Aktuelle Events
Produktdesign in Start-ups
Innovations-Booster Design
Autor: Sabine HölperDesign ist weit mehr als eine schöne Hülle. Es hinterfragt gewohnte Handlungen und Denkmuster und bringt so bessere und funktionalere Produkte hervor. Wir stellen vier Design-Start-ups und ihre Innovationen vor.
Eines der großen Missverständnisse in Bezug auf Design ist, dass es dabei um die Schaffung von etwas Schönem geht, um die hübsche Hülle. Ein anderes Missverständnis ist, dass sich ein Start-up nicht um Design kümmern muss. Stefan Eckstein, Industrie-Designer und Präsident des Verbands Deutscher Industrie Designer e.V. (VDID), räumt mit diesen Mythen auf. „Schönheit ist relativ“, sagt er. „Die eine bevorzugt schwarze Pumps, die andere rote.“ Design dagegen sei Ästhetik kombiniert mit Funktionalität. „Usability“, sagt Eckstein. Der Mensch müsse das Produkt „blind“ verstehen. „Bei gutem Design steht der Mensch im Mittelpunkt“, so der Münchner Unternehmer. Kein Unternehmen kann es sich leisten, Fragen zum Design zu ignorieren, ein Start-up schon gar nicht. „In jedem Start-up ist Design vonnöten“, sagt der Industriedesigner. Denn wer auffallen will – und Aufmerksamkeit ist eine ganz wichtige Währung, wenn man am Anfang steht – muss sich vom Einerlei der Masse abheben.
Das aber geht nur, wenn das Produkt oder die Leistung, die man offeriert, besonders (gut) ist. Und als besonders (gut) bewertet ein Kunde immer das Designte. „Design gibt einen Reiz ab und macht neugierig“, sagt Eckstein. Das gilt aber nicht nur fürs Produkt an sich. „Auch die Gestaltung des Unternehmens ist Design“. Mit Design komme immer auch eine Struktur ins Unternehmen. Design bezieht sich somit auch auf die Geschäfts- bzw. Verkaufsräume, auf die Interaktion mit Mitarbeitern und Kunden. Eckstein empfiehlt daher jedem Start-up, Designer ins Team zu holen oder zumindest einen Designer als Berater zu engagieren. Denn er weiß aus eigener Erfahrung: Unternehmer fragen sich meist nur, wie man Profit generiert. Ein Designer aber fragt, wie das Produkt bei den Menschen ankommt. Und nur wenn es gut ankommt, kann ein Start-up erfolgreich sein. Wir stellen im Folgenden vier innovative Design- und Geschäftskonzepte von Designern und jungen Start-ups vor.
Prepared to repair
In der Vergangenheit wurde viel und hitzig darüber diskutiert, ob Hersteller tatsächlich die Lebensdauer von Produkten vorsätzlich verkürzen (Stichwort: Obsoleszenz). Die Wissenschaft hat bisher keine eindeutige Antwort darauf gefunden. Christof Mühe hingegen ist sich sicher, dass viele Geräte länger halten könnten, wenn die Produzenten denn wollten. Wenn sie den Nutzern die Möglichkeit geben würden, die Dinge selbst mit einfachen Handgriffen zu reparieren. Seine „Beweisstücke“ sind Staubsauger. „Wir haben mehrere ältere und neuere Modelle auseinandergebaut“, sagt er. Dabei fiel ihnen auf, dass heute viel mehr Komponenten verklebt sind, außerdem werden Spezialschrauben verwendet. „Solche Geräte kann man nicht reparieren.“
Christof Mühe ist Designer, seit Oktober 2015 macht er an der Hochschule der Künste in Bremen seinen Master, zuvor war er an der Uni Weimar. Dort reifte – bei ihm und seinem Studienkollegen Franz Junghans – die Idee, einen Staubsauger zu entwickeln, der leicht zu reparieren ist. „Wir haben lange überlegt, welches Produkt wir uns vorknöpfen“, sagt der 25-Jährige. Staubsauer zu verbessern, sie so zu konstruieren, dass sie auch von Laien repariert werden können und somit eine längere Nutzungsdauer erreichen – mit ihrem Produkt „prepared to repair“ haben Mühe und Junghans die selbstgesteckten Ziele erreicht. Sie packten ihr im Studium gesammeltes Wissen über ökologische Materialien, den Aufbau elektronischer Produkte und deren technischen Abläufe in das Projekt und konstruierten ein Modell eines nachhaltigen Staubsaugers: Bauteile, deren Materialien durch eine höhere Beanspruchung schneller verschleißen, also etwa der umlaufende Prallschutz, die Griffflächen oder die Räder, sind so gestaltet, dass sie jederzeit einfach ausgetauscht und ersetzt werden können. Außerdem gibt es eine Anzeige, die im Falle eines Defekts hilft, den Fehler zu lokalisieren. Die im Griff befindliche analoge Anleitung zeigt dann auf, was in welchem Fall zu tun ist. Für die Reparaturarbeiten kann der mitgelieferte Imbusschlüssel benutzt werden. Schließlich befindet sich die Nummer eines Servicetelefons am Gehäuse, die Ansprechpartner helfen jederzeit weiter, wenn Fragen auftauchen.
„Der Staubsauger der Zukunft erfordert die Zusammenarbeit zwischen Hersteller und Kunde“, sagt Mühe. Beide Seiten müssten nachhaltig denken. Das klingt ebenso logisch wie utopisch. Utopisch, weil Hersteller – geplante Obsoleszenz hin oder her – mehr verdienen, wenn die Konsumenten mehr konsumieren. Ein echtes Interesse an Nachhaltigkeit haben sie deshalb eher nicht. Doch wer, wenn nicht Designer im Studium, sollten Utopien ausleben. „In den großen Firmen haben Designer eher die Aufgabe, eine Hülle zu gestalten und dabei die aktuellen Trends aufzugreifen. Wir aber konnten es uns leisten, ganzheitlich zu denken und somit eine tiefgründige Gestaltung zu realisieren“, sagt Mühe.
Noch gibt es Prepared-to-repair-Staubsauger nur als Modell, ein Prototyp existiert nicht. Die beiden Designer haben im Moment auch nicht vor, ihren nachhaltigen Staubsauger zu produzieren. „Er ist als Idee gedacht“, sagt Mühe. Wohlgemerkt als Idee, die die großen Staubsauger-Produzenten gern aufgreifen sollten. „Wir würden uns freuen, wenn Herr Dyson auf uns zukäme.“
Dies ist ein Auszug aus einem aktuellen Artikel unseres Print-Objekts StartingUp:
Den vollständigen Artikel lesen Sie in der aktuellen StartingUp - Heft 01/16 - ab dem 18. Februar 2016 im Handel oder jederzeit online bestellbar - auch als epaper - in unserem Bestellservice-Bereich
EU KI-Gesetz wird scharf gestellt
Diese Strafen für KI-Verstöße drohen ab dem 2. August 2025 – was Personalverantwortliche und Arbeitnehmende jetzt wissen und beachten müssen.

Das KI-Gesetz der Europäischen Union, die weltweit erste umfassende KI-Verordnung, erreicht am 2. August 2025 einen entscheidenden Meilenstein. Ab diesem Stichtag gelten für Unternehmen, Behörden und KI-Anbieter*innen in der EU zahlreiche zentrale Verpflichtungen, bei deren Nichteinhaltung Strafmaßnahmen eingeleitet und verhängt werden können. Was das für Unternehmen und ihre Mitarbeitenden bedeutet, erfährst du hier.
Der AI Act, der am 2. Februar dieses Jahres in Kraft getreten ist, schafft einen einheitlichen Rechtsrahmen für Künstliche Intelligenz (KI) in der EU. Zwar werden viele Regelungen erst 2026 wirksam, doch bereits am 2. August 2025 beginnt eine neue Phase, die sich auf drei Bereiche fokussiert:
- Strafmaßnahmen bei Nichteinhaltung
- Verpflichtungen für allgemeine General-Purpose-AI-Modelle (GPAI)
- Aufbau von Aufsicht und Governance auf nationaler und europäischer Ebene
Strafen bis zu 35 Millionen Euro
Seit dem 2. Februar dieses Jahres sind KI-Systeme mit unannehmbaren Risiken verboten. Ab dem 2. August 2025 können zusätzlich nun Geldbußen für Verstöße gegen bereits bestehende Verpflichtungen verhängt werden, die bis zu 35 Millionen Euro oder 7 Prozent ihres gesamten Jahresumsatzes betragen können. Unternehmen müssen dazu beispielsweise sicherstellen, dass ihre Mitarbeitenden über KI-Kenntnisse verfügen. Die Europäische Union erwartet von ihren Mitgliedstaaten, dass sie eigene wirksame, verhältnismäßige und abschreckende Strafmaßnahmen festlegen. Dabei sollen die besonderen Umstände von KMUs und Start-ups berücksichtigt werden, um deren wirtschaftliche Lebensfähigkeit nicht zu gefährden.
Neue Verpflichtungen für Anbieter*innen von GPAI-Modellen
GPAI-Modelle, die ab dem 2. August 2025 in der Europäischen Union vermarktet werden, unterliegen gesetzlichen Verpflichtungen. Das Europäische Amt für Künstliche Intelligenz hat dazu am 10. Juli 2025 die endgültige Fassung der Verhaltenskodizes veröffentlicht. Anbieter*innen solcher GPAI-Modelle müssen unter anderem technische Dokumentationen erstellen, Urheberrechte beachten und Transparenz über die verwendeten Trainingsdaten sicherstellen.
GPAI-Modelle sind KI-Systeme mit besonders breitem Einsatzspektrum und sind darauf ausgelegt, eine Vielzahl von Aufgaben zu erfüllen. Sie werden mit riesigen Datenmengen trainiert und sind entsprechend vielseitig einsetzbar. Das bekannteste Beispiel sind große Sprachmodelle (Large Language Models, LLM), etwa das generative Sprachmodell GPT-4o, das in ChatGPT integriert ist. Für GPAI-Modelle, die bereits vor dem 2. August 2025 in der Europäischen Union auf dem Markt waren, gilt eine Übergangsfirst bis zum 2. August 2027.
Aufsicht und Governance
Die KI-Verordnung schafft einen Rahmen mit Durchführungs- und Durchsetzungsbefugnissen auf zwei Ebenen.
Auf nationaler Ebene muss jeder EU-Mitgliedstaat bis zum 2. August 2025 mindestens eine Marktüberwachungsbehörde sowie eine notifizierende Behörde benennen. Erstere ist für die Überwachung von KI-Systemen zuständig, letztere für die Notifizierung unabhängiger Konformitätsbewertungsstellen. Die Mitgliedstaaten müssen bis dem Stichtag Informationen zu den nationalen Behörden und deren Kontaktdaten veröffentlichen.
Auf EU-Ebene koordinieren das Europäische Amt für KI und der Europäische KI-Ausschuss die Aufsicht. Zusätzlich werden ein Beratungsforum und ein wissenschaftlicher Ausschuss aus unabhängigen Experten eingerichtet.
Was bedeutet das für Personalabteilungen und Arbeitnehmende?
Das KI-Gesetz hat direkte Auswirkungen darauf, wie KI in den Bereichen Rekrutierung, Performance-Management, Personalanalyse und Mitarbeitenden-Monitoring eingesetzt wird. Personalverantwortliche müssen sicherstellen, dass KI-Tools in diesen Bereichen transparent, fair und konform sind.
- Fairness und Antidiskriminierung: KI-Systeme, die bei Einstellungs- oder Beförderungsentscheidungen eingesetzt werden, müssen nachvollziehbar und frei von Bias sein. Personalabteilungen sollten ihre Tools und Anbieter*innen regelmäßig überprüfen, um die Einhaltung der Vorschriften sicherzustellen.
- Vertrauen und Transparenz: Mitarbeitende erhalten einen besseren Einblick, wie KI-Systeme ihre Arbeit beeinflussen, zum Beispiel bei der Einsatzplanung, Leistungsbewertung oder bei der Arbeitssicherheit. Personalabteilung können Vertrauen schaffen, indem sie offen kommunizieren, wie KI eingesetzt wird und wie die Daten der Mitarbeitenden geschützt werden.
- Verantwortlichkeit von Drittanbieter*innen: Werden KI-Tools von Drittanbieter*innen genutzt, müssen Personalabteilungen sicherstellen, dass diese Anbieter*innen die Anforderungen an Transparenz und Dokumentation erfüllen. Verträge und Beschaffungsprozesse sollten entsprechend angepasst werden.
- Training und Change Management: Mit stärkeren Regulierungen von KI wird die Personalabteilung eine Schlüsselrolle bei der Schulung von Führungskräften und Mitarbeitenden übernehmen. Ziel ist es, einen verantwortungsvollen Umgang mit KI zu fördern und ethische Standards in der Unternehmenskultur zu verankern.
Fazit
Anbieter*innen von GPAI-Modellen, die bereits vor dem 2. August 2025 auf dem Markt waren, haben bis zum 2. August 2027 Zeit, die neuen Vorschriften vollständig umzusetzen. Weitere Verpflichtungen für KI-Systeme mit hohem Risiko werden 2026 und 2027 folgen. Dieser Meilenstein spiegelt das Bestreben der EU wider, Innovationen zu fördern und gleichzeitig sicherzustellen, dass KI sicher, transparent und mit den europäischen Werten im Einklang steht. Damit rückt die Personalabteilung in den Mittelpunkt einer verantwortungsvollen Einführung von KI am Arbeitsplatz.
Der Autor Tom Saeys ist Chief Operations Officer bei SD Worx, einem international tätigen Dienstleistungsunternehmen im HR-Bereich.
„Österreich hat einen langen Atem – und das zahlt sich im Bereich Applied AI aus“
Als führende Standorte in Sachen Künstliche Intelligenz liegen die USA und Asien auf der Hand, doch auch in Österreich gibt es eine vielfältige AI-Landschaft. Welche Vorteile der Standort für künstliche Intelligenz mit sich bringt und welche Rolle dabei Applied AI spielt, weiß Clemens Wasner, Gründer von AI Austria und CEO der EnliteAI.

Clemens Wasner ist Gründer des österreichischen Verbandes für Künstliche Intelligenz, AI Austria und CEO des Wiener Venture Studios EnliteAI. Der studierte Informatiker arbeitete über ein Jahrzehnt in Asien, bevor er 2017 EnliteAI gründete.
Herr Wasner, Sie kennen die AI-Szene aus erster Hand. Wie gut ist Österreich im internationalen Vergleich aktuell aufgestellt, wenn es um Applied AI geht?
Gemessen an seiner Größe steht Österreich erstaunlich gut da. Unsere AI–Landscape verzeichnet mittlerweile über 450 Unternehmen, die aktiv mit KI arbeiten – nicht nur Start-ups, sondern auch klassische Industrieunternehmen, Dienstleister und der öffentliche Sektor. Gerade im Bereich der industriellen Anwendungen ist Österreich breit aufgestellt: Es gibt zahlreiche Corporates, die eigene Competence Center gegründet, Ausgründungen vorgenommen oder Lizenzmodelle für KI aufgebaut haben. Auch die Zahl der Inkubatoren und Corporate Venture Capitalisten ist beachtlich. Das Thema ist in der Realwirtschaft angekommen – und das nicht erst seit gestern. Bereits 2018 gab es hierzulande einen deutlichen Aufschwung. Im Bereich der Spitzenforschung sind wir ebenfalls stark: Mit drei sogenannten ELLIS-Hubs – European Laboratory for Learning and Intelligent Systems – gehören wir zur europäischen Spitze, gemessen an der Größe des Landes.
Sie sprechen beim Blick auf Österreich oftmals vom „AI-Standort mit langem Atem“. Was genau meinen Sie damit und was macht aus Ihrer Sicht einen exzellenten Standort für AI-Start-ups aus?
Der „lange Atem“ ist positiv gemeint und beschreibt das, was Österreich im Bereich Forschung & Entwicklung auszeichnet: kontinuierliche Investitionen, strategischer Weitblick und langfristige Förderstrukturen. Die Steiermark war lange OECD-Spitzenreiter bei F&E-Ausgaben, Wien verfügt über eine dichte Forschungslandschaft. Das sind keine kurzfristigen Hypes, sondern über Jahrzehnte gewachsene Strukturen. Österreich verfügt zudem über eine differenzierte Förderarchitektur, die alle TRL-Stufen abdeckt – von der Grundlagenforschung bis zur Markteintrittsunterstützung. Auch Clusterstrukturen spielen eine Rolle: In Life Sciences etwa gibt es in Wien und Graz funktionierende Ökosysteme, in denen zunehmend auch KI eine Rolle spielt. Diese Verankerung ermöglicht Planbarkeit, die gerade in technologieintensiven Bereichen entscheidend ist.
Zu den Schlüsselfaktoren einen erfolgreichen Standorts zählen Infrastruktur, Talent Pool und Anwendungsmöglichkeiten. Wo sehen Sie hier derzeit die größten Hebel – und auch die größten Defizite – in Österreich?
Ein klarer Vorteil liegt in der Verfügbarkeit von Talenten: Wien zieht seit Jahren hochqualifizierte Developer aus dem osteuropäischen Raum an. Der AI-Fachkräftemangel ist hier weniger ausgeprägt als in anderen europäischen Hauptstädten. Hinzu kommt: Österreich bildet mehr AI-Absolventen aus, als die Wirtschaft derzeit absorbieren kann. Das schafft einen Bewerbermarkt, der gerade für Start-ups günstig ist. Auch Standortfaktoren wie Lebensqualität und erschwingliche Mieten machen zum Beispiel die Hauptstadt Wien attraktiv. Als Besonderheit sehe ich zudem den aktiven Zugang der Stadt: Wien versteht sich als First Client für KI-Anwendungen, etwa in der Analyse von Geodaten, IoT oder der Digitalisierung von Baueinreichprozessen. Hier ist wesentlich mehr Offenheit für politische Vergabe zu finden als in anderen Ländern. Weniger stark ist Wien in der Spitzenforschung vertreten, hier liegt Linz mit der JKU vorn. Aber man kann als kleines Land nicht alles abdecken – und sollte dort Schwerpunkte setzen, wo bestehende Stärken ausbaubar sind.
Was war der Gründungsimpuls für EnliteAI und wie ist Ihr Venture Studio heute aufgestellt?
Ich kam 2016 nach zehn Jahren in Asien zurück nach Österreich. In China und Japan war KI allgegenwärtig, ein regelrechter Hype. Zurück in Europa herrschte Funkstille – das war ein Kulturschock. Ich wollte dem Thema hierzulande Schub geben: 2017 gründete ich den Verband AI Austria und kurz darauf EnliteAI. Unsere Erkenntnis aus früheren Projekten zeigte, dass viele Unternehmen gute Ideen, aber keine Ressourcen zur Umsetzung hatten. Daraus entstand das Venture Studio: Wir entwickeln Prototypen gemeinsam mit Unternehmen und gründen darauf spezialisierte Start-ups. Aktuell sind wir 20 Personen und verfolgen zwei Themen – Detekt, das sich auf den Bereich Mobile Mapping spezialisiert hat, und ein weiteres im Stromnetzmanagement. Mit EnliteAI möchten wir künftig weitere Projekte unterstützen und bereiten dafür eine Dual-Entity-Struktur mit einem eigenen Fonds vor. Ziel ist es, das Modell professionell zu skalieren und Investoren direkt in die Spin-outs zu bringen.
Rechenleistung zählen zu den Schlüsselressourcen in der AI. Was braucht es aus Ihrer Sicht, damit europäische Standorte hier nicht dauerhaft in Abhängigkeit geraten?
Realistisch betrachtet: Die Abhängigkeit besteht bereits. Die großen Hyperscaler sind US-dominiert, ebenso Chips, Kommunikationstools, Social Networks. Europa muss in die digitale Souveränität investieren. Erste Schritte wie AI Factories sind wichtig, aber nicht ausreichend. Wir brauchen europäische Cloud-Anbieter, Chipproduktion auf europäischem Boden und eine nachhaltige Energiepolitik. Frankreichs KI-Boom basiert auf Atomstrom – weil er langfristig planbar ist. Diese Planbarkeit fehlt in vielen europäischen Ländern derzeit. Ohne Strom gibt es keine KI. Auch das zeigen Stimmen von Sam Altman, Elon Musk und anderen. Hier ist ein strategischer Paradigmenwechsel notwendig.
Sie sprachen bereits die vielfältige Landschaft von kleinen und mittleren Unternehmen in Österreich an, die offen für KI sind. Wie gut funktioniert das Matching zwischen Start-ups und klassischen Industrieunternehmen?
Österreich macht hier sehr viel richtig. Es gibt ein breites Netz an Förderinstrumenten – von der Österreichischen Forschungsförderungsgesellschaft FFG über die Austria Wirtschaftsservice bis hin zu regionalen Wirtschaftskammern. Zudem bietet Österreich eine Forschungsförderungsprämie an, bei der 14 Prozent der F&E-Ausgaben quasi mit einem Blankoschein gefördert werden können. Zudem organisieren viele Institutionen aktiv Matchmaking-Events, etwa im Rahmen von PreSeed-, AI-Adoption- oder Innovationsprogrammen. Hinzu kommt der Industry-Startup-Marktplatz mit mehreren Tausend registrierten Unternehmen. Auch Pitchings werden gefördert. Das Ziel ist stets, AI nicht nur in der Theorie zu belassen, sondern in die Realwirtschaft zu bringen. Trotzdem: Viele Unternehmen wissen noch immer nichts davon. Hier braucht es also noch mehr Aufklärung.
Welcher KI-Standort – in Österreich und darüber hinaus – hat Sie zuletzt positiv überrascht?
In Österreich ist Linz für mich der Hotspot schlechthin – die Kombination aus Spitzenforschung und erfolgreichem Technologietransfer ist dort besonders gut gelungen. International beeindruckt mich Twente in den Niederlanden: kein großer Name, aber mit klarer Strategie. Sie haben das Spin-out-Modell von Oxford und Cambridge adaptiert und konsequent umgesetzt – mit IP-Offices, Gründungsberatung und Infrastruktur für Start-ups. Ein weiteres Vorbild ist Heilbronn mit den Campus Founders: Sie haben, unterstützt durch die Dieter Schwarz Stiftung, einen Ort für Unternehmertum und Innovationen geschaffen und könnten Vorbild für viele europäische Regionen werden. Viele Stiftungen schaffen Parks oder Schlösser, aber wesentlich gewinnbringender wäre die Förderung von Entrepreneurship wie es in Heilbronn passiert statt Museumsstiftung. Europa braucht diese neue Denkweise.
Clemens Wasner, vielen Dank für das Gespräch.
Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin
Was Unternehmen über KI-Agenten wissen müssen
Künstliche Intelligenz in Form autonomer Agenten gewinnt rasant an Bedeutung. Doch wie arbeiten diese KI-Agenten? Was ist bei der Umsetzung zu beachten? Hier gibt's die Antworten.

Die Idee, dass autonome Systeme eng mit Menschen zusammenarbeiten und sie gezielt unterstützen, ist keine Vision mehr, sondern Realität. Während bisher eine umfassende Problemlösungskompetenz im Hintergrund fehlte, bringen KI-Agenten genau diese Fähigkeit mit und übernehmen zunehmend vielfältige Aufgaben in der Arbeitswelt. Wir erklären, was Unternehmen über KI-Agenten wissen müssen.
Was sind KI-Agenten und auf welcher Technologie basieren sie?
KI-Agenten sind Softwaresysteme, die eigenständig Aufgaben ausführen, aus Erfahrungen lernen und dynamisch mit ihrer Umgebung interagieren. Ihr Ziel ist es, Aufgaben autonom zu lösen, ohne dass ein kontinuierliches menschliches Eingreifen notwendig ist. Im Unterschied zu herkömmlichen Automatisierungslösungen bewältigen KI-Agenten selbst komplexe Anforderungen, indem sie sich an neue Bedingungen anpassen. Auch werden sie im Gegensatz zu universellen LLMs in der Regel fein abgestimmt, um Relevanz und Datenschutz zu gewährleisten. Sinnvoll ist eine kontextbezogene Architektur, die kausale KI, Document AI und multimodale Logik kombiniert und damit optimal auf geschäftliche Anwendungsfälle zugeschnitten ist.
In welchen Bereichen der Arbeitswelt entfalten KI-Agenten ihr Potenzial?
KI-Agenten finden in nahezu allen Unternehmensbereichen Einsatzmöglichkeiten – von der Beantwortung einfacher Anfragen bis hin zur Steuerung komplexer Prozesse. Eingebettet in CRM-Plattformen analysieren sie riesige Datenmengen, die Unternehmen manuell nicht mehr auswerten können. Anstatt die Ergebnisse lediglich zu präsentieren oder Kontakte nach Prioritäten zu sortieren, qualifizieren KI-Agenten auch noch automatisch Leads, schlagen passende Angebote vor und beantworten Kundenanfragen. Oder anders formuliert: Während herkömmliche Tools in der Regel auf statischen Wenn-dann-Regeln basieren, führt die neue Generation hyperpersonalisierte Aktionen nahezu in Echtzeit aus. Diese Entwicklung entlastet Mitarbeiter von Routineaufgaben und gibt ihnen Raum, sich auf strategisch wichtige Aufgaben zu konzentrieren. Unternehmen wiederum können ohne großen Aufwand Tausende von Kunden individuell betreuen.
Werden KI-Agenten den Arbeitsmarkt verändern?
Diese Frage lässt sich nicht pauschal beantworten. Es entstehen durch den verstärkten Einsatz von KI-Lösungen neue Berufsfelder – insbesondere bei der Entwicklung, Integration und Wartung solcher Agentensysteme werden qualifizierte Fachkräfte benötigt. Gleichzeitig stellt sich die Herausforderung, bestehende Mitarbeitende gezielt im Umgang mit diesen Technologien weiterzubilden und deren digitale Kompetenzen auszubauen. Eines muss klar sein: Das Ziel von KI-Agenten ist es nicht, menschliche Arbeitskraft zu ersetzen, sondern deren Fähigkeiten zu erweitern. Mitarbeitende können sich somit stärker auf komplexe Kundeninteraktionen oder die Entwicklung innovativer Kampagnen konzentrieren, während ihnen die KI zur Hand geht.
Worauf müssen Unternehmen bei der Auswahl von KI-Agenten-Lösungen achten?
In erster Linie benötigen sie eine digital ausgereifte Umgebung mit einheitlichen Datenformaten, optimierten Prozessen und regelbasierten Automatisierungen, um den ROI steigern zu können. Anschließend müssen sie sicherstellen, dass ihre KI-Systeme den geltenden Datenschutzbestimmungen entsprechen und sensible Kund*innendaten optimal geschützt sind. Transparenz und Nachvollziehbarkeit der KI-Entscheidungen sind ebenfalls essenziell, um das Vertrauen von Kunden und Mitarbeitenden nicht zu gefährden. Auf technischer Seite ist eine interoperable Lösung notwendig, die sich so nahtlos wie möglich in die bestehende IT-Umgebung integrieren lässt. Zu den weiteren Aspekten zählen die Priorisierung der kontextuellen Abstimmung, da Agenten geschäftsspezifische Arbeitsabläufe und Datenformate verstehen müssen, sowie die Nutzung eines Federated-Model-Ansatzes statt einheitlicher LLM-Frameworks, um Effizienz, Erklärbarkeit und Kosten zu optimieren.
Wie binden Unternehmen ihre Mitarbeitenden am besten ein?
Zunächst einmal ist ein grundlegendes Change Management erforderlich. Die Mitarbeiterinnen und Mitarbeiter müssen verstehen, dass die KI ihnen nicht die Arbeit wegnimmt, sondern sie unterstützen soll. Sinnvoll ist auch ein Low-Code-Ansatz: Maßgeschneiderte KI-Applikationen und automatisierte Workflows steigern die Arbeitseffizienz in Abteilungen um ein Vielfaches – sogar Mini-Anwendungen, die lediglich einfache Aufgaben übernehmen. Jedoch können zentrale IT-Abteilungen, die mit Entwicklungsanfragen aus verschiedenen Abteilungen überhäuft werden, diese kaum bewältigen. Mit einer Low-Code-Application-Plattform (LCAP) können auch Mitarbeiter ohne Programmierkenntnisse einfache KI-Anwendungen selbst erstellen. Möglich machen das einfache Drag-and-Drop-Optionen und vorgebaute Module, die je nach Wunsch kombinierbar sind.
Fazit
KI-Agenten sind als kollaborative Partner zu verstehen, nicht als Ersatz für den Menschen. Künftig werden wir eine Multi-Agent Collaboration sehen. Hierbei übernehmen verschiedene KI-Agenten jeweils Spezialaufgaben und koordinieren sich untereinander, um selbst die komplexesten Herausforderungen effizient zu lösen.
Der Autor Sridhar Iyengar ist Managing Director von Zoho Europe.
5 Tipps für GPT-Sichtbarkeit im Netz
Warum klassisches SEO allein nicht mehr ausreicht und wie Unternehmen für die KI-Antworten der GPT-Modelle sichtbar werden.

Die Spielregeln der digitalen Sichtbarkeit werden gerade neu geschrieben – und die Unternehmen müssen sich neu aufstellen. Denn während viele Unternehmen ihre Strategien noch immer ausschließlich auf Google-Rankings und SEO-Kriterien ausrichten, verlagert sich die digitale Aufmerksamkeit längst in Richtung KI: Sprachmodelle wie ChatGPT, Claude oder Gemini ersetzen zunehmend die klassische Suche. Sie liefern keine Trefferlisten mehr, sondern direkte, aufbereitete Antworten – oft mit konkreten Empfehlungen und Verlinkungen. Für Marken, Produkte und Unternehmen wird es damit entscheidend, in diesen zusammengefassten Antworten stattzufinden.
Suchmaschinen waren gestern das führende Element in der Sortierung von Wissen im Netz und vor allem das Google-Ranking war entscheidend für die Sichtbarkeit von Informationen und Seiten. In Zukunft entscheiden dagegen Sprachmodelle darüber, welche Inhalte gesehen, zitiert und empfohlen werden. Und wer in diesen Systemen nicht genannt wird, verliert den direkten Draht zur Zielgruppe.
Diesen Paradigmenwechsel vom Google-Ranking zur Antwortlogik hat die SMAWAX, die auf Strategieberatung spezialisierte Agentur der Smarketer Group, erstmals systematisch im Rahmen eines Whitepapers analysiert (s. Link am Ende des Beitrags). Die Expert*innen erklären dabei detailliert, wie GPT-Modelle Inhalte auswählen – und welche Inhalte von den Systemen überhaupt referenziert werden dürfen. Die zentrale Erkenntnis: Suchmaschinenoptimierung nach alten Regeln greift zu kurz, ist aber weiterhin die Sichtbarkeitsgrundlage. Denn Sprachmodelle wie ChatGPT denken nicht in Keywords und Rankings, sondern in semantischen Relevanzräumen, Entitätenbeziehungen und struktureller Klarheit.
Inhalte müssen modular und semantisch präzise sein – doch das reicht nicht
Es geht nicht mehr um Top-Rankings – es geht darum, die richtige Antwort zu sein. Wir müssen SEO neu denken – als Schnittstelle zwischen Struktur, Relevanz und maschinellem Verstehen. Inhalte müssen dazu maschinenlesbar, modular aufgebaut und semantisch präzise sein. Nur dann haben Unternehmen eine Chance, in den Empfehlungslogiken von Claude, GPT & Co. aufzutauchen.
Besonders überraschend ist dabei aber, dass viele Unternehmen in GPT-Antworten zwar durchaus latent präsent, aber nicht sichtbar sind. Der Grund hierfür sind unscharfe Entitäten, fehlende „About“-Seiten, keine Verankerung in externen Quellen wie Wikidata, Trustpilot oder LinkedIn. Die Folgen wirken sich negativ auf die Marken aus und sorgen für Fehlinformationen: KI-Modelle verwechseln Marken, halluzinieren Funktionen oder verschweigen relevante Angebote. Halluzinationen sind in Wahrheit ein strategischer Hinweis auf Unsichtbarkeit. Wenn GPT ein Produkt falsch beschreibt oder dich mit einem Mitbewerber verwechselt, zeigt das: Deine Inhalte sind zwar irgendwo im Modell – aber nicht stabil genug verankert, um korrekt genannt zu werden.
Fünf konkrete Hebel für bessere GPT-Sichtbarkeit
Diese praxisnahe Handlungsempfehlungen können Unternehmen sofort umsetzen können – unabhängig davon, ob sie im B2B- oder B2C-Bereich aktiv sind.
1. Entitäten definieren: Jede Marke braucht heute eine kanonische „About“-Seite, ergänzt um ein Wikidata-Profil, semantische Markups und gleiche Namensverwendungen auf Plattformen wie LinkedIn oder Handelsregister.
2. Aktualität signalisieren: GPT-Modelle bevorzugen Inhalte mit klaren Update-Daten (z.B. dateModified). Ohne erkennbaren Pflegezustand gelten Inhalte als veraltet – und werden ausgefiltert.
3. Bing wird zum Gateway: Weil GPT seine Websuche auf Bing stützt, ist dessen Indexierung entscheidend. Wer dort nicht sauber auffindbar ist, existiert in GPT-Antworten nicht.
4. Content chunkbar machen: Inhalte sollten nicht mehr aus langen Fließtexten bestehen, sondern in modularen Blöcken mit H2-Strukturen, Listen und Zwischenfazits aufgebaut sein.
5. Externe Signale einbinden: Erwähnungen auf Trustpilot, Reddit oder in der Fachpresse stärken die semantische Autorität – und erhöhen die Chance, von Sprachmodellen zitiert zu werden.
Fazit
Die neue Sichtbarkeit entsteht durch das, was das Modell nicht selbst erzeugen kann – sie entsteht also nicht über Rankings, sondern über Relevanzräume. Wer auf Standard-Content setzt, wird paraphrasiert oder übergangen. Wer dagegen einzigartigen, strukturierten und technisch klaren Content liefert, wird empfohlen.
Zum Weiterlesen: Das Whitepaper steht zum kostenlosen Download bereit unter www.smawax.com/whitepaper-ki-sichtbarkeit
fünfeinhalb Funksysteme: Echtzeit-WLAN für die Industrie
Das 2023 als Ausgründung aus der TU Dresden gegründete Start-up fünfeinhalb Funksysteme stellt mit BlitzFunk eine 5G-Alternative für industrielle Anwendungen vor.

Die Einführung des Mobilfunkstandards 5G sollte die drahtlose Kommunikation nicht nur für den Consumer-Markt revolutionieren, sondern auch den Weg hin zur Industrie 4.0 mit vollvernetzten, intelligenten Fabriken ebnen. Doch bis heute können kommerzielle 5G- sowie zahlreiche WLAN-Systeme die Echtzeitanforderungen industrieller Anforderungen meist nicht erfüllen: Verzögerungen in der Datenübertragung (Latenzen) führen zu oft zu Systemstopps und Ausfällen ganzer Anlagen. Das Dresdner Start-up fünfeinhalb Funksysteme GmbH hat es sich zum Ziel gesetzt, dies zu ändern. Mit BlitzFunk, einem Echtzeit-WLAN-System mit berechenbaren Latenz-Garantien sowie latenzfreiem Roaming, ist ihm dies gelungen.
Fünfeinhalb Funksysteme wurde 2023 als Ausgründung aus der TU Dresden gegründet, mit dem Ziel, die nicht eingehaltenen Versprechen des Mobilfunkstandards 5G einzulösen und für Anwendungen im industriellen Umfeld nutzbar zu machen. Dafür hat das fünfköpfige Gründerteam rund um Geschäftsführer Dr. Lucas Scheuvens BlitzFunk entwickelt. Das Funksystem – bestehend aus Access Points und Clients – ist so konzipiert, dass es als eine koordinierte Einheit agiert. Die Anwendergeräte (Maschinen, Steuerungen oder Sensoren) werden über Ethernet mit dem System verbunden.
Latenzfreies Roaming ohne Unterbrechung
Einen der größten USPs des Funksystems fasst Dr. Lucas Scheuvens wie folgt zusammen: „Bei einem klassischen Roaming-Prozess, der in räumlich größeren Netzwerken immer nötig ist, ist der Client jeweils mit nur einem Access Point verbunden. Bevor er dessen Reichweite verlässt, muss er mit dem nächsten Access Point verknüpft werden. Das heißt, dass dort die Verbindung zum ersten Access Point ab- und zum nächsten Access Point neu wieder aufgebaut wird. Verschiedene Lösungen können dies zwar besonders schnell, aber es gibt immer einen zeitlichen Break. Bei Blitzfunk ist das nicht so, da unsere Access Points sich koordinieren und somit latenzfreies Roaming garantieren. Dabei koordinieren sie sich im Hintergrund automatisch so, dass sie sich nicht gegenseitig stören. Da das Roaming im BlitzFunk-System keinerlei negative Auswirkungen hat, entfällt auch die aufwendige und kostenintensive Funknetzplanung.“
Entwickelt für die Anforderungen der Industrie 4.0
BlitzFunk garantiert eine schnelle Datenübertragung – selbst bei mehreren verbundenen Geräten (Clients): Für 99,9999 Prozent aller Sendeversuche liegt die Latenz – so das Unternehmen – nachweislich bei maximal 2 × (N + 1) Millisekunden, wobei N die Anzahl der gleichzeitig aktiven Geräte ist – und das bei maximaler Ethernet-Framegröße von 1500 Bytes. Ein einzelner Client im System hat demnach eine garantierte Latenz von 4 Millisekunden, bei zehn Clients sind demnach 22 Millisekunden erwartbar, usw. Diese Garantie gilt auch für den Roaming-Fall, was vollständig unterbrechungsfreie Datenverbindungen für anspruchsvollste Industrie-Anwendungen ermöglicht.
Doch das Funksystem hat noch weitere Vorteile: es verhält sich wie ein verteilter Ethernet-Switch und bietet somit Plug&Play-Kompatibilität mit allen Ethernet-basierten Protokollen, inklusive Profinet, Profisafe, EtherNet/IP, CIP Safety und MQTT. Dazu kommen seine einfache Inbetriebnahme und Verwaltung über einen Webbrowser, was beides ohne spezielle technische Kenntnisse möglich ist. Ein weiterer Pluspunkt ist das eingebaute Troubleshooting, dank dem sich das Funksystem als Fehlerquelle eindeutig identifizieren (z.B. bei Überlastung) oder ausschließen lässt. Nicht zuletzt punktet das Funksystem auch in Bezug auf die Security mit geräteindividueller, quantensicherer Verschlüsselung sowie Authentifizierung.
Gemacht für mobile Anwendungen in der Logistik und Fertigungsbranche
Fünfeinhalb Funksysteme richtet sich insbesondere an Hersteller bzw. Systemintegratoren, die eine mobile Vernetzung ihrer Maschinen benötigen, die genauso zuverlässig funktioniert wie eine Kabelverbindung. Scheuvens erklärt dazu: „Obwohl sich mit BlitzFunk auch existierende Kabelinstallationen ersetzen lassen, ist das nicht unser Hauptanspruch. Konzipiert wurde das System hauptsächlich für Einsatzszenarien in der Fertigung, die mobile Roboter oder Fahrzeuge umfassen. Aber auch für Schlittensysteme und rotierende Elemente ist BlitzFunk geeignet – bzw. generell überall dort, wo Kabel stören oder technisch nicht sinnvoll einsetzbar sind“. Zu den zahlreichen, bereits erfolgreich durchgeführten Projekten zählen Vernetzungen von Schweißrobotern, Deckenkränen und fahrerlosen Transportfahrzeugen – sowohl im Safety- als auch Non-Safety-Bereich.
Blick in die Zukunft: Noch mehr Leistung
Gefragt nach einem Blick in die Zukunft des Unternehmens antwortet Scheuvens: „Aktuell basiert BlitzFunk auf klassischen, für den breiten Massenmarkt konzipierten Standard-Komponenten. Das macht die Lösung sofort und mit einem großen Mehrwert gegenüber anderen Systemen einsetzbar, demonstriert aber nur einen Bruchteil dessen, was möglich ist. Aktuell arbeiten wir an einem komplett integrierten Echtzeit-WLAN-System, das dann selbst BlitzFunk in den Kategorien Größe, Anzahl der gleichzeitig unterstützten Geräte, Zuverlässigkeit, Latenz und Energieverbrauch noch jeweils um den Faktor zwei bis zehn verbessern kann. Wir freuen uns auf die Reise!“
Wie digitale Unternehmen Alltagsprobleme systematisch lösen – Ein Blick auf Parkos
Parkos zeigt, wie ein digitales Unternehmen Herausforderungen beim Flughafenparken meistert.

Es gibt sie überall, diese kleinen alltäglichen Ärgernisse, die erst einmal banal erscheinen, im Alltag aber schnell zu echten Zeitfressern und Stressquellen werden können. Die Parkplatzsuche an Flughäfen gehört dazu – gerade in stark frequentierten Städten, wo jeder Parkplatz ein kostbares Gut ist. Genau hier setzt Parkos an, ein digitales Unternehmen mit Start-up-Wurzeln, das seit über einem Jahrzehnt den Markt für Parkplatzvermittlung revolutioniert. Parkos.de macht es möglich, entspannt einen Parkplatz zu buchen und so lästige Suchfahrten zu vermeiden.
Vom Alltagsproblem zur digitalen Lösung
Das Beispiel der Parkplatzsuche zeigt exemplarisch, wie digitale Unternehmen Alltagsprobleme systematisch angehen. Nicht immer ist es die große Innovation, die den Markt verändert, sondern die konsequente und nutzerzentrierte Verbesserung bestehender Prozesse. Die Gründer von Parkos erkannten früh, dass der Prozess des Parkplatzfindens in der Nähe von Flughäfen ineffizient und für Reisende oft belastend ist. Überfüllte Parkplätze, lange Fußwege oder teure Kurzzeitangebote waren die Regel.
Diese Herausforderungen boten die perfekte Ausgangslage für eine digitale Plattform, die Anbieter von Parkplätzen und Kunden unkompliziert zusammenbringt. Dabei geht es nicht nur um die reine Vermittlung, sondern um Transparenz, Vergleichbarkeit und Nutzerfreundlichkeit. Das ist der Kern der Plattformökonomie, die heute zahlreiche Branchen prägt – von der Mobilität über die Gastronomie bis hin zum Einzelhandel.
Parkos als Beispiel für Plattformökonomie
Plattformen funktionieren nach dem Prinzip, Angebot und Nachfrage in einem digitalen Marktplatz zu verknüpfen. Für Parkos bedeutet das: Parkplätze von verschiedensten Anbietern – private Parkflächen, Hotels, bewachte Parkhäuser – werden auf einer übersichtlichen Website zusammengeführt. Kunden können Preise, Entfernung zum Flughafen und Bewertungen vergleichen. Die Buchung erfolgt direkt online, oft mit flexiblen Stornierungsbedingungen.
Dieser transparente und einfache Zugang löst ein grundlegendes Problem: Wer kennt schon die besten Parkmöglichkeiten in Flughafennähe? Vorbei sind die Zeiten der langen Suchfahrten und Unsicherheiten. Eine entsprechende Plattform steigert nicht nur die Effizienz, sondern reduziert durch die bessere Planung auch den Stress für Reisende.
Interessant ist dabei auch, dass das Unternehmen selbst kein Parkplatzbetreiber ist. Das Unternehmen agiert als Vermittler – und zeigt damit, wie wichtig digitale Infrastruktur und Vertrauensbildung für moderne Geschäftsmodelle sind. Die Nutzerbewertungen auf der Plattform tragen dazu bei, das Angebot ständig zu verbessern.
Technologie als Enabler für bessere Nutzererfahrung
Ein weiterer wichtiger Baustein im Erfolg ist der gezielte Einsatz von Technologie. Eine übersichtliche Website, eine mobile App und einfache Bezahlmethoden sind heute Standard, doch wie diese Tools eingesetzt werden, macht den Unterschied. Die Plattform bietet nicht nur Such- und Buchungsmöglichkeiten, sondern auch Informationen zu Services wie Shuttle-Bussen, Öffnungszeiten und Sicherheitsstandards der Parkplätze.
Die Integration von Kundenbewertungen schafft eine soziale Kontrollinstanz, die Vertrauen aufbaut. So können Nutzer anhand von Erfahrungen anderer Reisender einschätzen, ob ein Parkplatz ihren Erwartungen entspricht. Dieses Feedback wird von Unternehmen genutzt, um Anbieter zu prüfen und kontinuierlich zu verbessern.
Nicht zuletzt erleichtern digitale Services auch die Reiseplanung insgesamt. Verbindliche Buchungen minimieren Überraschungen vor Ort und tragen dazu bei, den gesamten Ablauf stressfreier zu gestalten.
Digitales Angebot im Alltag – mehr als nur Bequemlichkeit
Das Beispiel Parkos zeigt, dass digitale Lösungen oft mehr leisten als reine Bequemlichkeit. Sie greifen in gesellschaftlich relevante Bereiche ein – hier etwa die Mobilität. Bessere Parkplatzplanung bedeutet weniger Suchverkehr, weniger Emissionen und damit einen Beitrag zur Entlastung urbaner Verkehrsräume.
Auch für Unternehmen eröffnen Plattformen wie Parkos neue Chancen. Kleine und mittelgroße Parkplatzanbieter können so ein größeres Publikum erreichen, ihre Auslastung verbessern und wirtschaftlicher arbeiten. Dies steht im Zeichen einer funktionierenden Sharing Economy, die Ressourcen besser nutzt.
Die Relevanz digitaler Vermittlungsplattformen
Digitale Vermittlungsplattformen sind längst mehr als reine Serviceangebote. Sie verändern zunehmend die Art, wie Menschen sich fortbewegen, arbeiten oder ihre Freizeit gestalten. Die Vermittlung von Parkplätzen am Flughafen ist ein kleines, aber anschauliches Beispiel dafür, wie digitale Geschäftsmodelle dazu beitragen können, den Alltag effizienter zu gestalten und Ressourcen besser zu nutzen.
Indem sie Buchung und Planung vereinfachen, tragen solche Plattformen dazu bei, dass unnötige Suchfahrten entfallen. Das hat nicht nur eine Zeitersparnis für den Einzelnen zur Folge, sondern auch einen spürbaren Effekt auf den Verkehr rund um stark frequentierte Orte. Weniger Staus bedeuten weniger Emissionen – ein relevanter Beitrag zum Klimaschutz, der auf den ersten Blick vielleicht unspektakulär wirkt, bei genauerem Hinsehen jedoch enorm.
Außerdem profitieren kleine Anbieter von Parkplätzen von der Reichweite solcher digitalen Marktplätze. Sie können ihre freien Kapazitäten besser auslasten und so wirtschaftlicher arbeiten. Damit entsteht eine Win-Win-Situation, die durch die Vernetzung und Digitalisierung erst möglich wird.
Praxisnahe Erkenntnisse für Gründer und Unternehmer
Für Unternehmer, die digitale Geschäftsmodelle entwickeln oder optimieren wollen, steckt in diesem Beispiel einiges an Praxiswissen. Erstens: Das genaue Erkennen eines echten Alltagsproblems ist entscheidend. Hier war es die Parkplatzsuche – eine scheinbar kleine Herausforderung mit großem Frustpotenzial.
Zweitens zeigt sich, wie wichtig eine konsequente Nutzerzentrierung ist. Transparente Preise, Vergleichbarkeit und unkomplizierte Buchungsprozesse schaffen Vertrauen. Gerade in Zeiten, in denen Konsumenten eine nahtlose User Experience erwarten, entscheidet die Qualität der digitalen Schnittstellen oft über Erfolg oder Misserfolg.
Drittens wird deutlich, wie wichtig Vertrauen im Plattformgeschäft ist. Nutzerbewertungen, transparente Kommunikation und klare Buchungsbedingungen helfen, Unsicherheiten abzubauen. Das gilt nicht nur für die Parkplatzvermittlung, sondern für alle digitalen Vermittler.
Viertens: Flexibilität und kontinuierliche Verbesserung sind ein Muss. Digitale Geschäftsmodelle müssen sich an wechselnde Anforderungen und neue technische Möglichkeiten anpassen, um relevant zu bleiben.
Wo liegen die Herausforderungen?
Trotz aller Vorteile stehen digitale Plattformen auch vor Herausforderungen. Zum Beispiel die Frage nach Datenschutz und Sicherheit der Kundendaten, die immer sensibler wahrgenommen wird. Auch die Balance zwischen Anbieterinteressen und Nutzerbedürfnissen ist oft ein Balanceakt.
Nicht zuletzt sind digitale Unternehmen auf stabile und schnelle Internetverbindungen angewiesen – was vor allem auf dem Land oder in entlegenen Gebieten nicht selbstverständlich ist. Gerade hier zeigt sich, dass digitale Innovationen nicht automatisch alle gesellschaftlichen Schieflagen beheben.
Fazit: Digitalisierung als Werkzeug für pragmatische Lösungen
Der Blick auf die Vermittlung von Parkplätzen an Flughäfen macht eines klar: Digitalisierung funktioniert dann am besten, wenn sie echte, greifbare Probleme löst. Es geht nicht um bloße Technik, sondern um den Mehrwert, den Unternehmen und Plattformen schaffen – für Nutzer, Anbieter und die Gesellschaft.
Ein erfolgreicher digitaler Vermittler zeichnet sich dadurch aus, dass er Transparenz, Vertrauen und Nutzerfreundlichkeit in den Mittelpunkt stellt. Die Kombination aus technischer Innovation und konsequenter Orientierung an den Bedürfnissen der Kunden bildet das Fundament für nachhaltiges Wachstum.
Für Gründer und Unternehmer ist die Botschaft: Kleine, präzise Lösungen können große Wirkung entfalten. Wer genau hinschaut und mit digitaler Intelligenz Alltagssituationen verbessert, schafft nicht nur Mehrwert, sondern auch ein tragfähiges Geschäftsmodell.
Podcast: Die Peter Thiel Story
Tipp der Redaktion: Ab 28. Mai 2025 in der Deutschlandfunk App verfügbar – der sechsteilige Podcast „Die Peter Thiel Story“.

Peter Thiel ist mit PayPal und Facebook reich geworden und hat die Gedankenwelt des Silicon Valleys wie kaum ein zweiter geprägt. Der Tech-Milliardär ist ein Architekt des neuen rechten Amerikas, ist Strippenzieher und bestens vernetzt im radikalkonservativen und -libertären Amerika.
Mit dem sechsteiligen Podcast „Die Peter Thiel Story“ beleuchtet der Deutschlandfunk jetzt die Hintergründe des geheimnisvollen Investors, der trotz seines enormen Einflusses vielen kaum bekannt ist.
Host und Autor Fritz Espenlaub zeichnet nach, wie ein in Deutschland geborener Philosophiestudent im Silicon Valley aufstieg. Er zeigt das intellektuelle Fundament – geprägt von Carl Schmitt, René Girard und Ayn Rand – sowie das Netzwerk, das heute Schlüsselpositionen in Wirtschaft und Politik besetzt.
Die Serie dokumentiert dabei auch Thiels Visionen: Die Errichtung schwimmender libertärer Städte, die Entwicklung fortschrittlicher Überwachungstechnologie und seine Suche nach dem ewigen Leben.
„Die Peter Thiel Story“ bietet Einblicke in das Leben des Mannes, der ewig leben und alles verändern will.
Die Peter Thiel Story
Sechsteilige Erzählserie jeweils ca. 30 Minuten
ab 28. Mai 2025 in der Deutschlandfunk App
Diese Frauen gestalten die Medienwelt von morgen
Starke Gründungsvisionen von Frauen für die Medienwelt von morgen: Das Mediengründerzentrum NRW stellt seine diesjährigen MGZsheroes vor.

Mit dem sechsmonatigen Empowerment-Programm MGZsheroes begleitet das Mediengründerzentrum NRW in diesem Jahr 17 Frauen auf ihrem Weg zur Unternehmensgründung in der Medienbranche. Ziel ist es, Gründerinnen aus Nordrhein-Westfalen in ihrer Selbständigkeit zu stärken, ihnen praxisnahes Wissen zu vermitteln und Zugang zu relevanten Netzwerken zu öffnen – damit vielfältige Perspektiven in der Medienbranche nicht nur thematisiert, sondern auch aktiv gefördert und nachhaltig verankert werden.
Die diesjährigen MGZsheroes verkörpern die ganze Bandbreite an Ideen, Identitäten und Visionen, die die Medienwelt von morgen mutig, divers und kreativ prägen werden. Die ausgewählten Medienmacherinnen stehen exemplarisch für eine gelebte Vielfalt: in Biografien, in beruflichen Erfahrungen und in der Art, Medien neu zu denken. Ihre Unternehmen und Gründungsideen reichen von Filmproduktionen und audiovisueller Kommunikation über Animation und Musik bis hin zu digitalen Plattformen und Kunst.
Genauso vielfältig wie ihre Expertisen sind die Persönlichkeiten hinter den Business-Konzepten. Einige MGZsheroes bringen langjährige berufliche Erfahrungen mit und haben bereits erste unternehmerische Schritte gemacht oder eigene Unternehmen aufgebaut, andere stehen noch am Anfang ihrer Gründungsreise. Manche setzen auf künstlerische Ausdrucksformen wie Film und Animation, andere auf innovative Technologien wie XR oder strategische Kommunikation. Die diesjährigen MGZsheroes schöpfen aus biografischen Erfahrungen und kulturellen Einflüssen und verbinden technisches Know-how mit einer klaren Haltung zu Diversität, Nachhaltigkeit und sozialer Verantwortung.
Das Programm bietet ihnen nun die Möglichkeit, ihre Konzepte weiterzuentwickeln, fundierte Geschäftsmodelle aufzubauen und sich in einem starken Netzwerk von Mentor*innen und Branchenexpert*innen auszutauschen. Die Teilnehmerinnen freuen sich auf gezieltes Mentoring, praktische Unterstützung in Marketing und Unternehmensführung sowie auf den Austausch mit anderen Gründer*innen.
Das sind die MGZsheroes 2025
Alkyoni Valsari - Autorin, Dozentin für Drehbuchentwicklung
Mit „Out of Context Köln“ will sie einen bundesweiten Drehbuchwettbewerb mit Webinaren, Feedbackformaten und Fokus auf neue Stimmen abseits klassischer Branchenwege etablieren. Die Autorin, Dozentin und Torino Film Lab Alumna mit einem beruflichen Hintergrund im Theater in Griechenland will so mehr Diversität im Storytelling ermöglichen – langfristig soll ein hybrides Drehbuchfestival entstehen.
Annalena Liesner - Producerin und Produktionsleitung
Annalena Liesner plant eine interdisziplinäre Filmproduktion und Kreativagentur, die visuelles Storytelling als verbindendes Element nutzt. Ihr erstes Projekt, ein fiktionaler Langfilm über Frauenfußball, befindet sich aktuell in der Entwicklung. Annalena studierte Medienmanagement an der Universität zu Köln und Kreativ Produzieren an der ifs Internationale Filmschule Köln.
Bettina Faletitsch – Illustratorin
Bettina Faletitsch möchte sich im Bereich Kunst, Manga und Illustration selbstständig machen. Die gebürtige Ukrainerin plant, ihre eigene Manga-Serie zu entwickeln und langfristig auch als Anime umzusetzen. Sie hat Filmregie an der Ruhrakademie studiert und konzentriert sich seit rund eineinhalb Jahren voll auf ihre künstlerischen und unternehmerischen Ziele.
Catalina Guzmán Gaitán - Fotografin und Kamerafrau
Catalina Guzmán Gaitán plant ein kreatives Filmproduktionskollektiv, das FLINTA*-Personen und Menschen mit Migrationsgeschichte fördert. Die gebürtige Kolumbianerin arbeitet als Fotografin und Kamerafrau und möchte durch kreative Zusammenarbeit und innovative Produktionen unterrepräsentierten Perspektiven mehr Sichtbarkeit verschaffen – sowohl durch dokumentarisch wie fiktional erzählte Filme.
Diana Helle - Senior Producer & Consultant
Diana Helle hat über 25 Jahre Berufserfahrung in der Planung und Umsetzung vielfältiger Medienprojekte und will ein Beratungs- und Produktionsmodell entwickeln, das Medienunternehmen dabei unterstützen soll, verantwortungsvoll und nachhaltig zu arbeiten – mit familienfreundlichen Produktionsstrukturen, KI-Einsatz und gezielter Nachwuchsförderung.
Jenny Winter - Sound Designerin, Mischmeisterin & Songwriterin
Jenny Winter hat das Tonstudio soundlikewinter für die Postproduktion gesellschaftlich relevanter Filmprojekte aufgebaut. Ihr Ziel ist es, anspruchsvollen und sensiblen Produktionen einen kreativen Safe Space zu bieten, in dem hochwertige Tonarbeit und nachhaltige Zusammenarbeit möglich sind. 2024 wurde sie für das beste Sound Design bei der “SoundTrack Cologne” ausgezeichnet.
Julia David - Designerin und Kreativdirektorin
Julia David hat Sonic Lighthouse gegründet, ein Kreativstudio für Markenstrategie, Content und Design spezialisiert auf Pro Audio und Musikinstrumente-Hersteller. Julia ist Emmy-prämierte Designerin und Kreativdirektorin mit über 15 Jahren internationaler Erfahrung in Film, Broadcast-Design und Branding.
K3 Filmkollektiv - Julia Franken, Cecilia Gläsker, Barbara Schröer
Das K3 Filmkollektiv entwickelt künstlerische, dokumentarische und hybride Filmprojekte und setzt sich für kulturelle Teilhabe, Netzwerkarbeit und kreative Kollaborationen ein. Mit ihrem filmischen Hintergrund – von Kamera über Regie bis Schnitt – setzen die drei Gründerinnen Projekte an der Schnittstelle von Kunst, Tanz und Film um.
Kim Hess - Regisseurin und Producerin
Kim Hess will mit Manmandi Studios ein kreatives Produktionsstudio gründen, das sich der Kunst des bedachten Geschichtenerzählens verschrieben hat. Sie möchte langfristig und branchenübergreifend Geschichten erzählen, die Haltung, Ästhetik und starkes Handwerk vereinen. Aktuell arbeitet sie an einem 90-minütigen Dokumentarfilm über das Hamburg Ballett und ist als Kommunikationsmanagerin für den WDR tätig.
Margit Mägdefrau - Produzentin
Margit Mägdefrau hat langjährige Produktionserfahrung und mit ihrem Know-how in der Filmbranche und ihrer künstlerischen Expertise die Produktionsfirma Steambat Pictures gegründet, die unkonventionelle Filme mit Themen wie mentaler Gesundheit, Drogenmissbrauch und familiären Konflikten realisiert. Mit Ansätzen wie der 4-Tage-Drehwoche und Kinderbetreuungsmodellen schafft sie ein kreatives Arbeitsumfeld, das die persönliche Entfaltung der Filmschaffenden fördert.
Nele Johann - Filmemacherin
Nele Johann möchte mit „Lover“ eine Plattform schaffen, die sich den Themen Sexual Wellness und weiblicher Sexualität widmet. Lover Education bietet Animationen, Erklärvideos und Women's Circles zu Themen der sexuellen Aufklärung, während Lover Erotica frauenfreundliche, hochwertige Erotikfilme anbietet. Die examinierte Gesundheits- und Krankenpflegerin mit Regie-Abschluss bringt vielseitige Erfahrungen aus beiden Bereichen in ihr Projekt ein.
Pratima Pal – Filmemacherin und XR Artist
Pratima Pal ist eine preisgekrönte visuelle Geschichtenerzählerin mit über 20 Jahren Erfahrung in der Medienbranche. Sie beherrscht eine Vielzahl von Formaten, darunter 2D, 3D, Stop-Motion und Live-Action. In ihrem Studio für immersive XR-Geschichten Digital Clay verwandelt sie Markenbotschaften in visuelle Erlebnisse und nutzt VR, AR und Animation für narrative, wirkungsorientierte Projekte.
Sevil Mokhtare - Schauspielerin
Sevil Mokhtare plant mit Kimiya’s Playground einen interdisziplinären Kreativraum für FLINTA*-Personen in der Medienbranche, der künstlerische Praxis, Sichtbarkeit, Bildung und Vernetzung fördern soll. Der Raum soll Schauspielarbeit, Coaching, Potenzialentwicklung und modernes Storytelling vereinen. Die gebürtige Iranerin hat Berufserfahrung in Redaktionen, der Schauspielerei und der sozialen Arbeit.
Shari Jung - Journalistin, Autorin
Shari Jung wird journalistische und fiktionale Medienformate für TV, Streaming und Kino entwickeln, die gesellschaftspolitische Themen in den Mittelpunkt stellen. Mit ihren Geschichten will sie Perspektiven erweitern und Debatten anstoßen. Shari ist preisgekrönte Journalistin und arbeitet seit 2022 als Autorin bei Sagamedia.
Vera Paulmann - Produzentin
Vera Paulmann ist Mitgründerin der Kölner Produktionsfirma DEKORFILM, die sich auf internationale Kinoproduktionen mit künstlerischem Anspruch spezialisiert. Mit einem Fokus auf sozial faire und möglichst nachhaltige Produktionen entwickelt DEKORFILM realistisch-beobachtende und poetische Werke. Sie bringt einen vielfältigen, international geprägten Background, Regie-Ausbildung und Erfahrung als Produzentin ein.
charles: DSGVO-konformer KI-Agent für WhatsApp gelauncht
Noch bevor Tech-Riesen wie Meta ihre Angebote auf den Markt bringen, bietet das Berliner Start-up charles erprobte, skalierbare und regulatorisch abgesicherte KI-Agent-Lösungen.

Während Meta LLM-gestützte Agenten auf WhatsApp für Verbraucher*innen einführt, will das Berliner Start-up charles Marken einen entscheidenden Vorsprung verschaffen. Mit der Einführung seines AI Agent Squad will sich charles als führender europäischer Anbieter markensicherer, hochspezialisierter KI-Agenten auf WhatsApp mit integrierter Sicherheit und Compliance etablieren – und damit den weltweit meistgenutzten Messenger in einen echten Handels- und Servicekanal transformieren.
Die KI-Agenten von charles nutzen WhatsApps Interaktivität, proprietäres Markenwissen und die Leistungsfähigkeit moderner KI, um Kund*innen direkt in WhatsApp anzusprechen - kontextbezogen, personalisiert und autonom. Von intelligenten Produktempfehlungen bis zu Support soll die Interaktion Kund*innen ein äußerst persönliches Gefühl vermitteln.
„Unsere KI-Agenten übernehmen echte Aufgaben wie Produktempfehlungen, Beantwortung von Fragen oder Reklamationsbearbeitung. Sie agieren wie echte Mitarbeiter: Man weist ihnen eine echte Aufgabe zu und gibt alle Mittel an die Hand, die sie benötigen, um diese Aufgabe zu erfüllen – sei es durch Zugriff auf Daten oder klare Vorgaben geben“, sagt Andreas Tussing, CEO von charles. “So ermöglichen wir Gespräche, die heute aufgrund von Ressourcen noch nicht möglich sind, und bieten gleichzeitig ein personalisiertes und innovatives Kundenerlebnis.“
WhatsApps native Interaktivität trifft auf markensichere KI
Mit den Berliner KI-Agenten soll WhatsApp zur leistungsstärksten Plattform für Kundenbeziehungen werden - und die Herausforderungen von Marken in Bezug auf Konversion und Kundenbindung lösen, ohne Authentizitätsverlust. Durch die Kombination der hohen Engagement-Raten von WhatsApp mit KI-gesteuerter Automatisierung und Personalisierung sollen Marken gleichzeitig Kundenzufriedenheit und Umsätze steigern sowie Betriebskosten senken können.
Fokus auf markenspezifisches Know-how, Security und Compliance
Der AI Agent Squad nutzt modernste KI-Technologien und verbindet generative Sprachmodelle mit markenspezifischen Datenquellen wie Produktkatalogen, CRM-Systemen und Kundenpräferenzen. Integrierte Schutzvorkehrungen und Tonalitätskontrollen gewährleisten Markensicherheit, während alle Daten auf europäischen Servern verarbeitet werden, ohne externe API-Aufrufe oder Datenextraktion - DSGVO-konform und markensicher.
What's next? Der Wettlauf um eigene Messaging-KI
Mit der Einführung von Memory durch OpenAI und Meta‘s Llama-basierte Agenten auf WhatsApp, heizt sich der Markt für personalisierte, generative Kundenkommunikation auf. Der EU AI Act und das aktuelle Handelsklima erhöhen die Dringlichkeit – Lösungen mit starker Data Governance und Auditierbarkeit sind daher unerlässlich. Charles will sich vor diesem Hintergrund als skalierbare, europäische Alternative zu generischen LLM-Lösungen positionieren – in Europa entwickelt und gehostet.
Imkado: KI-gestützte App digitalisiert die Imkerei
Das bayerische AgriTech-Start-up Imkado launcht KIM – eine innovative Gratis-App mit KI für Bienenhalter*innen und forciert damit die Digitalisierung der Imkerei-Branche.

Mit "KIM - Die Imker App" bringt Imkado, das seit 2024 digitale Lösungen für die Imkerei-Branche entwickelt, eine vollständig kostenlose digitale Lösung auf den Markt, die die traditionelle Imkerei in die digitale Ära führt. Die Anwendung kombiniert eine leistungsstarke Stockkartenverwaltung mit einem KI-Assistenten und zeigt damit zugleich beispielhaft, wie Digitalisierung auch in traditionellen Branchen transformatives Potenzial entfalten kann.
Traditionelles Wissen trifft Digitalisierung
Denn die Imkerei-Branche, die in Deutschland mehr als 150.000 aktive Imker*innen umfasst, operiert vielfach noch mit analoger Dokumentation. KIM digitalisiert diesen Kernprozess und nutzt zudem KI, um praxisnahe Beratung zu bieten. Die App wurde speziell für die mobile Nutzung am Bienenstand optimiert und funktioniert auch offline – essentiell für den Einsatz an abgelegenen Standorten.
"Wir sehen in der Verbindung von traditionellem Wissen mit modernster Technologie enormes Potenzial", erklärt Stefan Seifert, Gründer und Geschäftsführer von Imkado. "Mit unserem KI-Assistenten haben wir einen digitalen Imkerpaten geschaffen, der rund um die Uhr verfügbar ist und dabei hilft, Herausforderungen in der Bienenhaltung zu meistern."
Booster für die gesamte Imker*innen-Gemeinschaft
Technisch setzt die App auf eine hybride Architektur, die vollständige Offline-Funktionalität mit Cloud-Synchronisation verbindet. Der integrierte KI-Assistent basiert auf fortschrittlicher Sprachmodell-Technologie und wurde durch imkereispezifische Anpassungen optimiert, um praxisnahe Fragen zur Bienenhaltung zu beantworten. "Wir arbeiten kontinuierlich daran, unseren Assistenten zu verbessern und planen regelmäßige Updates, um stets die neuesten KI-Entwicklungen in die App zu integrieren", erklärt Seifert das Entwicklungskonzept.
Im Gegensatz zu den üblichen Monetarisierungsstrategien der App-Wirtschaft verzichtet Imkado bewusst auf Abonnementmodelle oder In-App-Käufe. "Unser Ziel ist es, eine wertvolle kostenlose Lösung anzubieten, die die gesamte Imkergemeinschaft voranbringt", erläutert Seifert. "Als etablierter Fachhändler für Imkereibedarf sehen wir die App als Brücke zwischen digitaler Innovation und praktischen Bedürfnissen der Imker. Wer unsere digitalen Lösungen schätzt, findet in unserem spezialisierten Onlineshop genau die hochwertigen Produkte, die perfekt zu seiner imkerlichen Praxis passen – ein Mehrwert für beide Seiten."
Die App adressiert einen wachsenden Markt, da die Imkerei durch das gestiegene Bewusstsein für Biodiversität und Umweltschutz in den letzten Jahren einen signifikanten Aufschwung erlebt. Besonders in urbanen Räumen wächst die Zahl der Neu-Imker*innen kontinuierlich.
In fünf Schritten zu rankingfähigen KI-Texten
Das aktuelle Whitepaper von eology beleuchtet das Potenzial und die Grenzen von KI-gestütztem Content im Hinblick auf SEO. Hier gibt’s Tipps rund um das Thema rankingfähige KI-Texte.

Die auf Suchmaschinenmarketing spezialisierte Online-Marketing-Agentur eology zeigt in ihrem Whitepaper „KI-Texte und Google-Rankings: Wie gut ranken KI-Inhalte?“, wie KI-Inhalte auf Google ranken, welche Herausforderungen sie mit sich bringen und welche Schritte erforderlich sind, um sie rankingfähig zu machen. Zudem wird auch auf spezifische technische, strategische und kreative Aspekte eingegangen, die für die Erstellung hochwertiger Inhalte entscheidend sind.
Gewusst wie: rankingfähige KI-Teste
Was zweifelsfrei erwiesen ist: Nach dem SEO-Qualitätsstandard erstellte KI-Texte sind rankingfähig und können die Sichtbarkeit einer Domain genauso unterstützen wie menschliche Inhalte. Allerdings ist die Erstellung solcher Texte nicht damit getan, einfach einen Prompt einzugeben und das Ergebnis online zu stellen. Es bedarf menschlicher Zuarbeit und Kontrolle.
Di Expert*innen von eology haben aus ihrer Studie heraus Best Practices ermittelt, um zu rankingfähigen Texten zu kommen. In fünf Schritten kannst du das auch:
1. Schritt: Chatbot briefen
Bei ChatGPT einen CustomGPT anlegen mit allen notwendigen Projektinstruktionen. Auf diese greift die KI immer zurück, ihr müsst sie daher nicht immer wieder neu eingeben. Das spart Zeit und sorgt langfristig für besseren Output. Bei Claude geht das nicht. Hier kopiert ihr die Projektinstruktionen einfach in den Chat. Die KI meldet dann, dass sie die Aufgabe verstanden hat und fasst diese noch einmal zusammen.
Folgende Instruktionen sind wichtig:
• Keywordset
• Infos zur Verwendung der Keywords (Verteilung, Häufigkeit, Positionierung im Text)
• Textlänge
• Zielgruppe und Leseransprache
• Stil, Tonalität und weitere Infos zum Wording
• Formaler Textaufbau (Überschriften, Aufzählungen, Tabellen)
• Inhaltlicher Textaufbau, ggf. Gliederung
2. Schritt: Chatbot testen
Prompt erstellen mit allen für den einzelnen Text relevanten Informationen (Thema, Keywordset). Da ihr alle Projektinstruktionen bereits an den Chatbot übermittelt habt, braucht ihr in den Prompt nur noch die Infos für den einzelnen Text reinschreiben. Er lautet dann: „Hallo GPT, erstellst Du mir bitte einen Text zum Thema „XY“ mit diesen Keywords: Hauptkeyword=Thema: [Hauptkeyword] Nebenkeywords: [Nebenkeywords] W-Fragen: [W-Fragen]. Danke.“
3. Schritt: Output prüfen
Output prüfen auf alle Projektanforderungen: SEO, Keywords, Wording, Rechtschreibung sowie Inhalt.
4. Schritt: Anpassungen vornehmen
Wenn der Output nicht passt, gebt der KI Anweisungen für Änderungen, passt die Projektinstruktionen an oder optimiert den Prompt. Ladet Beispieltexte hoch mit eurem gewünschten Stil, lasst die KI den Stil beschreiben und packt die Stilbeschreibung in die Projektinstruktionen. Wenn der Chatbot wiederholt zu wenig Text liefert, kann es Sinn machen, dass ihr diese Information doch in den Prompt eingeben müsst, selbst wenn diese in den Instruktionen steht. Insbesondere ChatGPT neigt dazu, zu wenig Text zu liefern und muss immer wieder daran erinnert werden.
5. Schritt: Bilder generieren
Instruktionen für die Bilderstellung in den Projektinstruktionen hinterlegen. Bei einem CustomGPT hinterlegt ihr auch den Stil für die Bilder, denn dann habt ihr eine Chance auf einen einheitlichen Stil. Allerdings ist ChatGPT mit der Schnittstelle zu DALL-E nicht die beste Bild-KI. Daher funktioniert nicht alles reibungs- los. Für eine hochwertige und professionelle Bildgenerierung nutzt besser eine spezielle Bild-KI wie Midjourney.
Generative KI – Chancen für Startups
Wie Startups mit drei Tipps die Kosten und Performance für ihren KI-Case optimieren können.

Das deutsche KI-Startup-Ökosystem befindet sich 2025 weiter im Gründungsboom. Nie gab es mehr KI-Gründer in Deutschland und alleine im vergangenen Jahr wuchs die Zahl der KI-Startups um 35 Prozent. Auch für Investoren bleibt KI eines der vielversprechendsten Themen. Sie investierten 2024 fast 200 Millionen mehr in deutsche KI-Jungunternehmen als im Vorjahr. Vor allem deutsche KI-Startups im B2B-Bereich mit branchenspezifischen Lösungen für die Fertigung, Logistik und das Gesundheitswesen haben aktuell ausgezeichnete Wachstumschancen. Sie können von einer engen Vernetzung mit dem Mittelstand und führenden Forschungseinrichtungen in Deutschland profitieren. Typische KI-Anwendungsfelder von aufstrebenden deutschen Startups wie BlueAvenir, PlanA, Smart Reporting oder nnamu liegen dabei u.a. in der Softwareentwicklung, Sprach- und Bilderkennung oder datenbasierten Analyseverfahren zur Entscheidungsunterstützung.
KI-Chancen und die häufigsten Hürden
Während die Gesamtfinanzierung für KI-Projekte wächst, scheitern in der Praxis vielversprechende Ideen von Startups aber auch immer wieder am konkreten Business Case. Langfristig können sich insbesondere unterschätzte Kosten und eine schwache Performance der Anwendungen wie ein Bremsklotz auswirken. Die Nutzung von Sprachmodellen ist dank API-basierten Diensten sehr einfach geworden, dennoch können sich hier bei großen Volumina und ungeschickter Modell-Wahl schnell höhere Kosten aufsummieren. Gleichzeitig spielt die Performance des KI-Systems eine wichtige Rolle für eine langfristige Profitabilität. So führen besonders hohe Latenzzeiten bei der Model-Inference zu trägeren Systemen, die Nutzeranfragen nicht schnell genug verbreiten und die Attraktivität der Anwendung erheblich mindern.
Gerade Startups setzen oft auf die Cloud, da sie unabhängig vom technischen Hintergrund einfachen Zugang zu KI und die nötige Flexibilität ermöglicht. Drei innovative Methoden erweisen sich in der Cloud als besonders hilfreich, um eine optimale Balance zwischen Leistungsfähigkeit, Kosten und Nutzerfreundlichkeit für die Umsetzung des eigenen KI-Anwendungsfalls zu finden. So kann jeder Gründer seine KI-Ideen schnell, kosteneffizient und sicher umsetzen.
KI-Modellauswahl: Kleiner, aber schneller
Für Startups ist es entscheidend, das richtige KI-Modell für ihren Anwendungsfall zu wählen, um Kosten und Leistung optimal auszubalancieren. Anbieter wie Anthropic, AI21 Labs, Meta, Cohere, Mistral und Amazon bieten Modelle in verschiedenen Größen an – kleinere Varianten sind oft günstiger und reagieren mit kürzerer Antwortzeit. Nach einer ersten Validierung mit einem leistungsstarken Modell können Startups Tools wie Amazon Bedrock Evaluations nutzen, um herauszufinden, welches Modell in welcher Größe ähnliche Ergebnisse bei geringeren Kosten oder höherer Geschwindigkeit liefert. Diese Evaluierungen helfen dabei, die Leistungsfähigkeit und Effizienz zu beurteilen, indem Metriken wie semantische Robustheit und Genauigkeit bei der Informationsabfrage analysiert werden. Durch eine Kombination aus automatisierten Bewertungen mit Large Language Models (LLMs) und menschlicher Prüfung können Startups die beste Balance zwischen Leistung, Kosten und Geschwindigkeit für ihre individuellen Bedürfnisse finden.
Prompt Caching: Zwischenspeicherung für wiederkehrende Anfragen
Eine weitere smarte Methode, um die Antwortzeiten von KI-Modellen zu verkürzen und Kosten zu senken, ist das Prompt-Caching. Wenn ein digitaler Assistent sich bei jeder Frage immer wieder die gleichen Grundinformationen durchlesen müsste, dann wäre das extrem ineffizient. Genau hier setzt das Prompt-Caching an und speichert feste Teile des Prompts, wie grundlegende Anweisungen für das LLM, direkt in der Inferenz-Hardware zwischen. Nur die variablen, nutzerspezifischen Daten, die sich von Aufruf zu Aufruf verändern, werden bei jeder Anfrage neu übermittelt. Das spart nicht nur Rechenleistung, sondern sorgt auch für schnellere Antworten – ideal für Anwendungen wie Chatbots oder personalisierte KI-Assistenten, die häufig wiederkehrende Anfragen verarbeiten. Mit Amazon Bedrock lässt sich diese Technik einfach nutzen, indem das Caching und das Setzen von Cache-Checkpoints automatisch verwaltet werden können. Sobald das Caching aktiviert ist, übernimmt der Service das gesamte Cache-Management automatisch. So lassen sich bis zu 90 Prozent kosteneffiziente KI-Anwendungen mit minimalem Konfigurationsaufwand realisieren.
Model Distillation: KI-Wissen auf das Wesentliche fokussieren
Eine dritte bewährte Option ist Model Distillation. Das Prinzip ist einfach und kann vereinfacht als ein intelligenter Wissenstransfer in der Welt der KI beschrieben werden. Also so, als ob ein erfahrener Lehrer (ein großes, leistungsstarkes KI-Modell) seinem Schüler (einem kleineren, schnelleren Modell) die wichtigsten Konzepte beibringt. Dabei nutzt dieser Prozess synthetische Trainingsdaten, die auf realen Anwendungsbeispielen basieren. Das Ergebnis ist ein kompakteres Modell, das für einen spezifischen Anwendungsfall ähnlich gute Ergebnisse liefert wie das größere Modell, dabei aber deutlich schneller und kostengünstiger arbeitet. Destillierte Modelle in Amazon Bedrock können bis zu fünfmal schneller arbeiten und die Kosten um bis zu 75 Prozent senken im Vergleich zu den Originalmodellen – bei Genauigkeitsverlust von weniger als zwei Prozent.
Fazit
Erfolgreiche KI-Lösungen können mit der Cloud kosteneffizienter und performanter umgesetzt werden. Das erfordert zwar ein wenig technisches Know-how, aber die Cloud reduziert die Einstiegshürden erheblich und ermöglicht es auch kleineren Unternehmen, mit drei bewährten Methoden das KI-Potenzial effektiver auszuschöpfen. Startups haben mit der Cloud die maximale Flexibilität, um entweder von den leistungsfähigsten vortrainierten LLMs zu profitieren oder alternativ eigene LLMs mit maßgeschneiderter Infrastruktur zu entwickeln bzw. auf fertige Dienste mit integrierter generativer KI zuzugreifen.
Der Autor Constantin Gonzalez ist Principal Solutions Architect bei Amazon Web Services (AWS) in München.
Die Autorin Jennifer Grün ist Senior Specialist - Machine Learning bei AWS in München.
So schafft KI neue CEO-Realitäten
Künstliche Intelligenz (KI) ist in der Führungsebene angekommen, doch welche Konsequenzen hat das für CEOs? Eine Studie enthüllt Eingeständnisse deutscher und internationaler CEOs zum Thema KI.

Der aktuelle „Global AI Confessions Report: CEO Edition" der KI-Plattform Dataiku enthüllt Eingeständnisse deutscher und internationaler Führungskräfte, die hinsichtlich KI einer neuen Realität gegenüberstehen. Wichtige Insights aus der Studie:
- 95 Prozent der deutschen CEOs geben zu, dass ein KI-Agent bei Geschäftsentscheidungen einen gleichwertigen oder besseren Rat geben könnte als ein menschliches Vorstandsmitglied.
- 69 Prozent der deutschen CEOs glauben, dass eine gescheiterte KI-Strategie oder eine KI-induzierte Krise dazu führen wird, dass ein CEO bis Ende 2025 aus dem Amt gedrängt wird.
- Mit 62 Prozent bzw. 66 Prozent rangieren deutsche CEOs unter allen globalen CEOs an der Spitze, wenn es um die Messung von Kosten- und Ressourcenanforderungen und Skalierbarkeit von KI geht.
- 78 Prozent der deutschen CEOs sind der Meinung, dass EU-Vorschriften die KI-Nutzung in ihren Organisationen verlangsamen könnten.
Für die Studie, die von The Harris Poll durchgeführt wurde, wurden im Januar und Februar 2025 über 500 CEOs in den USA, Großbritannien, Frankreich und Deutschland befragt. Die Unternehmen der insgesamt 100 befragten deutschen CEOs rangieren bei einem Jahresumsatz von mehr als 250 Millionen Euro und eine Unternehmensgröße von mehr als 500 Mitarbeitenden.
Der Bericht enthüllt: Die KI-Strategie ist zum entscheidenden Faktor für das Überleben von Unternehmen geworden. Die Ergebnisse belegen zudem, dass die Konsequenzen des Einsatzes von KI auch auf höchster Entscheiderebene angekommen sind.
KI kommt im Vorstand an
Laut Aussagen deutscher Geschäftsführer stellt KI die Rolle der Entscheidungsfindung auf Vorstandsebene zunehmend in Frage. Zu den wichtigsten Ergebnissen gehören:
- 93 Prozent der deutschen CEOs sind der Meinung, dass sie davon profitieren würden, ein aktuelles Vorstandsmitglied durch einen KI-Experten zu ergänzen oder zu ersetzen.
- 95 Prozent der deutschen CEOs geben zu, dass ein KI-Agent bei Geschäftsentscheidungen einen gleichwertigen oder besseren Rat geben könnte als ein menschliches Vorstandsmitglied.
KI-Strategie: Übernahme von Kernkompetenzen
Auch auf den darauf folgenden Rängen zeichnet sich ab, dass Künstliche Intelligenz das Berufsprofil der Führungsebene deutlich wandeln kann:
- 90 Prozent der deutschen CEOs sind der Meinung, dass KI einen besseren Strategieplan entwickeln kann als ein Mitglied ihres Führungsteams (Vizepräsidenten bis zur Vorstandsebene).
- 49 Prozent der CEOs deutscher Unternehmen schätzen, dass sie 3–4 Teammitglieder durch KI ersetzen könnten, um strategische Planung zu betreiben. Ganze 13 Prozent gaben an, dass sie sogar 7 oder mehr Führungskräfte für die gleiche Aufgabe ersetzen könnten.
Keine KI-Strategie ist allerdings auch keine Antwort, denn
- 69 Prozent der deutschen CEOs glauben, dass eine gescheiterte KI-Strategie oder eine KI-induzierte Krise dazu führen wird, dass ein CEO bis Ende 2025 aus dem Amt gedrängt wird.
- 76 Prozent der deutschen CEOs sind der Meinung, dass sie Gefahr laufen, ihren Job zu verlieren, wenn sie nicht innerhalb von 2 Jahren messbare KI-getriebene Geschäftsgewinne erzielen.
KI als Kernkompetenz zukünftiger CEOs
Führungskräfte müssen sich laut der Umfrage auf dem Jobmarkt zukünftig anders aufstellen. KI-Kompetenz gilt als “Must-Have”, was auch aus dem Berufsalltag deutscher CEOs hervorgeht.
- 31 Prozent der deutschen CEOs sind der Meinung, dass Erfahrung in der Umsetzung einer erfolgreichen KI-Strategie oder deren Implementierung in 3–4 Jahren eine der wichtigsten Kompetenzen sein wird, nach denen Vorstände bei der Bewertung eines potenziellen Geschäftsführers suchen werden.
- 82 Prozent der deutschen CEOs geben an, dass ihre direkte Beteiligung an KI-bezogenen Entscheidungen im vergangenen Jahr zugenommen hat.
- 70 Prozent der deutschen CEOs geben an, an mehr als der Hälfte der KI-Entscheidungen ihres Unternehmens beteiligt zu sein.
Die „KI-Commodity-Falle“ und KI-Washing: Blinde Flecken der Geschäftsführung
Trotz zunehmender Abhängigkeit von KI sind sich viele CEOs der Gefahren schlecht umgesetzter KI-Strategien in gefährlicher Weise nicht bewusst.
- 87 Prozent der CEOs tappen weltweit in die „KI-Falle“ und sind zuversichtlich, dass KI-Standardagenten genauso effektiv sein können wie maßgeschneiderte Lösungen für hochgradig nuancierte vertikale oder domänenspezifische Geschäftsanwendungen.
- CEOs deutscher Unternehmen gehen im internationalen Vergleich mit 39 Prozent am ehesten davon aus, dass es bei eigenen KI-Initiativen mehr um die Optik als um die Wirkung geht. Dieser Umstand nennt sich auch “AI Washing” und zielt darauf ab, KI-Innovation vorzuspielen, anstatt einen bedeutenden Mehrwert zu schaffen.
Worauf deutsche CEOs allerdings vergleichsweise viel Wert legen, sind Kostenkontrolle und Skalierbarkeit von KI-Lösungen. Mit 66 Prozent rangieren deutsche CEOs unter allen globalen CEOs (62 Prozent) an der Spitze, wenn es um die Messung von Kosten- und Ressourcenanforderungen und Skalierbarkeit als Kernattribute innerhalb ihres Rahmens für die regelmäßige Bewertung der Effektivität von KI-Analysen, -Modellen und -Anwendungen geht.
KI-Governance und regulatorische Unsicherheit
Während sich die Einführung von KI beschleunigt, schaffen schlechte Governance und regulatorische Unsicherheit erhebliche Hindernisse:
- 25 Prozent der deutschen CEOs geben an, dass sich ein KI-Projekt aufgrund regulatorischer Unsicherheiten verzögert hat, während 35 Prozent zugeben, dass ein Projekt aus solchen Umständen abgebrochen oder aufgegeben wurde.
- 78 Prozent der deutschen CEOs sind der Meinung, dass EU-Vorschriften die KI-Nutzung in ihren Organisationen verlangsamen könnten.
- 94 Prozent der CEOs vermuten weltweit, dass Mitarbeitende GenAI-Tools wie ChatGPT, Claude und Midjourney ohne Genehmigung des Unternehmens verwenden (bekannt als „Schatten-KI“) und damit ein massives Governance-Versagen innerhalb von Organisationen aufdecken.
Den vollständigen „Global AI Confessions Report: CEO Edition“ findest du hier