Aktuelle Events
Geschäftsideen Web-Plattformen: Vereine im Fokus
Plattform für Vereinssuchende
Vereinscheck.de entstand aufgrund eigener Erfahrungen: nämlich der mit der erfolglosen Sportvereinssuche. Deshalb möchten die Gründer mit ihrer Geschäftsidee eine Plattform für Sportvereine, Mitglieder und Vereinssuchende etablieren, von der alle Parteien profitieren können.
Mit dieser Geschäftsidee bekommen Sportvereine eine Plattform zur Präsentation Ihres Vereins. Das dient der besseren Auffindbarkeit, dem Austausch mit anderen Vereinen, der Mitgliedergewinnung und der Möglichkeit, die Web-Präsenz durch die eigenen Mitglieder verwalten zu lassen. Über 30 sportvereinsspezifische Bewertungspunkte bieten bei der Geschäftsidee höchste Transparenz für den Vereinssuchenden.
Diese Artikel könnten Sie auch interessieren:
EU AI Act: Bürokratisch, unpraktisch, schlecht
Ein Kommentar von Dominik Mohilo, Redakteur und IT-Experte bei der auf High-Tech spezialisierten Münchner PR- und Kommunikationsagentur PR-COM.

Die Luft auf dem hohen moralischen Ross, auf dem Deutschland vorreitet und Europa folgt, wird dünner und dünner. Ja, der EU AI Act ist eine Errungenschaft. Und ja, ethische Grundsätze sollten wir keinesfalls missachten, wenn es darum geht, künstliche Intelligenz zu entwickeln, zu betreiben und zu verwenden. Fair enough. Doch darf’s vielleicht trotzdem ein bisschen weniger Bürokratie sein, liebe EU? Artikel 5 des KI-Regelwerks der EU besagt beispielsweise, dass die folgende KI-Praktik verboten ist: „Das Inverkehrbringen, die Inbetriebnahme oder die Verwendung eines KI-Systems, das unterschwellige Techniken, die sich dem Bewusstsein einer Person entziehen, oder absichtlich manipulative oder täuschende Techniken einsetzt, mit dem Ziel oder der Wirkung, das Verhalten einer Person oder einer Personengruppe dadurch wesentlich zu beeinflussen, dass ihre Fähigkeit, eine sachkundige Entscheidung zu treffen, spürbar beeinträchtigt wird, wodurch sie veranlasst wird, eine Entscheidung zu treffen, die sie andernfalls nicht getroffen hätte, und zwar in einer Weise, die dieser Person, einer anderen Person oder einer Personengruppe einen erheblichen Schaden zufügt oder mit hinreichender Wahrscheinlichkeit zufügen wird.“ (Kapitel II, Artikel 5, 1a)
Sperrig und überregulatorisch
Verstanden worum es geht? Ich auch nicht. Ähnlich sperrig und überregulatorisch ist der Abschnitt über sogenannte Hochrisiko-KI-Systeme formuliert. Gemeint sind damit jene KI-Anwendungen, die etwa im Gesundheitswesen, in der Bildung oder kritischen Infrastrukturen eingesetzt werden sollen – also genau den Bereichen, wo sie dringend benötigte Verbesserungen und Entlastungen für die in diesen Bereichen arbeitenden Menschen mit sich bringen könnten. Was genau mit Hochrisiko gemeint ist, ist allerdings wieder nicht glasklar definiert: was hat denn nun „erheblichen Einfluss auf Grundrechte“? Diese Unsicherheit im Hinblick auf die rechtliche Grundlage ist oft Grund genug für potenzielle Investoren, sich nach anderen Gelegenheiten umzusehen. Wer will schon exorbitante Kosten für juristische Verfahren locker machen und Zertifizierungen noch und nöcher erwerben, nur um am Ende dann möglicherweise doch gegen geltende Gesetze zu verstoßen? Eben.
Start-ups sind von Hürden überproportional heftig betroffen
Gerade kleine und mittelständische Unternehmen (KMU) sowie Start-ups sind von diesen Hürden überproportional heftig betroffen, sodass viele gute und wegweisende Ideen nicht oder zumindest nicht hier in der EU auf den Weg gebracht werden. Wirtschaftlich ist das fatal – das auch noch in diesen schwierigen Zeiten. In diesen Zeiten wäre es eigentlich wichtig, die Wirtschaft voranzutreiben, insbesondere in zukunftsweisenden Bereichen wie dem KI-Markt. Eine gute Möglichkeit wäre, die Technologie hierzulande staatlich zu subventionieren, wie das in den USA und in China bereits in großem Stil passiert. Stattdessen werfen wir uns selbst Stöcke in die Speichen unserer Räder – unter anderem mit Regulierung und ethischen Grundsätzen, sondern insbesondere durch schwammige Gesetzestexte und Undurchsichtigkeit von Compliance-Vorschriften.
Zusammenfassend ist festzustellen, dass die alte Forderung „rebellischer“ (mancher würde sagen: „vernünftiger“) Politiker, Bürokratie abzubauen, selten so eine hohe Relevanz wie aktuell hatte. Europa geht es wirtschaftlich schlecht, gleichzeitig verlassen High-Tech-Unternehmen scharenweise unsere Breitengerade, da das Regulierungskorsett so eng geschnürt ist, dass Innovation keine Luft mehr zum Atmen hat. Es gilt also, Maßnahmen zu ergreifen, um wettbewerbsfähig zu werden.
Was könnte die EU nun machen, da das Regulations-Kind in den Brunnen gefallen ist?
Zunächst einmal wäre es hilfreich, aus unserem Elfenbeinturm herauszukommen. Ethik ist wichtig, aber kein Altar, auf dem wir unsere Wirtschaft opfern sollten. Haben wir das verinnerlicht, braucht der EU AI Act eine Überarbeitung die Unklarheiten auflöst und die Hürden (gerade für Start-ups und KMU) verringert. Sinnvoll wäre zudem, wenn die EU KI-Sandboxes zur Prüfung von innovativen Technologien bereitstellen würde, in denen Unternehmen ihre Entwicklungen testen können, ohne gegen Gesetze zu verstoßen. Zudem muss die EU-Gelder und Mittel zur Verfügung stellen, Zertifizierungsverfahren deutlich zu beschleunigen. Auch eine Zentralisierung dieser Verfahren würde Sinn ergeben. Die entsprechende ISO-Norm (ISO/IEC 42001) gibt es bereits, was fehlt sind offizielle Tools, um die Konformität der eigenen Anwendung zu checken.
Ziel muss es sein, Europa als attraktives Umfeld für den Einsatz und die Entwicklung von KI-Anwendungen zu positionieren. KI wird in den kommenden Jahren über wirtschaftlichen Erfolg nicht nur von Unternehmen, sondern von Staaten avancieren. Wenn wir nicht die gleichen Katastrophen wie aus der Schwerindustrie und der Automobilbranche erleben, sondern wieder vorne mitspielen wollen, dürfen wir uns nicht selbst behindern. Das Gebot der Stunde ist also Bürokratieabbau und Mut zu moderaterer Ethik – so werden wir vielleicht irgendwann doch wieder Exportweltmeister.
Podcast: Die Peter Thiel Story
Tipp der Redaktion: Ab 28. Mai 2025 in der Deutschlandfunk App verfügbar – der sechsteilige Podcast „Die Peter Thiel Story“.

Peter Thiel ist mit PayPal und Facebook reich geworden und hat die Gedankenwelt des Silicon Valleys wie kaum ein zweiter geprägt. Der Tech-Milliardär ist ein Architekt des neuen rechten Amerikas, ist Strippenzieher und bestens vernetzt im radikalkonservativen und -libertären Amerika.
Mit dem sechsteiligen Podcast „Die Peter Thiel Story“ beleuchtet der Deutschlandfunk jetzt die Hintergründe des geheimnisvollen Investors, der trotz seines enormen Einflusses vielen kaum bekannt ist.
Host und Autor Fritz Espenlaub zeichnet nach, wie ein in Deutschland geborener Philosophiestudent im Silicon Valley aufstieg. Er zeigt das intellektuelle Fundament – geprägt von Carl Schmitt, René Girard und Ayn Rand – sowie das Netzwerk, das heute Schlüsselpositionen in Wirtschaft und Politik besetzt.
Die Serie dokumentiert dabei auch Thiels Visionen: Die Errichtung schwimmender libertärer Städte, die Entwicklung fortschrittlicher Überwachungstechnologie und seine Suche nach dem ewigen Leben.
„Die Peter Thiel Story“ bietet Einblicke in das Leben des Mannes, der ewig leben und alles verändern will.
Die Peter Thiel Story
Sechsteilige Erzählserie jeweils ca. 30 Minuten
ab 28. Mai 2025 in der Deutschlandfunk App
KI-Übergangsphase: Fluch und Segen
Zwischen Wundermaschine und Blackbox – Warum wir gerade in einer KI-Übergangsphase leben und was das generell für das Marketing bedeutet.

Künstliche Intelligenz (KI) verändert gerade in rasantem Tempo unsere Welt. Sie automatisiert Prozesse, entlastet Teams, liefert Analysen in Echtzeit und ermöglicht einen bisher nicht gekannten Grad an Personalisierung. Wer heute im Marketing arbeitet, kommt an KI nicht mehr vorbei – sei es beim Texten von Werbebotschaften, beim Targeting, in der Bildgenerierung oder der Erfolgsmessung.
KI verspricht Effizienz, Präzision und neue kreative Möglichkeiten. Doch die Euphorie wird zunehmend begleitet von einer neuen, ernüchternden Erfahrung: Künstliche Intelligenz kann auch Nutzererlebnisse verschlechtern, Prozesse intransparent machen – oder gar ganze Geschäftsmodelle gefährden. Der technologische Fortschritt ist zweifellos da, doch gesellschaftlich, wirtschaftlich und kulturell befinden wir uns noch mitten in einer Übergangsphase. Und das birgt Risiken – nicht nur für Plattformen, sondern auch für Unternehmen, die sie nutzen.
Beispiel Pinterest: Wenn der Algorithmus plötzlich entscheidet
Ein aktuelles Beispiel liefert Pinterest: Die visuelle Such- und Inspirationsplattform setzt verstärkt auf KI, um Inhalte effizient zu kategorisieren, Hassrede zu erkennen, urheberrechtlich geschützte Werke zu markieren oder Spam zu unterbinden. Was auf dem Papier sinnvoll und zukunftsgerichtet klingt – ein moderner „Content Safety Stack“ mit automatisierter Moderation –, hat in der Praxis zahlreiche Creator*innen und Unternehmen auf dem falschen Fuß erwischt.
Accounts wurden gelöscht, Pins blockiert oder ganze Seiten unsichtbar gemacht – oft ohne erkennbare Begründung. Was ist passiert? Die KI-Modelle bei Pinterest wurden darauf trainiert, problematische Inhalte automatisiert zu erkennen und Plattformregeln durchzusetzen. Doch wie in vielen KI-Systemen liegt der Teufel im Detail: Die Modelle sind noch nicht präzise genug, um zwischen legitimen und grenzwertigen Inhalten zuverlässig zu unterscheiden – vor allem in einem visuellen Umfeld wie Pinterest. Besonders problematisch wird es, wenn Nutzer*innen keine Möglichkeit haben, die Entscheidungen nachzuvollziehen oder effektiv dagegen vorzugehen.
Für Unternehmen, die Pinterest als Marketingplattform nutzen, ist das ein unkalkulierbares Risiko. Wer auf Sichtbarkeit und Reichweite angewiesen ist, kann es sich kaum leisten, dass automatisierte Systeme ohne Vorwarnung Inhalte sperren. Der Vertrauensschaden ist enorm.
Im Spannungsfeld der KI-Nutzung
Dieser Fall steht exemplarisch für ein zentrales Spannungsfeld der KI-Nutzung: Auf der einen Seite die große Hoffnung auf Automatisierung, Kostenersparnis und Kontrolle – auf der anderen Seite die Realität einer noch nicht vollständig ausgereiften Technologie, die häufig wie eine Blackbox agiert. Für Nutzer*innen bedeutet das: weniger Transparenz, weniger Kontrolle, mehr Frustration. Ähnliche Phänomene beobachten wir auch bei großen Social-Media-Plattformen wie Meta oder TikTok. Auch hier sorgen KI-basierte Moderationssysteme regelmäßig für Unmut – sei es durch falsch erkannte Verstöße, Einschränkungen der Reichweite oder Verzögerungen im Kundenservice, der durch automatisierte Antworten ersetzt wurde. Dabei geht es nicht um generelle Ablehnung von KI – sondern um die Art und Weise, wie sie implementiert und kommuniziert wird.
Gute KI ist unsichtbar – weil sie funktioniert
Das Marketing der Zukunft soll nicht nur effizient, sondern muss auch verantwortungsvoll sein. Es wird davon abhängen, wie gut Unternehmen die Balance finden zwischen Automatisierung und menschlicher Kontrolle. Zwischen der Verlockung, Prozesse zu beschleunigen, und der Notwendigkeit, Vertrauen zu erhalten. Gute KI ist unsichtbar – weil sie funktioniert. Sie analysiert, aber entscheidet nicht alleine. Zukunftsfähiges Marketing ist also geprägt von einer Kombination aus technologischer Intelligenz und menschlicher Relevanz. KI, Automatisierung und Datenanalyse ermöglichen eine bisher unerreichte Präzision: Zielgruppen werden individueller angesprochen, Inhalte in Echtzeit ausgespielt und Customer Journeys automatisiert optimiert. Personalisierung ist dabei kein Zusatz mehr, sondern Standard.
Gleichzeitig verändern sich die Erwartungen der Konsument*innen: Sie wollen authentische Marken, klare Haltung, Datenschutz und echte Mehrwerte – keine leeren Werbeversprechen. Deshalb wird Marketing künftig nicht nur effizient, sondern auch ethisch und wertebasiert sein müssen. Vertrauen wird zur zentralen Währung. Auch deshalb ist das Marketing der Zukunft vor allem Inhouse zu verorten. Agenturen befinden sich auf dem absteigenden Ast – sie sind teuer und liefern nicht die Ergebnisse, die Unternehmen und Marken wirklich benötigen. Zu dieser Entwicklung gehört auch, dass Inhouse-Marketing-Verantwortliche umfassend geschult werden müssen, damit sich der Einsatz von KI maximal einfach gestaltet und gleichzeitig äußerst produktiv ist.
KI ist weder Fluch noch Segen – sie ist ein mächtiges Werkzeug, das mit Bedacht eingesetzt werden muss. Wer KI einfach laufen lässt, riskiert Vertrauensverluste. Wer sie aber erklärt, einbettet und begleitet, kann gewinnen – an Effizienz, Qualität und Glaubwürdigkeit. Das Marketing der Zukunft ist nicht einfach KI-gesteuert. Es ist menschenzentriert – mit KI als starkem, aber verantwortungsbewusstem Assistenten.
Der Autor Bastian Sens gründete Sensational Marketing im Jahr 2010 – zunächst als klassische Onlinemarketing-Agentur. Im Laufe der Jahre kristallisierte sich jedoch ein alternativer Weg heraus, sodass sich das Unternehmen zu einer Onlinemarketing-Academy wandelte.
charles: DSGVO-konformer KI-Agent für WhatsApp gelauncht
Noch bevor Tech-Riesen wie Meta ihre Angebote auf den Markt bringen, bietet das Berliner Start-up charles erprobte, skalierbare und regulatorisch abgesicherte KI-Agent-Lösungen.

Während Meta LLM-gestützte Agenten auf WhatsApp für Verbraucher*innen einführt, will das Berliner Start-up charles Marken einen entscheidenden Vorsprung verschaffen. Mit der Einführung seines AI Agent Squad will sich charles als führender europäischer Anbieter markensicherer, hochspezialisierter KI-Agenten auf WhatsApp mit integrierter Sicherheit und Compliance etablieren – und damit den weltweit meistgenutzten Messenger in einen echten Handels- und Servicekanal transformieren.
Die KI-Agenten von charles nutzen WhatsApps Interaktivität, proprietäres Markenwissen und die Leistungsfähigkeit moderner KI, um Kund*innen direkt in WhatsApp anzusprechen - kontextbezogen, personalisiert und autonom. Von intelligenten Produktempfehlungen bis zu Support soll die Interaktion Kund*innen ein äußerst persönliches Gefühl vermitteln.
„Unsere KI-Agenten übernehmen echte Aufgaben wie Produktempfehlungen, Beantwortung von Fragen oder Reklamationsbearbeitung. Sie agieren wie echte Mitarbeiter: Man weist ihnen eine echte Aufgabe zu und gibt alle Mittel an die Hand, die sie benötigen, um diese Aufgabe zu erfüllen – sei es durch Zugriff auf Daten oder klare Vorgaben geben“, sagt Andreas Tussing, CEO von charles. “So ermöglichen wir Gespräche, die heute aufgrund von Ressourcen noch nicht möglich sind, und bieten gleichzeitig ein personalisiertes und innovatives Kundenerlebnis.“
WhatsApps native Interaktivität trifft auf markensichere KI
Mit den Berliner KI-Agenten soll WhatsApp zur leistungsstärksten Plattform für Kundenbeziehungen werden - und die Herausforderungen von Marken in Bezug auf Konversion und Kundenbindung lösen, ohne Authentizitätsverlust. Durch die Kombination der hohen Engagement-Raten von WhatsApp mit KI-gesteuerter Automatisierung und Personalisierung sollen Marken gleichzeitig Kundenzufriedenheit und Umsätze steigern sowie Betriebskosten senken können.
Fokus auf markenspezifisches Know-how, Security und Compliance
Der AI Agent Squad nutzt modernste KI-Technologien und verbindet generative Sprachmodelle mit markenspezifischen Datenquellen wie Produktkatalogen, CRM-Systemen und Kundenpräferenzen. Integrierte Schutzvorkehrungen und Tonalitätskontrollen gewährleisten Markensicherheit, während alle Daten auf europäischen Servern verarbeitet werden, ohne externe API-Aufrufe oder Datenextraktion - DSGVO-konform und markensicher.
What's next? Der Wettlauf um eigene Messaging-KI
Mit der Einführung von Memory durch OpenAI und Meta‘s Llama-basierte Agenten auf WhatsApp, heizt sich der Markt für personalisierte, generative Kundenkommunikation auf. Der EU AI Act und das aktuelle Handelsklima erhöhen die Dringlichkeit – Lösungen mit starker Data Governance und Auditierbarkeit sind daher unerlässlich. Charles will sich vor diesem Hintergrund als skalierbare, europäische Alternative zu generischen LLM-Lösungen positionieren – in Europa entwickelt und gehostet.
Robotik-Start-up Ottonomy startet Pilotprojekt im Münchner Flughafen
Der Lufthansa Innovation Hub und der Munich Airport kooperieren zur Förderung von Innovation in der Luftfahrt: Pilotprojekte mit Start-ups sind vor diesem Hintergrund wichtige Hebel zur Implementierung innovativer Lösungen.

Die Luftfahrtbranche steht vor einer Vielzahl von Herausforderungen, sowohl auf Kund*innenseite als auch in geschäftlichen Prozessen. Innovation spielt eine entscheidende Rolle bei der Bewältigung dieser Herausforderungen, indem sie Möglichkeiten zur Digitalisierung, Automatisierung, Optimierung und Neuerfindung schafft.
Vor diesem Hintergrund haben der Lufthansa Innovation Hub, die Berliner Innovationseinheit der Lufthansa Group, und die Terminal 2 Gesellschaft des Flughafens München eine Absichtserklärung (MoU) unterzeichnet. Mit der Unterzeichnung bekunden beide ihre Absicht, durch gemeinsame Initiativen die Innovation in der Luftfahrtbranche voranzutreiben.
“Innovation in der Reiseindustrie ist eine gemeinschaftliche Aufgabe, die dem gesamten Ökosystem zukommt”, sagt Dr. Stefan Nothelfer, Senior Director und Leiter Corporate Venturing & Strategic Growth beim Lufthansa Innovation Hub. “Wir freuen uns darauf, mit der Terminal 2 Gesellschaft des Flughafens München zusammenzuarbeiten, um das Kundenerlebnis gemeinsam zu verbessern und den gesamten Reiseprozess zu optimieren.”
Robotik-Einsatz im Terminal 2 des Flughafens München
Ein konkretes Beispiel für das Vorantreiben von Innovation im Flughafenbetrieb durch Pilotprojekte ist die Zusammenarbeit mit dem Robotik-Start-up Ottonomy.
Seit dieser Woche sind zwei autonome Service-Roboter in den Bereichen der Gates und Gepäckausgabe im Terminal 2 des Flughafens München im Einsatz. Die Roboter sind darauf ausgelegt, verschiedene Aufgaben zu übernehmen, um reibungslose Kund*inneninteraktionen zu ermöglichen. Sie unterstützen Passagier*innen mit Informationen und bewerben die Dienstleistungen von Lufthansa Airlines.
Durch das Scannen eines QR-Codes auf dem Roboter mit ihrem Smartphone gelangen Reisende zu Chat-Assistenten für Self-Service-Optionen. Dort können sie Fluginformationen abrufen und Prozesse wie Umbuchungen oder Erstattungen eigenständig verwalten. Die Roboter liefern zudem wichtige Informationen zu flughafenbezogenen Themen wie Tax Refund und Lost and Found. Dank integrierter Behälter können die Roboter auch für den Warentransport eingesetzt werden – etwa künftig für die Verteilung von Wasserflaschen an Passagier*innen.

“Unser Ziel ist es, unseren Gästen das beste Reiseerlebnis in Europa zu bieten”, sagt Marcus Schnabel, Vice President Ground Operations Hub Munich. “Die Nutzung digitaler Lösungen ist für dieses Vorhaben von entscheidender Bedeutung, und wir freuen uns, als Pilotstandort für wegweisende Innovationen zu dienen.”
Ottonomy setzt seine Roboter weltweit an Flughäfen, in Krankenhäusern und für Auslieferungen auf der letzten Strecke zum/zur Kund*in ein. “Unsere Roboter, die mit Contextual AI arbeiten, ermöglichen es Unternehmenskunden, Innovationen voranzutreiben, bessere Kundenerlebnisse zu schaffen und die betriebliche Effizienz in der Luftfahrt zu steigern“, sagte Ritukar Vijay, CEO von Ottonomy. „Eine Partnerschaft mit zukunftsorientierten Branchengrößen wie der Lufthansa bringt diese Vision der Realität ein großes Stück näher.“
Das Pilotprojekt mit Ottonomy entstand im Rahmen von Startup Gate, der Venture-Clienting-Initiative der Lufthansa Group. Startup Gate verbindet Teams der Lufthansa Group mit hochmodernen Start-ups, um deren Technologien schnell zu adaptieren und schlanke sowie kosteneffiziente Kooperationen zu ermöglichen.
In fünf Schritten zu rankingfähigen KI-Texten
Das aktuelle Whitepaper von eology beleuchtet das Potenzial und die Grenzen von KI-gestütztem Content im Hinblick auf SEO. Hier gibt’s Tipps rund um das Thema rankingfähige KI-Texte.

Die auf Suchmaschinenmarketing spezialisierte Online-Marketing-Agentur eology zeigt in ihrem Whitepaper „KI-Texte und Google-Rankings: Wie gut ranken KI-Inhalte?“, wie KI-Inhalte auf Google ranken, welche Herausforderungen sie mit sich bringen und welche Schritte erforderlich sind, um sie rankingfähig zu machen. Zudem wird auch auf spezifische technische, strategische und kreative Aspekte eingegangen, die für die Erstellung hochwertiger Inhalte entscheidend sind.
Gewusst wie: rankingfähige KI-Teste
Was zweifelsfrei erwiesen ist: Nach dem SEO-Qualitätsstandard erstellte KI-Texte sind rankingfähig und können die Sichtbarkeit einer Domain genauso unterstützen wie menschliche Inhalte. Allerdings ist die Erstellung solcher Texte nicht damit getan, einfach einen Prompt einzugeben und das Ergebnis online zu stellen. Es bedarf menschlicher Zuarbeit und Kontrolle.
Di Expert*innen von eology haben aus ihrer Studie heraus Best Practices ermittelt, um zu rankingfähigen Texten zu kommen. In fünf Schritten kannst du das auch:
1. Schritt: Chatbot briefen
Bei ChatGPT einen CustomGPT anlegen mit allen notwendigen Projektinstruktionen. Auf diese greift die KI immer zurück, ihr müsst sie daher nicht immer wieder neu eingeben. Das spart Zeit und sorgt langfristig für besseren Output. Bei Claude geht das nicht. Hier kopiert ihr die Projektinstruktionen einfach in den Chat. Die KI meldet dann, dass sie die Aufgabe verstanden hat und fasst diese noch einmal zusammen.
Folgende Instruktionen sind wichtig:
• Keywordset
• Infos zur Verwendung der Keywords (Verteilung, Häufigkeit, Positionierung im Text)
• Textlänge
• Zielgruppe und Leseransprache
• Stil, Tonalität und weitere Infos zum Wording
• Formaler Textaufbau (Überschriften, Aufzählungen, Tabellen)
• Inhaltlicher Textaufbau, ggf. Gliederung
2. Schritt: Chatbot testen
Prompt erstellen mit allen für den einzelnen Text relevanten Informationen (Thema, Keywordset). Da ihr alle Projektinstruktionen bereits an den Chatbot übermittelt habt, braucht ihr in den Prompt nur noch die Infos für den einzelnen Text reinschreiben. Er lautet dann: „Hallo GPT, erstellst Du mir bitte einen Text zum Thema „XY“ mit diesen Keywords: Hauptkeyword=Thema: [Hauptkeyword] Nebenkeywords: [Nebenkeywords] W-Fragen: [W-Fragen]. Danke.“
3. Schritt: Output prüfen
Output prüfen auf alle Projektanforderungen: SEO, Keywords, Wording, Rechtschreibung sowie Inhalt.
4. Schritt: Anpassungen vornehmen
Wenn der Output nicht passt, gebt der KI Anweisungen für Änderungen, passt die Projektinstruktionen an oder optimiert den Prompt. Ladet Beispieltexte hoch mit eurem gewünschten Stil, lasst die KI den Stil beschreiben und packt die Stilbeschreibung in die Projektinstruktionen. Wenn der Chatbot wiederholt zu wenig Text liefert, kann es Sinn machen, dass ihr diese Information doch in den Prompt eingeben müsst, selbst wenn diese in den Instruktionen steht. Insbesondere ChatGPT neigt dazu, zu wenig Text zu liefern und muss immer wieder daran erinnert werden.
5. Schritt: Bilder generieren
Instruktionen für die Bilderstellung in den Projektinstruktionen hinterlegen. Bei einem CustomGPT hinterlegt ihr auch den Stil für die Bilder, denn dann habt ihr eine Chance auf einen einheitlichen Stil. Allerdings ist ChatGPT mit der Schnittstelle zu DALL-E nicht die beste Bild-KI. Daher funktioniert nicht alles reibungs- los. Für eine hochwertige und professionelle Bildgenerierung nutzt besser eine spezielle Bild-KI wie Midjourney.
Generative KI – Chancen für Startups
Wie Startups mit drei Tipps die Kosten und Performance für ihren KI-Case optimieren können.

Das deutsche KI-Startup-Ökosystem befindet sich 2025 weiter im Gründungsboom. Nie gab es mehr KI-Gründer in Deutschland und alleine im vergangenen Jahr wuchs die Zahl der KI-Startups um 35 Prozent. Auch für Investoren bleibt KI eines der vielversprechendsten Themen. Sie investierten 2024 fast 200 Millionen mehr in deutsche KI-Jungunternehmen als im Vorjahr. Vor allem deutsche KI-Startups im B2B-Bereich mit branchenspezifischen Lösungen für die Fertigung, Logistik und das Gesundheitswesen haben aktuell ausgezeichnete Wachstumschancen. Sie können von einer engen Vernetzung mit dem Mittelstand und führenden Forschungseinrichtungen in Deutschland profitieren. Typische KI-Anwendungsfelder von aufstrebenden deutschen Startups wie BlueAvenir, PlanA, Smart Reporting oder nnamu liegen dabei u.a. in der Softwareentwicklung, Sprach- und Bilderkennung oder datenbasierten Analyseverfahren zur Entscheidungsunterstützung.
KI-Chancen und die häufigsten Hürden
Während die Gesamtfinanzierung für KI-Projekte wächst, scheitern in der Praxis vielversprechende Ideen von Startups aber auch immer wieder am konkreten Business Case. Langfristig können sich insbesondere unterschätzte Kosten und eine schwache Performance der Anwendungen wie ein Bremsklotz auswirken. Die Nutzung von Sprachmodellen ist dank API-basierten Diensten sehr einfach geworden, dennoch können sich hier bei großen Volumina und ungeschickter Modell-Wahl schnell höhere Kosten aufsummieren. Gleichzeitig spielt die Performance des KI-Systems eine wichtige Rolle für eine langfristige Profitabilität. So führen besonders hohe Latenzzeiten bei der Model-Inference zu trägeren Systemen, die Nutzeranfragen nicht schnell genug verbreiten und die Attraktivität der Anwendung erheblich mindern.
Gerade Startups setzen oft auf die Cloud, da sie unabhängig vom technischen Hintergrund einfachen Zugang zu KI und die nötige Flexibilität ermöglicht. Drei innovative Methoden erweisen sich in der Cloud als besonders hilfreich, um eine optimale Balance zwischen Leistungsfähigkeit, Kosten und Nutzerfreundlichkeit für die Umsetzung des eigenen KI-Anwendungsfalls zu finden. So kann jeder Gründer seine KI-Ideen schnell, kosteneffizient und sicher umsetzen.
KI-Modellauswahl: Kleiner, aber schneller
Für Startups ist es entscheidend, das richtige KI-Modell für ihren Anwendungsfall zu wählen, um Kosten und Leistung optimal auszubalancieren. Anbieter wie Anthropic, AI21 Labs, Meta, Cohere, Mistral und Amazon bieten Modelle in verschiedenen Größen an – kleinere Varianten sind oft günstiger und reagieren mit kürzerer Antwortzeit. Nach einer ersten Validierung mit einem leistungsstarken Modell können Startups Tools wie Amazon Bedrock Evaluations nutzen, um herauszufinden, welches Modell in welcher Größe ähnliche Ergebnisse bei geringeren Kosten oder höherer Geschwindigkeit liefert. Diese Evaluierungen helfen dabei, die Leistungsfähigkeit und Effizienz zu beurteilen, indem Metriken wie semantische Robustheit und Genauigkeit bei der Informationsabfrage analysiert werden. Durch eine Kombination aus automatisierten Bewertungen mit Large Language Models (LLMs) und menschlicher Prüfung können Startups die beste Balance zwischen Leistung, Kosten und Geschwindigkeit für ihre individuellen Bedürfnisse finden.
Prompt Caching: Zwischenspeicherung für wiederkehrende Anfragen
Eine weitere smarte Methode, um die Antwortzeiten von KI-Modellen zu verkürzen und Kosten zu senken, ist das Prompt-Caching. Wenn ein digitaler Assistent sich bei jeder Frage immer wieder die gleichen Grundinformationen durchlesen müsste, dann wäre das extrem ineffizient. Genau hier setzt das Prompt-Caching an und speichert feste Teile des Prompts, wie grundlegende Anweisungen für das LLM, direkt in der Inferenz-Hardware zwischen. Nur die variablen, nutzerspezifischen Daten, die sich von Aufruf zu Aufruf verändern, werden bei jeder Anfrage neu übermittelt. Das spart nicht nur Rechenleistung, sondern sorgt auch für schnellere Antworten – ideal für Anwendungen wie Chatbots oder personalisierte KI-Assistenten, die häufig wiederkehrende Anfragen verarbeiten. Mit Amazon Bedrock lässt sich diese Technik einfach nutzen, indem das Caching und das Setzen von Cache-Checkpoints automatisch verwaltet werden können. Sobald das Caching aktiviert ist, übernimmt der Service das gesamte Cache-Management automatisch. So lassen sich bis zu 90 Prozent kosteneffiziente KI-Anwendungen mit minimalem Konfigurationsaufwand realisieren.
Model Distillation: KI-Wissen auf das Wesentliche fokussieren
Eine dritte bewährte Option ist Model Distillation. Das Prinzip ist einfach und kann vereinfacht als ein intelligenter Wissenstransfer in der Welt der KI beschrieben werden. Also so, als ob ein erfahrener Lehrer (ein großes, leistungsstarkes KI-Modell) seinem Schüler (einem kleineren, schnelleren Modell) die wichtigsten Konzepte beibringt. Dabei nutzt dieser Prozess synthetische Trainingsdaten, die auf realen Anwendungsbeispielen basieren. Das Ergebnis ist ein kompakteres Modell, das für einen spezifischen Anwendungsfall ähnlich gute Ergebnisse liefert wie das größere Modell, dabei aber deutlich schneller und kostengünstiger arbeitet. Destillierte Modelle in Amazon Bedrock können bis zu fünfmal schneller arbeiten und die Kosten um bis zu 75 Prozent senken im Vergleich zu den Originalmodellen – bei Genauigkeitsverlust von weniger als zwei Prozent.
Fazit
Erfolgreiche KI-Lösungen können mit der Cloud kosteneffizienter und performanter umgesetzt werden. Das erfordert zwar ein wenig technisches Know-how, aber die Cloud reduziert die Einstiegshürden erheblich und ermöglicht es auch kleineren Unternehmen, mit drei bewährten Methoden das KI-Potenzial effektiver auszuschöpfen. Startups haben mit der Cloud die maximale Flexibilität, um entweder von den leistungsfähigsten vortrainierten LLMs zu profitieren oder alternativ eigene LLMs mit maßgeschneiderter Infrastruktur zu entwickeln bzw. auf fertige Dienste mit integrierter generativer KI zuzugreifen.
Der Autor Constantin Gonzalez ist Principal Solutions Architect bei Amazon Web Services (AWS) in München.
Die Autorin Jennifer Grün ist Senior Specialist - Machine Learning bei AWS in München.
So schafft KI neue CEO-Realitäten
Künstliche Intelligenz (KI) ist in der Führungsebene angekommen, doch welche Konsequenzen hat das für CEOs? Eine Studie enthüllt Eingeständnisse deutscher und internationaler CEOs zum Thema KI.

Der aktuelle „Global AI Confessions Report: CEO Edition" der KI-Plattform Dataiku enthüllt Eingeständnisse deutscher und internationaler Führungskräfte, die hinsichtlich KI einer neuen Realität gegenüberstehen. Wichtige Insights aus der Studie:
- 95 Prozent der deutschen CEOs geben zu, dass ein KI-Agent bei Geschäftsentscheidungen einen gleichwertigen oder besseren Rat geben könnte als ein menschliches Vorstandsmitglied.
- 69 Prozent der deutschen CEOs glauben, dass eine gescheiterte KI-Strategie oder eine KI-induzierte Krise dazu führen wird, dass ein CEO bis Ende 2025 aus dem Amt gedrängt wird.
- Mit 62 Prozent bzw. 66 Prozent rangieren deutsche CEOs unter allen globalen CEOs an der Spitze, wenn es um die Messung von Kosten- und Ressourcenanforderungen und Skalierbarkeit von KI geht.
- 78 Prozent der deutschen CEOs sind der Meinung, dass EU-Vorschriften die KI-Nutzung in ihren Organisationen verlangsamen könnten.
Für die Studie, die von The Harris Poll durchgeführt wurde, wurden im Januar und Februar 2025 über 500 CEOs in den USA, Großbritannien, Frankreich und Deutschland befragt. Die Unternehmen der insgesamt 100 befragten deutschen CEOs rangieren bei einem Jahresumsatz von mehr als 250 Millionen Euro und eine Unternehmensgröße von mehr als 500 Mitarbeitenden.
Der Bericht enthüllt: Die KI-Strategie ist zum entscheidenden Faktor für das Überleben von Unternehmen geworden. Die Ergebnisse belegen zudem, dass die Konsequenzen des Einsatzes von KI auch auf höchster Entscheiderebene angekommen sind.
KI kommt im Vorstand an
Laut Aussagen deutscher Geschäftsführer stellt KI die Rolle der Entscheidungsfindung auf Vorstandsebene zunehmend in Frage. Zu den wichtigsten Ergebnissen gehören:
- 93 Prozent der deutschen CEOs sind der Meinung, dass sie davon profitieren würden, ein aktuelles Vorstandsmitglied durch einen KI-Experten zu ergänzen oder zu ersetzen.
- 95 Prozent der deutschen CEOs geben zu, dass ein KI-Agent bei Geschäftsentscheidungen einen gleichwertigen oder besseren Rat geben könnte als ein menschliches Vorstandsmitglied.
KI-Strategie: Übernahme von Kernkompetenzen
Auch auf den darauf folgenden Rängen zeichnet sich ab, dass Künstliche Intelligenz das Berufsprofil der Führungsebene deutlich wandeln kann:
- 90 Prozent der deutschen CEOs sind der Meinung, dass KI einen besseren Strategieplan entwickeln kann als ein Mitglied ihres Führungsteams (Vizepräsidenten bis zur Vorstandsebene).
- 49 Prozent der CEOs deutscher Unternehmen schätzen, dass sie 3–4 Teammitglieder durch KI ersetzen könnten, um strategische Planung zu betreiben. Ganze 13 Prozent gaben an, dass sie sogar 7 oder mehr Führungskräfte für die gleiche Aufgabe ersetzen könnten.
Keine KI-Strategie ist allerdings auch keine Antwort, denn
- 69 Prozent der deutschen CEOs glauben, dass eine gescheiterte KI-Strategie oder eine KI-induzierte Krise dazu führen wird, dass ein CEO bis Ende 2025 aus dem Amt gedrängt wird.
- 76 Prozent der deutschen CEOs sind der Meinung, dass sie Gefahr laufen, ihren Job zu verlieren, wenn sie nicht innerhalb von 2 Jahren messbare KI-getriebene Geschäftsgewinne erzielen.
KI als Kernkompetenz zukünftiger CEOs
Führungskräfte müssen sich laut der Umfrage auf dem Jobmarkt zukünftig anders aufstellen. KI-Kompetenz gilt als “Must-Have”, was auch aus dem Berufsalltag deutscher CEOs hervorgeht.
- 31 Prozent der deutschen CEOs sind der Meinung, dass Erfahrung in der Umsetzung einer erfolgreichen KI-Strategie oder deren Implementierung in 3–4 Jahren eine der wichtigsten Kompetenzen sein wird, nach denen Vorstände bei der Bewertung eines potenziellen Geschäftsführers suchen werden.
- 82 Prozent der deutschen CEOs geben an, dass ihre direkte Beteiligung an KI-bezogenen Entscheidungen im vergangenen Jahr zugenommen hat.
- 70 Prozent der deutschen CEOs geben an, an mehr als der Hälfte der KI-Entscheidungen ihres Unternehmens beteiligt zu sein.
Die „KI-Commodity-Falle“ und KI-Washing: Blinde Flecken der Geschäftsführung
Trotz zunehmender Abhängigkeit von KI sind sich viele CEOs der Gefahren schlecht umgesetzter KI-Strategien in gefährlicher Weise nicht bewusst.
- 87 Prozent der CEOs tappen weltweit in die „KI-Falle“ und sind zuversichtlich, dass KI-Standardagenten genauso effektiv sein können wie maßgeschneiderte Lösungen für hochgradig nuancierte vertikale oder domänenspezifische Geschäftsanwendungen.
- CEOs deutscher Unternehmen gehen im internationalen Vergleich mit 39 Prozent am ehesten davon aus, dass es bei eigenen KI-Initiativen mehr um die Optik als um die Wirkung geht. Dieser Umstand nennt sich auch “AI Washing” und zielt darauf ab, KI-Innovation vorzuspielen, anstatt einen bedeutenden Mehrwert zu schaffen.
Worauf deutsche CEOs allerdings vergleichsweise viel Wert legen, sind Kostenkontrolle und Skalierbarkeit von KI-Lösungen. Mit 66 Prozent rangieren deutsche CEOs unter allen globalen CEOs (62 Prozent) an der Spitze, wenn es um die Messung von Kosten- und Ressourcenanforderungen und Skalierbarkeit als Kernattribute innerhalb ihres Rahmens für die regelmäßige Bewertung der Effektivität von KI-Analysen, -Modellen und -Anwendungen geht.
KI-Governance und regulatorische Unsicherheit
Während sich die Einführung von KI beschleunigt, schaffen schlechte Governance und regulatorische Unsicherheit erhebliche Hindernisse:
- 25 Prozent der deutschen CEOs geben an, dass sich ein KI-Projekt aufgrund regulatorischer Unsicherheiten verzögert hat, während 35 Prozent zugeben, dass ein Projekt aus solchen Umständen abgebrochen oder aufgegeben wurde.
- 78 Prozent der deutschen CEOs sind der Meinung, dass EU-Vorschriften die KI-Nutzung in ihren Organisationen verlangsamen könnten.
- 94 Prozent der CEOs vermuten weltweit, dass Mitarbeitende GenAI-Tools wie ChatGPT, Claude und Midjourney ohne Genehmigung des Unternehmens verwenden (bekannt als „Schatten-KI“) und damit ein massives Governance-Versagen innerhalb von Organisationen aufdecken.
Den vollständigen „Global AI Confessions Report: CEO Edition“ findest du hier
Acrylic Robotics: die Zukunft des Kunstmarkts?
Die Gründerin und Künstlerin Chloë Ryan will mit Acrylic Robotics den Kunstmarkt neu definieren: Mithilfe eines Roboterarms, der Gemälde Pinselstrich für Pinselstrich rekonstruiert, schlägt das Start-up die Brücke zwischen traditioneller Kunst und moderner Technologie, um Kunstwerke einem breiten Publikum zugänglich zu machen.

Kunst skalierbar machen
Die in Montreal ansässige Acrylic Robotics-Gründerin und CEO Chloë Ryan, selbst Künstlerin, hatte die Idee aus einer persönlichen Erfahrung heraus. Ein Gemälde zu schaffen, erfordert viel Zeit; und am Ende kann das Werk nur einmal verkauft werden. Inspiriert von der Skalierbarkeit der Musik- und Buchbranche entwickelte Chloë Ryan ein Konzept, mit dem Kunstwerke präzise reproduziert werden können – ohne an Qualität oder künstlerischem Anspruch zu verlieren. Gemeinsam mit Walker Singleton, Head of Engineering des Start-ups, entstand so ein interdisziplinärer Ansatz, der Robotik, Softwareentwicklung und mechanische Präzision vereint.

Der Roboter: Präzision in jedem Pinselstrich
Das Herzstück von Acrylic Robotics ist ein Roboterarm, der Gemälde detailgetreu reproduzieren kann. Der Prozess unterscheidet sich je nach Ursprung des Kunstwerks. Digitale Kunstwerke, die auf einem Tablet oder Computer erstellt wurden, können direkt an den Roboter übermittelt werden, da Daten wie Pinselrichtungen, Druckstärke und Farbwahl bereits digital vorliegen. Analoge Gemälde erfordern hingegen eine zusätzliche Analyse. Hier kommt ein speziell trainiertes KI-Modell zum Einsatz, das die wesentlichen Parameter berechnet, um eine möglichst präzise Reproduktion zu erzielen. Besonders wichtig ist es Acrylic Robotics, den Künstler kontinuierlich in den Prozess einzubeziehen. Es geht nicht darum, den kreativen Schaffensprozess zu ersetzen, sondern ihn zu ergänzen und weiterzuentwickeln.
Kunst für alle: Ein Service für Künstler und Käufer
Acrylic Robotics bietet seine Technologie Künstlern als Dienstleistung an. Über die Website können Künstler eine Zusammenarbeit anfragen, bei der ihre Werke in limitierter Auflage reproduziert werden. Käufer erhalten dadurch hochwertige Acrylreproduktionen, ohne den Wert des Originals zu schmälern. Das Konzept verbindet Exklusivität mit breiterer Zugänglichkeit und positioniert sich als innovative Lösung im Kunstmarkt.
Florian Bretschneider: Das steckt hinter dem Appointment-Setting-System
Appointment Setter spielen im Verkaufsprozess von Coaching-, Beratungs- und Softwareunternehmen eine immer wichtigere Rolle. Das Geschäft ist mittlerweile in einem starken Aufwärtstrend und bietet vor allem Neu- und Quereinsteigern die Chance auf eine lukrative Remote-Position als Appointment Setter.

Der Appointment Setter ist dafür verantwortlich, den Posteingang von Coaching-, Beratungs- und Softwareunternehmen zu beantworten und Termine mit neuen Interessenten für Beratungsgespräche der Vertriebsmitarbeiter zu vereinbaren.
Mit dem richtigen Know-how zur „Lead-Maschine“ werden
Florian Bretschneider, Unternehmer und Self-Made-Millionär sieht die größten Vorteile darin: „Beim Appointment Setting musst du weder Geld in Werbung, Software, Mitarbeiter, Büro noch in Produkte investieren. Du startest in einem funktionierenden System, das bereits Geld produziert und kannst es nach wenigen Wochen von überall auf der Welt ausführen, solange du ein Handy mit Internetverbindung hast.“
Ideales Geschäftsmodell für Einsteiger in den Onlinemarkt: Was macht ein Appointment Setter?
Der Appointment Setter spielt eine zentrale Rolle im Vertriebsprozess von Coaching-, Beratungs- und Softwareunternehmen. Seine Hauptaufgabe besteht darin, den Posteingang dieser Unternehmen zu verwalten und qualifizierte Termine mit Interessenten für Vertriebsmitarbeiter zu vereinbaren. Diese Unternehmen erreichen täglich Hunderte bis Tausende potenzielle Kunden durch gezielte Werbung auf Plattformen wie Instagram, TikTok, Google und Snapchat. Um aus dieser großen Anzahl an Anfragen die passenden Interessenten herauszufiltern, setzen sie auf spezialisierte Appointment Setter. Diese erhalten in der Regel eine Umsatzbeteiligung von etwa 5 %, was sie besonders lukrativ macht – insbesondere in Branchen mit hochpreisigen Produkten und Dienstleistungen.
Ein Beispiel: Wenn das Unternehmen beispielsweise 20 neue Kunden á 6.000€ pro Monat durch die neuen Termine des Appointment Setters gewinnt, generiert das Unternehmen 120.000€ Umsatz, wovon der Appointment Setter im Schnitt 6.000€ (5%) ausgezahlt bekommt.
Das Vereinbaren von Terminen über den Chat bietet eine geringe Einstiegshürde und eignet sich besonders für Einsteiger. Es zählt zu den einfachsten und am schnellsten zu erlernenden Aufgaben im gesamten Verkaufsprozess.
Da beim Appointment Setting kein eigenes Business aufgebaut werden muss, ist es besonders attraktiv für Menschen, die nicht vor die Kamera treten, keine Follower auf Social Media aufbauen und keine Coaching- oder Verkaufsgespräche führen möchten – und dennoch am stark wachsenden E-Learning-Markt partizipieren wollen. Besonders gefragt sind Appointment Setter in den Bereichen Fitness/Gesundheit, Online-Business, Dating/Beziehungen, Investieren/Finanzen und Mindset/Persönlichkeitsentwicklung.
Florian Bretschneider erklärt: „Einer der größten Vorteile beim Appointment Setting ist, dass es nicht nur sehr schnell zu lernen ist und bereits in drei bis vier Wochen Ergebnisse bringt, sondern dass jeder das Modell auch zu 100 Prozent anonym machen kann. Man braucht dafür weder eine eigene Website noch muss man Social-Media-Reichweite aufbauen.“ Nur eine einzige Fähigkeit ist erforderlich: effektiv Terminierungen über den Chat durchzuführen.
Der Selfmade Millionär mit über 10 Millionen € Umsatz in den letzten Jahren: „Mit dem richtigen Know-how kann jeder zu einer “Termin-Maschine” werden.“
Europäisches KI-Gesetz in Kraft getreten
Der AI Act ist am 2. Februar 2025 in Kraft getreten und gilt für alle Unternehmen und Organisationen mit Angestellten, die KI im Auftrag des Unternehmens nutzen. Bei Nichteinhaltung drohen Geldbußen.

Künstliche Intelligenz (KI) entwickelt sich rasant und findet in immer mehr Bereichen, auch in Unternehmen, Anwendung. Deshalb schafft Europa mit dem AI Act einen einheitlichen Rechtsrahmen, den alle europäischen Unternehmen einhalten müssen.
Nicht allen Arbeitgebenden ist bewusst, dass die europäische Verordnung bereits in Kraft getreten ist. Sie gilt für jede Organisation – unabhängig von ihrer Größe – und ist verbindlich. Das Gesetz betrifft somit alle Unternehmen und Organisationen mit Angestellten, die KI im Auftrag des Unternehmens nutzen, unabhängig vom Beschäftigungsverhältnis. Europa überlässt einen Teil der Durchführung und Umsetzung des KI-Gesetzes den Mitgliedstaaten selbst – ebenso wie die Verhängung von Geldbußen bei Nichteinhaltung. Die konkrete Höhe dieser Bußgelder wird erst am 2. August 2025 feststehen. Dennoch sollten Unternehmen ab dem 2. Februar lieber gut aufgestellt sein, da die Bußgelder auch rückwirkend in Kraft treten können.
Verbindliche KI-Policy und adäquate KI-Kompetenzen
Unternehmen sind dafür verantwortlich, dass ihre Belegschaft über ausreichende KI-Kenntnisse verfügt. Dabei ist es nicht erforderlich, dass jeder Mitarbeitende umfassendes Wissen über KI besitzt. Es muss sichergestellt werden, dass alle Mitarbeitenden, die mit KI-Systemen arbeiten, über die notwendigen Kenntnisse und Fähigkeiten verfügen. So können sie informierte Entscheidungen treffen und potenzielle Risiken erkennen. Dazu gehören alle Mitarbeiter*innen, die mit KI-Systemen arbeiten – vom Anbietenden bis zum/zur Endnutzer*in – und erstreckt sich also nicht nur auf IKT-Fachleute in Unternehmen.
Das KI-Gesetz legt nicht genau fest, welche Maßnahmen Arbeitgebende ergreifen müssen, damit alle beteiligten Personen ausreichende KI-Kenntnisse erwerben. Arbeitgebende sollten daher nicht nur die technischen Kenntnisse, Erfahrungen, Ausbildungen und Fortbildungen der Mitarbeitenden berücksichtigen, sondern auch den Kontext, in dem die KI-Systeme genutzt werden, sowie die betroffenen Personen oder Personengruppe.
Arbeitgebende können selbst entscheiden, welche Kenntnisse und Fähigkeiten ihre Mitarbeitenden benötigen und wie sie diese angeeignet werden können. Mögliche Maßnahmen sind allgemeine KI-Schulungen, die Grundkenntnisse vermitteln und auf verschiedene Zielgruppen zugeschnitten sein können. Dabei kann es sich um spezifische Schulungen handeln, die sich auf bestimmte Tools und Anwendungen konzentrieren, aber auch um die Zusammenarbeit zwischen juristischen und technischen Teams.
Arbeitgebenden wird empfohlen, eine KI-Policy mit klaren Richtlinien für den Einsatz von KI im Unternehmen zu erstellen. Darin kann festgehalten werden, welche Anwendungen von wem und auf welche Weise genutzt werden dürfen. In dieser Richtlinie kann der Arbeitgebende auch Hinweise darauf geben, wie die Mitarbeitenden ausreichend mit KI vertraut bleiben können. Wie wird zum Beispiel vorgegangen, wenn sich im Unternehmen oder bei den Tools etwas ändert? KI-Kompetenz ist schließlich nichts Statisches. Wenn ein(e) Mitarbeiter*in die Rolle wechselt, oder wenn die eingesetzten Tools sich ändern, muss der Arbeitgebende sicherstellen, dass die betreffende Person weiterhin über ausreichende KI-Kenntnisse verfügt.
Verbotene bestimmter KI-Systeme
Zum anderen verbietet der AI Act ab dem 2. Februar 2025 den Einsatz von KI-Systemen, die gegen europäische Normen und Grundwerte verstoßen, indem sie beispielsweise Grundrechte missachten. Darunter fallen auch KI-Systeme für Social Scoring, die Menschen aufgrund ihres sozialen Verhaltens oder persönlicher Eigenschaften bewerten, oder KI-Systeme zur Emotionserkennung am Arbeitsplatz oder im Bildungsbereich. Arbeitgeber sollten daher die eingesetzten KI-Systeme im Hinblick auf die Identifizierung verbotener Systeme und die Einstellung ihrer Nutzung überprüfen.
Ab August 2025 drohen Geldbußen - auch rückwirkend
Ab dem 2. August 2025 drohen Unternehmen und Organisationen, die verbotene KI entwickeln oder einsetzen, hohe Geldbußen. Die Überwachung und die Festlegung der Höhe der Strafen liegen vollständig in der Verantwortung der EU. Die Höhe der Geldbußen sowie die Aufsicht hierüber liegen vollständig in der Verantwortung der EU. Bis zu 35 Millionen Euro Strafe oder sieben Prozent des weltweiten Jahresumsatzes des vorangegangenen Geschäftsjahres – je nachdem, welcher Betrag höher ist – können verhängt werden.
Der Autor Sander Runkel ist Fachanwalt für Arbeitsrecht und Manager Tax & Legal bei SD Worx Deutschland
MyriaMeat: BioTech-Start-up mit Weltpremiere in der Cultivated Meat-Branche
Das 2022 in München und Göttingen gegründete BioTech-Start-up MyriaMeat, Pionier für die Herstellung von 100 Prozent echtem Cultivated Meat auf Basis von pluripotenten Stammzellen (iPS), hat den weltweit ersten echten Schweinemuskel aus iPS entwickelt.

Auf Basis jahrzehntelanger medizinischer Forschung an der Universität Göttingen, bietet MyriaMeat nachhaltige und ethisch verantwortbare Alternativen zu herkömmlichem Fleisch. Ziel ist der Aufbau einer Plattform, die die Produktion von hochwertigem und reinen Fleisch, sowie einer Vielzahl anderer fleischhaltiger Produkte ermöglicht und das Unternehmen zum relevanten Partner für die Entwicklung innovativer Lebensmittel mit alternativen Proteinen macht.
Das von MyriaMeat entwickelte Cultivated Meat bietet dabei nicht nur ökologische Vorteile, sondern ermöglicht auch eine erhebliche Verbesserung des Tierwohls, da so für die Herstellung von Fleisch keine Tiere mehr geschlachtet werden müssen. Mit seiner bahnbrechenden Forschung setzt MyriaMeat neue Standards für die Zukunft der Ernährung.
Wegweisender Durchbruch in der Cultivated Meat-Branche
Jetzt hat das als Spin-off eines Forscherteams der Universität Göttingen gegründete und von Florian Hüttner (Geschäftsführer) und Dr. Malte Tiburcy (CSO) geführte Start-up einen wegweisenden Durchbruch in der Cultivated Meat-Branche erzielt: Zum ersten Mal weltweit wurde echter Schweinemuskel aus pluripotenten Stammzellen (iPS) entwickelt, der natürliche, ungetriggerte Kontraktionen zeigt – ein lebendiges Zucken, das die funktionelle Fähigkeit echten Muskelgewebes widerspiegelt.
Laut MyriaMeat beweist dieser Erfolg, dass echtes Schweinefleisch vollständig außerhalb eines lebenden Tieres produziert werden kann. Damit rückt kultiviertes Fleisch noch näher an herkömmliches Fleisch heran, das durch Schlachtung gewonnen wird. Das Start-up verfolgt das Ziel, eine exakte 1:1-Kopie von Schweinefleisch herzustellen – kein Ersatzprodukt, sondern echtes Fleisch.
Durch diesen Ansatz soll auch die Akzeptanz bei Fleischkonsumenten steigen, die bislang keine pflanzlichen Alternativen in Betracht ziehen. Insgesamt ist kultiviertes Fleisch geeignet, viele der Probleme, die mit der Massentierhaltung einher gehen, zu lösen.
Meilenstein für nachhaltige Ernährung und Ethik
„Zum ersten Mal zeigt ein tierischer Muskel – in diesem Fall vom Schwein – aus pluripotenten Stammzellen nicht nur die Eigenschaften echten Gewebes, sondern auch spontane Kontraktionen eines Muskels. Das ist der wissenschaftliche Beweis, dass wir echtes Schweinefleisch außerhalb eines lebenden Organismus herstellen können“, erklärt Dr. Malte Tiburcy.
Mit seinem bahnbrechenden Erfolg hebt MyriaMeat die Cultivated Meat-Branche auf ein neues Niveau. Während viele Unternehmen Zellkulturen nutzen, um fleischähnliche Produkte herzustellen, hat MyriaMeat als erstes weltweit aus pluripotenten Stammzellen echten Muskel geformt, der sowohl funktionell als auch strukturell mit natürlichem Schweinegewebe vergleichbar ist.
Einladung zur Partnerschaft
MyriaMeat richtet sich aktiv an Investoren und Unternehmen der Fleischindustrie, die daran interessiert sind, diese zukunftsweisende Technologie in Deutschland und weltweit weiterzuentwickeln. Interessierte Partner sind herzlich eingeladen, sich direkt mit dem Unternehmen in Verbindung zu setzen, um gemeinsam an einer nachhaltigeren Zukunft der Fleischproduktion zu arbeiten.
„Unser Ziel ist es, strategischer Partner der Fleischindustrie zu werden und eine umweltfreundlichere, tierleidfreie sowie ressourcenschonende Alternative für echtes Schweinefleisch und andere Fleischarten zu schaffen“, erklärt Geschäftsführer Florian Hüttner. „Dieser Erfolg zeigt, dass echtes Fleisch auch ohne lebende Tiere produziert werden kann.“
„Wir sehen uns daher nicht als Konkurrenten der Fleischindustrie, sondern als deren Partner. Die Fleischindustrie verfügt über etablierte Vertriebsstrukturen, umfangreiches Know-how und Zugang zu politischen Netzwerken. Unsere Vision ist es daher, gemeinsam mit der Fleischindustrie Produkte zu entwickeln, die bestehende Produktionsmethoden nutzen und die Einführung von kultiviertem Fleisch erleichtern. Auch für die Landwirtschaft könnten sich zukünftig Wege ergeben, von den neuen Produktionsmethoden für Fleisch zu profitieren”, ist sich Hüttner sicher.
Hüttner betont zudem die Bedeutung solcher alternativen Produktionsmethoden vor dem Hintergrund aktueller Herausforderungen wie der Bedrohung durch Maul- und Klauenseuche (MKS). „Kultiviertes Fleisch bietet durch seine Herstellung im Labor nicht nur eine Lösung für ethische und ökologische Probleme, sondern reduziert auch die Angriffsfläche für Krankheiten, denen lebende Tiere ausgesetzt sind – und das ohne Genmanipulation.“
KI-gestützte Identitätsbetrugsprävention hinkt Bedrohung hinterher
E-Mails, Chat-Nachrichten, Telefonanrufe, Fotos und Videos – immer häufiger missbrauchen Cyberkriminelle diese Kommunikationstools als Vehikel für einen Identitätsbetrug – doch was tun?

Immer häufiger wird in den Medien über erfolgreiche KI-gestützte Deep-Fake-Attacken berichtet. Die Folge: Das Vertrauen der Verbraucher*innen in digitale Medien und Kanäle nimmt zusehends Schaden – und damit auch die betreffenden Online-Anbieter*innen. Bei nicht wenigen von ihnen wird das Phänomen KI-gestützter Angriffe über kurz oder lang zu massivem Imageverlust und Umsatzeinbußen führen.
Diskrepanz zwischen Sensibilisierung und Handeln
Vor diesem Hintergrund stimmt es nachdenklich, dass bislang nur 22 Prozent der Unternehmen Maßnahmen zur Verhinderung von KI-gestütztem Identitätsbetrug ergriffen haben. Der aktuelle Signicat-Report "The Battle Against AI-driven Identity Fraud" zeigt eine Kluft zwischen Bewusstsein und Handeln auf. Während über 76 Prozent der Entscheidungsträger*innen die wachsende Bedrohung durch KI bei Betrug erkennen, haben, wie erwähnt, nur 22 Prozent der Unternehmen damit begonnen, KI-gesteuerte Maßnahmen zur Betrugsprävention zu implementieren.
Für die Studie wurden über 1.200 Entscheidungsträger*innen aus Banken, FinTechs, Zahlungsanbietenden und Versicherungsunternehmen in Europa befragt. In dem Bericht wird hervorgehoben, dass sich die Unternehmen des Problems durchaus bewusst sind, aber Schwierigkeiten haben, die erforderlichen Schutzmaßnahmen zu ergreifen, und zwar aus folgenden Gründen:
- Mangelndes Fachwissen: 76 Prozent der Entscheidungsträger*innen im Bereich Betrugsbekämpfung geben unzureichende Kenntnisse als Haupthindernis an.
- Zeitmangel: 74 Prozent geben zu, dass sie nicht die Zeit haben, das Problem mit der erforderlichen Dringlichkeit anzugehen.
- Fehlendes Budget: 76 Prozent geben an, dass nicht genügend Mittel zur Verfügung stehen, um robuste Technologien zur Betrugsprävention einzusetzen.
2025: das Jahr des KI-Betrugs
Im Hinblick auf die aktuellen Herausforderungen warnt der Bericht davor, dass Betrüger*innen KI in einem noch nie dagewesenen Ausmaß nutzen werden Deepfake-Angriffe, die laut Signicat-Daten in den letzten drei Jahren um 2137 Prozent zugenommen haben, sind nur ein Beispiel dafür, wie schnell sich KI-gesteuerte Betrugstechniken weiterentwickeln.
Um den Betrüger*innen einen Schritt voraus zu sein, sollten die Unternehmen schnell handeln: Empfohlen wird ein mehrschichtiger Verteidigungsansatz – von der frühzeitigen Risikobewertung über robuste Identitätsüberprüfungs- und Authentifizierungstools in Kombination mit Datenanreicherung bis hin zur laufenden Überwachung für einen umfassenden Ansatz, der die wichtigsten Angriffsflächen abdeckt:
- Investitionen in KI-gesteuerte Betrugsprävention: Innovative Technologien bieten Echtzeit-Betrugserkennung, einschließlich der Erkennung von Dokumentenmanipulationen und Imitationen, einschließlich Deepfakes, und bekämpfen KI mit KI.
- Aufbau eines internen Bewusstseins und Zusammenarbeit mit vertrauenswürdigen Anbietenden: Ein proaktiver Ansatz für Mitarbeitendenschulungen und externe Zusammenarbeit ist der Schlüssel zum Umgang mit dieser sich entwickelnden Bedrohungslandschaft.