Geschäftsideen Beauty: Fokus auf die Männer

Kosmetikinstitut für Männer


44 likes

Im Oktober 2016 war es soweit. Mr. Beau, Deutschlands erstes Kosmetik- und Wellnessinstitut nur für Männer, eröffnete offiziell direkt an der Porta Nigra in Trier.

Auf 140 Quadratmetern kümmern sich die Geschäftsführerin Alesja Kroneberger und ihr Team um das gute Aussehen der Trierer Männer. Von der Augenbrauenkorrektur über Enthaarungen, Gesichts- oder Fußmassagen bis hin zur entspannenden Maniküre- sowie Pediküre-Behandlung soll bei Mr. Beau kein Männerwunsch unerfüllt bleiben. Zudem gibt es die Möglichkeit, eine Typenberatung vorzunehmen.

Da männliche Haut ihre eigenen Anforderungen an Cremes und Aftershaves hat, gehört zur Geschäftsidee Mr. Beau auch ein eigener Shop mit Körperpflegeprodukten, die speziell für die männliche Haut entwickelt wurden.

Diese Artikel könnten Sie auch interessieren:

KI und Selbstreflexion: Was macht KI mit dir?

Wie du innovative KI-Technologie und persönliche Entwicklung strategisch geschickt kombinierst, um dein Start-up nachhaltig zu skalieren.

Künstliche Intelligenz (KI) gilt als Wachstumsbooster. Doch wer dabei nur auf Technik setzt, lässt ein entscheidendes Potenzial ungenutzt – die eigene persönliche Entwicklung. Warum es gerade die Verbindung aus KI und Selbstreflexion ist, die Gründer*innen und Start-ups langfristig erfolgreich macht, liest du hier.

Gründen bedeutet, Entscheidungen unter Unsicherheit zu treffen

Wer ein Start-up aufbaut, bewegt sich im Spannungsfeld von Vision und Verantwortung. Geschäftsmodell, Finanzierung, Teamführung, Produktentwicklung – all das passiert meist parallel und unter enormem Zeitdruck. Technologie wird dabei oft als Hebel gesehen, um schneller und effizienter zu arbeiten. Und das stimmt: Tools, die auf KI basieren, können Prozesse automatisieren, Muster erkennen, Kund*innenbeziehungen vertiefen. Doch Technik allein garantiert keinen Erfolg. Entscheidend ist, wer sie wie einsetzt. Und hier kommt ein oft unterschätzter Faktor ins Spiel: der/die Gründer*in selbst mit den Mustern seiner/ihrer Persönlichkeit.

Jede einzelne Erfahrung, die die Marke rund um eine(n) Gründer*in prägt, kann niemals von einer KI erzeugt werden. Diese kann im zweiten Schritt sachlich analysieren, wie Erlebnisse für zukünftige Prozesse genutzt werden, die dazugehörigen Werte oder Ängste aber stecken in der Person selbst als Fundament.

Markenkern, Werte und Identität – das unsichtbare Fundament des Erfolgs

Jede Marke beginnt mit einer Geschichte, und diese umfasst den Menschen als Dreh- und Angelpunkt. Die Erfahrungen, Werte und Überzeugungen der Gründer*in formen den Kern eines Start-ups weit vor dem ersten Pitchdeck. Während KI dabei helfen kann, diese Identität greifbar zu machen, zu analysieren oder in die Kommunikation zu übersetzen, erzeugen kann sie diese nicht.

Gerade in der frühen Phase entscheidet nicht nur das Produkt über den Erfolg, sondern die Haltung dahinter: Wofür steht das Unternehmen? Welche Werte prägen die Entscheidungen? Welches Bedürfnis treibt den/die Gründer*in auch jenseits der KPIs an? Eine klare Positionierung entsteht nicht im Workshop, sondern im inneren Prozess. Es ist die Fähigkeit zur Selbstreflexion, die hier als Kompass dient:

  • Was ist mir wirklich wichtig?
  • Was darf sich nie ändern, selbst wenn wir skalieren?
  • Was wäre ein Deal, den ich nie eingehen würde – egal wie lukrativ er erscheint?

Wer diesen Markenkern kennt, trifft strategische Entscheidungen konsistenter, kommuniziert authentischer und baut Vertrauen bei Investor*innen, Mitarbeitenden und Kund*innen auf. Und erst dann lohnt sich der Einsatz von KI wirklich, um diese klare Positionierung zum Beispiel zu verstärken, nicht aber zu ersetzen.

KI – mehr als nur Effizienzmaschine

KI hat längst ihren Platz in der Start-up-Welt gefunden. Vom Recruiting über Sales bis hin zum Customer Support. KI-gestützte Tools erleichtern die Arbeit und verschaffen jungen Unternehmen echte Wettbewerbsvorteile:

  • Automatisierung: Mithilfe von KI lassen sich zeitintensive Prozesse wie Terminplanung, Rechnungsstellung oder E-Mail-Korrespondenz automatisieren. Das schafft Raum für strategische Aufgaben.
  • Personalisierung: Wer seine Kund*innen wirklich verstehen will, profitiert von datenbasierten Insights. KI hilft dabei, Verhalten zu analysieren, Bedürfnisse vorherzu­sagen und Inhalte gezielt auszuspielen.
  • Recruiting: Im „War for Talents“ zählt Geschwindigkeit, ergänzend aber unbedingt auch Qualität. KI-Tools unterstützen dabei, Bewerber*innen effizient zu sichten und unbewusste Bias zu reduzieren.

Richtig eingesetzt, ermöglicht KI mehr Fokus, schnellere Iterationen und datengestützte Entscheidungen. Aber genau hier beginnt auch das Problem: Technologie kann nur das verstärken, was ohnehin vorhanden ist oder eben (noch) nicht.

Selbstreflexion – der unterschätzte Erfolgsfaktor

Gründer*innen stehen täglich vor Entscheidungen mit Tragweite. Doch unter Druck, Unsicherheit und Wachstumsschmerz wird oft reaktiv gehandelt statt reflektiert geführt. Genau hier setzt Selbstreflexion an. Wer sich seiner Stärken, Muster und blinden Flecken bewusst ist, trifft bessere Entscheidungen – für sich, das Team und das Unternehmen. Selbstre­flexion ist kein esoterisches Extra, sondern ein pragmatisches Führungsinstrument. Einige wirkungsvolle Methoden:

  • Regelmäßige Selbstchecks: Was hat in dieser Woche funk­tioniert und warum? Was nicht? Was sagt das über meine Prioritäten aus?
  • Feedback aktiv einholen: nicht nur von Mitgründer*innen oder Coaches, sondern auch vom Team. Nicht defensiv reagieren, sondern neugierig auf das Feedback sein.
  • Mentoring und Coaching: Externe Sparringspartner*innen helfen, Perspektiven zu erweitern und Denkfehler zu entlarven.
  • Reflexionstools nutzen: vom (digitalen) Journal bis zur strukturierten Entscheidungsanalyse gibt es einfache Hilfsmittel, die Klarheit schaffen.

Wer bereit ist, sich selbst zu hinterfragen, entwickelt nicht nur sich, sondern auch sein Start-up weiter. Denn Führung beginnt nicht mit der Verantwortung für andere, sondern mit der Verantwortung für sich selbst.

Die Synergie – wenn KI auf Selbstreflexion trifft

Die wirklich erfolgreichen Gründer*innen sind nicht ent­weder Tech-Expert*innen oder People-Leader*innen. Sie verbinden beides. Sie nutzen KI, um operative Exzellenz zu schaffen und reflektieren gleichzeitig, wie sie führen, entscheiden, kommunizieren. Diese Kombination erzeugt eine Form von unternehmerischer Klarheit, die sowohl innovativ als auch resilient ist.

KI kann Erkenntnisse liefern. Aber nur, wer sie richtig einordnet, profitiert davon. Selbstreflexion schafft den Raum, um mit Technologie sinnvoll umzugehen. Umgekehrt kann KI helfen, Reflexionsprozesse zu unterstützen, etwa durch gezielte Feedback-Auswertung oder datengestützte Teamanalysen.

Ein Beispiel aus der Praxis: Ein Start-up im HR-Tech-Bereich nutzt KI, um Kund*innenfeedback in Echtzeit zu analysieren. Gleichzeitig reflektieren die Gründer*innen wöchentlich im Führungsteam, welche Learnings daraus für Produkt und Kommunikation folgen und welche persönlichen Muster sie bei sich selbst erkennen. Diese Kombination aus technolo­gischem Blick nach außen und menschlichem Blick nach innen führt dazu, dass das Unternehmen nicht nur schneller wächst, sondern dabei auch klar bleibt.

Skalierung braucht Klarheit in der Technik und im Kopf

Start-ups, die skalieren wollen, müssen effizient sein, gleichzeitig aber auch fokussiert, werteorientiert und anpassungsfähig. KI ist dabei ein mächtiges Werkzeug. Doch ohne die Fähigkeit zur Selbstreflexion bleibt sie oft bloß ein weiteres Tool im Tech-Stack.

Deshalb gilt: Die Kombination aus klugem KI-Einsatz und bewusster persönlicher Entwicklung ist kein Luxus, sondern unternehmerische Notwendigkeit. Wer beides ernst nimmt, schafft ein Unternehmen, das nicht nur wächst, sondern dabei auch „gesund“ bleibt.

Die Autorin Lea Baptista ist Geschäftsführerin der GG Consulting Agency und unterstützt Unternehmer*innen, Führungskräfte und Teams dabei, ihren Führungsstil klar zu definieren, Selbstreflexion als Werkzeug zu nutzen und authentisch erfolgreich zu sein.

Code für die künstliche Intelligenz: technische Optimierung für die Ära der KI-Suche

Code für die KI: So optimierst du deine Website technisch mit strukturierten Daten und Protokollen für die besten generativen Suchergebnisse.

Die Regeln der Online-Sichtbarkeit werden neu geschrieben. Es geht nicht mehr nur darum, von einem herkömmlichen Algorithmus indiziert zu werden. Stattdessen müssen Websites so aufbereitet werden, dass sie von künstlicher Intelligenz (KI) und großen Sprachmodellen (LLMs) fehlerfrei interpretiert und verarbeitet werden können.

KI erstellt ihre Antworten, indem sie Inhalte blitzschnell liest, deren Bedeutung versteht und die wichtigsten Fakten daraus extrahiert. Wenn der technische Unterbau einer Website unsauber ist, kann die KI die Informationen entweder nicht zuverlässig finden oder sie falsch interpretieren.

Das bedeutet, die technische Seite der Website – der Code – wird zum Fundament für eine gute Platzierung in den generativen Suchergebnissen. Wer hier Nachholbedarf hat, riskiert, als vertrauenswürdige Quelle für die KI unsichtbar zu werden.

Dieser Artikel beleuchtet die entscheidenden technischen Anpassungen, die notwendig sind, um deine Website optimal für die neue Ära der KI-Suche vorzubereiten.

Kontrolle und Zugang: Die Regeln für Sprachmodelle

Der erste technische Schritt zur Optimierung für KI-Ergebnisse ist die Steuerung des Zugriffs durch die großen Sprachmodelle (LLMs). Traditionell wird der Zugang durch die robots.txt Datei geregelt, die festlegt, welche Bereiche der Website von herkömmlichen Suchmaschinen-Crawlern besucht werden dürfen.

Mit dem Aufkommen verschiedener, spezialisierter KI-Crawler (die nicht immer identisch mit dem Googlebot oder Bingbot sind) entsteht jedoch die Notwendigkeit, diesen neuen Akteuren eigene Regeln zu geben. Es geht darum, Transparenz darüber zu schaffen, welche Daten zur Generierung von Antworten verwendet werden dürfen und welche nicht.

Neue Protokolle für neue Crawler

Experten diskutieren und entwickeln neue Protokolle, um diese Unterscheidung zu ermöglichen. Ein viel diskutierter Ansatz ist die Einführung von Protokollen, die spezifisch den Umgang mit generativer KI regeln. Dies könnte die Einführung von Protokollen wie einer llms.txt Datei beinhalten. Solche spezifischen Dateien könnten festlegen, ob ein KI-Modell Inhalte zur Schulung oder zur generativen Beantwortung von Nutzeranfragen nutzen darf.

Diese Kontrollmechanismen sind entscheidend. Sie geben den Website-Betreibern die Autorität darüber zurück, wie ihre Inhalte in der KI-Ära verwendet werden. Wer hier klare Regeln setzt, schafft die technische Grundlage für eine kontrollierte und damit vertrauenswürdige Sichtbarkeit in den KI-Ergebnissen.

Strukturierte Daten als universelle KI-Sprache

Nach der Regelung des Zugangs durch Protokolle ist die Strukturierung der Inhalte der wichtigste technische Schritt. Suchmaschinen nutzen strukturierte Daten schon lange, um Rich Snippets in den klassischen Ergebnissen anzuzeigen. Für die KI sind diese Daten jedoch absolut essenziell.

Strukturierte Daten, die auf dem Vokabular von Schema.org basieren, sind im Grunde eine Übersetzungshilfe im Code, die dem Sprachmodell den Kontext des Inhalts direkt mitteilt. Sie sind die "Sprache", die die KI am schnellsten und präzisesten versteht.

Die Bedeutung für die Generierung

Wenn ein Nutzer eine Frage stellt, sucht die KI nicht nur nach Stichwörtern, sondern nach definierten Informationstypen. Mit strukturierten Daten liefert man der KI diese Informationen als fertige, fehlerfreie Bausteine.

  • Fehlerfreie Extraktion: Die KI muss keine Textpassagen interpretieren, um beispielsweise ein Rezept, die Bewertung eines Produkts oder einen FAQ-Abschnitt zu identifizieren. Die korrekte Auszeichnung macht die Daten sofort nutzbar.
  • Vertrauensbildung: Fehlerhafte oder inkonsistente strukturierte Daten führen zu einer falschen Interpretation und können bewirken, dass die KI deine Seite als unzuverlässig einstuft.

Die Implementierung muss fehlerfrei sein und sollte alle relevanten Inhaltstypen der Website abdecken. Nur eine saubere Schema-Implementierung garantiert, dass deine Fakten korrekt in die generativen Antworten der KI einfließen.

Ladezeit und Interaktivität als Vertrauenssignal

Die Geschwindigkeit und die Nutzbarkeit einer Website sind in der Ära der KI-Suche nicht mehr nur ein Komfortfaktor, sondern ein entscheidendes technisches Vertrauenssignal. Wenn deine Seite langsam lädt oder schlecht bedienbar ist, wird das von der KI als Indikator für mangelnde Qualität und niedrige Autorität gewertet.

Die Basis dafür sind die sogenannten Core Web Vitals (CWVs). Diese Messwerte, die sich auf das Nutzererlebnis konzentrieren, sind feste Ranking-Faktoren und haben direkten Einfluss darauf, ob eine KI deine Seite als zitierwürdig einstuft:

  • LCP (Largest Contentful Paint): Misst die Zeit, bis der größte sichtbare Inhalt geladen ist.
  • FID/INP (First Input Delay / Interaction to Next Paint): Misst die Zeit bis zur ersten Interaktion und die allgemeine Reaktionsfähigkeit der Seite.
  • CLS (Cumulative Layout Shift): Misst die visuelle Stabilität.

Mobile Performance ist der Schlüssel

Da ein Großteil der Online-Aktivität über mobile Geräte stattfindet, legt die KI höchsten Wert auf die Optimierung der Mobilversion. Eine schlechte mobile Performance kann das gesamte Ranking negativ beeinflussen.

Die technische Anpassung muss daher darauf abzielen, die CWVs zu perfektionieren. Dies beinhaltet die Optimierung von Bildern, das Bereinigen unnötiger Code-Lasten und das Priorisieren wichtiger Ressourcen. Eine schnell ladende und reaktionsfreudige Website signalisiert nicht nur dem Nutzer, sondern auch der KI, dass die Quelle professionell und damit vertrauenswürdig ist.

Redundanz vermeiden: kanonische Klarheit

Eines der größten technischen Probleme für KI-Modelle ist die Verwirrung durch doppelte Inhalte (Duplikate). Wenn die gleiche Information unter verschiedenen URLs verfügbar ist, weiß die KI nicht, welche die Originalquelle darstellt. Dies zersplittert deine Autorität.

Der technische Schlüssel zur Lösung ist der Canonical Tag (<link rel="canonical" ...>). Dieser Tag im Code muss auf jeder Seite korrekt auf die bevorzugte, indexierbare URL zeigen. Durch die Vermeidung von Duplikaten und die korrekte Nutzung dieses Tags stellst du technisch sicher, dass die KI deine Inhalte als eindeutig und autoritär wahrnimmt und dich als zuverlässigen Faktenlieferanten zitiert.

Schlussworte

Die Zukunft der Online-Sichtbarkeit wird durch künstliche Intelligenz neu definiert. Der Erfolg hängt von einer technisch sauberen Vorbereitung ab.

Die wichtigsten Schritte in der Generative Engine Optimization (GEO) sind:

1. Zugangskontrolle durch Protokolle wie die diskutierte llms.txt Datei.

2. Die Nutzung von strukturierten Daten als unverzichtbare KI-Sprache.

3. Die Perfektionierung der Core Web Vitals als Vertrauenssignal.

4. Die Vermeidung von Duplikaten durch kanonische Klarheit.

Investiere in diese technische Qualität, um Autorität und Sichtbarkeit in der Ära der KI-generierten Antworten zu sichern.

Report: Quantencomputing

Wir sind Zeug*innen einer Transformation, die nicht nur die Tech-Branche nachhaltig beeinflussen wird: Quantencomputing und die dazugehörigen Start-ups haben das Potenzial, die Art und Weise, wie wir Daten verarbeiten und Probleme lösen, grundlegend zu verändern.

Quantencomputing (QC) ist ein hochinnovatives Feld der Informatik und Physik, das die Prinzipien der Quantenmechanik nutzt, um Datenverarbeitung und -analyse auf eine Weise zu leisten, die mit klassischen Computern nicht möglich ist. Während klassische Computer Informationen in Form von Bits verarbeiten, die entweder den Wert 0 oder 1 annehmen können, verwenden Quantencomputer Quantenbits oder Qubits. Diese Qubits können sich in einem Zustand der Überlagerung befinden, was bedeutet, dass sie gleichzeitig 0 und 1 darstellen können. Dies ermöglicht es Quantencomputern, komplexe Berechnungen viel schneller durchzuführen als ihre klassischen Pendants.

Herausforderungen

Trotz des enormen Potenzials stehen Forschende und Unternehmen vor vielen Herausforderungen. Eine der größten Hürden ist die sog. Dekohärenz, ein Phänomen, bei dem die Quanteninformation durch Wechselwirkungen mit der Umgebung verloren geht. Um stabile und fehlerfreie Quantenberechnungen durchzuführen, müssen Qubits in einem kontrollierten Zustand gehalten werden, was technisch äußerst anspruchsvoll ist.

Eine weitere Herausforderung ist die Skalierbarkeit. Während einige Prototypen von Quantencomputern bereits existieren, stellt der Bau von Systemen mit einer ausreichenden Anzahl von Qubits, um praktische Probleme zu lösen, eine erhebliche technische Herausforderung dar.

Trends

In den letzten Jahren ist ein zunehmender Fokus auf hybride Ansätze zu verzeichnen, bei denen Quantencomputer in Kombination mit klassischen Computern eingesetzt werden, um spezifische Probleme zu lösen. Diese hybriden Systeme nutzen die Stärken beider Technologien und bieten eine praktikable Lösung für viele aktuelle Herausforderungen.

Zudem ist eine wachsende Zusammenarbeit zwischen akademischen Institutionen, großen Tech-Unternehmen und Start-ups zu beobachten. Diese Partnerschaften sind entscheidend, um Wissen und Ressourcen zu bündeln und die Entwicklung von QC-Technologien voranzutreiben. Unternehmen wie IBM, Google oder Microsoft investieren erheblich in Quantenforschung und -entwicklung und bieten Plattformen für Entwickler*innen und Forschenden an, um ihre eigenen Quantenalgorithmen zu testen.

Ein weiterer Trend ist die zunehmende Verfügbarkeit von QC-Diensten über die Cloud. Unternehmen und Forschende können nun auf Quantencomputer zugreifen, ohne in teure Hardware investieren zu müssen. Dies senkt die Eintritts­barrieren und ermöglicht es einer breiteren Palette von Nutzenden, die Möglichkeiten des QCs zu erkunden.

Die Rolle von Start-ups

Start-ups spielen hierbei mit neuen Ideen und Ansätzen eine entscheidende Rolle als Innovatoren und konzentrieren sich zumeist auf spezifische Anwendungen des QCs, sei es in der Materialwissenschaft, der Medikamentenentwicklung, der Lieferkettenlogistik oder der Optimierung komplexer Systeme u.a. in der Finanzwelt.

Die 2024 im Auftrag des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK) veröffentlichte Studie „Quantencomputing – Markt, Zugang, Perspektiven“ zeigt: Die Zahl der Start-ups zur Entwicklung von Anwendungssoftware stieg in den letzten Jahren stetig, wobei hardwarespezifische Systemsoftware vorrangig von den Hardwareentwickler*innen selbst bereitgestellt wird. Entfielen im Zeitraum von 2002 bis 2018 weltweit noch rund 58 Prozent der kumulierten Gründungen auf Software- oder Service-zentrierte Start-ups und 42 Prozent auf Hardware- bzw. Komponenten-fokussierte Start-ups, waren es im Zeitraum 2018 bis 2022 rund 74 Prozent mit Fokus auf Software und Services sowie 26 Prozent mit Fokus auf Hardware und Komponenten.

Von weltweit über 150 Start-ups fokussiert sich dabei etwa ein Drittel auf die Entwicklung von Systemsoftware und zwei Drittel auf die Entwicklung von Anwendungssoftware. Deutschland belegt dabei mit knapp 20 Start-ups im Jahr 2023 Platz drei im internationalen Vergleich, hinter den USA und Kanada. Damit hat sich Deutschland als ein Hotspot für QC-Start-ups etabliert.

Deutsche QC-Start-ups mischen ganz vorne mit

Deutsche QC-Start-ups sind oft noch in der Entwicklungsphase, die Gründer*innen kommen meist aus Forschung und Wissenschaft, und ihre Geschäftsmodelle konzentrieren sich auf die Entwicklung und den Verkauf von Hardware, Mikroskopen oder Cloud-basierten QC-Diensten.

Als weltweit erstem Unternehmen ist es dem 2018 gegründeten Start-up kiutra, einem Spin-off der Technischen Universität München, gelungen, eine dauerhafte magnetische Kühlung für Temperaturen nahe des absoluten Nullpunkts zu entwickeln. Statt auf Quantencomputer oder QC-Software, setzen die Gründer Alexander Regnat, Jan Spallek, Tomek Schulz und Christian Pfleiderer auf vollautomatische, äußerst wartungsarme und gut skalierbare Kühlungslösungen, die den Betrieb von Quantentechnologien im industriellen Maßstab ermöglichen.

Indirekter Einkauf: Versteckter Kostenfresser oder unentdeckter Goldschatz?

Im Interview sprechen wir mit Bettina Fischer, Gründerin von Hivebuy, über die Chancen und Risiken des indirekten Einkaufs und darüber, wie Unternehmen mit der richtigen Software Kosten senken und Prozesse optimieren können.

In vielen Unternehmen wird der indirekte Einkauf häufig unterschätzt – dabei liegen hier oft erhebliche Einsparpotenziale verborgen. Durch die wachsende Digitalisierung und die zunehmende Verfügbarkeit von B2B eCommerce-Plattformen bestellen Mitarbeitende Waren und Dienstleistungen immer häufiger außerhalb klassischer Einkaufsprozesse. Diese Entwicklung bringt einerseits Flexibilität und Effizienz, stellt Unternehmen aber auch vor neue Herausforderungen: Wie lassen sich Ausgaben kontrollieren und Transparenz über die gesamte Einkaufskette sicherstellen?

Die beste Einkaufssoftware für den Mittelstand adressiert genau diese Herausforderungen. Hivebuy hat sich als moderne, benutzerfreundliche Lösung etabliert, die den indirekten Einkaufsprozess von der Bestellung bis zur Rechnungsprüfung digitalisiert und automatisiert. Die Software integriert sich nahtlos in bestehende ERP-, Buchhaltungs- und Kommunikationstools wie SAP, Microsoft Dynamics, Teams oder Slack – und das ohne aufwändige technische Implementierung.

Gegründet von erfahrenen Einkaufs- und Finanzexpert*innen aus Frustration über bisherige Lösungen, verfolgt Hivebuy die Mission, versteckte Kosten sichtbar zu machen, Budgets in Echtzeit zu kontrollieren und Einkaufsprozesse effizienter zu gestalten. Mit höchsten Sicherheitsstandards, inklusive ISO/IEC 27001-Zertifizierung und DSGVO-konformer Datenhaltung in Deutschland, schafft Hivebuy Transparenz und Vertrauen entlang der gesamten Einkaufskette.

Im Interview sprechen wir mit Bettina Fischer, Gründerin von Hivebuy, über die Chancen und Risiken des indirekten Einkaufs und darüber, wie Unternehmen mit der richtigen Software Kosten senken und Prozesse optimieren können.

StartingUp: Frau Fischer, viele Unternehmen sehen im indirekten Einkauf eher einen Kostenfaktor, der schwer zu kontrollieren ist. Was macht den indirekten Einkauf aus Ihrer Sicht zu einem versteckten Kostenfresser?

Bettina Fischer: Die große Herausforderung im indirekten Einkauf liegt darin, dass die einkaufenden Personen über das gesamte Unternehmen verteilt sind – anders als im direkten Einkauf, wo spezialisierte Einkaufsabteilungen tätig sind. Das bedeutet: Jede*r Mitarbeitende, der oder die einmal etwas bestellt, wird zum Einkäufer oder zur Einkäuferin – oft ohne die notwendige Erfahrung in Einkaufsprozessen.

Dadurch entstehen typische Muster: Es wird bei bekannten Lieferanten bestellt – oft aus dem privaten Umfeld, wie etwa Amazon Business – ohne Preisvergleiche, ohne Berücksichtigung von Lieferzeiten oder bereits verhandelten Konditionen. Das führt schnell zu ineffizienten und teuren Entscheidungen.

Hinzu kommt, dass im indirekten Einkauf eine hohe Produktvielfalt auf eine extrem heterogene Lieferantenlandschaft trifft. Das erschwert es, durch Bündelung bessere Konditionen zu erzielen. Es fehlt die klare, strategische Beziehung zu bestimmten Lieferanten – und genau dort entstehen die versteckten Kosten.

StartingUp: Wie hilft Hivebuy Mittelständlern konkret dabei, diese versteckten Kosten aufzudecken und zu reduzieren?

Bettina Fischer: Hivebuy verfolgt einen ganzheitlichen Ansatz, um die Herausforderungen des indirekten Einkaufs zu lösen. Zum einen ermöglichen wir es Mitarbeitenden, direkt über integrierte Lieferanten zu bestellen. Das bedeutet: Die Bestellungen erfolgen zentral über Hivebuy – ohne Umwege über externe Plattformen oder individuelle Beschaffungswege. Die Bestellübermittlung ist automatisiert und erfolgt effizient über unser System.

Darüber hinaus bietet Hivebuy einen integrierten Preisvergleich für B2B-Webshops. So wird sichergestellt, dass stets der beste Preis und die optimalen Lieferzeiten berücksichtigt werden – ein entscheidender Hebel zur Kostensenkung.

Ein weiterer zentraler Punkt ist die Budgetkontrolle: Sobald eine Bestellanforderung erstellt wird, sehen Budgetverantwortliche sofort die Auswirkungen auf ihr Budget – in Echtzeit. Dadurch lassen sich Entscheidungen schnell, fundiert und transparent treffen.

Auch die Freigabeprozesse sind flexibel und konfigurierbar: Mitarbeitenden wird Freiheit für alltägliche Bestellungen gegeben, während bei kritischen oder kostenintensiven Vorgängen automatische Eskalationen und Genehmigungen greifen.

Nicht zuletzt ermöglicht Hivebuy dem Einkauf, sein Wissen an die Organisation weiterzugeben. Vorverhandelte Verträge, Katalogartikel oder bevorzugte Lieferanten sind direkt im System sichtbar – wie ein digitaler Einkaufsberater im Hintergrund. So treffen selbst unerfahrene Nutzer bessere Entscheidungen – ganz im Sinne von Kostenkontrolle und Prozesssicherheit.

StartingUp: Ihre Software ist bekannt für ihre Nutzerfreundlichkeit. Wie schaffen Sie es, auch nicht-einkaufserfahrene Mitarbeitende einzubinden?

Bettina Fischer: Benutzerfreundlichkeit steht bei Hivebuy an oberster Stelle. Wann immer wir eine neue Funktion entwickeln, testen wir diese gemeinsam mit unseren Nutzerinnen und Nutzern – direkt aus der Praxis. Unser Ziel ist es, dass Hivebuy genauso intuitiv bedienbar ist wie eine Online-Überweisung: Jeder soll auf Anhieb verstehen, was zu tun ist.

Mit Funktionen wie unserem B2B-Preisvergleich und dem sogenannten Guided Buying führen wir Mitarbeitende gezielt durch den Einkaufsprozess – Schritt für Schritt, ganz ohne Schulungsaufwand. So wird selbst komplexes Einkaufswissen einfach zugänglich gemacht.

Für Freigabeverantwortliche haben wir zusätzlich eine besonders komfortable Lösung geschaffen: Freigaben können direkt über Messenger-Apps wie Microsoft Teams erteilt werden – ohne sich ins System einloggen zu müssen. Die relevanten Informationen kommen automatisch dorthin, wo man ohnehin schon arbeitet – aufs Handy oder den Desktop. Das senkt die Einstiegshürden enorm und sorgt für eine breite Akzeptanz im gesamten Unternehmen.

StartingUp: Welche Rolle spielen Transparenz und Echtzeit-Reporting in der Budgetkontrolle?

Bettina Fischer: Wir sind überzeugt: Budgetkontrolle funktioniert nur in Echtzeit. Es bringt wenig, wenn Budgetübersichten nur monatlich, quartalsweise oder gar halbjährlich zur Verfügung stehen. Entscheidungen im Einkauf werden täglich getroffen – also muss auch die Budgettransparenz jederzeit aktuell sein.

Deshalb haben wir bei der Entwicklung von Hivebuy besonderen Fokus auf eine unmittelbare Budgeteinsicht gelegt. Sobald eine Bestellung angefragt wird, sieht der oder die Budgetverantwortliche sofort, wie sich diese auf das verfügbare Budget auswirkt. Diese Echtzeit-Transparenz ist ein zentrales Element unserer Software.

Gleichzeitig möchten wir Mitarbeitende befähigen, innerhalb ihrer Befugnisse selbstständig Entscheidungen zu treffen. Nicht jede Anfrage muss durch mehrere Instanzen laufen. Vielmehr setzen wir auf smarte, automatisierte Prozesse – kombiniert mit dem Vertrauen in die Souveränität der Nutzer. Das spart nicht nur Zeit, sondern steigert auch die Effizienz und Zufriedenheit im Unternehmen.

StartingUp: Die Einführung neuer Software bedeutet oft hohen Aufwand. Wie gestaltet sich die Implementierung von Hivebuy?

Bettina Fischer: Ich habe selbst über viele Jahre ERP- und Einkaufssoftwareprojekte geleitet – und ehrlich gesagt: Es war jedes Mal ein enormer Aufwand. Genau diese Erfahrungen haben mich dazu motiviert, Hivebuy so zu entwickeln, dass Implementierung eben nicht zur Belastung wird.

Unsere Lösung ist bewusst so aufgebaut, dass sie schnell, unkompliziert und ohne großen IT-Aufwand eingeführt werden kann. Neue Unternehmen können innerhalb kürzester Zeit starten – oft sogar innerhalb eines Tages mit einem eigenen Testsystem.

Die Einführung begleiten wir durch leicht verständliche Videotutorials und Onboarding-Materialien. Darüber hinaus gibt es persönliche Sessions, in denen die Nutzer befähigt werden, das System selbstständig für ihr Unternehmen zu konfigurieren. Schnittstellen zu ERP-Systemen wie SAP, Microsoft Dynamics oder DATEV richten wir in der Regel innerhalb weniger Stunden bis Tage ein.

Wenn beide Seiten fokussiert an das Projekt herangehen, können wir bei Unternehmen mit mehreren tausend Mitarbeitenden innerhalb von acht Wochen vollständig live gehen – inklusive Integration, Schulung und Rollout.

StartingUp: Wie unterstützt Hivebuy IT-Teams und technische Entscheider bei der Integration?

Bettina Fischer: Unsere größte Stärke in der Zusammenarbeit mit IT-Teams ist unsere Schnelligkeit. Bereits im ersten Kick-Off mit der IT tauschen wir alle relevanten technischen Dokumentationen aus, klären die Rahmenbedingungen und ermöglichen in kürzester Zeit die Integration in ein Testsystem. Wir verzichten bewusst auf langwierige Business-Blueprint-Phasen und setzen stattdessen auf eine praxisnahe, direkte Umsetzung.

Hivebuy verfolgt eine klare Integration-First-Strategie. Das bedeutet: Unsere Lösung ist von Grund auf so konzipiert, dass sie sich schnell und flexibel in bestehende ERP-Systeme und IT-Landschaften integrieren lässt. Für alle gängigen Systeme – ob SAP, Microsoft Dynamics, DATEV oder NetSuite – stellen wir vollständige Schnittstellen-Dokumentationen zur Verfügung.

Mein Mitgründer Stefan Kiehne bringt aus seiner Zeit bei PwC tiefes technisches Know-how mit und hat zahlreiche ERP-Implementierungen verantwortet. Dieses Wissen fließt direkt in unsere Projekte ein. Inzwischen haben wir Hivebuy in so viele verschiedene Systeme integriert, dass kaum noch Überraschungen aufkommen. Für IT-Verantwortliche bedeutet das: minimale Unsicherheiten, schnelle Umsetzung und maximale Kompatibilität.

StartingUp: Wie sieht die Zukunft des indirekten Einkaufs aus? Welche Trends beobachten Sie?

Bettina Fischer: Ich sehe im indirekten Einkauf ganz klar einen Wandel hin zu intelligenter Automatisierung und echter Transparenz. Schon heute beobachten wir den Trend in Richtung „Agent AI“ – also digitale Einkaufsassistenten, die Nutzer durch Prozesse begleiten und Entscheidungen mit datenbasierten Empfehlungen unterstützen. Das wird sich in den nächsten Jahren deutlich verstärken.

Was mich persönlich schon lange wundert: Im B2C-Bereich haben wir mit Plattformen wie Idealo längst Preis- und Konditionsvergleiche. Im B2B gibt es das kaum. Deshalb war es uns wichtig, mit Hivebuy eine Lösung zu schaffen, die genau das möglich macht – inklusive der hinterlegten, unternehmensspezifischen Konditionen. Das ist ein echter Gamechanger.

In Zukunft wird der indirekte Einkauf zunehmend automatisiert ablaufen – von der Bedarfserkennung bis hin zur Bestellung. Vergleichbar mit einem intelligenten Kühlschrank, der automatisch Milch nachbestellt, wird auch im Unternehmen vieles automatisch geschehen: Bedarfe erkennen, Angebote vergleichen, Bestellungen auslösen – ganz ohne manuelles Zutun.

Strategische Beschaffung wird dabei zur Grundlage. Das Ziel ist nicht, jede Bestellung individuell zu behandeln, sondern Prozesse zu standardisieren, auf Unternehmensziele auszurichten und individuelle Bedarfe intelligent einzubinden.

Und auch die Rückseite des Einkaufs wird sich stark verändern: Rechnungsprüfung, Buchung und Zahlungsfreigabe werden zunehmend automatisiert ablaufen. In einer idealen Zukunft brauchen wir keine manuelle Rechnungserfassung mehr – weil alles systemgestützt, regelbasiert und transparent funktioniert.

StartingUp: Vielen Dank für das Gespräch, Frau Fischer. Ihre Einblicke verdeutlichen, wie entscheidend es für Unternehmen ist, den indirekten Einkauf transparent und effizient zu gestalten. Mit Lösungen wie Hivebuy können Mittelständler versteckte Kosten sichtbar machen und ihre Beschaffungsprozesse nachhaltig optimieren. Wir wünschen Ihnen weiterhin viel Erfolg bei Ihrer Mission, Einkaufsteams bestmöglich zu unterstützen.

EU KI-Gesetz wird scharf gestellt

Diese Strafen für KI-Verstöße drohen ab dem 2. August 2025 – was Personalverantwortliche und Arbeitnehmende jetzt wissen und beachten müssen.

Das KI-Gesetz der Europäischen Union, die weltweit erste umfassende KI-Verordnung, erreicht am 2. August 2025 einen entscheidenden Meilenstein. Ab diesem Stichtag gelten für Unternehmen, Behörden und KI-Anbieter*innen in der EU zahlreiche zentrale Verpflichtungen, bei deren Nichteinhaltung Strafmaßnahmen eingeleitet und verhängt werden können. Was das für Unternehmen und ihre Mitarbeitenden bedeutet, erfährst du hier.

Der AI Act, der am 2. Februar dieses Jahres in Kraft getreten ist, schafft einen einheitlichen Rechtsrahmen für Künstliche Intelligenz (KI) in der EU. Zwar werden viele Regelungen erst 2026 wirksam, doch bereits am 2. August 2025 beginnt eine neue Phase, die sich auf drei Bereiche fokussiert:

  • Strafmaßnahmen bei Nichteinhaltung
  • Verpflichtungen für allgemeine General-Purpose-AI-Modelle (GPAI)
  • Aufbau von Aufsicht und Governance auf nationaler und europäischer Ebene

Strafen bis zu 35 Millionen Euro

Seit dem 2. Februar dieses Jahres sind KI-Systeme mit unannehmbaren Risiken verboten. Ab dem 2. August 2025 können zusätzlich nun Geldbußen für Verstöße gegen bereits bestehende Verpflichtungen verhängt werden, die bis zu 35 Millionen Euro oder 7 Prozent ihres gesamten Jahresumsatzes betragen können. Unternehmen müssen dazu beispielsweise sicherstellen, dass ihre Mitarbeitenden über KI-Kenntnisse verfügen. Die Europäische Union erwartet von ihren Mitgliedstaaten, dass sie eigene wirksame, verhältnismäßige und abschreckende Strafmaßnahmen festlegen. Dabei sollen die besonderen Umstände von KMUs und Start-ups berücksichtigt werden, um deren wirtschaftliche Lebensfähigkeit nicht zu gefährden.

Neue Verpflichtungen für Anbieter*innen von GPAI-Modellen

GPAI-Modelle, die ab dem 2. August 2025 in der Europäischen Union vermarktet werden, unterliegen gesetzlichen Verpflichtungen. Das Europäische Amt für Künstliche Intelligenz hat dazu am 10. Juli 2025 die endgültige Fassung der Verhaltenskodizes veröffentlicht. Anbieter*innen solcher GPAI-Modelle müssen unter anderem technische Dokumentationen erstellen, Urheberrechte beachten und Transparenz über die verwendeten Trainingsdaten sicherstellen.

GPAI-Modelle sind KI-Systeme mit besonders breitem Einsatzspektrum und sind darauf ausgelegt, eine Vielzahl von Aufgaben zu erfüllen. Sie werden mit riesigen Datenmengen trainiert und sind entsprechend vielseitig einsetzbar. Das bekannteste Beispiel sind große Sprachmodelle (Large Language Models, LLM), etwa das generative Sprachmodell GPT-4o, das in ChatGPT integriert ist. Für GPAI-Modelle, die bereits vor dem 2. August 2025 in der Europäischen Union auf dem Markt waren, gilt eine Übergangsfirst bis zum 2. August 2027.

Aufsicht und Governance

Die KI-Verordnung schafft einen Rahmen mit Durchführungs- und Durchsetzungsbefugnissen auf zwei Ebenen.

Auf nationaler Ebene muss jeder EU-Mitgliedstaat bis zum 2. August 2025 mindestens eine Marktüberwachungsbehörde sowie eine notifizierende Behörde benennen. Erstere ist für die Überwachung von KI-Systemen zuständig, letztere für die Notifizierung unabhängiger Konformitätsbewertungsstellen. Die Mitgliedstaaten müssen bis dem Stichtag Informationen zu den nationalen Behörden und deren Kontaktdaten veröffentlichen.

Auf EU-Ebene koordinieren das Europäische Amt für KI und der Europäische KI-Ausschuss die Aufsicht. Zusätzlich werden ein Beratungsforum und ein wissenschaftlicher Ausschuss aus unabhängigen Experten eingerichtet.

Was bedeutet das für Personalabteilungen und Arbeitnehmende?

Das KI-Gesetz hat direkte Auswirkungen darauf, wie KI in den Bereichen Rekrutierung, Performance-Management, Personalanalyse und Mitarbeitenden-Monitoring eingesetzt wird. Personalverantwortliche müssen sicherstellen, dass KI-Tools in diesen Bereichen transparent, fair und konform sind.

  • Fairness und Antidiskriminierung: KI-Systeme, die bei Einstellungs- oder Beförderungsentscheidungen eingesetzt werden, müssen nachvollziehbar und frei von Bias sein. Personalabteilungen sollten ihre Tools und Anbieter*innen regelmäßig überprüfen, um die Einhaltung der Vorschriften sicherzustellen.
  • Vertrauen und Transparenz: Mitarbeitende erhalten einen besseren Einblick, wie KI-Systeme ihre Arbeit beeinflussen, zum Beispiel bei der Einsatzplanung, Leistungsbewertung oder bei der Arbeitssicherheit. Personalabteilung können Vertrauen schaffen, indem sie offen kommunizieren, wie KI eingesetzt wird und wie die Daten der Mitarbeitenden geschützt werden.
  • Verantwortlichkeit von Drittanbieter*innen: Werden KI-Tools von Drittanbieter*innen genutzt, müssen Personalabteilungen sicherstellen, dass diese Anbieter*innen die Anforderungen an Transparenz und Dokumentation erfüllen. Verträge und Beschaffungsprozesse sollten entsprechend angepasst werden.
  • Training und Change Management: Mit stärkeren Regulierungen von KI wird die Personalabteilung eine Schlüsselrolle bei der Schulung von Führungskräften und Mitarbeitenden übernehmen. Ziel ist es, einen verantwortungsvollen Umgang mit KI zu fördern und ethische Standards in der Unternehmenskultur zu verankern.

Fazit

Anbieter*innen von GPAI-Modellen, die bereits vor dem 2. August 2025 auf dem Markt waren, haben bis zum 2. August 2027 Zeit, die neuen Vorschriften vollständig umzusetzen. Weitere Verpflichtungen für KI-Systeme mit hohem Risiko werden 2026 und 2027 folgen. Dieser Meilenstein spiegelt das Bestreben der EU wider, Innovationen zu fördern und gleichzeitig sicherzustellen, dass KI sicher, transparent und mit den europäischen Werten im Einklang steht. Damit rückt die Personalabteilung in den Mittelpunkt einer verantwortungsvollen Einführung von KI am Arbeitsplatz.

Der Autor Tom Saeys ist Chief Operations Officer bei SD Worx, einem international tätigen Dienstleistungsunternehmen im HR-Bereich.

Humanoide Roboter: Vision und Realität

Der Weltroboterverband IFR veröffentlicht sein Positionspapier zu Trends, Chancen und möglichen Grenzen rund um das Thema humanoide Roboter.

Menschenähnliche Roboter gelten als die nächste große Innovation in der Robotik: Der weltweit größte Markt für Industrieroboter, China, hat bereits konkrete Pläne für die Massenproduktion von Humanoiden festgelegt. Gleichzeitig kündigten Technologieunternehmen in den USA und Europa große Investitionsvorhaben in diesem Bereich an. Die Vision ist, Allzweckroboter zu entwickeln, die auf menschlicher Mechanik basieren. Einblicke in Trends, Chancen und mögliche Grenzen humanoider Roboter bietet das neue Positionspapier der International Federation of Robotics.

„Futuristisch anmutende humanoide Roboter, die in unserem Zuhause, in Unternehmen und in der Öffentlichkeit arbeiten, faszinieren die Menschen“, sagt Takayuki Ito, Präsident der International Federation of Robotics. „Da die Welt in der wir leben auf den menschlichen Körper zugeschnitten ist, liegt die Idee eines schnellen, universellen Helfers in der Produktion und bei Dienstleistungen auf der Hand. Ob und wann es aber zu einer massenhaften Nutzung von Humanoiden kommen wird, bleibt ungewiss. Nicht zu erwarten ist jedenfalls, dass Humanoide in Zukunft die derzeit auf dem Markt befindlichen Robotertypen ersetzen. Stattdessen werden sie bestehende Technologien ergänzen und erweitern.“

Einsatz von Humanoiden in den Regionen

In den Vereinigten Staaten arbeiten Tech-Unternehmen wie NVIDIA, Amazon und Tesla intensiv an KI- und Robotertechnologien. Neben der Finanzierung durch das Militär wird diese Entwicklung auch durch zahlreiche private Investitionen unterstützt. Das führt zu einer bedeutenden Start-up-Szene, die sich auf humanoide Roboter spezialisiert. Besonders groß ist das Interesse an Humanoiden in Branchen wie der Logistik und in der Fertigung. Dabei werden humanoide Roboter weniger als soziale Begleiter gesehen, sondern eher als Werkzeuge, die dabei helfen, Produktivität und Effizienz zu steigern. So liegt der Schwerpunkt verstärkt auf praktischen Anwendungen und weniger auf der Integration von Robotern in das tägliche soziale Leben.

In China nehmen die Humanoiden eine zentrale Stellung in der nationalen Robotik-Strategie ein. Die Regierung möchte in diesem Technologiebereich Kompetenz und globale Wettbewerbsfähigkeit unter Beweis stellen. Der Einsatzschwerpunkt liegt dabei im Dienstleistungssektor, beispielsweise für die Kundenbetreuung. Die Automatisierung von Produktionslinien in der Fertigung und der Einsatz von Humanoiden, um weniger von menschlichen Arbeitskräften abhängig zu sein, scheint nur auf zweiter Ebene wichtig zu sein. Kernelement der chinesischen Strategie ist der Aufbau einer skalierbaren Lieferkette für Schlüsselkomponenten.

Japan ist ein Pionier in der Entwicklung humanoider Roboter. Als frühes Beispiel wurde Hondas Asimo bereits im Oktober 2000 vorgestellt. Roboter werden in Japan eher als Gefährten, denn als bloße Werkzeuge gesehen. Humanoide Roboter wie Pepper und Palro sind demzufolge in erster Linie als Sozialroboter konzipiert und kommen in Bildungseinrichtungen, Geschäften und Altenpflegeeinrichtungen zum Einsatz. Diese Ausrichtung spiegelt die Nachfrage einer alternden Gesellschaft wider, mit der Japan konfrontiert ist. Ein wichtiger Schwerpunkt der Projekte liegt auf Robotern, die harmonisch mit Menschen zusammenleben können und als Teil der Gesellschaft akzeptiert sind. Führende Unternehmen wie Kawasaki entwickeln humanoide Roboter als eine Forschungsplattform.

In Europa wird auf die ethischen Implikationen von Robotik und KI besonderes viel Wert gelegt. Im Fokus stehen kollaborative Roboter, die im industriellen Umfeld mit Menschen zusammenarbeiten. Kernthemen sind die Verbesserung der Sicherheit und Effizienz und die Nachahmung menschlicher Fähigkeiten. Die Arbeitskraft von Menschen zu kompensieren, steht dagegen nicht im Fokus. Der Schwerpunkt liegt vielmehr auf einem menschenzentrierten Design und den sozialen und gesellschaftlichen Auswirkungen von Robotern. Die europäischen Unternehmen stehen dem Einsatz von Humanoiden generell eher zurückhaltend gegenüber, wenn es um die kurz- bis mittelfristigen Automatisierungsaufgaben im Fertigungs- und Dienstleistungssektor geht.

+++ Ein bahnbrechendes Robotik Start-up aus Deutschland ist NEURA-Robotics: Hier geht’s zu unserer Gründerstory von NEURA Robotics +++

Ausblick

Dank ihrer menschenähnlichen Geschicklichkeit und Anpassungsfähigkeit sind die Humanoiden prädestiniert, komplexe Aufgaben zu automatisieren, mit denen heutige Roboter durch herkömmliche Programmiermethoden Schwierigkeiten haben. Einen massenhaften Einsatz als universelle Haushaltshelfer dürfte es jedoch kurz- bis mittelfristig nicht geben.

Das POSITION PAPER Humanoid Robots - Vision and Reality von IFR gibt's hier zum freien Download

Kurz mal die Welt retten

Wie GreenTech-Start-ups aus dem DACH-Raum dazu beitragen, die Auswirkungen des Klimawandels zu mildern.

Ist es bereits zu spät, den Klimawandel aufzuhalten? Während diese Frage unablässig für hitzige Debatten sorgt, arbeiten Start-ups unermüdlich an Lösungen für die dringendsten Umweltprobleme. Die DACH-Region erlebt einen rasanten Anstieg von GreenTech-Start-ups, angetrieben durch technologische Innovationen und zunehmenden regulatorischen Druck. Dies zeigt u.a. das DACH GreenTech Software Mapping 2025 von Hi Inov und veranschaulicht, welche vielversprechenden Ansätze und Technologien die Zukunft des GreenTech-Ökosystems in Europa prägen.

Mapping der Herausforderungen und Lösungen

Das Mapping bietet einen umfassenden Überblick über die Softwarelösungen von GreenTech-Start-ups im DACH-Raum. Sie umfassen eine Vielzahl von Ansätzen, um den Anstieg der globalen Temperaturen einzudämmen und die damit einhergehenden wirtschaftlichen und gesellschaftlichen Herausforderungen zu bewältigen.

1. Messung und Optimierung des CO2-Fußabdrucks

Fortgeschrittene Techniken zur Datenerfassung und KI-gesteuerte Analysen helfen Organisationen, ihre Effizienz zu steigern und ihren CO-Fußabdruck zu reduzieren. Sie helfen Unternehmen, jährlich Emissionen von über 216.000 Tonnen CO-Äquivalenten zu vermeiden. Horizon­tale Plattformen bieten allgemeine Monitoring-Tools für branchen­übergreifende Messdienste. Vertikale Lösungen wie die für die Immobilienbranche maßgeschneiderte ESG-Datenplattform Deepki integrieren branchenspezifische Anforderungen.

2. Beschleunigung der Energiewende

Softwarelösungen spielen eine entscheidende Rolle bei der Optimierung der Standortauswahl für die Produktion erneuerbarer Energien, der vorausschauenden Wartung von Infrastruktur und der Verbesserung der Energiespeicherung. Sie können die Schwankungen in der Stromeinspeisung erneuerbarer Energien mindern und somit die Abhängigkeit von fossilen Brennstoffen reduzieren. Das Stuttgarter Start-up metergrid ermöglicht es beispielsweise Mieter*innen in Mehrfamilienhäusern, umweltfreundlichen Solarstrom zu nutzen, der im selben Gebäude produziert wird (mehr dazu in der StartingUp 01/25).

3. Förderung der Kreislaufwirtschaft und Ressourcenoptimierung

Digitale Lösungen erleichtern die Schonung von natürlichen Ressourcen durch intelligentes Ressourcenmanagement, indem sie die Planung und Nutzung von Ressourcen verbessern. Durch den Einsatz von KI lassen sich viele Prozesse optimieren, darunter Recycling, Landwirtschaft und Wassermanagement. So reduziert das Berliner Start-up Freshflow Abfall, indem es die Nachbestellung von frischen Lebensmitteln mit Machine Learning automatisiert und optimiert. Darüber hinaus verbinden digitale Markt­plätze Produzent*innen überschüssiger Ware mit potenziellen Abnehmer*innen, um Ressourcen effizierter zu nutzen.

4. Förderung von Nachhaltigkeitsinitiativen in Unternehmen

Unternehmen nutzen digitale Werkzeuge, um ihre Nachhaltigkeit über die regulatorischen Anforderungen hinaus zu verbessern. Zu den eingesetzten Lösungen zählen CO-Kreditbörsen, die es Organisationen ermöglichen, Emissionen durch strukturierte Märkte auszugleichen, und Mitarbeiterengagement-Plattformen, die die Teilnahme der Belegschaft an ESG-Initiativen fördern. Start-ups wie das Hamburger CarbonStack unterstützen Unternehmen bei der Erstellung von Nachhaltigkeitsberichten und dabei die relevanten Richtlinien einzuhalten.

Die Entwicklung von 2023 bis heute

Insgesamt zeigt das Mapping ein reiferes und strukturierteres GreenTech-Ökosystem, das Europas Position als Pionier in digitalen Klimaschutzlösungen stärkt. Die Entwicklung zwischen den Mappings aus den Jahren 2023 und 2025 verdeutlicht drei wichtige Trends:

1. Anstieg der Anzahl der angebotenen Softwarelösungen

Die steigende Nachfrage nach nachhaltigkeitsorientierten Innovationen in verschiedenen Branchen hat das Wachstum des GreenTech-Ökosystems beschleunigt und zu einem rasanten Anstieg der angebotenen Softwarelösungen geführt.

2. Regulatorisch getriebene Fortschritte

Aufgrund des zunehmenden regulatorischen Drucks wächst der Anteil der angebotenen Lösungen, die auf Compliance-Bedürfnisse wie CSRD, die Rückverfolgbarkeit von Produkten und transparente CO-Buchhaltung eingehen. Es werden zunehmend vertika­lisierte Monitoring-Tools entwickelt, um spezialisierte Datensätze und branchenspezifische Algorithmen zu erstellen.

3. Einfluss von generativer KI

Der Einsatz von generativer KI nimmt zu. Neue Anwendungsfälle im Bereich Nachhaltigkeit umfassen verbesserte Datenanalyse, automatisierte Com­pliance-Berichterstattung, sowie die Echtzeit-Optimierung von CO-Fußabdrücken und Ressourcenmanagement.

Fazit: Ein florierendes Ökosystem mit starker europäischer Führung

Der Klimawandel stellt eine immense Herausforderung dar, deren Bewältigung innovative technologische Lösungen erfordert. Das GreenTech Mapping 2025 verdeutlicht die führende Rolle Europas bei der Entwicklung dieser Lösungen und zeigt ein reiferes GreenTech-Ökosystem mit großer Dynamik. Durch den Einsatz fortschrittlicher Datenana­lysen, KI und Automatisierung sind Start-ups in der DACH­Region gut positioniert, um sowohl wirtschaftlichen als auch ökologischen Mehrwert zu schaffen. Sie werden Unternehmen und politischen Entscheidungsträger*innen dabei helfen, den Übergang zu einer nachhaltigeren Wirtschaft zu beschleunigen und die Folgen des Klimawandels einzudämmen.

Der Autor Dr. Wolfgang Krause leitet als Managing Partner das Deutschlandgeschäft des auf B2B-Digital­lösungen spezialisierten VC-Fonds von Hi Inov.

„Österreich hat einen langen Atem – und das zahlt sich im Bereich Applied AI aus“

Als führende Standorte in Sachen Künstliche Intelligenz liegen die USA und Asien auf der Hand, doch auch in Österreich gibt es eine vielfältige AI-Landschaft. Welche Vorteile der Standort für künstliche Intelligenz mit sich bringt und welche Rolle dabei Applied AI spielt, weiß Clemens Wasner, Gründer von AI Austria und CEO der EnliteAI.

Clemens Wasner ist Gründer des österreichischen Verbandes für Künstliche Intelligenz, AI Austria und CEO des Wiener Venture Studios EnliteAI. Der studierte Informatiker arbeitete über ein Jahrzehnt in Asien, bevor er 2017 EnliteAI gründete.

Herr Wasner, Sie kennen die AI-Szene aus erster Hand. Wie gut ist Österreich im internationalen Vergleich aktuell aufgestellt, wenn es um Applied AI geht?

Gemessen an seiner Größe steht Österreich erstaunlich gut da. Unsere AI–Landscape verzeichnet mittlerweile über 450 Unternehmen, die aktiv mit KI arbeiten – nicht nur Start-ups, sondern auch klassische Industrieunternehmen, Dienstleister und der öffentliche Sektor. Gerade im Bereich der industriellen Anwendungen ist Österreich breit aufgestellt: Es gibt zahlreiche Corporates, die eigene Competence Center gegründet, Ausgründungen vorgenommen oder Lizenzmodelle für KI aufgebaut haben. Auch die Zahl der Inkubatoren und Corporate Venture Capitalisten ist beachtlich. Das Thema ist in der Realwirtschaft angekommen – und das nicht erst seit gestern. Bereits 2018 gab es hierzulande einen deutlichen Aufschwung. Im Bereich der Spitzenforschung sind wir ebenfalls stark: Mit drei sogenannten ELLIS-Hubs –  European Laboratory for Learning and Intelligent Systems – gehören wir zur europäischen Spitze, gemessen an der Größe des Landes.

Sie sprechen beim Blick auf Österreich oftmals vom „AI-Standort mit langem Atem“. Was genau meinen Sie damit und was macht aus Ihrer Sicht einen exzellenten Standort für AI-Start-ups aus?

Der „lange Atem“ ist positiv gemeint und beschreibt das, was Österreich im Bereich Forschung & Entwicklung auszeichnet: kontinuierliche Investitionen, strategischer Weitblick und langfristige Förderstrukturen. Die Steiermark war lange OECD-Spitzenreiter bei F&E-Ausgaben, Wien verfügt über eine dichte Forschungslandschaft. Das sind keine kurzfristigen Hypes, sondern über Jahrzehnte gewachsene Strukturen. Österreich verfügt zudem über eine differenzierte Förderarchitektur, die alle TRL-Stufen abdeckt – von der Grundlagenforschung bis zur Markteintrittsunterstützung. Auch Clusterstrukturen spielen eine Rolle: In Life Sciences etwa gibt es in Wien und Graz funktionierende Ökosysteme, in denen zunehmend auch KI eine Rolle spielt. Diese Verankerung ermöglicht Planbarkeit, die gerade in technologieintensiven Bereichen entscheidend ist.

Zu den Schlüsselfaktoren einen erfolgreichen Standorts zählen Infrastruktur, Talent Pool und Anwendungsmöglichkeiten. Wo sehen Sie hier derzeit die größten Hebel – und auch die größten Defizite – in Österreich?

Ein klarer Vorteil liegt in der Verfügbarkeit von Talenten: Wien zieht seit Jahren hochqualifizierte Developer aus dem osteuropäischen Raum an. Der AI-Fachkräftemangel ist hier weniger ausgeprägt als in anderen europäischen Hauptstädten. Hinzu kommt: Österreich bildet mehr AI-Absolventen aus, als die Wirtschaft derzeit absorbieren kann. Das schafft einen Bewerbermarkt, der gerade für Start-ups günstig ist. Auch Standortfaktoren wie Lebensqualität und erschwingliche Mieten machen zum Beispiel die Hauptstadt Wien attraktiv. Als Besonderheit sehe ich zudem den aktiven Zugang der Stadt: Wien versteht sich als First Client für KI-Anwendungen, etwa in der Analyse von Geodaten, IoT oder der Digitalisierung von Baueinreichprozessen. Hier ist wesentlich mehr Offenheit für politische Vergabe zu finden als in anderen Ländern. Weniger stark ist Wien in der Spitzenforschung vertreten, hier liegt Linz mit der JKU vorn. Aber man kann als kleines Land nicht alles abdecken – und sollte dort Schwerpunkte setzen, wo bestehende Stärken ausbaubar sind.

Was war der Gründungsimpuls für EnliteAI und wie ist Ihr Venture Studio heute aufgestellt?

Ich kam 2016 nach zehn Jahren in Asien zurück nach Österreich. In China und Japan war KI allgegenwärtig, ein regelrechter Hype. Zurück in Europa herrschte Funkstille – das war ein Kulturschock. Ich wollte dem Thema hierzulande Schub geben: 2017 gründete ich den Verband AI Austria und kurz darauf EnliteAI. Unsere Erkenntnis aus früheren Projekten zeigte, dass viele Unternehmen gute Ideen, aber keine Ressourcen zur Umsetzung hatten. Daraus entstand das Venture Studio: Wir entwickeln Prototypen gemeinsam mit Unternehmen und gründen darauf spezialisierte Start-ups. Aktuell sind wir 20 Personen und verfolgen zwei Themen – Detekt, das sich auf den Bereich Mobile Mapping spezialisiert hat, und ein weiteres im Stromnetzmanagement. Mit EnliteAI möchten wir künftig weitere Projekte unterstützen und bereiten dafür eine Dual-Entity-Struktur mit einem eigenen Fonds vor. Ziel ist es, das Modell professionell zu skalieren und Investoren direkt in die Spin-outs zu bringen.

Rechenleistung zählen zu den Schlüsselressourcen in der AI. Was braucht es aus Ihrer Sicht, damit europäische Standorte hier nicht dauerhaft in Abhängigkeit geraten?

Realistisch betrachtet: Die Abhängigkeit besteht bereits. Die großen Hyperscaler sind US-dominiert, ebenso Chips, Kommunikationstools, Social Networks. Europa muss in die digitale Souveränität investieren. Erste Schritte wie AI Factories sind wichtig, aber nicht ausreichend. Wir brauchen europäische Cloud-Anbieter, Chipproduktion auf europäischem Boden und eine nachhaltige Energiepolitik. Frankreichs KI-Boom basiert auf Atomstrom – weil er langfristig planbar ist. Diese Planbarkeit fehlt in vielen europäischen Ländern derzeit. Ohne Strom gibt es keine KI. Auch das zeigen Stimmen von Sam Altman, Elon Musk und anderen. Hier ist ein strategischer Paradigmenwechsel notwendig.

Sie sprachen bereits die vielfältige Landschaft von kleinen und mittleren Unternehmen in Österreich an, die offen für KI sind. Wie gut funktioniert das Matching zwischen Start-ups und klassischen Industrieunternehmen?

Österreich macht hier sehr viel richtig. Es gibt ein breites Netz an Förderinstrumenten – von der Österreichischen Forschungsförderungsgesellschaft FFG über die Austria Wirtschaftsservice bis hin zu regionalen Wirtschaftskammern. Zudem bietet Österreich eine Forschungsförderungsprämie an, bei der 14 Prozent der F&E-Ausgaben quasi mit einem Blankoschein gefördert werden können. Zudem organisieren viele Institutionen aktiv Matchmaking-Events, etwa im Rahmen von PreSeed-, AI-Adoption- oder Innovationsprogrammen. Hinzu kommt der Industry-Startup-Marktplatz mit mehreren Tausend registrierten Unternehmen. Auch Pitchings werden gefördert. Das Ziel ist stets, AI nicht nur in der Theorie zu belassen, sondern in die Realwirtschaft zu bringen. Trotzdem: Viele Unternehmen wissen noch immer nichts davon. Hier braucht es also noch mehr Aufklärung.

Welcher KI-Standort – in Österreich und darüber hinaus – hat Sie zuletzt positiv überrascht?

In Österreich ist Linz für mich der Hotspot schlechthin – die Kombination aus Spitzenforschung und erfolgreichem Technologietransfer ist dort besonders gut gelungen. International beeindruckt mich Twente in den Niederlanden: kein großer Name, aber mit klarer Strategie. Sie haben das Spin-out-Modell von Oxford und Cambridge adaptiert und konsequent umgesetzt – mit IP-Offices, Gründungsberatung und Infrastruktur für Start-ups. Ein weiteres Vorbild ist Heilbronn mit den Campus Founders: Sie haben, unterstützt durch die Dieter Schwarz Stiftung, einen Ort für Unternehmertum und Innovationen geschaffen und könnten Vorbild für viele europäische Regionen werden. Viele Stiftungen schaffen Parks oder Schlösser, aber wesentlich gewinnbringender wäre die Förderung von Entrepreneurship wie es in Heilbronn passiert statt Museumsstiftung. Europa braucht diese neue Denkweise.

Clemens Wasner, vielen Dank für das Gespräch.

Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin

Was sollten Eigentümer in Bezug auf Gewerbeimmobilien beachten?

Entdecken Sie wichtige Tipps für Gewerbeimmobilien-Eigentümer. Infos und wichtige Details.

Gewerbeimmobilien stellen eine wichtige Anlageklasse dar, die sowohl attraktive Renditen als auch besondere Herausforderungen mit sich bringt. Der deutsche Gewerbeimmobilienmarkt erlebt derzeit nicht nur einen zyklischen Abschwung, sondern einen dauerhaften strukturellen Wandel durch die Zinswende. Diese Entwicklung verändert die Rahmenbedingungen für Eigentümer grundlegend und erfordert eine Anpassung der Investitionsstrategien.

Neben den klassischen Überlegungen zu Standort, Mieterstruktur und Rendite gewinnen neue Aspekte wie Nachhaltigkeit, Energieeffizienz und regulatorische Anforderungen zunehmend an Bedeutung. Eine fundierte Kenntnis aller relevanten Faktoren ist daher essentiell für erfolgreiche Gewerbeimmobilien-Investments. Die folgenden Abschnitte liefern eine praktische Übersicht.

Frühzeitig Verpflichtungen rund um das Thema Gebäude prüfen

Neben den klassischen Überlegungen zu Standort, Mieterstruktur und Rendite gewinnen auch technische und infrastrukturelle Aspekte zunehmend an Bedeutung. Insbesondere Kanalservicearbeiten, wie die Wartung und Instandhaltung der unterirdischen Versorgungsnetze, spielen eine wesentliche Rolle bei der Sicherstellung der langfristigen Werthaltigkeit von Gewerbeimmobilien.

Unter anderem liefert das Kanalservice Magazin hierzu wertvolle Informationen rund um Anbieter und Co. Regelmäßige Inspektionen und Reparaturen von Abwasser- und Entwässerungssystemen sind nicht nur aus rechtlichen und sicherheitstechnischen Gründen wichtig, sondern auch für die Betriebskosten und die Nutzungseffizienz einer Immobilie entscheidend.

Eigentümer sollten sich daher frühzeitig mit den Anforderungen an den Kanalservice auseinandersetzen und sicherstellen, dass diese regelmäßig und vorausschauend durchgeführt werden, um teure Notfalleinsätze und mögliche Wertverluste zu vermeiden.

Steuerliche Vorteile optimal nutzen: Abschreibungen und Umsatzsteuer

Gewerbeimmobilien bieten gegenüber Wohnimmobilien deutliche steuerliche Vorteile, die Eigentümer unbedingt nutzen sollten. Der wichtigste Vorteil liegt in der höheren Abschreibungsrate von 3% jährlich statt der üblichen 2% bei Wohnimmobilien. Diese zusätzliche Abschreibung reduziert die Steuerlast erheblich und verbessert die Rendite nachhaltig.

Ein weiterer bedeutender Vorteil ist die Möglichkeit der 19% Umsatzsteuer-Erstattung beim Erwerb der Immobilie. Voraussetzung hierfür ist die ordnungsgemäße Anmeldung als Unternehmer und die entsprechende Verwendung der Immobilie.

Diese Steuervorteile können die Wirtschaftlichkeit einer Gewerbeimmobilie maßgeblich beeinflussen und sollten bereits in der Planungsphase berücksichtigt werden. Eine professionelle steuerliche Beratung ist dabei unerlässlich. Besonders praktisch ist es in diesem Zusammenhang natürlich auch, dass Studien zufolge aktuell Gründungen in verschiedenen deutschen Städten generell vergleichsweise günstig sind.

Neue Heizungspflicht: Vorgaben rund um erneuerbare Energien seit 2024

Seit 2024 müssen neu installierte Heizungen zu 65% mit erneuerbaren Energien betrieben werden – eine Regelung, die erhebliche Auswirkungen auf Gewerbeimmobilien hat. Diese Vorgabe betrifft sowohl Neubauten als auch den Austausch bestehender Heizungsanlagen und erfordert eine frühzeitige Planung.

Mögliche Lösungen umfassen:

  • Wärmepumpen
  • Fernwärme
  • Biomasseheizungen
  • Hybrid-Systeme

Die Investitionskosten sind oft höher als bei konventionellen Systemen, jedoch können staatliche Förderungen einen Teil der Mehrkosten abfedern.

Langfristig ergeben sich durch niedrigere Betriebskosten und steigende CO2-Preise wirtschaftliche Vorteile. Eigentümer sollten rechtzeitig prüfen, welche Technologie für ihre Immobilie am besten geeignet ist, und entsprechende Budgets einplanen. Eine professionelle Energieberatung hilft bei der optimalen Lösung.

Photovoltaik-Potenziale: Chancen und rechtliche Hürden

Die geplante Verdreifachung des Photovoltaik-Ausbaus bis 2030 eröffnet Gewerbeimmobilien-Eigentümern interessante Chancen zur zusätzlichen Wertschöpfung. Gewerbedächer bieten oft ideale Voraussetzungen für Solaranlagen: große, unverschattete Flächen und hoher Eigenverbrauch während der Tagesstunden.

Die Eigenverbrauchsquote kann bei Gewerbeimmobilien deutlich höher liegen als bei Wohngebäuden, was die Wirtschaftlichkeit verbessert. Allerdings bestehen auch rechtliche Hürden, insbesondere bei der Direktvermarktung von Strom an Mieter. Das Mieterstromgesetz und energierechtliche Bestimmungen schaffen komplexe Rahmenbedingungen.

Trotz dieser Herausforderungen können Photovoltaik-Anlagen die Attraktivität einer Gewerbeimmobilie steigern und zusätzliche Einnahmen generieren. Eine sorgfältige Prüfung der rechtlichen und wirtschaftlichen Aspekte ist dabei unerlässlich. Der Faktor „Nachhaltigkeit“ spielt generell aber auch in vielerlei Hinsicht eine wichtige Rolle. So entscheiden sich nicht nur im privaten, sondern auch im gewerblichen Bereich viele dafür, nicht direkt neu zu kaufen, sondern zu reparieren. Ideal für alle, die den ökologischen Fußabdruck ihres Betriebes reduzieren möchten.

Erfolgreich investieren: Wichtige Erkenntnisse für Gewerbeimmobilien-Eigentümer

Erfolgreiche Gewerbeimmobilien-Investments erfordern heute mehr denn je eine ganzheitliche Betrachtung aller relevanten Faktoren. Die steuerlichen Vorteile mit 3% Abschreibung und Umsatzsteuer-Erstattung bleiben wichtige Argumente für diese Anlageklasse.

Gleichzeitig steigen die Anforderungen durch neue Regelungen wie die Heizungspflicht und ESG-Kriterien erheblich. Der strukturelle Wandel des Marktes erfordert angepasste Strategien und eine sorgfältige Auswahl der Immobilien.

Chancen ergeben sich insbesondere in zukunftsorientierten Segmenten wie Logistik und bei der Integration erneuerbarer Energien. Eine professionelle Beratung und kontinuierliche Marktbeobachtung sind unerlässlich. Das Kanalservice Magazin bietet hierfür wertvolle Unterstützung mit fundierten Informationen und praktischen Tipps für alle Aspekte des Gewerbeimmobilien-Investments.

5 Tipps für GPT-Sichtbarkeit im Netz

Warum klassisches SEO allein nicht mehr ausreicht und wie Unternehmen für die KI-Antworten der GPT-Modelle sichtbar werden.

Die Spielregeln der digitalen Sichtbarkeit werden gerade neu geschrieben – und die Unternehmen müssen sich neu aufstellen. Denn während viele Unternehmen ihre Strategien noch immer ausschließlich auf Google-Rankings und SEO-Kriterien ausrichten, verlagert sich die digitale Aufmerksamkeit längst in Richtung KI: Sprachmodelle wie ChatGPT, Claude oder Gemini ersetzen zunehmend die klassische Suche. Sie liefern keine Trefferlisten mehr, sondern direkte, aufbereitete Antworten – oft mit konkreten Empfehlungen und Verlinkungen. Für Marken, Produkte und Unternehmen wird es damit entscheidend, in diesen zusammengefassten Antworten stattzufinden. Das Stichwort hierfür ist technisches SEO für KI-Rankings.

Suchmaschinen waren gestern das führende Element in der Sortierung von Wissen im Netz und vor allem das Google-Ranking war entscheidend für die Sichtbarkeit von Informationen und Seiten. In Zukunft entscheiden dagegen Sprachmodelle darüber, welche Inhalte gesehen, zitiert und empfohlen werden. Und wer in diesen Systemen nicht genannt wird, verliert den direkten Draht zur Zielgruppe.

Diesen Paradigmenwechsel vom Google-Ranking zur Antwortlogik hat die SMAWAX, die auf Strategieberatung spezialisierte Agentur der Smarketer Group, erstmals systematisch im Rahmen eines Whitepapers analysiert (s. Link am Ende des Beitrags). Die Expert*innen erklären dabei detailliert, wie GPT-Modelle Inhalte auswählen – und welche Inhalte von den Systemen überhaupt referenziert werden dürfen. Die zentrale Erkenntnis: Suchmaschinenoptimierung nach alten Regeln greift zu kurz, ist aber weiterhin die Sichtbarkeitsgrundlage. Denn Sprachmodelle wie ChatGPT denken nicht in Keywords und Rankings, sondern in semantischen Relevanzräumen, Entitätenbeziehungen und struktureller Klarheit.

Inhalte müssen modular und semantisch präzise sein – doch das reicht nicht

Es geht nicht mehr um Top-Rankings – es geht darum, die richtige Antwort zu sein. Wir müssen SEO neu denken – als Schnittstelle zwischen Struktur, Relevanz und maschinellem Verstehen. Inhalte müssen dazu maschinenlesbar, modular aufgebaut und semantisch präzise sein. Nur dann haben Unternehmen eine Chance, in den Empfehlungslogiken von Claude, GPT & Co. aufzutauchen.

Besonders überraschend ist dabei aber, dass viele Unternehmen in GPT-Antworten zwar durchaus latent präsent, aber nicht sichtbar sind. Der Grund hierfür sind unscharfe Entitäten, fehlende „About“-Seiten, keine Verankerung in externen Quellen wie Wikidata, Trustpilot oder LinkedIn. Die Folgen wirken sich negativ auf die Marken aus und sorgen für Fehlinformationen: KI-Modelle verwechseln Marken, halluzinieren Funktionen oder verschweigen relevante Angebote. Halluzinationen sind in Wahrheit ein strategischer Hinweis auf Unsichtbarkeit. Wenn GPT ein Produkt falsch beschreibt oder dich mit einem Mitbewerber verwechselt, zeigt das: Deine Inhalte sind zwar irgendwo im Modell – aber nicht stabil genug verankert, um korrekt genannt zu werden.

Fünf konkrete Hebel für bessere GPT-Sichtbarkeit

Diese praxisnahe Handlungsempfehlungen können Unternehmen sofort umsetzen können – unabhängig davon, ob sie im B2B- oder B2C-Bereich aktiv sind.

1. Entitäten definieren: Jede Marke braucht heute eine kanonische „About“-Seite, ergänzt um ein Wikidata-Profil, semantische Markups und gleiche Namensverwendungen auf Plattformen wie LinkedIn oder Handelsregister.

2. Aktualität signalisieren: GPT-Modelle bevorzugen Inhalte mit klaren Update-Daten (z.B. dateModified). Ohne erkennbaren Pflegezustand gelten Inhalte als veraltet – und werden ausgefiltert.

3. Bing wird zum Gateway: Weil GPT seine Websuche auf Bing stützt, ist dessen Indexierung entscheidend. Wer dort nicht sauber auffindbar ist, existiert in GPT-Antworten nicht.

4. Content chunkbar machen: Inhalte sollten nicht mehr aus langen Fließtexten bestehen, sondern in modularen Blöcken mit H2-Strukturen, Listen und Zwischenfazits aufgebaut sein.

5. Externe Signale einbinden: Erwähnungen auf Trustpilot, Reddit oder in der Fachpresse stärken die semantische Autorität – und erhöhen die Chance, von Sprachmodellen zitiert zu werden.

Fazit

Die neue Sichtbarkeit entsteht durch das, was das Modell nicht selbst erzeugen kann – sie entsteht also nicht über Rankings, sondern über Relevanzräume. Wer auf Standard-Content setzt, wird paraphrasiert oder übergangen. Wer dagegen einzigartigen, strukturierten und technisch klaren Content liefert, wird empfohlen.

Zum Weiterlesen: Das Whitepaper steht zum kostenlosen Download bereit unter www.smawax.com/whitepaper-ki-sichtbarkeit

KI clever eingesetzt: Können deutsche Entwickler ihre App-Ideen mit Vibe Coding umsetzen?

Wie Vibe Coding, eine neue KI-gestützte Methode der App-Entwicklung, es heute deutlich einfacher macht, aus einer Idee ein funktionierendes digitales Produkt entstehen zu lassen.

Die Zeiten, in denen man für die Umsetzung einer App monatelang ein Entwicklerteam zusammenstellen, riesige Budgets planen und unzählige Meetings überstehen musste, scheinen langsam zu verblassen. Vibe Coding, eine neue KI-gestützte Methode der App-Entwicklung, macht es Gründern und kreativen Köpfen in Deutschland heute deutlich einfacher, aus einer Idee ein funktionierendes digitales Produkt entstehen zu lassen.

Was steckt hinter Vibe Coding?

Vibe Coding nutzt künstliche Intelligenz, um auf Basis einfacher Sprache Code zu erzeugen. Statt eine App Zeile für Zeile zu programmieren, beschreibt man, was sie können soll. Die KI wandelt diese Wünsche in Code um, der sich dann weiter anpassen und verfeinern lässt. Anders als bei klassischen No-Code-Plattformen entstehen keine bloßen Baukastenlösungen, sondern anpassbarer, individuell nutzbarer Code.

Im Unterschied zu Low-Code-Ansätzen braucht es keine aufwendige UI und keine grafische Umgebung, in der man mühsam Komponenten zusammensetzt. Stattdessen genügt es, der KI präzise zu erklären, welches Ergebnis angestrebt wird. Das spart nicht nur Zeit, sondern eröffnet auch Menschen ohne tiefgehendes Technikverständnis ganz neue Möglichkeiten.

Aktuell eignet sich dieser Ansatz besonders für die Entwicklung von Prototypen, Minimum Viable Products und überschaubaren Business-Apps. Wer dagegen komplexe Anwendungen mit tiefen Backend-Strukturen, Hochsicherheitsanforderungen oder extrem hoher Nutzerlast plant, stößt mit Vibe Coding derzeit noch an natürliche Grenzen. Doch für den ersten Schritt in die App-Welt ist dieses Werkzeug so vielversprechend wie kaum ein anderes.

Wie KI-basierte Entwicklung neue Möglichkeiten für Gründer eröffnet

In der Praxis bedeutet das: Was früher ein ganzes Entwicklerteam beschäftigt hätte, kann heute oft in wenigen Tagen oder sogar Stunden entstehen. Vibe Coding verkürzt die Entwicklungszeiten deutlich, die ersten funktionsfähigen Entwürfe stehen schneller zur Verfügung als je zuvor.

Nicht zu unterschätzen ist dabei auch die finanzielle Seite. Wo man früher fünfstellige Summen investieren musste, genügt heute oft ein Bruchteil davon, um einen ersten lauffähigen Prototypen zu testen. Damit wird der Einstieg in die App-Entwicklung auch für Gründer ohne Tech-Hintergrund realistischer. Kein Zwang mehr, einen CTO an Bord zu holen oder teure Agenturen zu engagieren.

Gerade in Deutschland, wo Gründungsteams häufig an fehlender Entwicklerkapazität scheitern, eröffnet diese Entwicklung eine völlig neue Dynamik. Wer eine gute Idee hat, kann sie dank Vibe Coding sehr viel leichter in die Realität umsetzen. Das fördert die Innovationskultur und macht Platz für mehr mutige Experimente.

Ein Beispiel, das hier besonders hervorsticht, ist die Founders Foundation in Ostwestfalen-Lippe. Mit gezielten Programmen und Workshops unterstützt sie Gründerinnen und Gründer dabei, KI-gestützte Methoden sinnvoll einzusetzen und so eigene digitale Produkte schneller auf die Straße zu bringen. Genau solche Impulse tragen dazu bei, dass sich der Trend immer stärker durchsetzt.

Welche deutschen Start-ups zeigen bereits, was mit KI und No-Code möglich ist?

Dass das alles keine Theorie mehr ist, sondern in deutschen Gründungszentren längst gelebt wird, zeigen einige aktuelle Beispiele sehr anschaulich. Leaping AI aus Berlin etwa entwickelt Voicebots, die im Kundenservice 70 Prozent aller Anfragen automatisiert beantworten. Eine Anwendung, die ohne moderne KI-Tools in dieser Geschwindigkeit und Qualität wohl kaum möglich wäre.

Auch qru aus Stuttgart beweist, was möglich ist. Mit ihren Videomarketing-Tools, die auf einem cleveren Mix aus Low-Code und KI basieren, können selbst kleinere Unternehmen ihre Marketingprozesse automatisieren und professionell gestalten, ohne dafür eine eigene IT-Abteilung zu benötigen.

Ein drittes Beispiel: Paul’s Job, ein Berliner Startup, das HR-Prozesse mit agentischer KI unterstützt. Recruiting und Personalverwaltung laufen dort in weiten Teilen automatisiert, was Gründern wie Personalabteilungen jede Menge Zeit und Nerven spart.

Diese und ähnliche Projekte zeigen deutlich, dass Vibe Coding und vergleichbare Methoden längst ihren Weg in die praktische Nutzung gefunden haben. Die Technologie entwickelt sich dabei so schnell weiter, dass immer mehr Gründer den Mut fassen, ihre App-Ideen mit solchen Ansätzen umzusetzen.

Warum die App-Entwicklung perspektivisch günstiger wird

Ein Blick auf die allgemeine Marktentwicklung macht schnell deutlich: App-Entwicklung wird in den kommenden Jahren noch günstiger und einfacher werden. Mit jedem Fortschritt der KI sinken die Kosten für die technische Umsetzung, gleichzeitig steigen die Möglichkeiten, individualisierte Lösungen zu entwickeln.

Das hat Folgen, insbesondere für kleinere und spezialisierte Anbieter. Wo früher nur große Unternehmen eigene Apps auf den Markt bringen konnten, öffnet sich der Zugang nun auch für kleinere Player. Gerade in Nischenmärkten entstehen so neue Chancen.

Ein besonders interessantes Feld ist aktuell der Gambling-Sektor. Lange Zeit galten die hohen Entwicklungskosten als Einstiegshürde für viele Anbieter. Inzwischen zeigt sich jedoch, dass speziell in diesem Bereich vermehrt Apps auf den Markt kommen, weil die technische Umsetzung dank KI-Tools deutlich günstiger geworden ist.

Aber nicht nur im Glücksspiel-Markt tut sich etwas. Health und Fitness, E-Learning, Content Creation sowie regionale Dienstleistungen profitieren in ähnlicher Weise von den neuen Möglichkeiten. Über Smartphones und Tablets gelangen viele dieser Lösungen direkt zu den Nutzern und ermöglichen eine viel engere Bindung als klassische Webanwendungen.

Wo klassische Entwicklerkompetenz weiterhin unverzichtbar bleibt

Natürlich hat auch Vibe Coding seine Grenzen. Gerade wenn es um anspruchsvolle Architektur, komplexe Backend-Systeme oder hochskalierbare Anwendungen geht, kommt man ohne erfahrene Entwickler nach wie vor nicht aus.

KI generiert Code auf Basis von Wahrscheinlichkeiten, was in der Praxis immer wieder zu fehlerhaften oder ineffizienten Strukturen führen kann. Qualitätssicherung, Testing und fundiertes Architekturwissen bleiben deshalb unerlässlich, sobald eine App mehr sein soll als ein einfaches MVP.

Auch bei Themen wie Performance, Sicherheit und Datenschutz kann KI derzeit noch nicht mithalten. Hier braucht es das Know-how klassischer Entwickler, um Anwendungen stabil und vertrauenswürdig zu machen.

Gerade für Anwendungen im Finanz- oder Gesundheitsbereich, wo hohe regulatorische Standards erfüllt werden müssen, bleibt der menschliche Faktor entscheidend. Vibe Coding ist ein fantastisches Werkzeug für den schnellen Einstieg und die Umsetzung erster Ideen, doch auf dem Weg zu einem ausgereiften Produkt wird klassisches Engineering weiterhin eine tragende Rolle spielen.

Vibe Coding bringt frischen Wind in die App-Entwicklung

Vibe Coding verändert die Art, wie in Deutschland Apps entstehen, in rasantem Tempo. Prototypen und erste marktfähige Tools lassen sich heute so schnell und günstig umsetzen wie nie zuvor. Für viele Gründer ohne Tech-Hintergrund eröffnen sich dadurch Möglichkeiten, die es vor wenigen Jahren schlicht nicht gab.

Die Beispiele aus der Startup-Szene zeigen eindrucksvoll, wie die neuen Werkzeuge bereits eingesetzt werden. Gleichzeitig bleibt klar: Für echte Skalierung, Sicherheit und Performance führt an klassischem Entwicklerwissen kein Weg vorbei.

Die Zukunft gehört wahrscheinlich zu einem hybriden Ansatz, bei dem KI als mächtiges Assistenzwerkzeug fungiert und Entwickler sich auf das konzentrieren, was KI noch nicht zuverlässig beherrscht. So entsteht Raum für mehr Innovation, mehr mutige Ideen und letztlich mehr spannende Apps. Und genau das dürfte der deutschen Tech-Szene mehr als guttun.

EU AI Act: Bürokratisch, unpraktisch, schlecht

Ein Kommentar von Dominik Mohilo, Redakteur und IT-Experte bei der auf High-Tech spezialisierten Münchner PR- und Kommunikationsagentur PR-COM.

Die Luft auf dem hohen moralischen Ross, auf dem Deutschland vorreitet und Europa folgt, wird dünner und dünner. Ja, der EU AI Act ist eine Errungenschaft. Und ja, ethische Grundsätze sollten wir keinesfalls missachten, wenn es darum geht, künstliche Intelligenz zu entwickeln, zu betreiben und zu verwenden. Fair enough. Doch darf’s vielleicht trotzdem ein bisschen weniger Bürokratie sein, liebe EU? Artikel 5 des KI-Regelwerks der EU besagt beispielsweise, dass die folgende KI-Praktik verboten ist: „Das Inverkehrbringen, die Inbetriebnahme oder die Verwendung eines KI-Systems, das unterschwellige Techniken, die sich dem Bewusstsein einer Person entziehen, oder absichtlich manipulative oder täuschende Techniken einsetzt, mit dem Ziel oder der Wirkung, das Verhalten einer Person oder einer Personengruppe dadurch wesentlich zu beeinflussen, dass ihre Fähigkeit, eine sachkundige Entscheidung zu treffen, spürbar beeinträchtigt wird, wodurch sie veranlasst wird, eine Entscheidung zu treffen, die sie andernfalls nicht getroffen hätte, und zwar in einer Weise, die dieser Person, einer anderen Person oder einer Personengruppe einen erheblichen Schaden zufügt oder mit hinreichender Wahrscheinlichkeit zufügen wird.“ (Kapitel II, Artikel 5, 1a)

Sperrig und überregulatorisch

Verstanden worum es geht? Ich auch nicht. Ähnlich sperrig und überregulatorisch ist der Abschnitt über sogenannte Hochrisiko-KI-Systeme formuliert. Gemeint sind damit jene KI-Anwendungen, die etwa im Gesundheitswesen, in der Bildung oder kritischen Infrastrukturen eingesetzt werden sollen – also genau den Bereichen, wo sie dringend benötigte Verbesserungen und Entlastungen für die in diesen Bereichen arbeitenden Menschen mit sich bringen könnten. Was genau mit Hochrisiko gemeint ist, ist allerdings wieder nicht glasklar definiert: was hat denn nun „erheblichen Einfluss auf Grundrechte“? Diese Unsicherheit im Hinblick auf die rechtliche Grundlage ist oft Grund genug für potenzielle Investoren, sich nach anderen Gelegenheiten umzusehen. Wer will schon exorbitante Kosten für juristische Verfahren locker machen und Zertifizierungen noch und nöcher erwerben, nur um am Ende dann möglicherweise doch gegen geltende Gesetze zu verstoßen? Eben.

Start-ups sind von Hürden überproportional heftig betroffen

Gerade kleine und mittelständische Unternehmen (KMU) sowie Start-ups sind von diesen Hürden überproportional heftig betroffen, sodass viele gute und wegweisende Ideen nicht oder zumindest nicht hier in der EU auf den Weg gebracht werden. Wirtschaftlich ist das fatal – das auch noch in diesen schwierigen Zeiten. In diesen Zeiten wäre es eigentlich wichtig, die Wirtschaft voranzutreiben, insbesondere in zukunftsweisenden Bereichen wie dem KI-Markt. Eine gute Möglichkeit wäre, die Technologie hierzulande staatlich zu subventionieren, wie das in den USA und in China bereits in großem Stil passiert. Stattdessen werfen wir uns selbst Stöcke in die Speichen unserer Räder – unter anderem mit Regulierung und ethischen Grundsätzen, sondern insbesondere durch schwammige Gesetzestexte und Undurchsichtigkeit von Compliance-Vorschriften.

Zusammenfassend ist festzustellen, dass die alte Forderung „rebellischer“ (mancher würde sagen: „vernünftiger“) Politiker, Bürokratie abzubauen, selten so eine hohe Relevanz wie aktuell hatte. Europa geht es wirtschaftlich schlecht, gleichzeitig verlassen High-Tech-Unternehmen scharenweise unsere Breitengerade, da das Regulierungskorsett so eng geschnürt ist, dass Innovation keine Luft mehr zum Atmen hat. Es gilt also, Maßnahmen zu ergreifen, um wettbewerbsfähig zu werden.

Was könnte die EU nun machen, da das Regulations-Kind in den Brunnen gefallen ist?

Zunächst einmal wäre es hilfreich, aus unserem Elfenbeinturm herauszukommen. Ethik ist wichtig, aber kein Altar, auf dem wir unsere Wirtschaft opfern sollten. Haben wir das verinnerlicht, braucht der EU AI Act eine Überarbeitung die Unklarheiten auflöst und die Hürden (gerade für Start-ups und KMU) verringert. Sinnvoll wäre zudem, wenn die EU KI-Sandboxes zur Prüfung von innovativen Technologien bereitstellen würde, in denen Unternehmen ihre Entwicklungen testen können, ohne gegen Gesetze zu verstoßen. Zudem muss die EU-Gelder und Mittel zur Verfügung stellen, Zertifizierungsverfahren deutlich zu beschleunigen. Auch eine Zentralisierung dieser Verfahren würde Sinn ergeben. Die entsprechende ISO-Norm (ISO/IEC 42001) gibt es bereits, was fehlt sind offizielle Tools, um die Konformität der eigenen Anwendung zu checken.

Ziel muss es sein, Europa als attraktives Umfeld für den Einsatz und die Entwicklung von KI-Anwendungen zu positionieren. KI wird in den kommenden Jahren über wirtschaftlichen Erfolg nicht nur von Unternehmen, sondern von Staaten avancieren. Wenn wir nicht die gleichen Katastrophen wie aus der Schwerindustrie und der Automobilbranche erleben, sondern wieder vorne mitspielen wollen, dürfen wir uns nicht selbst behindern. Das Gebot der Stunde ist also Bürokratieabbau und Mut zu moderaterer Ethik – so werden wir vielleicht irgendwann doch wieder Exportweltmeister.

Münchner Scale-up Wemolo erreicht Break-even

Mit KI zur Profitabilität: Das 2019 gegründete Münchner Tech-Scale-up Wemolo, der "schrankenlose Parkraumspezialist", verzeichnet nach eigenen Angaben ein durchschnittliches Jahreswachstum von 280 Prozent, ist profitabel und verwaltet mehr als 255.000 Stellplätze in Europa.

Die digitale Transformation von Parkplätzen birgt großes Potenzial – vor allem, wenn sie nicht nur Schranken und Tickets eliminiert, sondern neue Geschäftsmodelle erschließt. In einem europäischen Markt für automatisierte Parksysteme, der auf 50 Milliarden Euro geschätzt wird, hat sich das Münchner Unternehmen Wemolo innerhalb kürzester Zeit in die erste Liga gearbeitet.

Mit einem Jahresumsatz von rund 40 Millionen Euro im Jahr 2024 und einer positiven EBIT-Marge im ersten Quartal 2025 hat das Scale-up trotz des signifikanten Wachstums die Gewinnzone erreicht. Die jährliche Wachstumsrate betrug seit Gründung 2019 durchschnittlich 280 Prozent (CAGR), was Wemolo laut Deloitte zu einem der am schnellsten wachsenden Tech-Unternehmen Deutschlands macht. Nach mehreren Finanzierungsrunden mit insgesamt rund 30 Millionen Euro (650.000 € Pre-Seed, 4,7 Mio. € Seed, 15 Mio. € Series A und zuletzt 10 Mio. € Growth Financing durch Partner wie die CIBC Innovation Banking) untermauert Wemolo damit die Attraktivität digitaler Parklösungen als Wachstumsbranche.

“Wir haben unsere Skalierungsphase genutzt, um parallel die Entwicklung unserer Technologie zu beschleunigen und rasch Marktanteile in fünf europäischen Ländern zu gewinnen”, sagt Wemolo-Mitgründer und CEO Dr. Yukio Iwamoto. Zu den Investor*innen zählen neben den strategischen Partnern Armira Growth und henQ auch die Flix Founders (Gründerteam des Mobilitätsanbieters Flix), wobei Jochen Engert dem Unternehmen als Beirat zur Seite steht.

"Dass sich Wemolo nach vergleichsweise kurzer Zeit ins Plus gearbeitet hat, ist das Ergebnis unseres kapitaleffizienten Wachstumskurses - mit deutlich weniger Investitionskapital als bei vergleichbaren Tech-Unternehmen. Unser KI-basiertes System liefert für Immobilieneigentümer, Asset-Manager, Einzelhandel und Kommunen nicht nur digitale Parklösungen, sondern auch wertvolle Daten für strategische Geschäftsentscheidungen", so Jochen Engert.

Vom Campus-Projekt zur Digitalplattform

Ursprünglich im Juli 2019 aus einem Projekt der UnternehmerTUM entstanden, betreibt Wemolo heute KI-basierte Kamerasysteme zur Kennzeichenerfassung und Abrechnung an über 3.000 Standorten in fünf Ländern. Täglich erfasst das Unternehmen mehr als zwei Millionen Parkvorgänge digital und wickelt diese ab. Das Unternehmen beschäftigt aktuell rund 250 Mitarbeitende und verwaltet insgesamt 255.000 Stellplätze – von Supermärkten und zentralen Parkhäusern über Krankenhäuser bis hin zu Freizeitanlagen wie Skigebieten und Badeseen.

"Unsere Profitabilität basiert nicht auf Kostendiät, sondern auf nachhaltiger Skalierung: mehr Volumen bei stabilen Fixkosten, bessere Flächenauslastung und immer wertvollere Daten-Assets für unsere Kunden", erklärt CEO und Mitgründer Jakob Bodenmüller. "Dank unserer KI-basierten Plattform können wir sehr schnell auf Marktanforderungen reagieren und unsere Lösung kontinuierlich weiterentwickeln."

Geschäftsmodell mit messbarem Mehrwert für Betreiber*innen

Das Kernprinzip: Mithilfe KI-basierter Computer Vision werden Ein- und Ausfahrten erfasst, was Schranken, Tickets, Parkscheiben und vor allem kostenintensives Personal vor Ort überflüssig macht. Wemolo bietet verschiedene Module für die Parkraumdigitalisierung - von der Überwachung kostenfreier Flächen bis zu volldigitalen Bezahlsystemen, die auf die jeweiligen Kund*innenanforderungen angepasst werden können. Die intelligente Plattform ermöglicht nicht nur die effiziente Bewirtschaftung von Parkraum und reibungslose Nutzer*innenerlebnisse, sondern liefert auch wertvolle Daten für optimierte Geschäftsentscheidungen.

“Wir liefern anonymisierte, aber hochgradig aussagekräftige Daten zur Flächennutzung”, erklärt CPTO und Mitgründer Bastian Pieper. “Ein Beispiel: Durch die effektive Vermeidung von Fremdparkern konnte einer unserer Lebensmittelkunden die Verfügbarkeit seiner Kundenparkplätze deutlich erhöhen. Das Ergebnis: Ein messbarer Anstieg des Filialumsatzes, der bei typischen Margen des Lebensmitteleinzelhandels eine Gewinnsteigerung im mittleren fünfstelligen Bereich pro Jahr ermöglicht.”

“Bei gewerblichen Immobilienprojekten ermöglichen unsere präzisen Nutzungsdaten eine optimierte Stellplatzdimensionierung, was für Investoren zu signifikanten Einsparungen bei Tiefgaragen-Investitionen führt und die Gesamtrendite der Immobilie verbessert”, ergänzt Pieper.

Wachstumsfinanzierung strategisch eingesetzt

Den Break-even wertet das Management als Bestätigung des Geschäftsmodells, aber auch als Signal des wachsenden Bedarfs am Markt. “Wir merken, dass immer mehr Unternehmen und Immobilieneigentümer aktiv nach einer unkomplizierten, verlässlichen Lösung suchen, um ihre Parkflächen zu digitalisieren – und zugleich relevante Daten zu erheben. Das Thema steht weiterhin am Anfang. Wir wollen Wemolo zum stärksten Anbieter auf dem Feld der smarten Parklösungen ausbauen”, sagt Iwamoto.

“Wir verfolgen bei unserer Technologieentwicklung einen hybriden Ansatz”, erklärt Pieper. “Die entscheidenden Komponenten – unsere custom-trainierte KI und die zentrale Softwareplattform – entwickeln wir komplett inhouse, während wir Spezialkomponenten wie Bezahlautomaten nach unserem Design in Deutschland fertigen lassen.”

“Wir setzen auf robuste Industrial-Grade-Hardware, auf der unsere speziell trainierte KI läuft, um jedes Fahrzeug unter allen Wetterbedingungen zuverlässig zu erfassen. Diese Kombination aus eigener Software-Expertise und gezielter Hardware-Integration ermöglicht uns viel schnellere Innovationszyklen als bei traditionellen Parksystembetreibern oder reinen Software-Anbietern”, führt Pieper fort. “Ähnlich wie Tech-Vorreiter aus dem Silicon Valley bringen wir neue Features und KI-Optimierungen in Wochen statt Quartalen zur Marktreife.”

Expansion und Herausforderungen des Wachstums

Wemolo ist bereits in fünf europäischen Ländern aktiv, darunter Deutschland, Österreich, Schweiz, Polen und Italien. Für 2025 plant das Unternehmen, seine digitalen Bezahllösungen in diesen und weiteren europäischen Märkten auszubauen. Dabei setzt das Scale-up auf ein Netzwerk aus strategischen Kooperationen mit Lebensmitteleinzelhändlern, Immobilienentwicklern und kommunalen Einrichtungen.

“Die klassischen Schrankenparksysteme sind in vielen Regionen noch Standard, aber der Markt wandelt sich rapide”, sagt Bodenmüller. “Unser digitales Konzept steigert den Verbraucherkomfort, die Wirtschaftlichkeit von Immobilien und erfüllt ESG-Anforderungen.”

Die größten Herausforderungen beim weiteren Wachstum sieht das Management vor allem in der unterschiedlichen Regulierung zur Kameraüberwachung in den europäischen Ländern sowie in der Akzeptanz schrankenloser Systeme bei traditionell orientierten Betreibern. “Mit unserer DSGVO-konformen Technologie und messbaren Kostenvorteilen durch den Wegfall wartungsintensiver Schranken und Ticketsysteme überzeugen wir den Markt”, betont Pieper.

Ambitionierte Ziele in einem wachsenden Markt

Vor dem Hintergrund der Profitabilität plant Wemolo nun den nächsten Wachstumsschritt. “Wir sind im digitalen Parksegment bereits Marktführer in Europa und wollen zum absolut stärksten Provider werden”, sagt Iwamoto. “Dass wir jetzt bereits profitabel sind, verschafft uns die nötige Unabhängigkeit, um in Technologie, Teams und Expansion zu investieren, ohne dabei von externem Kapital abhängig zu sein." Branchenexperten prognostizieren für den europäischen Markt digitaler Parksysteme ein anhaltend starkes Wachstum. Denn bislang gelten weniger als 25 Prozent des auf rund 50 Milliarden Euro geschätzten Gesamtmarktes als technologisch modernisiert – etwa durch kamerabasierte Zugangssysteme, automatisierte Bezahlprozesse oder intelligente Flächenanalysen.