Einkaufsprozessen.
Dadurch entstehen typische Muster: Es wird bei bekannten Lieferanten bestellt – oft aus dem privaten Umfeld, wie etwa Amazon Business – ohne Preisvergleiche, ohne Berücksichtigung von Lieferzeiten oder bereits verhandelten Konditionen. Das führt schnell zu ineffizienten und teuren Entscheidungen.
Hinzu kommt, dass im indirekten Einkauf eine hohe Produktvielfalt auf eine extrem heterogene Lieferantenlandschaft trifft. Das erschwert es, durch Bündelung bessere Konditionen zu erzielen. Es fehlt die klare, strategische Beziehung zu bestimmten Lieferanten – und genau dort entstehen die versteckten Kosten.
StartingUp: Wie hilft Hivebuy Mittelständlern konkret dabei, diese versteckten Kosten aufzudecken und zu reduzieren?
Bettina Fischer: Hivebuy verfolgt einen ganzheitlichen Ansatz, um die Herausforderungen des indirekten Einkaufs zu lösen. Zum einen ermöglichen wir es Mitarbeitenden, direkt über integrierte Lieferanten zu bestellen. Das bedeutet: Die Bestellungen erfolgen zentral über Hivebuy – ohne Umwege über externe Plattformen oder individuelle Beschaffungswege. Die Bestellübermittlung ist automatisiert und erfolgt effizient über unser System.
Darüber hinaus bietet Hivebuy einen integrierten Preisvergleich für B2B-Webshops. So wird sichergestellt, dass stets der beste Preis und die optimalen Lieferzeiten berücksichtigt werden – ein entscheidender Hebel zur Kostensenkung.
Ein weiterer zentraler Punkt ist die Budgetkontrolle: Sobald eine Bestellanforderung erstellt wird, sehen Budgetverantwortliche sofort die Auswirkungen auf ihr Budget – in Echtzeit. Dadurch lassen sich Entscheidungen schnell, fundiert und transparent treffen.
Auch die Freigabeprozesse sind flexibel und konfigurierbar: Mitarbeitenden wird Freiheit für alltägliche Bestellungen gegeben, während bei kritischen oder kostenintensiven Vorgängen automatische Eskalationen und Genehmigungen greifen.
Nicht zuletzt ermöglicht Hivebuy dem Einkauf, sein Wissen an die Organisation weiterzugeben. Vorverhandelte Verträge, Katalogartikel oder bevorzugte Lieferanten sind direkt im System sichtbar – wie ein digitaler Einkaufsberater im Hintergrund. So treffen selbst unerfahrene Nutzer bessere Entscheidungen – ganz im Sinne von Kostenkontrolle und Prozesssicherheit.
StartingUp: Ihre Software ist bekannt für ihre Nutzerfreundlichkeit. Wie schaffen Sie es, auch nicht-einkaufserfahrene Mitarbeitende einzubinden?
Bettina Fischer: Benutzerfreundlichkeit steht bei Hivebuy an oberster Stelle. Wann immer wir eine neue Funktion entwickeln, testen wir diese gemeinsam mit unseren Nutzerinnen und Nutzern – direkt aus der Praxis. Unser Ziel ist es, dass Hivebuy genauso intuitiv bedienbar ist wie eine Online-Überweisung: Jeder soll auf Anhieb verstehen, was zu tun ist.
Mit Funktionen wie unserem B2B-Preisvergleich und dem sogenannten Guided Buying führen wir Mitarbeitende gezielt durch den Einkaufsprozess – Schritt für Schritt, ganz ohne Schulungsaufwand. So wird selbst komplexes Einkaufswissen einfach zugänglich gemacht.
Für Freigabeverantwortliche haben wir zusätzlich eine besonders komfortable Lösung geschaffen: Freigaben können direkt über Messenger-Apps wie Microsoft Teams erteilt werden – ohne sich ins System einloggen zu müssen. Die relevanten Informationen kommen automatisch dorthin, wo man ohnehin schon arbeitet – aufs Handy oder den Desktop. Das senkt die Einstiegshürden enorm und sorgt für eine breite Akzeptanz im gesamten Unternehmen.
StartingUp: Welche Rolle spielen Transparenz und Echtzeit-Reporting in der Budgetkontrolle?
Bettina Fischer: Wir sind überzeugt: Budgetkontrolle funktioniert nur in Echtzeit. Es bringt wenig, wenn Budgetübersichten nur monatlich, quartalsweise oder gar halbjährlich zur Verfügung stehen. Entscheidungen im Einkauf werden täglich getroffen – also muss auch die Budgettransparenz jederzeit aktuell sein.
Deshalb haben wir bei der Entwicklung von Hivebuy besonderen Fokus auf eine unmittelbare Budgeteinsicht gelegt. Sobald eine Bestellung angefragt wird, sieht der oder die Budgetverantwortliche sofort, wie sich diese auf das verfügbare Budget auswirkt. Diese Echtzeit-Transparenz ist ein zentrales Element unserer Software.
Gleichzeitig möchten wir Mitarbeitende befähigen, innerhalb ihrer Befugnisse selbstständig Entscheidungen zu treffen. Nicht jede Anfrage muss durch mehrere Instanzen laufen. Vielmehr setzen wir auf smarte, automatisierte Prozesse – kombiniert mit dem Vertrauen in die Souveränität der Nutzer. Das spart nicht nur Zeit, sondern steigert auch die Effizienz und Zufriedenheit im Unternehmen.
StartingUp: Die Einführung neuer Software bedeutet oft hohen Aufwand. Wie gestaltet sich die Implementierung von Hivebuy?
Bettina Fischer: Ich habe selbst über viele Jahre ERP- und Einkaufssoftwareprojekte geleitet – und ehrlich gesagt: Es war jedes Mal ein enormer Aufwand. Genau diese Erfahrungen haben mich dazu motiviert, Hivebuy so zu entwickeln, dass Implementierung eben nicht zur Belastung wird.
Unsere Lösung ist bewusst so aufgebaut, dass sie schnell, unkompliziert und ohne großen IT-Aufwand eingeführt werden kann. Neue Unternehmen können innerhalb kürzester Zeit starten – oft sogar innerhalb eines Tages mit einem eigenen Testsystem.
Die Einführung begleiten wir durch leicht verständliche Videotutorials und Onboarding-Materialien. Darüber hinaus gibt es persönliche Sessions, in denen die Nutzer befähigt werden, das System selbstständig für ihr Unternehmen zu konfigurieren. Schnittstellen zu ERP-Systemen wie SAP, Microsoft Dynamics oder DATEV richten wir in der Regel innerhalb weniger Stunden bis Tage ein.
Wenn beide Seiten fokussiert an das Projekt herangehen, können wir bei Unternehmen mit mehreren tausend Mitarbeitenden innerhalb von acht Wochen vollständig live gehen – inklusive Integration, Schulung und Rollout.
StartingUp: Wie unterstützt Hivebuy IT-Teams und technische Entscheider bei der Integration?
Bettina Fischer: Unsere größte Stärke in der Zusammenarbeit mit IT-Teams ist unsere Schnelligkeit. Bereits im ersten Kick-Off mit der IT tauschen wir alle relevanten technischen Dokumentationen aus, klären die Rahmenbedingungen und ermöglichen in kürzester Zeit die Integration in ein Testsystem. Wir verzichten bewusst auf langwierige Business-Blueprint-Phasen und setzen stattdessen auf eine praxisnahe, direkte Umsetzung.
Hivebuy verfolgt eine klare Integration-First-Strategie. Das bedeutet: Unsere Lösung ist von Grund auf so konzipiert, dass sie sich schnell und flexibel in bestehende ERP-Systeme und IT-Landschaften integrieren lässt. Für alle gängigen Systeme – ob SAP, Microsoft Dynamics, DATEV oder NetSuite – stellen wir vollständige Schnittstellen-Dokumentationen zur Verfügung.
Mein Mitgründer Stefan Kiehne bringt aus seiner Zeit bei PwC tiefes technisches Know-how mit und hat zahlreiche ERP-Implementierungen verantwortet. Dieses Wissen fließt direkt in unsere Projekte ein. Inzwischen haben wir Hivebuy in so viele verschiedene Systeme integriert, dass kaum noch Überraschungen aufkommen. Für IT-Verantwortliche bedeutet das: minimale Unsicherheiten, schnelle Umsetzung und maximale Kompatibilität.
StartingUp: Wie sieht die Zukunft des indirekten Einkaufs aus? Welche Trends beobachten Sie?
Bettina Fischer: Ich sehe im indirekten Einkauf ganz klar einen Wandel hin zu intelligenter Automatisierung und echter Transparenz. Schon heute beobachten wir den Trend in Richtung „Agent AI“ – also digitale Einkaufsassistenten, die Nutzer durch Prozesse begleiten und Entscheidungen mit datenbasierten Empfehlungen unterstützen. Das wird sich in den nächsten Jahren deutlich verstärken.
Was mich persönlich schon lange wundert: Im B2C-Bereich haben wir mit Plattformen wie Idealo längst Preis- und Konditionsvergleiche. Im B2B gibt es das kaum. Deshalb war es uns wichtig, mit Hivebuy eine Lösung zu schaffen, die genau das möglich macht – inklusive der hinterlegten, unternehmensspezifischen Konditionen. Das ist ein echter Gamechanger.
In Zukunft wird der indirekte Einkauf zunehmend automatisiert ablaufen – von der Bedarfserkennung bis hin zur Bestellung. Vergleichbar mit einem intelligenten Kühlschrank, der automatisch Milch nachbestellt, wird auch im Unternehmen vieles automatisch geschehen: Bedarfe erkennen, Angebote vergleichen, Bestellungen auslösen – ganz ohne manuelles Zutun.
Strategische Beschaffung wird dabei zur Grundlage. Das Ziel ist nicht, jede Bestellung individuell zu behandeln, sondern Prozesse zu standardisieren, auf Unternehmensziele auszurichten und individuelle Bedarfe intelligent einzubinden.
Und auch die Rückseite des Einkaufs wird sich stark verändern: Rechnungsprüfung, Buchung und Zahlungsfreigabe werden zunehmend automatisiert ablaufen. In einer idealen Zukunft brauchen wir keine manuelle Rechnungserfassung mehr – weil alles systemgestützt, regelbasiert und transparent funktioniert.
StartingUp: Vielen Dank für das Gespräch, Frau Fischer. Ihre Einblicke verdeutlichen, wie entscheidend es für Unternehmen ist, den indirekten Einkauf transparent und effizient zu gestalten. Mit Lösungen wie Hivebuy können Mittelständler versteckte Kosten sichtbar machen und ihre Beschaffungsprozesse nachhaltig optimieren. Wir wünschen Ihnen weiterhin viel Erfolg bei Ihrer Mission, Einkaufsteams bestmöglich zu unterstützen.
EU AI Act: Status quo
Recht für Gründer*innen: der EU AI Act. Wo stehen wir in Sachen Umsetzung? Was Gründer*innen und Start-ups jetzt wissen müssen.
Künstliche Intelligenz (KI) ist längst kein Zukunftsthema mehr, sondern prägt schon heute Geschäftsmodelle, Investitionsentscheidungen und die Arbeitswelt. Mit der europäischen KI-Verordnung (EU AI Act, im Folgenden AI Act) wurde im Frühjahr 2024 der weltweit erste umfassende Rechtsrahmen für den Einsatz von KI verabschiedet. Inzwischen sind die ersten Regelungen in Kraft getreten. Für Gründer*innen und Start-ups bedeutet das nicht nur zusätzliche Pflichten, sondern auch Chancen, sofern sie sich rechtzeitig vorbereiten.
Überblick: Der AI Act
Die Verordnung folgt einem risikobasierten Ansatz: Je höher das Risiko für Grundrechte oder Sicherheit, desto strenger die Anforderungen. Auf der untersten Stufe stehen KI-Systeme, die keinerlei Vorgaben erfüllen müssen, solange sie nicht in verbotene Anwendungsfälle fallen. An der Spitze der Regulierungspyramide befinden sich die sogenannten HochrisikoSysteme, also etwa Anwendungen in der medizinischen Diagnostik, in kritischer Infrastruktur oder bei biometrischen Verfahren. Viele Tools aus dem HR-Bereich fallen darunter.
Daneben bestehen besondere Pflichten für sogenannte Generative KI beziehungsweise General Purpose AI, eingeführt, also große Modelle, die viele Anwendungen treiben und „systemische Risiken“ entfalten können.
Wichtig ist zu wissen, dass die Vorgaben schrittweise gelten. Bereits seit dem 2. Februar 2025 sind bestimmte Praktiken ausdrücklich verboten – zum Beispiel das Social Scoring von Bürger*innen, die flächendeckende Emotionserkennung in Schulen oder am Arbeitsplatz sowie das unkontrollierte Sammeln biometrischer Daten. Wer damit noch experimentiert, bewegt sich schon jetzt im rechtswidrigen Raum.
Seit dem 2. August 2025 gelten außerdem die ersten Pflichten für Anbieter*innen von generativen Modellen. Sie müssen unter anderem Transparenzberichte veröffentlichen und Angaben zu den verwendeten Trainingsdaten machen. Für Modelle, die bereits vor Inkrafttreten am Markt waren, gibt es eine Übergangsfrist bis 2027. Für viele Unternehmen, die solche Modelle nutzen oder in Produkte einbetten, bedeutet das, genau hinzuschauen, welche Informationen von den Modellanbieter*innen zur Verfügung gestellt werden. Sonst können eigene Transparenzpflichten womöglich nicht erfüllt werden.
Noch weiter in der Zukunft liegen die Vorschriften für Hochrisiko-Systeme. Diese greifen ab 2. August 2026 und verlangen ein umfassendes Risikomanagement, eine strenge Qualität der Trainingsdaten, eine lückenlose Protokollierung und eine Konformitätsbewertung, bevor ein Produkt überhaupt in Verkehr gebracht werden darf. Für Hochrisiko-KI, die in ohnehin streng regulierten Produkten steckt, zum Beispiel in Medizinprodukten, gilt eine verlängerte Frist bis 2027.
Konformitätsbewertung heißt vor allem Risikobewertung, welche die Anbieter*innen oder Betreiber*innen selbst durchführen müssen. Eine solche „regulierte Selbstregulierung“ ist ein klassisches Merkmal einer solchen klassischen Produktregulierung und Marktüberwachung.
Was fehlt? Guidance und Governance
Noch herrscht allerdings an vielen Stellen Unsicherheit. Zwar hat die EU-Kommission schon erste Leitlinien veröffentlicht, etwa zur Definition von KI-Systemen oder zu den verbotenen Praktiken. Auch für Anbieter*innen generativer KI gibt es inzwischen ein detailliertes Dokumentationsmuster. Noch fehlen allerdings die angekündigten Handreichungen für die Einstufung und Risikobewertung von Hochrisiko-Systemen, die bis Februar 2026 folgen und praktische Beispiele enthalten sollen. Bis dahin bleibt nur, sich für die Bewertung an bestehenden internationalen Standards zu orientieren, zum Beispiel an den Normungsprojekten der Europäischen Komitees für Normung und für elektrotechnische Normung.
Auf Unionsebene entstehen parallel die neuen Governance-Strukturen. Das AI Office innerhalb der Kommission ist bereits aktiv und koordiniert die Umsetzung. Das AI Board, ein Gremium der Mitgliedstaaten, tagt regelmäßig und stimmt Vorgehensweisen ab. Ein wissenschaftliches Panel unabhängiger Expert*innen wurde im Frühjahr eingerichtet, und das Advisory Forum, das die Perspektive von Unternehmen und Zivilgesellschaft einbringen soll, befindet sich gerade in der Bewerbungsphase. Auch die geplante EU-Datenbank für Hochrisiko-Systeme existiert bisher nur auf dem Papier. Ab 2026 müssen Anbieter*innen ihre Systeme dort registrieren; die Plattform selbst wird jedoch gerade erst aufgebaut.
Und wo steht Deutschland?
Auch hierzulande hakt es noch etwas. Eigentlich hätten die Mitgliedstaaten bis 2. August 2025 ihre Marktüberwachungsbehörden benennen müssen. Ein Entwurf für das deutsche Umsetzungsgesetz sieht die Bundesnetzagentur als zentrale Aufsicht vor, doch die formale Benennung ist noch nicht erfolgt. Klar ist, dass die Bundesnetzagentur die Rolle der Notifizierungsbehörde übernimmt, also für die Anerkennung von Konformitätsbewertungsstellen zuständig ist. Zudem entsteht dort ein Kompetenzzentrum für KI, das die Arbeit von Bund und Ländern koordinieren soll.
Reallabore
Ein Bereich, der für KI-Entwickler*innen besonders interessant ist, sind KI-Reallabore, also sichere Testumgebungen, in denen neue Anwendungen unter Aufsicht erprobt und darauf geprüft werden können, ob sie den rechtlichen Rahmen einhalten. Bis zum Sommer 2026 müssen die Mitgliedstaaten mindestens ein solches Reallabor einrichten. Deutschland hat im Mai 2025 ein erstes Pilotprojekt in Hessen gestartet, gemeinsam mit der Bundesnetzagentur und der Bundesdatenschutzbeauftragten. Hier werden reale Unternehmensfälle durchgespielt, um Abläufe und Bedarfe besser zu verstehen. Solche Projekte können eine wertvolle Möglichkeit sein, mit den Aufsichtsbehörden auf Augenhöhe ins Gespräch zu kommen.
Reaktionen
Der AI Act wird zwar kritisch diskutiert, im Grundsatz aber breit akzeptiert. Gerichtliche Klagen direkt gegen die Verordnung gibt es bislang nicht. In der juristischen Literatur überwiegt die Zustimmung zur Zielrichtung. Kritisiert werden vor allem die Komplexität und die noch offenen Fragen bei der praktischen Umsetzung. Streitpunkte finden sich eher außerhalb der Verordnung bei der Frage, ob Trainingsdaten urheberrechtlich geschützt sind oder wie personenbezogene Daten für KI genutzt werden dürfen.
Die Industrie zeigt ein gemischtes Bild. Viele große Anbieter*innen – von Google über OpenAI bis Mistral – haben einen freiwilligen Verhaltenskodex unterzeichnet. Andere, wie etwa Meta, haben sich bewusst dagegen entschieden. Man muss sich also darauf einstellen, dass je nach Anbieter*in sehr unterschiedliche Informationen und Compliance-Nachweise verfügbar sind.
Andererseits wirkt der AI Act bereits am Markt. In öffentlichen Ausschreibungen tauchen Modellklauseln auf, die auf die KI-Verordnung Bezug nehmen. Investor*innen fragen verstärkt nach Compliance-Prozessen, und Unternehmen beginnen, interne Strukturen für Risikomanagement und Dokumentation aufzubauen.
Im Vergleich zu Europa gibt es in den USA bislang nur freiwillige Standards. Die dort bei der Entwicklung und Anwendung von KI (angeblich) vorherrschende größere Freiheit wird zwar viel gerühmt. Einzelne Bundesstaaten wie Colorado arbeiten allerdings an eigenen regulierenden Gesetzen, die ab 2026 greifen sollen. Vielleicht ist es also ein Vorteil, dass europäische Start-ups früh Erfahrungen in einem regulierten Markt sammeln können.
Fazit
Der AI Act entfaltet bereits jetzt Wirkung, auch wenn viele Details erst in den kommenden Monaten geklärt werden. Daher gilt es, nicht abzuwarten, sondern jetzt eine eigene Roadmap zu entwickeln. Wer früh Prozesse für Risikomanagement, Transparenz und Governance etabliert, wird nicht nur rechtlich auf der sicheren Seite sein, sondern auch Vertrauen bei Kund*innen und Investor*innen gewinnen.
Die EU hat ein klares Signal gesetzt: KI soll innovativ sein, aber auch sicher und vertrauenswürdig. Für Start-ups ist das eine Herausforderung – aber auch eine Chance, sich von Anfang an professionell aufzustellen und den Markt aktiv mitzugestalten.
Der Autor Dr. Daniel Michel, LL.M. ist als Rechtsanwalt im Bereich IT/IP/Technologie tätig und betreibt seit 2018 mit DATA LAW COUNSEL seine eigene Rechtsberatung im Raum München
Start-ups gegen Plastikmüll
Während die Verhandlungen zu einem globalen Plastikabkommen ergebnislos bleiben, entwickeln Start-ups weltweit innovative Technologien gegen Plastikmüll. Wir stellen eine Auswahl davon vor.
Die jüngsten Verhandlungen in Genf über ein globales Plastikabkommen sind wieder ohne Ergebnis geblieben. Die mehr als 180 verhandelnden Nationen konnten sich nicht einigen. Seit mehr als 50 Jahren sind die Gefahren durch Plastikmüll bekannt – und doch wird immer mehr davon produziert. Jedes Jahr entstehen rund 460 Millionen Tonnen Plastik, weniger als 10 Prozent davon werden recycelt und über 30 Millionen Tonnen gelangen in die Ozeane.
Auf politischer Ebene zeichnet sich bislang keine Lösung ab, auf die man sich global einigen könnte. Neue Vorgaben wie die Pflicht zu fixierten Flaschendeckeln in der EU sorgen eher für Frust. „Seit Jahrzehnten reden wir über das Plastikproblem. Um es zu lösen braucht es technologische Ansätze“, sagt Dr. Carsten Gerhardt, Vorsitzender der gemeinnützigen Circular Valley Stiftung. Solche Ansätze liegen längst auf dem Tisch. „Start-ups aus aller Welt zeigen, dass Innovation schneller sein kann als Verhandlungen.“
Start-ups aus aller Welt arbeiten an Lösungen
Einige dieser Unternehmen hat der Circular Economy Accelerator der Circular Valley Stiftung bereits unterstützt. Das Start-up PROSERVATION etwa stellt Polsterverpackungen aus Nebenprodukten der Getreideindustrie her, BIOWEG ersetzt Mikroplastik durch Biomaterialien aus Lebensmittelabfällen und das Unternehmen Biomyc verwendet Myzel-Verbundwerkstoffe aus Pilzwurzeln und Pflanzen.
Daüber hinaus stellt NYUNGU AFRIKA Damenhygieneprodukte aus Ananasblatt- und Maisschalenfasern her, Midwest Composites nutzt Ernteabfälle für die Herstellung von Textilien und Vlastic bietet eine Alternative zu geschäumten Kunststoffen auf Flachsbasis.
Wenn Produkte das Ende ihrer Lebensdauer erreichen, können sie durch Recycling ein zweites erhalten. Ecoplastile verwandelt Abfälle in langlebige Dachziegel, Gescol macht Bauplatten aus Schuhsohlen und Novoloop nutzt schwer zu recycelndes Polyethylen zur Produktion von thermoplastischen Hochleistungs-Polyurethanen.
Chemisches Recycling zerlegt Kunststoffe in molekulare Bausteine. Das Unternehmen CARBOLIQ verwendet ein katalytisches Niedertemperaturverfahren, um gemischte Kunststoffe in Öl umzuwandeln, das fossile Rohstoffe ersetzen kann; Radical Dot extrahiert Monomere, um sie erneut verwenden zu können.
Zu chemischem Recycling hat Circular Valley in diesem Jahr einen Informationsfilm veröffentlicht, der die Möglichkeiten dieser Methode erklärt und verdeutlicht.
Die Rolle von natürlichem Licht in modernen Architekturkonzepten
Natürliches Licht gilt als einer der zentralen Bausteine zeitgemäßer Baugestaltung. Wie moderne Gebäudeplanungen Licht gezielt als formgebendes Element einsetzt.
Architekten und Bauherren setzen zunehmend auf großflächige Fensterfronten, Dachverglasungen oder offene Raumkonzepte, um Innenräume mit ausreichend Helligkeit zu versorgen. Dabei spielt nicht nur die ästhetische Komponente eine Rolle: Tageslicht wird auch mit einem gesunden Lebensumfeld, größerem Wohlbefinden und einer verbesserten Leistungsfähigkeit in Verbindung gebracht. Diese Erkenntnis hat dazu geführt, dass moderne Gebäudeplanungen das Licht gezielt als formgebendes Element einsetzen. Insbesondere in urbanen Gebieten ist der kluge Umgang mit Sonnenlicht eine anspruchsvolle, aber lohnende Aufgabe.
Das wachsende Bewusstsein für Lichtqualität
In jüngster Zeit interessieren sich immer mehr Fachleute für die Optimierung von Gebäudehüllen und deren lichttechnische Eigenschaften. Passende Lösungen entstehen unter anderem durch hochwertige Tageslichtsysteme, die sowohl in ökologischer als auch ökonomischer Hinsicht von Vorteil sind. Dabei wird den Bewohnern oder Nutzern eine angenehme, gleichmäßige Belichtung geboten, ohne dass sie von übermäßigem Wärmeeintrag oder blendendem Sonnenlicht beeinträchtigt werden. Neben der visuellen Wirkung zählt hier auch die thermische Performance: Ein strukturiertes Vorgehen bei der Auswahl von Filtern, Glasarten und Verschattungslösungen begünstigt ein stimmiges Raumklima, das einen hohen Wohn- und Arbeitskomfort generiert.
Architektonische Vielfalt dank Tageslicht
Die Integration von Fenstern, Oberlichtern und transparenten Fassadenelementen ermöglicht eine außergewöhnliche Flexibilität in der Raumgestaltung. Spezialisierte Fachleute beschäftigen sich mit Tageslichtarchitektur, um neue Wege zu eröffnen, Lichtstreuung und -lenkung auf innovative Art zu realisieren. Nicht zuletzt profitieren junge Unternehmen davon, wenn sie derartige Belichtungsaspekte geschickt einsetzen und im Rahmen ihres Marketing-Konzepts die Attraktivität ihrer Räumlichkeiten sichtbar hervorheben. Hohe Räume, diverse Lichtquellen und die gezielte Einbindung von Fassadenelementen geben Bauherren die Möglichkeit, sich an die Bedürfnisse der Nutzerinnen und Nutzer anzupassen und ein stimmiges, einladendes Gesamtbild zu erschaffen.
Energieeffizienz und Gesundheit
Wer auf eine durchdachte Tageslichtplanung setzt, profitiert von einer gewinnbringenden Symbiose aus ökologischem und ökonomischem Mehrwert. Die angemessene Einbindung von Sonnenstrahlen reduziert künstliche Beleuchtung und kann durch sinnvolle Bauphysik -Konzepte auch den Heiz- und Kühlaufwand minimieren. Gleichzeitig enden die Vorzüge nicht bei nachhaltig niedrigen Energiekosten: Studien legen nahe, dass natürliches Licht das Wohlbefinden fördert und geistige Prozesse positiv beeinflussen kann. Indem Räume gleichmäßig und blendfrei ausgeleuchtet werden, profitieren Angestellte oder Bewohner von einer entspannten Atmosphäre, die Stress mindert und Konzentration steigert. Darüber hinaus wirkt ein gutes Lichtkonzept stimmungsvoll und angenehm, was sich auf Motivation und Produktivität auswirken kann.
Materialauswahl und technologische Innovationen
Moderne Bauprojekte setzen häufig auf spezifische Gläser, Membranen und Metallkonstruktionen, um diffuses, aber dennoch ausreichendes Sonnenlicht zu gewinnen. Eine ausgeglichene Balance zwischen Wärmeschutz und Belichtungsintensität bedeutet für Investoren und Planer zugleich höhere Miet- oder Verkaufschancen. Wer in die Praxis blickt, stellt fest, dass sich die Materialinnovation stetig weiterentwickelt: Von mehrschichtigen Isoliergläsern bis hin zu smarten Beschichtungen ist das Angebot überaus reichhaltig. Diese Vielfalt erlaubt Bauherren, ein maßgeschneidertes Konzept zu wählen, das exakte Vorstellungen hinsichtlich Energieeffizienz, Komfort und Design berücksichtigt. Dabei ist die umfassende Beratung durch Spezialisten wesentlich, um jedes Detail zu perfektionieren.
Planungsaspekte für moderne Gebäude
Bei modernen Bauvorhaben lässt sich beobachten, dass Architektinnen und Architekten natürliche Lichtquellen bereits frühzeitig in die Entwürfe einbeziehen. Die Lichtführung, das Zusammenspiel von Ausrichtung und Verschattung sowie die räumlichen Proportionen sind nur einige Faktoren, die für das Gesamtergebnis entscheidend sind. Auch städtebauliche Gegebenheiten wie benachbarte Gebäude oder der vorhandene Baumbestand spielen eine Rolle. Darüber hinaus sind bauordnungsrechtliche Vorschriften zu berücksichtigen, damit der Lichteinfall technisch und rechtlich harmonisch umgesetzt wird. Ein kompetentes Team aus Statikern, Bauphysikern und Designern gleicht diese Parameter untereinander ab.
Gestalterische Freiheit durch Tageslichtlösungen
Da Sonnenlicht eine natürliche Dynamik besitzt, verändert es sich abhängig von Tages- und Jahreszeit. Dieses Wechselspiel bietet Raum für gestalterische Experimente – etwa durch transparente Innenwände, gläserne Verbindungselemente oder spezielle Deckenaufbauten. Somit werden Lichtakzente geschaffen, die verschiedene Bereiche eines Raums hervorheben und ihm eine lebendige, wandelbare Gestalt verleihen. Ob industriell anmutende Lofts oder repräsentative Büroräume mit hellen Gemeinschaftsflächen: Die Anpassungsfähigkeit naturlichter Planungen erlaubt es, Konzepte zu entwickeln, die so einzigartig sind wie ihre Nutzer selbst. Gleichzeitig können Farben, Oberflächenstrukturen und Möblierung die Lichtwirkung verstärken oder abschwächen.
Inspirierende Beispiele aus der Gegenwart
Rund um den Globus existieren Bauwerke, deren Ausstrahlung wesentlich auf der klugen Verwendung von Tageslicht beruht. Museumsbauten, deren Ausstellungsräume großflächig mit Oberlichtern ausgestattet sind, erzeugen eine fast sakrale Atmosphäre. Ebenso gibt es Wohnbaufassaden, die durch neuartige Verglasungstechniken sowohl stilvoll als auch energieeffizient wirken. In vielen Ländern nimmt die öffentliche Hand aktiv Einfluss und fördert Projekte, die eine nachhaltige Lichtgestaltung ermöglichen. Auf diese Weise entsteht eine vielgestaltige Palette architektonischer Ausdrucksformen, bei denen ästhetische und gesundheitliche Bedürfnisse gleichermaßen berücksichtigt werden.
Ausblick auf künftige Entwicklungen
Künftige Baukonzepte werden das Zusammenspiel von Umweltschutz, Nutzungsflexibilität und gesundheitsfördernder Tageslichtgestaltung weiter ausbauen. Forschung und Praxis streben an, energieeffiziente Systeme mit noch intelligenteren Steuerungen zu verknüpfen und so den Lichteinfall in Echtzeit zu regulieren. Überdies ist zu erwarten, dass sich die Verbindung von wetterabhängigen Sensoren, automatisierter Beschattung und innovativen Materialien weiter professionalisiert – was Gebäude für die Bewohnerinnen und Bewohner noch attraktiver macht. So bleibt die Rolle des natürlichen Lichts auch in der kommenden Generation der Architektur ein beständiger Motor für Kreativität, Wohlbefinden und Effizienz.
Food-Innovation-Report
Wie Food-Start-up-Gründer*innen im herausfordernden Lebensmittelmarkt erfolgreich durchstarten und worauf Investor*innen besonders achten.
Food-Start-ups haben in den vergangenen Jahren einen bemerkenswerten Aufschwung erlebt. Der zunehmende Wunsch nach nachhaltiger, gesunder und funktionaler Ernährung, das wachsende Bewusstsein für Klima- und Umweltschutz sowie der Trend zur Individualisierung der Ernährung haben eine neue Gründungswelle ausgelöst. Dennoch: Der Markteintritt im deutschen Lebensmittelmarkt zählt zu den anspruchsvollsten Herausforderungen, denen sich Gründer*innen stellen können. Wer als Start-up nicht durch außergewöhnliche Innovation oder gezielte Nischenstrategie punktet, hat kaum eine Chance, hier gelistet zu werden.
Ohne klare Zielgruppenfokussierung, glaubwürdiges Produktversprechen und professionelle Umsetzung funktionieren auch gute Ideen nicht – wie es u.a. die Frosta-Tochter elbdeli (trotz starker Marke keine Resonanz) und Bonaverde (Kaffeemaschine mit Röstfunktion, die trotz Kickstarter-Erfolg) scheiterte zeigen.
Da dieser Markt so groß ist, ist er auch stark reguliert, hochkonkurrenzfähig und von mächtigen Einzelhandelsstrukturen dominiert. Zu den größten Hürden zählen die komplexe Regulatorik, Logistik und Produktion, Finanzierung sowie die Konsument*innenakzeptanz.
Laut dem Deutschen Startup Monitor nennen 43 Prozent aller Start-ups die Finanzierung als größte Hürde. Kapitalbedarf entsteht früh – für Verpackungen, Lebensmittelsicherheit, Produktion, Mindestabnahmemengen und Vertrieb.
Ein typisches Seed-Investment liegt zwischen 250.000 und 1,5 Millionen Euro. In späteren Phasen steigen institutionelle VCs mit Ticketgrößen von bis zu fünf Millionen Euro ein. Erfolgreiche Exits wie der Verkauf von yfood an Nestlé (2023) zeigen: Der Markt ist in Bewegung, aber selektiv.
Functional Food als Innovationsmotor – aber nicht der einzige
Functional Food ist längst mehr als ein Trend: Es ist ein wachsendes Segment mit wissenschaftlicher Fundierung. Produkte wie funktionale Riegel, Drinks oder Functional Coffee verbinden Geschmack mit gesundheitlichem Mehrwert. Besonders gefragt sind derzeit Inhaltsstoffe wie Adaptogene, Pro- und Präbiotika, pflanzliche Proteine und weitere Mikronährstoffe.
Zugleich gewinnen auch alternative Proteinquellen (Pilze, Algen, Fermentation), klimapositive Lebensmittel und Zero-Waste-Konzepte an Bedeutung. Konsument*innen wollen Ernährung, die nachhaltig und leistungsfördernd ist.
Worauf Investor*innen achten – und was sie abschreckt
Aus Sicht eines/einer Investor*in zählen nicht nur Produktidee und Branding. Entscheidender ist:
- Ist das Team umsetzungsstark, resilient, multidisziplinär?
- Gibt es Traktion (z.B. Verkaufszahlen, Feedback, D2C-Erfolge)?
- Wie realistisch ist der Finanzplan? Sind Margen und Logistik durchdacht?
- Ist das Produkt skalierbar – auch international?
Abschreckend wirken hingegen: überschätzte Umsatzprognosen, fehlende Markteinblicke, instabile Lieferketten oder reine Marketingblasen ohne echte Substanz.
Es ist unschwer zu erkennen: Wer im Food-Bereich gründen will, braucht mehr als eine gute Idee. Der deutsche Markt ist selektiv, komplex und durch hohe Einstiegshürden geprägt. Gleichzeitig ist er enorm spannend für alle, die bereit sind, langfristig zu denken, regulatorisch sauber zu arbeiten und echten Mehrwert zu schaffen.
Food-Start-ups, die ihre Zielgruppe kennen, finanziell solide aufgestellt sind und wissenschaftlich fundierte Produkte entwickeln, haben reale Chancen auf Marktdurchdringung – besonders, wenn sie es schaffen, Handelspartner*innen und Konsument*innen gleichermaßen zu überzeugen.
Investor*innen sind bereit, in solche Konzepte zu investieren, aber sie erwarten mehr als Visionen: Sie erwarten belastbare, integrierte Geschäftsmodelle mit echtem Impact.
Internationaler Vergleich: Was Food-Start-ups in den USA anders machen
Die USA gelten als Vorreiter für Food-Innovation. Der Markt ist schneller, risikofreudiger und deutlich kapitalintensiver. Allein im Jahr 2023 flossen in den USA rund 30 Milliarden US-Dollar Wagniskapital in FoodTech und AgriFood-Start-ups – ein Vielfaches im Vergleich zu Deutschland. Start-ups wie Beyond Meat, Impossible Foods oder Perfect Day konnten in kurzer Zeit hunderte Millionen Dollar einsammeln, skalieren und international expandieren. Die wesentlichen Unterschiede zur deutschen Szene sind:
- Zugang zu Kapital: Amerikanische Gründer*innen profitieren von einer ausgeprägten Investor*innenlandschaft mit spezialisierten VCs, Family Offices und Corporate Funds. In Deutschland dominiert oft konservative Zurückhaltung.
- Marktzugang: Der US-Markt ist dezentraler organisiert. Start-ups können regional Fuß fassen und wachsen, ohne gleich auf landesweite Listungen angewiesen zu sein.
- Regulatorik: Die U.S. Food and Drug Administration (FDA) ist in vielen Bereichen offener gegenüber neuen Inhaltsstoffen und Health Claims – das ermöglicht schnellere Markteinführungen.
- Kultur & Narrative: Amerikanische Konsument*innen sind innovationsfreudiger. Sie schätzen Storytelling, Vision und Purpose deutlich mehr als europäische Kund*innen.
Das bedeutet nicht, dass der US-Markt einfacher ist. Er ist aber zugänglicher für disruptive Ideen, insbesondere wenn sie skalierbar und investor*innentauglich aufgesetzt sind.
Operative Herausforderungen: vom Prototyp zur Produktion
Die operative Skalierung ist einer der größten Stolpersteine für Food-Start-ups. Eine Rezeptur im Labormaßstab oder im Handwerk zu entwickeln, ist vergleichsweise einfach. Sie jedoch für den industriellen Maßstab zu adaptieren, bringt komplexe Fragestellungen mit sich:
- Wo finde ich einen Co-Packer mit Kapazitäten für Kleinserien?
- Wie skaliert mein Produkt ohne Qualitätsverlust?
- Wie optimiere ich Haltbarkeit ohne künstliche Zusätze?
- Welche Verpackung schützt das Produkt, erfüllt die Nachhaltigkeitsansprüche und passt zu den Preisvorgaben des Handels?
In Deutschland ist die Infrastruktur für Food-Start-ups im Vergleich zu den USA oder den Niederlanden unterentwickelt. Während es in den USA Inkubatoren mit angeschlossenen Produktionsstätten (z.B. The Hatchery in Chicago oder Pilotworks in New York) gibt, fehlt es hierzulande oft an bezahlbaren, flexiblen Produktionslösungen.
Gerade nachhaltige Verpackungen stellen viele Gründer*innen vor Probleme: Biologisch abbaubare Alternativen sind teuer, nicht immer kompatibel mit Logistikprozessen und oft nicht lagerstabil genug. Ein Spagat, der Investitionen und viel Know-how erfordert.
Erfolgsfaktor Vertrieb: Wie Produkte wirklich in den Handel kommen
Viele unterschätzen den Aufwand, der hinter einem erfolgreichen Listungsgespräch steht. Händler*innen erwarten nicht nur ein gutes Produkt – sie wollen einen Business Case:
- Wie hoch ist die Spanne für den Handel?
- Wie ist die Wiederkaufsquote?
- Wie sieht das Launch-Marketing aus?
- Gibt es POS-Materialien oder begleitende Werbekampagnen?
Ein Listungsgespräch ist kein Pitch – es ist ein Verhandlungstermin auf Basis knallharter Zahlen. Ohne überzeugende Umsatzplanung, Distributionserfahrung und schnelle Liefer- fähigkeit hat ein Start-up kaum Chancen auf eine langfristige Platzierung im Regal. Viele Gründer*innen lernen das schmerzhaft erst nach dem Launch.
Zukunftstechnologien im Food-Bereich
Die Food-Branche steht am Beginn einer technologischen Revolution. Neue Verfahren wie Präzisionsfermentation, Zellkultivierung, 3D-Food-Printing oder molekulare Funktionalisierung eröffnen völlig neue Produktkategorien. Beispiele sind:
- Perfect Day (USA) stellt Milchprotein via Mikroorganismen her – völlig ohne Kuh.
- Formo (Deutschland) produziert Käseproteine durch Fermentation.
- Revo Foods (Österreich) bringt 3D-gedruckten Fisch auf pflanzlicher Basis in die Gastronomie und Handel.
Diese Technologien sind kapitalintensiv, regulatorisch komplex, aber langfristig zukunftsweisend. Wer heute die Brücke zwischen Wissenschaft, Verbraucher*innenbedürfnis und industrieller Machbarkeit schlägt, wird zu den Innovationsführer*innen von morgen zählen.
Neben dem klassischen Lebensmitteleinzelhandel gewinnen alternative Vertriebskanäle zunehmend an Bedeutung. Insbesondere spezialisierte Bio- und Reformhäuser wie Alnatura, Denns oder basic bieten innovativen Start-ups einen niedrigschwelligen Einstieg, da sie auf trendaffine Sortimente, nachhaltige Werte und kleinere Produzent*innen setzen. Hier zählen Authentizität, Zertifizierungen und persönliche Beziehungen mehr als reine Umsatzversprechen.
Auch der Onlinehandel wächst rasant: Der Anteil von E-Commerce im deutschen Lebensmitteleinzelhandel liegt zwar erst bei etwa drei bis vier Prozent, doch Plattformen wie Amazon Fresh, Picnic, Knuspr oder Getir bieten zunehmend Raum für neue Marken. Gerade Quick-Commerce-Anbietende ermöglichen kurzfristige Testmärkte und agile Vertriebspiloten in urbanen Zielgruppen.
Der Blick in die USA zeigt, was in Europa bevorsteht: Dort erzielt TikTok bereits über seinen eigenen TikTok Shop mehr als 20 Milliarden US-Dollar Umsatz – Tendenz stark steigend. Immer mehr Food-Start-ups nutzen die Plattform direkt als Verkaufs- und Marketingkanal. Es ist nur eine Frage der Zeit, bis ähnliche Social-Commerce-Strukturen auch in Europa an Relevanz gewinnen – sei es über TikTok, Instagram oder neue, native D2C-Plattformen.
Weitere Trendfelder, die aktuell in den Fokus rücken, sind unter anderem:
- Regeneratives Essen: Lebensmittel, die nicht nur neutral, sondern positiv auf Umwelt und Biodiversität wirken. Beispiele: Produkte mit Zutaten aus regenerativer Landwirtschaft oder CO₂-bindende Algen.
- Blutzuckerfreundliche Ernährung: Start-ups wie Levels (USA) oder NEOH (Österreich) zeigen, wie personalisierte Ernährung über Glukose-Monitoring neue Märkte erschließen kann.
- „Food as Medicine“: Produkte, die gezielt auf chronische Beschwerden oder Prävention ausgelegt sind – beispielsweise bei Menstruationsbeschwerden, Wechseljahren oder Verdauungsstörungen.
- Zero-Waste-Produkte: Verwertung von Nebenströmen (z.B. aus Brauereien oder Obstpressen) zur Herstellung von Lebensmitteln mit Nachhaltigkeitsanspruch.
- Biohacking-Produkte: hochfunktionale Lebensmittel für kognitive Leistung, Schlaf, Erholung oder hormonelle Balance wie zum Beispiel der Marke Moments – by Biogena.
Die Zukunft von Food liegt in der Synthese aus Wissenschaft, Individualisierung und Nachhaltigkeit. Start-ups, die diese Megatrends frühzeitig besetzen, positionieren sich als Pioniere für eine neue Esskultur. Besonders wichtig in der Investor*innenansprache sind:
- Fundierte Zahlenkenntnis: Gründer*innen sollten Unit Economics, Break-Even-Szenarien und Roherträge detailliert erklären können. Vage Aussagen über Marktpotenzial reichen nicht – es braucht belastbare Szenarien.
- Proof of Concept: Idealerweise liegt bereits ein MVP (Minimum Viable Product) mit echter Kund*innenvalidierung vor. Pilotprojekte mit Handelspartner*innen oder Online-Abverkäufe liefern harte Daten.
- Storytelling mit Substanz: Purpose ist gut – aber er muss betriebswirtschaftlich verankert sein. Was motiviert das Team? Wo liegt der USP? Wie stark ist der Wettbewerb?
- Team-Komplementarität: Ein starkes Gründer*innen-Team vereint Produkt- und Marktwissen, betriebswirtschaftliches Denken und Leadership-Kompetenz.
- Exit-Szenario: Investor*innen wollen eine Perspektive: Wird es ein strategischer Verkauf, ein Buy- & Build-Modell oder ein langfristiger Wachstums-Case?
Wer Investor*innen mit klarer Struktur, realistischen Annahmen und ehrlicher Kommunikation begegnet, hat bessere Chancen auf Kapital – inbesondere in einem Markt, der aktuell selektiver denn je agiert. Genau hier liegt die Kernkompetenz von Food-Start-up-Helfer*innen wie der Alimentastic Food Innovation GmbH, die nicht nur in innovative Unternehmen investiert, sondern ihnen aktiv dabei hilft, die oben genannte operative Komplexität zu überwinden und den Time to Market signifikant zu verkürzen – von der Produktidee bis hin zur Umsetzung im Handel.
Fazit
Der deutsche Food-Start-up-Markt ist herausfordernd, aber voller Chancen. Wer heute erfolgreich gründen will, braucht nicht nur eine starke Produktidee, sondern ein tiefes Verständnis für Produktion, Vertrieb, Kapitalstruktur und Markenaufbau. Functional Food, nachhaltige Innovationen und technologiegetriebene Konzepte bieten enorme Wachstumsmöglichkeiten – vorausgesetzt, sie werden professionell umgesetzt und skalierbar gedacht.
Der Autor Laurenz Hoffmann ist CEO & Shareholder der Alimentastic Food Innovation GmbH und bringt langjährige Erfahrung aus dem Lebensmitteleinzelhandel mit.
“Digitalisierung ist kein Nice-to-have mehr, sondern strukturelle Voraussetzung für Wettbewerbsfähigkeit”
„Made in Steel. Built on Data.“ Mit diesem Leitsatz positioniert sich die EMR Dynamics GmbH als strategische Antwort auf die zunehmende Komplexität globaler Lieferketten – und auf die wachsenden Anforderungen an Geschwindigkeit, Transparenz und Resilienz in industriellen Wertschöpfungsnetzwerken.
Unter der Leitung von Emrullah Görsoy geht EMR Dynamics aus einem Berliner Familienunternehmen hervor, das seit 2005 als verlässlicher Partner für mechanische Komponenten in Europa etabliert ist. Nun markiert das Unternehmen den nächsten Entwicklungssprung der Unternehmensgeschichte: von der Fertigung zur Plattform.
Fragen dazu an Emrullah Görsoy, Managing Director at EMR:
Seit mehr als 20 Jahren seid ihr mit EMR am Markt. Man könnte sagen, ihr macht vieles richtig – Wie lautet euer Erfolgsrezept?
Unser Erfolgsrezept liegt in der konsequenten Weiterentwicklung. Wir haben uns nie auf bestehenden Strukturen ausgeruht, sondern das Unternehmen immer wieder neu gedacht – operativ, strategisch und technologisch. Besonders in Zeiten des Wandels war unser pragmatischer Unternehmergeist entscheidend. Dabei kombinieren wir mittelständische Robustheit mit einer agilen Denkweise – anpassungsfähig, resilient und wachstumsorientiert.
Zeitnah startet ihr mit eurer Neugründung EMR Dynamics am Markt. Was steckt dahinter?
EMR Dynamics ist unsere Antwort auf ein fragmentiertes Marktumfeld und wachsende Anforderungen an Geschwindigkeit, Transparenz und Resilienz in industriellen Lieferketten. Wir verbinden vertikal integrierte Fertigungskompetenz mit einer digitalen Prozessarchitektur – eine B2B-Plattform für die intelligente Steuerung und Vermittlung industrieller Produktions- und Beschaffungsprozesse. Das Ziel: maximale Skalierbarkeit, reduzierte Time-to-Market und durchgängige Prozesssicherheit für unsere Kunden.
Damit schlagen wir die Brücke zwischen Mittelstand und digitaler Ökonomie – resilient, effizient und kundennah. Wir wollen EMR Dynamics als Plattformmarke im industriellen Mittelstand etablieren – mit eigener Fertigung, digitalem Backbone und strategischer Nähe zum Kunden.
An wen richtet sich euer Angebot?
Unsere Zielgruppen sind OEMs, Tier-1-Zulieferer und Systempartner aus hoch regulierten und qualitätskritischen Industrien – etwa Rail, Aerospace, Defense oder Industrial Tech. Wir liefern nicht nur Komponenten, sondern vernetzen Prozesse, sichern Supply Chains ab und schaffen Plattformlösungen für beschleunigte Wertschöpfung – alles aus einer Hand.
Wie unterscheidet sich euer Angebot von klassischen Fertigungsdienstleistern?
Wir sind kein reiner Teilelieferant. Wir verstehen uns als Lösungsanbieter entlang der industriellen Wertschöpfung – von Co-Engineering und Prototyping über skalierbare Serienfertigung bis hin zur integrierten Lieferkette. Durch die Plattformlogik können wir unsere Prozesse mit denen unserer Kunden synchronisieren und so Time-to-Market und Lieferperformance signifikant verbessern – gerade für komplexe und hochqualifizierte Baugruppen.
Seit mehreren Jahren bist du Geschäftsführer des Unternehmens EMR Industrial. Wie fühlt es sich an, als Young Professional bereits in einer solchen verantwortungsvollen Rolle zu sein?
Herausfordernd, aber erfüllend. Ich hatte das Privileg, früh Verantwortung zu übernehmen – besonders während der Transformation von EMR in der Pandemie. Die Krise 2020 hat uns gezwungen, unser gesamtes Geschäftsmodell zu pivotieren. Diese Erfahrung hat mich geprägt: Strategisch zu denken, unternehmerisch zu handeln und nie den Kontakt zur operativen Realität zu verlieren.
Welche Bedeutung hat die Digitalisierung aus deiner Sicht für den Mittelstand und was können sich Mittelständler von Start-ups abschauen?
Digitalisierung ist kein Nice-to-have mehr, sondern strukturelle Voraussetzung für Wettbewerbsfähigkeit. Der Mittelstand kann von Start-ups besonders eines lernen: den Mut, Prozesse radikal neu zu denken – und den Fokus auf Geschwindigkeit, Automatisierung und User Experience.
Emrullah Görsoy, Danke für die Insights
5 Tipps für GPT-Sichtbarkeit im Netz
Warum klassisches SEO allein nicht mehr ausreicht und wie Unternehmen für die KI-Antworten der GPT-Modelle sichtbar werden.
Die Spielregeln der digitalen Sichtbarkeit werden gerade neu geschrieben – und die Unternehmen müssen sich neu aufstellen. Denn während viele Unternehmen ihre Strategien noch immer ausschließlich auf Google-Rankings und SEO-Kriterien ausrichten, verlagert sich die digitale Aufmerksamkeit längst in Richtung KI: Sprachmodelle wie ChatGPT, Claude oder Gemini ersetzen zunehmend die klassische Suche. Sie liefern keine Trefferlisten mehr, sondern direkte, aufbereitete Antworten – oft mit konkreten Empfehlungen und Verlinkungen. Für Marken, Produkte und Unternehmen wird es damit entscheidend, in diesen zusammengefassten Antworten stattzufinden. Das Stichwort hierfür ist technisches SEO für KI-Rankings.
Suchmaschinen waren gestern das führende Element in der Sortierung von Wissen im Netz und vor allem das Google-Ranking war entscheidend für die Sichtbarkeit von Informationen und Seiten. In Zukunft entscheiden dagegen Sprachmodelle darüber, welche Inhalte gesehen, zitiert und empfohlen werden. Und wer in diesen Systemen nicht genannt wird, verliert den direkten Draht zur Zielgruppe.
Diesen Paradigmenwechsel vom Google-Ranking zur Antwortlogik hat die SMAWAX, die auf Strategieberatung spezialisierte Agentur der Smarketer Group, erstmals systematisch im Rahmen eines Whitepapers analysiert (s. Link am Ende des Beitrags). Die Expert*innen erklären dabei detailliert, wie GPT-Modelle Inhalte auswählen – und welche Inhalte von den Systemen überhaupt referenziert werden dürfen. Die zentrale Erkenntnis: Suchmaschinenoptimierung nach alten Regeln greift zu kurz, ist aber weiterhin die Sichtbarkeitsgrundlage. Denn Sprachmodelle wie ChatGPT denken nicht in Keywords und Rankings, sondern in semantischen Relevanzräumen, Entitätenbeziehungen und struktureller Klarheit.
Inhalte müssen modular und semantisch präzise sein – doch das reicht nicht
Es geht nicht mehr um Top-Rankings – es geht darum, die richtige Antwort zu sein. Wir müssen SEO neu denken – als Schnittstelle zwischen Struktur, Relevanz und maschinellem Verstehen. Inhalte müssen dazu maschinenlesbar, modular aufgebaut und semantisch präzise sein. Nur dann haben Unternehmen eine Chance, in den Empfehlungslogiken von Claude, GPT & Co. aufzutauchen.
Besonders überraschend ist dabei aber, dass viele Unternehmen in GPT-Antworten zwar durchaus latent präsent, aber nicht sichtbar sind. Der Grund hierfür sind unscharfe Entitäten, fehlende „About“-Seiten, keine Verankerung in externen Quellen wie Wikidata, Trustpilot oder LinkedIn. Die Folgen wirken sich negativ auf die Marken aus und sorgen für Fehlinformationen: KI-Modelle verwechseln Marken, halluzinieren Funktionen oder verschweigen relevante Angebote. Halluzinationen sind in Wahrheit ein strategischer Hinweis auf Unsichtbarkeit. Wenn GPT ein Produkt falsch beschreibt oder dich mit einem Mitbewerber verwechselt, zeigt das: Deine Inhalte sind zwar irgendwo im Modell – aber nicht stabil genug verankert, um korrekt genannt zu werden.
Fünf konkrete Hebel für bessere GPT-Sichtbarkeit
Diese praxisnahe Handlungsempfehlungen können Unternehmen sofort umsetzen können – unabhängig davon, ob sie im B2B- oder B2C-Bereich aktiv sind.
1. Entitäten definieren: Jede Marke braucht heute eine kanonische „About“-Seite, ergänzt um ein Wikidata-Profil, semantische Markups und gleiche Namensverwendungen auf Plattformen wie LinkedIn oder Handelsregister.
2. Aktualität signalisieren: GPT-Modelle bevorzugen Inhalte mit klaren Update-Daten (z.B. dateModified). Ohne erkennbaren Pflegezustand gelten Inhalte als veraltet – und werden ausgefiltert.
3. Bing wird zum Gateway: Weil GPT seine Websuche auf Bing stützt, ist dessen Indexierung entscheidend. Wer dort nicht sauber auffindbar ist, existiert in GPT-Antworten nicht.
4. Content chunkbar machen: Inhalte sollten nicht mehr aus langen Fließtexten bestehen, sondern in modularen Blöcken mit H2-Strukturen, Listen und Zwischenfazits aufgebaut sein.
5. Externe Signale einbinden: Erwähnungen auf Trustpilot, Reddit oder in der Fachpresse stärken die semantische Autorität – und erhöhen die Chance, von Sprachmodellen zitiert zu werden.
Fazit
Die neue Sichtbarkeit entsteht durch das, was das Modell nicht selbst erzeugen kann – sie entsteht also nicht über Rankings, sondern über Relevanzräume. Wer auf Standard-Content setzt, wird paraphrasiert oder übergangen. Wer dagegen einzigartigen, strukturierten und technisch klaren Content liefert, wird empfohlen.
Zum Weiterlesen: Das Whitepaper steht zum kostenlosen Download bereit unter www.smawax.com/whitepaper-ki-sichtbarkeit
KI clever eingesetzt: Können deutsche Entwickler ihre App-Ideen mit Vibe Coding umsetzen?
Wie Vibe Coding, eine neue KI-gestützte Methode der App-Entwicklung, es heute deutlich einfacher macht, aus einer Idee ein funktionierendes digitales Produkt entstehen zu lassen.
Die Zeiten, in denen man für die Umsetzung einer App monatelang ein Entwicklerteam zusammenstellen, riesige Budgets planen und unzählige Meetings überstehen musste, scheinen langsam zu verblassen. Vibe Coding, eine neue KI-gestützte Methode der App-Entwicklung, macht es Gründern und kreativen Köpfen in Deutschland heute deutlich einfacher, aus einer Idee ein funktionierendes digitales Produkt entstehen zu lassen.
Was steckt hinter Vibe Coding?
Vibe Coding nutzt künstliche Intelligenz, um auf Basis einfacher Sprache Code zu erzeugen. Statt eine App Zeile für Zeile zu programmieren, beschreibt man, was sie können soll. Die KI wandelt diese Wünsche in Code um, der sich dann weiter anpassen und verfeinern lässt. Anders als bei klassischen No-Code-Plattformen entstehen keine bloßen Baukastenlösungen, sondern anpassbarer, individuell nutzbarer Code.
Im Unterschied zu Low-Code-Ansätzen braucht es keine aufwendige UI und keine grafische Umgebung, in der man mühsam Komponenten zusammensetzt. Stattdessen genügt es, der KI präzise zu erklären, welches Ergebnis angestrebt wird. Das spart nicht nur Zeit, sondern eröffnet auch Menschen ohne tiefgehendes Technikverständnis ganz neue Möglichkeiten.
Aktuell eignet sich dieser Ansatz besonders für die Entwicklung von Prototypen, Minimum Viable Products und überschaubaren Business-Apps. Wer dagegen komplexe Anwendungen mit tiefen Backend-Strukturen, Hochsicherheitsanforderungen oder extrem hoher Nutzerlast plant, stößt mit Vibe Coding derzeit noch an natürliche Grenzen. Doch für den ersten Schritt in die App-Welt ist dieses Werkzeug so vielversprechend wie kaum ein anderes.
Wie KI-basierte Entwicklung neue Möglichkeiten für Gründer eröffnet
In der Praxis bedeutet das: Was früher ein ganzes Entwicklerteam beschäftigt hätte, kann heute oft in wenigen Tagen oder sogar Stunden entstehen. Vibe Coding verkürzt die Entwicklungszeiten deutlich, die ersten funktionsfähigen Entwürfe stehen schneller zur Verfügung als je zuvor.
Nicht zu unterschätzen ist dabei auch die finanzielle Seite. Wo man früher fünfstellige Summen investieren musste, genügt heute oft ein Bruchteil davon, um einen ersten lauffähigen Prototypen zu testen. Damit wird der Einstieg in die App-Entwicklung auch für Gründer ohne Tech-Hintergrund realistischer. Kein Zwang mehr, einen CTO an Bord zu holen oder teure Agenturen zu engagieren.
Gerade in Deutschland, wo Gründungsteams häufig an fehlender Entwicklerkapazität scheitern, eröffnet diese Entwicklung eine völlig neue Dynamik. Wer eine gute Idee hat, kann sie dank Vibe Coding sehr viel leichter in die Realität umsetzen. Das fördert die Innovationskultur und macht Platz für mehr mutige Experimente.
Ein Beispiel, das hier besonders hervorsticht, ist die Founders Foundation in Ostwestfalen-Lippe. Mit gezielten Programmen und Workshops unterstützt sie Gründerinnen und Gründer dabei, KI-gestützte Methoden sinnvoll einzusetzen und so eigene digitale Produkte schneller auf die Straße zu bringen. Genau solche Impulse tragen dazu bei, dass sich der Trend immer stärker durchsetzt.
Welche deutschen Start-ups zeigen bereits, was mit KI und No-Code möglich ist?
Dass das alles keine Theorie mehr ist, sondern in deutschen Gründungszentren längst gelebt wird, zeigen einige aktuelle Beispiele sehr anschaulich. Leaping AI aus Berlin etwa entwickelt Voicebots, die im Kundenservice 70 Prozent aller Anfragen automatisiert beantworten. Eine Anwendung, die ohne moderne KI-Tools in dieser Geschwindigkeit und Qualität wohl kaum möglich wäre.
Auch qru aus Stuttgart beweist, was möglich ist. Mit ihren Videomarketing-Tools, die auf einem cleveren Mix aus Low-Code und KI basieren, können selbst kleinere Unternehmen ihre Marketingprozesse automatisieren und professionell gestalten, ohne dafür eine eigene IT-Abteilung zu benötigen.
Ein drittes Beispiel: Paul’s Job, ein Berliner Startup, das HR-Prozesse mit agentischer KI unterstützt. Recruiting und Personalverwaltung laufen dort in weiten Teilen automatisiert, was Gründern wie Personalabteilungen jede Menge Zeit und Nerven spart.
Diese und ähnliche Projekte zeigen deutlich, dass Vibe Coding und vergleichbare Methoden längst ihren Weg in die praktische Nutzung gefunden haben. Die Technologie entwickelt sich dabei so schnell weiter, dass immer mehr Gründer den Mut fassen, ihre App-Ideen mit solchen Ansätzen umzusetzen.
Warum die App-Entwicklung perspektivisch günstiger wird
Ein Blick auf die allgemeine Marktentwicklung macht schnell deutlich: App-Entwicklung wird in den kommenden Jahren noch günstiger und einfacher werden. Mit jedem Fortschritt der KI sinken die Kosten für die technische Umsetzung, gleichzeitig steigen die Möglichkeiten, individualisierte Lösungen zu entwickeln.
Das hat Folgen, insbesondere für kleinere und spezialisierte Anbieter. Wo früher nur große Unternehmen eigene Apps auf den Markt bringen konnten, öffnet sich der Zugang nun auch für kleinere Player. Gerade in Nischenmärkten entstehen so neue Chancen.
Ein besonders interessantes Feld ist aktuell der Gambling-Sektor. Lange Zeit galten die hohen Entwicklungskosten als Einstiegshürde für viele Anbieter. Inzwischen zeigt sich jedoch, dass speziell in diesem Bereich vermehrt Apps auf den Markt kommen, weil die technische Umsetzung dank KI-Tools deutlich günstiger geworden ist.
Aber nicht nur im Glücksspiel-Markt tut sich etwas. Health und Fitness, E-Learning, Content Creation sowie regionale Dienstleistungen profitieren in ähnlicher Weise von den neuen Möglichkeiten. Über Smartphones und Tablets gelangen viele dieser Lösungen direkt zu den Nutzern und ermöglichen eine viel engere Bindung als klassische Webanwendungen.
Wo klassische Entwicklerkompetenz weiterhin unverzichtbar bleibt
Natürlich hat auch Vibe Coding seine Grenzen. Gerade wenn es um anspruchsvolle Architektur, komplexe Backend-Systeme oder hochskalierbare Anwendungen geht, kommt man ohne erfahrene Entwickler nach wie vor nicht aus.
KI generiert Code auf Basis von Wahrscheinlichkeiten, was in der Praxis immer wieder zu fehlerhaften oder ineffizienten Strukturen führen kann. Qualitätssicherung, Testing und fundiertes Architekturwissen bleiben deshalb unerlässlich, sobald eine App mehr sein soll als ein einfaches MVP.
Auch bei Themen wie Performance, Sicherheit und Datenschutz kann KI derzeit noch nicht mithalten. Hier braucht es das Know-how klassischer Entwickler, um Anwendungen stabil und vertrauenswürdig zu machen.
Gerade für Anwendungen im Finanz- oder Gesundheitsbereich, wo hohe regulatorische Standards erfüllt werden müssen, bleibt der menschliche Faktor entscheidend. Vibe Coding ist ein fantastisches Werkzeug für den schnellen Einstieg und die Umsetzung erster Ideen, doch auf dem Weg zu einem ausgereiften Produkt wird klassisches Engineering weiterhin eine tragende Rolle spielen.
Vibe Coding bringt frischen Wind in die App-Entwicklung
Vibe Coding verändert die Art, wie in Deutschland Apps entstehen, in rasantem Tempo. Prototypen und erste marktfähige Tools lassen sich heute so schnell und günstig umsetzen wie nie zuvor. Für viele Gründer ohne Tech-Hintergrund eröffnen sich dadurch Möglichkeiten, die es vor wenigen Jahren schlicht nicht gab.
Die Beispiele aus der Startup-Szene zeigen eindrucksvoll, wie die neuen Werkzeuge bereits eingesetzt werden. Gleichzeitig bleibt klar: Für echte Skalierung, Sicherheit und Performance führt an klassischem Entwicklerwissen kein Weg vorbei.
Die Zukunft gehört wahrscheinlich zu einem hybriden Ansatz, bei dem KI als mächtiges Assistenzwerkzeug fungiert und Entwickler sich auf das konzentrieren, was KI noch nicht zuverlässig beherrscht. So entsteht Raum für mehr Innovation, mehr mutige Ideen und letztlich mehr spannende Apps. Und genau das dürfte der deutschen Tech-Szene mehr als guttun.

