Aktuelle Events
Zip2 - Elon Musks erstes Startup
Wie Elon Musk sein erstes Start-up Zip2 gründete
Er ist der vielleicht spannendste Entrepreneur unserer Zeit: Elon Musk, Macher von PayPal, Tesla, SpaceX. Hier die Geschichte seiner ersten Gründung, Zip2, die er 1994 zusammen mit seinem Bruder startete. Im Gepäck hatte der damals 23-Jährige eine vage Idee über die Chancen, die ein Dotcom-Unternehmen bieten könnte, 2000 US-Dollar Kapital, ein Auto und einen Computer.
Sommer 1994: Elon und sein Bruder Kimbal machten den ersten Schritt auf ihrem Weg, waschechte Amerikaner zu werden (aufgewachsen waren sie in Südafrika): Sie unternahmen eine Autoreise durch das ganze Land. Kimbal hatte als Franchise-Nehmer für College Pro Painters im Grunde ein eigenes kleines Unternehmen geführt und damit gut verdient. Er verkaufte seine Lizenz und legte die Einnahmen mit dem zusammen, was Elon zur Hand hatte, um einen alten, angeschlagenen BMW 320i zu kaufen.
Die Brüder begannen ihre Reise im August in der Nähe von San Francisco, als es in Kalifornien richtig heiß wurde. Der erste Teil ihrer Fahrt führte sie nach Needles, einer Stadt in der Mojave-Wüste. Dort erlebten sie das schweißtreibende Abenteuer von 49 Grad in einem Auto ohne Klimaanlage und gewöhnten sich an, ihre Pausen bei der Burgerkette Carl’s Jr. einzulegen, wo sie sich stundenlang zum Abkühlen aufhielten. Die Reise bot reichlich Gelegenheiten für den typischen Quatsch von jungen Männern in ihren Zwanzigern und wilde kapitalistische Tagträume.
Dank Verzeichnisdiensten wie Yahoo! und Software wie dem Net-scape-Browser hatte das Web gerade begonnen, massentauglich zu werden. Die Brüder waren begeistert vom Internet und dachten darüber nach, zusammen ein Web-Unternehmen zu gründen. Von Kalifornien bis Colorado wechselten sie zwischen Fahren, Brainstorming und Unsinnreden, bevor sie wieder Richtung Osten fuhren, um Elon rechtzeitig zum Semesterbeginn im Herbst zurück zur Universität zu bringen. Die beste Idee, die aus dieser Reise hervorging, war ein Online-Netzwerk für Ärzte. Es war nicht so ambitioniert wie die elektronischen Patientenakten von heute, sondern eher ein System für den Austausch von Informationen und Zusammenarbeit. „Die Medizinbranche sah aus wie eine, in der es eine Disruption geben könnte. Später machte ich mich daran, einen Businessplan und die Strategie für Vertrieb und Marketing auszuarbeiten, aber es wurde nichts daraus. "Wir haben die Idee nicht geliebt“, sagt Kimbal.
Den Anfang des Sommers hatte Elon mit zwei Praktika im Silicon Valley verbracht. Tagsüber arbeitete er im Pinnacle Research Institute in Los Gatos, einem viel gelobten Start-up, in dem ein Team von Wissenschaftlern nach Möglichkeiten suchte, Superkondensatoren als revolutionäre Energiequelle für Elektro- und Hybridautos einzusetzen. Zumindest in Ansätzen neigte die dortige Arbeit auch zum Bizarren. Elon konnte ausgiebig darüber sprechen, wie Superkondensatoren in der Tradition von Star Wars und so ziemlich jedem anderen futuristischen Film für Laserwaffen eingesetzt werden könnten. Die Laser sollten enorme Mengen Energie abfeuern, anschließend sollte der Schütze den Superkondensator wechseln wie bei konventionellen Waffen das Magazin – und schon konnte es weitergehen.
Auch als Stromversorgung für Raketen sahen Superkondensatoren vielversprechend aus. Sie waren weniger anfällig für die mechanischen Belastungen beim Start als Batterien und besser darin, Strom über längere Zeiträume zu speichern. Elon verliebte sich in die Arbeit bei Pinnacle und begann, das Unternehmen als Basis für seine Experimente mit Business-Plänen an der Universität und seine Fantasien als Industrieller zu nutzen. Abends dann machte er sich auf dem Weg zu Rocket Science Games, einem Start-up in Palo Alto, das die fortschrittlichsten Videospiele herstellen wollte, die es je gegeben hatte; dazu sollten die Spiele nicht mehr auf Kassetten gespeichert werden, sondern auf CDs mit ihrer viel höheren Kapazität. Theoretisch war es dadurch möglich, Spielen so aufwendige Geschichten und eine so hohe Qualität wie Hollywood-Filmen zu geben, und an dieser Arbeit war ein gemischtes Team aus angehenden Stars ihres Fachs – teils Ingenieure, teils Filmmenschen – beteiligt. Tony Fadell, der später entscheidend zur Entwicklung von iPod und iPhone bei Apple beitragen sollte, arbeitete ebenso bei Rocket Science wie das Team, das für Apple die Multimedia-Software QuickTime entwickelt hatte. Ebenfalls dabei waren Leute, die bei Industrial Light & Magic für die Effekte von Star Wars verantwortlich waren, und einige, die zuvor bei LucasArts Entertainment Spiele entwickelt hatten. Rocket Science gab Elon ein Gefühl dafür, was das Silicon Valley hinsichtlich Kultur und Talenten zu bieten hatte.
Manche Mitarbeiter waren rund um die Uhr in ihren Büros und niemand fand es das kleinste bisschen merkwürdig, dass Elon immer erst um 17 Uhr zu seinem Zweitpraktikum erschien. „Wir hatten ihn geholt, damit er einen maschinennahen Programmcode schreibt“, sagt Peter Barrett, ein australischer Ingenieur, der das Unternehmen mit auf den Weg gebracht hatte. „Er war absolut unerschütterlich. Ich glaube, schon nach kurzer Zeit gab ihm niemand mehr irgendwelche Anweisungen. Und am Ende machte er, was er wollte.“ Konkret sollte Musk die Treiber schreiben, mit deren Hilfe Joysticks und Mäuse mit unterschiedlichen Computern und Spielen kommunizieren. Treiber sind die nervigen kleinen Dateien, die Sie auch zu Hause installieren müssen, wenn Sie einen Drucker oder eine Kamera mit Ihrem PC verbinden wollen – eine langweilige Angelegenheit.
Elon hatte sich das Programmieren selbst beigebracht. Er fand sich recht gut darin, also gab er sich anspruchsvollere Aufgaben. „Im Prinzip überlegte ich mir Möglichkeiten für Multitasking, wie man also Videos von einer CD einlesen und gleichzeitig das Spiel laufen lassen kann“, erklärt Musk. „Damals war immer nur eines von beidem möglich. Um das zu ändern, brauchte es ein bisschen komplizierte Assembler-Programmierung.“ Kompliziert ist genau das richtige Wort. Elon musste Befehle programmieren, die sich direkt an den Hauptprozessor von Computern richten und in grundlegendste Funktionen dieser Maschinen eingreifen. Bruce Leak, der frühere leitende Techniker für QuickTime bei Apple, hatte das Praktikum von Elon genehmigt und war angetan von dessen Fähigkeit, nächtelang durchzuarbeiten. „Er hatte endlos viel Energie. Die jungen Leute von heute haben keine Ahnung mehr von Hardware oder davon, wie etwas funktioniert, aber er war ein echter PC-Hacker und hatte keine Angst davor, einfach loszulegen und Sachen herauszufinden“, sagt Leak.
Im Silicon Valley fand Elon reichlich Gelegenheiten, wie er sie suchte, und einen Ort, der zu seinen Ambitionen passte. Die folgenden zwei Sommer über kehrte er dorthin zurück, und nach seinen zwei Abschlüssen in Pennsylvania zog er ganz an die Westküste. Anfangs wollte er noch einen Doktor in Materialwissenschaft und Physik an der Stanford University machen und die Arbeit an Superkondensatoren, die er bei Pinnacle begonnen hatte, fortsetzen. Doch wie es so gehen kann – schon nach zwei Tagen hörte er in Stanford wieder auf, weil er den Ruf des Internets unwiderstehlich fand. Er überredete Kimbal, ebenfalls ins Silicon Valley zu kommen, um zusammen mit ihm das Web zu erobern. Auf die ersten Ideen für ein lukratives Internetunternehmen war Elon während seiner Praktika gestoßen. Einmal kam ein Vertreter der Gelben Seiten ins Büro eines der Start-ups und versuchte, ihm als Ergänzung zu der üblichen Auflistung im dicken Branchenbuch einen Online-Eintrag zu verkaufen. Der Vertreter tat sich schwer bei seinen Bemühungen und wusste offensichtlich wenig darüber, was das Internet eigentlich war oder wie man ein Unternehmen darin finden könnte. Das schwache Verkaufsgespräch brachte Elon ins Grübeln und er kontaktierte Kimbal, um mit ihm über eine neue Idee zu sprechen: Unternehmen dabei helfen, eine Präsenz im Internet zu erhalten. „,Diese Leute wissen nicht, wovon sie sprechen. Vielleicht wäre das was für uns‘, sagte Elon zu mir“, berichtet Kimbal. Das war im Jahr 1995 und bald gründeten die Brüder Global Link Information Network, ein Start-up, das sie später in Zip2 umbenannten.
Die Idee für Zip2 war genial. Im Jahr 1995 verstanden nur wenige kleine Unternehmen die Bedeutung des Internets. Sie wussten wenig darüber, wie sie im Netz präsent sein konnten, und sahen keinen großen Wert darin, eine eigene Website aufzubauen oder sich in Online-Branchenbüchern zu präsentieren. Elon und sein Bruder wollten Restaurants, Kleidungsläden, Friseure und ähnliche Geschäfte davon überzeugen, dass die Zeit reif für sie war, die im Web surfende Öffentlichkeit auf sich aufmerksam zu machen. Zip2 sollte ein durchsuchbares Verzeichnis von Unternehmen aufbauen und es in Karten einbinden. Musk erklärte das Konzept häufig mithilfe von Pizza: Jeder habe das Recht, den Standort der am nächsten gelegenen Pizzeria und eine genaue Wegbeschreibung dorthin zu bekommen. Heute mag das offensichtlich erscheinen – es ist eine Mischung aus Yelp und Google Maps. Damals aber hatten noch nicht einmal hartgesottene Kiffer einen solchen Dienst erträumt.
Die Adresse von Zip2 war 430 Sherman Avenue in Palo Alto. Die Musk-Brüder mieteten ein Einraumbüro von 6 mal 9 Metern Größe und kauften ein paar einfache Möbel dafür. Das dreistöckige Gebäude hatte seine Besonderheiten. Es gab keinen Aufzug und die Toiletten waren häufig verstopft. „Es war ganz wörtlich ein Scheißplatz zum Arbeiten“, sagt einer der frühen Angestellten. Für eine schnelle Internetverbindung machte Elon einen Deal mit Ray Girouard, einem Entrepreneur, der im Stockwerk unter Zip2 einen Internetprovider betrieb. Laut Girouard bohrte Elon in der Nähe der Eingangstür von Zip2 ein Loch in die Gipskartondecke, durch das er dann ein Ethernet-Kabel zu dem Provider verlegte. „Ein paar Mal haben sie zu spät bezahlt, aber sie haben mich nie um mein Geld betrogen“, sagt Girouard.
Die gesamte erste Programmierung für den Dienst erledigte Elon selbst, während der umgänglichere Kimbal sich um den Aufbau des Tür-zu-Tür-Vertriebs kümmerte. Elon hatte eine billige Lizenz für eine Datenbank mit Namen und Adressen von Unternehmen in der Bay Area gekauft. Als Nächstes wandte er sich an Navteq, ein Unternehmen, das Hunderte Millionen Dollar für die Erstellung von digitalen Karten und Wegbeschreibungen für frühe GPS-Navigationsgeräte ausgegeben hatte. Das Ergebnis war sehr erfreulich: „Wir riefen dort an und sie gaben uns die Technologie umsonst“, erzählt Kimbal. Elon führte die beiden Datenbanken zusammen und brachte so ein rudimentäres System zum Laufen. Mit der Zeit ergänzten Zip2-Programmierer diesen ersten Datenbestand dann um weitere Karten für Gebiete außerhalb der großen Metropolregionen. Außerdem entwickelten sie eigene Wegbeschreibungen, die gut aussehen und gut auf normalen Heimcomputern angezeigt werden sollten.
Errol Musk gab seinen Söhnen als Unterstützung für die Startphase 28.000 Dollar, doch nachdem sie das Büro, Softwarelizenzen und etwas Technik bezahlt hatten, waren sie mehr oder weniger pleite. Die ersten drei Monate des Bestehens von Zip2 lebten die Brüder in ihrem Büro. Sie hatten einen kleinen Schrank, in dem sie ihre Kleidung aufbewahrten, zum Duschen gingen sie in eine Jugendherberge. „Manchmal aßen wir viermal am Tag bei Jack In The Box“, sagt Kimbal. „Dort war 24 Stunden geöffnet, was gut zu unserem Arbeitsstil passte. Einmal holte ich mir einen Smoothie und es war irgendetwas darin. Ich nahm es einfach heraus und trank weiter. Seit dieser Zeit kann ich nicht mehr dort essen, aber ich kenne immer noch die Speisekarte auswendig.“ Als Nächstes mieteten die Brüder ein Appartement mit zwei Schlafzimmern – für Möbel fehlte ihnen sowohl das Geld als auch das Interesse, also gab es nur ein paar Matratzen auf dem Boden.
Irgendwie überredete Elon einen jungen südkoreanischen Programmierer, im Tausch gegen Kost und Logis als Praktikant bei Zip2 anzufangen. „Der arme Junge dachte, er bekäme einen Job in einem großen Unternehmen“, erzählt Kimbal. „Stattdessen wohnte er bei uns und hatte keine Ahnung, worauf er sich einließ.“ Eines Tages wollte der Praktikant mit dem angeschlagenen BMW 320i zur Arbeit fahren, als ihm ein Rad absprang. An der Kreuzung Page Mill Road und El Camino Real bohrte sich die Achse in den Boden. Die von ihr gezogene Rille war noch Jahre später dort zu sehen.Zip2 mag ein voll im Trend liegendes Internetunternehmen für das Informationszeitalter gewesen sein, doch um es ins Laufen zu bringen, brauchte es ganz altmodisches Klinkenputzen für den Vertrieb. Unternehmen mussten von den Vorzügen des Web überzeugt und mit Charme dazu gebracht werden, für etwas Unbekanntes zu bezahlen.
Ende 1995 stellten die Musk-Brüder ihre ersten Mitarbeiter ein und bauten ein kunterbuntes Vertriebsteam auf. Einer der ersten Angestellten war Jeff Heilman, ein freigeistiger 20-Jähriger, der noch nicht recht wusste, was er mit seinem Leben anfangen sollte. Eines Abends hatte er zusammen mit seinem Vater im Fernsehen einen Werbespot gesehen, bei dem unten auf dem Bildschirm eine Webadresse eingeblendet wurde. „Er war für irgendwas.com“, erinnert sich Heilman. „Ich weiß noch, wie ich dort saß und meinen Vater fragte, was das sein sollte. Der sagte, er wisse es auch nicht. Da wurde mir klar, dass ich losgehen musste, um etwas über das Internet zu erfahren.“ Ein paar Wochen lang versuchte Heilman, Leute zu finden, die ihm das Internet erklären konnten. Dann sah er eine kleine Stellenanzeige von Zip2 in der Zeitung San Jose Mercury News. „Internetverkäufer hier bewerben!“, hieß es darin und Heilman bekam den Job.
Elon schien das Büro nie zu verlassen. Einem Hund nicht unähnlich, schlief er auf einem Knautschsack neben seinem Schreibtisch. „Ich kam fast jeden Tag um 7.30 oder 8 Uhr ins Büro und dann sah ich ihn dort auf dem Sack schlafen“, sagt Heilman. „Geduscht hat er vielleicht am Wochenende. Ich weiß es nicht.“ Elon bat die ersten Zip2-Mitarbeiter, ihn kurz zu treten, wenn sie kamen; dann wachte er auf und fing wieder an zu arbeiten. Während Elon obsessiv programmierte, wurde Kimbal der mitreißende Vertriebschef. „Kimbal war der ewige Optimist und sehr, sehr motivierend. Ich hatte noch nie jemanden wie ihn getroffen“, sagt Heilman. Kimbal schickte ihn in das schicke Stanford-Einkaufszentrum und in die University Avenue, die wichtigste Attraktion von Palo Alto, um die dortigen Geschäftsinhaber zu einem Vertrag mit Zip2 zu überreden – ein bezahlter Eintrag, so erklärte Heilman immer wieder, garantiere dem Unternehmen eine Auflistung an der Spitze der Suchergebnisse.
Das Problem dabei war natürlich, dass niemand anbiss. Woche für Woche klopfte Heilman an Türen und kam zurück ins Büro, ohne viel Gutes berichten zu können. Noch am nettesten waren die Antworten von Leuten, die sagten, Werbung im Internet sei das Blödeste, von dem sie je gehört hätten. Meistens aber sagten die Inhaber Heilman nur, er solle verschwinden und sie in Ruhe lassen. Immer gegen Mittag griffen die Musks in die Zigarrenkiste, in der sie etwas Geld aufbewahrten, luden Heilman zum Essen ein und ließen sich den deprimierenden Statusbericht über seine Verkaufsbemühungen geben. Craig Mohr, ein weiterer früher Mitarbeiter, gab seinen Job als Immobilienverkäufer auf, um die Dienste von Zip2 anzubieten. Er entschied sich, sein Glück bei Autohändlern zu versuchen, weil die normalerweise viel Geld für Werbung ausgeben. Er erzählte ihnen von der Hauptwebsite von Zip2 – www.totalinfo.com – und versuchte sie davon zu überzeugen, es gebe starke Nachfrage nach Einträgen.
Der Dienst funktionierte nicht immer, wenn Mohr ihn vorführen wollte, oder die Seiten wurden, wie es damals üblich war, sehr langsam geladen. Dadurch war er gezwungen, die Kunden vor allem mit warmen Worten vom Potenzial von Zip2 zu überzeugen. „Einmal kam ich mit ungefähr 900 Dollar in Schecks zurück“, erzählt er. „Ich ging ins Büro und fragte die Jungs, was ich mit dem Geld machen soll. Elon hörte auf, auf seine Tastatur zu hämmern, schaute hinter seinem Monitor hervor und sagte: ,Du hast Geld – das kann doch nicht sein!‘“ Was den Optimismus der Mitarbeiter am Leben erhielt, waren die ständigen Verbesserungen von Elon an der Zip2-Software. Von einer reinen Konzeptstudie hatte er den Dienst zu einem echten Produkt entwickelt, das tatsächlich genutzt und vorgeführt werden konnte. Als geschickten Marketingtrick versuchten die Musk-Brüder, ihren Webdienst bedeutender aussehen zu lassen, indem sie ihm eine imposante physische Erscheinung gaben. Elon baute ein riesiges Gehäuse um einen normalen PC und montierte ihn auf ein Gestell mit Rädern.
Wenn dann mögliche Investoren vorbeikamen, machte Elon eine Show daraus, diese scheinbar riesige Maschine hereinzurollen. Damit erweckte er den Eindruck, Zip2 laufe auf einem Mini-Supercomputer. „Die Investoren fanden das beeindruckend“, sagt Kimbal. Heilman fiel außerdem auf, dass sie die sklavische Ergebenheit von Elon für das Unternehmen schätzten. „Schon damals, als er im Prinzip noch ein College-Junge mit Pickeln war, hatte Elon diesen Antrieb, dass diese Sache – was immer sie war – gemacht werden musste und dass er, wenn er sie nicht machen würde, den Anschluss verpassen würde“, sagt er. „Ich glaube, das haben die Wagniskapitalgeber erkannt – dass er bereit war, seine Existenz auf den Aufbau dieser Plattform zu verwetten.“ Ziemlich genau so äußerte sich Musk gegenüber einem Kapitalgeber auch selbst: „Ich habe eine Mentalität wie ein Samurai. Ich würde eher Selbstmord begehen als zu scheitern.“
So ging es weiter mit Zip2
1999 kaufte der damalige Hardware-Riese Compaq das Start-up Zip2 für 307 Millionen Dollar. Dies war der größte Betrag, der bis dahin jemals für ein Internetunternehmen gezahlt worden war. Die Beteiligung von Elon war immerhin 22 Millionen Dollar wert.
Der Beitrag ist ein Auszug aus der nun auch auf Deutsch erschienenen Biografie „Der wahre Iron Man“. Ashlee Vance, der US-Wirtschaftsjournalist und Autor der Biografie, hat für sein Buch mehr als 40 Stunden persönlich mit Elon Musk verbracht und exklusiven Zugang zu seinem familiären Umfeld erhalten. Erzählt wird Musks kometenhafter Aufstieg von seiner Flucht aus Südafrika mit 17 Jahren bis heute. Entstanden ist die inspirierende und spannende Geschichte eines der erfolgreichsten Querdenker.
Ashlee Vance, Elon Musk, Wie Elon Musk die Welt verändert - Die Biografie, ISBN: 978-3-89879-906-5, Finanzbuch Verlag 2015, 19,99 EUR
Social Engineering auf dem Vormarsch
Wie Deepfakes die Sicherheit von Führungskräften stärker in den Fokus rücken.
Fotorealistische KI liefert innerhalb von kürzester Zeit realistische Visuals. Was in vielerlei Hinsicht den Arbeitsalltag erleichtert, bedeutet für Social Engineering jedoch eine neue Eskalationsstufe, wie nicht zuletzt die hitzige Debatte um massenhaft sexualisierte Deepfakes von realen Personen durch Grok eindrücklich vor Augen führte.
Auch Personen in leitenden Funktionen in Unternehmen sind vor solchen Manipulationen nicht gefeit. Zunehmend zielen Angriffe auf Menschen mit Zugriffsrechten und Entscheidungsbefugnissen, deren Freigaben unmittelbare Wirkung auf die Sicherheit einer ganzen Organisation haben. „Fotorealistische KI und hybride Social-Engineering-Kampagnen erhöhen den Druck auf Schlüsselpersonen. Daher brauchen Unternehmen belastbare Verifikationsprozesse, Krisenroutinen und integrierte Schutzkonzepte“, erklärt Markus Weidenauer, geschäftsführender Gesellschafter der SecCon Group GmbH.
Deepfakes zielen auf privates Umfeld
Nach Angaben des Bundesamts für Sicherheit in der Informationstechnik (BSI) lassen sich Deepfakes als Verfahren beschreiben, die gezielt Spear-Phishing und andere Social-Engineering-Angriffe nutzen, um Vertrauen aufzubauen und Autorität zu simulieren. Generative KI fungiert dabei als zentraler technischer Enabler, da sie die realistische Erzeugung manipulativer Audio-, Video- und Textinhalte erstmals in industriellem Maßstab ermöglicht. „Die eigentliche Bedrohung ergibt sich dabei nicht aus einzelnen KI-generierten Inhalten, sondern aus deren koordinierter Nutzung“, weiß der Sicherheitsexperte.
Infolge der steigenden Qualität und der zunehmenden Verfügbarkeit generativer KI wird es darüber hinaus zunehmend schwieriger, Fakt von Fiktion zu unterscheiden „Zwar können isolierte Inhalte für sich betrachtet zweifelhaft sein, doch das konsistente Zusammenspiel mehrerer manipulierter Medieninhalte erhöht die wahrgenommene Glaubwürdigkeit erheblich“, ergänzt der Profi und weist darauf hin, dass sich diese Entwicklung in der Praxis zuspitzt. „Social Engineering, Deepfakes und digitale Erpressung werden immer häufiger mit Observationen des privaten Umfelds sowie Angriffen auf die Heim-IT kombiniert. Durch diese Eskalation der Angriffsmittel bauen Täter gezielt psychologischen Druck auf, der die Widerstandsfähigkeit der Betroffenen weiter reduziert.“
Risiken kennen, Wege einüben
Kompromittierte Schlüsselpersonen mit Steuerungs- und Entscheidungsfähigkeiten bergen hohes Schadenspotenzial für Betriebe. Das reicht von unmittelbaren finanziellen Verlusten bis zu dauerhaften Reputationsschäden. Dieses Risiko wird insbesondere dort verstärkt, wo organisatorische und prozessuale Absicherungen fehlen. „Resilienz bedeutet aber, auch in potenziellen Krisensituationen sichere Entscheidungen treffen zu können“, betont Markus Weidenauer. Trotzdem mangelt es vielen Unternehmen sowohl an speziellen Trainings zum Thema Social Engineering als auch an Meldewegen, klaren Freigabeprozessen, die auch unter Druck funktionieren, sowie alternativen Kommunikationskanälen. „Nur wenn Mitarbeiter diese Strukturen kennen und regelmäßig einüben, entsteht eine Kultur, in der eine frühzeitige Eskalation in der Meldekette als notwendiger Beitrag zur Sicherheit des gesamten Betriebs wahrgenommen wird“, fügt Markus Weidenauer hinzu.
Dringender Handlungsbedarf in Unternehmen
Um hier Abhilfe zu schaffen, verabschiedete im September 2025 das Bundeskabinett das sogenannte KRITIS-Dachgesetz zur Stärkung der Resilienz kritischer Einrichtungen. Es verpflichtet die Unternehmensleitung, Schutz- und Präventionsmaßnahmen umzusetzen, deren Wirksamkeit nachzuweisen ist. Der dem Regelwerk zugrunde liegende All-Gefahren-Ansatz fordert, dabei physische, digitale und organisatorische Dimensionen gemeinsam zu betrachten. „Auch wenn Führungskräftesicherheit hier kein eigener Rechtsbegriff ist, sollte sie Teil der Anforderungen an ein modernes Sicherheitsmanagement sein“, so der Geschäftsführer der SecCon Group.
Das bedeutet: Führungskräfte etwa vor Erpressungsversuchen durch Social Engineering zu schützen, ist weder persönlicher Luxus noch Symbolpolitik, sondern ein Element der nachweisbaren Unternehmensresilienz. Schließlich ist die Sicherung von Steuerungs- und Entscheidungsfähigkeit ein Governance-Baustein. Nicht die Person steht im Mittelpunkt, sondern die Handlungsfähigkeit des Instituts.
LegalTech-Trends 2026
KI, strategische Fähigkeiten und mehr Technikverständnis stehen 2026 auf der Agenda der Rechtsbranche – gut zu wissen nicht nur für LegalTech-Start-ups und -Gründer*innen.
Die LegalTech-Trends des Jahres 2026 machen deutlich, dass die Rechtsbranche vor einem grundlegenden Wandel steht: Routinetätigkeiten werden zunehmend in den Hintergrund gedrängt, da sie automatisiert oder von KI übernommen werden. Gleichzeitig gewinnen neue Kompetenzen an Bedeutung und Up-Skilling wird zur Schlüsselqualifikation, während traditionelle Karrierepfade ins Wanken geraten. Dementsprechend werden 2026 das Technologieverständnis, Prozessdesign sowie strategische Fähigkeiten in der Rechtsbranche immer wichtiger.
1. Integrierte Cloud LegalTech-Plattformen etablieren sich
Die LegalTech-Landschaft befindet sich in einem tiefgreifenden Wandel und konsolidiert sich zunehmend zu integrierten Cloud-Ökosystemen. Diese vereinen zentrale Funktionen wie Mandats- und Fallmanagement, Dokumentenautomatisierung, Ausgaben- und Risikoanalysen sowie Kollaborations- und Workflow-Funktionen auf einer gemeinsamen Plattform. Sie lösen die bislang weitverbreiteten, voneinander getrennten Einzelsysteme ab. Diese integrierten Plattformen versetzen juristische Teams in die Lage, auf eine einheitliche, konsistente Datenbasis (Single Source of Truth) zuzugreifen und fundierte Analysen durchzuführen. Das Ergebnis sind deutlich schnellere Arbeitsabläufe, eine verbesserte Transparenz über Team- und Abteilungsgrenzen hinweg sowie eine höhere operative Resilienz der Rechtsorganisation.
2. Eingebettete agentenbasierte KI (embedded agentic AI)
Embedded Agentic AI entwickelt sich rasant zu einem der prägendsten Trends im LegalTech-Markt. Im Gegensatz zu klassischen KI-Assistenzsystemen agieren agentische KI-Module direkt innerhalb juristischer Fachanwendungen und übernehmen eigenständig klar definierte Aufgaben – etwa die Fristenüberwachung, Vertragsprüfung oder Aktenvorbereitung. Nahtlos in bestehende Workflows eingebettet, reduzieren sie manuellen Aufwand, minimieren Risiken und steigern die Produktivität spürbar. Für Kanzleien bedeutet Embedded Agentic AI einen strategischen Schritt hin zu skalierbaren, zukunftssicheren Prozessen, bei denen juristische Expertise gezielt durch autonome, kontextbewusste KI ergänzt wird.
3. KI-Sicherheit & Governance
KI ist längst mehr als nur ein Werkzeug – sie entwickelt sich zu einer operativen Notwendigkeit. Im Jahr 2026 werden LegalTech-Pioniere deshalb über reine Pilotprojekte hinausgehen und Rahmenwerke für die KI-Governance, Risikokontrollen, Compliance und ethische Rahmenbedingungen einführen. In diesem Kontext gilt es beispielsweise Transparenzanforderungen zu definieren, Prompt-Audits und Human-in-the-Loop-Kontrollen einzuführen sowie für die Nachverfolgbarkeit von Datenquellen zu sorgen. Kanzleien und Rechtsabteilungen, die eine strukturierte KI-Governance integrieren, reduzieren Haftungsrisiken, stärken das Vertrauen und können KI skalieren. Wenn sie dabei auch noch den ethischen und regulatorischen Compliance-Anforderungen gerecht werden, sind sie für die Herausforderungen der Zukunft gut aufgestellt.
4. Predictive Legal Analytics
KI steht 2026 nicht mehr nur für unterstützende oder automatisierende Funktionen, sondern entwickelt sich zunehmend zum strategischen Faktor. Generative KI und fortschrittliche Analyseverfahren werden gezielt zum Einsatz kommen, um den Ausgang von Gerichtsverfahren zu prognostizieren, umfangreiche Beweis- und E-Discovery-Daten auszuwerten und bislang verborgene Muster in der Rechtsprechung zu identifizieren. Im Jahr 2026 wird KI-generierter Content in immer mehr Verfahren eine zentrale Rolle bei der Sichtung, Bewertung und Einordnung von Beweismitteln spielen. Dadurch verändern sich die Vorgehensweisen bei der Vorbereitung von Fällen, dem Entwickeln von Argumentationsketten sowie der strategischen Entscheidungsfindung. All das führt dazu, dass Technologie vom reinen Hilfsmittel zum strategischen Entscheidungsfaktor aufsteigt.
5. Juristische Talente entwickeln sich zu technisch versierten Fachkräften
Anwältinnen und Anwälte müssen sich zunehmend zu technologieaffinen Gestaltern entwickeln, die digitale Tools, Automatisierung und KI souverän in ihre tägliche Arbeit integrieren. Statt reiner Rechtsanwendung rücken Prozessverständnis, Systemkompetenz und Dateninterpretation in den Fokus. Kanzleien profitieren von effizienteren Abläufen, höherer Skalierbarkeit und besserer Mandantenorientierung. Tech-fluente Legal Professionals werden damit zum entscheidenden Wettbewerbsfaktor in einem zunehmend digitalisierten Rechtsmarkt.
6. KI-gestütztes Smart Contracting & Compliance Automation
KI geht im Vertragswesen weit über einfache Prüfungsfunktionen hinaus und wird zum zentralen Instrument für umfassendes Contract Lifecycle Management, Compliance-Monitoring sowie eine automatisierte Vertragserstellung. Zudem lassen sich durch Predictive Analytics Risiken, Inkonsistenzen und Compliance-Probleme immer früher identifizieren – ein Trend, der insbesondere für Unternehmensrechtsabteilungen und international tätige Kanzleien von Bedeutung ist. Im Jahr 2026 werden sich vor allem diese drei Anwendungsszenarien etablieren:
- KI-gestützte Vertragsanalysen, die potenzielle Risiken identifizieren und konkrete Korrekturvorschläge liefern.
- Automatisierte Compliance-Berichte zur lückenlosen Nachverfolgung regulatorischer Vorgaben.
- KI-Unterstützung bei der Erstellung von Dokumenten.
7. Cybersicherheit wird zum Wettbewerbsvorteil
Mit der zunehmenden Nutzung von LegalTech steigen auch die Risiken im Bereich Cybersecurity. Umso wichtiger ist es, dass Jurist*innen die Daten ihrer Mandant*innen, vertrauliche Fallakten sowie ihre KI-Systeme vor Ransomware-Angriffe, Datenpannen und der unbefugten Offenlegung sensibler Informationen schützen. Robuste Cybersecurity-Tools und datenschutzorientierte LegalTech-Architekturen sind daher unverzichtbar und werden häufig direkt in die Plattformen integriert. Kanzleien und Rechtsabteilungen, die hier proaktiv investieren, schützen nicht nur ihre Reputation und das Vertrauen ihrer Mandant*innen, sondern erfüllen zugleich die zunehmend strengeren globalen Datenschutzvorschriften.
8. Ergebnisorientierte und ROI-nachweisbare KI-Einführung
2026 steht LegalTech nicht mehr im Testmodus – sie muss konkrete Mehrwerte nachweisen. Sowohl Anbietende als auch Anwendende sind zunehmend gefordert, Investitionen in Technologie klar mit messbaren Ergebnissen zu verknüpfen, etwa durch Zeit- und Kostenersparnis, Reduzierung von Fehlern oder eine höhere Mandant*innenzufriedenheit. Für die Praxis bedeutet das: Pilotprojekte sollten stets mit klar definierten KPIs starten, um den Erfolg messbar zu machen. Analysen spielen eine entscheidende Rolle, um den geschäftlichen Nutzen gegenüber Führungskräften und Mandant*innen transparent darzustellen. Gleichzeitig verlagern sich Budgetentscheidungen weg von „Innovation um der Innovation willen“ hin zu einer klaren ROI-orientierten Ausrichtung.
9. Innovation in der Rechtsberatung & alternative Business-Modelle
Die Veränderung in der Rechtsbranche betrifft die gesamte Struktur juristischer Dienstleistungen. Klassische Stundenhonorare verlieren an Bedeutung, während alternative Preismodelle wie Festpreise, Abonnements oder wertbasierte Vergütungen an Bedeutung gewinnen. Diese Entwicklung wird durch Technologien unterstützt, die Ergebnisse zuverlässig vorhersagen und standardisierte Leistungen effizient bereitstellen. Für Rechtsabteilungen und Mandant*innen wird Kalkulierbarkeit zunehmend zum Standard. Kanzleien, die ihre Liefermodelle entsprechend innovativ gestalten, sichern sich einen Wettbewerbsvorteil gegenüber Wettbewerber*innen, die weiterhin auf traditionelle Stundenhonorare setzen.
10. Lawbots & Vertikale Automatisierung
„Lawbots“ stehen kurz davor, zum festen Bestandteil der Rechtsbranche zu werden. Diese spezialisierten Bots sind darauf ausgelegt, spezifische juristische Aufgaben zu automatisieren – von der Mandantenaufnahme über Dokumentenautomatisierung und Compliance-Prüfungen bis hin zu rechtlicher Recherche. Typische Einsatzszenarien sind etwa maßgeschneiderte Bots für Einwanderungsanträge, Markenanmeldungen oder Routineverfahren in der Prozessführung. Sie übernehmen klar definierte, standardisierte Aufgaben auf höchst effiziente Weise. So gewinnen Anwält*innen wertvolle Zeit, um sich auf komplexe, urteilsbasierte Arbeiten zu konzentrieren und strategische Entscheidungen zu treffen.
Der Autor Oliver Bendig ist CEO von stp.one, einem der führenden Anbietern von Legal-Tech-Komplettlösungen.
DLR-Spin-off Nunos liefert Raumfahrt-Technik für den Acker
Das 2024 von Fabian Miersbach und Tim Paulke gegründete Start-up Nunos hat ein Verfahren entwickelt, das Gülle in effizienteren, geruchlosen Dünger umwandelt. Die Deutsche Bundesstiftung Umwelt (DBU) fördert Nunos mit 125.000 Euro.
Das Düngen mit Gülle ist wichtiger Bestandteil einer im Kreislauf gedachten Landwirtschaft. Aktuell ruhen viele Äcker noch, doch ab Februar versorgen zahlreiche Landwirt*innen ihre Felder wieder auf diese Weise mit Nährstoffen. Doch durch Gülle entstehen auch umweltschädliche Gase wie Ammoniak und Methan. Das Hürther Start-up Nunos hat nun ein Verfahren entwickelt, das Gülle in effizienteren, geruchlosen Dünger umwandelt. Dies verringert den Ausstoß von Treibhausgasen (THG) und sorgt gleichzeitig für eine bessere Nährstoff-Versorgung der Pflanzen. Mitgründer Tim Paulke zufolge wandelt die firmeneigene Anlage „innerhalb eines 24-Stunden-Zyklus‘ mit einem rein biologischen Verfahren Gülle zu einem Düngemittel mit höherer Nährstoffnutzungseffizienz und deutlich geringeren Treibhausgas-Emissionen um.“
Astronautik-Technologie für eine breite Anwendung
Als Ausgründung aus dem Deutschen Zentrum für Luft- und Raumfahrt (DLR) optimiert das Nunos-Team eine in der Astronautik entwickelte Technologie für eine breite Anwendung in der Landwirtschaft. Paulke: „Das zugrundeliegende System wurde ursprünglich zur Aufbereitung von menschlichem Urin als Düngemittel für den erdfreien Anbau in Gewächshäusern auf Raumstationen entwickelt.“ Bei der neuen Anwendung werde die Gülle in der bei den Betrieben errichteten Anlage mithilfe von Mikroorganismen weiterverarbeitet. „Es entstehen ein dünnflüssiges, geruchsloses Düngemittel und eine geringe Menge eines nährstoffreichen Feststoffs,“ so Paulke.
Ernte-Mehrertrag von 20 Prozent erwartet
Bei der Güllelagerung unter dem Stallboden reagieren die Ausscheidungen und setzen schädliche Gase frei. Paulke: „Um die Ausgasung von Methan und Ammoniak zu vermeiden, wird die Gülle möglichst schnell aus den Ställen in die Aufbereitungsanlage geleitet.“ Das zügige Entfernen erhöht nach seinen Worten auch das Tierwohl. Außerdem „werden die Nährstoffe in dem Düngemittel so aufbereitet, dass sie direkt für die Pflanzen verfügbar sind“, so der Nunos-Mitgründer. Diese Nährstoffe kämen schneller als beim herkömmlichen Ausbringen der Gülle bei den Pflanzen an. Auswaschungen aus dem Boden würden so deutlich verringert. „Nach ersten Pflanzversuchen rechnen wir bei der Ernte mit einem Mehrertrag von bis zu 20 Prozent, was wir in 2026 auf zwei landwirtschaftlichen Betrieben in Feldversuchen validieren möchten“, prognostiziert Paulke
Nunos-Dünger auch für den Hausgebrauch
Neben den Gülle-Aufbereitungsanlagen stellt das Start-up nach eigenen Angaben kleinere Mengen des Düngemittels für den Hausgebrauch her. „Der Dünger wirkt auch für den heimischen Tomatenanbau oder Zimmerpflanzen wie ein Multivitamin-Drink“, so Paulke. Der Vertrieb erfolge über das Internet. Das Verfahren zur Umwandlung der Gülle in den effizienten Dünger sei über das DLR patentiert und von Nunos exklusiv lizensiert.
Die Deutsche Bundesstiftung Umwelt (DBU) fördert das Unternehmen mit 125.000 Euro. Paulke: „Aktuell arbeiten wir hauptsächlich mit Rindergülle und Gärresten aus Biogasanlagen. Durch die DBU-Förderung bekommen wir die Möglichkeit, das Verfahren ausführlicher auf seine Umweltauswirkungen zu testen, anstatt nur wirtschaftliche Faktoren zu betrachten.“ Außerdem geplant seien neue Feldversuche, die die zusätzlichen Erträge durch den Dünger weiter verifizieren und Optimierungsmöglichkeiten finden.
Mehr Effektivität und wirtschaftliche Effizienz für die Landwirtschaft
DBU-Referentin Dr. Susanne Wiese-Willmaring sieht großen Bedarf in der Landwirtschaft für Konzepte wie das von Nunos: „Die Bäuerinnen und Bauern wissen von den Auswirkungen der bei ihrer Arbeit entstehenden Treibhausgase. Oft wollen Sie etwas verändern und müssen es aufgrund gesetzlicher Vorgaben teils auch.“ Die hohen Treibhausgas-Emissionen brächten der Landwirtschaft einen Misskredit ein, der durch innovative Lösungen behoben werden könne. Wiese-Willmaring weiter: „Für die Betriebe müssen dabei Effektivität und wirtschaftliche Effizienz stimmen – Herausforderungen, die Nunos beide aktiv angeht.“
KI-Trends 2026: Reifer, realer, relevanter
2026 tritt KI in eine neue Phase ein: weniger Hype, mehr Haltung. Expert*innen aus Technologie, Kommunikation und Mittelstand zeigen, wie künstliche Intelligenz Prozesse transformiert, Entscheidungen präziser macht und Marken stärkt – aber auch neue Risiken schafft, von Voice-Cloning bis Abhängigkeiten großer Plattformen. Klar wird: KI entfaltet ihr Potenzial dort, wo Unternehmen sie verantwortungsvoll einsetzen, Transparenz schaffen und menschliche Kompetenz stärken.
Zwischen Dynamik und Verantwortung: KI braucht gemeinsame Sichtweisen
„KI schafft keine perfekten Lösungen auf Knopfdruck, sondern eröffnet neue Wege, Herausforderungen besser zu bewältigen. Die größten Chancen liegen darin, Wissensverlust zu vermeiden, Reibungsverluste zu reduzieren und individueller auf Menschen einzugehen – im Gesundheitswesen genauso wie in HR, Bildung und Produktion. Gleichzeitig besteht die größte Herausforderung darin, eine gemeinsame Sichtweise auf KI zu entwickeln: Alle reden darüber, aber oft über völlig Unterschiedliches. Das gelingt nur über kleine Schritte, viel Kommunikation und eine Annäherung auf Augenhöhe. Zugleich zeichnet sich ein klarer Trend ab: die Fragmentarisierung der KI-Landschaft und eine problematische Abhängigkeit von US-Anbietern, die neue, eigene Handlungswege erfordert. Wer diese Dynamik versteht und verantwortungsvoll gestaltet, erschließt das Potenzial von KI von automatisierten medizinischen Leistungen über effizientere Produktionsprozesse bis hin zu deutlich schnelleren Innovationszyklen.“
KI-Modelle erfolgreich im Unternehmen einführen
Worauf es bei der Implementierung von KI wirklich ankommt.
Künstliche Intelligenz (KI) gewinnt in Unternehmen zunehmend an Bedeutung. Sie kann Prozesse beschleunigen, große Datenmengen sinnvoll nutzbar machen und Entscheidungen unterstützen. Doch in der Praxis zeigt sich: Moderne Technologie allein führt noch nicht zum Erfolg. Entscheidend ist ein strukturiertes Vorgehen, bei dem Ziele klar definiert, Daten sorgfältig vorbereitet und organisatorische Rahmenbedingungen von Beginn an berücksichtigt werden. „Viele KI-Initiativen scheitern daran, dass am Anfang die Orientierung fehlt“, sagt Benedikt Weber, Geschäftsführer der applord GmbH. „Struktur schafft Entscheidungsfähigkeit – noch bevor über konkrete KI-Modelle gesprochen wird.“
Organisatorischer Wandel und Einbindung der Mitarbeitenden
Der Einsatz von KI verändert Arbeitsabläufe, Verantwortlichkeiten und Entscheidungswege. Mitarbeitende arbeiten verstärkt mit automatisierten Systemen zusammen, Aufgaben verschieben sich, Rollen entwickeln sich weiter. Wird dieser Wandel nicht aktiv begleitet, entstehen Unsicherheiten oder Ablehnung gegenüber neuen Technologien. Erfolgreiche Unternehmen setzen deshalb auf transparente Kommunikation und frühzeitige Einbindung der Mitarbeitenden. Sie erklären, warum KI eingesetzt wird, welche Aufgaben sie übernimmt und wo menschliche Expertise weiterhin unverzichtbar bleibt. Fehlt dieses gemeinsame Verständnis, werden neue Systeme häufig nur eingeschränkt genutzt. „KI-Projekte scheitern selten an der Technologie“, betont Weber. „Viel häufiger fehlt ein klares Bild davon, welchen konkreten Nutzen KI für Mitarbeitende und Organisation wirklich bringt.“
Auswahl der passenden KI-Lösung
Das Angebot an KI-Lösungen wächst rasant. Für Unternehmen besteht die Herausforderung darin, nicht der technischen Vielfalt zu folgen, sondern eine Lösung zu wählen, die zum eigenen Geschäftsprozess passt. Der Ausgangspunkt sollte immer ein klar definierter Anwendungsfall sein: Welche Aufgabe soll KI konkret unterstützen oder verbessern? Neben den Funktionen spielen auch Fragen der Nachvollziehbarkeit, Integration in bestehende Systeme und regulatorische Anforderungen eine Rolle. Werden diese Aspekte zu spät berücksichtigt, entstehen Lösungen, die technisch leistungsfähig sind, im Alltag aber keinen Mehrwert liefern. „Viele Unternehmen wählen KI nach dem Funktionsumfang aus und stellen später fest, dass sie nicht zum eigenen Prozess passt“, erklärt Weber. „Erfolgreich ist KI dann, wenn sie Abläufe sinnvoll ergänzt und verständliche Ergebnisse liefert.“
Datenqualität als Grundlage für verlässliche Ergebnisse
KI-Modelle sind vollständig von der Qualität ihrer Daten abhängig. In vielen Unternehmen existieren relevante Informationen zwar, sie sind jedoch über verschiedene Systeme verteilt, unterschiedlich gepflegt oder historisch gewachsen. Diese Ausgangslage erschwert nicht nur den Einsatz von KI, sondern kann zu fehlerhaften oder schwer nachvollziehbaren Ergebnissen führen. Datenmanagement ist daher keine einmalige Vorarbeit, sondern eine kontinuierliche Aufgabe. Dazu gehören klare Zuständigkeiten, regelmäßige Prüfungen und eine strukturierte Aufbereitung der Daten. „Der Aufwand für Datenqualität wird häufig unterschätzt“, sagt Weber. „Ohne geprüfte und konsistente Daten lassen sich keine stabilen und verlässlichen KI-Ergebnisse erzielen – unabhängig davon, wie gut das Modell ist.“
Schrittweise Einführung statt großer Umbruch
Statt KI sofort unternehmensweit einzusetzen, empfiehlt sich ein schrittweises Vorgehen. Unternehmen können so mit klar abgegrenzten Anwendungsfällen beginnen, Lösungen im Alltag testen und die Ergebnisse anhand messbarer Kriterien, wie Benutzerfreundlichkeit oder verständlicher Anleitungen, bewerten. So lassen sich Risiken reduzieren und Erkenntnisse gezielt nutzen. Pilotprojekte liefern nicht nur technische Erkenntnisse, sondern zeigen auch, wie gut KI im Arbeitsalltag akzeptiert wird. Auf dieser Basis lässt sich entscheiden, welche Lösungen ausgebaut werden sollten. „Unternehmen, die mit überschaubaren Anwendungsfällen starten, treffen langfristig fundiertere Entscheidungen“, so Weber. „Praxiserfahrungen sind dabei deutlich wertvoller als theoretische Annahmen.“
KI & Bewertungen: Sichtbarkeit in einer neuen Suchrealität
Tipps und To-dos: Wie du dein Bewertungsmanagement strategisch aufsetzt und Sichtbarkeit und Vertrauen im KI-Zeitalter steigerst.
Generative Antworten in Suchmaschinen und Assistenten verändern die Spielregeln der Online-Sichtbarkeit. Nicht mehr nur klassische Rankings entscheiden, sondern die Frage, wem die KI genug vertraut, um es überhaupt zu nennen. Aktuelle, glaubwürdige und inhaltlich konkrete Bewertungen werden dabei zum Schlüsselsignal. Für kleine und mittlere Unternehmen bedeutet das: Bewertungsmanagement ist kein Nice-to-have mehr, sondern ein Pflichtprogramm, das Auffindbarkeit, Auswahl und Conversion spürbar beeinflusst. Im Folgenden erfährst du, wie du dein Bewertungsmanagement strategisch aufsetzen solltest, um Sichtbarkeit und Vertrauen im KI-Zeitalter zu steigern.
Warum Bewertungen jetzt geschäftskritisch sind
KI-Modelle zerlegen Rezensionen in viele kleine Bedeutungseinheiten und ziehen daraus ein konsistentes Bild. Welche Leistung wurde erbracht, an welchem Ort, mit welcher Qualität und für welchen Anlass. Aus den einzelnen Stimmen entsteht so ein Vertrauensprofil, das über bloße Sternesummen hinausgeht. Entscheidend ist nicht die bloße Menge, sondern die Frische und die inhaltliche Dichte der Aussagen. Eine Rezension wie „Schnell geholfen am Sonntag, sehr kompetente Beratung zu Reiseimpfungen“ liefert gleich mehrere Signale. Zeitliche Verfügbarkeit, thematische Expertise und konkreter Nutzen. Genau solche Details erhöhen die Wahrscheinlichkeit, in generativen Antworten aufzutauchen, wenn Menschen in ihrer Nähe nach einer Lösung suchen. Wer regelmäßig neue, authentische und präzise Bewertungen erhält, verschafft der KI verlässliche Hinweise und sichert sich dadurch mehr Sichtbarkeit in genau den Momenten, in denen Entscheidungen vorbereitet werden.
Bewertungsmanagement als Prozess, nicht als Aktion
Wirksam wird Bewertungsarbeit, wenn sie selbstverständlich Teil der täglichen Abläufe ist. Nach dem Kontakt freundlich um Feedback bitten, den Weg zur passenden Plattform so kurz wie möglich machen, interne Zuständigkeiten klar regeln und Reaktionszeiten verbindlich festlegen. Aus diesen scheinbar kleinen Schritten entsteht ein stabiler Rhythmus, der kontinuierlich neue Kund*innenstimmen hervorbringt und der KI immer wieder frische Kontexte liefert. Ein solcher Prozess ist robuster als jede einmalige Kampagne, weil er verlässlich Vertrauen aufbaut und saisonale Schwankungen abfedert. Teams profitieren, wenn sie Zielkorridore definieren, etwa eine bestimmte Zahl neuer Rezensionen pro Woche und wenn sie Fortschritte sichtbar machen. So wird aus gutem Vorsatz ein gelebter Ablauf, der die gesamte Organisation stärkt.
Sprache der Kund*innen wirkt wie natürliches SEO
KI versteht Alltagssprache deutlich besser als Listen isolierter Schlagwörter. Unternehmen gewinnen, wenn sie um freie, aber konkrete Formulierungen bitten, ohne Vorgabetexte und ohne Druck. Eine höfliche Bitte wie: „Wenn es für Sie passt, nennen Sie gern, was Ihnen besonders geholfen hat“ öffnet den Raum für präzise Hinweise auf Leistungen, Erreichbarkeit, Barrierefreiheit oder Schnelligkeit. Solche natürlich entstandenen Details sind für Menschen überzeugend und zugleich für Maschinen gut interpretierbar. Sie zeigen, wofür ein Betrieb tatsächlich steht, und verankern die passenden Begriffe in einem echten Nutzungskontext. Das Ergebnis ist eine Sprache, die Vertrauen schafft und die Auffindbarkeit stärkt, ohne künstlich zu wirken.
Antworten trainieren Vertrauen für Menschen und Maschinen
Jede Reaktion auf eine Bewertung ist ein sichtbares Zeichen von Serviceorientierung und zugleich zusätzlicher Kontext für die KI. Gute Antworten bedanken sich aufrichtig, beziehen sich konkret auf das Erlebte und bieten einen klaren nächsten Schritt an. Bei Kritik zählt ein professioneller Umgang. Das Anliegen nachvollziehen, Verantwortung übernehmen, eine realistische Lösung anbieten und einen direkten Kontaktweg nennen. So entsteht ein Bild von Verlässlichkeit, das Hemmschwellen senkt und Wiederbesuche wahrscheinlicher macht. Die KI erkennt diesen Umgang ebenso und ordnet das Unternehmen eher als vertrauenswürdig ein. Mit der Zeit entsteht ein stabiler Kreislauf aus guter Erfahrung, konstruktiver Reaktion und wachsendem Vertrauen.
Lokaler Content und Social Proof gehören zusammen
Bewertungen entfalten ihre volle Wirkung, wenn sie auf eine solide Informationsbasis treffen. Konsistente Unternehmensdaten, vollständige Leistungsseiten pro Standort, klare Öffnungszeiten inklusive Ausnahmen und eine schnelle, mobil optimierte Webseite erleichtern die Einordnung für Nutzer*innen und Maschine. Wenn ausgewählte Zitate oder Bewertungsschnipsel an relevanten Stellen sichtbar werden, etwa auf der Startseite, in der Buchungsstrecke oder in den häufigen Fragen, entsteht ein schlüssiges Gesamtbild. Der lokale Bezug bleibt klar erkennbar, die Erwartungen sind gut gesetzt, und die nächsten Schritte sind ohne Umwege möglich. So wird aus Social Proof ein handfester Conversion Hebel.
Vom Feedback zur Verbesserungsschleife
Rezensionen sind fortlaufende Marktforschung aus erster Hand. Wer wiederkehrende Themen auswertet, etwa Wartezeiten, Erreichbarkeit oder Bezahloptionen, erkennt schnell die Stellschrauben mit der größten Wirkung. Wichtig ist, die daraus abgeleiteten Verbesserungen konsequent umzusetzen und sichtbar zu machen. Informieren, handeln, erneut um Rückmeldung bitten. Dieser offene Kreislauf wirkt nach innen und nach außen. Mitarbeitende erleben, dass Feedback Veränderungen anstößt, Kund*innen erleben, dass ihre Hinweise ernst genommen werden, und die KI registriert die fortlaufende Pflege der Qualität. Mit jeder Runde werden Erlebnisse besser und Bewertungen stärker, was die Sichtbarkeit weiter erhöht.
Fazit
Sichtbarkeit entsteht heute dort, wo Menschen nach konkreten Lösungen fragen und wo KIs verlässliche Hinweise zu Qualität und Relevanz finden. Unternehmen, die Bewertungen als strategischen, kontinuierlichen Prozess verstehen, erhöhen ihre Chance, in generativen Antworten genannt zu werden und gewinnen genau in den entscheidenden Momenten an Präsenz. Vieles davon ist eine Frage kluger Organisation und klarer Abläufe. Der finanzielle Aufwand bleibt überschaubar, der Nutzen für Auffindbarkeit, Vertrauen und Umsatz ist deutlich spürbar.
Die Autorin Franziska Ortner ist Produktmanagerin bei SELLWERK
Pflanzentheke: Vertical-Farming-Start-up erhält DBU-Förderung
Das 2022 gegründete Start-up Pflanzentheke ermöglicht vertikales Gemüsewachstum in nährstoffreichem Wasser statt in Erde und wird dafür mit 175.000 Euro durch die Deutsche Bundesstiftung Umwelt (DBU) gefördert.
Der Großteil des in Deutschland konsumierten Obsts und Gemüses wird importiert. Laut Zahlen des Bundesministeriums für Ernährung, Landwirtschaft und Heimat (BMLEH) liegt die Selbstversorgungsrate – also der Anteil der im Land produzierten im Vergleich zu den insgesamt verbrauchten Gütern – für Gemüse bei 36 Prozent, für Obst lediglich bei 20 Prozent. Besonders große Städte sind auf die Versorgung durch Lebensmittellieferungen über weite Distanzen angewiesen. DBU-Generalsekretär Alexander Bonde: „Nahrungsmittelanbau nah an urbanen Zentren mit hohem Bedarf spart teure und klimaschädliche Transportwege. Das geht jedoch nur mit einer effizienten Nutzung der knappen Flächen.“
Genau dieses Ziel verfolgt das 2022 von Dr. Michael Müller, Dr. Julia Dubowy, Lasse Olliges und Leon Welker gegründete Start-up Pflanzentheke aus dem hessischen Lorsch mit sogenannten Vertical-Farming-Systemen für den geschützten Anbau – also dem vertikalen Anbau von Lebensmitteln in geschlossenen Anlagen wie Gewächshäusern oder Folientunneln. Pflanzentheke-Mitgründer Leon Welker: „Das Gemüse wächst in A-förmigen Regalen in einem sogenannten hydroponischen System – Pflanzen gedeihen also in nährstoffhaltigem Wasser anstatt in Erde auf im Schnitt sieben Stufen pro Anlage.“ Nun nimmt das Unternehmen mit der DBU-Förderung in Höhe von 175.000 Euro die Automatisierung des Systems ins Visier – für einen effizienteren Einsatz von Zeit, Ressourcen und Energie.
Automatisiertes und datenbasiertes Pflanzenwachstum
Nach den Worten von Welker erfolgte die Bestückung mit Jungpflanzen der vertikalen Anlagen sowie die Ernte bislang manuell. Nun arbeitet das Start-up an einer vollständigen Automatisierung des Produktionsprozesses – bei minimalem Energieverbrauch und niedrigen Betriebskosten. „Wir setzen auf praxisnahe Automatisierungsschritte, die konkret dort ansetzen, wo kleine und mittlere Betriebe heute an ihre Grenzen stoßen: bei Ernte, Wiederbepflanzung und Systempflege“, so Welker. Das Ziel sei, die tägliche Arbeit „deutlich zu erleichtern – mit einem modularen System, das ressourcenschonend arbeitet, Wasser spart und Arbeitszeit reduziert“. Welker: „Damit machen wir effiziente Hydroponik auch für kleinere Betriebe wirtschaftlich zugänglich.“
Dazu werde das vorhandene A-förmige Anbaumodell in Bewegung versetzt und an eine intelligente Steuerung angeschlossen. „Mit Sensoren zur Überwachung werden die Pflanzenreihen mit den passenden Nährstoffen für die jeweilige Wachstumsphase versorgt – vollständig datenbasiert“, so der Mitgründer. Jede Reihe beherberge ein Gemüse in einem anderen Wachstumsstadium. Welker: „Durch die bewegliche Anlage optimieren wir auch den Zugang zum Sonnenlicht je nach Reifegrad.“ Schließlich könne eine Reihe geerntet und wiederbestückt werden, während die anderen Pflanzen durch die Umpositionierung ungestört wachsen.
Anlage soll Böden schonen sowie Wasser- und Düngerverbrauch reduzieren
Die von dem Start-up entwickelte Anlage ermöglicht Welker zufolge, Böden zu schonen, den Wasser- und Düngerverbrauch zu reduzieren und auf kleinen Flächen möglichst viele Lebensmittel anzubauen. „Das System kommt bei gleichem Ertrag mit rund 90 Prozent weniger Wasser und 85 Prozent weniger Dünger aus als die konventionelle Landwirtschaft,“ so der Pflanzentheke-Mitgründer. „Wir verbinden die Vorteile des Indoor-Vertical-Farmings – etwa bei Nährstoffnutzung und Wassereffizienz – mit einem entscheidenden Plus: Unsere Anlagen nutzen natürliches Sonnenlicht und kommen daher mit einem Bruchteil der Energiekosten aus“, sagt Welker. „Das macht den ressourcenschonenden Anbau wirtschaftlich tragfähig – auch ohne energieintensive Beleuchtungssysteme.“ Welker weiter: „Weite Transporte erzeugen hohe Mengen klimaschädlicher Treibhausgase. Der Anbau nah an Städten mithilfe solcher Vertical-Farming-Systeme reduziert die Lieferwege sowie die je nach Lebensmittel energieintensiven Kühlketten.“
DBU-Förderung ermöglicht klima- und umweltschonenden Lebensmittelanbau
Das Start-up war bereits bis Ende 2024 Teil der Green Startup-Förderung der DBU. Dadurch wurde nach Welkers Worten die Marktreife des Produkts erfolgreich erreicht. Die Entwicklung der Anlage sei zudem mit fachlicher Unterstützung durch die Hochschule Osnabrück erfolgt. „Die Automatisierung ist nun ein neues, zeitintensives Forschungsprojekt – eine Entwicklung, die wir im laufenden Betrieb nicht leisten könnten“, so Welker. Die erneute Förderung ermögliche mehr klima- und umweltschonenden Lebensmittelanbau mithilfe der automatisierten Pflanzentheke-Anlagen. Zielgruppen sind dem Unternehmen zufolge vor allem kleine und mittelgroße Betriebe. „Die Pflanzentheken sind schnell installierbar, da sie an bestehender Infrastruktur befestigt werden können“, so Welker. Neben den ökologischen Vorteilen des Systems solle die Automatisierung auch den steigenden Fachkräftemangel im Gartenbau in Teilen kompensieren.
Gründen mit dem Smartphone: 5 innovative Businessideen für Mobile-First
Innovative Businessideen rund ums Smartphone. Entdecke E-Commerce, Nischen-Apps und mobile Dienste als lukrative Geschäftsmodelle.
Das Smartphone hat unsere Welt in den letzten zwei Jahrzehnten grundlegend verändert. Was einst ein reines Kommunikationsmittel war, ist heute unsere digitale Schaltzentrale, das wichtigste Werkzeug für Konsum, Organisation und – vor allem – für das Unternehmertum.
Mehr als fünf Milliarden Menschen besitzen weltweit ein mobiles Endgerät. Diese beispiellose Marktdurchdringung hat eine „Mobile-First-Ära“ geschaffen, in der fast jeder Prozess und jede Dienstleistung über das kleine Display abgewickelt wird. Für Gründer bietet diese Allgegenwart des Smartphones ein enormes Potenzial.
Die besten Geschäftsideen entstehen dort, wo Technologie auf einen echten Bedarf trifft. Ob es darum geht, ein bestehendes Problem effizienter zu lösen oder eine völlig neue Nische zu erschließen – das Smartphone ist die zentrale Plattform dafür.
Dieser Artikel beleuchtet innovative Businessideen, die direkt aus der mobilen Revolution entstanden sind. Von cleveren Hardware-Ergänzungen über spezialisierte Apps bis hin zu neuen Dienstleistungen: Das Smartphone ist das Sprungbrett für Ihren nächsten erfolgreichen Start-up.
Produkte und Personalisierung im mobilen Umfeld
Obwohl das Smartphone selbst ein hochkomplexes Stück Technologie ist, bietet auch das unmittelbare Umfeld des Geräts zahlreiche lukrative Möglichkeiten für Gründer. Diese sogenannten Hardware-nahen Ideen drehen sich oft um Zubehör oder physische Dienste, die das mobile Nutzererlebnis verbessern.
Eine der erfolgreichsten Nischen der letzten Jahre ist die Personalisierung. Da fast jeder Mensch ein Smartphone besitzt, suchen Nutzer nach Wegen, ihr Gerät einzigartig zu machen. Ein klassisches, aber immer noch wachsendes Geschäftsfeld ist dabei, die Handyhülle selber zu gestalten. E-Commerce-Plattformen, die einen einfachen Online-Konfigurator anbieten, ermöglichen es Kunden, ihre Hüllen mit eigenen Fotos, Designs oder individuellen Texten zu versehen. Dieses Geschäftsmodell basiert auf geringen Stückkosten, einem einfachen Produktionsprozess (meist Druck) und dem starken Wunsch nach Individualität.
Neben der reinen Ästhetik gibt es weitere zukunftsorientierte Produktideen:
- Smarte Ergänzungen: Denken Sie an spezielles, kompaktes Zubehör für mobile Content-Creation (z.B. Mini-LED-Ringe, spezialisierte Mikrofone).
- Nachhaltigkeit und Schutz: Hochwertige, langlebige oder biologisch abbaubare Schutzfolien und Hüllen sprechen eine wachsende, umweltbewusste Zielgruppe an.
- Mobile-Payment-Lösungen: Innovative, physische Halterungen oder Adapter, die das Smartphone noch besser in den Alltag (wie Bezahlvorgänge oder Fahrzeugnutzung) integrieren.
Der Schlüssel zum Erfolg liegt hier darin, ein Massenprodukt – das Smartphone – durch ein Nischenprodukt zu ergänzen, das entweder ein Problem löst oder einen emotionalen Mehrwert wie Einzigartigkeit bietet.
Digitale Dienste und Nischen-Apps
Die wahre Kraft des Smartphones liegt in seiner Software. Hier warten unzählige Möglichkeiten für Gründer, die bereit sind, mit einer App oder einem spezifischen digitalen Dienst eine Marktlücke zu füllen. Anstatt generische Anwendungen zu entwickeln, liegt der Fokus heute auf Nischen-Apps, die sehr spezifische Probleme einer klar definierten Zielgruppe lösen.
Ein vielversprechendes Feld sind Micro-Learning-Anwendungen. Nutzer können kurze, gamifizierte Lerneinheiten für hochspezialisierte Fähigkeiten (etwa Excel-Makros, Weinverkostung oder spezifische Programmiersprachen) direkt in der Hosentasche abrufen. Dieses Modell funktioniert hervorragend über ein Abo-System und nutzt die wenigen Minuten Wartezeit, die jeder im Alltag hat.
Weitere zukunftsweisende Businessideen sind:
- AR-gestützte Shopping-Helfer: Apps, die Augmented Reality nutzen, um dem Kunden zu zeigen, wie ein Möbelstück im eigenen Wohnzimmer aussieht oder wie eine neue Wandfarbe wirkt. Der Vorteil liegt in der direkten Kaufentscheidung.
- Lokale Service-Vermittler: Digitale Plattformen, die Kleinstaufträge im lokalen Umfeld vermitteln (z.B. Nachbarschaftshilfe, Hunde-Sitting oder kurzfristige Handwerksleistungen). Der mobile Aspekt ist hier die einfache, standortbasierte Koordination.
- Gesundheit und Wellness: Spezialisierte Anwendungen, die mithilfe der Smartphone-Sensoren Daten sammeln, analysieren und personalisierte Empfehlungen für Schlaf, Stressreduktion oder Ernährung liefern.
Der Schlüssel zum Erfolg in diesem Segment ist der Fokus auf ein sauberes, intuitives Design (UX/UI) und ein skalierbares Geschäftsmodell, das oft auf Abonnements oder In-App-Käufen basiert. Die Hürde ist hier oft geringer, da keine physischen Lagerbestände nötig sind.
Mobile Content-Kreation und Monetarisierung
Das moderne Smartphone ist nicht nur ein Konsumgerät, sondern auch ein hochentwickeltes Produktionswerkzeug. Die verbesserten Kamera- und Schnittfunktionen haben das Gerät zum primären Werkzeug für professionelle Content-Kreation gemacht. Dies eröffnet neue Geschäftsfelder für Gründer, die Dienstleistungen oder Nischeninhalte anbieten.
Ein zukunftsträchtiges Feld ist die spezialisierte mobile Videoproduktion. Anstatt teure Kamerateams zu buchen, können Unternehmen mobile Content-Creator beauftragen. Diese liefern hochwertiges Material schnell und flexibel, indem sie effiziente Workflows direkt über das Smartphone nutzen, um dynamische Videos für soziale Medien oder Marketingkampagnen zu erstellen.
Weitere lukrative Dienstleistungsmodelle, die auf dem Smartphone aufbauen:
- Mobile Fotografie für E-Commerce: Spezialisten erstellen und bearbeiten Produktfotos direkt mit dem Smartphone. Dies bietet kleinen Online-Shops einen schnellen und kostengünstigen Service.
- Nischen-Content: Mit hochwertigen mobilen Mikrofonen können Gründer spezialisierte Audioinhalte (wie Branchen-Insider-Podcasts) direkt über das Gerät erstellen und monetarisieren.
Das Smartphone senkt die Eintrittsbarriere für Gründer in der Medien- und Kreativbranche erheblich. Erfolg hat hier, wer sich auf eine Nische spezialisiert und die Flexibilität des mobilen Workflows als Wettbewerbsvorteil nutzt.
Schlussworte
Das Smartphone hat sich unwiderruflich als zentrales Werkzeug der digitalen Wirtschaft etabliert. Es ist nicht nur ein Kanal für den Konsum, sondern vor allem eine Plattform für innovative Geschäftsmodelle. Von der individualisierten Hardware wie der Möglichkeit zur Handyhülle selber gestalten bis hin zu hochspezialisierten Nischen-Apps – die Wachstumschancen sind enorm.
Für angehende Gründer gilt: Die besten Ideen nutzen die Stärken des mobilen Geräts – nämlich die ständige Verfügbarkeit, die eingebauten Sensoren und die einfache Bedienung.
Der Erfolg liegt nicht in der Entwicklung der nächsten "Super-App", sondern darin, ein spezifisches Problem einer klar definierten Zielgruppe effizient und mobil zu lösen. Wer die Mobile-First-Mentalität verinnerlicht, hat die Geschäftszentrale der Zukunft bereits in der Hosentasche.
Jakob Koenen: Mit 18 zum LegalTech-Start-up-Gründer
Die Sovereign AI Betriebs GmbH – 2025 von Jakob Koenen und seinem Vater Prof. Dr. Andreas Koenen mit Sitz in Berlin gegründet – entwickelt spezialisierte KI-Plattformen für die juristische Praxis.
Ein Technologie-begeisterter Abiturient, der schon mit 15 Jahren Jura-Vorlesungen besucht, gründet ein LegalTech-Start-up. Partnerschaftlich an seiner Seite agiert sein Vater, ein renommierter Professor für Baurecht. Das ist das Fundament der Sovereign AI Betriebs GmbH, die in Berlin antritt, das Rechtswissen ganzer Berufs-Generationen in eine juristisch kuratierte KI zu überführen. Herzstück des Unternehmens ist Sovereign Legal AI. Die Plattform bereitet juristische Fragen systematisch, verständlich und nachvollziehbar auf.
„Wir wollen das Recht aus der Blackbox holen“, sagt Jakob Koenen, Gründer und Geschäftsführer der Sovereign AI Betriebs GmbH. „Unsere KI soll kein Ersatz für Anwältinnen und Anwälte sein, sondern ein intelligentes Werkzeug, das Wissen strukturiert, Orientierung gibt und den Zugang zum Recht demokratisiert.“
Rechtspraxis-Know-how, digitalisiert für den Alltag
Die Idee zu Sovereign Legal AI entstand in einem Generationenprojekt. Prof. Dr. Andreas Koenen, Kanzleiinhaber, Fachanwalt und Herausgeber zahlreicher Werke zum Bau- und Architektenrecht, hat über Jahrzehnte beobachtet, wie Rechtswissen in der Praxis verloren geht, weil es zu spät, zu komplex oder zu exklusiv vermittelt wird.
„Das Recht wird beim Bauen oft erst dann herangezogen, wenn es knallt“, sagt Koenen. „Juristinnen und Juristen gelten als Ausputzer, nicht als Geburtshelfer. Sovereign Legal AI will das ändern. "Wir liefern Projektbeteiligten vom Architekten, Planer bis zum Bauherrn einen Kompass, der schon vor Konflikten Orientierung bietet; mit juristisch fundierter Systematik, aber barrierefrei zugänglich“, so Koenen weiter.
Die Wissensbasis der Sovereign Legal AI umfasst unter anderem kommentierte Urteile, systematisch aufbereitete Rechtsinformationen sowie Fachbeiträge von Anwältinnen und Anwälten zu typischen Praxisproblemen. Alle Inhalte sind mit Originalquellen aus Gesetz, Rechtsprechung und Literatur belegt, was den entscheidenden Unterschied zu generativen „Blackbox-Systemen“ markiert.
Neue Plattform für juristische Teilhabe
Sovereign Legal AI entstand in Zusammenarbeit mit den Anwältinnen und Anwälten der Kanzlei Koenen Bauanwälte. Die künstliche Intelligenz (KI) wurde entlang echter Fallarbeit trainiert und in einer Beta-Phase getestet. Dabei versteht sich die KI als Community-Projekt: Nutzende geben Feedback, benennen Lücken und tragen so zur Weiterentwicklung bei. Auf diese Weise wächst die KI mit der Praxis. Im Wissens-Ökosystem von Sovereign befinden sich auch die Austausch-Plattform Sovereign Community und der stationäre Sovereign Store in Münster. Beide sind Teil derselben Markenfamilie und werden von der Sovereign GmbH betrieben. Partner-, Lizenz- und Servicemodelle finanzieren das Projekt. „Wir schaffen eine KI-Plattform, die juristisches Wissen lebendig hält“, so Jakob Koenen. „Das ist Unternehmensnachfolge im besten Sinne. Das Wissen einer Generation wird nicht vererbt, sondern transformiert.“
Junger Gründer mit Tech-DNA
Dass Jakob Koenen früh Verantwortung übernimmt, überrascht kaum. Mit 11 wollte er bereits eine Web-Agentur gründen, erschuf in diesem Zuge den Digitalauftritt eines Handwerksunternehmens. Mit 15 hat er mit Unterstützung seiner Eltern beantragt, frühzeitig als geschäftsfähig erklärt zu werden und gründete nach der Bewilligung sein erstes Unternehmen. Heute ist er Gründer, App-Entwickler und Geschäftsführer des Berliner LegalTech-Unternehmens. Er arbeitet mit einem Netzwerk aus externen Entwicklerinnen und Entwicklern sowie Fachleuten an der technischen Weiterentwicklung von Sovereign Legal AI. Aktuell suchen er und sein Vater als Herausgeber der Inhalte nach Co-Autor*innen und Partner*innen, die weitere juristische Rechtsbereiche wie Energierecht oder IT-Recht innerhalb der KI für sich erschließen.
Weckruf für (KI-)Start-ups
Zwischen Pflicht und Potenzial: Warum der EU AI Act kein Stolperstein, sondern ein strategischer Hebel ist und wie junge Unternehmen ihn frühzeitig für sich nutzen können.
Spätestens seit der Verabschiedung des AI Acts der Europäischen Union im Jahr 2024 ist klar: Der Einsatz künstlicher Intelligenz (KI) in Europa wird rechtlich geregelt – verbindlich, umfassend und risikobasiert. Für viele Unternehmen, vor allem im Start-up-Umfeld, bedeutet das erst einmal: neue Vorgaben, viel Bürokratie, hoher Aufwand. Doch dieser Eindruck greift zu kurz. Denn der AI Act ist weit mehr als ein Regelwerk zur Risikominimierung; er bietet jungen Unternehmen die Chance, Ethik, Effizienz und Rechtssicherheit von Anfang an in Einklang zu bringen. Wer ihn strategisch klug nutzt, kann sich nicht nur vor teuren Fehlern schützen, sondern auch produktiver, innovativer und vertrauenswürdiger aufstellen.
Ein Weckruf mit Wachstumspotenzial
Der AI Act ist die erste umfassende gesetzliche Regelung weltweit, die den Umgang mit KI verbindlich definiert. Ziel ist es, Vertrauen in KI-Technologien zu schaffen, Risiken wie Diskriminierung oder Manipulation zu minimieren und gleichzeitig die Innovationskraft Europas zu sichern. Je nach Risikoklasse, von minimal über hoch bis unvertretbar, gelten unterschiedliche Anforderungen an Transparenz, Sicherheit und Kontrolle. Was viele dabei übersehen: Der AI Act richtet sich nicht nur an Entwickler*innen, sondern auch an Anwender*innen. Schon wer KI zur automatisierten Lebenslaufanalyse, zur Lead-Bewertung im Vertrieb oder für interne Personalentscheidungen nutzt, kann als Betreiber*in haftbar sein – inklusive Dokumentations- und Prüfpflichten. Seit Februar 2025 gilt zudem eine allgemeine Schulungspflicht für KI-Nutzung, unabhängig von Branche oder Unternehmensgröße.
Start-ups: (Noch) nicht betroffen? Ein Trugschluss
Gerade junge Unternehmen neigen dazu, gesetzliche Regularien auf die lange Bank zu schieben – oft verständlich, wenn Zeit, Geld und personelle Ressourcen knapp sind. Doch genau hier liegt das Risiko: Laut einer Bitkom-Studie haben sich nur rund 3 Prozent der Unternehmen intensiv mit dem AI Act beschäftigt. 25 Prozent wissen gar nichts davon. Ein gefährlicher Blindflug, nicht nur wegen potenzieller Bußgelder von bis zu 35 Millionen Euro oder 7 Prozent des Jahresumsatzes, sondern weil damit auch Chancen verschenkt werden.
Dabei geht es beim AI Act nicht nur um Pflichterfüllung, sondern um Zukunftsfähigkeit. Wer KI nutzt, sei es für Marketing, Kund*innenservice oder Produktentwicklung, muss ihre Auswirkungen verstehen, Risiken identifizieren und Prozesse so gestalten, dass sie nachvollziehbar, fair und sicher bleiben. Für Start-ups, die langfristig skalieren und wachsen wollen, ist das kein Nice-to-have, sondern ein Muss.
Wissensdefizite als Wachstumsbremse
Aktuell setzen nur etwa 17 Prozent der kleinen und mittleren Unternehmen in Deutschland KI im Geschäftsalltag ein. Die Gründe: Über 70 Prozent nennen fehlendes Wissen, 58 Prozent Unsicherheit bei rechtlichen Fragen. Gerade bei Start-ups, deren Geschäftsmodell oft auf digitalen Lösungen basiert, ist diese Zurückhaltung alarmierend. Denn wer das Potenzial von KI nicht erkennt oder falsch einsetzt, verliert nicht nur Zeit, sondern auch Marktchancen. Dazu kommt noch die Sorge vor zukünftigen rechtlichen Einschränkungen, wie 82 Prozent der Anwender*innen generativer KI angeben, 73 Prozent verweisen auf die Datenschutzanforderungen als Hemmnis und 68 Prozent sehen Unsicherheiten durch rechtliche Unklarheiten.
Der Schlüssel liegt ganz klar in der Weiterbildung: Nur wer die Funktionsweise, Stärken und Grenzen von KI-Systemen versteht, kann sie verantwortungsvoll und effizient nutzen. Das beginnt schon bei der bloßen Auseinandersetzung mit dem AI Act: 69 Prozent der Unternehmen brauchen professionelle Hilfe dabei. Das betrifft nicht nur Entwickler*innen oder Tech-Teams, sondern auch Gründer*innen sowie Verantwortliche in Marketing, HR und Customer Support. Der AI Act kann dabei als Orientierung dienen: Er macht transparent, welche Prozesse es zu beachten gilt und wie sich Risiken frühzeitig erkennen und adressieren lassen.
KI im Marketing: Vom Tool zur Strategie
Beispiel: Im Marketing ist KI längst mehr als nur eine Helferin für Textgenerierung oder A/B-Testing. Sie analysiert Zielgruppen, erkennt Kaufmuster, generiert kreative Inhalte und liefert datenbasierte Insights in Echtzeit. Doch viele Marketingverantwortliche gehen mit KI noch zu leichtfertig um oder unterschätzen ihre strategische Wirkung. In modernen Marketingabteilungen dient KI als Beschleuniger, Effizienzmotor und kreativer Sparringspartner.
Doch um diesen Nutzen voll auszuschöpfen, braucht es klare Regeln, Datenqualität und nachvollziehbare Prozesse – genau das, was der AI Act einfordert. Was auf den ersten Blick wie ein regulatorisches Korsett wirkt, ist in Wahrheit ein Innovationstreiber: Wer frühzeitig in qualitätsgesicherte Datenprozesse, Modellvalidierung und Feedbackschleifen investiert, steigert nicht nur die Rechtssicherheit, sondern auch die Performance seiner Kampagnen.
Ethik als Wettbewerbsfaktor
Neben Effizienz und Legalität spielt auch Ethik eine zunehmend wichtige Rolle. Nutzer*innen und Kund*innen erwarten von Unternehmen, dass sie KI fair, transparent und verantwortungsvoll einsetzen. Diskriminierende Algorithmen, intransparente Entscheidungen oder Datenmissbrauch können nicht nur rechtliche Konsequenzen haben, sie beschädigen auch das Vertrauen in die Marke. Gerade Start-ups haben hier einen Vorteil: Sie können ethische Leitlinien von Anfang an mitdenken und in ihre Unternehmenskultur integrieren. Das schafft nicht nur Glaubwürdigkeit gegenüber Kund*innen, Investor*innen und Partner*innen – es spart auch spätere Reputationskosten. Studien zeigen: Unternehmen, die KI ethisch reflektiert einsetzen, erzielen höhere Zufriedenheitswerte bei Mitarbeitenden und Kundschaft, und sie sind resilienter gegenüber technologischen Risiken.
Von Anfang an strategisch denken
Für Gründer*innen und junge Unternehmen lautet die Empfehlung daher: Nicht warten, bis der AI Act zum Problem wird, sondern ihn frühzeitig als Chance nutzen, sich professionell aufzustellen. Das bedeutet konkret:
- Verantwortlichkeiten klären: Wer ist im Unternehmen für KI verantwortlich – technisch, ethisch, rechtlich?
- Transparente Prozesse etablieren: Wie werden Daten erhoben, verarbeitet und genutzt? Wer prüft Algorithmen auf Verzerrungen?
- Schulungen anbieten: Alle, die mit KI-Systemen arbeiten, sollten deren Funktionsweise und rechtliche Implikationen kennen.
- Ethikrichtlinien entwickeln: Wie kann das Unternehmen sicherstellen, dass KI fair, sicher und inklusiv eingesetzt wird?
- Technologische Standards einhalten: Wer dokumentiert und validiert die eingesetzten Systeme regelmäßig?
Kein Bremsklotz, sondern ein Beschleuniger
Der EU AI Act ist ein Weckruf für Start-ups, die KI nutzen oder dies künftig wollen. Er schafft Klarheit, wo zuvor Unsicherheit herrschte, und definiert Standards, an denen sich junge Unternehmen orientieren können. Wer das ignoriert, riskiert nicht nur Bußgelder, sondern auch seine Wettbewerbsfähigkeit. Wer ihn jedoch proaktiv angeht, positioniert sich als verantwortungsvolle(r) Innovator*in. Der Wandel hat längst be- gonnen. Jetzt ist die Zeit, ihn bewusst mitzugestalten.
Der Autor Bastian Sens ist Marketing-Experte und Gründer der Beratung & Academy Sensational GmbH
Code für die künstliche Intelligenz: technische Optimierung für die Ära der KI-Suche
Code für die KI: So optimierst du deine Website technisch mit strukturierten Daten und Protokollen für die besten generativen Suchergebnisse.
Die Regeln der Online-Sichtbarkeit werden neu geschrieben. Es geht nicht mehr nur darum, von einem herkömmlichen Algorithmus indiziert zu werden. Stattdessen müssen Websites so aufbereitet werden, dass sie von künstlicher Intelligenz (KI) und großen Sprachmodellen (LLMs) fehlerfrei interpretiert und verarbeitet werden können.
KI erstellt ihre Antworten, indem sie Inhalte blitzschnell liest, deren Bedeutung versteht und die wichtigsten Fakten daraus extrahiert. Wenn der technische Unterbau einer Website unsauber ist, kann die KI die Informationen entweder nicht zuverlässig finden oder sie falsch interpretieren.
Das bedeutet, die technische Seite der Website – der Code – wird zum Fundament für eine gute Platzierung in den generativen Suchergebnissen. Wer hier Nachholbedarf hat, riskiert, als vertrauenswürdige Quelle für die KI unsichtbar zu werden.
Dieser Artikel beleuchtet die entscheidenden technischen Anpassungen, die notwendig sind, um deine Website optimal für die neue Ära der KI-Suche vorzubereiten.
Kontrolle und Zugang: Die Regeln für Sprachmodelle
Der erste technische Schritt zur Optimierung für KI-Ergebnisse ist die Steuerung des Zugriffs durch die großen Sprachmodelle (LLMs). Traditionell wird der Zugang durch die robots.txt Datei geregelt, die festlegt, welche Bereiche der Website von herkömmlichen Suchmaschinen-Crawlern besucht werden dürfen.
Mit dem Aufkommen verschiedener, spezialisierter KI-Crawler (die nicht immer identisch mit dem Googlebot oder Bingbot sind) entsteht jedoch die Notwendigkeit, diesen neuen Akteuren eigene Regeln zu geben. Es geht darum, Transparenz darüber zu schaffen, welche Daten zur Generierung von Antworten verwendet werden dürfen und welche nicht.
Neue Protokolle für neue Crawler
Experten diskutieren und entwickeln neue Protokolle, um diese Unterscheidung zu ermöglichen. Ein viel diskutierter Ansatz ist die Einführung von Protokollen, die spezifisch den Umgang mit generativer KI regeln. Dies könnte die Einführung von Protokollen wie einer llms.txt Datei beinhalten. Solche spezifischen Dateien könnten festlegen, ob ein KI-Modell Inhalte zur Schulung oder zur generativen Beantwortung von Nutzeranfragen nutzen darf.
Diese Kontrollmechanismen sind entscheidend. Sie geben den Website-Betreibern die Autorität darüber zurück, wie ihre Inhalte in der KI-Ära verwendet werden. Wer hier klare Regeln setzt, schafft die technische Grundlage für eine kontrollierte und damit vertrauenswürdige Sichtbarkeit in den KI-Ergebnissen.
Strukturierte Daten als universelle KI-Sprache
Nach der Regelung des Zugangs durch Protokolle ist die Strukturierung der Inhalte der wichtigste technische Schritt. Suchmaschinen nutzen strukturierte Daten schon lange, um Rich Snippets in den klassischen Ergebnissen anzuzeigen. Für die KI sind diese Daten jedoch absolut essenziell.
Strukturierte Daten, die auf dem Vokabular von Schema.org basieren, sind im Grunde eine Übersetzungshilfe im Code, die dem Sprachmodell den Kontext des Inhalts direkt mitteilt. Sie sind die "Sprache", die die KI am schnellsten und präzisesten versteht.
Die Bedeutung für die Generierung
Wenn ein Nutzer eine Frage stellt, sucht die KI nicht nur nach Stichwörtern, sondern nach definierten Informationstypen. Mit strukturierten Daten liefert man der KI diese Informationen als fertige, fehlerfreie Bausteine.
- Fehlerfreie Extraktion: Die KI muss keine Textpassagen interpretieren, um beispielsweise ein Rezept, die Bewertung eines Produkts oder einen FAQ-Abschnitt zu identifizieren. Die korrekte Auszeichnung macht die Daten sofort nutzbar.
- Vertrauensbildung: Fehlerhafte oder inkonsistente strukturierte Daten führen zu einer falschen Interpretation und können bewirken, dass die KI deine Seite als unzuverlässig einstuft.
Die Implementierung muss fehlerfrei sein und sollte alle relevanten Inhaltstypen der Website abdecken. Nur eine saubere Schema-Implementierung garantiert, dass deine Fakten korrekt in die generativen Antworten der KI einfließen.
Ladezeit und Interaktivität als Vertrauenssignal
Die Geschwindigkeit und die Nutzbarkeit einer Website sind in der Ära der KI-Suche nicht mehr nur ein Komfortfaktor, sondern ein entscheidendes technisches Vertrauenssignal. Wenn deine Seite langsam lädt oder schlecht bedienbar ist, wird das von der KI als Indikator für mangelnde Qualität und niedrige Autorität gewertet.
Die Basis dafür sind die sogenannten Core Web Vitals (CWVs). Diese Messwerte, die sich auf das Nutzererlebnis konzentrieren, sind feste Ranking-Faktoren und haben direkten Einfluss darauf, ob eine KI deine Seite als zitierwürdig einstuft:
- LCP (Largest Contentful Paint): Misst die Zeit, bis der größte sichtbare Inhalt geladen ist.
- FID/INP (First Input Delay / Interaction to Next Paint): Misst die Zeit bis zur ersten Interaktion und die allgemeine Reaktionsfähigkeit der Seite.
- CLS (Cumulative Layout Shift): Misst die visuelle Stabilität.
Mobile Performance ist der Schlüssel
Da ein Großteil der Online-Aktivität über mobile Geräte stattfindet, legt die KI höchsten Wert auf die Optimierung der Mobilversion. Eine schlechte mobile Performance kann das gesamte Ranking negativ beeinflussen.
Die technische Anpassung muss daher darauf abzielen, die CWVs zu perfektionieren. Dies beinhaltet die Optimierung von Bildern, das Bereinigen unnötiger Code-Lasten und das Priorisieren wichtiger Ressourcen. Eine schnell ladende und reaktionsfreudige Website signalisiert nicht nur dem Nutzer, sondern auch der KI, dass die Quelle professionell und damit vertrauenswürdig ist.
Redundanz vermeiden: kanonische Klarheit
Eines der größten technischen Probleme für KI-Modelle ist die Verwirrung durch doppelte Inhalte (Duplikate). Wenn die gleiche Information unter verschiedenen URLs verfügbar ist, weiß die KI nicht, welche die Originalquelle darstellt. Dies zersplittert deine Autorität.
Der technische Schlüssel zur Lösung ist der Canonical Tag (<link rel="canonical" ...>). Dieser Tag im Code muss auf jeder Seite korrekt auf die bevorzugte, indexierbare URL zeigen. Durch die Vermeidung von Duplikaten und die korrekte Nutzung dieses Tags stellst du technisch sicher, dass die KI deine Inhalte als eindeutig und autoritär wahrnimmt und dich als zuverlässigen Faktenlieferanten zitiert.
Schlussworte
Die Zukunft der Online-Sichtbarkeit wird durch künstliche Intelligenz neu definiert. Der Erfolg hängt von einer technisch sauberen Vorbereitung ab.
Die wichtigsten Schritte in der Generative Engine Optimization (GEO) sind:
1. Zugangskontrolle durch Protokolle wie die diskutierte llms.txt Datei.
2. Die Nutzung von strukturierten Daten als unverzichtbare KI-Sprache.
3. Die Perfektionierung der Core Web Vitals als Vertrauenssignal.
4. Die Vermeidung von Duplikaten durch kanonische Klarheit.
Investiere in diese technische Qualität, um Autorität und Sichtbarkeit in der Ära der KI-generierten Antworten zu sichern.
Eva Helmeth: Mutig neue Wege gehen
Eva Helmeth (44) ist die Gründerin und CEO von MON COURAGE – einer Naturkosmetikmarke, die Hautpflege für unterwegs neu denkt. Die Anthropologin und Heilpflanzenexpertin lebt als moderne Nomadin und reist um die Welt, um die besten pflanzlichen Wirkstoffe zu finden. Im Juni 2025 pitchte Eva in der TV-Show „Die Höhle der Löwen“ (DHDL). Mehr dazu im Interview.
Eva, was hat dich dazu bewogen, in der VOX-Gründer*innen-Show „Die Höhle der Löwen“ mitzumachen?
In meinem Freundeskreis hörte ich seit 2020: „Du musst deine Hautpflege-Sticks unbedingt bei DHDL vorstellen.“ Ich wollte mir damit aber Zeit lassen. So ein Format kann ein gewaltiger Katalysator sein. Es kann dich nach vorne katapultieren – oder dich überrollen, wenn du noch nicht bereit bist. Ich wusste, wenn ich diesen Schritt gehe, dann zum richtigen Zeitpunkt.
Wie hast du diesen für dich richtigen Zeitpunkt definiert?
Ich habe drei Jahre lang bewusst gewartet. Für mich war entscheidend, dass MON COURAGE kein reines Ideenprojekt mehr war, sondern auf eigenen Beinen steht. Ich wollte Erfahrungswerte mitbringen – in der Produktion, im Vertrieb, im Feedback der Kundinnen und Kunden. Der richtige Zeitpunkt hieß für mich konkret, getestete Produkte, etablierte Marketingkanäle und eine solide Lieferkette vorweisen zu können. Als all das stand, war klar: Jetzt oder nie – denn jetzt sind wir stabil genug, um eine Welle wie DHDL reiten zu können.
Wie war zu diesem Zeitpunkt deine Haltung zu DHDL?
Ich habe die Sendung vorher ehrlich gesagt nie geschaut. Es kursierten Geschichten von Durchbrüchen bis hin zu absoluten Pleiten. Ich habe es als Chance gesehen, meine Geschichte zu erzählen und damit einen Investor oder eine Investorin zu überzeugen der bzw. die wirklich zu MON COURAGE passt. Mir war klar, dass es im Fernsehen in erster Linie um Unterhaltung geht. Als Nomadin, die ihr Kosmetikunternehmen aufbaut während sie weltweit nach Rohstoffen sucht, habe ich genügend Geschichten auf Lager. Das hat mir geholfen, ganz ohne Erwartungsdruck in die Aufzeichnung zu gehen.
Was waren für dich die wichtigsten Learnings aus dem Bewerbungsprozess?
Ich war gerade auf den Philippinen auf der Suche nach passenden Kokosölproduzenten, als ich das erste Gespräch mit der Produktionsfirma führte. Nachdem ich bisher nur Ölraffinerien gefunden hatte, die teils schimmliges Kokosfleisch verarbeiteten, war ich kurz davor, die Suche abzubrechen. Doch plötzlich tat sich eine neue Fährte auf. Ich erzählte von dieser Odyssee – und sie waren begeistert.
Ich habe dabei vor allem eines gelernt: Menschen lieben echte Geschichten. Und die besten Geschichten entstehen nicht am Schreibtisch, sondern da draußen – bei echten Begegnungen, im echten Leben
Wie hast du dann die TV-Show bzw. Aufzeichnung erlebt?
Als die Zusage kam, war ich in einem kleinen Dorf in Sri Lanka. „Eva, du bist genommen. Hast du nächsten Mittwoch Zeit?“ Drei Tage später landete ich in Deutschland – und hatte so gut wie keine Zeit zur Vorbereitung. Aber vielleicht war genau das mein Glück: Mein Pitch war dadurch pur, lebendig, ungefiltert. Ich hatte richtig Lust auf den Dreh. Die Interviews backstage waren ein schöner Auftakt, die Aufregung hinter dem Tor unvergesslich. Als ich dann vor den Löwen stand, war ich fokussiert und klar. Sie waren wirklich sehr höflich und interessiert, kein Gebrüll, kein Zerfleischen – vielleicht doch eher Stubentiger?
Einige „Löwen“ haben deinen Lebensstil als Nomadin infrage gestellt. Wie lässt sich denn ein wachsendes Unternehmen führen, wenn du selbst in der Welt unterwegs bist?
Ich verstehe den Reflex – klassische Unternehmensführung sieht anders aus. Aber MON COURAGE ist kein klassisches Unternehmen. Unser ganzes Konzept basiert auf echter Verbindung: zu den Menschen, die unsere Rohstoffe anbauen, und zu den Kundinnen und Kunden, die unsere Produkte nutzen. Gerade weil ich unterwegs bin, lerne ich die Menschen kennen, die hinter unseren Zutaten stehen. Ich sehe, unter welchen Bedingungen produziert wird, kann direkt und fair einkaufen, neue Ideen entwickeln und Innovationen frühzeitig aufspüren.
Remote zu arbeiten heißt nicht, abwesend zu sein. Im Gegenteil: Ich bin im täglichen Austausch mit meinem Team, wir arbeiten digital und gleichzeitig sehr eng zusammen. Mein Lebensstil erfordert klare Kommunikation, Vertrauen und Teamkolleginnen, die diese Freiheit schätzen. Aber genau das ist ja MON COURAGE: mutig neue Wege gehen.
EU AI Act: Status quo
Recht für Gründer*innen: der EU AI Act. Wo stehen wir in Sachen Umsetzung? Was Gründer*innen und Start-ups jetzt wissen müssen.
Künstliche Intelligenz (KI) ist längst kein Zukunftsthema mehr, sondern prägt schon heute Geschäftsmodelle, Investitionsentscheidungen und die Arbeitswelt. Mit der europäischen KI-Verordnung (EU AI Act, im Folgenden AI Act) wurde im Frühjahr 2024 der weltweit erste umfassende Rechtsrahmen für den Einsatz von KI verabschiedet. Inzwischen sind die ersten Regelungen in Kraft getreten. Für Gründer*innen und Start-ups bedeutet das nicht nur zusätzliche Pflichten, sondern auch Chancen, sofern sie sich rechtzeitig vorbereiten.
Überblick: Der AI Act
Die Verordnung folgt einem risikobasierten Ansatz: Je höher das Risiko für Grundrechte oder Sicherheit, desto strenger die Anforderungen. Auf der untersten Stufe stehen KI-Systeme, die keinerlei Vorgaben erfüllen müssen, solange sie nicht in verbotene Anwendungsfälle fallen. An der Spitze der Regulierungspyramide befinden sich die sogenannten HochrisikoSysteme, also etwa Anwendungen in der medizinischen Diagnostik, in kritischer Infrastruktur oder bei biometrischen Verfahren. Viele Tools aus dem HR-Bereich fallen darunter.
Daneben bestehen besondere Pflichten für sogenannte Generative KI beziehungsweise General Purpose AI, eingeführt, also große Modelle, die viele Anwendungen treiben und „systemische Risiken“ entfalten können.
Wichtig ist zu wissen, dass die Vorgaben schrittweise gelten. Bereits seit dem 2. Februar 2025 sind bestimmte Praktiken ausdrücklich verboten – zum Beispiel das Social Scoring von Bürger*innen, die flächendeckende Emotionserkennung in Schulen oder am Arbeitsplatz sowie das unkontrollierte Sammeln biometrischer Daten. Wer damit noch experimentiert, bewegt sich schon jetzt im rechtswidrigen Raum.
Seit dem 2. August 2025 gelten außerdem die ersten Pflichten für Anbieter*innen von generativen Modellen. Sie müssen unter anderem Transparenzberichte veröffentlichen und Angaben zu den verwendeten Trainingsdaten machen. Für Modelle, die bereits vor Inkrafttreten am Markt waren, gibt es eine Übergangsfrist bis 2027. Für viele Unternehmen, die solche Modelle nutzen oder in Produkte einbetten, bedeutet das, genau hinzuschauen, welche Informationen von den Modellanbieter*innen zur Verfügung gestellt werden. Sonst können eigene Transparenzpflichten womöglich nicht erfüllt werden.
Noch weiter in der Zukunft liegen die Vorschriften für Hochrisiko-Systeme. Diese greifen ab 2. August 2026 und verlangen ein umfassendes Risikomanagement, eine strenge Qualität der Trainingsdaten, eine lückenlose Protokollierung und eine Konformitätsbewertung, bevor ein Produkt überhaupt in Verkehr gebracht werden darf. Für Hochrisiko-KI, die in ohnehin streng regulierten Produkten steckt, zum Beispiel in Medizinprodukten, gilt eine verlängerte Frist bis 2027.
Konformitätsbewertung heißt vor allem Risikobewertung, welche die Anbieter*innen oder Betreiber*innen selbst durchführen müssen. Eine solche „regulierte Selbstregulierung“ ist ein klassisches Merkmal einer solchen klassischen Produktregulierung und Marktüberwachung.
Was fehlt? Guidance und Governance
Noch herrscht allerdings an vielen Stellen Unsicherheit. Zwar hat die EU-Kommission schon erste Leitlinien veröffentlicht, etwa zur Definition von KI-Systemen oder zu den verbotenen Praktiken. Auch für Anbieter*innen generativer KI gibt es inzwischen ein detailliertes Dokumentationsmuster. Noch fehlen allerdings die angekündigten Handreichungen für die Einstufung und Risikobewertung von Hochrisiko-Systemen, die bis Februar 2026 folgen und praktische Beispiele enthalten sollen. Bis dahin bleibt nur, sich für die Bewertung an bestehenden internationalen Standards zu orientieren, zum Beispiel an den Normungsprojekten der Europäischen Komitees für Normung und für elektrotechnische Normung.
Auf Unionsebene entstehen parallel die neuen Governance-Strukturen. Das AI Office innerhalb der Kommission ist bereits aktiv und koordiniert die Umsetzung. Das AI Board, ein Gremium der Mitgliedstaaten, tagt regelmäßig und stimmt Vorgehensweisen ab. Ein wissenschaftliches Panel unabhängiger Expert*innen wurde im Frühjahr eingerichtet, und das Advisory Forum, das die Perspektive von Unternehmen und Zivilgesellschaft einbringen soll, befindet sich gerade in der Bewerbungsphase. Auch die geplante EU-Datenbank für Hochrisiko-Systeme existiert bisher nur auf dem Papier. Ab 2026 müssen Anbieter*innen ihre Systeme dort registrieren; die Plattform selbst wird jedoch gerade erst aufgebaut.
Und wo steht Deutschland?
Auch hierzulande hakt es noch etwas. Eigentlich hätten die Mitgliedstaaten bis 2. August 2025 ihre Marktüberwachungsbehörden benennen müssen. Ein Entwurf für das deutsche Umsetzungsgesetz sieht die Bundesnetzagentur als zentrale Aufsicht vor, doch die formale Benennung ist noch nicht erfolgt. Klar ist, dass die Bundesnetzagentur die Rolle der Notifizierungsbehörde übernimmt, also für die Anerkennung von Konformitätsbewertungsstellen zuständig ist. Zudem entsteht dort ein Kompetenzzentrum für KI, das die Arbeit von Bund und Ländern koordinieren soll.
Reallabore
Ein Bereich, der für KI-Entwickler*innen besonders interessant ist, sind KI-Reallabore, also sichere Testumgebungen, in denen neue Anwendungen unter Aufsicht erprobt und darauf geprüft werden können, ob sie den rechtlichen Rahmen einhalten. Bis zum Sommer 2026 müssen die Mitgliedstaaten mindestens ein solches Reallabor einrichten. Deutschland hat im Mai 2025 ein erstes Pilotprojekt in Hessen gestartet, gemeinsam mit der Bundesnetzagentur und der Bundesdatenschutzbeauftragten. Hier werden reale Unternehmensfälle durchgespielt, um Abläufe und Bedarfe besser zu verstehen. Solche Projekte können eine wertvolle Möglichkeit sein, mit den Aufsichtsbehörden auf Augenhöhe ins Gespräch zu kommen.
Reaktionen
Der AI Act wird zwar kritisch diskutiert, im Grundsatz aber breit akzeptiert. Gerichtliche Klagen direkt gegen die Verordnung gibt es bislang nicht. In der juristischen Literatur überwiegt die Zustimmung zur Zielrichtung. Kritisiert werden vor allem die Komplexität und die noch offenen Fragen bei der praktischen Umsetzung. Streitpunkte finden sich eher außerhalb der Verordnung bei der Frage, ob Trainingsdaten urheberrechtlich geschützt sind oder wie personenbezogene Daten für KI genutzt werden dürfen.
Die Industrie zeigt ein gemischtes Bild. Viele große Anbieter*innen – von Google über OpenAI bis Mistral – haben einen freiwilligen Verhaltenskodex unterzeichnet. Andere, wie etwa Meta, haben sich bewusst dagegen entschieden. Man muss sich also darauf einstellen, dass je nach Anbieter*in sehr unterschiedliche Informationen und Compliance-Nachweise verfügbar sind.
Andererseits wirkt der AI Act bereits am Markt. In öffentlichen Ausschreibungen tauchen Modellklauseln auf, die auf die KI-Verordnung Bezug nehmen. Investor*innen fragen verstärkt nach Compliance-Prozessen, und Unternehmen beginnen, interne Strukturen für Risikomanagement und Dokumentation aufzubauen.
Im Vergleich zu Europa gibt es in den USA bislang nur freiwillige Standards. Die dort bei der Entwicklung und Anwendung von KI (angeblich) vorherrschende größere Freiheit wird zwar viel gerühmt. Einzelne Bundesstaaten wie Colorado arbeiten allerdings an eigenen regulierenden Gesetzen, die ab 2026 greifen sollen. Vielleicht ist es also ein Vorteil, dass europäische Start-ups früh Erfahrungen in einem regulierten Markt sammeln können.
Fazit
Der AI Act entfaltet bereits jetzt Wirkung, auch wenn viele Details erst in den kommenden Monaten geklärt werden. Daher gilt es, nicht abzuwarten, sondern jetzt eine eigene Roadmap zu entwickeln. Wer früh Prozesse für Risikomanagement, Transparenz und Governance etabliert, wird nicht nur rechtlich auf der sicheren Seite sein, sondern auch Vertrauen bei Kund*innen und Investor*innen gewinnen.
Die EU hat ein klares Signal gesetzt: KI soll innovativ sein, aber auch sicher und vertrauenswürdig. Für Start-ups ist das eine Herausforderung – aber auch eine Chance, sich von Anfang an professionell aufzustellen und den Markt aktiv mitzugestalten.
Der Autor Dr. Daniel Michel, LL.M. ist als Rechtsanwalt im Bereich IT/IP/Technologie tätig und betreibt seit 2018 mit DATA LAW COUNSEL seine eigene Rechtsberatung im Raum München

