IT-Trends 2024


44 likes

Das sind die fünf entscheidenden Trends und Marktentwicklungen, die sich auf unterschiedliche Weise 2024 auf den IT-Markt auswirken werden.

PAC ein europäisches Marktanalyse- und Beratungsunternehmen für die IT-Branche, veröffentlicht zum Jahreswechsel seine wichtigsten Prognosen für das neue Jahr. Diese zeigen die entscheidenden Trends und Marktentwicklungen auf, die sich auf unterschiedliche Weise auf den IT-Markt auswirken werden.

Fünf zentrale Trends sind es, die nach den Erkenntnissen der Analyst*innen im Jahr 2024 und darüber hinaus für Unternehmen überdurchschnittliches Wachstum, Effizienzsteigerung und mehr Nachhaltigkeit bringen werden – und wie zu erwarten war, haben viele mittelbar oder unmittelbar etwas mit dem Themenfeld der künstlichen Intelligenz (KIU) zu tun.

Trend 1. FinOps für GenAI: Verwaltung von Cloud-Kosten im KI-Zeitalter wird für Unternehmen zur Herausforderung.

Das Jahr 2023 markierte einen Wendepunkt für KI-Services, insbesondere resultierend aus der wachsenden Bedeutung von Generative AI (GenAI). stehen nun vor einem neuen FinOps-Wendepunkt, da GenAI hohe Rechen- und Datenverarbeitungskapazitäten erfordert, die nur durch Cloud-Dienste erschwinglich realisiert werden können. PAC sieht GenAI als das, was die Tech-Industrie eine „Killer-Applikation“ nennt, da es sich um eine Innovation handelt, deren Anwendungsfall sowohl das private als auch das berufliche Leben von Menschen weltweit verändert und beeinflusst. Gleichzeitig sehen die Analysten aber auch ein erhebliches Risiko für Unternehmen, dass die Nachfrage nach solchen Diensten zu unerwarteten Kostensteigerungen führt – in einer Größenordnung und Geschwindigkeit, die weitaus gravierender ist als die anfänglichen Kostenprobleme bei der Ausbreitung der Cloud. Unternehmen müssen daher die Cloud-Service-Kosten für KI in allen Geschäftsbereichen durch FinOps effektiv verwalten und eine Kultur der finanziellen Transparenz und Verantwortlichkeit schaffen.

Trend 2. MLSecOps: Effektives Sicherheitsmanagement wird in einer von „Multi-Hops“ geprägten KI-Landschaft zum Muss.

Mit der Zunahme der KI-Nutzung steigt auch die Notwendigkeit, Sicherheitspraktiken an ML-bezogene Workflows anzupassen. Viele Unternehmen stehen vor der Herausforderung, KI in einer Vielzahl von IT-Lösungen zur Unterstützung von Geschäftsmodellen zu etablieren – und Unternehmen, die ihre Cybersicherheitsstrategie nicht parallel zu ihrer KI-Strategie anpassen, gehen hohe Risiken ein. MLSecOps-Rahmenwerke werden daher für die Absicherung von KI-Lösungen und -Diensten zunehmend einen höheren Stellenwert bekommen. Eine besondere Herausforderung aufgrund der in vielen Unternehmen zu beobachtenden breiten Palette an KI-Services, ist dabei die sogenannte „Multi-Hop-KI“. Darunter versteht man die Verkettung mehrerer KI-Lösungen oder -Dienste und ihrer Datensätze zu einer integrierten Pipeline oder Lieferkette, wobei bei jedem Hop eine andere, oft cloudbasierte KI-Lösung oder ein anderer Dienst genutzt wird. Diese KI-Nutzung wird Lösungen und Dienste von einer Vielzahl von IT-Anbietern umfassen. Zwischen den einzelnen „Hops“ wird es keine menschliche Interaktion geben, sodass der Mensch nur den anfänglichen Input liefert und dann den Multi-Hop-Output erhält. PAC hält dies für einen revolutionären Schritt, aber auch ein Risiko bei der Nutzung von KI. Dem Mehrwert von KI für Unternehmen steht das Potenzial für neue Formen von Sicherheitsverletzungen gegenüber. Denn Daten sind aus Sicht der Cybersicherheit das wertvollste Gut, das sich böswillige Akteure aneignen können – und da sie das Herzstück aller KI sind, ist dies ein Bereich, mit dem sich CxOs in den kommenden Jahren intensiv befassen müssen.

Trend 3. Umgang mit der KI-Inzucht: Wie die Anwendung von verantwortungsvoller und erklärbarer KI für Validität sorgt.

Ein zunehmend relevantes Problem im Zusammenhang mit Künstlicher Intelligenz ist die sogenannte „KI-Inzucht". Dieses Phänomen tritt auf, wenn KI-Systeme überwiegend von anderen KI-generierten Inhalten lernen, was zu einer Verzerrung und Entfremdung von der menschlichen Perspektive führen kann. Während etwa die aktuellen Versionen des ChatGPT-Modells auf einer relativ sauberen Bandbreite von überwiegend menschengenerierten Datenpunkten trainiert wurden, könnten zukünftige KI-Modelle immer mehr Daten generieren (und von ihnen lernen), die sich über viele Verarbeitungsiterationen hinweg von der Relevanz für menschliche Perspektiven unterscheiden. Diese Entwicklung, besonders sichtbar im Bereich der generativen KI (GenAI), könnte die Langzeitwirksamkeit von KI-Lösungen beeinträchtigen. Verantwortungsvolle und erklärbare KI-Tools und Frameworks können indes als geeignete Instrumente zur Bewältigung dieses Problems angesehen werden.

Trend 4. Hyper-Personalisierung: Digitale Assistenten schaffen mithilfe von GenAI eine individuelle Kundenansprache.

Seit Jahren streben Unternehmen im B2C- oder D2C-Geschäft danach, digitale Einkaufserlebnisse ähnlich einem persönlichen Einkaufsberater mit möglichst präziser Personalisierung zu bieten. Generative KI eröffnet Chancen Hyper-Personalisierung zu erreichen, die darauf abzielt, eine möglichst enge und langfristige Beziehung zum/zur Kund*in zu entwickeln, die das Engagement und die Loyalität erhöht und Cross- und Upselling-Möglichkeiten eröffnet. In der Vergangenheit waren die Kosten für einen Einkaufsberater, der den Kund*innen so passgenau beraten konnte, angesichts der unzureichenden Datenlage zu hoch und die Skalierbarkeit nicht gegeben. Auch waren vor GenAI die Chatbot-Style-Schnittstellen nicht ausgeklügelt genug, um Kaufberatungen oder Steuerungen ähnlich einem traditionellen persönlichen Einkaufsberater zu bieten. PAC prognostiziert, dass ab 2024 die Integration von GenAI in digitale Erlebnisse auf Mitarbeitendengeräten zur Unterstützung persönlicher Interaktionen und durch ähnliche Erlebnisse direkt auf den Geräten der Kund*innen vermehrt erfolgen wird. Dadurch wird GenAI den Zugang zu digitalen Assistentendiensten im Stil eines persönlichen Einkaufsberaters für die Verbraucher demokratisieren, den Kaufzyklus von Unternehmen vereinfachen und neue Umsatzmöglichkeiten schaffen.

Trend 5. Neue ESG-Regulierung: Die CSRD verschärft die Anforderungen an Unternehmen für eine nachhaltige IT-Landschaft.

Die Corporate Sustainability Reporting Directive (CSRD) regelt ab 2024 EU-weit die Umweltberichterstattung und forciert damit die internationalen ESG-Bestrebungen. Die Experten von PAC sehen das Inkrafttreten der CSRD als Beschleuniger des Wandels hin zu mehr Nachhaltigkeit in Unternehmen. Waren diese in der Vergangenheit an Nachhaltigkeit vor allem deshalb interessiert, weil ihre Kund*innen danach fragten und es die Gelegenheit bot, Umsätze zu steigern, besteht nun eine Verpflichtung mit rechtlichen, rufschädigenden und kommerziellen Komponenten. Unternehmen werden vermehrt nach Partner*innen suchen, die ihnen helfen, die richtigen Softwarelösungen und Prozesse zu implementieren, um Daten im Zusammenhang mit ESG effizient zu verfolgen, zu sammeln und zu analysieren. Gleichzeitig wird die Vergleichbarkeit der Berichte die Unternehmen dazu drängen, zu zeigen, dass sie mindestens so nachhaltig ausgerichtet sind wie ihre direkten Mitbewerber*innen. Der Trend zu mehr Nachhaltigkeit wird Unternehmen zudem weiter zu einer Cloud-First-Strategie ermuntern. Neben der Möglichkeit, einzelne Workloads mit vertretbarem Aufwand und Betriebskosten in die Cloud zu migrieren, werden Organisationen zunehmend fragen, wie nachhaltig verschiedene Cloud-Angebote sind. Bei der Auswahl eines Cloud-Anbieters wird Nachhaltigkeit neben der Verfügbarkeit von Dienstleisterressourcen und angemessenen Funktionen in der PaaS-Umgebung ein Schlüsselfaktor sein. Zudem werden auch die Cloud-Anbieter Effizienzparameter für Interessent*innen bereitstellen, um die Nachhaltigkeit der Angebote zu belegen.

Diese Artikel könnten Sie auch interessieren:

Verkaufen ohne Shop: Zahlungen erhalten mit PayPal Open

Sie verkaufen digitale Kunst, Online-Kurse oder Handgemachtes? Dafür ist ein Shop nicht zwingend nötig. Mit Zahlungslinks und Kaufen-Buttons von PayPal erhalten Sie Ihre Zahlungen, wo die Verkäufe entstehen – schnell, sicher und unkompliziert.

Zahlungen empfangen, wo Ihre Community ist

Viele Soloselbständige nutzen Social Media, E-Mails oder Messenger nicht nur zur Kommunikation, sondern auch zur Vermarktung ihrer Produkte. Mit den passenden Tools können sie dort zusätzlich direkt Zahlungen empfangen – ganz ohne Onlineshop oder technisches Setup.

PayPal Open bietet drei flexible Möglichkeiten, Zahlungen zu erhalten:

  • Zahlungslinks, die schnell geteilt werden können, etwa per E-Mail, DM, Post oder QR-Code.
  • Kaufen-Buttons, die sich in eine bestehende Seite integrieren lassen, zum Beispiel in ein Link-in-Bio-Tool oder eine Landingpage.
  • Tap to Pay macht Ihr Smartphone zum Zahlungsterminal (kompatibles Smartphone vorausgesetzt).

Alle Varianten funktionieren schnell, mobiloptimiert und bieten eine vertraute Nutzererfahrung. Damit wird der Ort, an dem Interesse entsteht, direkt zum Verkaufsort.

Zahlungslinks: Vom Post zur Bezahlung in Sekunden

Ein Kauf beginnt nicht im Warenkorb, sondern dort, wo Interesse entsteht: in einem Post, einer Story oder einer E-Mail. Genau hier setzen Zahlungslinks von PayPal an: Sie führen direkt von der Produktinfo zur Zahlung, ohne Umwege über externe Plattformen.

Das ist besonders hilfreich bei:

  • digitalen Produkten
  • E-Book-, Kurs- oder Software-Verkäufen
  • (Online-)Vorbestellungen oder Trinkgeld-Modellen

Ein Zahlungslink erzeugt eine eigene Bezahlseite mit Titel, Preis, Beschreibung und Produktbild. Varianten wie Größen oder Farben sind ebenso integrierbar wie frei wählbare Preise. Versandkosten und Steuern können automatisch berechnet werden.

Der fertige Zahlunglink lässt sich flexibel teilen: per Messenger, E-Mail, Social Media oder als QR-Code auf einem Produktetikett oder Tischaufsteller. Die Zahlungsseite unterstützt gängige Zahlarten wie Kreditkarte, Wallets sowie ausgewählte regionale Methoden wie SEPA-Lastschrift, iDEAL oder Swish – je nach Land und Verfügbarkeit für die jeweiligen Käufer:innen.

Besonders praktisch: Ihre Kund:innen brauchen dafür kein eigenes PayPal-Konto. So können Zahlungen sicher und bequem online abgewickelt werden.

Für Selbständige, die regelmäßig digitale Inhalte verkaufen, ist das eine einfache Möglichkeit, Zahlungen mit PayPal zu empfangen, ohne ein klassisches Shopsystem aufsetzen zu müssen.

Kaufen-Buttons: Ihre Seite wird zur Verkaufsfläche

Wer bereits eine Website oder ein Link-in-Bio-Tool nutzt, kann PayPals Warenkorb- oder Kaufen-Buttons mit wenigen Zeilen Code integrieren. Damit verwandeln Sie eine einfache Landingpage in eine funktionale Verkaufsfläche. Sie erstellen den Button in Ihrem PayPal-Konto und erhalten automatisch den passenden HTML-Code, der nur noch kopiert und in die Website eingefügt wird. Kund:innen klicken, zahlen mit ihrer bevorzugten Methode und der Betrag wird direkt gutgeschrieben.

Sie behalten die volle Kontrolle über Ihre Gestaltung, Storytelling und Nutzerführung und profitieren gleichzeitig von einem verlässlichen Check-out, der hilft Vertrauen zu schaffen. Eine schlanke Lösung für alle, die ihr Angebot online präsentieren und Zahlungen direkt abwickeln möchten.

Mit Tap to Pay ganz einfach vor Ort verkaufen

Neben den digitalen Optionen können Sie auch vor Ort Zahlungen annehmen: direkt über Ihr Smartphone. Mit der PayPal-Funktion „Tap to Pay“ akzeptieren Sie kontaktlose Zahlungen per Karte oder Wallet ohne separates Kartenlesegerät. Alles, was Sie benötigen, ist ein kompatibles iPhone oder Android-Gerät mit NFC-Funktion (Tap to Pay funktioniert auf Geräten mit Android 8.0, NFC-Funktionen und Google Play Services. iOS ab iPhone XS und höher).

Besonders praktisch ist das beispielsweise für:

  • Märkte, Pop-up-Stores
  • Workshops und Live-Events
  • Verkäufe im kleinen Rahmen, bei denen Flexibilität zählt

KI erfolgreich industrialisieren

Warum 95 Prozent der KI-Pilotprojekte scheitern – und wie du deine Chancen erhöhst, zu den erfolgreichen fünf Prozent zu gehören.

Künstliche Intelligenz ist in der Industrie angekommen, doch zwischen Anspruch und Wirklichkeit klafft oft eine Lücke. Eine aktuelle Untersuchung des MIT - Massachusetts Institute of Technology („The GenAI Divide“) zeigt: Nur fünf Prozent der KI-Pilotprojekte schaffen tatsächlich den Sprung in die produktive Anwendung. Diese „Pilot-to-Production“-Falle ist eines der größten Risiken für Industrieunternehmen heute.

Der feine Unterschied

GenAI ist keine Produktions-KI Oft werden Äpfel mit Birnen verglichen. Generative KI (GenAI) ist fantastisch für kreative Aufgaben und Chatbots, scheitert aber oft an der Verlässlichkeit, die in der Produktion nötig ist. Industrietaugliche „Produktions-KI“ hingegen muss anders funktionieren: Sie lernt aus Maschinendaten, erkennt Zusammenhänge in Echtzeit und muss absolut robust laufen.

Besonders in der Kunststoffverarbeitung, etwa bei schwankenden Recyclingmaterialien oder Verschleiß, spielt Produktions-KI ihre Stärken aus: Sie gibt den Mitarbeitenden an der Maschine konkrete Handlungsempfehlungen, statt nur Daten zu sammeln.

Faktor Mensch und Organisation

Das MIT fand heraus: Technik ist selten das Problem. Es sind die organisatorischen Hürden. Unternehmen, die sich externe Expertise und spezialisierte Software-Partner ins Haus holen, verdoppeln ihre Chance, KI-Projekte erfolgreich in den Regelbetrieb zu überführen. Es geht darum, Fachwissen mit Technologie zu verheiraten.

Wie gelingt der Transfer in den Shopfloor?

  • Fokus statt Gießkanne: Identifiziere konkrete Probleme (z.B. Anfahrausschuss) und priorisiere diese nach wirtschaftlichem Mehrwert.
  • Integration planen: KI darf keine Insel sein. Die Anbindung an IT- und OT-Systeme muss von Anfang an stehen.
  • Externe Power nutzen: Setze auf Partner, die deine Industrie verstehen, um die Kinderkrankheiten von Pilotprojekten zu vermeiden.
  • Skalierung: Starte fokussiert, miss den Erfolg anhand harter Kennzahlen (OEE, Ausschussrate) und rolle sodann funktionierende Lösungen breit aus.

Fazit

Wer KI nicht als IT-Projekt, sondern als Werkzeug für den Shopfloor begreift und strategisch implementiert, sichert sich echte Wettbewerbsvorteile.

Die Autorin Dr. Louisa Desel ist Mitgründerin und CEO der OSPHIM GmbH. Das 2024 gegründete Unternehmen entwickelt spezialisierte KI-Lösungen für die Kunststoffindustrie.

to teach: Vom KI-Hype zur Schulinfrastruktur

Wie das 2022 gegründete EdTech to teach die Lücke zwischen Chatbot und Klassenzimmer schließt.

Vor drei Jahren begann mit dem öffentlichen Zugang zu generativer künstlicher Intelligenz ein weltweiter Hype, der auch vor den Schultoren nicht haltmachte. Doch im Bildungsmarkt entscheidet sich derzeit, ob die Technologie tatsächlich Produktivität schafft oder in einer digitalen Sackgasse endet. Das Hamburger EdTech to teach liefert hierzu eine Blaupause: Was 2022 als Experiment begann, hat sich innerhalb von drei Jahren zu einer Arbeitsplattform für hunderttausende Lehrkräfte entwickelt.

Das Problem: US-Tools verstehen deutsche Schulen nicht

Als generative KI erstmals verfügbar wurde, wirkte ihr Einsatz im Bildungsbereich naheliegend. Doch der Blick auf die internationale Konkurrenz zeigt das Dilemma: Während US-Platzhirsche wie MagicSchool AI oder Diffit den Markt mit hunderten Mikro-Tools fluten und technisch beeindrucken, fehlt ihnen der kulturelle Fit. „Einfach nur Texte aus ChatGPT zu kopieren, löst kein einziges Problem von Lehrkräften“, erklärt Felix Weiß, Co-Founder und CEO von to teach.

Die Diskrepanz zwischen dem Versprechen der KI und dem tatsächlichen Schulalltag war groß. US-Lösungen scheitern oft an spezifischen deutschen Lehrplänen oder liefern reine Multiple-Choice-Formate, die hierzulande kaum Anwendung finden. Lehrkräfte benötigten keine unstrukturierten Textwüsten, sondern didaktisch saubere, lehrplankonforme und sofort einsetzbare Materialien. Genau hier setzte das 2022 von Felix Weiß und Marius Lindenmeier gegründete Unternehmen an.

Der Pivot: Datenschutz als Burggraben

Der entscheidende Wendepunkt kam 2023. Das Start-up vollzog einen Strategiewechsel (Pivot) weg von einer SaaS-Lösung für Verlage hin zu einer direkten Plattform für Lehrkräfte. Anstatt Nutzer*innen mit freien Eingabefeldern (Prompts) allein zu lassen, entwickelte das Team feste Arbeitsblattvorlagen. Dies wurde zum entscheidenden Wettbewerbsvorteil gegenüber internationalen Anbietern: Während diese oft an der strikten DSGVO scheitern, bietet to teach durch Serverstandorte in der EU und Rechtssicherheit eine Lösung, die Schulträger akzeptieren.

Dabei mussten technische Kinderkrankheiten überwunden werden: Frühe KI-Modelle „halluzinierten“ Fakten. To teach reagierte mit der systematischen Integration von Quellen und profitierte zugleich von der rasanten Evolution der Sprachmodelle.

Skalierung im Ökosystem gegen nationale Konkurrenz

Der Markt nahm die Lösung schnell an: Im Januar 2023 meldete sich der erste Nutzer an, bis Ende des Jahres waren es laut Unternehmen bereits knapp 16.000 Lehrkräfte. Das Jahr 2024 markierte dann den Übergang vom Start-up zur Plattform: Durch die Übernahme von fobizz (101skills GmbH) wurde to teach Teil eines größeren Bildungsökosystems. Die Gründer blieben als Geschäftsführer an Bord.

Dieser Schritt war strategisch überlebenswichtig in einem sich konsolidierenden Markt. Einerseits gegenüber agilen Herausforderern, da Konkurrenten wie schulKI, Teachino, KIULY oder Kuraplan zum Teil aggressiv um Landeslizenzen kämpfen bzw. auf dem Markt für KI-gestützte Unterrichtsplanung und Materialerstellung durchgestartet sind.

Andererseits war der Schritte in Hinblick auf etablierte Verlage notwendig. Denn Häuser wie Cornelsen ziehen inzwischen mit eigenen KI-Assistenten nach, sperren ihre Inhalte jedoch oft in geschlossene Systeme, d.h. binden sie oft an die eigenen Verlagswerke.

Durch die erfolgreiche Integration in fobizz ist to teach kein isoliertes Insel-Tool mehr, sondern profitiert von bestehenden Landesrahmenverträgen und einem riesigen Vertriebsnetz. Die Nutzer*innenzahlen explodierten förmlich auf über 140.000 Lehrkräfte bis Ende 2024, so die Angaben von to teach.

Status Quo 2025: KI als neue Infrastruktur

Heute, im dritten Jahr nach der Gründung, hat sich der Fokus erneut verschoben. To teach versteht sich inzwischen als Arbeitsinfrastruktur. Die Zahlen unterstreichen diesen Anspruch: Nach Angaben von to teach nutzen über 300.000 Lehrkräfte die Plattform, und mehr als 4.000 Schulen sind angebunden. Das bedeutet: Millionen von Inhalten wurden so bereits KI-gestützt vorbereitet.

Das Unternehmen treibt nun den systematischen Schulvertrieb voran. Damit beweisen EdTechs wie to teach, dass sich Qualität und Personalisierung im sonst oft als innovationsresistent geltenden Bildungsmarkt skalieren lassen.

Für CEO Felix Weiß ist die Diskussion über das „Ob“ längst beendet: „Die Frage ist nicht mehr, ob KI im Klassenzimmer ankommt, sondern, wie und auf welche Weise sie dort wirklich hilft.“

Social Engineering auf dem Vormarsch

Wie Deepfakes die Sicherheit von Führungskräften stärker in den Fokus rücken.

Fotorealistische KI liefert innerhalb von kürzester Zeit realistische Visuals. Was in vielerlei Hinsicht den Arbeitsalltag erleichtert, bedeutet für Social Engineering jedoch eine neue Eskalationsstufe, wie nicht zuletzt die hitzige Debatte um massenhaft sexualisierte Deepfakes von realen Personen durch Grok eindrücklich vor Augen führte.

Auch Personen in leitenden Funktionen in Unternehmen sind vor solchen Manipulationen nicht gefeit. Zunehmend zielen Angriffe auf Menschen mit Zugriffsrechten und Entscheidungsbefugnissen, deren Freigaben unmittelbare Wirkung auf die Sicherheit einer ganzen Organisation haben. „Fotorealistische KI und hybride Social-Engineering-Kampagnen erhöhen den Druck auf Schlüsselpersonen. Daher brauchen Unternehmen belastbare Verifikationsprozesse, Krisenroutinen und integrierte Schutzkonzepte“, erklärt Markus Weidenauer, geschäftsführender Gesellschafter der SecCon Group GmbH.

Deepfakes zielen auf privates Umfeld

Nach Angaben des Bundesamts für Sicherheit in der Informationstechnik (BSI) lassen sich Deepfakes als Verfahren beschreiben, die gezielt Spear-Phishing und andere Social-Engineering-Angriffe nutzen, um Vertrauen aufzubauen und Autorität zu simulieren. Generative KI fungiert dabei als zentraler technischer Enabler, da sie die realistische Erzeugung manipulativer Audio-, Video- und Textinhalte erstmals in industriellem Maßstab ermöglicht. „Die eigentliche Bedrohung ergibt sich dabei nicht aus einzelnen KI-generierten Inhalten, sondern aus deren koordinierter Nutzung“, weiß der Sicherheitsexperte.

Infolge der steigenden Qualität und der zunehmenden Verfügbarkeit generativer KI wird es darüber hinaus zunehmend schwieriger, Fakt von Fiktion zu unterscheiden „Zwar können isolierte Inhalte für sich betrachtet zweifelhaft sein, doch das konsistente Zusammenspiel mehrerer manipulierter Medieninhalte erhöht die wahrgenommene Glaubwürdigkeit erheblich“, ergänzt der Profi und weist darauf hin, dass sich diese Entwicklung in der Praxis zuspitzt. „Social Engineering, Deepfakes und digitale Erpressung werden immer häufiger mit Observationen des privaten Umfelds sowie Angriffen auf die Heim-IT kombiniert. Durch diese Eskalation der Angriffsmittel bauen Täter gezielt psychologischen Druck auf, der die Widerstandsfähigkeit der Betroffenen weiter reduziert.“

Risiken kennen, Wege einüben

Kompromittierte Schlüsselpersonen mit Steuerungs- und Entscheidungsfähigkeiten bergen hohes Schadenspotenzial für Betriebe. Das reicht von unmittelbaren finanziellen Verlusten bis zu dauerhaften Reputationsschäden. Dieses Risiko wird insbesondere dort verstärkt, wo organisatorische und prozessuale Absicherungen fehlen. „Resilienz bedeutet aber, auch in potenziellen Krisensituationen sichere Entscheidungen treffen zu können“, betont Markus Weidenauer. Trotzdem mangelt es vielen Unternehmen sowohl an speziellen Trainings zum Thema Social Engineering als auch an Meldewegen, klaren Freigabeprozessen, die auch unter Druck funktionieren, sowie alternativen Kommunikationskanälen. „Nur wenn Mitarbeiter diese Strukturen kennen und regelmäßig einüben, entsteht eine Kultur, in der eine frühzeitige Eskalation in der Meldekette als notwendiger Beitrag zur Sicherheit des gesamten Betriebs wahrgenommen wird“, fügt Markus Weidenauer hinzu.

Dringender Handlungsbedarf in Unternehmen

Um hier Abhilfe zu schaffen, verabschiedete im September 2025 das Bundeskabinett das sogenannte KRITIS-Dachgesetz zur Stärkung der Resilienz kritischer Einrichtungen. Es verpflichtet die Unternehmensleitung, Schutz- und Präventionsmaßnahmen umzusetzen, deren Wirksamkeit nachzuweisen ist. Der dem Regelwerk zugrunde liegende All-Gefahren-Ansatz fordert, dabei physische, digitale und organisatorische Dimensionen gemeinsam zu betrachten. „Auch wenn Führungskräftesicherheit hier kein eigener Rechtsbegriff ist, sollte sie Teil der Anforderungen an ein modernes Sicherheitsmanagement sein“, so der Geschäftsführer der SecCon Group.

Das bedeutet: Führungskräfte etwa vor Erpressungsversuchen durch Social Engineering zu schützen, ist weder persönlicher Luxus noch Symbolpolitik, sondern ein Element der nachweisbaren Unternehmensresilienz. Schließlich ist die Sicherung von Steuerungs- und Entscheidungsfähigkeit ein Governance-Baustein. Nicht die Person steht im Mittelpunkt, sondern die Handlungsfähigkeit des Instituts.

reltix: Vom Aktenordner zum Algorithmus

Wie das 2025 von Andreas Plakinger, Jan Horstmann und Léon Bamesreiter gegründete Düsseldorfer PropTech-Start-up reltix das angestaubte Image einer Branche poliert.

Hausverwaltungen gelten nicht gerade als Sprintdisziplin. Schwer erreichbare Ansprechpartner, Papierberge und zähe Abläufe prägen das Image einer Branche, in der es an Nachwuchs fehlt und Fristen dennoch gnadenlos ticken. Genau da setzt reltix an und wächst: Im März 2025 gegründet, zählt das Düsseldorfer Start-up inzwischen 2000 Kund*innen.

Gegründet wurde reltix von drei ehemaligen Kommilitonen, die sich an der WHU Otto Beisheim School of Management in Vallendar bei Koblenz kennenlernten: Léon Bamesreiter, Jan Horstmann und Andreas Plakinger. Der Motor für die Gründung war eine große Portion eigener Unzufriedenheit. Bamesreiter kaufte mit 20 Jahren während seines dualen Studiums bei einer Großbank seine erste Wohnung, weitere folgten. Seine Erfahrung mit den Verwaltungen: dicke Ordner, langsame Reaktionen, wenig Transparenz. „Ich hatte das Gefühl, ich werde selbst zum Hausverwalter.“

Weniger Bürokratie und mehr Präsenz am Objekt

Mit dem Gründungsstipendium starteten die Drei eine Umfrage unter über 120 Eigentümer*innen: 87 Prozent gaben an, mit ihrer Verwaltung unzufrieden zu sein. Reltix will diese Unzufriedenheit nicht mit mehr Personal, sondern mit Digitalisierung im Hintergrund beheben. Herzstück ist eine selbst entwickelte Software, die E-Mails und WhatsApp-Nachrichten erfasst, automatisch Tickets anlegt, digitale Unterlagen ausliest und Vorgängen zuordnet. Handwerkeranfragen werden systemgestützt angestoßen, Daten zentral strukturiert. Gleichzeitig setzen die Düsseldorfer auf eine feste Ansprechperson je Immobilie.

Erklärtes Ziel der Gründer: weniger Bürokratie und mehr Präsenz am Objekt. Für diesen Ansatz erhielt das Team gerade eine Zusage zur Forschungszulage des Bundesministeriums für Forschung, Technologie, und Raumfahrt zum weiteren Ausbau der eigenen Software mit einer Projektsumme von 1,3 Millionen Euro.

Jahresendspurt brachte Mandate ...

Den größten Schub spürte reltix im Dezember 2025. Viele Hausverwaltungsverträge enden zum 31. Dezember, gleichzeitig laufen Abrechnungsfristen aus. Wer bis Jahresende keine neue Verwaltung findet, bekommt schnell kalte Füße. In den letzten Wochen des Jahres kamen deshalb laut Unternehmen 500 Mandate kurzfristig hinzu, darunter Neubauprojekte in Langenfeld und Köln. Einige namhafte Banken, Family Offices und größere private Bestandshalter zählt das Unternehmen ebenso zu seinen Kund*innen.

... und Personalaufbau

Das Start-up musste personell nachziehen und stockt zum Februar von 14 auf 17 Mitarbeitende auf. Während viele klassische Verwaltungen über fehlenden Nachwuchs klagen, setzt reltix auf junge Mitarbeitende, Quereinsteiger*innen und bildet selbst aus. Das Unternehmen ist IHK Ausbildungsbetrieb und beschäftigt eine Auszubildende im ersten Lehrjahr. Die 28-Jährige, aus der Ukraine geflüchtet, ist aktuell die älteste im Team. Dazu kommen Quereinsteiger*innen: Ein früherer Maschinenbauingenieur leitet inzwischen die Mietverwaltung, eine Mitarbeiterin aus dem Bankgeschäft arbeitet in der Buchhaltung.

Von Rhein-Ruhr bis an den Main

Neben der Verwaltung großer Objekte bietet das Düsseldorfer PropTech für kleinere Eigentümer*innengemeinschaften mit drei bis acht Einheiten die sogenannte Kompaktverwaltung. Enthalten ist darin eine rechtssichere Abrechnung, die Durchführung von Eigentümer*innenversammlungen sowie größere Sanierungen, während Alltägliches bei den Eigentümer*innen bleibt. Regional liegt der Fokus auf Rhein-Ruhr sowie dem Umfeld Köln Bonn. Frankfurt mit einem weiteren Standort ist als nächster Schritt Richtung Sommer geplant. Düsseldorf soll Hauptsitz bleiben.

DLR-Spin-off Nunos liefert Raumfahrt-Technik für den Acker

Das 2024 von Fabian Miersbach und Tim Paulke gegründete Start-up Nunos hat ein Verfahren entwickelt, das Gülle in effizienteren, geruchlosen Dünger umwandelt. Die Deutsche Bundesstiftung Umwelt (DBU) fördert Nunos mit 125.000 Euro.

Das Düngen mit Gülle ist wichtiger Bestandteil einer im Kreislauf gedachten Landwirtschaft. Aktuell ruhen viele Äcker noch, doch ab Februar versorgen zahlreiche Landwirt*innen ihre Felder wieder auf diese Weise mit Nährstoffen. Doch durch Gülle entstehen auch umweltschädliche Gase wie Ammoniak und Methan. Das Hürther Start-up Nunos hat nun ein Verfahren entwickelt, das Gülle in effizienteren, geruchlosen Dünger umwandelt. Dies verringert den Ausstoß von Treibhausgasen (THG) und sorgt gleichzeitig für eine bessere Nährstoff-Versorgung der Pflanzen. Mitgründer Tim Paulke zufolge wandelt die firmeneigene Anlage „innerhalb eines 24-Stunden-Zyklus‘ mit einem rein biologischen Verfahren Gülle zu einem Düngemittel mit höherer Nährstoffnutzungseffizienz und deutlich geringeren Treibhausgas-Emissionen um.“

Astronautik-Technologie für eine breite Anwendung

Als Ausgründung aus dem Deutschen Zentrum für Luft- und Raumfahrt (DLR) optimiert das Nunos-Team eine in der Astronautik entwickelte Technologie für eine breite Anwendung in der Landwirtschaft. Paulke: „Das zugrundeliegende System wurde ursprünglich zur Aufbereitung von menschlichem Urin als Düngemittel für den erdfreien Anbau in Gewächshäusern auf Raumstationen entwickelt.“ Bei der neuen Anwendung werde die Gülle in der bei den Betrieben errichteten Anlage mithilfe von Mikroorganismen weiterverarbeitet. „Es entstehen ein dünnflüssiges, geruchsloses Düngemittel und eine geringe Menge eines nährstoffreichen Feststoffs,“ so Paulke.

Ernte-Mehrertrag von 20 Prozent erwartet

Bei der Güllelagerung unter dem Stallboden reagieren die Ausscheidungen und setzen schädliche Gase frei. Paulke: „Um die Ausgasung von Methan und Ammoniak zu vermeiden, wird die Gülle möglichst schnell aus den Ställen in die Aufbereitungsanlage geleitet.“ Das zügige Entfernen erhöht nach seinen Worten auch das Tierwohl. Außerdem „werden die Nährstoffe in dem Düngemittel so aufbereitet, dass sie direkt für die Pflanzen verfügbar sind“, so der Nunos-Mitgründer. Diese Nährstoffe kämen schneller als beim herkömmlichen Ausbringen der Gülle bei den Pflanzen an. Auswaschungen aus dem Boden würden so deutlich verringert. „Nach ersten Pflanzversuchen rechnen wir bei der Ernte mit einem Mehrertrag von bis zu 20 Prozent, was wir in 2026 auf zwei landwirtschaftlichen Betrieben in Feldversuchen validieren möchten“, prognostiziert Paulke

Nunos-Dünger auch für den Hausgebrauch

Neben den Gülle-Aufbereitungsanlagen stellt das Start-up nach eigenen Angaben kleinere Mengen des Düngemittels für den Hausgebrauch her. „Der Dünger wirkt auch für den heimischen Tomatenanbau oder Zimmerpflanzen wie ein Multivitamin-Drink“, so Paulke. Der Vertrieb erfolge über das Internet. Das Verfahren zur Umwandlung der Gülle in den effizienten Dünger sei über das DLR patentiert und von Nunos exklusiv lizensiert.

Die Deutsche Bundesstiftung Umwelt (DBU) fördert das Unternehmen mit 125.000 Euro. Paulke: „Aktuell arbeiten wir hauptsächlich mit Rindergülle und Gärresten aus Biogasanlagen. Durch die DBU-Förderung bekommen wir die Möglichkeit, das Verfahren ausführlicher auf seine Umweltauswirkungen zu testen, anstatt nur wirtschaftliche Faktoren zu betrachten.“ Außerdem geplant seien neue Feldversuche, die die zusätzlichen Erträge durch den Dünger weiter verifizieren und Optimierungsmöglichkeiten finden.

Mehr Effektivität und wirtschaftliche Effizienz für die Landwirtschaft

DBU-Referentin Dr. Susanne Wiese-Willmaring sieht großen Bedarf in der Landwirtschaft für Konzepte wie das von Nunos: „Die Bäuerinnen und Bauern wissen von den Auswirkungen der bei ihrer Arbeit entstehenden Treibhausgase. Oft wollen Sie etwas verändern und müssen es aufgrund gesetzlicher Vorgaben teils auch.“ Die hohen Treibhausgas-Emissionen brächten der Landwirtschaft einen Misskredit ein, der durch innovative Lösungen behoben werden könne. Wiese-Willmaring weiter: „Für die Betriebe müssen dabei Effektivität und wirtschaftliche Effizienz stimmen – Herausforderungen, die Nunos beide aktiv angeht.“

Gaming & digitale Medien – eine Perspektive für Start-ups?

Diese Voraussetzungen sollten Gründerinnen und Gründer von Start-ups in der Gamingbranche oder der Gestaltung digitaler Medien mitbringen, um erfolgreich zu sein.

Digitale Start-ups verbinden attraktive Zukunftsperspektiven mit einem geringen Startkapital. Für die digitale Generation aktueller Schul- und Universitätsabgänger stellt sich die Frage, ob ein Einstieg in die Gamingbranche oder die Gestaltung digitaler Medien für die Gründung eines Start-ups ausreichen kann. Solche Perspektiven sind gegeben, die neben ausreichend Kreativität eine fundierte Ausbildung in Computertechnik und Business gleichermaßen voraussetzen.

Indie-Games – eine Perspektive für Entwickler?

Noch vor einigen Jahren war die Gamingbranche als Perspektive für Gründer eher unattraktiv. Die großen, internationalen Studios dominierten die Szene, wobei für Triple-A-Titel längst Tausende von Entwicklern an unterschiedlichen Standorten benötigt wurden. Unter dem Zeit- und Kostengrund vieler Studios sowie der Entlassungswelle der letzten Jahre ist es für immer mehr Developer uninteressant, auf die Anstellung in einem der großen Softwarehäuser zu hoffen.

Die unabhängige Entwicklung von digitalen Medien oder Spielen bleibt jedoch beliebt und kann zur Basis eines Start-ups werden. Immer mehr Gamer wenden sich von den überteuerten, großen Marken der Szene ab und vertrauen auf kleinere Entwickler mit mehr Freiheiten bei der Umsetzung. Selbst die großen Gaming-Plattformen halten regelmäßig eine Auswahl beliebter und neuer Indie-Games für Millionen Nutzer bereit.

Unabhängig von Größe und Art eines Studios bleibt die Gamingbranche international und setzt verschiedene Skills vom Development bis zum erfolgreichen Marketing voraus. Dies alles lässt sich längst in speziell abgestimmten Studiengängen erlernen.

Spielentwicklung der neuesten Generation als Studiengang

Studiengänge wie Games & Immersive Media an der Hochschule Furtwangen erlauben es, einen Bachelor im Gaming-Umfeld zu erlangen und alle relevanten Fähigkeiten für den zukünftigen Berufsweg zu gewinnen. Neben Computer Science und Anwendungen im spielerischen Bereich nehmen Business, Design und Medien als zweiter Bereich einen wesentlichen Stellenwert im Studium ein.

Diese Kombination des bilingualen Studiengangs ergibt Sinn. Schließlich ist nicht jeder kreative Programmierer und Spieleentwickler ein Geschäftsmann, genauso wenig wie Marketer gerne stundenlang mit Quellcode arbeiten. Moderne Studiengänge wie dieser führen beide Welten zusammen und sorgen für eine fundierte Ausbildung, um tiefe Einblicke in beide relevanten Arbeitsfelder zu gewinnen.

Starke Unterstützung für zukünftige Start-ups

Die Hochschule Furtwangen geht mit ihrer Unterstützung weit über den reinen Studiengang hinaus. Bewusst wird angehenden Start-ups unter die Arme gegriffen, die ihre ersten Schritte ins Gaming-Business mit kreativen Spielen und Studienprojekten gehen möchten.

Neben einer umfassenden Beratung auf dem Weg zum eigenen Business werden ein Support für Fördermittel sowie Räumlichkeiten für das gemeinschaftliche Arbeiten an Spielen oder digitalen Medien geboten. Viele Formalitäten und Unsicherheiten, die sich bei Start-ups unabhängig von Branche und Geschäftsfeld ergeben, werden so seitens der Hochschule kompetent und professionell unterstützt.

Für den Einstieg sind Kenntnisse im Gaming-Bereich ideal, die über die reine „Freude am Zocken“ hinausgehen. Kreativität in der Planung und Umsetzung eigener Projekte sollte nachgewiesen werden – anders als die zwingende Notwendigkeit, eine Programmiersprache zu beherrschen.

Sichtbarkeit im digitalen Umfeld entscheidend

Wie bei allen Produkten entscheidet weniger die tatsächliche Qualität, sondern die Sichtbarkeit und eine wirkungsvolle Werbung über Erfolg von Misserfolg von Games. Gerade das Marketing für digitale Produkte ist wegen der hohen Konkurrenz und einer Fülle an Informationen in der digitalen Welt eine immense Herausforderung. Hier eine fachkundige Unterstützung von Anfang an zu erhalten, bewahrt Entwickler und kreative Köpfe davor, grundlegende Fehler zu begehen und frühzeitig den Traum vom Gaming-Job zu begraben.

KI-Trends 2026: Reifer, realer, relevanter

2026 tritt KI in eine neue Phase ein: weniger Hype, mehr Haltung. Expert*innen aus Technologie, Kommunikation und Mittelstand zeigen, wie künstliche Intelligenz Prozesse transformiert, Entscheidungen präziser macht und Marken stärkt – aber auch neue Risiken schafft, von Voice-Cloning bis Abhängigkeiten großer Plattformen. Klar wird: KI entfaltet ihr Potenzial dort, wo Unternehmen sie verantwortungsvoll einsetzen, Transparenz schaffen und menschliche Kompetenz stärken.

Zwischen Dynamik und Verantwortung: KI braucht gemeinsame Sichtweisen

„KI schafft keine perfekten Lösungen auf Knopfdruck, sondern eröffnet neue Wege, Herausforderungen besser zu bewältigen. Die größten Chancen liegen darin, Wissensverlust zu vermeiden, Reibungsverluste zu reduzieren und individueller auf Menschen einzugehen – im Gesundheitswesen genauso wie in HR, Bildung und Produktion. Gleichzeitig besteht die größte Herausforderung darin, eine gemeinsame Sichtweise auf KI zu entwickeln: Alle reden darüber, aber oft über völlig Unterschiedliches. Das gelingt nur über kleine Schritte, viel Kommunikation und eine Annäherung auf Augenhöhe. Zugleich zeichnet sich ein klarer Trend ab: die Fragmentarisierung der KI-Landschaft und eine problematische Abhängigkeit von US-Anbietern, die neue, eigene Handlungswege erfordert. Wer diese Dynamik versteht und verantwortungsvoll gestaltet, erschließt das Potenzial von KI von automatisierten medizinischen Leistungen über effizientere Produktionsprozesse bis hin zu deutlich schnelleren Innovationszyklen.“

revel8: Mit Human Firewalls gegen KI-Angriffe

Wie die revel8-Gründer Robert Seilbeck, Tom Müller und Julius Muth KI-gestützte Cyberattacken mithilfe „menschlicher Schutzschilde“ abwehren und Unternehmen zu mehr Cyberresilienz verhelfen.

Das Ingenieurbüro Arup wurde im vergangenen Jahr Opfer eines spektakulären Deepfake-Betrugs. Ein Mitarbeiter aus Hongkong betrat eine Videokonferenz mit vermeintlichen Mitgliedern des Managements – tatsächlich handelte es sich um täuschend echte KI-Imitationen der Führungskräfte, die eine scheinbar legitime, vertrauliche M&A-Transaktion diskutierten. Der arglose Mitarbeiter überwies den Betrügern 25 Millionen US-Dollar. „Der Fall ist ein typisches Beispiel für sogenanntes Social Engineering und eine neue Ära von Cyberangriffen“, sagt Julius Muth, Co-Founder und CEO von revel8 in Berlin.

Das 2024 gegründete Start-up betreibt eine Software-Plattform, um Menschen und damit auch Unternehmen gegen solche Bedrohungen zu schützen. „Kriminelle nutzen heute die neuesten KI-Technologien für konzertierte Angriffe“, so Julius. Aus frei verfügbaren Datenquellen identifizieren sie Schwachstellen und nutzen diese mit realistisch wirkenden Deepfake-Audios oder -Videos gnadenlos aus. Sie erzeugen damit eine Illusion von Authentizität, welche die klassischer Phishing-E-Mails bei Weitem übersteigt – und kein Unternehmen ist davor sicher.

Jede(r) Mitarbeitende ist eine potenzielle Schwachstelle

Mitunter können die Schäden noch höher ausfallen und Unternehmen aller Größen in Existenznot bringen. Am 31. August 2025 musste beispielsweise der Automobilhersteller Jaguar Land Rover nach einem Cyberangriff alle IT-Systeme herunterfahren. Die Produktion stand wochenlang still. Der Schaden beläuft sich bislang auf über zwei Milliarden Euro, das Unternehmen erhielt sogar staatliche Hilfe. Doch selbst das ist nur die Spitze des Eisbergs, denn laut Expert*innen waren von dem Angriff über 5000 Organisationen betroffen – wer hinter der Attacke steckt, ist nach wie vor unklar. Viele Unternehmen möchten solche Angriffe aus Imagegründen nicht offenlegen, die Dunkelziffer ist entsprechend hoch. Die Einfallstore für solche Attacken sind meistens die Mitarbeitenden. „Chief Information Security Officers (CISOs) betrachten bei der IT-Sicherheit typischerweise die Dimensionen Technologie, Prozesse und Menschen“, so Julius. „Der Mensch ist dabei von zentraler Bedeutung. Denn mit der richtigen Unterstützung können Mitarbeitende zum wichtigsten Resilienzfaktor im Unternehmen werden.“

Klassische E-Learning-Ansätze seien nicht geeignet, um Mitarbeitende angemessen für die Gefahren zu sensibilisieren und ihnen effektiv Kompetenzen im Umgang damit zu vermitteln. Standardisierte Phishing-E-Mails und konventionelle Trainingsformate können weder aktuelle Angriffsformen abbilden noch zuverlässig die nötigen Lern­inhalte vermitteln. Hier setzt revel8 an und trainiert Mitarbeiter realitätsnah mit Replika tatsächlicher Angriffe, wie zum Beispiel Voice Phishing mit der Stimme eines bekannten Kollegen“, so Julius. Besonders die automatische Anreicherung mit öffentlich verfügbarem Kontext (OSINT) erhöhe die Relevanz und den Lern­effekt. So hilft revel8 Unternehmen dabei, die Widerstandsfähigkeit gegen Cyberbedrohungen zu stärken und darüber hinaus auch einschlägige Compliance-Anforderungen wie NIS2 und ISO 27001 zu erfüllen.

Individuelle Playlists mit neuesten Cyberattacken

„Wir setzen Menschen gezielt den aktuellen Angriffsmustern aus, sodass sie im Ernstfall richtig handeln können“, so Julius. Ein aktuell häufig zu beobachtender Angriff ist die Clickfix-Attacke. Dabei wird der/die Nutzer*in über eine täuschend echte Phishing-E-Mail auf eine gefälschte CAPTCHA-Seite gelotst. Sobald der/die Nutzer*in sich verifiziert, wird un­bemerkt ein Schadcode in die Zwischenablage kopiert. Viele Ahnungslose fügen diesen Code später unbewusst zum Beispiel im Terminal ein und aktivieren damit den Angriff. Der/die Nutzer*in bemerkt den Schaden erst, wenn es schon zu spät ist.

Damit das nicht passiert, spielt revel8 zu Trainings­zwecken genau solche Attacken aus. Tappt jemand die Falle, folgt sofort eine detaillierte Auswertung. Die Person erfährt, worauf sie hätte achten sollen, welche Hinweise es gab, und wie sich solche Vorfälle künftig vermeiden lassen. Da die Cyberkriminellen zunehmend sehr gezielt und hochgradig personalisiert angreifen, lassen sich auch die Trainingsinhalte bis ins Detail auf die User*innen zuschneiden. „Jeder Nutzer erhält von uns eine individuell auf seine Rolle zugeschnittene Playlist von Cyberattacken“, so Julius.

Praxisnahe Angriffssimulationen im Unternehmensalltag

Revel8 unterscheidet zwischen Nutzer*innen mit einem geringen Risiko und Hochrisikonutzer*innen, etwa im Management oder in der Finanzabteilung, und allgemein solchen Personen, die Zugang zu kritischen Daten haben. Julius beobachtet, dass die ohnehin stark gefährdeten Hochrisikonutzer*innen aktuell noch mehr ins Visier geraten. Ob SMS, WhatsApp, Teams oder LinkedIn – die Angreifenden orchestrieren ihre Attacken perfekt über mehrere Plattformen hinweg. „Zuerst ruft ein täuschend echter Stimmklon an, danach kommt die passende E-Mail“, sagt Julius. „Oder jemand schreibt dir auf LinkedIn, macht dir ein Jobangebot und schickt dir dann noch das Gehaltsangebot – da klickt man natürlich gern drauf.“

Um stets auf der Höhe der Zeit zu sein, kooperiert revel8 eng mit seinen Kund*innen. Das Training basiert auf echten Vorfällen aus deren Systemen. Jede erkannte Attacke wird kategorisiert, realistisch nachgebaut und gezielt ausgespielt. Trifft zum Beispiel eine Clickfix-Attacke Software Developer mit einem Mac in der Slowakei, fließt sie direkt in die Trainings-Playlist der betroffenen Zielgruppe ein. Das Ziel ist kontinuierliches Lernen, ohne zu überfordern. „Es ist wichtig, dass wir die Menschen nicht nerven“, erklärt Julius, „und wer gut reagiert, wird auch belohnt.“ Gamification-Elemente, wie zum Beispiel firmeninterne Rankings, halten das Training spielerisch und die Motivation hoch.

Keimzelle Celonis

Julius’ Karriere begann nach seinem Mathematikstudium in Darmstadt, bevor ihn sein Weg nach München zu Celonis führte. Das Unternehmen ist spezialisiert auf die Optimierung von Unternehmensprozessen und aktuell das wertvollste deutsche Start-up-Unicorn. Sein Job startete in Madrid, wo er zunächst ganz allein im Office saß. Doch das Team wuchs rasant, nach nur drei Jahren arbeiteten 500 Menschen am Standort. In dieser Zeit lernte er seine späteren Mitgründer kennen. Tom Müller ist gelernter Maschinenbauer, Robert Seilbeck war als Software-­Engineer von Anfang an bei Celonis dabei. „Diese unglaubliche Dynamik, die wir in Madrid erlebt haben, hat uns motiviert, etwas eigenes aufzubauen“, erinnert sich Julius.

Markttests und Durchbruch mit Stihl

Bevor sich die Gründer auf Cybersecurity fokussierten, überprüften sie abends und an Wochenenden unterschiedliche Märkte auf ihr Potenzial. Jeden Monat testeten sie eine neue Branche mit jeweils 100 persönlichen Briefen. Die Rücklaufquote lag in der Regel bei ein bis zwei Prozent und bestand überwiegend aus Absagen. „Beim Thema Cybersicherheit hatten wir plötzlich zehn Rückmeldungen – und eine Firma lud uns direkt nach München ein“, so Julius. Am folgenden Wochenende entwickelte das Team eine vorläufige Produktversion und handelte drei Monate Zeit heraus, bis das Projekt starten sollte. Es war der inoffizielle Startschuss für revel8.

Im Februar 2024 bezog Julius die erste Bürofläche in Berlin, Tom folgte im Mai. Zu diesem Zeitpunkt hatte revel8 bereits erste zahlende Kund*innen. „Weil Kunden im Softwarebereich typischerweise jährlich und im Voraus zahlen, konnten wir erste Freelancer engagieren – wir selbst haben auf Gehalt verzichtet und von unserem Ersparten gelebt“, sagt Julius. Das Team testete Ansätze mit kleineren Unternehmen. Einige sicher geglaubte Kund*innen sprangen trotz mündlicher Zusage wieder ab, sodass eingeplante Umsätze plötzlich wegfielen. „Für ein Start-up ist sowas Gift“, so Julius, „und das war für uns eine echte Herausforderung.“ Der Durchbruch kam mit dem Unternehmen Stihl. Der damalige CISO war sofort begeistert und unterstützte das Team nach Kräften. In enger Zusammenarbeit mit dem Werkzeughersteller entstand das heutige Konzept, Mitarbeitende realitätsnah auf digitale Angriffsszenarien vorzubereiten. Im Oktober stieß Robert nach zehn Jahren bei Celonis fest zum revel8-Team dazu.

Sprung auf Enterprise-Level

Im September 2024 stellte revel8 den ersten Praktikanten ein. Die Kombination der Themen Cybersecurity und KI weckte auch das Interesse von Investor*innen. „Unsere Seed-Finanzierung kam nicht durch klassisches Fundraising zustande, sondern dank einer frühzeitigen Initiative von Merantix Capital, die unsere Vision verstanden und teilten“, so Julius. Anfang 2025 gewann revel8 die ersten Großkund*innen. Heute nutzen Unternehmen wie der FC Bayern, OBI und mehrere DAX-Konzerne die Plattform. Mitunter trainiert revel8 dabei zehntausende Mitarbeitende. „Dass wir unser Angebot innerhalb eines Jahres auf Enterprise-Level gebracht haben, ist für uns ein Riesenerfolg“, sagt Julius.

Einen wichtigen Beitrag dazu leisten rund 20 Profis aus dem Cybersecurity-Umfeld, darunter mehrere ehemalige CISOs, die als Business Angels mit an Bord sind. Ihre Expertise ermöglicht es unter anderem, neue Ideen und Ansätze schnell zu validieren. „Die meisten von ihnen sind nicht nur Sparringspartner, sondern auch finanziell investiert und profitieren so von unserem Wachstum“, erzählt Julius. Im September 2025 schloss revel8 die Seed-Finanzierungsrunde mit einem Gesamtvolumen von 5,7 Millionen Euro, angeführt vom Berliner VC Peak Capital. Zudem investierten u.a. Fortino Capital und weitere Business Angels, darunter der Fußballspieler Mario Götze und der CISO von Adidas, Michael Schrank.

Gesucht: Lernwillige Teamplayer

Heute beschäftigt revel8 knapp 30 Mitarbeitende. Bei der Weiterentwicklung des Teams setzen Julius und seine Mitgründer auf lernwillige Talente: „Wir suchen Teamplayer, die klar denken und eigenverantwortlich handeln können – den Rest bringen wir ihnen bei.“ An Bewerbungen mangele es nicht, schließlich komme das Thema Cybersecurity gerade bei jungen Menschen sehr gut an. Doch mit der dynamischen Entwicklung gehen mitunter auch Wachstumsschmerzen einher. „Wir merken das zum Beispiel daran, dass wir nun auch mal unangenehme Gespräche führen müssen.“ Auch die Dauerbelastung, der man sich als Gründer aussetze, sei nicht zu unterschätzen. „Anfangs haben wir monatelang durchgearbeitet, oft bis tief in die Nacht“, so Julius. Für den langfristigen Erfolg sei es jedoch wichtig, für Ausgleich zu sorgen sowie seine Gesundheit und Leistungsfähigkeit zu erhalten – und dem eigenen Team ein Vorbild zu sein.

Schnelligkeit als Wettbewerbsvorteil

Der Markt für KI-gestützte Security-Trainings und damit auch die Zahl neuer Anbieter*innen wächst schnell. Durch die Konkurrenz sehen sich die Gründer von revel8 bestätigt. „Wir stehen durchaus auch in Kontakt mit anderen Gründern und Wettbewerbern“, so Julius. Eine wichtige Benchmark sei das Unternehmen Adaptive Security aus den USA, das mit 55 Millionen US-Dollar von OpenAI finanziert wurde. Im Tages­geschäft treffe man jedoch kaum auf andere Start-ups, sondern vielmehr auf etablierte Anbieter*innen wie etwa KnowBe4. „Diese Wettbewerber operieren auf alten Plattformen, sie entwickeln sich langsam und inkrementell“, so Julius. „Wir dagegen können unsere Ideen binnen Stunden validieren und umsetzen.“ Vor dem Hintergrund, dass IT-Abteilungen immer ausgefeiltere Deepfakes und KI-basierte Social-Engineering-Angriffe erkennen und abwehren müssen, sei das ein echter Wettbewerbsvorteil.

Umzug und neue Produkte

Ab dem kommenden Jahr soll die Plattform vollautomatisiert laufen und auch kleineren Unternehmen sowie Firmen ohne dezidiertes IT-Team dienen. Betriebe wie Notariate oder Arztpraxen seien besonders gefährdet, sagt Julius: „Die Frontdesks öffnen jeden Tag unzählige PDF-Dokumente und beantworten laufend externe Anfragen, da kann ein falscher Klick den gesamten Betrieb lahmlegen.“ Anfang 2026 wird revel8 nach München umziehen, wo Tom und Robert ursprünglich herstammen. Das gesamte Team wird mitkommen. Das ehemalige Flixbus-Office wird der neue Firmensitz. Von hier aus wird die Plattform weiterentwickelt und sollen die neuen Produkte gelauncht werden.

„Aktuell wird uns das Training für externe Kräfte mit Systemzugriff, zum Beispiel Call-Center-Teams, aus der Hand gerissen“, sagt Julius. Das Produkt entstand zunächst als Pilot mit einer globalen Versicherung – heute trifft es einen wunden Punkt vieler Unternehmen. Anfang 2025 wurde zum Beispiel bei Marks & Spencer über ein externes Dienstleisterteam ein Ransomware-Angriff eingeschleust – der Schaden betrug über 300 Millionen britische Pfund. „Darum bleiben wir in Bewegung“, so Julius, „damit Unternehmen auch künftig solche Angriffe erkennen und abwehren können.“

KI & Bewertungen: Sichtbarkeit in einer neuen Suchrealität

Tipps und To-dos: Wie du dein Bewertungsmanagement strategisch aufsetzt und Sichtbarkeit und Vertrauen im KI-Zeitalter steigerst.

Generative Antworten in Suchmaschinen und Assistenten verändern die Spielregeln der Online-Sichtbarkeit. Nicht mehr nur klassische Rankings entscheiden, sondern die Frage, wem die KI genug vertraut, um es überhaupt zu nennen. Aktuelle, glaubwürdige und inhaltlich konkrete Bewertungen werden dabei zum Schlüsselsignal. Für kleine und mittlere Unternehmen bedeutet das: Bewertungsmanagement ist kein Nice-to-have mehr, sondern ein Pflichtprogramm, das Auffindbarkeit, Auswahl und Conversion spürbar beeinflusst. Im Folgenden erfährst du, wie du dein Bewertungsmanagement strategisch aufsetzen solltest, um Sichtbarkeit und Vertrauen im KI-Zeitalter zu steigern.

Warum Bewertungen jetzt geschäftskritisch sind

KI-Modelle zerlegen Rezensionen in viele kleine Bedeutungseinheiten und ziehen daraus ein konsistentes Bild. Welche Leistung wurde erbracht, an welchem Ort, mit welcher Qualität und für welchen Anlass. Aus den einzelnen Stimmen entsteht so ein Vertrauensprofil, das über bloße Sternesummen hinausgeht. Entscheidend ist nicht die bloße Menge, sondern die Frische und die inhaltliche Dichte der Aussagen. Eine Rezension wie „Schnell geholfen am Sonntag, sehr kompetente Beratung zu Reiseimpfungen“ liefert gleich mehrere Signale. Zeitliche Verfügbarkeit, thematische Expertise und konkreter Nutzen. Genau solche Details erhöhen die Wahrscheinlichkeit, in generativen Antworten aufzutauchen, wenn Menschen in ihrer Nähe nach einer Lösung suchen. Wer regelmäßig neue, authentische und präzise Bewertungen erhält, verschafft der KI verlässliche Hinweise und sichert sich dadurch mehr Sichtbarkeit in genau den Momenten, in denen Entscheidungen vorbereitet werden.

Bewertungsmanagement als Prozess, nicht als Aktion

Wirksam wird Bewertungsarbeit, wenn sie selbstverständlich Teil der täglichen Abläufe ist. Nach dem Kontakt freundlich um Feedback bitten, den Weg zur passenden Plattform so kurz wie möglich machen, interne Zuständigkeiten klar regeln und Reaktionszeiten verbindlich festlegen. Aus diesen scheinbar kleinen Schritten entsteht ein stabiler Rhythmus, der kontinuierlich neue Kund*innenstimmen hervorbringt und der KI immer wieder frische Kontexte liefert. Ein solcher Prozess ist robuster als jede einmalige Kampagne, weil er verlässlich Vertrauen aufbaut und saisonale Schwankungen abfedert. Teams profitieren, wenn sie Zielkorridore definieren, etwa eine bestimmte Zahl neuer Rezensionen pro Woche und wenn sie Fortschritte sichtbar machen. So wird aus gutem Vorsatz ein gelebter Ablauf, der die gesamte Organisation stärkt.

Sprache der Kund*innen wirkt wie natürliches SEO

KI versteht Alltagssprache deutlich besser als Listen isolierter Schlagwörter. Unternehmen gewinnen, wenn sie um freie, aber konkrete Formulierungen bitten, ohne Vorgabetexte und ohne Druck. Eine höfliche Bitte wie: „Wenn es für Sie passt, nennen Sie gern, was Ihnen besonders geholfen hat“ öffnet den Raum für präzise Hinweise auf Leistungen, Erreichbarkeit, Barrierefreiheit oder Schnelligkeit. Solche natürlich entstandenen Details sind für Menschen überzeugend und zugleich für Maschinen gut interpretierbar. Sie zeigen, wofür ein Betrieb tatsächlich steht, und verankern die passenden Begriffe in einem echten Nutzungskontext. Das Ergebnis ist eine Sprache, die Vertrauen schafft und die Auffindbarkeit stärkt, ohne künstlich zu wirken.

Antworten trainieren Vertrauen für Menschen und Maschinen

Jede Reaktion auf eine Bewertung ist ein sichtbares Zeichen von Serviceorientierung und zugleich zusätzlicher Kontext für die KI. Gute Antworten bedanken sich aufrichtig, beziehen sich konkret auf das Erlebte und bieten einen klaren nächsten Schritt an. Bei Kritik zählt ein professioneller Umgang. Das Anliegen nachvollziehen, Verantwortung übernehmen, eine realistische Lösung anbieten und einen direkten Kontaktweg nennen. So entsteht ein Bild von Verlässlichkeit, das Hemmschwellen senkt und Wiederbesuche wahrscheinlicher macht. Die KI erkennt diesen Umgang ebenso und ordnet das Unternehmen eher als vertrauenswürdig ein. Mit der Zeit entsteht ein stabiler Kreislauf aus guter Erfahrung, konstruktiver Reaktion und wachsendem Vertrauen.

Lokaler Content und Social Proof gehören zusammen

Bewertungen entfalten ihre volle Wirkung, wenn sie auf eine solide Informationsbasis treffen. Konsistente Unternehmensdaten, vollständige Leistungsseiten pro Standort, klare Öffnungszeiten inklusive Ausnahmen und eine schnelle, mobil optimierte Webseite erleichtern die Einordnung für Nutzer*innen und Maschine. Wenn ausgewählte Zitate oder Bewertungsschnipsel an relevanten Stellen sichtbar werden, etwa auf der Startseite, in der Buchungsstrecke oder in den häufigen Fragen, entsteht ein schlüssiges Gesamtbild. Der lokale Bezug bleibt klar erkennbar, die Erwartungen sind gut gesetzt, und die nächsten Schritte sind ohne Umwege möglich. So wird aus Social Proof ein handfester Conversion Hebel.

Vom Feedback zur Verbesserungsschleife

Rezensionen sind fortlaufende Marktforschung aus erster Hand. Wer wiederkehrende Themen auswertet, etwa Wartezeiten, Erreichbarkeit oder Bezahloptionen, erkennt schnell die Stellschrauben mit der größten Wirkung. Wichtig ist, die daraus abgeleiteten Verbesserungen konsequent umzusetzen und sichtbar zu machen. Informieren, handeln, erneut um Rückmeldung bitten. Dieser offene Kreislauf wirkt nach innen und nach außen. Mitarbeitende erleben, dass Feedback Veränderungen anstößt, Kund*innen erleben, dass ihre Hinweise ernst genommen werden, und die KI registriert die fortlaufende Pflege der Qualität. Mit jeder Runde werden Erlebnisse besser und Bewertungen stärker, was die Sichtbarkeit weiter erhöht.

Fazit

Sichtbarkeit entsteht heute dort, wo Menschen nach konkreten Lösungen fragen und wo KIs verlässliche Hinweise zu Qualität und Relevanz finden. Unternehmen, die Bewertungen als strategischen, kontinuierlichen Prozess verstehen, erhöhen ihre Chance, in generativen Antworten genannt zu werden und gewinnen genau in den entscheidenden Momenten an Präsenz. Vieles davon ist eine Frage kluger Organisation und klarer Abläufe. Der finanzielle Aufwand bleibt überschaubar, der Nutzen für Auffindbarkeit, Vertrauen und Umsatz ist deutlich spürbar.

Die Autorin Franziska Ortner ist Produktmanagerin bei SELLWERK

NICAMA Naturkosmetik: Von der Studienidee zum nachhaltigen Erfolgsunternehmen

NICAMA Naturkosmetik feiert sein fünfjähriges Bestehen: Was mit kleinen Experimenten während des Studiums begann, ist heute ein etabliertes Naturkosmetikunternehmen mit über 600 Handelspartnern im DACH-Raum.

Was 2019 als mutige Idee von vier Studierenden begann, wurde rasch zu einem inspirierenden Beispiel für gelebte Nachhaltigkeit. In einer Zeit, in der Umweltschutz noch kein selbstverständlicher Trend war, experimentierten die Gründerinnen und Gründer mit festen Shampoos, um eine plastikfreie Alternative zu herkömmlicher Kosmetik zu schaffen. Das erste Produkt entstand mit viel Leidenschaft, Neugier und Improvisation. Damit war der Grundstein für den späteren Unternehmenserfolg gelegt.

Ein erfolgreiches Crowdfunding finanzierte 2019 die erste Produktcharge und machte den Traum vom eigenen Webshop möglich. Es folgten die ersten Partnerschaften mit Bioläden, Outdoorhändlern, Friseuren und Geschenkeläden, die an die Vision glaubten. Heute zählt NICAMA stolz über 600 Vertriebspartner und wächst weiter.

Ein entscheidender Meilenstein war die Entwicklung des 1plus1 Meeresschutz-Prinzips: Für jedes verkaufte Produkt werden 100 Gramm Plastik in Küstenregionen gesammelt. Dieses Prinzip ist transparent, messbar und von jedem/jeder Kund*in nachvollziehbar. Bis heute konnten so über 33.290 Kilogramm Plastik aus der Umwelt entfernt werden. Das entspricht mehr als 3,2 Millionen Plastikflaschen. Darüber hinaus hat das Team mehrere Elbreinigungen organisiert, unter anderem gemeinsam mit der Naturschutzjugend NAJU und Charlotte Meentzen.

Mit dem Schritt in die Upcycling Beauty wurde NICAMA zum Pionier in Deutschland. Dabei werden wertvolle Nebenprodukte aus der Lebensmittelproduktion wie Ingwertrester und Kaffeekirsche zu hochwertigen Inhaltsstoffen verarbeitet. Heute umfasst das Sortiment über 50 plastikfreie Produkte, darunter Seifen, Shampoos, Deocremes, Pflegeöle und Körperpeelings – alle minimalistisch verpackt und mit reduzierten, sorgfältig ausgewählten Rezepturen.

Die Reise war jedoch nicht ohne Herausforderungen: Die Corona Pandemie und die Inflationsfolgen des Ukraine-Krieges setzten auch NICAMA stark zu. Das einst 15-köpfige Team musste sich zwischenzeitlich deutlich verkleinern. Trotz dieser Rückschläge bewies das Unternehmen Durchhaltevermögen. Heute steht es so solide da wie nie zuvor. Seit zwei Jahren verzeichnet NICAMA wieder überdurchschnittliches Wachstum und das deutlich über dem allgemeinen Naturkosmetikmarkt in Deutschland.

Für sein Engagement und seine Innovationskraft wurde das Unternehmen mehrfach ausgezeichnet: 2021 gewann NICAMA den Sächsischen Gründerpreis und erhielt bereits viermal den eku Zukunftspreis des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft.

Happy Homeoffice Club gestartet

Gründerin Caterina Hirt startet ein digitales Netzwerk als kollaborative Kommunikationsplattform für selbständige Mütter im Homeoffice.

Mit dem Start des Happy Homeoffice Clubs entsteht ein neues digitales Angebot für selbständige Mütter – mit Liveformaten, Co-Working, einer innovativen Softwareplattform und vielen nützlichen Business-Hacks. Die Gründerin Caterina Hirt bringt damit ein strukturiertes, unterstützendes Netzwerk an den Start, das den oft isolierten Homeoffice-Alltag in einen Ort der Verbindung, Motivation und echten Weiterentwicklung verwandelt. „Ich habe selbst erlebt, wie herausfordernd es ist, Beruf, Familie und Selbstverwirklichung unter einen Hut zu bringen – vor allem im Homeoffice. Mit dem Happy Homeoffice Club möchte ich Frauen zeigen, dass sie nicht alleine sind“, so die Gründerin. Caterina Hirt ist Unternehmerin, Autorin, systemische Coachin und Mutter von zwei Kindern. Mit ihrem Agenturbackground und über zehn Jahren Erfahrung im Homeoffice weiß die Marketingspezialistin aus erster Hand, welche Chancen – aber auch welche Herausforderungen – dieser Arbeitsalltag birgt.

Kern der Zusammenarbeit ist eine kollaborative Kommunikationsplattform, über die die Mütter dauerhaft in einem echten Netzwerk verbunden sind. Dazu setzt das Angebot auf Livecalls, Community-Austausch, Expertenvorträge und snackable Businesstipps, die den Workflow im Homeoffice effizienter machen. Das Angebot richtet sich explizit an selbständige Frauen oder Mütter im Homeoffice. „Bei uns fühlt sich keine Teilnehmerin mehr allein. Hier treffen sich Frauen, die genau wissen, wie es ist, mit Laptop, Kaffee, Kind und manchmal ein bisschen Chaos zu jonglieren. Sie arbeiten, lachen, tauschen sich aus und motivieren sich gegenseitig. So modern, vernetzt und unterstützend, wie man es sich als Selbstständige immer gewünscht hat “, sagt Caterina Hirt.

Die zugrundeliegende Softwarelösung bietet eine hochmoderne Nutzeroberfläche, Chats, Calls in einer geschützten Umgebung sowie Daten- und Wissensaustausch an. So gibt es zum Beispiel den Monday Motivation Call mit allen Teilnehmerinnen oder eine interaktive Kaffeeküche, in der man sich einfach mal über alle Themen abseits des Business interaktiv austauschen kann. Die Plattform wird jeder Teilnehmerin zur Verfügung gestellt, die Nutzung ist in der monatlichen Mitgliedsgebühr von 49 Euro (Einführungspreis) enthalten. Interessentinnen können die Community inklusive aller Angebote zwei Wochen kostenlos testen.

Vorsicht vor diesen KI-Versuchungen

Allzu großes Vertrauen in GenAI ist fahrlässig, dennoch prüfen nur rund ein Viertel der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit. Das sind die größten Gefahren und effektivsten Gegenmaßnahmen.

Die Leistung und die Zuverlässigkeit von KI-Assistenten nehmen gefühlt weiter zu. Doch wer in den letzten Wochen intensives Prompting bei ChatGPT, Perplexity und Co. betrieben und die Ergebnisse eingehend analysiert hat, fühlte sich in diesem Gefühl nicht bestätigt. Im Gegenteil: Die Qualität der generierten Antworten lässt neuerdings öfter zu wünschen übrig. Auf YouTube gibt es zahlreiche Videos zu diesem Phänomen, das sich offenbar auch die Herstellenden nicht so ganz erklären können, aber auch klassische Medien berichten darüber. In Anbetracht der Tatsache, wie abhängig sich viele Menschen im Berufsleben schon heute von GenAI-Tools gemacht haben, ist dieser Trend erschreckend und ernüchternd. Ein blindes Vertrauen in die digitalen Helfer aus der Familie generativer KI birgt zudem großes Schadenspotenzial, etwa dann, wenn sich Ärzt*innen bei der Diagnose auf sie stützen oder Entwickler*innen von der KI vorgeschlagene Frameworks ohne Sicherheitscheck implementieren.

Völliges Vertrauen in GenAI ist also, zurückhaltend formuliert, mindestens gewagt. Die Situation ist ernst und erfordert von GenAI-Anbietenden ein Mindestmaß an Qualitätssicherung – offenbar kein einfaches Unterfangen. Bis dahin ist es wichtig, eigene Maßnahmen zu ergreifen, um nicht in die Falle der folgenden vier Qualitätskiller zu geraten.

1. Halluzinationen

KI-Assistenten wie ChatGPT und Co. wurde die Aufgabe erteilt, Antworten zu liefern – koste es, was es wolle. Wenn die Wissensbibliothek nicht ausreicht, um komplexe Sachverhalte zu beantworten, fängt generative KI an, sich etwas auszudenken. Die von solchen Halluzinationen ausgehende Gefahr ist bekannt. Umso bedrückender ist die Tatsache, dass laut einer aktuellen Studie nur rund ein Viertel (27 %) der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit prüfen. Das sind zwar immerhin sieben Prozentpunkte mehr als bei gewöhnlichen Inhalten aus dem Internet, wie eine Studie des PR-COM Re­search Lab belegt, aber noch immer viel zu wenige.

Gegenmaßnahmen: Wer GenAI nutzt, sollte ausnahmslos alle von ihr produzierten Inhalte überprüfen. Dazu sollten User*innen insbesondere die von der KI verwendeten Primärquellen checken oder – wenn möglich – Expert*innen zur Prüfung der Korrektheit der Antworten zurate ziehen.

2. Bias

Die Anbieter*innen aktueller KI-Assistenten haben sehr viel Arbeit in ihre Produkte gesteckt, um den Bias, also die Voreingenommenheit ihrer Modelle auszumerzen und sie zur Vorurteilsfreiheit zu erziehen.

Verlassen sollten sich User*innen auf die moralische und ethische Unantastbarkeit ihrer Modelle dennoch nicht. Zwar ist es unwahrscheinlich, dass Produkte großer Hersteller*innen noch rassistische, sexistische oder sonstige ethisch fragwürdige Ansichten vertreten, aber komplett ausgeschlossen ist es eben nicht. Noch relativ hoch ist die Gefahr zudem bei der Nutzung von kostenlosen GenAI-Assistenten oder Nischen-Tools.

Gegenmaßnahmen: Auch im Zusammenhang mit Bias gilt es, die Ergebnisse einer KI-Befragung immer genauestens zu checken und mit geltenden Gesetzen und den vorherrschenden Wertevorstellungen unserer Gesellschaft abzugleichen. Wer dubiose KI-Tools meidet, kann sich zudem viel Ärger ersparen.

3. Content-Kannibalisierung

Immer mehr KI-generierter Content flutet das Internet – die logische Folge der zunehmenden Nutzung von GenAI-Assistenten. Leider trainieren KI-Entwickler*innen ihre Chatbots und deren zugrunde liegende Sprachmodelle unter anderem mit genau diesen Inhalten. Und schlimmer noch: Der exponentiell steigende KI-Inhalt ist darüber hinaus auch der Wissensschatz, auf den die KI für ihre Antworten zurückgreift. Dadurch entsteht ein Teufelskreis aus KI, die sich irgendwann nur noch mit von ihr selbst generierten Inhalten trainiert und auch nur noch von ihr produzierten Content als Basiswissen verwendet. Der Mensch wird aus dieser Gleichung immer weiter herausgekürzt. Die Qualität der Ergebnisse von Anfragen an die KI wird somit zunehmend abnehmen. Hinzu kommt, dass alle User*­innen irgendwann die gleichen Ergebnisse abrufen, nutzen und veröffentlichen.

Gegenmaßnahmen: Es ergibt Sinn, hin und wieder auch ohne KI zu agieren und Content zu produzieren, der frei von KI-generierten Inhalten ist und das Qualitätsmerkmal „Made in a human brain“ trägt.

4. Wissensoligopol

Der KI-Markt ist derzeit auf einige wenige Big Player geschrumpft, die sich die enormen Rechenressourcen und Entwicklungskosten für generative KI leisten können. Dadurch entsteht zunehmend ein Wissensoligopol, in dem die großen Anbieter*innen wie OpenAI, Google, Microsoft und DeepSeek zukünftig die Art und Weise bestimmen, welche Informationen überhaupt noch zugänglich sind. Schon jetzt gehen Suchanfragen auf den traditionellen Suchmaschinen deutlich zurück, die Ergebnisse zwar nach Algorithmen ranken, aber selten Treffer komplett ausblenden. Viel restriktiver agieren GenAI-Tools, deren implementierte Filter die freiheitliche Verbreitung von Wissen einzuschränken drohen: Was nicht mit den politischen und moralischen Ideen der Hersteller übereinstimmt, wird automatisch unterdrückt. Das erinnert ein wenig an das Wahrheitsministerium aus Orwells „1984“.

Gegenmaßnahmen: Es ist wichtig, dass Unternehmen und offizielle Stellen auch unabhängige Projekte fördern und deren Nutzer*innen- sowie Supporter*innen-Basis wächst. Gleichzeitig sollten User*innen es dringend verinnerlichen, dass KI- Assistenten nicht der Wahrheit letzter Schluss sind. Das Nutzen möglichst vieler Quellen, um das eigene Wissen aufzubauen, ist immer besser als ein vermeintlicher „Single Point of Truth“.

Fazit

Wir sind noch lange nicht so weit, dass ein blindes Vertrauen in generative KI zu rechtfertigen ist. Es ist zwar logisch, dass wir eine vermeintlich arbeitserleichternde Technologie erst einmal ungern hinterfragen – doch dieser Bequemlichkeit wohnt, je nach Einsatzzweck, ein erhebliches Schadenspotenzial inne. Zum jetzigen Zeitpunkt lautet also die Maxime, restlos jede von GenAI generierte Antwort genauestens auf den Prüfstand zu stellen.

Der Autor Alain Blaes ist CEO der Münchner Kommunikationsagentur PR-COM (mit Fokus auf High-tech- und IT-Industrie im B2B-Umfeld).

Code für die künstliche Intelligenz: technische Optimierung für die Ära der KI-Suche

Code für die KI: So optimierst du deine Website technisch mit strukturierten Daten und Protokollen für die besten generativen Suchergebnisse.

Die Regeln der Online-Sichtbarkeit werden neu geschrieben. Es geht nicht mehr nur darum, von einem herkömmlichen Algorithmus indiziert zu werden. Stattdessen müssen Websites so aufbereitet werden, dass sie von künstlicher Intelligenz (KI) und großen Sprachmodellen (LLMs) fehlerfrei interpretiert und verarbeitet werden können.

KI erstellt ihre Antworten, indem sie Inhalte blitzschnell liest, deren Bedeutung versteht und die wichtigsten Fakten daraus extrahiert. Wenn der technische Unterbau einer Website unsauber ist, kann die KI die Informationen entweder nicht zuverlässig finden oder sie falsch interpretieren.

Das bedeutet, die technische Seite der Website – der Code – wird zum Fundament für eine gute Platzierung in den generativen Suchergebnissen. Wer hier Nachholbedarf hat, riskiert, als vertrauenswürdige Quelle für die KI unsichtbar zu werden.

Dieser Artikel beleuchtet die entscheidenden technischen Anpassungen, die notwendig sind, um deine Website optimal für die neue Ära der KI-Suche vorzubereiten.

Kontrolle und Zugang: Die Regeln für Sprachmodelle

Der erste technische Schritt zur Optimierung für KI-Ergebnisse ist die Steuerung des Zugriffs durch die großen Sprachmodelle (LLMs). Traditionell wird der Zugang durch die robots.txt Datei geregelt, die festlegt, welche Bereiche der Website von herkömmlichen Suchmaschinen-Crawlern besucht werden dürfen.

Mit dem Aufkommen verschiedener, spezialisierter KI-Crawler (die nicht immer identisch mit dem Googlebot oder Bingbot sind) entsteht jedoch die Notwendigkeit, diesen neuen Akteuren eigene Regeln zu geben. Es geht darum, Transparenz darüber zu schaffen, welche Daten zur Generierung von Antworten verwendet werden dürfen und welche nicht.

Neue Protokolle für neue Crawler

Experten diskutieren und entwickeln neue Protokolle, um diese Unterscheidung zu ermöglichen. Ein viel diskutierter Ansatz ist die Einführung von Protokollen, die spezifisch den Umgang mit generativer KI regeln. Dies könnte die Einführung von Protokollen wie einer llms.txt Datei beinhalten. Solche spezifischen Dateien könnten festlegen, ob ein KI-Modell Inhalte zur Schulung oder zur generativen Beantwortung von Nutzeranfragen nutzen darf.

Diese Kontrollmechanismen sind entscheidend. Sie geben den Website-Betreibern die Autorität darüber zurück, wie ihre Inhalte in der KI-Ära verwendet werden. Wer hier klare Regeln setzt, schafft die technische Grundlage für eine kontrollierte und damit vertrauenswürdige Sichtbarkeit in den KI-Ergebnissen.

Strukturierte Daten als universelle KI-Sprache

Nach der Regelung des Zugangs durch Protokolle ist die Strukturierung der Inhalte der wichtigste technische Schritt. Suchmaschinen nutzen strukturierte Daten schon lange, um Rich Snippets in den klassischen Ergebnissen anzuzeigen. Für die KI sind diese Daten jedoch absolut essenziell.

Strukturierte Daten, die auf dem Vokabular von Schema.org basieren, sind im Grunde eine Übersetzungshilfe im Code, die dem Sprachmodell den Kontext des Inhalts direkt mitteilt. Sie sind die "Sprache", die die KI am schnellsten und präzisesten versteht.

Die Bedeutung für die Generierung

Wenn ein Nutzer eine Frage stellt, sucht die KI nicht nur nach Stichwörtern, sondern nach definierten Informationstypen. Mit strukturierten Daten liefert man der KI diese Informationen als fertige, fehlerfreie Bausteine.

  • Fehlerfreie Extraktion: Die KI muss keine Textpassagen interpretieren, um beispielsweise ein Rezept, die Bewertung eines Produkts oder einen FAQ-Abschnitt zu identifizieren. Die korrekte Auszeichnung macht die Daten sofort nutzbar.
  • Vertrauensbildung: Fehlerhafte oder inkonsistente strukturierte Daten führen zu einer falschen Interpretation und können bewirken, dass die KI deine Seite als unzuverlässig einstuft.

Die Implementierung muss fehlerfrei sein und sollte alle relevanten Inhaltstypen der Website abdecken. Nur eine saubere Schema-Implementierung garantiert, dass deine Fakten korrekt in die generativen Antworten der KI einfließen.

Ladezeit und Interaktivität als Vertrauenssignal

Die Geschwindigkeit und die Nutzbarkeit einer Website sind in der Ära der KI-Suche nicht mehr nur ein Komfortfaktor, sondern ein entscheidendes technisches Vertrauenssignal. Wenn deine Seite langsam lädt oder schlecht bedienbar ist, wird das von der KI als Indikator für mangelnde Qualität und niedrige Autorität gewertet.

Die Basis dafür sind die sogenannten Core Web Vitals (CWVs). Diese Messwerte, die sich auf das Nutzererlebnis konzentrieren, sind feste Ranking-Faktoren und haben direkten Einfluss darauf, ob eine KI deine Seite als zitierwürdig einstuft:

  • LCP (Largest Contentful Paint): Misst die Zeit, bis der größte sichtbare Inhalt geladen ist.
  • FID/INP (First Input Delay / Interaction to Next Paint): Misst die Zeit bis zur ersten Interaktion und die allgemeine Reaktionsfähigkeit der Seite.
  • CLS (Cumulative Layout Shift): Misst die visuelle Stabilität.

Mobile Performance ist der Schlüssel

Da ein Großteil der Online-Aktivität über mobile Geräte stattfindet, legt die KI höchsten Wert auf die Optimierung der Mobilversion. Eine schlechte mobile Performance kann das gesamte Ranking negativ beeinflussen.

Die technische Anpassung muss daher darauf abzielen, die CWVs zu perfektionieren. Dies beinhaltet die Optimierung von Bildern, das Bereinigen unnötiger Code-Lasten und das Priorisieren wichtiger Ressourcen. Eine schnell ladende und reaktionsfreudige Website signalisiert nicht nur dem Nutzer, sondern auch der KI, dass die Quelle professionell und damit vertrauenswürdig ist.

Redundanz vermeiden: kanonische Klarheit

Eines der größten technischen Probleme für KI-Modelle ist die Verwirrung durch doppelte Inhalte (Duplikate). Wenn die gleiche Information unter verschiedenen URLs verfügbar ist, weiß die KI nicht, welche die Originalquelle darstellt. Dies zersplittert deine Autorität.

Der technische Schlüssel zur Lösung ist der Canonical Tag (<link rel="canonical" ...>). Dieser Tag im Code muss auf jeder Seite korrekt auf die bevorzugte, indexierbare URL zeigen. Durch die Vermeidung von Duplikaten und die korrekte Nutzung dieses Tags stellst du technisch sicher, dass die KI deine Inhalte als eindeutig und autoritär wahrnimmt und dich als zuverlässigen Faktenlieferanten zitiert.

Schlussworte

Die Zukunft der Online-Sichtbarkeit wird durch künstliche Intelligenz neu definiert. Der Erfolg hängt von einer technisch sauberen Vorbereitung ab.

Die wichtigsten Schritte in der Generative Engine Optimization (GEO) sind:

1. Zugangskontrolle durch Protokolle wie die diskutierte llms.txt Datei.

2. Die Nutzung von strukturierten Daten als unverzichtbare KI-Sprache.

3. Die Perfektionierung der Core Web Vitals als Vertrauenssignal.

4. Die Vermeidung von Duplikaten durch kanonische Klarheit.

Investiere in diese technische Qualität, um Autorität und Sichtbarkeit in der Ära der KI-generierten Antworten zu sichern.