Aktuelle Events
Nachhaltigkeit in der Logistik
Auf den deutschen Autobahnen reihen sich kilometerweise LKW aneinander – und 20 Prozent von ihnen fahren leer. Das ist nicht nur ein Ärgernis für Autofahrer*innen und eine kostspielige Angelegenheit für Unternehmen, sondern bringt auch verheerende Folgen für die Umwelt mit sich. Wie die Digitalisierung der Logistik zu mehr Nachhaltigkeit und Effizienz verhelfen kann.
Es ist unumstritten, dass die fehlende Nachhaltigkeit eine der größten Kehrseiten der Logistik und insbesondere des Straßengüterverkehrs ist. Doch Leerfahrten und dadurch vermehrte CO2-Emissionen sind größtenteils auf die Organisation und den hohen Koordinationsaufwand von Aufträgen zurückzuführen. Die Auftragsvermittlung für eine einzige Fahrt birgt schier endlose Kommunikationsketten, manuellen Schriftverkehr und die Einbindung zahlreicher Interessengruppen.
Die fehlende Vernetzung der Logistik
Während sich die meisten Branchen in den vergangenen Jahrzehnten digitalisiert haben, und so mit digitalen Tools effizientere Lösungen mit höherem Nutzen für alle Beteiligte schaffen konnten, arbeitet die Logistik noch heute oftmals wie vor 20 Jahren. Aufträge von verladenden Unternehmen werden auf Seiten der Fuhrunternehmen manuell bearbeitet: per Telefon, E-Mail und Excel-Tabellen. Das bedeutet, dass Disponenten die hoch komplexe Aufgabe erfüllen müssen, per Excel-Tabellen eine Vielzahl an LKW auszulasten.
Eine weitere Eigenschaft der Logistik, die durch die mangelnde Vernetzung verschärft wird, ist die hohe Anzahl an Subunternehmen, die in der Branche tätig sind. Kann ein Unternehmen aufgrund von unvorhersehbaren Ereignissen wie Erkrankungen, Pannen oder Verspätungen von Fahrzeugen einen Auftrag nicht erfüllen, geben sie diesen an Subunternehmen weiter – und zwar oftmals per Telefon. Das führt häufig dazu, dass weder Auftraggeber noch Fuhrunternehmen wissen, wo sich die Lieferung befindet, wann sie zugestellt wird oder gar wer diese Fahrt überhaupt durchführt.
Eine zentrale Vernetzung aller Beteiligten der Lieferkette gibt es derzeit nicht. Darunter leiden Effizienz und Umwelt gleichermaßen und so legen noch zu oft leere statt voll beladene LKW hunderte von Kilometern zurück.
Mehr Effizienz und Nachhaltigkeit durch Digitalisierung
Eines ist sicher: Die Vernetzung aller Akteure auf einer Plattform würde der Logistik zu der dringend notwendigen Transparenz verhelfen. Transparenz darüber, wer wann und wie involviert ist, wo sich eine Lieferung befindet, wann sie ankommt und ob sich gegebenenfalls passende Ladungen in der Nähe eines Zustellortes befinden.
Ein Disponent kann so beispielsweise digital auf einer Plattform den entsprechenden Ort eintragen, an dem eine Ladung gebraucht wird. Ein Algorithmus matcht dann die passenden Treffer. Kommunikation zwischen Auftraggeber und Fuhrunternehmen findet direkt auf der Plattform statt. Durch GPS-Tracking der LKW kann genau eingesehen werden, wo sich eine Ladung befindet, wann sie geliefert wird, und ob eine Anschlussladung dazugebucht werden kann.
Die Digitalisierung der Prozesse führt demnach nicht nur zu hinreichend ausgelasteten LKW und Kosteneinsparungen bei Verladern und Fuhrunternehmen, sondern verhilft der ganzen Branche auch zu mehr Transparenz und einem verbesserten Nachhaltigkeitsbewusstsein. Statt tausender Kilometer an Leerfahrten, würden sich mittels der Plattform nahezu nur noch vollbeladene LKW in einem optimal durchdachten Streckennetz bewegen. Kurzum: Eine Win-Win-Situation für die gesamte Branche.
Der Autor Tom Krause ist CEO des Hamburger Logistik-Technologie-Start-ups Cargonexx. Das Unternehmen vernetzt Frachtführer mit verladenden Unternehmen aus der Logistikbranche und trägt damit zu mehr Effizienz und weniger Leerfahrten bei.
Diese Artikel könnten Sie auch interessieren:
Robotik-Start-up Ottonomy startet Pilotprojekt im Münchner Flughafen
Der Lufthansa Innovation Hub und der Munich Airport kooperieren zur Förderung von Innovation in der Luftfahrt: Pilotprojekte mit Start-ups sind vor diesem Hintergrund wichtige Hebel zur Implementierung innovativer Lösungen.

Die Luftfahrtbranche steht vor einer Vielzahl von Herausforderungen, sowohl auf Kund*innenseite als auch in geschäftlichen Prozessen. Innovation spielt eine entscheidende Rolle bei der Bewältigung dieser Herausforderungen, indem sie Möglichkeiten zur Digitalisierung, Automatisierung, Optimierung und Neuerfindung schafft.
Vor diesem Hintergrund haben der Lufthansa Innovation Hub, die Berliner Innovationseinheit der Lufthansa Group, und die Terminal 2 Gesellschaft des Flughafens München eine Absichtserklärung (MoU) unterzeichnet. Mit der Unterzeichnung bekunden beide ihre Absicht, durch gemeinsame Initiativen die Innovation in der Luftfahrtbranche voranzutreiben.
“Innovation in der Reiseindustrie ist eine gemeinschaftliche Aufgabe, die dem gesamten Ökosystem zukommt”, sagt Dr. Stefan Nothelfer, Senior Director und Leiter Corporate Venturing & Strategic Growth beim Lufthansa Innovation Hub. “Wir freuen uns darauf, mit der Terminal 2 Gesellschaft des Flughafens München zusammenzuarbeiten, um das Kundenerlebnis gemeinsam zu verbessern und den gesamten Reiseprozess zu optimieren.”
Robotik-Einsatz im Terminal 2 des Flughafens München
Ein konkretes Beispiel für das Vorantreiben von Innovation im Flughafenbetrieb durch Pilotprojekte ist die Zusammenarbeit mit dem Robotik-Start-up Ottonomy.
Seit dieser Woche sind zwei autonome Service-Roboter in den Bereichen der Gates und Gepäckausgabe im Terminal 2 des Flughafens München im Einsatz. Die Roboter sind darauf ausgelegt, verschiedene Aufgaben zu übernehmen, um reibungslose Kund*inneninteraktionen zu ermöglichen. Sie unterstützen Passagier*innen mit Informationen und bewerben die Dienstleistungen von Lufthansa Airlines.
Durch das Scannen eines QR-Codes auf dem Roboter mit ihrem Smartphone gelangen Reisende zu Chat-Assistenten für Self-Service-Optionen. Dort können sie Fluginformationen abrufen und Prozesse wie Umbuchungen oder Erstattungen eigenständig verwalten. Die Roboter liefern zudem wichtige Informationen zu flughafenbezogenen Themen wie Tax Refund und Lost and Found. Dank integrierter Behälter können die Roboter auch für den Warentransport eingesetzt werden – etwa künftig für die Verteilung von Wasserflaschen an Passagier*innen.

“Unser Ziel ist es, unseren Gästen das beste Reiseerlebnis in Europa zu bieten”, sagt Marcus Schnabel, Vice President Ground Operations Hub Munich. “Die Nutzung digitaler Lösungen ist für dieses Vorhaben von entscheidender Bedeutung, und wir freuen uns, als Pilotstandort für wegweisende Innovationen zu dienen.”
Ottonomy setzt seine Roboter weltweit an Flughäfen, in Krankenhäusern und für Auslieferungen auf der letzten Strecke zum/zur Kund*in ein. “Unsere Roboter, die mit Contextual AI arbeiten, ermöglichen es Unternehmenskunden, Innovationen voranzutreiben, bessere Kundenerlebnisse zu schaffen und die betriebliche Effizienz in der Luftfahrt zu steigern“, sagte Ritukar Vijay, CEO von Ottonomy. „Eine Partnerschaft mit zukunftsorientierten Branchengrößen wie der Lufthansa bringt diese Vision der Realität ein großes Stück näher.“
Das Pilotprojekt mit Ottonomy entstand im Rahmen von Startup Gate, der Venture-Clienting-Initiative der Lufthansa Group. Startup Gate verbindet Teams der Lufthansa Group mit hochmodernen Start-ups, um deren Technologien schnell zu adaptieren und schlanke sowie kosteneffiziente Kooperationen zu ermöglichen.
Nach dem KI-Hype: Diese vier Trends bleiben
KI entwickelt sich rasant weiter. Doch welche Trends bleiben und setzen sich wirklich durch? Diese Entwicklungen sollten Unternehmen 2025 weiterhin im Blick behalten.

Die vergangenen zwei Jahre haben einen regelrechten KI-Boom erlebt. Insbesondere generative Modelle (GenAI) haben sich rasant weiterentwickelt und etablieren sich zunehmend als feste Größe in den Arbeitsprozessen von Organisationen weltweit. Angesichts dieser Dynamik fragen sich nun viele Unternehmen, welche Entwicklungen das Jahr 2025 bestimmen werden und welche Potenziale sich daraus ergeben. Diese vier wichtigen KI-Trends werden uns 2025 maßgeblich begleiten.
Ob automatisierte Textproduktion, interaktive Chatbots oder KI-gestützte Analysen für Logistik und Finanzen: KIist längst im Tagesgeschäft angekommen. Diese Dynamik setzt sich 2025 fort. Dabei verschieben sich die Schwerpunkte zunehmend hin zu spezialisierten, effizienteren und flexibleren KI-Anwendungen.
Modular AI: Kleine Bausteine, große Wirkung
Modulare KI-Systeme werden zum Schlüssel für Unternehmen, die domänenspezifische Lösungen benötigen. Diese spezialisierten KI-Module sind genau auf einzelne Aufgabenbereiche zugeschnitten, etwa auf den Kundenservice oder auf Betrugserkennung im Bankwesen. Plug-and-Play-Architekturen beschleunigen hierbei die Implementierung: Statt monolithische Modelle einzuführen, integrieren Unternehmen bedarfsgerecht nur jene Module, die sie wirklich benötigen. Auf diese Weise lässt sich der zeitliche und finanzielle Aufwand für die Implementierung in Organisationen erheblich senken. Damit das Zusammenspiel verschiedener Module funktioniert, treiben Hersteller*innen und Standardisierungsgremien die Entwicklung einheitlicher APIs und Kommunikationsprotokolle weiter voran. Diese Interoperabilität ebnet den Weg für dynamische KI-Systeme, die sich je nach Anforderung in bestehende IT-Landschaften integrieren lassen.
Edge AI und On-Device Intelligence: Schneller zum Ergebnis
Während KI-Anwendungen bislang oft auf starke Cloud-Infrastrukturen angewiesen waren, verlagert sich die Intelligenz nun zunehmend an den Netzwerkrand. Dadurch können Daten in Echtzeit analysiert werden, um schnell fundierte Entscheidungen zu treffen. Gerade in sensiblen Bereichen wie der medizinischen Bildgebung oder in Branchen mit hoher Zeitkritikalität, beispielsweise bei autonomen Fahrzeugen, minimiert eine Edge-basierte KI-Analyse Latenzzeiten und ist somit wettbewerbsentscheidend. Parallel dazu treten neue, energieeffiziente KI-Chips wie neuromorphe Prozessoren oder TPUs (Tensor Processing Units) auf den Plan. Sie ermöglichen leistungsstarke KI-Anwendungen in Systemen mit begrenztem Platz oder Energiebudget – ein wichtiger Fortschritt für Wearables und sogar Satelliten.
Foundation Models: Optimieren statt komplett neu trainieren
Große KI-Basismodelle, sogenannte Foundation Models, haben 2024 ihren Nutzen in zahlreichen Branchen bewiesen. 2025 rücken jedoch kosten- und ressourcenschonende Optimierungen stärker in den Vordergrund. Verfahren wie Parameter-effizientes Tuning oder LoRA (Low-Rank Adaptation) ermöglichen es, aus umfassenden Basismodellen spezialisierte Teilmodelle zu erzeugen, ohne sie von Grund auf neu trainieren zu müssen. Kleinere, spezialisierte Modelle behalten die Leistungsfähigkeit der großen Systeme oft zu einem Bruchteil der nötigen Rechenleistung. Das senkt nicht nur die Kosten, sondern trägt auch zur Nachhaltigkeit bei, da der Energieverbrauch bei Training und Einsatz von KI zunehmend kritisch hinterfragt wird. Darüber hinaus entstehen lokalisierte Modelle, die speziell auf bestimmte Regionen oder Sprachen zugeschnitten sind und dadurch genauere Ergebnisse liefern.
Fortschrittliche KI-Agenten: Mehr Kontext, mehr Kollaboration
KI-Agenten erreichen 2025 eine neue Evolutionsstufe und können nuancierte Kontexte immer besser erfassen. Das steigert die Personalisierung von Interaktionen im Kund*innenservice, Gesundheitswesen oder Bildungsbereich. Zugleich werden Self-Improving Agents immer wichtiger: Sie enthalten eingebaute Feedbackschleifen, lernen aus ihren Erfahrungen und optimieren ihre Fähigkeiten – ganz ohne Eingreifen von außen. Darüber hinaus setzt sich das Konzept der Multi-Agent Collaboration durch. Hierbei übernehmen verschiedene KI-Agenten jeweils Spezialaufgaben und koordinieren sich untereinander, um komplexe Probleme wie logistische Planungen oder den Ablauf bei Großschadenslagen effizient zu lösen.
Fazit
Das laufende Jahr wird wie das letzte – und vermutlich wie noch viele kommende Jahre – von künstlicher Intelligenz geprägt sein. Zwar müssen wir bei Aspekten wie Datensicherheit, Transparenz und dem Schutz persönlicher Informationen weiterhin aufmerksam bleiben, doch gleichzeitig eröffnen sich durch KI ganz neue Chancen für Innovation, Effizienz und Wachstum. Schon jetzt arbeiten Unternehmen, Regierungen und Forschungseinrichtungen verstärkt Hand in Hand, um Standards zu definieren und verantwortungsvolle Lösungen zu entwickeln. Damit können wir das enorme Potenzial dieser Technologie nutzen und zugleich sicherstellen, dass Fortschritt und Vertrauen im Einklang stehen.
Der Autor Ramprakash Ramamoorthy ist Director of AI Research bei Zoho.
Generative KI – Chancen für Startups
Wie Startups mit drei Tipps die Kosten und Performance für ihren KI-Case optimieren können.

Das deutsche KI-Startup-Ökosystem befindet sich 2025 weiter im Gründungsboom. Nie gab es mehr KI-Gründer in Deutschland und alleine im vergangenen Jahr wuchs die Zahl der KI-Startups um 35 Prozent. Auch für Investoren bleibt KI eines der vielversprechendsten Themen. Sie investierten 2024 fast 200 Millionen mehr in deutsche KI-Jungunternehmen als im Vorjahr. Vor allem deutsche KI-Startups im B2B-Bereich mit branchenspezifischen Lösungen für die Fertigung, Logistik und das Gesundheitswesen haben aktuell ausgezeichnete Wachstumschancen. Sie können von einer engen Vernetzung mit dem Mittelstand und führenden Forschungseinrichtungen in Deutschland profitieren. Typische KI-Anwendungsfelder von aufstrebenden deutschen Startups wie BlueAvenir, PlanA, Smart Reporting oder nnamu liegen dabei u.a. in der Softwareentwicklung, Sprach- und Bilderkennung oder datenbasierten Analyseverfahren zur Entscheidungsunterstützung.
KI-Chancen und die häufigsten Hürden
Während die Gesamtfinanzierung für KI-Projekte wächst, scheitern in der Praxis vielversprechende Ideen von Startups aber auch immer wieder am konkreten Business Case. Langfristig können sich insbesondere unterschätzte Kosten und eine schwache Performance der Anwendungen wie ein Bremsklotz auswirken. Die Nutzung von Sprachmodellen ist dank API-basierten Diensten sehr einfach geworden, dennoch können sich hier bei großen Volumina und ungeschickter Modell-Wahl schnell höhere Kosten aufsummieren. Gleichzeitig spielt die Performance des KI-Systems eine wichtige Rolle für eine langfristige Profitabilität. So führen besonders hohe Latenzzeiten bei der Model-Inference zu trägeren Systemen, die Nutzeranfragen nicht schnell genug verbreiten und die Attraktivität der Anwendung erheblich mindern.
Gerade Startups setzen oft auf die Cloud, da sie unabhängig vom technischen Hintergrund einfachen Zugang zu KI und die nötige Flexibilität ermöglicht. Drei innovative Methoden erweisen sich in der Cloud als besonders hilfreich, um eine optimale Balance zwischen Leistungsfähigkeit, Kosten und Nutzerfreundlichkeit für die Umsetzung des eigenen KI-Anwendungsfalls zu finden. So kann jeder Gründer seine KI-Ideen schnell, kosteneffizient und sicher umsetzen.
KI-Modellauswahl: Kleiner, aber schneller
Für Startups ist es entscheidend, das richtige KI-Modell für ihren Anwendungsfall zu wählen, um Kosten und Leistung optimal auszubalancieren. Anbieter wie Anthropic, AI21 Labs, Meta, Cohere, Mistral und Amazon bieten Modelle in verschiedenen Größen an – kleinere Varianten sind oft günstiger und reagieren mit kürzerer Antwortzeit. Nach einer ersten Validierung mit einem leistungsstarken Modell können Startups Tools wie Amazon Bedrock Evaluations nutzen, um herauszufinden, welches Modell in welcher Größe ähnliche Ergebnisse bei geringeren Kosten oder höherer Geschwindigkeit liefert. Diese Evaluierungen helfen dabei, die Leistungsfähigkeit und Effizienz zu beurteilen, indem Metriken wie semantische Robustheit und Genauigkeit bei der Informationsabfrage analysiert werden. Durch eine Kombination aus automatisierten Bewertungen mit Large Language Models (LLMs) und menschlicher Prüfung können Startups die beste Balance zwischen Leistung, Kosten und Geschwindigkeit für ihre individuellen Bedürfnisse finden.
Prompt Caching: Zwischenspeicherung für wiederkehrende Anfragen
Eine weitere smarte Methode, um die Antwortzeiten von KI-Modellen zu verkürzen und Kosten zu senken, ist das Prompt-Caching. Wenn ein digitaler Assistent sich bei jeder Frage immer wieder die gleichen Grundinformationen durchlesen müsste, dann wäre das extrem ineffizient. Genau hier setzt das Prompt-Caching an und speichert feste Teile des Prompts, wie grundlegende Anweisungen für das LLM, direkt in der Inferenz-Hardware zwischen. Nur die variablen, nutzerspezifischen Daten, die sich von Aufruf zu Aufruf verändern, werden bei jeder Anfrage neu übermittelt. Das spart nicht nur Rechenleistung, sondern sorgt auch für schnellere Antworten – ideal für Anwendungen wie Chatbots oder personalisierte KI-Assistenten, die häufig wiederkehrende Anfragen verarbeiten. Mit Amazon Bedrock lässt sich diese Technik einfach nutzen, indem das Caching und das Setzen von Cache-Checkpoints automatisch verwaltet werden können. Sobald das Caching aktiviert ist, übernimmt der Service das gesamte Cache-Management automatisch. So lassen sich bis zu 90 Prozent kosteneffiziente KI-Anwendungen mit minimalem Konfigurationsaufwand realisieren.
Model Distillation: KI-Wissen auf das Wesentliche fokussieren
Eine dritte bewährte Option ist Model Distillation. Das Prinzip ist einfach und kann vereinfacht als ein intelligenter Wissenstransfer in der Welt der KI beschrieben werden. Also so, als ob ein erfahrener Lehrer (ein großes, leistungsstarkes KI-Modell) seinem Schüler (einem kleineren, schnelleren Modell) die wichtigsten Konzepte beibringt. Dabei nutzt dieser Prozess synthetische Trainingsdaten, die auf realen Anwendungsbeispielen basieren. Das Ergebnis ist ein kompakteres Modell, das für einen spezifischen Anwendungsfall ähnlich gute Ergebnisse liefert wie das größere Modell, dabei aber deutlich schneller und kostengünstiger arbeitet. Destillierte Modelle in Amazon Bedrock können bis zu fünfmal schneller arbeiten und die Kosten um bis zu 75 Prozent senken im Vergleich zu den Originalmodellen – bei Genauigkeitsverlust von weniger als zwei Prozent.
Fazit
Erfolgreiche KI-Lösungen können mit der Cloud kosteneffizienter und performanter umgesetzt werden. Das erfordert zwar ein wenig technisches Know-how, aber die Cloud reduziert die Einstiegshürden erheblich und ermöglicht es auch kleineren Unternehmen, mit drei bewährten Methoden das KI-Potenzial effektiver auszuschöpfen. Startups haben mit der Cloud die maximale Flexibilität, um entweder von den leistungsfähigsten vortrainierten LLMs zu profitieren oder alternativ eigene LLMs mit maßgeschneiderter Infrastruktur zu entwickeln bzw. auf fertige Dienste mit integrierter generativer KI zuzugreifen.
Der Autor Constantin Gonzalez ist Principal Solutions Architect bei Amazon Web Services (AWS) in München.
Die Autorin Jennifer Grün ist Senior Specialist - Machine Learning bei AWS in München.
So schafft KI neue CEO-Realitäten
Künstliche Intelligenz (KI) ist in der Führungsebene angekommen, doch welche Konsequenzen hat das für CEOs? Eine Studie enthüllt Eingeständnisse deutscher und internationaler CEOs zum Thema KI.

Der aktuelle „Global AI Confessions Report: CEO Edition" der KI-Plattform Dataiku enthüllt Eingeständnisse deutscher und internationaler Führungskräfte, die hinsichtlich KI einer neuen Realität gegenüberstehen. Wichtige Insights aus der Studie:
- 95 Prozent der deutschen CEOs geben zu, dass ein KI-Agent bei Geschäftsentscheidungen einen gleichwertigen oder besseren Rat geben könnte als ein menschliches Vorstandsmitglied.
- 69 Prozent der deutschen CEOs glauben, dass eine gescheiterte KI-Strategie oder eine KI-induzierte Krise dazu führen wird, dass ein CEO bis Ende 2025 aus dem Amt gedrängt wird.
- Mit 62 Prozent bzw. 66 Prozent rangieren deutsche CEOs unter allen globalen CEOs an der Spitze, wenn es um die Messung von Kosten- und Ressourcenanforderungen und Skalierbarkeit von KI geht.
- 78 Prozent der deutschen CEOs sind der Meinung, dass EU-Vorschriften die KI-Nutzung in ihren Organisationen verlangsamen könnten.
Für die Studie, die von The Harris Poll durchgeführt wurde, wurden im Januar und Februar 2025 über 500 CEOs in den USA, Großbritannien, Frankreich und Deutschland befragt. Die Unternehmen der insgesamt 100 befragten deutschen CEOs rangieren bei einem Jahresumsatz von mehr als 250 Millionen Euro und eine Unternehmensgröße von mehr als 500 Mitarbeitenden.
Der Bericht enthüllt: Die KI-Strategie ist zum entscheidenden Faktor für das Überleben von Unternehmen geworden. Die Ergebnisse belegen zudem, dass die Konsequenzen des Einsatzes von KI auch auf höchster Entscheiderebene angekommen sind.
KI kommt im Vorstand an
Laut Aussagen deutscher Geschäftsführer stellt KI die Rolle der Entscheidungsfindung auf Vorstandsebene zunehmend in Frage. Zu den wichtigsten Ergebnissen gehören:
- 93 Prozent der deutschen CEOs sind der Meinung, dass sie davon profitieren würden, ein aktuelles Vorstandsmitglied durch einen KI-Experten zu ergänzen oder zu ersetzen.
- 95 Prozent der deutschen CEOs geben zu, dass ein KI-Agent bei Geschäftsentscheidungen einen gleichwertigen oder besseren Rat geben könnte als ein menschliches Vorstandsmitglied.
KI-Strategie: Übernahme von Kernkompetenzen
Auch auf den darauf folgenden Rängen zeichnet sich ab, dass Künstliche Intelligenz das Berufsprofil der Führungsebene deutlich wandeln kann:
- 90 Prozent der deutschen CEOs sind der Meinung, dass KI einen besseren Strategieplan entwickeln kann als ein Mitglied ihres Führungsteams (Vizepräsidenten bis zur Vorstandsebene).
- 49 Prozent der CEOs deutscher Unternehmen schätzen, dass sie 3–4 Teammitglieder durch KI ersetzen könnten, um strategische Planung zu betreiben. Ganze 13 Prozent gaben an, dass sie sogar 7 oder mehr Führungskräfte für die gleiche Aufgabe ersetzen könnten.
Keine KI-Strategie ist allerdings auch keine Antwort, denn
- 69 Prozent der deutschen CEOs glauben, dass eine gescheiterte KI-Strategie oder eine KI-induzierte Krise dazu führen wird, dass ein CEO bis Ende 2025 aus dem Amt gedrängt wird.
- 76 Prozent der deutschen CEOs sind der Meinung, dass sie Gefahr laufen, ihren Job zu verlieren, wenn sie nicht innerhalb von 2 Jahren messbare KI-getriebene Geschäftsgewinne erzielen.
KI als Kernkompetenz zukünftiger CEOs
Führungskräfte müssen sich laut der Umfrage auf dem Jobmarkt zukünftig anders aufstellen. KI-Kompetenz gilt als “Must-Have”, was auch aus dem Berufsalltag deutscher CEOs hervorgeht.
- 31 Prozent der deutschen CEOs sind der Meinung, dass Erfahrung in der Umsetzung einer erfolgreichen KI-Strategie oder deren Implementierung in 3–4 Jahren eine der wichtigsten Kompetenzen sein wird, nach denen Vorstände bei der Bewertung eines potenziellen Geschäftsführers suchen werden.
- 82 Prozent der deutschen CEOs geben an, dass ihre direkte Beteiligung an KI-bezogenen Entscheidungen im vergangenen Jahr zugenommen hat.
- 70 Prozent der deutschen CEOs geben an, an mehr als der Hälfte der KI-Entscheidungen ihres Unternehmens beteiligt zu sein.
Die „KI-Commodity-Falle“ und KI-Washing: Blinde Flecken der Geschäftsführung
Trotz zunehmender Abhängigkeit von KI sind sich viele CEOs der Gefahren schlecht umgesetzter KI-Strategien in gefährlicher Weise nicht bewusst.
- 87 Prozent der CEOs tappen weltweit in die „KI-Falle“ und sind zuversichtlich, dass KI-Standardagenten genauso effektiv sein können wie maßgeschneiderte Lösungen für hochgradig nuancierte vertikale oder domänenspezifische Geschäftsanwendungen.
- CEOs deutscher Unternehmen gehen im internationalen Vergleich mit 39 Prozent am ehesten davon aus, dass es bei eigenen KI-Initiativen mehr um die Optik als um die Wirkung geht. Dieser Umstand nennt sich auch “AI Washing” und zielt darauf ab, KI-Innovation vorzuspielen, anstatt einen bedeutenden Mehrwert zu schaffen.
Worauf deutsche CEOs allerdings vergleichsweise viel Wert legen, sind Kostenkontrolle und Skalierbarkeit von KI-Lösungen. Mit 66 Prozent rangieren deutsche CEOs unter allen globalen CEOs (62 Prozent) an der Spitze, wenn es um die Messung von Kosten- und Ressourcenanforderungen und Skalierbarkeit als Kernattribute innerhalb ihres Rahmens für die regelmäßige Bewertung der Effektivität von KI-Analysen, -Modellen und -Anwendungen geht.
KI-Governance und regulatorische Unsicherheit
Während sich die Einführung von KI beschleunigt, schaffen schlechte Governance und regulatorische Unsicherheit erhebliche Hindernisse:
- 25 Prozent der deutschen CEOs geben an, dass sich ein KI-Projekt aufgrund regulatorischer Unsicherheiten verzögert hat, während 35 Prozent zugeben, dass ein Projekt aus solchen Umständen abgebrochen oder aufgegeben wurde.
- 78 Prozent der deutschen CEOs sind der Meinung, dass EU-Vorschriften die KI-Nutzung in ihren Organisationen verlangsamen könnten.
- 94 Prozent der CEOs vermuten weltweit, dass Mitarbeitende GenAI-Tools wie ChatGPT, Claude und Midjourney ohne Genehmigung des Unternehmens verwenden (bekannt als „Schatten-KI“) und damit ein massives Governance-Versagen innerhalb von Organisationen aufdecken.
Den vollständigen „Global AI Confessions Report: CEO Edition“ findest du hier
KI-Integration: Chancen und Impact für Startups
Im Interview mit Dennis Lehmeier, Startup Segment Leader Germany & Europe Central bei Amazon Web Services (AWS): Wie Startups generative KI effizient nutzen können, um zu skalieren und ihre Innovationen schneller voranzutreiben.

Herr Lehmeier – das aktuell alles überschattende Thema ist künstliche Intelligenz (KI) bzw. die Frage, wie Startups bestmöglich davon profitieren können. Welchen positiven Impact von KI sehen Sie für Startups?
KI ist fest in der deutschen Startup-Szene angekommen und die Zahl der KI-Neugründungen in Deutschland steigt, insbesondere vor dem Hintergrund neuer Einsatzmöglichkeiten. Vor allem Startups im Bereich Softwareprogrammierung, Datenanalyse, Gesundheit und Nachhaltigkeit setzen in Deutschland stark auf KI und nutzen die Technologie als Innovationsturbo.
Typische KI-Anwendungsfelder sind beispielsweise die Spracherkennung, Bildanalysen und Verfahren zur Entscheidungsunterstützung. So kann KI heute schon in den Biowissenschaften die klinische Entwicklung von Wirkstoffen erheblich beschleunigen und in der Industrie sowohl das Lieferkettenmanagement als auch die gesamten Produktionsabläufe deutlich effizienter gestalten. Die Cloud kann dabei helfen, KI-Tools schnell und effizient einzusetzen. Eine KI-Studie von AWS zeigte zuletzt, dass 7 von 10 deutschen Startups bereits aktiv KI einsetzen – Tendenz stark steigend. Die Adaptionsrate unter Startups ist dabei deutlich höher als in anderen Branchen. Gleichzeitig profitieren bereits 74 Prozent durch die Nutzung von KI und verzeichnen durch den Einsatz einen direkten Wertzuwachs. Unternehmen jeder Branche können von KI profitieren.
Was sind die aus Ihrer Sicht aktuell bedeutendsten KI-Trends für Startups?
Mit der zunehmenden Verbreitung generativer KI und Grundlagenmodelle (Foundation Models, FMs) verschiebt sich der Wettbewerbsfokus für Startups. Statt selbst leistungsstarke KI-Modelle von Grund auf zu entwickeln, können junge Unternehmen über die Cloud auf verschiedene extrem leistungsstarke Modelle wie Amazon Nova zugreifen und diese für ihre individuellen Anforderungen anpassen. Dadurch wird generative KI einfacher zugänglich und für Unternehmen jeder Größe und mit unterschiedlichen IT-Fähigkeiten leicht nutzbar.
Da viele Akteure auf dieselben technologischen Grundlagen zurückgreifen können, verlagert sich der Differenzierungsfaktor zunehmend auf die kundenspezifische Wertschöpfung. Der Erfolg hängt davon ab, wie nahtlos KI-Lösungen in bestehende Arbeitsprozesse und Systemlandschaften integriert werden können. Ähnlich wie bei SaaS-Modellen geht es darum, eine intuitive Benutzeroberfläche und ein klares Nutzenversprechen für eine definierte Zielgruppe zu schaffen. Der Mehrwert entsteht durch die intelligente, kontextbezogene Anwendung.
Unser Ziel ist es, Startups maximale Flexibilität zu bieten: sie können eigene FMs mit maßgeschneiderter Infrastruktur entwickeln, bestehende vortrainierte Modelle nutzen oder auf Dienste mit integrierter generativer KI wie Amazon Q zurückgreifen. So kann jeder Gründer ein KI-Startup aufbauen und es ergeben sich vielfältige Anwendungsfelder durch cloudbasierte KI-Lösungen: von der automatisierten Kundenbetreuung über die intelligente Datenanalyse bis hin zur Entwicklung völlig neuer Produkte.
KI als Innovations-Booster birgt somit ein riesiges Potenzial. Doch wo Licht ist, ist auch Schatten: KI ist kein Selbstläufer – gefragt sind praxistaugliche Regeln, die eine vertrauensvolle Nutzung ermöglichen, ohne Innovationen zu blockieren. Wie stehen Sie vor diesem Hintergrund zum aktuellen AI-Act?
Als einer der weltweit führenden Entwickler und Anbieter von KI-Tools und -Diensten setzen wir uns für eine sichere, geschützte und verantwortungsvolle Entwicklung von KI-Technologie ein. Wir arbeiten eng mit Regierungen und Industrien zusammen, um dies zu gewährleisten. Unser Ziel ist es, Innovationen im Interesse unserer Kunden und der Verbraucher voranzutreiben und gleichzeitig notwendige Schutzmaßnahmen zu etablieren und umzusetzen. Dafür bieten wir auch diverse Services und Tools. Beispielsweise bieten wir mit Amazon Bedrock Guardrails Unterstützung für die Implementierung von Sicherheitsvorkehrungen, die auf die jeweiligen generativen KI-Anwendungen des Startups zugeschnitten sind, damit Halluzinationen besser verhindert und schädliche Inhalte blockiert werden können.
Ich bin überzeugt, dass KI enorme Fortschritte in essenziellen Bereichen wie Gesundheit und Bildung ermöglichen wird. Die Technologie hilft uns, komplexe Probleme zu lösen, die zuvor als unüberwindbar galten. Die Vorteile überwiegen bei verantwortungsvollem Einsatz deutlich die Risiken. Gleichzeitig sollte jeder, der KI nutzt, ethische Aspekte von Anfang an immer mitbedenken und angemessene Sicherheitsvorkehrungen zum verantwortungsvollen Einsatz treffen.
Sie unterstützen Startups umfassend dabei, generative KI in AWS auszubauen. Welche Maßnahmen bzw. Angebote stehen Startups dabei konkret zur Verfügung?
Weltweit setzen über 280.000 Startups und 80 Prozent aller Unicorns auf AWS, um mit Hilfe der Cloud zu wachsen und ihr Geschäft zu skalieren. Auch deutsche Unternehmen wie About You, Delivery Hero und FlixBus haben ihre Erfolgsgeschichte mit der Cloud gestartet. Um Startups gezielt beim Aufbau generativer KI-Lösungen zu unterstützen, bieten wir eine Vielzahl maßgeschneiderter Programme.
Mit AWS Activate haben wir seit der Gründung bereits über 6 Milliarden Dollar an AWS Guthaben für Startups bereitgestellt. Dieses können ausgewählte Gründer nutzen, um unsere leistungsstarken KI-Dienste zu testen und schon in frühen Phasen mit neuen Technologien zu experimentieren. Zusätzlich haben wir zuletzt 230 Millionen Dollar für Startups zugesagt, die die Entwicklung generativer KI aktiv vorantreiben, etwa durch die Entwicklung von Grundlagenmodellen oder KI-Tools. Neben technologischen Ressourcen bietet AWS Activate auch umfassende Unterstützung in Form von Fundraising-Hilfen, rechtlicher Beratung, technischem Coaching und Zugang zu einem globalen Netzwerk aus Experten, Investoren und Partnern. Außerdem haben wir den Generative AI Accelerator ins Leben gerufen – ein 10-wöchiges Förderprogramm für 80 Startups weltweit, das maßgeschneiderte Go-to-Market-Strategien bietet und ausgewählten Unternehmen bis zu einer Million Dollar an AWS Guthaben ermöglicht. Auch das Münchner Softwareunternehmen DQC ist Teil des Programms.
Mit solchen Maßnahmen geben wir Startups die notwendigen Werkzeuge an die Hand, um generative KI effizient zu skalieren und Innovationen schneller voranzutreiben.
Beim AWS GenAI Loft Berlin dreht sich vom 24. Februar bis zum 7. März 2025 alles rund um KI bzw. GenAI. An wen adressieren Sie das Event und was erwartet die Teilnehmenden?
Das AWS GenAI Loft findet erstmalig in Berlin statt. Das Event im Mitosis LAB in der Sonnenallee 67 richtet sich an Startups, Entwickler, Investoren, KI-Experten und alle, die sich mit den neuesten Entwicklungen im Bereich Generative AI befassen möchten. Die Veranstaltung bietet jeden Tag eine Mischung aus praxisnahen Workshops, technischen Deep Dives und Networking-Möglichkeiten, bei denen die Teilnehmer mit führenden Experten von AWS, NVIDIA, DoiT, Storm Reply und Automat-it in Kontakt treten können. Neben zahlreichen Vorträgen, spannenden KI-Demos und Hands-on Sessions mit AWS Solutions Architects können die Teilnehmer von kostenlosem Coaching profitieren und von der Möglichkeit, sich mit anderen innovativen deutschen Startups vor Ort auszutauschen. Unter dem Motto „Learn, Build, Connect“ steht der praktische Umgang mit modernsten KI-Technologien wie Amazon Q oder Amazon Bedrock im Fokus. Das Event ist zudem kostenfrei und eine Registrierung ist vorab online möglich.
Alles dreht sich somit letztlich darum, KI-Projekte voranzutreiben und (Startup-)Innovationen schnell auf den Markt zu bringen. Was muss aus Ihrer Sicht an welcher Stelle geschehen, damit unsere Startups beim Thema KI global mithalten können – sowohl als Nutzende wie auch als KI-Entwickler?
Wir sehen in zahlreichen Studien deutlich, dass Unternehmen, die KI einsetzen, nachweislich von höherer Effizienz und Innovationskraft profitieren. Eine Bitkom-Untersuchung aus 2024 zeigt beispielsweise auch, dass drei Viertel der deutschen Startups, die KI in ihre Produkte oder Dienstleistungen integrieren, leichter an Finanzierung gelangen. Kosteneinsparungen und Effizienzsteigerungen sind dabei oft starke Treiber für die KI-Implementierung.
Um dieses Momentum zu nutzen und das KI-Potenzial auszuschöpfen, sehe ich drei Schlüsselherausforderungen in Deutschland.
Erstens muss die digitale Kompetenzlücke geschlossen werden. KI-Kenntnisse werden in nahezu allen Bereichen essenziell sein, weshalb verstärkt in Aus- und Weiterbildungsprogramme investiert werden muss.
Zweitens muss der Zugang zu Kapital für Startups durch stärkere Finanzierungsmöglichkeiten und Unterstützungsprogramme verbessert werden, um die nachhaltige Wettbewerbsfähigkeit und Skalierung von KI-Startups zu fördern.
Drittens ist es wichtig, die regulatorischen Standards für KI möglichst länderübergreifend zu harmonisieren, um Unternehmen mehr Planungssicherheit zu bieten und gleichzeitig einen verantwortungsvollen Einsatz von KI-Technologien zu gewährleisten.
Ganz praktisch sollten Startups zunächst übergeordnet ihre langfristigen Ziele definieren – sei es in zwei oder drei Jahren, um daraus abzuleiten, welche Schritte einen Beitrag zur Erreichung dieser Ziele leisten. Diese Herangehensweise zwingt Startups und Gründer, fokussiert zu bleiben und in der Gegenwart strategische Entscheidungen zu treffen, um sich für die nächste KI-Entwicklungsphase zu positionieren.
Herr Lehmeier, danke für das Gespräch!
Europäisches KI-Gesetz in Kraft getreten
Der AI Act ist am 2. Februar 2025 in Kraft getreten und gilt für alle Unternehmen und Organisationen mit Angestellten, die KI im Auftrag des Unternehmens nutzen. Bei Nichteinhaltung drohen Geldbußen.

Künstliche Intelligenz (KI) entwickelt sich rasant und findet in immer mehr Bereichen, auch in Unternehmen, Anwendung. Deshalb schafft Europa mit dem AI Act einen einheitlichen Rechtsrahmen, den alle europäischen Unternehmen einhalten müssen.
Nicht allen Arbeitgebenden ist bewusst, dass die europäische Verordnung bereits in Kraft getreten ist. Sie gilt für jede Organisation – unabhängig von ihrer Größe – und ist verbindlich. Das Gesetz betrifft somit alle Unternehmen und Organisationen mit Angestellten, die KI im Auftrag des Unternehmens nutzen, unabhängig vom Beschäftigungsverhältnis. Europa überlässt einen Teil der Durchführung und Umsetzung des KI-Gesetzes den Mitgliedstaaten selbst – ebenso wie die Verhängung von Geldbußen bei Nichteinhaltung. Die konkrete Höhe dieser Bußgelder wird erst am 2. August 2025 feststehen. Dennoch sollten Unternehmen ab dem 2. Februar lieber gut aufgestellt sein, da die Bußgelder auch rückwirkend in Kraft treten können.
Verbindliche KI-Policy und adäquate KI-Kompetenzen
Unternehmen sind dafür verantwortlich, dass ihre Belegschaft über ausreichende KI-Kenntnisse verfügt. Dabei ist es nicht erforderlich, dass jeder Mitarbeitende umfassendes Wissen über KI besitzt. Es muss sichergestellt werden, dass alle Mitarbeitenden, die mit KI-Systemen arbeiten, über die notwendigen Kenntnisse und Fähigkeiten verfügen. So können sie informierte Entscheidungen treffen und potenzielle Risiken erkennen. Dazu gehören alle Mitarbeiter*innen, die mit KI-Systemen arbeiten – vom Anbietenden bis zum/zur Endnutzer*in – und erstreckt sich also nicht nur auf IKT-Fachleute in Unternehmen.
Das KI-Gesetz legt nicht genau fest, welche Maßnahmen Arbeitgebende ergreifen müssen, damit alle beteiligten Personen ausreichende KI-Kenntnisse erwerben. Arbeitgebende sollten daher nicht nur die technischen Kenntnisse, Erfahrungen, Ausbildungen und Fortbildungen der Mitarbeitenden berücksichtigen, sondern auch den Kontext, in dem die KI-Systeme genutzt werden, sowie die betroffenen Personen oder Personengruppe.
Arbeitgebende können selbst entscheiden, welche Kenntnisse und Fähigkeiten ihre Mitarbeitenden benötigen und wie sie diese angeeignet werden können. Mögliche Maßnahmen sind allgemeine KI-Schulungen, die Grundkenntnisse vermitteln und auf verschiedene Zielgruppen zugeschnitten sein können. Dabei kann es sich um spezifische Schulungen handeln, die sich auf bestimmte Tools und Anwendungen konzentrieren, aber auch um die Zusammenarbeit zwischen juristischen und technischen Teams.
Arbeitgebenden wird empfohlen, eine KI-Policy mit klaren Richtlinien für den Einsatz von KI im Unternehmen zu erstellen. Darin kann festgehalten werden, welche Anwendungen von wem und auf welche Weise genutzt werden dürfen. In dieser Richtlinie kann der Arbeitgebende auch Hinweise darauf geben, wie die Mitarbeitenden ausreichend mit KI vertraut bleiben können. Wie wird zum Beispiel vorgegangen, wenn sich im Unternehmen oder bei den Tools etwas ändert? KI-Kompetenz ist schließlich nichts Statisches. Wenn ein(e) Mitarbeiter*in die Rolle wechselt, oder wenn die eingesetzten Tools sich ändern, muss der Arbeitgebende sicherstellen, dass die betreffende Person weiterhin über ausreichende KI-Kenntnisse verfügt.
Verbotene bestimmter KI-Systeme
Zum anderen verbietet der AI Act ab dem 2. Februar 2025 den Einsatz von KI-Systemen, die gegen europäische Normen und Grundwerte verstoßen, indem sie beispielsweise Grundrechte missachten. Darunter fallen auch KI-Systeme für Social Scoring, die Menschen aufgrund ihres sozialen Verhaltens oder persönlicher Eigenschaften bewerten, oder KI-Systeme zur Emotionserkennung am Arbeitsplatz oder im Bildungsbereich. Arbeitgeber sollten daher die eingesetzten KI-Systeme im Hinblick auf die Identifizierung verbotener Systeme und die Einstellung ihrer Nutzung überprüfen.
Ab August 2025 drohen Geldbußen - auch rückwirkend
Ab dem 2. August 2025 drohen Unternehmen und Organisationen, die verbotene KI entwickeln oder einsetzen, hohe Geldbußen. Die Überwachung und die Festlegung der Höhe der Strafen liegen vollständig in der Verantwortung der EU. Die Höhe der Geldbußen sowie die Aufsicht hierüber liegen vollständig in der Verantwortung der EU. Bis zu 35 Millionen Euro Strafe oder sieben Prozent des weltweiten Jahresumsatzes des vorangegangenen Geschäftsjahres – je nachdem, welcher Betrag höher ist – können verhängt werden.
Der Autor Sander Runkel ist Fachanwalt für Arbeitsrecht und Manager Tax & Legal bei SD Worx Deutschland
LegalTech-Trends 2025
Der Legal-Markt steht an einem Wendepunkt: Innovative, KI-basierte Tools transformieren die Branche und eröffnen neue Möglichkeiten. Diese sechs Trends werden die Branche verändern und prägen.

1. „Agentic AI“ für Legal Workflows
Künstliche Intelligenz (KI) ist das Herzstück der LegalTech-Zukunft. Anwendungen unterstützen schon heute Kanzleien und Unternehmen dabei, Dokumente zu analysieren und komplexe rechtliche Fragestellungen mit automatischer Prüfung von Gerichtsurteilen zu bearbeiten. KI ist dabei jedoch nur ein einzelnes Feature einer ganzheitlichen Legal-Workflow-Plattform. Aber ein wichtiges. Mit KI werden zeitintensive Aufgaben automatisiert, sodass Anwält*innen mehr Zeit für strategische Tätigkeiten haben und Legal Assistants von administrativen Aufgaben entlastet werden.
Gleichzeitig entstehen durch KI neue Herausforderungen. Digitale Souveränität, Datenschutz, Bias in Algorithmen und die Qualität der automatisierten Entscheidungsprozesse sind Themen, die sowohl Kanzleien, Rechtsabteilungen als auch Gesetzgeber beschäftigen werden. Da Datenschutz und Privacy i.d.R. bei europäischen und deutschen LegalTech-Anbieter*innen ein stärkerer Teil der Software-Anbieter DNA sind, haben sie einen Vorteil gegenüber US-amerikanischen Hersteller*innen.
2. Unified Contract Management & Enterprise Legal Management
Beim Contract & Matter Management zeichnet sich eine große Veränderung ab – hin zu modernen, flexiblen, cloudbasierten Contract- und Matter-Management-Tools. Durch höhere Anforderungen der Fachbereiche hinsichtlich der Geschwindigkeit bei der Bearbeitung von Rechtsfällen, nimmt die Bedeutung von Unternehmensjuristen weiter zu. Während sie früher primär als Berater agierten, übernehmen sie mittlerweile eine zunehmend strategische Rolle. Hierbei helfen ihnen ganzheitliche Enterprise Legal Management Software Lösungen die sowohl bei der Anfrage, Annahme und effizienten Durchführung von Rechtsfällen unterstützen. Die neue Rolle der Inhouse-Jurist*innen erfordert nicht nur technologische Kompetenz, sondern auch betriebswirtschaftliches Verständnis und die Fähigkeit, mit anderen Unternehmensbereichen zusammenzuarbeiten.
3. Legal Front-Door & Self-Service Legal Tools
In der IT wird seit vielen Jahren das „Shift to left“ Prinzip verfolgt. Jetzt wird es verstärkt auch in Legal Prozessen genutzt. Das Prinzip zielt darauf ab, die Effizienz über Self-Service Möglichkeiten zu steigern, Reaktionszeiten zu verkürzen und Kosten zu senken, indem Probleme näher an ihrer Quelle – also dem Mandanten, Anwender bzw. dem Fachbereich gelöst werden. Eine Legal Front Door ist im Grunde eine digitale Rezeption, eine zentrale Plattform, die es den Mitarbeitenden eines Unternehmens oder Mandant*innen einer Kanzlei ermöglicht, auf rechtliche, standardisierte Dienstleistungen wie NDA-Erstellung, Digitale Mandatsannahme, Compliance Anleitungen und Legal Ressourcen zuzugreifen.
4. Compliance Analytics: Risiken in rechtlichen Dokumenten erkennen und beheben
Die Analyse von Verträgen und Schriftgut ist zentraler Bestandteil der modernen Rechtspraxis. Compliance Analytics ermöglicht es Jurist*innen Risiken in Verträgen und Dokumenten zu analysieren, vorherzusagen und Verstöße proaktiv und automatisiert zu korrigieren. Durch datenbasierte Analysen können potenzielle Verstöße gegenüber Unternehmensrichtlinien wie Haftungsgrenzen, AGB-Compliance identifiziert und über automatisierbare Workflows angepasst bzw. Compliance-Verstöße automatisch behoben werden. Diese präventive Herangehensweise bietet nicht nur einen finanziellen Mehrwert, sondern reduziert auch Haftungsrisiken und stärkt die Wettbewerbsfähigkeit von Kanzleien und Rechtsabteilungen.
5. Von der/vom Jurist*in zum/zur LegalTech-Expert*in
Die Automatisierung repetitiver Aufgaben, wie die Überprüfung von Dokumenten oder Durchführen von Recherchen, hat tiefgreifende Auswirkungen auf die Arbeitsweise von Jurist*innen. Während Junior-Anwält*innen früher oft mit derartigen Tätigkeiten betraut wurden, können sie sich heute dank moderner Technologien auf strategischere Aufgaben konzentrieren. Das beschleunigt ihre berufliche Entwicklung und verändert traditionelle Karrieremodelle. Dabei sollte jedoch sichergestellt sein, dass die notwendigen praktischen Erfahrungen gesammelt werden können, denn nur so lässt sich eine fundierte Expertise aufbauen. Zwar bleibt das juristische Wissen weiterhin wichtig, aber die Fähigkeit die richtigen juristischen Fragen zu entwickeln und zu stellen wird in Zukunft wichtiger sein als „nur“ juristisches Wissen and geeignete Antworten zu haben. Auch die juristische Ausbildung verändert sich, inkl. der Nutzung moderner KI-basierten LegalTech-Tools zur Recherche, Analyse und Erstellung von Dokumenten. Universitäten und Kanzleien passen ihre Ausbildungsprogramme an, um die nächste Generation von Jurist*innen auf die Anforderungen des digitalen Zeitalters vorzubereiten.
6. Investitionen in LegalTech
Laut einer aktuellen Umfrage von JP Morgan unter Unternehmensjurist*innen haben bei 71 Prozent der Rechtsabteilungen die Investition in LegalTech-Tools eine hohe bis sehr hohe Bedeutung. Aber nur 32 Prozent der Rechtsabteilungen haben LegalTech-Tools in ihren Budgets berücksichtigt. 80 Prozent gaben an, KI-LegalTech-Tools im laufenden Jahr einführen zu wollen – wollen dafür aber nur durchschnittlich 13 Prozent des gesamten Legal Budget ausgeben. Das belegt, dass die Investitionen in LegalTech-Tools zwar weiter zunehmen, die Diskrepanz zwischen KI-Ambitionen und Finanzierung jedoch bleibt. Die Legal-Innovationsfähigkeit ist also abhängig von der Legal-Investitionsfähigkeit.
Fazit
Die LegalTech-Trends zeigen, wie Technologie die juristische Arbeit verändert. Da generative KI trotz heutiger multi-modaler Fähigkeiten wie Text, Bild und Audio vor allem die Analyse und Erstellung von Text hervorragend beherrscht, hat der Legal-Bereich quasi eine Pionierstellung in der modernen KI-Bewegung. Der Rechtsmarkt ist eine „Text First“-Industrie und hervorragend geeignet, um die Innovationen von generativer KI zu beschleunigen. Von KI-gestützter Effizienzsteigerung über datenbasierte Risikoanalysen bis hin zur Automatisierung von Routineaufgaben: Der Legal-Markt wird nicht nur digitaler, sondern auch dynamischer. Für Kanzleien und Unternehmensjurist*innen bringt das einerseits neue Möglichkeiten mit sich, andererseits aber auch die Notwendigkeit, sich weiterzuentwickeln. Die Herausforderungen sind vielfältig, doch eines steht fest: Die Zukunft des Rechtsmarkts gehört denen, die technologische Innovationen nicht nur akzeptieren, sondern aktiv mitgestalten.
Der Autor Oliver Bendig ist CEO des LegalTech-Anbieters stp.one
Initiative "KI für Deutschland" startet Aktionsplan
Die Initiative "KI für Deutschland" wurde Ende 2024 von privaten Akteur*innen aus dem KI-Ökosystem ins Leben gerufen, um hierzulande eine zukunftsorientierte Strategie für die KI-Nutzung als Schlüsseltechnologie des 21. Jhs. zu etablieren.

Die Initiative "KI für Deutschland" wurde Ende 2024 von privaten Akteur*innen aus dem KI-Ökosystem ins Leben gerufen. Ziel ist es, einen praxisnahen und unternehmerisch getriebenen Impuls zu setzen, um in dieser Phase der politischen und gesellschaftlichen Neuorientierung Eckpfeiler zu definieren, wie KI zum Wohle und unter Beteiligung aller in Deutschland, effektiv genutzt werden kann.
Zu den Initiator*innen von "KI für Deutschland" gehören maßgeblich die AI.GROUP, der AI.FUND, sowie die Rise of AI Conference - insbesondere die Unternehmer*innen und KI-Expert*innen Dr. Hauke Hansen, Fabian Westerheide, Ragnar Kruse, Petra Vorsteher, Dr. John Lange und Ingo Hoffmann. Unterstützt wird die Initiative von namhaften Institutionen wie dem KI-Bundesverband.
Die Initiative ist deutschlandweit, interdisziplinär und holistisch ausgerichtet. Sie ist offen für den Input und die Unterstützung aller relevanten gesellschaftlichen Gruppen und Persönlichkeiten.
Aufbruchssignal in Zeiten des Umbruchs
Mitinitiator Dr. Hauke Hansen: “Die Initiative KI für Deutschland ist ein Aufbruchssignal in Zeiten des Umbruchs. Mit unseren 11 Impulsen machen wir greifbare und umsetzbare Vorschläge, wie Deutschland die KI nutzen kann, um den gesellschaftlichen Stillstand zu durchbrechen und Wege aus der wirtschaftlichen Rezession zu finden. Wir richten uns damit an alle gesellschaftlichen Akteure, die Wirtschaft ebenso wie die Politik. Wir brauchen eine zukunftsweisende und konsequente Industriepolitik und unternehmerisches Handeln, um die KI am Standort Deutschland zur Chefsache zu machen und damit das Bruttosozialprodukt nachhaltig zu steigern. Stellen wir gemeinsam die Weichen für innovatives und wirtschaftlich erfolgreiches Deutschland von morgen.”
Diese elf Impulse will die Initiative "KI für Deutschland" zur Nutzung künstlicher Intelligenz in Deutschland in Form eines KI-Aktionsplans setzen:
Impuls 1: Einrichtung eines Digitalministeriums auf Bundesebene
Die Digitalisierung in Deutschland hat wirtschaftliche und politische Priorität. Um eine konsequente Digitalisierung der Gesellschaft, Wirtschaft und Verwaltung zu erreichen, ist ein dediziertes Bundesministerium für Digitales mit dem Schwerpunkt KI notwendig.
Impuls 2: Förderung von KI-Forschung und -Innovationen
Deutschland muss die jährlichen Investitionen in KI-Forschung und -Entwicklung bis 2030 auf mindestens 5,0 Mrd. € pro Jahr aufstocken, um international wettbewerbsfähig zu bleiben.
Impuls 3: Bereitstellung von KI-Wagniskapital für KI-Start-ups und -Innovationen
Deutschland benötigt ein KI-Wagniskapitalprogramm ausgestattet mit 10 Mrd. € über 5 Jahre, um KI-Startups zu fördern. Staatliche Fund-of-Funds sollten dazu genutzt werden, Mittel zielgenau und effektiv zu platzieren.
Impuls 4: Aufbau von KI-Clustern zur Förderung von Innovationen und Exzellenz in regionalen Ökosystemen
Deutschland sollte regionale KI-Cluster fördern, die räumliche Nähe mit technischer und wirtschaftlicher Exzellenz verbinden, um Innovationskraft zu maximieren und international Talente anzuziehen.
Impuls 5: Aufbau einer leistungsfähigen und souveränen digitalen Infrastruktur zur Stärkung der KI
Eine flächendeckende digitale Infrastruktur ist essenziell, um KI für Bürger und Unternehmen in der Breite nutzbar zu machen. Wir setzen uns dafür ein, GPU-Megacluster für Forschung und Industrie in Deutschland zu etablieren.
Impuls 6: Förderung der Anwendung von KI in Unternehmen
Bis 2030 sollten mindestens 80% aller deutschen Unternehmen KI-Anwendungen aktiv nutzen, um ihre Geschäfte zu optimieren und auszubauen.
Impuls 7: KI für den öffentlichen Sektor – Effizienzsteigerung und weniger Bürokratie
Bis 2029 sollte der Einsatz von KI in allen wesentlichen Behörden auf Bundes-, Landes- und Regionalebene etabliert werden, um Prozesse zu optimieren, Bürokratie abzubauen und Bürgerdienste zu verbessern.
Impuls 8: KI und Nachhaltigkeit – erschwingliche und saubere Energie für Deutschland
Deutschland sollte KI gezielt einsetzen, um die Energiewende zu unterstützen und die CO2-Emissionen im Energiesektor bis 2035 um mehr als 15% zu senken. Unser Land braucht eine sichere und bezahlbare Energieversorgung als Grundlage für technologiebasiertes Wachstum.
Impuls 9: Eine KI-Bildungsinitiative als Grundlage einer zukunftsfähigen Gesellschaft
Bis 2030 sollten mehr als 80% der Arbeitskräfte in Deutschland grundlegende KI-Kompetenzen besitzen, um den digitalen Wandel aktiv mitzugestalten.
Impuls 10: Ein klarer und sicherer rechtlicher Rahmen für KI und ein KI-Gütesiegel
Deutschland sollte bis 2026 einen flexiblen Rechtsrahmen für KI schaffen, der Innovation fördert, aber Missbrauch verhindert, und ein KI-Gütesiegel zur Förderung ethischer und transparenter KI einführen.
Impuls 11: Schaffung eines europaweiten KI-Ökosystems mit Deutschland als Schrittmacher
Deutschland sollte eine gestaltende Rolle beim Aufbau eines europäischen KI-Ökosystems übernehmen, um eine wettbewerbsfähige Alternative zu den USA und China zu etablieren.
Hier gibt’s mehr Infos zur Initiative "KI für Deutschland"
Meta verändert sich für Trump …
… doch was bedeutet der Wandel für die Plattform selbst und was für Influencer und Marken? Ein Kommentar von Philipp Martin, Gründer von Reachbird und Experte für Influencer Marketing im DACH-Raum.

In einer Zeit, in der soziale Medien unseren Alltag mehr denn je prägen, kündigt Meta, das Unternehmen hinter Facebook und Instagram, weitreichende Veränderungen an. Diese Entwicklungen könnten die Plattformen selbst und die Arbeit von Influencern und Marken grundlegend beeinflussen. Als Experte für Influencer Marketing analysiere ich die möglichen Auswirkungen dieser Umwälzungen.
Die Macht der sozialen Medien in Deutschland
Bevor wir uns den spezifischen Änderungen bei Meta zuwenden, lohnt ein Blick auf die derzeitige Bedeutung sozialer Medien in Deutschland. Laut aktuellen Statistiken von Meltwater (2024) nutzen mehr als 80% aller Einwohnerinnen und Einwohner in Deutschland Social Media – und das im Durchschnitt mehr als 1,5 Stunden täglich. Diese Zahlen unterstreichen die enorme Reichweite und den potenziellen Einfluss, den Plattformen wie Facebook und Instagram auf die öffentliche Meinungsbildung haben.
Metas neue Strategie: Abschied vom organisierten Faktencheck
Eine der gravierendsten Änderungen bei Meta betrifft den Umgang mit Faktenchecks. Bisher setzte das Unternehmen auf externe Organisationen, um die Richtigkeit von Informationen zu überprüfen. Nun plant Meta, ähnlich wie bei X (ehemals Twitter), auf die Schwarmintelligenz zu setzen. Meta-Gründer Mark Zuckerberg veröffentlichte ein Video, in welchem er Änderungen im Umgang mit Desinformation und Hate Speech auf seinen Plattformen ankündigte. Diese Entwicklung birgt erhebliche Auswirkungen auf den Wahrheitsgehalt der auf der Plattform geteilten Informationen. Besonders für Influencer und Marken, die auf ihre Glaubwürdigkeit angewiesen sind, entsteht eine neue Herausforderung.
Politische Implikationen
Der Übergang zu einem dezentralisierten System der Inhaltsüberprüfung könnte eine Annäherung an bestimmte politische Strömungen bedeuten. Es stellt sich die Frage, wie die Plattform und ihre Nutzer in Zukunft mit Falschinformationen umgehen werden. Diese Entwicklung könnte als eine Annäherung an die Politik der Republikaner gesehen werden, die durch die Änderungen möglicherweise begünstigt wird. Ein weiterer Aspekt der Änderungen betrifft den Umgang mit sogenannten schädlichen Inhalten. Meta plant, die Regeln in sensiblen Bereichen wie Migration oder Sexualität zu lockern. Diese Lockerung könnte zu einem Anstieg aggressiver, negativer und konfrontativer Beiträge führen. Eine stärkere Polarisierung der Plattform ist zu erwarten – ein Trend, der bereits auf anderen sozialen Netzwerken wie X zu beobachten ist.
Auswirkungen auf das Nutzerverhalten
Die mögliche Zunahme von Hassrede und polarisierenden Inhalten könnte das Nutzererlebnis auf Meta-Plattformen grundlegend verändern. Für Influencer und Marken bedeutet dies, dass sie sich möglicherweise in einem zunehmend negativen Umfeld bewegen müssen. Dies könnte nicht nur ihre Reichweite, sondern auch die Qualität ihrer Interaktionen mit Followern beeinflussen.
Trotz der potenziellen Risiken bietet die Nutzung von Schwarmintelligenz auch Chancen. Es bleibt abzuwarten, wie sich die neue Faktencheck-Strategie langfristig bewährt. Die Möglichkeit, dass jeder mitwirken kann, könnte für mehr Transparenz und schnellere, unkompliziertere Checks sorgen – ähnlich wie bei Wikipedia.
Zukünftig sollen laut Mark Zuckerberg nicht mehr autorisierte Faktenchecker für die Kontrolle sorgen, sondern die Community selbst – indem man mit Community-Notes, ähnlich wie es aktuell bei X bereits der Fall ist, auf falsche Informationen hinweisen kann. Dieser Community-Ansatz ist im ersten Moment nicht schlecht, sondern eine sinnvolle Ergänzung zu dem bestehenden System. Er wird jedoch ohne klare Moderation und ohne professionelle Faktenchecker kaum der Flut an Desinformation auf Social Media gerecht werden können. Vielmehr sollten beide Ansätze genutzt werden, um Desinformation einzudämmen.
Die Verantwortung der Plattformen in Krisenzeiten
Angesichts der bevorstehenden Wahlen und der anhaltenden globalen Krisen tragen Social-Media-Plattformen eine besondere Verantwortung. Gerade in Wahlkampf- und Krisenzeiten müssten sie eigentlich dieser Verantwortung gerecht werden. Diese Verantwortung nehmen sie jetzt nicht mehr wahr. Durch den positiven Effekt, dass über Social Media jede und jeder seine eigene Meinung kundtun und somit an demokratischen Prozessen und der Meinungsbildung uneingeschränkt teilhaben kann, gibt es auch Nachteile. Denn: Wer garantiert, dass es sich bei den veröffentlichten Inhalten um korrekte Informationen handelt? Was, wenn gezielt falsche Informationen über soziale Netzwerke gestreut werden? Gezielte Desinformation über Social Media in Verbindung mit den hohen Nutzerzahlen kann einen großen, negativen Einfluss auf unsere Gesellschaft haben.
Der europäische Kontext: Digital Services Act
Während die angekündigten Änderungen zunächst die USA betreffen, sind sie langfristig auch für den europäischen Markt relevant. Der Digital Services Act in der EU regelt den Umgang mit gezielter Desinformation. Es wird interessant sein zu beobachten, wie Meta diese Regelungen mit seinen neuen Ansätzen in Einklang bringen wird. Umso wichtiger ist es, dass von Seiten der Gesellschaft und auch von Seiten der Plattformen gewisse Regeln aufgesetzt und eingehalten werden. Einen rechtlichen Rahmen bietet in Europa der Digital Services Act, der den Umgang mit gezielter Desinformation regelt.
Auswirkungen auf die Influencer-Welt
Die Änderungen bei Meta haben zudem auch weitreichende Implikationen für die Influencer-Branche. Viele Influencer weltweit gelten als Expertinnen und Experten auf ihren Gebieten - egal ob Fitness- und Gesundheitsinfluencer, Finanzinfluencer oder auch Politikinfluencer. Mit tausenden oder gar Millionen von Abonnenten haben sie einen großen Einfluss und können – wie der Name schon sagt – beeinflussen! Bisher wurde der Content von Influencern nur sehr selten wirklich kontrolliert und eingeschränkt – dies kann durch die neuen Community-Notes auch einen positiven Einfluss auf falsch verbreitete Informationen durch Influencer haben, sofern sich die aktiven Communities der Influencer auch kritisch mit deren Content auseinandersetzen und darauf entsprechend reagieren.
Herausforderung Hate Speech
Ein besonders kritischer Punkt für Influencer ist der Umgang mit Hate Speech. Influencer sind meist täglich Hate Speech ausgesetzt. Eine Einschränkung von Hate Speech war und ist für Influencer von großem Interesse, um in einem positiven Umfeld ihre Inhalte veröffentlichen zu können. Sollte es zu einer Auflösung dieser Einschränkung kommen, so ändert sich die generelle Social Media Tonalität zum Negativen. Einen Vorgeschmack gibt hier ebenfalls die Plattform X, auf welcher es aktuell kaum Einschränkungen gibt und Hate Speech deshalb dort bereits zu einem oft negativ aufgeladenen Community-Klima führt.
Konsequenzen für Marken-Kollaborationen
Die möglichen Veränderungen im Kommunikationsklima auf Meta-Plattformen haben auch Auswirkungen auf die Zusammenarbeit zwischen Marken und Influencern. Die Ziele von Brands in der Zusammenarbeit mit Influencern liegen auf der Hand – es geht um Aufmerksamkeit, Interaktion und Abverkauf. Diese Ziele lassen sich vor allem dann erreichen, wenn das Umfeld positiv ist. Hate Speech bringt mit negativem Kommunikations-Klima auch die Ziele der Markenkommunikation in Gefahr – weshalb wir uns für positive Communities und eine Einschränkung von Hate Speech einsetzen sollten. Gleichzeitig bedeutet dies natürlich nicht, dass kritische Kommentare oder Feedback eingeschränkt werden – es geht rein um das Beschimpfen und Verunglimpfen von Social Media Nutzern.
Blick in die Zukunft: Anpassung und Verantwortung
Es bleibt abzuwarten, wie sich die aktuell angekündigten Änderungen in den USA etablieren werden und zu welchem Resultat dies führt. Für den europäischen Markt wird es vorerst keine Änderungen geben – jedoch sollte die Situation und Entwicklung von Marken, Agenturen und auch Nutzern und Influencern gut beobachtet werden.
Fazit: Eine neue Ära der digitalen Kommunikation
Die von Meta angekündigten Änderungen markieren möglicherweise den Beginn einer neuen Ära in der digitalen Kommunikation. Dieser Wandel bringt nicht nur Herausforderungen, sondern auch Chancen für Influencer und Marken mit sich, insbesondere hinsichtlich der Qualität des Contents und der Authentizität von Informationen.
Die kommenden Monate und Jahre werden zeigen, wie sich diese Veränderungen auf die Social-Media-Landschaft auswirken werden. Eines steht jedoch fest: Influencer, Marken und Nutzer müssen sich auf ein dynamischeres, möglicherweise kontroverseres Umfeld einstellen. Die Fähigkeit, sich anzupassen und verantwortungsvoll zu kommunizieren, wird mehr denn je über den Erfolg in der digitalen Welt entscheiden.
Ausblick: KI und die Digitalwirtschaft
KI, politische Turbulenzen und Cookie-Fragezeichen: Die Digitalbranche wird auch 2025 vor herausfordernden Aufgaben stehen. Wie sie diesen begegnen kann, erläutern Swen Büttner und Christoph Schwarzmann von MGID Deutschland.

Das neue Jahr hat begonnen und noch sind alle Fragen offen: Welche neuen Chancen und Herausforderungen wird KI 2025 für die Digitalwirtschaft bereithalten? Wie geht es weiter rund um Cookies und Datenschutz? Und welche Auswirkungen werden die politischen Umwälzungen in Deutschland und den USA auf die Strategien und Erfolgsaussichten von Advertisern und Publishern haben? Hier fünf Thesen, welche Entwicklungen die Branche in diesem Jahr bewegen werden.
1. Mehrwert: KI geht 2025 endgültig über die Generierung von Creatives hinaus
Generative KI für die Erstellung von Creatives zu nutzen, hat sich fest etabliert und spart Zeit und Geld. Sowohl Advertiser als auch Publisher erkennen aber zunehmend, welche Möglichkeiten sich ihnen darüber hinaus eröffnen. Datengetriebene Ansätze, fundierte Analysen und die Prognose der Performance einzelner Kampagnen sind dabei nur die ersten Schritte. Zunehmend sind KI-Tools verfügbar, die nahezu das komplette Kampagnen-Management und den Media-Einkauf automatisieren und dadurch wesentlich schneller, kostengünstiger und effizienter gestalten. Gerade auch speziell für kleinere Brands werden sich – etwa im Bereich programmatischer Kampagnen – durch KI Möglichkeiten bieten, die bislang als zu komplex galten.
2. Turbulenzen: Politik bestimmt das erste Quartal
Der Amtsantritt von Donald Trump in den USA, Neuwahlen in Deutschland: 2025 beginnt politisch äußerst turbulent. Davon wird auch die Werbebranche nicht unberührt bleiben. Vorstellbar ist, dass Konsumenten angesichts unklarer Zukunftsaussichten erst einmal zurückhaltend agieren. Branding-Kampagnen könnten vor diesem Hintergrund von Kürzungen betroffen sein, während die Budgets für Performance-Kampagnen tendenziell stabiler bleiben dürften. Für Advertiser kann dies bedeuten, sich noch stärker auf eine exakte Zielgruppenauswahl zu konzentrieren und Ergebnisse genau zu evaluieren, um ihre Budgets optimal zu nutzen. In Deutschland könnten Verschiebungen im politischen Spektrum zudem dazu führen, dass rechtskonservative Medien und Narrative – von vielen Brands bislang strikt gemieden – höhere Akzeptanz finden. Dadurch können sich zwar zusätzliche Möglichkeiten ergeben, für Advertiser kann sich dies 2025 allerdings auch zu einer Frage der Moral entwickeln.
3. KI-Schattenseiten: Noch mehr Fake News, noch mehr Made-for-Advertising-Seiten
Neben den vielen Vorteilen der KI wird diese 2025 leider auch negative Trends weiter befeuern. So ist davon auszugehen, dass die Zahl so genannter MFA-Seiten – „Made for Advertising“, also dubiose, rein für Werbeschaltungen konzipierte Websites mit niedriger inhaltlicher Qualität – nochmals steigen wird. Gleiches gilt für die Verbreitung von Fake News. Der Grund dahinter ist simpel: Per KI lassen sich komplette MFA-Seiten, die zumindest auf den ersten Blick kaum noch von seriösen, legitimen Publishern zu unterscheiden sind, abstruseste Fake News und Verschwörungstheorien noch schneller und einfacher erstellen und monetarisieren. Ein Qualitätsproblem, dem sich auch in diesem Jahr die gesamte Werbebranche stellen muss.
4. Monetarisierung: Publisher müssen sich noch breiter aufstellen
Die Zeiten, in denen sich Publisher auf einige wenige Einnahmequellen beschränken konnten, sind definitiv vorbei. 2025 wird vielfach von einer weiteren Diversifizierung geprägt sein. Hier können beispielsweise Optionen wie direkte Partnerschaften, Abo-Modelle oder auch native Ads für viele Publisher eine stärkere Rolle spielen. Dies sorgt nicht nur für mehr Sicherheit und Stabilität, sondern kann gleichzeitig auch dazu beitragen, die Abhängigkeit von einzelnen großen Playern wie Google oder Facebook zu verringern. Selbst plötzliche Änderungen an Algorithmen oder der Infrastruktur dieser BigTech-Giganten treffen gut aufgestellte Publisher nicht so hart.
5. Cookies & Co.: Flexibilität ist Trumpf, First-Party-Daten stehen im Fokus
Das Hin und Her beim „Cookie-Aus“ wird vermutlich auch 2025 erst einmal weitergehen. Brands ziehen daraus jedoch zunehmend ihre Konsequenzen und setzen vermehrt auf einen Mix aus Cookie-basierten und Cookie-losen Strategien. Dadurch bleiben sie einerseits flexibel und tragen andererseits dem Datenschutz Rechnung, der noch weiter an Bedeutung gewinnen wird. Für Publisher steht weiter das Thema First-Party-Daten im Fokus. Sie müssen sich damit beschäftigen, ihre Daten auf clevere Weise zu sammeln, aufzubereiten und gewinnbringend zu nutzen. Positiver Nebeneffekt: Auf diese Weise können sie gleichzeitig engere Verbindungen zu ihren Partnern auf Advertiser-Seite aufbauen.
Was gehört in eine KI-Policy?
Recht für Gründer*innen: Über den verantwortungsvollen Umgang mit KI.

Künstliche Intelligenz (KI) ist längst Teil unseres Alltags und hält in Unternehmen auch zunehmend Einzug. Ob beim Erstellen von Texten, in der Datenanalyse oder bei der Automatisierung von Routineaufgaben – KI ist ein starkes Werkzeug, das Unternehmen viele Vorteile bieten kann. Doch mit diesen Vorteilen kommen auch Verantwortung und Risiken, die eine klare und durchdachte KI-Policy erfordern.
Diese Einleitung zu einem Artikel über KI-Policies ist KI-generiert. Es ist so schön bequem und schnell gemacht: eines der gängigen LLM-Systeme online aufrufen, beispielsweise ChatGPT, und binnen Sekunden ist der Artikel fertig.
Ihr kennt das im Privaten, vor allem aber auch im Arbeitsumfeld. KI-Tools sind aus der Arbeitswelt nicht mehr wegzudenken. Die Nutzung von KI – insbesondere für berufliche Aufgaben – birgt jedoch Risiken. Manche KI neigt, falsch trainiert, zu diskriminierenden Entscheidungen, was z.B. im HR-Bereich gefährlich ist. Unbedacht erstellte Prompts können den Schutz von Geschäftsgeheimnissen aufs Spiel setzen. Die Datenschutzgrundsätze sind wie immer einzuhalten.
Generative KI schert sich, wenn wir als Nutzer*innen nicht darauf Acht geben, nicht um die Urheberrechte derer, deren Werke wir – ob bewusst oder unbewusst – verwenden oder verletzen. Zudem ist seit August 2024 die KI-Verordnung in der EU in Kraft und stellt an Unternehmen, die KI-Systeme und -Modelle entwickeln, anbieten oder betreiben, umfangreiche Anforderungen. Auch die mit KI einhergehenden Risiken sind nicht außer Acht zu lassen.
Seid ihr als Gründer*innen oder in sonst verantwortlicher Position in einem Unternehmen mit mehreren Mitarbeiter*innen tätig, müsst ihr euch Gedanken darüber machen, wie solche Risiken zu fassen und zu begrenzen sind. Tut ihr das nicht, drohen aus diversen Rechtsgrundlagen z.B. Schadensersatzforderungen, Bußgelder oder der Verlust an Assets – Dinge, die allerspätestens bei der nächsten Finanzierungsrunde negativ bewertet werden. In Bezug auf eure Belegschaft müsst ihr also Awareness für diese Themen schaffen und konkrete Vorgaben machen.
Denn eines ist klar: KI wird in eurem Unternehmen genutzt werden, ob mit oder ohne euer Wissen. Und bevor die Mitarbeiter*innen auf privaten Geräten sensible berufliche Aufgaben nicht reglementiert mittels ChatGPT & Co. lösen, beschreibt lieber beizeiten Dos and Don’ts, um sicherstellen, dass KI verantwortungsvoll, sicher und rechtskonform im Unternehmen eingesetzt wird.
Dazu dient eine die Belegschaft informierende und verpflichtende KI-Policy. Im Folgenden findest du einen Überblick darüber, welche Aspekte in eine solche Policy gehören.
1. Richtlinien für den Einsatz generativer KI am Arbeitsplatz
Generative KI-Modelle wie ChatGPT, DALL-E und andere erstellen Inhalte nach Maßgabe der Eingaben der Nutzenden. Bei diesen Prompts und bei der Verwendung der generierten Ergebnisse ist auf Folgendes zu achten:
- Schutz sensibler Daten: Die Eingabe vertraulicher Informationen in KI-Modelle stellt ein erhebliches Risiko dar, da generative KI-Systeme auf großen Datenmengen trainiert sind und Informationen potenziell unkontrolliert verarbeiten und speichern. Die KI-Policy sollte explizit verbieten, sensible oder vertrauliche Informationen in generative KI-Systeme einzugeben, insbesondere, wenn diese extern betrieben werden. Die Policy sollte beschreiben wie mit sensiblen Daten umzugehen ist und welche Daten für die Verarbeitung durch KI-Systeme ungeeignet sind.
- Einhaltung des Datenschutzes: Die KI-Policy sollte klarstellen, dass der Einsatz generativer KI-Tools den Anforderungen der Datenschutzgesetze (DSGVO, BDSG) entsprechen muss. Dazu gehören Vorgaben, wie personenbezogene Daten rechtssicher zu handhaben sind und welche dieser Daten überhaupt für den Einsatz von KI-Modellen geeignet sind. Zudem bedarf es Vorgaben zur Anonymisierung und Pseudonymisierung der Daten, daneben Transparenzvorgaben, um betroffene Personen über die Nutzung ihrer Daten zu informieren. Personenbezogene Daten in öffentlichen KI-Systemen einzusetzen, sollte möglichst untersagt werden.
- Umgang mit geistigem Eigentum: Die Nutzung generativer KI-Modelle kann zu Problemen führen, wenn die KI auf geschütztem Material trainiert wurde, von dem/der Nutzenden urheberrechtlich geschützte Werke in den Prompt einbezogen werden oder die KI Werke erstellt, die bestehende Urheber- oder sonstige Schutzrechte verletzen. Die KI-Policy sollte ein Verbot der Verwendung von Werken enthalten, an denen nicht die für die Bearbeitung erforderlichen Rechte bestehen. Und sie kann Regelungen zur Überprüfung und Genehmigung von KI-erstellten Inhalten festlegen, etwa durch eine Rechtsabteilung oder eine speziell dafür zuständige Stelle.
- Transparenz und Kennzeichnung: Die KI-Policy sollte festlegen, dass Inhalte, die mithilfe von generativer KI erstellt wurden, transparent gekennzeichnet werden. Dies trägt dazu bei, Missverständnisse zu vermeiden und sicherzustellen, dass die Herkunft von Texten und Bildern klar erkennbar ist. Diese Kennzeichnungspflicht sollte insbesondere dann gelten, wenn KI-generierte Inhalte veröffentlicht werden, aber auch im internen Gebrauch.
- Positivliste erlaubter KI-Systeme: Um die Mitarbeiter*innen mit der Anwendung dieser Vorgaben auf einzelne am Markt angebotene KI-Systeme nicht allein zu lassen, kann eine KI-Policy auch eine Auflistung der vom Unternehmen freigegebenen Systeme enthalten. Voraussetzung ist dafür natürlich, dass diese Systeme vorab entsprechend fachlich geprüft wurden. Das kann schwierig sein, weil sich Anbieter*innen meist nicht in die Karten schauen lassen.
2. Richtlinien für die Entwicklung und Implementierung von KI
Auch wenn ihr in eurem Unternehmen KI-Systeme entwickeln oder implementieren wollt, sind ethische, rechtliche und technische Anforderungen in einer KI-Policy zu adressieren.
- Fairness, Transparenz und Nichtdiskriminierung: KI-Systeme können, wenn sie auf verzerrten Datensätzen trainiert werden, Diskriminierung oder Vorurteile reproduzieren. Eine KI-Policy sollte deshalb klare ethische Richtlinien festlegen, die sicherstellen, dass die entwickelten Modelle fair, transparent und frei von Diskriminierung sind. Ein mögliches Vorgehen ist, regelmäßige Audits und Bias-Tests durchzuführen und in der Policy verpflichtend vorzusehen, um Verzerrungen frühzeitig zu erkennen und zu beheben.
- Datenschutz und Datensicherheit: Der verantwortungsvolle Umgang mit Nutzer*innendaten ist eine der wichtigsten Anforderungen in der KI-Entwicklung. Die KI-Policy sollte festlegen, dass bei der Verarbeitung personenbezogener Daten durch die KI strenge Schutzanforderungen, am besten strenge Begrenzungen, gelten. Rein automatisierte Entscheidungen sind schon laut DSGVO verboten. Es sollten nur die für die jeweilige Anwendung notwendigen Daten erhoben und verarbeitet werden, und diese Daten sollten weitestgehend anonymisiert oder pseudonymisiert werden. Regelungen für den Zugang zu diesen Daten sowie Maßnahmen zur Datensicherheit (wie Verschlüsselung und Zugriffskontrollen) sollten ebenfalls Bestandteil der Policy sein.
- Überprüfung auf Halluzinationen und Fehlinterpretationen: Generative KI-Modelle neigen dazu, Informationen zu „halluzinieren“, also falsche oder ungenaue Inhalte zu erstellen. In der KI-Policy sollte festgelegt sein, dass entwickelte KI-Modelle regelmäßig auf ihre Genauigkeit und Zuverlässigkeit überprüft werden. Dies kann durch vorgeschriebene Tests und Simulationen geschehen, bei denen die KI in verschiedenen Szenarien eingesetzt und auf ihre Fähigkeit, korrekte Ergebnisse zu liefern, geprüft wird. Es sollten auch definiert werden, wie Fehler erkannt und behoben werden können.
- Erklärbarkeit und Nutzer*infreundlichkeit: Komplexe KI-Modelle sind oft schwer verständlich und wirken wie eine Black Box, deren Entscheidungen für Außenstehende kaum nachvollziehbar sind. Die KI-Policy sollte daher sicherstellen, dass die KI so gestaltet ist, dass ihre Funktionsweise für Nutzer*innen transparent und nachvollziehbar ist. Dies ist insbesondere dort wichtig, wo KI-Entscheidungen schwerwiegende Auswirkungen haben können. Ihr solltet sicherstellen, dass für Nutzer*innen eine verständliche Erläuterung darüber bereitgestellt wird, wie und warum die KI zu einem bestimmten Ergebnis gelangt ist. Das ist Voraussetzung für Kontrolle und rechtskonformen Betrieb der KI.
- Gesetzeskonformität gemäß KI-Verordnung: Nicht zuletzt hat die Europäische Union die KI-Verordnung in Kraft gesetzt, die strenge Anforderungen an die Entwicklung und Nutzung von KI stellt. Die KI-Verordnung dient der Produktsicherheit und verlangt zunächst eine Risikoeinschätzung für die KI-Systeme. Die Maßgaben für eine solche Einschätzung sollten in der Policy angerissen und No-Gos für die Entwicklung von Funktionalitäten, die zu den laut KI-Verordnung verbotenen KI-Anwendungen gehören, ausgesprochen werden. Für sogenannte Hochrisiko-KI-Systeme gelten besondere Anforderungen, die bei einer Entwicklung mitgedacht werden müssen, wofür eine KI-Policy zumindest sensibilisieren sollte. Die im Einzelfall geforderte Überprüfung und Einstufung des jeweiligen Systems oder Modells kann eine Policy nicht leisten. Die initialen und regelmäßigen Überprüfungen sowie Risikobewertungen sollte sie aber fordern.
- Regelmäßige Überwachung und Wartung der KI-Modelle: KI-Modelle entwickeln sich weiter und benötigen regelmäßige Überwachung und Wartung, um die Leistung zu optimieren und mögliche Fehler zu minimieren. Die KI-Policy sollte eine solche sich wiederholende Maintenance festlegen, etwa die schon erwähnten regelmäßigen Aktualisierungen, Fehlerbehebungen und Performance-Überprüfungen, damit die KI-Systeme immer den aktuellen Standards und Anforderungen entsprechen.
3. Übergreifende Ziele und Vorgaben einer KI-Policy
Eine KI-Policy sollte nicht nur detaillierte Vorgaben zur Nutzung und Entwicklung von KI enthalten, sondern auch allgemeine Leitlinien und Prinzipien für den Einsatz von KI im Unternehmen, um ein Bewusstsein für die Potenziale und Risiken der Technologie zu schaffen.
- Regelmäßige Überprüfung und Anpassung: Da sich KI-Technologien und gesetzliche Anforderungen stetig weiterentwickeln, sollte auch die KI-Policy regelmäßig überprüft und aktualisiert werden. Dies hilft sicherzustellen, dass das Unternehmen stets auf dem neuesten Stand ist und seine KI-Systeme konform mit den aktuellen gesetzlichen, ethischen und technischen Standards sind. Es ist empfehlenswert, regelmäßige Audits durchzuführen und die Policy an neue Entwicklungen in der KI-Forschung und Gesetzgebung sowie an die Marktanforderungen anzupassen.
- Unternehmenskultur in Bezug auf KI: Eine KI-Policy sollte dazu dienen, den transparenten und offenen Umgang mit KI in allen Unternehmensbereichen und damit die Akzeptanz für KI-Systeme sowohl innerhalb des Unternehmens als auch bei Kund*innen und Partner*innen zu fördern. Dazu gehört auch, dass das Unternehmen offenlegt, in welchen Bereichen KI eingesetzt wird und welche Entscheidungen die Technologie beeinflusst. Letztendlich ist die KI-Policy ein Instrument zur Förderung einer verantwortungsvollen und ethischen Unternehmenskultur in Bezug auf KI. Das schützt letztlich auch die Integrität und die Werte des Unternehmens.
- Schulungen und Sensibilisierungsmaßnahmen: Um einen solchen kompetenten und verantwortungsvollen Umgang mit KI zu erreichen, sind regelmäßige Schulungen und Sensibilisierungsmaßnahmen für die Mitarbeiter*innen zu den hier genannten Aspekten vorzusehen.
Fazit
Dieser Artikel kann nur einen groben Überblick und Rahmen geben. Die konkreten Inhalte einer auf eure Belange und Nutzungsformen passenden Policy müsst ihr in Anschauung der Spezifika der eingesetzten oder zu entwickelnden KI-Systeme erarbeiten. Das kann auch schlecht an KI delegiert werden: Der Rest des eingangs erwähnten KI-generierten Artikels war nicht wirklich brauchbar, ebenso die testweise mit KI erstellten Policies. Dafür braucht es professionelle Unterstützung.
Der Autor Dr. Daniel Michel, LL.M. ist seit 2004 als Rechtsanwalt im Bereich IT/IP/Technologie tätig. Nach Stationen in spezialisierten und Großkanzleien betreibt er seit 2018 seine eigene Rechtsberatung im Raum München, www.datalawcounsel.com
HR-Trends 2025
Fünf HR-Expert*innen geben ihre persönlichen Einblicke in Perspektiven, Hoffnungen und Strategien für das kommende Jahr.
Personalführung und Human Ressources müssen konstant weitergedacht werden. Gründe dafür gibt es genug – ob Digitalisierung und KI oder demografischer Wandel und Fachkräftemangel. Die HR-Verantwortlichen von ToolTime, Ella Media, Kenjo, Family Office 360grad AG und Mashup Communications zeigen, welche Trends Fach- und Führungskräfte 2025 erwarten.

Marketing-Trends 2025
Führende Marketing-Expert*innen geben Einblick in Perspektiven, Hoffnungen und Strategien für das kommende Jahr.

Marketing und Kommunikation müssen konstant weitergedacht werden. Gründe dafür gibt es genug – ob Digitalisierung und KI oder ein zunehmender Wettbewerb in wirtschaftlich unsicheren Zeiten. Gründer*innen, CEOs und Kommunikationsprofis von ToolTime, kollex, Creditsafe, good healthcare group, puzzleYOU und Mashup Communications zeigen, welche Trends Fach- und Führungskräfte 2025 erwarten.
Visuelles Storytelling mit Ecken und Kanten statt KI-Perfektion

In einer Zeit, in der uns KI-optimierte, makellose Visuals eine glattgebügelte Welt präsentieren, setzt sich 2025 ein gegenläufiger Trend durch: Echtheit. Sie wird zur Währung, um sich inmitten der perfektionierten Bilderflut abzuheben. Marken, die im digitalen Raum Nähe schaffen wollen, werden sich bewusst von der sterilen Hochglanz-Ästhetik der KI lösen. Das heißt: Statt in dämlich-hübschen KI-Avataren à la Emma von der Deutschen Zentrale für Tourismus liegt die Zukunft in realen Geschichten und echten Menschen mit Ecken und Kanten. Eine bewusst ungeschliffene Brand mit Charakter schafft mehr Nähe und Vertrauen als ein aufpoliertes oder ganz und gar Fake-Visual. 2025 gilt es, die Chance des visuellen Storytellings zu nutzen, statt bloß technischer Perfektion nachzueifern.