44 likes

Die Luminovo GmbH, von Sebastian Schaal und Timon Ruban in München 2017 gegründet, unterstützt Unternehmen dabei, Geschäftsprobleme mit Hilfe von Deep Learning (eine Spezialform von KI) zu lösen. So bekommen Maschinen die Fähigkeit, auch aus unstrukturierten Datensätzen wie Bildern und Text Muster zu erkennen und damit selbständig Entscheidungen zu treffen. Mehr dazu im Interview mit Co-Gründer Sebastian.

Das Luminovo-Führungstrio (v.l.n.re.): Sebastian Schuon, Sebastian Schaal und Timon Ruban

Wann, wie und wo habt ihr Gründer euch kennengelernt?

Wir haben uns 2015 im Zuge unseres Masterstudiums in Stanford kennengelernt. Timon hat sich sehr schnell auf Deep Learning spezialisiert, ich war mit einem Mix aus klassischem Machine Learning und Management Science unterwegs. Dort haben wir sogar ein halbes Jahr zusammen gewohnt. Dabei wurde uns schnell klar, dass wir uns nicht nur persönlich super verstehen, sondern auch Nächte lang begeistert über die neuesten Machine Learning Publikationen diskutieren können.

Und wie ist die Idee zu Luminovo entstanden?

Ein Großteil unserer Kommilitonen aus Stanford ist dem Silicon Valley treu geblieben und hat bei einem der großen Tech-Konzerne angeheuert. Wir fanden es jedoch noch motivierender, mit unserem frisch erlangten Wissen den Weg zurück nach Deutschland zu suchen, um hier im Bereich KI Mehrwert zu stiften und Deutschland in diesem Bereich auch voranzubringen. Vor allem in der Breite des Angebots hinkt Deutschland hier dem Valley noch ein wenig hinterher - unser Ziel war es, dies zu ändern.

Bei unseren initialen Gesprächen mit verschiedensten Unternehmen haben wir viele Bereiche entdeckt, in denen KI ein starkes Wertschöpfungspotenzial offenbart, welches sie aktuell alleine nicht nutzen können. Hier wollten wir unseren Beitrag leisten, um KI Systeme zu etablieren, die den Menschen unterstützen, nicht ersetzen sollen.

Was waren die wichtigsten Schritte bis zur Gründung der Luminovo GmbH?

Der erste Schritt auf dem Weg zur Gründung von Luminovo war die Entscheidung, aus Stanford zurück nach Deutschland zu gehen. Dadurch war für uns relativ schnell klar, das wir hier etwas eigenes aufbauen wollen und eine großen Mission verfolgen.

Ein weiterer wichtiger Schritt waren die vielen Interviews und Gespräche, welche wir mit Unternehmensvertretern geführt haben. Dort haben wir diverse Fragestellungen und Probleme im Zusammenhang mit KI identifiziert, welche uns dazu veranlasst haben, Luminovo initial als eine Softwareentwicklungsboutique mit Fokus auf Deep Learning zu starten.

Der letzte und wichtigste Schritt war dann natürlich, dass Timon und ich uns entschieden haben, die Gründung gemeinsam durchzuziehen. Das ist nicht nur eine Jobentscheidung, sondern ein gegenseitiges, langfristiges Versprechen.

Euer Business dreht sich rund um Künstliche Intelligenz. Wo sind deiner Meinung nach die größten Chancen für KI-Technologien?

KI ist eine Technologie, die nicht auf bestimmte Branchen oder Anwendungsfälle beschränkt ist. Praktisch überall wo große Mengen an Daten entstehen, besteht Potenzial für die Verwendung von KI. Besonders spannend finde ich den Einsatz der Technologie bei stark repetitiven Prozessen, für die Menschen eingesetzt werden, da komplexere Daten wie Bilder und Texte lange Zeit nicht automatisiert auswertbar waren. Neue KI-Technologien haben hier großes Potenzial, und können etwa für Aufgaben wie Inhaltsüberprüfung, oder Datenextraktion aus Dokumenten eingesetzt werden, während sich der Mensch auf herausfordernde, abwechslungsreiche Projekte konzentrieren kann.

Und was entgegnest du den Bedenkenträgern, die KI zunächst als „menschenersetzende Technologie“ sehen?

Wir glauben an KI als eine Technologie, die menschliche Intelligenz unterstützt und nicht ersetzt! Aus diesem Grund widmen wir uns der Entwicklung einer Hybrid Machine Learning Plattform, welche es Mensch und Maschine erlaubt, Probleme gemeinsam und somit effizienter zu lösen.

Technische Innovationen prägen natürlich den Arbeitsmarkt, allerdings zu Gunsten des Menschen, und so wird auch die breitere Aufnahme von KI Anpassungsfähigkeit erfordern. Die Übernahme von repetitiven Handlungen macht Raum für andere, womöglich spannendere Aufgaben, in denen Mitarbeiter ihr Potenzial besser ausschöpfen können.

Was sind somit die größten Herausforderungen in Zusammenhang mit KI?

Viele aktuelle Erfolge im Bereich KI basieren auf “überwachtem Machine Learning”, welches versucht, Zusammenhänge zwischen rohen Datenpunkten und der Aussage, die ich ihnen entlocken will, herzustellen, sodass möglichst akkurate Voraussagen für neue Datenpunkte getroffen werden können. Idealerweise habe ich in meiner Datenbank genau diese Daten und eine Indikation der Aussage abgespeichert, oder kann die zugehörigen Aussagen rekonstruieren.

Beispielsweise kann man eine Maschine anlernen, E-Mails in Postkörbe zu sortieren. Um das durch ein Lernverfahren zu machen, bräuchte man aber zu den alten E-Mails die Information, in welchem Postkorb diese einzuordnen sind – also die Verbindung von Datenpunkt zu Vorhersage. Oft sind jedoch genau diese verknüpften Informationen nicht vorhanden, was einen zwingt, auf andere Methoden zurückzugreifen, oder die Informationen mit viel Aufwand nachträglich hinzuzufügen.

Was das Ganze noch einmal komplizierter macht, ist der Fakt, dass man KI-Systeme teils in Bestandsprozesse einbauen muss, was nicht immer trivial ist. Teilweise müssen Bearbeitungsschritte angepasst werden, was in den Unternehmen einen Change Management Prozess lostritt.

Zudem besteht in der Öffentlichkeit noch eine verzerrte Wahrnehmung von den Fähigkeiten und empfundenen Gefahren von KI. KI wird den Menschen nicht ersetzen, jedoch auf lange Sicht zu einer Veränderung im Jobmarkt führen. Daher ist es nun wichtig, dass wir unsere Bildungssysteme auf diesen Wandel einstellen, um die Anpassung an diese innovativen neuen Technologien so reibungslos wie möglich zu gestalten, und ihr volles Potenzial erfolgreich zu nutzen.

Vor diesem komplexen Hintergrund: Was genau leistet ihr mit Luminovo?

Wir unterstützen unsere Kunden auf der kompletten Reise, vom grundsätzlichen Verstehen von Künstlicher Intelligenz und klassischen Anwendungsfällen, übers gemeinsame Entwickeln neuer, angepasster Use-Cases, bis hin zur Umsetzung und Integration von zuverlässigen Deep Learning Systemen in ihren Betriebssystemen.

Oft starten wir mit einem Beratungsprojekt, um dann später für den richtigen Anwendungsfall eine Softwareapplikation zu entwickeln. Bei den meisten Fällen implementieren wir dabei unsere Hybrid-Plattform, damit wir die nachhaltige Weiterentwicklung der KI-Modelle sicherstellen können. Was wir damit anbieten ist eine langfristige Lösung für Unternehmen, und nicht nur ein einmaliges, statisches Produkt.

Gerade repetitive Aufgaben lassen sich damit Schritt für Schritt automatisieren, ohne dass ein Data Scientist ans Werk muss. Die hybride Bearbeitung von Aufgaben ermöglicht höhere Qualität zu geringeren Kosten, in dem sich der Mensch auf die schwierigsten Fälle konzentriert und kontinuierlich verbessernde Deep Learning Modelle den Rest übernehmen. KI unterstützt somit als eine Art Schlüsseltechnologie die Unternehmen dabei, ihre Prozesse effizienter zu gestalten, indem die Stärken von KI und menschlicher Intelligenz voll ausgereizt werden.

Wo kommt eure Technologie zum Einsatz?

Ein gutes Beispiel für den Einsatz unserer Technologie ist unser Bildverarbeitungsprojekt bei ProSiebenSat1. Der Kunde hat sicherzustellen, dass Medieninhalte, die nicht jugendfrei sind, nur zu bestimmten Zeiten gesendet oder potenziell zensiert werden. Daher widmen sich aktuell Menschen manuell der sehr zeitaufwändigen und repetitiven Aufgabe, Inhalte zu sichten und Szenen die Nacktheit, Gewalt, verfassungsfeindliche Symbole oder ähnliches zeigen, zu markieren. Dies kann aufgrund der schieren Menge nur in Stichproben durchgeführt werden, mit dem Risiko von hohen Geldstrafen bei Nichterkennung.

Wir haben hierfür ein KI-Modell trainiert, welches die Medieninhalte automatisch auf Nacktheit überprüft und kritische Szenen markiert. Unser erstes Modell, welches nur mit Inhalten aus dem Internet angelernt wurde, hat auf einem sehr hohen Service-Level bereits eine Automatisierung von 30 Prozent erreicht – und das bei einer Projektlaufzeit von nur zwei Monaten.

In einem zweiten Schritt haben wir dann begonnen, das initiale Modell in unsere Hybrid Plattform zu integrieren, in der wir Mensch und Maschine zusammenbringen. Uns gefiel der Gedanke, die jeweiligen Fähigkeiten zu kombinieren, um somit ein rasch einsetzbares, kontinuierlich verbesserndes Produkt als Langzeitlösung anzubieten, das zunehmend Mitarbeitern repetitive Arbeit abnimmt. In kritischen Fällen trifft der Mensch die Entscheidung; das Modell lernt von diesen “edge cases”, und wird somit immer autonomer. Somit kann die Hybrid Plattform einen großen Effizienzzuwachs bieten, ohne gleichzeitig die Qualität des Ergebnisses zu mindern.

Wie sieht der Markt rund ums Deep Learning aus und wie unterscheidet ihr euch vom Wettbewerb?

Der KI Markt, welcher stark durch die Erfolge von Deep Learning getrieben ist, ist auch in Deutschland stark wachsend. Es gibt sowohl Unternehmen, die sich stark spezialisiert auf eine Industrie beschränken, als auch Anbieter mit breiter gefächertem Angebot, bei denen der Fokus auf Industrie übergreifender Prozessautomatisierung liegt; zu der letzteren Kategorie gehören auch wir.

Eine unserer größten Stärken ist unser außergewöhnliches Team aus Top-Engineers und Business-Talenten mit exzellentem akademischen Hintergrund als auch Arbeitserfahrung bei namhaften Arbeitgebern. Dazu haben wir durch unsere Arbeit an über 20 erfolgreichen Projekten Erfahrungen in den verschiedensten Branchen gesammelt. Wir verstehen es daher wie wenig andere, Deep Learning Projekte in Erfolgsgeschichten zu verwandeln.

Dazu kommt natürlich unsere Hybrid Plattform, für die es keine äquivalentes Konkurrenzprodukt gibt. Neben den bereits beschriebenen Vorteilen wie der nachhaltigen Automatisierung von Workflows unterscheiden wir uns in puncto Daten und IP stark von vielen anderen Spielern im Markt. Durch unsere Plattform wird die Intelligenz der Mitarbeiter und die Informationen in den Daten einer Firmen in einem Deep Learning Modell vereint. Das hier erzeugte Modell gehört dem Kunden, womit er nicht nur an der eigentlichen Automatisierung profitiert, sondern gleichzeitig eine eigene IP aufbaut.

Was sind deine unternehmerischen Pläne? Ich habe gelesen, dass ihr in fünf Jahren eine Unicorn-Bewertung anstrebt.

Ich glaube, fast jedes Start-up träumt insgeheim von einer Unicorn-Bewertung. Für mich ist dies nur ein symbolischer Meilenstein, der unsere unternehmerischen Ambitionen untermalt. Wir sind gerade nicht daran interessiert, unseren eigenen, kurzfristigen Profit zu maximieren, sondern reinvestieren fast alles in das Wachstum der Firma. Wir sind damals nach Deutschland zurückgekommen, um das Potenzial von Deep Learning möglichst vielen Menschen zu nutze machen zu können. Ich glaube, dass wir mit einer größeren Firma noch mehr Leute erreichen können.

Ein weiter persönlicher Treiber ist sicherlich auch, dass wir gerade stark von der steilen Lernkurve innerhalb der Firma motiviert sind. Ein wachsendes Unternehmen stellt einen immer vor neue Herausforderungen und zwingt einen, daran zu wachsen. Für business-as-usual habe ich noch zu viel Energie und zu große Ziele.

Und last but not least: Was rätst du anderen Gründern aus eigener Erfahrung?

Da ich noch recht am Anfang meiner Gründerkarriere stehe, bin ich wahrscheinlich noch nicht in der Position, große Ratschläge zu geben. Daher von mir vielleicht nur ein Gedanke, der mich motiviert, Gründer zu bleiben.

Für mich fühlt sich die Arbeit gerade nicht wie Arbeit ein, sondern wie mein Lieblingshobby. Ich gehe jeden Tag gern ins Büro und freue mich auf die Herausforderungen und die Leute. Ich glaube, dass diese positive Einstellung essentiell ist, um langfristig bei der Stange zu bleiben. Wenn es Punkte gibt, die dieses Gefühl trüben, seien es Konflikte mit Mitarbeitern, Kunden oder andere schwierige Konstellation, dann sollte man schleunigst daran arbeiten. Denn das Momentum und die Energie im Team ist der Treibstoff den man braucht, um der Statistik, die prinzipiell gegen einen steht, ein Schnippchen zu schlagen.

Hier geht’s zu Luminovo


Das Interview führte Hans Luthardt

Diese Artikel könnten Sie auch interessieren: