Aktuelle Events
Hochprozentige Geschäftsideen: Gin selbst gemacht
Hochprozentiges aus dem Baukasten
Baukastensysteme für alles mögliche sind nach wie vor in. Dank der beiden Freunde Jorin Karner und Andy Sanders gibt es jetzt auch einen Baukasten für Gin.
Private Gin verspricht mit seinen acht ausgewählten Botanicals genau 40.320 Kombinationsmöglichkeiten – fruchtig, mild, herb oder scharf. Die Basis der Geschäftsidee bildet ein fünffach gebranntes Alkoholdestillat im mitgelieferten Drahtbügelglas. Die milde Gin Base nimmt die Zutaten sehr gut auf, so dass man die Botanicals deutlich schmeckt. Neben der Gin Base und den Botanicals enthält die Box auch alle anderen nötigen Utensilien zum Selbermachen.
Sie möchten selbst ein Unternehmen gründen oder sich nebenberuflich selbständig machen? Nutzen Sie jetzt Gründerberater.de. Dort erhalten Sie kostenlos u.a.:
- Rechtsformen-Analyser zur Überprüfung Ihrer Entscheidung
- Step-by-Step Anleitung für Ihre Gründung
- Fördermittel-Sofort-Check passend zu Ihrem Vorhaben
Diese Artikel könnten Sie auch interessieren:
Robotik-Start-up Ottonomy startet Pilotprojekt im Münchner Flughafen
Der Lufthansa Innovation Hub und der Munich Airport kooperieren zur Förderung von Innovation in der Luftfahrt: Pilotprojekte mit Start-ups sind vor diesem Hintergrund wichtige Hebel zur Implementierung innovativer Lösungen.

Die Luftfahrtbranche steht vor einer Vielzahl von Herausforderungen, sowohl auf Kund*innenseite als auch in geschäftlichen Prozessen. Innovation spielt eine entscheidende Rolle bei der Bewältigung dieser Herausforderungen, indem sie Möglichkeiten zur Digitalisierung, Automatisierung, Optimierung und Neuerfindung schafft.
Vor diesem Hintergrund haben der Lufthansa Innovation Hub, die Berliner Innovationseinheit der Lufthansa Group, und die Terminal 2 Gesellschaft des Flughafens München eine Absichtserklärung (MoU) unterzeichnet. Mit der Unterzeichnung bekunden beide ihre Absicht, durch gemeinsame Initiativen die Innovation in der Luftfahrtbranche voranzutreiben.
“Innovation in der Reiseindustrie ist eine gemeinschaftliche Aufgabe, die dem gesamten Ökosystem zukommt”, sagt Dr. Stefan Nothelfer, Senior Director und Leiter Corporate Venturing & Strategic Growth beim Lufthansa Innovation Hub. “Wir freuen uns darauf, mit der Terminal 2 Gesellschaft des Flughafens München zusammenzuarbeiten, um das Kundenerlebnis gemeinsam zu verbessern und den gesamten Reiseprozess zu optimieren.”
Robotik-Einsatz im Terminal 2 des Flughafens München
Ein konkretes Beispiel für das Vorantreiben von Innovation im Flughafenbetrieb durch Pilotprojekte ist die Zusammenarbeit mit dem Robotik-Start-up Ottonomy.
Seit dieser Woche sind zwei autonome Service-Roboter in den Bereichen der Gates und Gepäckausgabe im Terminal 2 des Flughafens München im Einsatz. Die Roboter sind darauf ausgelegt, verschiedene Aufgaben zu übernehmen, um reibungslose Kund*inneninteraktionen zu ermöglichen. Sie unterstützen Passagier*innen mit Informationen und bewerben die Dienstleistungen von Lufthansa Airlines.
Durch das Scannen eines QR-Codes auf dem Roboter mit ihrem Smartphone gelangen Reisende zu Chat-Assistenten für Self-Service-Optionen. Dort können sie Fluginformationen abrufen und Prozesse wie Umbuchungen oder Erstattungen eigenständig verwalten. Die Roboter liefern zudem wichtige Informationen zu flughafenbezogenen Themen wie Tax Refund und Lost and Found. Dank integrierter Behälter können die Roboter auch für den Warentransport eingesetzt werden – etwa künftig für die Verteilung von Wasserflaschen an Passagier*innen.

“Unser Ziel ist es, unseren Gästen das beste Reiseerlebnis in Europa zu bieten”, sagt Marcus Schnabel, Vice President Ground Operations Hub Munich. “Die Nutzung digitaler Lösungen ist für dieses Vorhaben von entscheidender Bedeutung, und wir freuen uns, als Pilotstandort für wegweisende Innovationen zu dienen.”
Ottonomy setzt seine Roboter weltweit an Flughäfen, in Krankenhäusern und für Auslieferungen auf der letzten Strecke zum/zur Kund*in ein. “Unsere Roboter, die mit Contextual AI arbeiten, ermöglichen es Unternehmenskunden, Innovationen voranzutreiben, bessere Kundenerlebnisse zu schaffen und die betriebliche Effizienz in der Luftfahrt zu steigern“, sagte Ritukar Vijay, CEO von Ottonomy. „Eine Partnerschaft mit zukunftsorientierten Branchengrößen wie der Lufthansa bringt diese Vision der Realität ein großes Stück näher.“
Das Pilotprojekt mit Ottonomy entstand im Rahmen von Startup Gate, der Venture-Clienting-Initiative der Lufthansa Group. Startup Gate verbindet Teams der Lufthansa Group mit hochmodernen Start-ups, um deren Technologien schnell zu adaptieren und schlanke sowie kosteneffiziente Kooperationen zu ermöglichen.
Schweiz und Deutschland: So unterschiedlich sind sie beim Online Glücksspiel
Was ist erlaubt, wo sind Grenzen gesetzt: Gut zu wissen für alle, die sich grenzüberschreitend mit dem Thema Online Glücksspiel befassen wollen.

Obwohl das Online Glücksspiel seit Jahren streng reguliert wird, wächst der Markt in Deutschland und in der Schweiz munter weiter. So haben die lizenzierten Anbieter in Deutschland im Jahr 2023 Bruttospielerträge von 4,2 Milliarden Euro erzielt. Im selben Jahr lagen die Umsätze aus Lotterien und Sportwetten in der Schweiz bei 3,76 Milliarden Schweizer Franken. Setzt Deutschland auf strenge Einzahlungslimits und geringe Maximaleinsätze, so reguliert die Schweiz den Markt durch Lizenzbeschränkungen und Netzsperren, wenn es sich um einen nicht genehmigten Anbieter handelt. Die Regeln sind also in beiden Ländern klar, aber sie sind unterschiedlich, doch am Ende lukrativ für beide.
Glücksspiel unterliegt in beiden Ländern strikten Regeln
Es gibt strikte Regeln, die bestimmen, wer in Deutschland und in der Schweiz das Online Glücksspiel anbieten darf.
In Deutschland bildet der deutsche Glücksspielstaatsvertrag die Grundlage. Dieser ist seit dem Jahr 2021 in Kraft und sorgt für eine einheitliche Regulierung, mit der auch klare Grenzen gesetzt werden. Die Konzessionen sind begrenzt, zudem sind die Anforderungen sehr hoch. Jeder Anbieter muss zudem eine Lizenz der Gemeinsamen Glücksspielbehörde der Länder - GGL - vorweisen können. Der Markt wird zudem durch strenge Vorschriften geprägt: monatliches Einzahlungslimit, geringer Maximaleinsatz, 5 Sekunden-Regel, Verbot von Live Casino, keine Kryptowährungen als Einzahlungsmethode.
Wer auf der Suche nach den Top Online Casinos für Schweizer Spieler ist, wird überrascht sein, dass nur landbasierte Casinos eine Online Konzession beantragen würden, weil es kein offenes Lizenzierungsmodell für internationale Betreiber gibt. Der Markt ist somit geschlossen und schützt daher staatliche Einnahmen und reguliert den Wettbewerb. Ein Anbieter, der keine Genehmigung hat, kann seine Dienste nicht anbieten - Netzsperren blockieren unlizenzierte Plattformen.
Während also Deutschland privaten Betreibern aus den unterschiedlichsten Bereichen Lizenzen erteilt, sind in der Schweiz nur schon etablierte Casinohäuser in der Lage bzw. berechtigt, eine Lizenz zu bekommen. Das mag zwar in Deutschland für mehr Vielfalt sorgen, jedoch auch für schärfere Kontrollen. In der Schweiz hingegen bleibt das Glücksspielgeschäft in der Hand weniger Unternehmen.
Wie sieht es bei den Sportwetten aus?
In der Schweiz und in Deutschland wird das Spielangebot von gesetzlichen Vorgaben bestimmt, was natürlich einen direkten Einfluss auf die Vielfalt und auch auf die Zugangsmöglichkeiten hat. In beiden Ländern finden sich regulierte Plattformen, damit das Glück am Online Spielautomat getestet werden kann. Jedoch finden sich verschiedene Einschränkungen:
In Deutschland sind viele Anbieter lizenziert, die aber strenge Vorschriften zu den Einsatzlimits sowie Spielmechaniken beachten müssen. In der Schweiz bleibt das Angebot vorwiegend den landbasierten Casinos mit Online Lizenz vorbehalten, sodass nur eine begrenzte Auswahl geboten wird.
Ein vergleichbares Bild lässt sich mit Blick auf die Sportwetten erkennen: Sind in Deutschland nur private Wettanbieter aktiv, die strikte Werbe- und Einsatzlimits befolgen müssen, bleibt der Bereich in der Schweiz aber unter staatlicher Kontrolle. Der private Betreiber erhält hier gar keinen Marktzugang.
Beide Glücksspielmärkte werden durch technologische Entwicklungen geprägt, weil internationale Entwickler moderne Slots mit neuen Mechaniken liefern. Jedoch können in der Schweiz nur lizenzierte Casinos auf diese Innovationen zugreifen. In Deutschland hingegen besteht ein regulierter Markt, wobei hier jedoch strengere Vorgaben zu erfüllen sind.
Sicherheitsmechanismen stehen im Vordergrund
Ein Schweizer Casino setzt auf kontrollierte Abläufe sowie auf geprüfte Anbieter, damit dem Spieler ein sicheres Spielerlebnis geboten werden kann. Gesetzliche Vorgaben bestimmen den Rahmen, innerhalb dessen dann die Spielplattform operieren darf. Damit die unbefugten Nutzer keinen Zugang erhalten, müssen im Vorfeld Identitätsprüfungen durchgeführt werden. Des Weiteren müssen die Betreiber auch Maßnahmen ergreifen, damit ein problematisches Spielverhalten frühzeitig erkannt und gegebenenfalls eingedämmt werden kann.
In beiden Ländern spielen Sicherheitsmechanismen eine große Rolle: In Deutschland gibt es etwa ein festes Einzahlungslimit von 1.000 Euro pro Monat (plattformübergreifend) sowie einen Maximaleinsatz von 1 Euro pro Runde. In der Schweiz gibt es keine einheitliche Einzahlungsgrenze, aber die lizenzierten Anbieter setzen hier auf individuelle Schutzmaßnahmen, sodass das verantwortungsbewusste Spiel gefördert werden kann.
In Deutschland dürfen die Glücksspielanbieter nicht uneingeschränkt werben, sondern nur zu bestimmten Zeiten. In der Schweiz wird eine vergleichbare Strategie angewendet: Die Werbung darf nur legale Angebote enthalten, während Anreize für das übermäßige Spiel untersagt sind.
Beide Länder gehen auch unterschiedlich vor, wenn es um unregulierte Plattformen geht: Deutschland setzt auf Überwachung und Sanktionen, während die Schweiz hingegen Anbieter, die keine Schweizer Lizenz haben, per Netzsperren ausgeschlossen werden.
Wie handhaben Deutschland und die Schweiz Poker?
In der Schweiz und in Deutschland ist Poker ein Sonderfall: Auch hier vergibt Deutschland Lizenzen für private Anbieter, während die Schweizer ebenfalls nur staatlich konzessionierten Casinos erlaubt, Online Poker anbieten zu dürfen. Mit dieser Herangehensweise wird nicht nur das Spielangebot geprägt, sondern auch die Möglichkeiten für Cash Games, internationale Wettbewerbe und Turniere.
In Deutschland ist Online Poker erlaubt, jedoch gibt es klar definierte Regeln: Der lizenzierte Anbieter muss sich an feste Einzahlungslimits halten, zudem gibt es Turniere und Cash Games nur unter sehr strengen Auflagen. Die Anbieter werden von der GGL überwacht und greift sofort bei Verstößen ein. In der Schweiz unterliegt das Pokerspiel noch engeren Regulierungen: Cash Games und Turniere gibt es nur über lizenzierte landbasierte Casinos, die eine Online Konzession haben. Der private Anbieter hat keinen Zugang zum Markt.
Generative KI – Chancen für Startups
Wie Startups mit drei Tipps die Kosten und Performance für ihren KI-Case optimieren können.

Das deutsche KI-Startup-Ökosystem befindet sich 2025 weiter im Gründungsboom. Nie gab es mehr KI-Gründer in Deutschland und alleine im vergangenen Jahr wuchs die Zahl der KI-Startups um 35 Prozent. Auch für Investoren bleibt KI eines der vielversprechendsten Themen. Sie investierten 2024 fast 200 Millionen mehr in deutsche KI-Jungunternehmen als im Vorjahr. Vor allem deutsche KI-Startups im B2B-Bereich mit branchenspezifischen Lösungen für die Fertigung, Logistik und das Gesundheitswesen haben aktuell ausgezeichnete Wachstumschancen. Sie können von einer engen Vernetzung mit dem Mittelstand und führenden Forschungseinrichtungen in Deutschland profitieren. Typische KI-Anwendungsfelder von aufstrebenden deutschen Startups wie BlueAvenir, PlanA, Smart Reporting oder nnamu liegen dabei u.a. in der Softwareentwicklung, Sprach- und Bilderkennung oder datenbasierten Analyseverfahren zur Entscheidungsunterstützung.
KI-Chancen und die häufigsten Hürden
Während die Gesamtfinanzierung für KI-Projekte wächst, scheitern in der Praxis vielversprechende Ideen von Startups aber auch immer wieder am konkreten Business Case. Langfristig können sich insbesondere unterschätzte Kosten und eine schwache Performance der Anwendungen wie ein Bremsklotz auswirken. Die Nutzung von Sprachmodellen ist dank API-basierten Diensten sehr einfach geworden, dennoch können sich hier bei großen Volumina und ungeschickter Modell-Wahl schnell höhere Kosten aufsummieren. Gleichzeitig spielt die Performance des KI-Systems eine wichtige Rolle für eine langfristige Profitabilität. So führen besonders hohe Latenzzeiten bei der Model-Inference zu trägeren Systemen, die Nutzeranfragen nicht schnell genug verbreiten und die Attraktivität der Anwendung erheblich mindern.
Gerade Startups setzen oft auf die Cloud, da sie unabhängig vom technischen Hintergrund einfachen Zugang zu KI und die nötige Flexibilität ermöglicht. Drei innovative Methoden erweisen sich in der Cloud als besonders hilfreich, um eine optimale Balance zwischen Leistungsfähigkeit, Kosten und Nutzerfreundlichkeit für die Umsetzung des eigenen KI-Anwendungsfalls zu finden. So kann jeder Gründer seine KI-Ideen schnell, kosteneffizient und sicher umsetzen.
KI-Modellauswahl: Kleiner, aber schneller
Für Startups ist es entscheidend, das richtige KI-Modell für ihren Anwendungsfall zu wählen, um Kosten und Leistung optimal auszubalancieren. Anbieter wie Anthropic, AI21 Labs, Meta, Cohere, Mistral und Amazon bieten Modelle in verschiedenen Größen an – kleinere Varianten sind oft günstiger und reagieren mit kürzerer Antwortzeit. Nach einer ersten Validierung mit einem leistungsstarken Modell können Startups Tools wie Amazon Bedrock Evaluations nutzen, um herauszufinden, welches Modell in welcher Größe ähnliche Ergebnisse bei geringeren Kosten oder höherer Geschwindigkeit liefert. Diese Evaluierungen helfen dabei, die Leistungsfähigkeit und Effizienz zu beurteilen, indem Metriken wie semantische Robustheit und Genauigkeit bei der Informationsabfrage analysiert werden. Durch eine Kombination aus automatisierten Bewertungen mit Large Language Models (LLMs) und menschlicher Prüfung können Startups die beste Balance zwischen Leistung, Kosten und Geschwindigkeit für ihre individuellen Bedürfnisse finden.
Prompt Caching: Zwischenspeicherung für wiederkehrende Anfragen
Eine weitere smarte Methode, um die Antwortzeiten von KI-Modellen zu verkürzen und Kosten zu senken, ist das Prompt-Caching. Wenn ein digitaler Assistent sich bei jeder Frage immer wieder die gleichen Grundinformationen durchlesen müsste, dann wäre das extrem ineffizient. Genau hier setzt das Prompt-Caching an und speichert feste Teile des Prompts, wie grundlegende Anweisungen für das LLM, direkt in der Inferenz-Hardware zwischen. Nur die variablen, nutzerspezifischen Daten, die sich von Aufruf zu Aufruf verändern, werden bei jeder Anfrage neu übermittelt. Das spart nicht nur Rechenleistung, sondern sorgt auch für schnellere Antworten – ideal für Anwendungen wie Chatbots oder personalisierte KI-Assistenten, die häufig wiederkehrende Anfragen verarbeiten. Mit Amazon Bedrock lässt sich diese Technik einfach nutzen, indem das Caching und das Setzen von Cache-Checkpoints automatisch verwaltet werden können. Sobald das Caching aktiviert ist, übernimmt der Service das gesamte Cache-Management automatisch. So lassen sich bis zu 90 Prozent kosteneffiziente KI-Anwendungen mit minimalem Konfigurationsaufwand realisieren.
Model Distillation: KI-Wissen auf das Wesentliche fokussieren
Eine dritte bewährte Option ist Model Distillation. Das Prinzip ist einfach und kann vereinfacht als ein intelligenter Wissenstransfer in der Welt der KI beschrieben werden. Also so, als ob ein erfahrener Lehrer (ein großes, leistungsstarkes KI-Modell) seinem Schüler (einem kleineren, schnelleren Modell) die wichtigsten Konzepte beibringt. Dabei nutzt dieser Prozess synthetische Trainingsdaten, die auf realen Anwendungsbeispielen basieren. Das Ergebnis ist ein kompakteres Modell, das für einen spezifischen Anwendungsfall ähnlich gute Ergebnisse liefert wie das größere Modell, dabei aber deutlich schneller und kostengünstiger arbeitet. Destillierte Modelle in Amazon Bedrock können bis zu fünfmal schneller arbeiten und die Kosten um bis zu 75 Prozent senken im Vergleich zu den Originalmodellen – bei Genauigkeitsverlust von weniger als zwei Prozent.
Fazit
Erfolgreiche KI-Lösungen können mit der Cloud kosteneffizienter und performanter umgesetzt werden. Das erfordert zwar ein wenig technisches Know-how, aber die Cloud reduziert die Einstiegshürden erheblich und ermöglicht es auch kleineren Unternehmen, mit drei bewährten Methoden das KI-Potenzial effektiver auszuschöpfen. Startups haben mit der Cloud die maximale Flexibilität, um entweder von den leistungsfähigsten vortrainierten LLMs zu profitieren oder alternativ eigene LLMs mit maßgeschneiderter Infrastruktur zu entwickeln bzw. auf fertige Dienste mit integrierter generativer KI zuzugreifen.
Der Autor Constantin Gonzalez ist Principal Solutions Architect bei Amazon Web Services (AWS) in München.
Die Autorin Jennifer Grün ist Senior Specialist - Machine Learning bei AWS in München.
heart job: Werte als strategischer Erfolgsfaktor
Das 2024 gegründete deutsch-österreichische Start-up heart job nutzt künstliche Intelligenz, um öffentlich verfügbare Daten zu analysieren und zu bewerten.

Werte als strategischer Erfolgsfaktor. Studien belegen, dass Unternehmen, die ihre Werte konsequent leben, von höherer Mitarbeitendenbindung, gesteigerter Innovationskraft und langfristigem wirtschaftlichem Erfolg profitieren. In der Praxis zeigt sich jedoch häufig eine Diskrepanz zwischen kommunizierten Werten und der tatsächlichen Wahrnehmung.
„Unternehmenswerte sind mehr als bloße Worte – sie sind das Fundament nachhaltigen Erfolgs. Entscheidend ist jedoch, ihre Authentizität zu gewährleisten“, erklärt Sarah Brauns, Mitgründerin von heart job. „Viele Unternehmen verlassen sich auf ihr Bauchgefühl. Eine objektive Analyse gibt ihnen nun erstmals eine klare Grundlage, um zu erkennen, wie ihre Werte tatsächlich wahrgenommen werden.“
Mitgründer Simon Rutar ergänzt: „Unsere KI-Technologie liefert innerhalb von 48 Stunden eine datenbasierte Auswertung der Unternehmenswerte. Damit unterstützen wir Unternehmen dabei, ihre Werte nicht nur sichtbar zu machen, sondern gezielt für strategische Ziele wie Mitarbeiterbindung, Kundenbeziehungen und wirtschaftliches Wachstum einzusetzen.“
KI für mehr Transparenz und Authentizität
Die KI von heart job wertet öffentlich zugängliche Quellen wie soziale Medien, Foren, Blogs und Presseberichte aus und gibt Unternehmen eine datenbasierte Einschätzung darüber, mit welchen Werten sie in der öffentlichen Wahrnehmung assoziiert werden. Diese Analyse kann durch direktes Feedback von Mitarbeitenden, Kund*innen und Geschäftspartner*innen ergänzt werden. Online-Umfragen erfassen zusätzlich die interne Wahrnehmung, sodass Stärken und Verbesserungspotenziale identifiziert werden können. „Unsere Lösung kombiniert externe Wahrnehmung mit optionaler interner Werteanalyse und schafft damit eine fundierte Grundlage für strategische Entscheidungen“, so Brauns.
In Zeiten, in denen Authentizität und klare Werteorientierung immer wichtiger werden, bietet das Start-up Unternehmen präzise Analysen und konkrete Handlungsempfehlungen. Führungskräfte erhalten damit ein strategisches Instrument, um ihre Unternehmenskultur nachhaltig zu stärken. „Unsere Berichte gehen über reine Datenanalysen hinaus – sie sind ein strategischer Leitfaden für die Zukunft“, betont Rutar. „Wir helfen Unternehmen nicht nur, ihre Werte zu verstehen, sondern sie auch aktiv für Wachstum und Innovation einzusetzen.“
Erfolgreiche Testphase und DACH-Marktstart
Die Technologie von heart job wurde in einer Testphase mit Unternehmen unterschiedlicher Größen erprobt. Dabei trat in vielen Fällen ein deutlicher Kontrast zwischen internen Unternehmenswerten und der öffentlichen Wahrnehmung zutage. Erste Kund*innen nutzen die gewonnenen Erkenntnisse bereits, um ihre Werte gezielt zu schärfen und ihre Kommunikation zu optimieren. Mit dem offiziellen Marktstart ist die KI-gestützte Analyse von heart job nun für Unternehmen in Deutschland, Österreich und der Schweiz verfügbar.
KI-Integration: Chancen und Impact für Startups
Im Interview mit Dennis Lehmeier, Startup Segment Leader Germany & Europe Central bei Amazon Web Services (AWS): Wie Startups generative KI effizient nutzen können, um zu skalieren und ihre Innovationen schneller voranzutreiben.

Herr Lehmeier – das aktuell alles überschattende Thema ist künstliche Intelligenz (KI) bzw. die Frage, wie Startups bestmöglich davon profitieren können. Welchen positiven Impact von KI sehen Sie für Startups?
KI ist fest in der deutschen Startup-Szene angekommen und die Zahl der KI-Neugründungen in Deutschland steigt, insbesondere vor dem Hintergrund neuer Einsatzmöglichkeiten. Vor allem Startups im Bereich Softwareprogrammierung, Datenanalyse, Gesundheit und Nachhaltigkeit setzen in Deutschland stark auf KI und nutzen die Technologie als Innovationsturbo.
Typische KI-Anwendungsfelder sind beispielsweise die Spracherkennung, Bildanalysen und Verfahren zur Entscheidungsunterstützung. So kann KI heute schon in den Biowissenschaften die klinische Entwicklung von Wirkstoffen erheblich beschleunigen und in der Industrie sowohl das Lieferkettenmanagement als auch die gesamten Produktionsabläufe deutlich effizienter gestalten. Die Cloud kann dabei helfen, KI-Tools schnell und effizient einzusetzen. Eine KI-Studie von AWS zeigte zuletzt, dass 7 von 10 deutschen Startups bereits aktiv KI einsetzen – Tendenz stark steigend. Die Adaptionsrate unter Startups ist dabei deutlich höher als in anderen Branchen. Gleichzeitig profitieren bereits 74 Prozent durch die Nutzung von KI und verzeichnen durch den Einsatz einen direkten Wertzuwachs. Unternehmen jeder Branche können von KI profitieren.
Was sind die aus Ihrer Sicht aktuell bedeutendsten KI-Trends für Startups?
Mit der zunehmenden Verbreitung generativer KI und Grundlagenmodelle (Foundation Models, FMs) verschiebt sich der Wettbewerbsfokus für Startups. Statt selbst leistungsstarke KI-Modelle von Grund auf zu entwickeln, können junge Unternehmen über die Cloud auf verschiedene extrem leistungsstarke Modelle wie Amazon Nova zugreifen und diese für ihre individuellen Anforderungen anpassen. Dadurch wird generative KI einfacher zugänglich und für Unternehmen jeder Größe und mit unterschiedlichen IT-Fähigkeiten leicht nutzbar.
Da viele Akteure auf dieselben technologischen Grundlagen zurückgreifen können, verlagert sich der Differenzierungsfaktor zunehmend auf die kundenspezifische Wertschöpfung. Der Erfolg hängt davon ab, wie nahtlos KI-Lösungen in bestehende Arbeitsprozesse und Systemlandschaften integriert werden können. Ähnlich wie bei SaaS-Modellen geht es darum, eine intuitive Benutzeroberfläche und ein klares Nutzenversprechen für eine definierte Zielgruppe zu schaffen. Der Mehrwert entsteht durch die intelligente, kontextbezogene Anwendung.
Unser Ziel ist es, Startups maximale Flexibilität zu bieten: sie können eigene FMs mit maßgeschneiderter Infrastruktur entwickeln, bestehende vortrainierte Modelle nutzen oder auf Dienste mit integrierter generativer KI wie Amazon Q zurückgreifen. So kann jeder Gründer ein KI-Startup aufbauen und es ergeben sich vielfältige Anwendungsfelder durch cloudbasierte KI-Lösungen: von der automatisierten Kundenbetreuung über die intelligente Datenanalyse bis hin zur Entwicklung völlig neuer Produkte.
KI als Innovations-Booster birgt somit ein riesiges Potenzial. Doch wo Licht ist, ist auch Schatten: KI ist kein Selbstläufer – gefragt sind praxistaugliche Regeln, die eine vertrauensvolle Nutzung ermöglichen, ohne Innovationen zu blockieren. Wie stehen Sie vor diesem Hintergrund zum aktuellen AI-Act?
Als einer der weltweit führenden Entwickler und Anbieter von KI-Tools und -Diensten setzen wir uns für eine sichere, geschützte und verantwortungsvolle Entwicklung von KI-Technologie ein. Wir arbeiten eng mit Regierungen und Industrien zusammen, um dies zu gewährleisten. Unser Ziel ist es, Innovationen im Interesse unserer Kunden und der Verbraucher voranzutreiben und gleichzeitig notwendige Schutzmaßnahmen zu etablieren und umzusetzen. Dafür bieten wir auch diverse Services und Tools. Beispielsweise bieten wir mit Amazon Bedrock Guardrails Unterstützung für die Implementierung von Sicherheitsvorkehrungen, die auf die jeweiligen generativen KI-Anwendungen des Startups zugeschnitten sind, damit Halluzinationen besser verhindert und schädliche Inhalte blockiert werden können.
Ich bin überzeugt, dass KI enorme Fortschritte in essenziellen Bereichen wie Gesundheit und Bildung ermöglichen wird. Die Technologie hilft uns, komplexe Probleme zu lösen, die zuvor als unüberwindbar galten. Die Vorteile überwiegen bei verantwortungsvollem Einsatz deutlich die Risiken. Gleichzeitig sollte jeder, der KI nutzt, ethische Aspekte von Anfang an immer mitbedenken und angemessene Sicherheitsvorkehrungen zum verantwortungsvollen Einsatz treffen.
Sie unterstützen Startups umfassend dabei, generative KI in AWS auszubauen. Welche Maßnahmen bzw. Angebote stehen Startups dabei konkret zur Verfügung?
Weltweit setzen über 280.000 Startups und 80 Prozent aller Unicorns auf AWS, um mit Hilfe der Cloud zu wachsen und ihr Geschäft zu skalieren. Auch deutsche Unternehmen wie About You, Delivery Hero und FlixBus haben ihre Erfolgsgeschichte mit der Cloud gestartet. Um Startups gezielt beim Aufbau generativer KI-Lösungen zu unterstützen, bieten wir eine Vielzahl maßgeschneiderter Programme.
Mit AWS Activate haben wir seit der Gründung bereits über 6 Milliarden Dollar an AWS Guthaben für Startups bereitgestellt. Dieses können ausgewählte Gründer nutzen, um unsere leistungsstarken KI-Dienste zu testen und schon in frühen Phasen mit neuen Technologien zu experimentieren. Zusätzlich haben wir zuletzt 230 Millionen Dollar für Startups zugesagt, die die Entwicklung generativer KI aktiv vorantreiben, etwa durch die Entwicklung von Grundlagenmodellen oder KI-Tools. Neben technologischen Ressourcen bietet AWS Activate auch umfassende Unterstützung in Form von Fundraising-Hilfen, rechtlicher Beratung, technischem Coaching und Zugang zu einem globalen Netzwerk aus Experten, Investoren und Partnern. Außerdem haben wir den Generative AI Accelerator ins Leben gerufen – ein 10-wöchiges Förderprogramm für 80 Startups weltweit, das maßgeschneiderte Go-to-Market-Strategien bietet und ausgewählten Unternehmen bis zu einer Million Dollar an AWS Guthaben ermöglicht. Auch das Münchner Softwareunternehmen DQC ist Teil des Programms.
Mit solchen Maßnahmen geben wir Startups die notwendigen Werkzeuge an die Hand, um generative KI effizient zu skalieren und Innovationen schneller voranzutreiben.
Beim AWS GenAI Loft Berlin dreht sich vom 24. Februar bis zum 7. März 2025 alles rund um KI bzw. GenAI. An wen adressieren Sie das Event und was erwartet die Teilnehmenden?
Das AWS GenAI Loft findet erstmalig in Berlin statt. Das Event im Mitosis LAB in der Sonnenallee 67 richtet sich an Startups, Entwickler, Investoren, KI-Experten und alle, die sich mit den neuesten Entwicklungen im Bereich Generative AI befassen möchten. Die Veranstaltung bietet jeden Tag eine Mischung aus praxisnahen Workshops, technischen Deep Dives und Networking-Möglichkeiten, bei denen die Teilnehmer mit führenden Experten von AWS, NVIDIA, DoiT, Storm Reply und Automat-it in Kontakt treten können. Neben zahlreichen Vorträgen, spannenden KI-Demos und Hands-on Sessions mit AWS Solutions Architects können die Teilnehmer von kostenlosem Coaching profitieren und von der Möglichkeit, sich mit anderen innovativen deutschen Startups vor Ort auszutauschen. Unter dem Motto „Learn, Build, Connect“ steht der praktische Umgang mit modernsten KI-Technologien wie Amazon Q oder Amazon Bedrock im Fokus. Das Event ist zudem kostenfrei und eine Registrierung ist vorab online möglich.
Alles dreht sich somit letztlich darum, KI-Projekte voranzutreiben und (Startup-)Innovationen schnell auf den Markt zu bringen. Was muss aus Ihrer Sicht an welcher Stelle geschehen, damit unsere Startups beim Thema KI global mithalten können – sowohl als Nutzende wie auch als KI-Entwickler?
Wir sehen in zahlreichen Studien deutlich, dass Unternehmen, die KI einsetzen, nachweislich von höherer Effizienz und Innovationskraft profitieren. Eine Bitkom-Untersuchung aus 2024 zeigt beispielsweise auch, dass drei Viertel der deutschen Startups, die KI in ihre Produkte oder Dienstleistungen integrieren, leichter an Finanzierung gelangen. Kosteneinsparungen und Effizienzsteigerungen sind dabei oft starke Treiber für die KI-Implementierung.
Um dieses Momentum zu nutzen und das KI-Potenzial auszuschöpfen, sehe ich drei Schlüsselherausforderungen in Deutschland.
Erstens muss die digitale Kompetenzlücke geschlossen werden. KI-Kenntnisse werden in nahezu allen Bereichen essenziell sein, weshalb verstärkt in Aus- und Weiterbildungsprogramme investiert werden muss.
Zweitens muss der Zugang zu Kapital für Startups durch stärkere Finanzierungsmöglichkeiten und Unterstützungsprogramme verbessert werden, um die nachhaltige Wettbewerbsfähigkeit und Skalierung von KI-Startups zu fördern.
Drittens ist es wichtig, die regulatorischen Standards für KI möglichst länderübergreifend zu harmonisieren, um Unternehmen mehr Planungssicherheit zu bieten und gleichzeitig einen verantwortungsvollen Einsatz von KI-Technologien zu gewährleisten.
Ganz praktisch sollten Startups zunächst übergeordnet ihre langfristigen Ziele definieren – sei es in zwei oder drei Jahren, um daraus abzuleiten, welche Schritte einen Beitrag zur Erreichung dieser Ziele leisten. Diese Herangehensweise zwingt Startups und Gründer, fokussiert zu bleiben und in der Gegenwart strategische Entscheidungen zu treffen, um sich für die nächste KI-Entwicklungsphase zu positionieren.
Herr Lehmeier, danke für das Gespräch!
Aussichten der eSIM-Technologien: Was die Zukunft für uns bereithält
Start-ups und Technikfans kennen das Phänomen eSIM bereits – diese Technologie ersetz seit 2019 die herkömmlichen SIM-Karten nach und nach. Die aktuellen Möglichkeiten und Trends von eSIM sind jedoch noch unbekannt. Lesen Sie weiter, wenn Sie sich für diese innovative Art der Mobilfunkverbindung interessieren. Erfahren Sie, wie die Yesim-App die globale Abdeckung revolutioniert hat und welche Möglichkeiten Sie erwarten können.

Das eSIM-Phänomen: Geschichte und Herausforderungen
Im Jahr 2025 verblüffen eingebettete SIMs durch ihre Funktionalität. Nutzer können zwischen einer Ein-Länder-Verbindung, einem Pay-As-You-Go-eSIM-Datenplan mit mobilen Daten aus 140 Ländern, unbegrenzten Verbindungsoptionen, kostenlosem VPN und vielen weiteren Zusatzfunktionen wählen. Ständige Herausforderungen stehen hinter dem aktuellen Trend.
2010er: Das Konzept taucht auf
In den 2010er Jahren war das Konzept der eSIM mit dem Bereich des Internets der Dinge verbunden. Die Idee war einfach: „Was wäre, wenn wir SIM-Chips direkt in Geräte einbauen könnten, anstatt SIM-Karten zu kaufen?“
In der Tat ist eine eingebettete SIM-Karte ein winziger Chip, der in das Gerät eingesetzt wird und wie herkömmliche SIM-Karten eine Verbindung zu den Mobilfunkmasten herstellen kann. Die Idee wurde vom Global System for Mobile Communications genehmigt.
2011-2015: Die ersten Implementierungen
Bekannt ist, dass eSIM als Technologie für Industriegeräte begann. Auto-Telematik und Industriegeräte nutzten bereits eSIM-Chips für eine einfachere Internetverbindung und Datenüberwachung. Die Öffentlichkeit war jedoch nicht so sehr an dem Konzept interessiert.
2017: Das erste eSIM-Smartphone
2017 brachte Google das Google Pixel 2 heraus — das erste Smartphone mit eSIM-Kompatibilität. Google als innovativer Hersteller bemühte sich darum, der erste Hersteller mit einer revolutionären Verbindungsmethode zu sein.
2018 und folgende Jahre: Breitere Implementierung
Im Jahr 2018 veröffentlichte Apple die iPhones XR und XS — die ersten iOS-Geräte mit eSIM-Unterstützung. Seitdem haben sich eingebettete SIMs zu einem weltweiten Trend entwickelt und die Öffentlichkeit angezogen. Seitdem und seit 2025 wird die Technologie erweitert und bietet immer mehr Funktionen.

Was können wir von der eSIM-Branche in den nächsten Jahren erwarten?
Es wird erwartet, dass der weltweite eSIM-Markt im Jahr 2032 ein Volumen von 6,2 Milliarden USD erreichen wird. Nordamerika ist zwar die größte Industrieregion, aber auch in der Europäischen Union werden eingebettete SIMs immer beliebter. Sehen wir uns die weiteren Prognosen und zu erwartenden Merkmale an.
Der wachsende Markt für internationale eSIMs
Virtuelle SIM-Karten für ein einzelnes Land sind zweifelsohne bequemer als herkömmliche SIM-Karten. Dennoch schöpfen sie nicht das gesamte Potenzial der Technologie aus.
Der globale Anbieter Yesim hat bereits 10 regionale und 5 globale eSIM-Pläne eingeführt. Diese eingebetteten SIM-Karten können automatisch zwischen Mobilfunkanbietern in mehreren Regionen (bis zu 148 Ländern) wechseln. Der Nutzer kauft und aktiviert den Tarif einmal, und der Anbieter stellt die Internetverbindung in allen ausgewählten Ländern her. Dieser Ansatz ist kostengünstig und viel bequemer, da die Nutzer nicht zwischen den eSIM-Tarifen wechseln müssen.
Die Beliebtheit des „Pay-as-You-Go“-Formats
Ein weiterer Ansatz, der sich bei allen Anbietern durchsetzt, ist das Preismodell „Pay-as-You-Go“. Anstelle von Prepaid-Tarifen mit einem bestimmten Datenvolumen funktioniert dieses Format ständig und verbindet die Nutzer in mehreren Regionen mit dem Internet. Im Grunde lädt der Kunde sein Guthaben auf, und der Anbieter schaltet das Internet im Ausland entsprechend dem lokalen Preis frei. Auf diese Weise zahlen die Kunden nur für das, was sie nutzen.
Die Technologie ist noch nicht so weit verbreitet, da ihre Umsetzung kompliziert ist. Dennoch setzen mehrere Anbieter sie bereits 2025 ein.
Vorherrschaft der eSIM gegenüber herkömmlichen Verbindungsformen
Eingebettete SIMs ersetzen schon jetzt herkömmliche SIM-Karten und der Trend wird immer größer. Studien aus Nordamerika zeigen, dass sich die Zahl der Geräte mit eSIM-Anschluss von 2023 bis 2024 fast verdoppelt hat (310 Millionen auf 598 Millionen). SIM-Karten werden zweifelsohne auch 2025 die wichtigste Verbindungsmethode bleiben. Gewohnheit und Beliebtheit sind die Hauptgründe dafür, wobei es Menschen gibt, die sich generell nicht sehr für Technik interessieren, und deshalb finden sie das Thema eSIM oft kompliziert.
Der Anstieg der eSIM-Nutzer zeigt jedoch, dass sich die Situation ändert. In den 2030er Jahren könnten virtuelle SIM-Karten die Hauptmethode der Datennutzung in Mobiltelefonen werden.
Eingebettete SIMs im IoT
Im Jahr 2025 sind eingebettete SIM-Karten nicht nur auf Smartphones und Tablets beschränkt. Smartwatches, die nach 2020 hergestellt werden, unterstützen diese Technologie bereits. Außerdem unterstützen mehrere Autos, darunter die Audi A- (3, 4, 5) und Q- (2 und 7) Serien, virtuelle SIMs.
Dies deutet auf eine breitere Nutzung der Technologie hin. Höchstwahrscheinlich wird die eSIM ein primäres Mittel zur Verwaltung von intelligenten Haushalten und Geräten, städtischen Technologien und Industrieanlagen sein.
Zunehmender Wettbewerb
Da die Zahl der Anbieter steigt, brauchen die Unternehmen dauerhafte Weiterentwicklungen und Innovationen. Das Angebot von Prepaid-eSIMs reicht nicht aus, um im Wettbewerb zu bleiben. Viele Anbieter wie Yesim bieten mehrere Funktionen an:
- unbegrenztes Internet
- kostenloser VPN-Zugang für Kunden
- Treueprogramme
- regionale und globale SIM-Karten
- Datensparende Browser und Anwendungen
- virtuelle Nummern auf Anfrage
- automatische eSIM-Aktivierung in Anwendungen
Dies ist nur ein Teil der zusätzlichen Funktionen, die von modernen Anbietern angeboten werden. Der Wettbewerb ist ein positives Merkmal, da die Branche dank der eSIM-Unternehmen expandiert.
Fazit
Der beste Weg, alle Möglichkeiten zu erkunden, ist, die Technologie selbst auszuprobieren. Mit einem Schnuppertarif für 0,50 € können Sie bereits jetzt 500 MB für internationale Verbindungen nutzen. Entscheiden Sie sich für eSIM bei Ihrer nächste Reise ins Ausland und halten Sie sich über die neuesten Trends in der virtuellen SIM-Branche auf dem Laufenden.
LegalTech-Trends 2025
Der Legal-Markt steht an einem Wendepunkt: Innovative, KI-basierte Tools transformieren die Branche und eröffnen neue Möglichkeiten. Diese sechs Trends werden die Branche verändern und prägen.

1. „Agentic AI“ für Legal Workflows
Künstliche Intelligenz (KI) ist das Herzstück der LegalTech-Zukunft. Anwendungen unterstützen schon heute Kanzleien und Unternehmen dabei, Dokumente zu analysieren und komplexe rechtliche Fragestellungen mit automatischer Prüfung von Gerichtsurteilen zu bearbeiten. KI ist dabei jedoch nur ein einzelnes Feature einer ganzheitlichen Legal-Workflow-Plattform. Aber ein wichtiges. Mit KI werden zeitintensive Aufgaben automatisiert, sodass Anwält*innen mehr Zeit für strategische Tätigkeiten haben und Legal Assistants von administrativen Aufgaben entlastet werden.
Gleichzeitig entstehen durch KI neue Herausforderungen. Digitale Souveränität, Datenschutz, Bias in Algorithmen und die Qualität der automatisierten Entscheidungsprozesse sind Themen, die sowohl Kanzleien, Rechtsabteilungen als auch Gesetzgeber beschäftigen werden. Da Datenschutz und Privacy i.d.R. bei europäischen und deutschen LegalTech-Anbieter*innen ein stärkerer Teil der Software-Anbieter DNA sind, haben sie einen Vorteil gegenüber US-amerikanischen Hersteller*innen.
2. Unified Contract Management & Enterprise Legal Management
Beim Contract & Matter Management zeichnet sich eine große Veränderung ab – hin zu modernen, flexiblen, cloudbasierten Contract- und Matter-Management-Tools. Durch höhere Anforderungen der Fachbereiche hinsichtlich der Geschwindigkeit bei der Bearbeitung von Rechtsfällen, nimmt die Bedeutung von Unternehmensjuristen weiter zu. Während sie früher primär als Berater agierten, übernehmen sie mittlerweile eine zunehmend strategische Rolle. Hierbei helfen ihnen ganzheitliche Enterprise Legal Management Software Lösungen die sowohl bei der Anfrage, Annahme und effizienten Durchführung von Rechtsfällen unterstützen. Die neue Rolle der Inhouse-Jurist*innen erfordert nicht nur technologische Kompetenz, sondern auch betriebswirtschaftliches Verständnis und die Fähigkeit, mit anderen Unternehmensbereichen zusammenzuarbeiten.
3. Legal Front-Door & Self-Service Legal Tools
In der IT wird seit vielen Jahren das „Shift to left“ Prinzip verfolgt. Jetzt wird es verstärkt auch in Legal Prozessen genutzt. Das Prinzip zielt darauf ab, die Effizienz über Self-Service Möglichkeiten zu steigern, Reaktionszeiten zu verkürzen und Kosten zu senken, indem Probleme näher an ihrer Quelle – also dem Mandanten, Anwender bzw. dem Fachbereich gelöst werden. Eine Legal Front Door ist im Grunde eine digitale Rezeption, eine zentrale Plattform, die es den Mitarbeitenden eines Unternehmens oder Mandant*innen einer Kanzlei ermöglicht, auf rechtliche, standardisierte Dienstleistungen wie NDA-Erstellung, Digitale Mandatsannahme, Compliance Anleitungen und Legal Ressourcen zuzugreifen.
4. Compliance Analytics: Risiken in rechtlichen Dokumenten erkennen und beheben
Die Analyse von Verträgen und Schriftgut ist zentraler Bestandteil der modernen Rechtspraxis. Compliance Analytics ermöglicht es Jurist*innen Risiken in Verträgen und Dokumenten zu analysieren, vorherzusagen und Verstöße proaktiv und automatisiert zu korrigieren. Durch datenbasierte Analysen können potenzielle Verstöße gegenüber Unternehmensrichtlinien wie Haftungsgrenzen, AGB-Compliance identifiziert und über automatisierbare Workflows angepasst bzw. Compliance-Verstöße automatisch behoben werden. Diese präventive Herangehensweise bietet nicht nur einen finanziellen Mehrwert, sondern reduziert auch Haftungsrisiken und stärkt die Wettbewerbsfähigkeit von Kanzleien und Rechtsabteilungen.
5. Von der/vom Jurist*in zum/zur LegalTech-Expert*in
Die Automatisierung repetitiver Aufgaben, wie die Überprüfung von Dokumenten oder Durchführen von Recherchen, hat tiefgreifende Auswirkungen auf die Arbeitsweise von Jurist*innen. Während Junior-Anwält*innen früher oft mit derartigen Tätigkeiten betraut wurden, können sie sich heute dank moderner Technologien auf strategischere Aufgaben konzentrieren. Das beschleunigt ihre berufliche Entwicklung und verändert traditionelle Karrieremodelle. Dabei sollte jedoch sichergestellt sein, dass die notwendigen praktischen Erfahrungen gesammelt werden können, denn nur so lässt sich eine fundierte Expertise aufbauen. Zwar bleibt das juristische Wissen weiterhin wichtig, aber die Fähigkeit die richtigen juristischen Fragen zu entwickeln und zu stellen wird in Zukunft wichtiger sein als „nur“ juristisches Wissen and geeignete Antworten zu haben. Auch die juristische Ausbildung verändert sich, inkl. der Nutzung moderner KI-basierten LegalTech-Tools zur Recherche, Analyse und Erstellung von Dokumenten. Universitäten und Kanzleien passen ihre Ausbildungsprogramme an, um die nächste Generation von Jurist*innen auf die Anforderungen des digitalen Zeitalters vorzubereiten.
6. Investitionen in LegalTech
Laut einer aktuellen Umfrage von JP Morgan unter Unternehmensjurist*innen haben bei 71 Prozent der Rechtsabteilungen die Investition in LegalTech-Tools eine hohe bis sehr hohe Bedeutung. Aber nur 32 Prozent der Rechtsabteilungen haben LegalTech-Tools in ihren Budgets berücksichtigt. 80 Prozent gaben an, KI-LegalTech-Tools im laufenden Jahr einführen zu wollen – wollen dafür aber nur durchschnittlich 13 Prozent des gesamten Legal Budget ausgeben. Das belegt, dass die Investitionen in LegalTech-Tools zwar weiter zunehmen, die Diskrepanz zwischen KI-Ambitionen und Finanzierung jedoch bleibt. Die Legal-Innovationsfähigkeit ist also abhängig von der Legal-Investitionsfähigkeit.
Fazit
Die LegalTech-Trends zeigen, wie Technologie die juristische Arbeit verändert. Da generative KI trotz heutiger multi-modaler Fähigkeiten wie Text, Bild und Audio vor allem die Analyse und Erstellung von Text hervorragend beherrscht, hat der Legal-Bereich quasi eine Pionierstellung in der modernen KI-Bewegung. Der Rechtsmarkt ist eine „Text First“-Industrie und hervorragend geeignet, um die Innovationen von generativer KI zu beschleunigen. Von KI-gestützter Effizienzsteigerung über datenbasierte Risikoanalysen bis hin zur Automatisierung von Routineaufgaben: Der Legal-Markt wird nicht nur digitaler, sondern auch dynamischer. Für Kanzleien und Unternehmensjurist*innen bringt das einerseits neue Möglichkeiten mit sich, andererseits aber auch die Notwendigkeit, sich weiterzuentwickeln. Die Herausforderungen sind vielfältig, doch eines steht fest: Die Zukunft des Rechtsmarkts gehört denen, die technologische Innovationen nicht nur akzeptieren, sondern aktiv mitgestalten.
Der Autor Oliver Bendig ist CEO des LegalTech-Anbieters stp.one
Initiative "KI für Deutschland" startet Aktionsplan
Die Initiative "KI für Deutschland" wurde Ende 2024 von privaten Akteur*innen aus dem KI-Ökosystem ins Leben gerufen, um hierzulande eine zukunftsorientierte Strategie für die KI-Nutzung als Schlüsseltechnologie des 21. Jhs. zu etablieren.

Die Initiative "KI für Deutschland" wurde Ende 2024 von privaten Akteur*innen aus dem KI-Ökosystem ins Leben gerufen. Ziel ist es, einen praxisnahen und unternehmerisch getriebenen Impuls zu setzen, um in dieser Phase der politischen und gesellschaftlichen Neuorientierung Eckpfeiler zu definieren, wie KI zum Wohle und unter Beteiligung aller in Deutschland, effektiv genutzt werden kann.
Zu den Initiator*innen von "KI für Deutschland" gehören maßgeblich die AI.GROUP, der AI.FUND, sowie die Rise of AI Conference - insbesondere die Unternehmer*innen und KI-Expert*innen Dr. Hauke Hansen, Fabian Westerheide, Ragnar Kruse, Petra Vorsteher, Dr. John Lange und Ingo Hoffmann. Unterstützt wird die Initiative von namhaften Institutionen wie dem KI-Bundesverband.
Die Initiative ist deutschlandweit, interdisziplinär und holistisch ausgerichtet. Sie ist offen für den Input und die Unterstützung aller relevanten gesellschaftlichen Gruppen und Persönlichkeiten.
Aufbruchssignal in Zeiten des Umbruchs
Mitinitiator Dr. Hauke Hansen: “Die Initiative KI für Deutschland ist ein Aufbruchssignal in Zeiten des Umbruchs. Mit unseren 11 Impulsen machen wir greifbare und umsetzbare Vorschläge, wie Deutschland die KI nutzen kann, um den gesellschaftlichen Stillstand zu durchbrechen und Wege aus der wirtschaftlichen Rezession zu finden. Wir richten uns damit an alle gesellschaftlichen Akteure, die Wirtschaft ebenso wie die Politik. Wir brauchen eine zukunftsweisende und konsequente Industriepolitik und unternehmerisches Handeln, um die KI am Standort Deutschland zur Chefsache zu machen und damit das Bruttosozialprodukt nachhaltig zu steigern. Stellen wir gemeinsam die Weichen für innovatives und wirtschaftlich erfolgreiches Deutschland von morgen.”
Diese elf Impulse will die Initiative "KI für Deutschland" zur Nutzung künstlicher Intelligenz in Deutschland in Form eines KI-Aktionsplans setzen:
Impuls 1: Einrichtung eines Digitalministeriums auf Bundesebene
Die Digitalisierung in Deutschland hat wirtschaftliche und politische Priorität. Um eine konsequente Digitalisierung der Gesellschaft, Wirtschaft und Verwaltung zu erreichen, ist ein dediziertes Bundesministerium für Digitales mit dem Schwerpunkt KI notwendig.
Impuls 2: Förderung von KI-Forschung und -Innovationen
Deutschland muss die jährlichen Investitionen in KI-Forschung und -Entwicklung bis 2030 auf mindestens 5,0 Mrd. € pro Jahr aufstocken, um international wettbewerbsfähig zu bleiben.
Impuls 3: Bereitstellung von KI-Wagniskapital für KI-Start-ups und -Innovationen
Deutschland benötigt ein KI-Wagniskapitalprogramm ausgestattet mit 10 Mrd. € über 5 Jahre, um KI-Startups zu fördern. Staatliche Fund-of-Funds sollten dazu genutzt werden, Mittel zielgenau und effektiv zu platzieren.
Impuls 4: Aufbau von KI-Clustern zur Förderung von Innovationen und Exzellenz in regionalen Ökosystemen
Deutschland sollte regionale KI-Cluster fördern, die räumliche Nähe mit technischer und wirtschaftlicher Exzellenz verbinden, um Innovationskraft zu maximieren und international Talente anzuziehen.
Impuls 5: Aufbau einer leistungsfähigen und souveränen digitalen Infrastruktur zur Stärkung der KI
Eine flächendeckende digitale Infrastruktur ist essenziell, um KI für Bürger und Unternehmen in der Breite nutzbar zu machen. Wir setzen uns dafür ein, GPU-Megacluster für Forschung und Industrie in Deutschland zu etablieren.
Impuls 6: Förderung der Anwendung von KI in Unternehmen
Bis 2030 sollten mindestens 80% aller deutschen Unternehmen KI-Anwendungen aktiv nutzen, um ihre Geschäfte zu optimieren und auszubauen.
Impuls 7: KI für den öffentlichen Sektor – Effizienzsteigerung und weniger Bürokratie
Bis 2029 sollte der Einsatz von KI in allen wesentlichen Behörden auf Bundes-, Landes- und Regionalebene etabliert werden, um Prozesse zu optimieren, Bürokratie abzubauen und Bürgerdienste zu verbessern.
Impuls 8: KI und Nachhaltigkeit – erschwingliche und saubere Energie für Deutschland
Deutschland sollte KI gezielt einsetzen, um die Energiewende zu unterstützen und die CO2-Emissionen im Energiesektor bis 2035 um mehr als 15% zu senken. Unser Land braucht eine sichere und bezahlbare Energieversorgung als Grundlage für technologiebasiertes Wachstum.
Impuls 9: Eine KI-Bildungsinitiative als Grundlage einer zukunftsfähigen Gesellschaft
Bis 2030 sollten mehr als 80% der Arbeitskräfte in Deutschland grundlegende KI-Kompetenzen besitzen, um den digitalen Wandel aktiv mitzugestalten.
Impuls 10: Ein klarer und sicherer rechtlicher Rahmen für KI und ein KI-Gütesiegel
Deutschland sollte bis 2026 einen flexiblen Rechtsrahmen für KI schaffen, der Innovation fördert, aber Missbrauch verhindert, und ein KI-Gütesiegel zur Förderung ethischer und transparenter KI einführen.
Impuls 11: Schaffung eines europaweiten KI-Ökosystems mit Deutschland als Schrittmacher
Deutschland sollte eine gestaltende Rolle beim Aufbau eines europäischen KI-Ökosystems übernehmen, um eine wettbewerbsfähige Alternative zu den USA und China zu etablieren.
Hier gibt’s mehr Infos zur Initiative "KI für Deutschland"
KI-gestützte Identitätsbetrugsprävention hinkt Bedrohung hinterher
E-Mails, Chat-Nachrichten, Telefonanrufe, Fotos und Videos – immer häufiger missbrauchen Cyberkriminelle diese Kommunikationstools als Vehikel für einen Identitätsbetrug – doch was tun?

Immer häufiger wird in den Medien über erfolgreiche KI-gestützte Deep-Fake-Attacken berichtet. Die Folge: Das Vertrauen der Verbraucher*innen in digitale Medien und Kanäle nimmt zusehends Schaden – und damit auch die betreffenden Online-Anbieter*innen. Bei nicht wenigen von ihnen wird das Phänomen KI-gestützter Angriffe über kurz oder lang zu massivem Imageverlust und Umsatzeinbußen führen.
Diskrepanz zwischen Sensibilisierung und Handeln
Vor diesem Hintergrund stimmt es nachdenklich, dass bislang nur 22 Prozent der Unternehmen Maßnahmen zur Verhinderung von KI-gestütztem Identitätsbetrug ergriffen haben. Der aktuelle Signicat-Report "The Battle Against AI-driven Identity Fraud" zeigt eine Kluft zwischen Bewusstsein und Handeln auf. Während über 76 Prozent der Entscheidungsträger*innen die wachsende Bedrohung durch KI bei Betrug erkennen, haben, wie erwähnt, nur 22 Prozent der Unternehmen damit begonnen, KI-gesteuerte Maßnahmen zur Betrugsprävention zu implementieren.
Für die Studie wurden über 1.200 Entscheidungsträger*innen aus Banken, FinTechs, Zahlungsanbietenden und Versicherungsunternehmen in Europa befragt. In dem Bericht wird hervorgehoben, dass sich die Unternehmen des Problems durchaus bewusst sind, aber Schwierigkeiten haben, die erforderlichen Schutzmaßnahmen zu ergreifen, und zwar aus folgenden Gründen:
- Mangelndes Fachwissen: 76 Prozent der Entscheidungsträger*innen im Bereich Betrugsbekämpfung geben unzureichende Kenntnisse als Haupthindernis an.
- Zeitmangel: 74 Prozent geben zu, dass sie nicht die Zeit haben, das Problem mit der erforderlichen Dringlichkeit anzugehen.
- Fehlendes Budget: 76 Prozent geben an, dass nicht genügend Mittel zur Verfügung stehen, um robuste Technologien zur Betrugsprävention einzusetzen.
2025: das Jahr des KI-Betrugs
Im Hinblick auf die aktuellen Herausforderungen warnt der Bericht davor, dass Betrüger*innen KI in einem noch nie dagewesenen Ausmaß nutzen werden Deepfake-Angriffe, die laut Signicat-Daten in den letzten drei Jahren um 2137 Prozent zugenommen haben, sind nur ein Beispiel dafür, wie schnell sich KI-gesteuerte Betrugstechniken weiterentwickeln.
Um den Betrüger*innen einen Schritt voraus zu sein, sollten die Unternehmen schnell handeln: Empfohlen wird ein mehrschichtiger Verteidigungsansatz – von der frühzeitigen Risikobewertung über robuste Identitätsüberprüfungs- und Authentifizierungstools in Kombination mit Datenanreicherung bis hin zur laufenden Überwachung für einen umfassenden Ansatz, der die wichtigsten Angriffsflächen abdeckt:
- Investitionen in KI-gesteuerte Betrugsprävention: Innovative Technologien bieten Echtzeit-Betrugserkennung, einschließlich der Erkennung von Dokumentenmanipulationen und Imitationen, einschließlich Deepfakes, und bekämpfen KI mit KI.
- Aufbau eines internen Bewusstseins und Zusammenarbeit mit vertrauenswürdigen Anbietenden: Ein proaktiver Ansatz für Mitarbeitendenschulungen und externe Zusammenarbeit ist der Schlüssel zum Umgang mit dieser sich entwickelnden Bedrohungslandschaft.
#noFilter
Fake News statt Fakten auf Social Media: Beginnt jetzt das Zeitalter der Liveblogs? Eine Einschätzung samt Tipps und To-do's von Naomi Owusu, CEO sowie Mitbegründerin von Tickaroo.

Mark Zuckerberg verkündete erst vor Kurzem, dass Meta in Zukunft ohne Fact-Checking auskommen soll. Stattdessen werden schon bald die Nutzer*innen über den Wahrheitsgehalt der Inhalte bestimmen – in einem Zeitalter von Bots und KI ist allerdings schon jetzt abzusehen, dass das nicht funktionieren wird und vermutlich auch gar nicht funktionieren soll. Die Instanzen, die bisher die Echtheit der Aussagen geprüft haben, seien nach Auffassung des Facebook-Gründers jedoch politisch nicht neutral. Fast zur selben Zeit von Zuckerbergs Ankündigung, führte ein politisch motivierter und unberechenbarer Milliardär auf seiner eigenen Plattform X ein Live-Interview mit der AfD-Vorsitzenden Alice Weidel, die in dem Gespräch zahlreiche Falschbehauptungen machte.
Diese Entwicklungen zwingen Medienschaffende sowie Leser*innen, sich 2025 ernsthaft mit den Alternativen zu Social Media zu befassen. Denn die gibt es!
1. Fakten statt Fame – Echtzeit Nachrichten durch Live-Blogs
Das schwindende Vertrauen in die klassischen Medien sorgte in der Vergangenheit dafür, dass sich Leser*innen über Facebook, Twitter und Co. informierten. Doch die zunehmende Verbreitung von Fake News in den sozialen Netzwerken fordert andere Kanäle, die genauso schnell und persönlich informieren, aber gleichzeitig den Wahrheitsgehalt sicherstellen. Live-Blogs sind für Journalist*innen ein ebenso unmittelbarer Weg zu ihrer Zielgruppe. Hier können sie sich transparent und menschlich präsentieren, indem sie ihr Publikum näher in den Entstehungsprozess der Geschichten hinter den Schlagzeilen einbeziehen. Durch Dialoge und Engagement können sie eine Bindung zur Leserschaft aufbauen. Videos, die ihre Arbeit zeigen, machen sie nahbarer und vertrauenswürdiger. Transparenz, etwa durch Erklärungen zur Quellenprüfung oder zur Verifizierung von Informationen, baut Glaubwürdigkeit auf, bekämpft Desinformation und stärkt das Verhältnis zwischen Medien und Öffentlichkeit – und gerade das wird in 2025 entscheidend sein.
2. Entertainment im Micro-Content für Macro-Erfolg
Kurzvideos sind nicht erst seit der Einführung von TikTok beliebt, doch die Plattform hat den Trend weiter angefacht und ihre Popularität ist ungebrochen. Nachrichtenportale müssen in 2025 verstärkt auf dieses Format setzen, um insbesondere junge Leser*innen als treue Konsument*innen zu gewinnen. Allerdings können Medienschaffende noch einen Schritt weiter denken, hin zu interaktiven Mikro-Inhalten, die den Bedürfnissen nach Inspiration, Ablenkung und Verbindung gerecht werden. Dynamische Live-Blog-Formate wie Q&As, Umfragen, Kommentare und Reaktionen ermöglichen Echtzeit-Interaktionen. Sie können mit Live-Updates kombiniert und in den sozialen Netzwerken geteilt werden. Dadurch gewinnen Nachrichtenorganisationen die Aufmerksamkeit der Nutzer*innen und bleiben im Wettbewerb mit Social Media konkurrenzfähig.
3. Video Killed the Radio Star und Mobile das TV!
Fernsehen ist so 90er-Jahre! Die Mehrheit der Konsument*innen liest ihre Nachrichten über das Smartphone. Eine Ausrichtung auf mobile, responsive Designs ist also auch in 2025 entscheidend. Wer darüber hinaus ein „Second-Screen-Erlebnis“ ermöglicht, bietet durch Echtzeit-Statistiken, Analysen oder Hintergrundberichte ein immersives Erlebnis für Nutzer*innen und damit einen Mehrwert für ihr Seherlebnis. Gerade für Nachrichtenformate, Event- und Sportberichterstattung wird dieses Feature immer wichtiger.
4. KI im Newsroom: Zwischen Skepsis und Effizienz
Das Thema künstliche Intelligenz (KI) ist noch lange nicht erledigt, doch gerade Journalist*innen haben Bedenken hinsichtlich der Nutzung. Während KI-generierte Inhalte für viele Medienschaffende und ihr Publikum noch außerhalb der Komfortzone liegen, wird die Technologie zunehmend in Bereichen wie Übersetzungen, Überschriften- und Social-Media-Zusammenfassungen sowie Datenanalysen eingesetzt. Denn sie kann Lücken in Geschichten identifizieren, Verbesserungen vorschlagen, Texte korrekturlesen und den Tonfall an verschiedene Zielgruppen anpassen. In Kombination mit Tracking-Funktionen kann KI zudem den optimalen Veröffentlichungszeitpunkt und relevante Themen oder Formate bestimmen. Damit wird sie die Arbeitsprozesse in Nachrichtenredaktionen effizienter gestalten und Redakteur*innen den Freiraum geben, sich auf die Erstellung authentischer, leserzentrierter Inhalte zu fokussieren.
5. Näher dran durch hyperlokale Inhalte
In einem wettbewerbsintensiven Umfeld ist das Verständnis für die eigene Zielgruppe essenziell. Durch maßgeschneiderte Inhalte können Medienorganisationen stärkere Bindungen aufbauen und gleichzeitig ihre Reichweite vergrößern. Lokale Zeitungen haben es in der digitalen Ära schwer, da sie Werbekunden an Plattformen wie Google oder Facebook verlieren und ihr Publikum zunehmend auf Nischenangebote umsteigt. Dennoch wird die Nachfrage nach hyperlokalen Inhalten weiter wachsen, da die Meldungen die Menschen vor Ort einbeziehen und dem Publikum das Gefühl geben, gesehen zu werden. Insbesondere die Sportberichterstattung ist ein strategisches Asset für Medienschaffende, da sie die starke Verbindung der Fans zu heimischen Teams nutzt, um persönliche Beziehungen zu Leser*innen aufzubauen. Die so geschaffenen Inhalte können das Vertrauen der Leserschaft zurückgewinnen und lokale Bindungen stärken. Dieser Ansatz gilt allerdings nicht nur für Sport. Medien, die gezielt kleinere, spezifische Gruppen ansprechen und deren Leben sowie Begeisterung widerspiegeln, können ihre Reichweite erhöhen und Abonnementmodelle fördern. Während aktuelle Nachrichten ein breites Publikum anziehen, sorgen Nischeninhalte für langfristiges Interesse.
Die Nachrichten der Zukunft sind transparent
In einer Zeit, in der Falschinformationen auf Social Media den Diskurs prägen, gewinnen alternative Nachrichtenformate an Bedeutung. Live-Blogs sind schon lange, aber insbesondere in 2025, eine Alternative, um Echtzeit-News mit Transparenz und Nähe zu verbinden. Sie ermöglichen es Journalist*innen, authentisch zu berichten, den Entstehungsprozess ihrer Inhalte nachvollziehbar zu machen und ihre Leserschaft aktiv einzubeziehen. Durch Dialog und Interaktion können Medienhäuser ihre Glaubwürdigkeit stärken und Loyalität aufbauen. Statt Likes und viralen Trends stehen hier Fakten, Vertrauen und die Nähe zum Publikum im Mittelpunkt – und genau das braucht ein moderner Journalismus.
Die Autorin Naomi Owusu ist CEO und Co-Founder von Tickaroo, eine Live Blog-Plattform für Text- und Multimedia-Inhalte. Seit der Gründung 2011 setzt sich die studierte Psychologin mit ihrem Team für den Ausbau des Produktportfolios und die Optimierung des Live-Content-Tools ein.
Was gehört in eine KI-Policy?
Recht für Gründer*innen: Über den verantwortungsvollen Umgang mit KI.

Künstliche Intelligenz (KI) ist längst Teil unseres Alltags und hält in Unternehmen auch zunehmend Einzug. Ob beim Erstellen von Texten, in der Datenanalyse oder bei der Automatisierung von Routineaufgaben – KI ist ein starkes Werkzeug, das Unternehmen viele Vorteile bieten kann. Doch mit diesen Vorteilen kommen auch Verantwortung und Risiken, die eine klare und durchdachte KI-Policy erfordern.
Diese Einleitung zu einem Artikel über KI-Policies ist KI-generiert. Es ist so schön bequem und schnell gemacht: eines der gängigen LLM-Systeme online aufrufen, beispielsweise ChatGPT, und binnen Sekunden ist der Artikel fertig.
Ihr kennt das im Privaten, vor allem aber auch im Arbeitsumfeld. KI-Tools sind aus der Arbeitswelt nicht mehr wegzudenken. Die Nutzung von KI – insbesondere für berufliche Aufgaben – birgt jedoch Risiken. Manche KI neigt, falsch trainiert, zu diskriminierenden Entscheidungen, was z.B. im HR-Bereich gefährlich ist. Unbedacht erstellte Prompts können den Schutz von Geschäftsgeheimnissen aufs Spiel setzen. Die Datenschutzgrundsätze sind wie immer einzuhalten.
Generative KI schert sich, wenn wir als Nutzer*innen nicht darauf Acht geben, nicht um die Urheberrechte derer, deren Werke wir – ob bewusst oder unbewusst – verwenden oder verletzen. Zudem ist seit August 2024 die KI-Verordnung in der EU in Kraft und stellt an Unternehmen, die KI-Systeme und -Modelle entwickeln, anbieten oder betreiben, umfangreiche Anforderungen. Auch die mit KI einhergehenden Risiken sind nicht außer Acht zu lassen.
Seid ihr als Gründer*innen oder in sonst verantwortlicher Position in einem Unternehmen mit mehreren Mitarbeiter*innen tätig, müsst ihr euch Gedanken darüber machen, wie solche Risiken zu fassen und zu begrenzen sind. Tut ihr das nicht, drohen aus diversen Rechtsgrundlagen z.B. Schadensersatzforderungen, Bußgelder oder der Verlust an Assets – Dinge, die allerspätestens bei der nächsten Finanzierungsrunde negativ bewertet werden. In Bezug auf eure Belegschaft müsst ihr also Awareness für diese Themen schaffen und konkrete Vorgaben machen.
Denn eines ist klar: KI wird in eurem Unternehmen genutzt werden, ob mit oder ohne euer Wissen. Und bevor die Mitarbeiter*innen auf privaten Geräten sensible berufliche Aufgaben nicht reglementiert mittels ChatGPT & Co. lösen, beschreibt lieber beizeiten Dos and Don’ts, um sicherstellen, dass KI verantwortungsvoll, sicher und rechtskonform im Unternehmen eingesetzt wird.
Dazu dient eine die Belegschaft informierende und verpflichtende KI-Policy. Im Folgenden findest du einen Überblick darüber, welche Aspekte in eine solche Policy gehören.
1. Richtlinien für den Einsatz generativer KI am Arbeitsplatz
Generative KI-Modelle wie ChatGPT, DALL-E und andere erstellen Inhalte nach Maßgabe der Eingaben der Nutzenden. Bei diesen Prompts und bei der Verwendung der generierten Ergebnisse ist auf Folgendes zu achten:
- Schutz sensibler Daten: Die Eingabe vertraulicher Informationen in KI-Modelle stellt ein erhebliches Risiko dar, da generative KI-Systeme auf großen Datenmengen trainiert sind und Informationen potenziell unkontrolliert verarbeiten und speichern. Die KI-Policy sollte explizit verbieten, sensible oder vertrauliche Informationen in generative KI-Systeme einzugeben, insbesondere, wenn diese extern betrieben werden. Die Policy sollte beschreiben wie mit sensiblen Daten umzugehen ist und welche Daten für die Verarbeitung durch KI-Systeme ungeeignet sind.
- Einhaltung des Datenschutzes: Die KI-Policy sollte klarstellen, dass der Einsatz generativer KI-Tools den Anforderungen der Datenschutzgesetze (DSGVO, BDSG) entsprechen muss. Dazu gehören Vorgaben, wie personenbezogene Daten rechtssicher zu handhaben sind und welche dieser Daten überhaupt für den Einsatz von KI-Modellen geeignet sind. Zudem bedarf es Vorgaben zur Anonymisierung und Pseudonymisierung der Daten, daneben Transparenzvorgaben, um betroffene Personen über die Nutzung ihrer Daten zu informieren. Personenbezogene Daten in öffentlichen KI-Systemen einzusetzen, sollte möglichst untersagt werden.
- Umgang mit geistigem Eigentum: Die Nutzung generativer KI-Modelle kann zu Problemen führen, wenn die KI auf geschütztem Material trainiert wurde, von dem/der Nutzenden urheberrechtlich geschützte Werke in den Prompt einbezogen werden oder die KI Werke erstellt, die bestehende Urheber- oder sonstige Schutzrechte verletzen. Die KI-Policy sollte ein Verbot der Verwendung von Werken enthalten, an denen nicht die für die Bearbeitung erforderlichen Rechte bestehen. Und sie kann Regelungen zur Überprüfung und Genehmigung von KI-erstellten Inhalten festlegen, etwa durch eine Rechtsabteilung oder eine speziell dafür zuständige Stelle.
- Transparenz und Kennzeichnung: Die KI-Policy sollte festlegen, dass Inhalte, die mithilfe von generativer KI erstellt wurden, transparent gekennzeichnet werden. Dies trägt dazu bei, Missverständnisse zu vermeiden und sicherzustellen, dass die Herkunft von Texten und Bildern klar erkennbar ist. Diese Kennzeichnungspflicht sollte insbesondere dann gelten, wenn KI-generierte Inhalte veröffentlicht werden, aber auch im internen Gebrauch.
- Positivliste erlaubter KI-Systeme: Um die Mitarbeiter*innen mit der Anwendung dieser Vorgaben auf einzelne am Markt angebotene KI-Systeme nicht allein zu lassen, kann eine KI-Policy auch eine Auflistung der vom Unternehmen freigegebenen Systeme enthalten. Voraussetzung ist dafür natürlich, dass diese Systeme vorab entsprechend fachlich geprüft wurden. Das kann schwierig sein, weil sich Anbieter*innen meist nicht in die Karten schauen lassen.
2. Richtlinien für die Entwicklung und Implementierung von KI
Auch wenn ihr in eurem Unternehmen KI-Systeme entwickeln oder implementieren wollt, sind ethische, rechtliche und technische Anforderungen in einer KI-Policy zu adressieren.
- Fairness, Transparenz und Nichtdiskriminierung: KI-Systeme können, wenn sie auf verzerrten Datensätzen trainiert werden, Diskriminierung oder Vorurteile reproduzieren. Eine KI-Policy sollte deshalb klare ethische Richtlinien festlegen, die sicherstellen, dass die entwickelten Modelle fair, transparent und frei von Diskriminierung sind. Ein mögliches Vorgehen ist, regelmäßige Audits und Bias-Tests durchzuführen und in der Policy verpflichtend vorzusehen, um Verzerrungen frühzeitig zu erkennen und zu beheben.
- Datenschutz und Datensicherheit: Der verantwortungsvolle Umgang mit Nutzer*innendaten ist eine der wichtigsten Anforderungen in der KI-Entwicklung. Die KI-Policy sollte festlegen, dass bei der Verarbeitung personenbezogener Daten durch die KI strenge Schutzanforderungen, am besten strenge Begrenzungen, gelten. Rein automatisierte Entscheidungen sind schon laut DSGVO verboten. Es sollten nur die für die jeweilige Anwendung notwendigen Daten erhoben und verarbeitet werden, und diese Daten sollten weitestgehend anonymisiert oder pseudonymisiert werden. Regelungen für den Zugang zu diesen Daten sowie Maßnahmen zur Datensicherheit (wie Verschlüsselung und Zugriffskontrollen) sollten ebenfalls Bestandteil der Policy sein.
- Überprüfung auf Halluzinationen und Fehlinterpretationen: Generative KI-Modelle neigen dazu, Informationen zu „halluzinieren“, also falsche oder ungenaue Inhalte zu erstellen. In der KI-Policy sollte festgelegt sein, dass entwickelte KI-Modelle regelmäßig auf ihre Genauigkeit und Zuverlässigkeit überprüft werden. Dies kann durch vorgeschriebene Tests und Simulationen geschehen, bei denen die KI in verschiedenen Szenarien eingesetzt und auf ihre Fähigkeit, korrekte Ergebnisse zu liefern, geprüft wird. Es sollten auch definiert werden, wie Fehler erkannt und behoben werden können.
- Erklärbarkeit und Nutzer*infreundlichkeit: Komplexe KI-Modelle sind oft schwer verständlich und wirken wie eine Black Box, deren Entscheidungen für Außenstehende kaum nachvollziehbar sind. Die KI-Policy sollte daher sicherstellen, dass die KI so gestaltet ist, dass ihre Funktionsweise für Nutzer*innen transparent und nachvollziehbar ist. Dies ist insbesondere dort wichtig, wo KI-Entscheidungen schwerwiegende Auswirkungen haben können. Ihr solltet sicherstellen, dass für Nutzer*innen eine verständliche Erläuterung darüber bereitgestellt wird, wie und warum die KI zu einem bestimmten Ergebnis gelangt ist. Das ist Voraussetzung für Kontrolle und rechtskonformen Betrieb der KI.
- Gesetzeskonformität gemäß KI-Verordnung: Nicht zuletzt hat die Europäische Union die KI-Verordnung in Kraft gesetzt, die strenge Anforderungen an die Entwicklung und Nutzung von KI stellt. Die KI-Verordnung dient der Produktsicherheit und verlangt zunächst eine Risikoeinschätzung für die KI-Systeme. Die Maßgaben für eine solche Einschätzung sollten in der Policy angerissen und No-Gos für die Entwicklung von Funktionalitäten, die zu den laut KI-Verordnung verbotenen KI-Anwendungen gehören, ausgesprochen werden. Für sogenannte Hochrisiko-KI-Systeme gelten besondere Anforderungen, die bei einer Entwicklung mitgedacht werden müssen, wofür eine KI-Policy zumindest sensibilisieren sollte. Die im Einzelfall geforderte Überprüfung und Einstufung des jeweiligen Systems oder Modells kann eine Policy nicht leisten. Die initialen und regelmäßigen Überprüfungen sowie Risikobewertungen sollte sie aber fordern.
- Regelmäßige Überwachung und Wartung der KI-Modelle: KI-Modelle entwickeln sich weiter und benötigen regelmäßige Überwachung und Wartung, um die Leistung zu optimieren und mögliche Fehler zu minimieren. Die KI-Policy sollte eine solche sich wiederholende Maintenance festlegen, etwa die schon erwähnten regelmäßigen Aktualisierungen, Fehlerbehebungen und Performance-Überprüfungen, damit die KI-Systeme immer den aktuellen Standards und Anforderungen entsprechen.
3. Übergreifende Ziele und Vorgaben einer KI-Policy
Eine KI-Policy sollte nicht nur detaillierte Vorgaben zur Nutzung und Entwicklung von KI enthalten, sondern auch allgemeine Leitlinien und Prinzipien für den Einsatz von KI im Unternehmen, um ein Bewusstsein für die Potenziale und Risiken der Technologie zu schaffen.
- Regelmäßige Überprüfung und Anpassung: Da sich KI-Technologien und gesetzliche Anforderungen stetig weiterentwickeln, sollte auch die KI-Policy regelmäßig überprüft und aktualisiert werden. Dies hilft sicherzustellen, dass das Unternehmen stets auf dem neuesten Stand ist und seine KI-Systeme konform mit den aktuellen gesetzlichen, ethischen und technischen Standards sind. Es ist empfehlenswert, regelmäßige Audits durchzuführen und die Policy an neue Entwicklungen in der KI-Forschung und Gesetzgebung sowie an die Marktanforderungen anzupassen.
- Unternehmenskultur in Bezug auf KI: Eine KI-Policy sollte dazu dienen, den transparenten und offenen Umgang mit KI in allen Unternehmensbereichen und damit die Akzeptanz für KI-Systeme sowohl innerhalb des Unternehmens als auch bei Kund*innen und Partner*innen zu fördern. Dazu gehört auch, dass das Unternehmen offenlegt, in welchen Bereichen KI eingesetzt wird und welche Entscheidungen die Technologie beeinflusst. Letztendlich ist die KI-Policy ein Instrument zur Förderung einer verantwortungsvollen und ethischen Unternehmenskultur in Bezug auf KI. Das schützt letztlich auch die Integrität und die Werte des Unternehmens.
- Schulungen und Sensibilisierungsmaßnahmen: Um einen solchen kompetenten und verantwortungsvollen Umgang mit KI zu erreichen, sind regelmäßige Schulungen und Sensibilisierungsmaßnahmen für die Mitarbeiter*innen zu den hier genannten Aspekten vorzusehen.
Fazit
Dieser Artikel kann nur einen groben Überblick und Rahmen geben. Die konkreten Inhalte einer auf eure Belange und Nutzungsformen passenden Policy müsst ihr in Anschauung der Spezifika der eingesetzten oder zu entwickelnden KI-Systeme erarbeiten. Das kann auch schlecht an KI delegiert werden: Der Rest des eingangs erwähnten KI-generierten Artikels war nicht wirklich brauchbar, ebenso die testweise mit KI erstellten Policies. Dafür braucht es professionelle Unterstützung.
Der Autor Dr. Daniel Michel, LL.M. ist seit 2004 als Rechtsanwalt im Bereich IT/IP/Technologie tätig. Nach Stationen in spezialisierten und Großkanzleien betreibt er seit 2018 seine eigene Rechtsberatung im Raum München, www.datalawcounsel.com
Empion: Dem Perfect Match auf der Spur
Dr. Larissa Leitner und Dr. Annika von Mutius haben mit Empion das erste automatisierte Headhunting-System auf Basis von KI entwickelt, das – wissenschaftlich fundiert – Fachkräfte schneller aufspürt und treffsicherer vermittelt.

Angesichts des steigenden Fachkräftemangels werben Unternehmen immer stärker um gut ausgebildete, motivierte Mitarbeitende. Sie bieten attraktive Gehälter, zusätzliche Benefits und investieren viel in ihre Arbeitgebermarken. Zahlreiche Jobplattformen und Dienstleister*innen versprechen, dass sie das ideale Match zwischen Bewerber*innen und Unternehmen herstellen können. Doch die Realität sieht häufig anders aus. Beschäftige sind unzufrieden mit ihrem Job, sie wechseln auf gut Glück den Arbeitgebenden oder kündigen innerlich. Für Unternehmen bedeuten unzufriedene Mitarbeitende und Fehlbesetzungen Reibungsverluste und finanzielle Einbußen.
„In Deutschland stehen wir vor dem Problem, dass die Beschäftigung steigt, gleichzeitig jedoch die Produktivität sinkt“, sagt Dr. Annika von Mutius, Mitgründerin und CEO des Berliner HR-Start-ups Empion. Das Phänomen lasse sich durch den falschen Einsatz der Kompetenzen erklären: „Menschen sind besonders leistungsbereit und zufrieden, wenn sie einen Job machen, in dem sie wirklich gut und produktiv sind“, so Annika, und dazu müsse man die richtigen Skills mit den richtigen Aufgaben zusammenbringen.
Wertebasiertes, KI-gestütztes Matching von Kandidat*innen und Jobs
Idealerweise werden die Persönlichkeit und die Anforderungen einer Stelle schon im Bewerbungsprozess umfassend berücksichtigt. Dazu zählen insbesondere auch weiche Faktoren wie individuelle Werte, Unternehmenskultur, Wertschätzung und Respekt, die für Mitarbeitendenzufriedenheit entscheidend sind. Genau das ermöglicht Empion. Kandidat*innen und Unternehmen werden beim Onboarding eingehend befragt und charakterisiert. „Wir betrachten sowohl Persönlichkeitselemente und kulturelle Präferenzen als auch harte Kriterien wie Ausbildung, Berufserfahrung und Mitarbeiterbenefits“, sagt Annika. „So ermöglichen wir Arbeitnehmern und Unternehmen, das entsprechend ideale Match zu finden.“ Das Ziel ist eine maximale Mitarbeitendenzufriedenheit, die sich in einer entsprechend hohen Produktivität und langjähriger Betriebszugehörigkeit widerspiegelt.
Kandidat*innen, die sich für Jobangebote interessieren, können sich bei Empion kostenlos registrieren. „Wir sprechen hier besonders den passiven Bewerbermarkt an“, so Annika, „also diejenigen Menschen, die grundsätzlich offen für neue Chancen und somit wechselbereit sind, die aber nicht unbedingt bereits aktiv suchen.“ Unternehmen schreiben auf der Plattform ihre offenen Positionen aus. Die Bewerber*innenprofile und Stellen werden entlang der zahlreichen Faktoren mit KI-Unterstützung abgeglichen, auf Korrelation geprüft und vorqualifiziert. Die Unternehmen erhalten die voraussichtlich am besten passenden Kandidat*innen als Vorschläge und können in den persönlichen Austausch einsteigen.
Durch die Vorauswahl sparen Unternehmen viel Zeit und bis zu 60 Prozent an Recruitingkosten. Mit der Genauigkeit des Matchings seien die Kund*innen zufrieden, und auch die Mitarbeitendenbindung sei höher als bei Kandidat*innen, die über andere Kanäle rekrutiert werden, so Annika. „Da wir erst knapp drei Jahre als Unternehmen existieren, können wir natürlich noch keine Langzeitwerte liefern und müssen hier einschränken, doch die Erfolge in der Mitarbeitersuche und den ökonomischen Mehrwert von Empion sehen unsere Kunden bereits heute.“
Von der Doktorarbeit zum Start-up
Annika, die in dritter Generation einer Unternehmerfamilie entstammt, entschied sich während ihrer Dissertation in Mathematik für die Gründung. Ihre Mitgründerin Dr. Larissa Leitner lernte sie während einer Konferenz kennen. Larissa schrieb damals ihre Doktorarbeit zur Unternehmenskultur im Mittelstand. Über den Verteiler der Universität erfuhr Annika von Larissas erfolgreicher Dissertation und gratulierte. So begannen sie, sich regelmäßig zu schreiben. Während eines Arbeitsaufenthalts im Silicon Valley trainierte Annika dann Datenmodelle für den pharmazeutischen Markt, um Medikamente zu individualisieren. Als sie nach Deutschland zurückkehrte, traf sie Larissa für ein Wochenende in ihrer Heimat Südtirol. „Da wir beide damals in engem Austausch mit dem Mittelstand standen, kannten wir die Herausforderungen in der Mitarbeitersuche“, so Annika. Mittelständler*innen können bei Bewerber*innen nicht mit den größten Gehältern oder den schönsten Locations punkten, stattdessen aber durch Faktoren wie Teamwork und Unternehmenskultur. „Wir wussten, dass diese Vorzüge im Recruiting kaum eingesetzt werden.“
Sie begannen, mathematische Modelle für das Matching von Unternehmen und Kandidat*innen mit Daten aus Larissas Promotion zu füttern. Die Ergebnisse waren vielversprechend. „Es war ein klassischer Forschungstransfer“, erinnert sich Annika. Der Fokus lag zunächst auf den kulturellen Faktoren. Doch bald stellten sie fest, dass sich die Mitarbeiter*innensuche nicht allein über die Kultur lösen lässt, und sie erweiterten den Ansatz um zusätzliche Persönlichkeitsmerkmale.
Schneller Start, rasantes Wachstum
Um den Prototypen zu entwickeln, beantragten Annika und Larissa das EXIST-Gründerstipendium. „Der Förderantrag war unser erstes gemeinsames Projekt“, so Annika, „und bereits das funktionierte sehr gut.“ Die Wochen der Ideenentwicklung, in der sie die Eckdaten für Produkt und Plattform festlegten, waren für beide die bislang anstrengendste Phase: „Larissa und ich sind wohl eher Macher, und die rein konzeptionelle Arbeit war nichts für uns.“ Doch nach zwei Wochen stand das Konzept. Sie brachten den Ansatz in den Markt, testeten und holten Feedback ein. „Es ist sicherlich eine Persönlichkeitsfrage, aber ich kann jedem Gründerteam nur empfehlen, nicht zu lang im theoretischen Ideenstadium zu verweilen, sondern loszulegen und die Dinge dann schnell anzupassen“, sagt Annika.
Direkt zur Gründung zogen sie nach Berlin. Weil das Geld für ein Büro fehlte, kam das Team zunächst im Büro eines Freundes unter. „Der Deal war, dass wir aufräumen und für Kaffee und Snacks sorgen würden“, so Annika. Das Büro befand sich zufällig unter der Privatwohnung von Angela Merkel, sodass es Tag und Nacht mit bewacht wurde. Empion wurde schnell professioneller, gewann erste Kund*innen und Traktion. Zur weiteren Finanzierung entschlossen sich Annika und Larissa, Beteiligungskapital an Bord zu holen und gewannen so neue Unterstützer wie etwa Robin Behlau von Aroundhome, die nicht nur investierten, sondern auch wichtiges Know-how für das Start-up in der Frühphase mitbrachten. Auch Samuli Siren und Michael Brehm von Redstone Partners waren von der Idee, den HR-Markt datengetrieben anzugehen, angetan. Sie ermutigten das Team, bereits in der Pre-Seed-Runde Venture-Capital-Fonds einzubinden. So konnten sie die Pre-Seed-Runde schließlich mit 20 Business Angels und zwei VC-Fonds schließen.
Ein Jahr später stieg bei der Seed-Runde Cavalry Ventures mit ein. „Das Fundraising war ein schneller, schlanker Prozess, was uns sehr half“, sagt Annika, „so konnten wir uns weiterhin voll auf das operative Kerngeschäft konzentrieren, statt langwierige Fundraising-Prozesse voranzutreiben.“ Bei der Seed-Runde investierten viele Business Angels erneut – ein eher ungewöhnlicher Schritt, der das Vertrauen in das Team und das Unternehmen unterstreicht. Insgesamt hat Empion neun Mio. Euro Beteiligungskapital gesammelt. Das Team umfasst heute rund 50 Personen, das Büro befindet sich am Hackeschen Markt. Zu den über 500 Kund*innen zählen Unternehmen wie Procter & Gamble, Osram, Tengelmann sowie die Volks- und Raiffeisenbanken.
Erfolg stellt das Gründungsteam auf die Probe
Doch der Weg zum Erfolg hatte auch steinige Abschnitte. „Als Gründerinnen verbrachten Larissa und ich zu Beginn viel Zeit zusammen und wurden wirklich gute Freundinnen“, erzählt Annika. Doch mit dem wachsenden Start-up arbeiteten sie irgendwann nicht mehr im selben Büro, sie reisten viel, kümmerten sich um Kund*innen und Mitarbeitende. Die Gespräche wurden seltener und verlagerten sich auf Videocalls. Unter dem fehlenden Austausch litt die Beziehung. Doch gute Beziehungen und Kommunikation im Gründungsteam sind essenziell für den Erfolg eines Start-ups. Sie engagierten einen Coach, der ihnen half, die fehlende gemeinsame Zeit wiederzufinden. Seitdem treffen sich die Gründerinnen wöchentlich an einem Nachmittag und widmen sich gemeinsam strategischen Themen und anderen Dingen, die zusammen zu besprechen sind. „Häufig gehen wir dann noch essen, und das tut uns sehr gut“, sagt Annika.
Das rasante Wachstum von Umsatz und Mitarbeitendenzahl stelle auch Ansprüche an die Entwicklung als Persönlichkeit und Führungskraft: „Im Prinzip entsteht alle sechs Monate ein komplett neues Unternehmen – mit neuen Herausforderungen und Anforderungen an das Management“, so Annika. Einen Teil der notwendigen Fähigkeiten könne man sich erarbeiten, manche Fragen müsse man delegieren und gegebenenfalls auch neue Mitarbeitende an Bord holen. Und für manche Themen müsse man eigene Lösungen entwickeln. „Persönlich geht es darum, die richtige Balance zwischen strategischer und operativer Arbeit sowie zwischen Kontrolle und Abgeben von Verantwortung zu finden“, sagt Annika, „und das kann durchaus herausfordernd sein.“
Weiterentwicklung von Team und Technologie
Im August übernahm Empion das Berliner Unternehmen Zalvus, das ebenfalls Recruiting-Dienstleistungen mit KI-Unterstützung anbietet. Die Stärken von Zalvus liegen im Bereich Performance-Marketing, Big-Data-Analysen und Beratungsleistungen. „Zalvus gibt es seit rund zehn Jahren, das Team bringt neben dem Zugang zu neuen Kundengruppen natürlich auch wertvolle Expertise mit“, sagt Annika. Zalvus verfügt unter anderem über jahrelange Erfahrung im Blue-Collar-Markt, während Empion bislang eher die White-Collar-Jobs im Fokus hat. Die technischen Funktionalitäten und Daten sollen nun in die Empion-Plattform integriert werden, sodass ein gesamtheitliches Produkt entsteht. Parallel dazu arbeitet das Team an der Weiterentwicklung der KI-Systeme, um die wachsende Datenmenge optimal nutzen zu können.
Auch wenn die Gründerinnen mittlerweile hauptsächlich mit dem Management beschäftigt sind, sind sie weiterhin auch im Engineering involviert. „Die ursprünglichen Algorithmen stammen von Larissa und mir, und es freut mich zu sehen, wie wir die Technologie zusammen mit unserem Team weiterentwickeln“, sagt Annika. An den Entwicklungsmeetings teilzunehmen, bereitet den beiden immer noch große Freude. Beim Ausbau des eigenen Teams setzen Annika und Larissa auch auf ihre Plattform. Die Talente durchlaufen danach einen dreistufigen Interviewprozess mit einem Vorgespräch, gefolgt von einem klassischen Interview mit Fallstudien und Scorecards. Im dritten Interview, bei dem der Fokus auf kulturellen Themen liegt, wird geschaut, wie gut ein(e) Kandidat*in tatsächlich ins Team passt. „Wenn ich dieses Gespräch führe, versuche ich immer, meinen ersten Eindruck, egal ob positiv oder negativ, zu revidieren, und mich vom Gegenteil zu überzeugen“, so Annika.
Im Wettbewerb mit den großen Playern
Im Markt konkurriert Empion unter anderem mit Plattformen wie Stepstone und internationalen Unternehmen wie LinkedIn, Monster und Indeed. Neben den großen Playern gibt es hunderte Personalberatungen, Agenturen und Headhunter. „Dazwischen ist jedoch eine große Lücke, und da liegt für uns die Chance“, sagt Annika. Auch viele große Plattformen arbeiten daran, ihre Angebote durch KI zu unterstützen und aufzuwerten. „Doch in der Regel ist das für diese Unternehmen kein Kernthema, weil die alten Geschäftsmodelle für sie noch sehr gut funktionieren.“ Einige Start-ups bieten Lösungen für andere Teilbereiche des HR-Marktes. Testgorilla aus den Niederlanden zum Beispiel ist auf Einstellungstests spezialisiert. „Unser Vorteil ist, dass wir bereits heute zeigen, dass unser Ansatz wissenschaftlich valide ist und ökonomische Vorteile bietet“, so Annika.
Seit Kurzem ist Annika zudem im Vorstand des KI-Bundesverbands, der sich für eine innovationsfreundliche KI-Regulierung einsetzt: „Gesellschaftliches Engagement war mir schon immer ein Anliegen, und ich glaube, dass ich meine Expertise hier sehr gut einbringen kann.“
Empion soll nun zunächst in der DACH-Region weiterwachsen und den Markt durchdringen. Parallel dazu konzentriert sich das Team auf die Produktentwicklung und die Optimierung der Performance. Danach könnte Empion das Angebot auch auf weitere Länder ausweiten.
Marketing-Trends 2025
Führende Marketing-Expert*innen geben Einblick in Perspektiven, Hoffnungen und Strategien für das kommende Jahr.

Marketing und Kommunikation müssen konstant weitergedacht werden. Gründe dafür gibt es genug – ob Digitalisierung und KI oder ein zunehmender Wettbewerb in wirtschaftlich unsicheren Zeiten. Gründer*innen, CEOs und Kommunikationsprofis von ToolTime, kollex, Creditsafe, good healthcare group, puzzleYOU und Mashup Communications zeigen, welche Trends Fach- und Führungskräfte 2025 erwarten.
Visuelles Storytelling mit Ecken und Kanten statt KI-Perfektion

In einer Zeit, in der uns KI-optimierte, makellose Visuals eine glattgebügelte Welt präsentieren, setzt sich 2025 ein gegenläufiger Trend durch: Echtheit. Sie wird zur Währung, um sich inmitten der perfektionierten Bilderflut abzuheben. Marken, die im digitalen Raum Nähe schaffen wollen, werden sich bewusst von der sterilen Hochglanz-Ästhetik der KI lösen. Das heißt: Statt in dämlich-hübschen KI-Avataren à la Emma von der Deutschen Zentrale für Tourismus liegt die Zukunft in realen Geschichten und echten Menschen mit Ecken und Kanten. Eine bewusst ungeschliffene Brand mit Charakter schafft mehr Nähe und Vertrauen als ein aufpoliertes oder ganz und gar Fake-Visual. 2025 gilt es, die Chance des visuellen Storytellings zu nutzen, statt bloß technischer Perfektion nachzueifern.