Aktuelle Events
Kölner Start-Up für müllfreies Weihnachten
Das Impact Start-up Goodgive stellt nachhaltige Produkte in sozialer Produktion her und sagt damit herkömmlichem Geschenkpapier den Kampf an.

Goodgive-Co-Gründer Alexander Lange begeistert sich schon seit Jahren für Innovationen und Umweltschutz. In seinem letzten Job hat er sich mit nachhaltiger Mobilität beschäftigt. Außerdem ist er Botschafter der weltweiten Hilforganisation "One Young World". Mit seiner Co-Gründerin Sara Stichnote und zwei weiteren Mitstreitern hat er nun das perfekte Projekt gefunden, um seine Liebe zur Umwelt und zum Schenken zu verbinden.
Alle Jahre wieder: Geschenkpapiermüll
Jedes Weihnachten entstehen in Deutschland allein durch Geschenkpapier riesige Müllberge. Geht man davon aus, dass jeder Bürger 100g Geschenkpapier verwendet, ergibt das bereits eine Summe von 8000 Tonnen Geschenkpapiermüll. Die Bundesregierung schätzt, dass sich dieser Wert jedes Jahr um 20 Prozent erhöht.
Dieser Entwicklung möchte das Kölner Start-Up Goodgive ein Enden bereiten. Sie stellen wiederverwendbare Geschenkverpackungen aus Stoff her, die das herkömmliche Geschenkpapier ersetzen sollen. Zu diesem Zweck hat das Unternehmen jetzt eine Crowdfunding-Kampagne in Leben gerufen, um noch in diesem Jahr über eine Tonne Verpackungsmüll einzusparen.
Geschenkverpackungen aus Bio-Baumwolle
Herkömmliches Geschenkpapier schadet der Umwelt und verursacht eine Menge Müll. Für die Herstellung von 1kg Geschenkpapier werden ca. 50 Liter Wasser und 5 Kilowattstunden Energie eingesetzt. Die nachhaltigen Geschenkverpackungen von Goodgive werden zu 100 Prozent aus biologischer Baumwolle in Deutschland produziert. Für die Herstellung von biologischer Baumwolle werden im Gegensatz zu herkömmlicher Baumwolle keine Pestizide oder Düngemittel eingesetzt und 91 Prozent weniger Wasser verwendet. Genäht werden die nachhaltigen Verpackungen in Deutschland in sozialen Werkstätten für Menschen mit Beeinträchtigung. Auf diese Weise werden nicht nur umweltbelastende Materialen vermieden, sondern auch die Transportwege kurzgehalten.
Das Fundingziel: 25.000 Euro
Das Start-Up hat vor, in diesem Jahr 10.000 Geschenkverpackungen zu produzieren. Die Crowdfunding-Kampagne dient der Vorfinanzierung der Produktion für das diesjährige Weihnachtsgeschäft. Wie es bei Crowdfunding-Kampagnen üblich ist, entscheiden die interessierten Vorbesteller mit ihrer Unterstützung über die Verwirklichung des Goodgive Projekts. Ziel der Kampagne ist es bis zum 4. Oktober 2020 die angestrebte Summe von 25.000 Euro für die Unternehmenskasse zu sammeln. Den Investoren bietet Goodgive als Gegenleistung eine kreative Auswahl von individuellen Weihnachtsgrüßen bis hin zu signierten Geschenkeverpackungen, beispielsweise der Band Querbeat oder Protagonisten des 1. FC Köln.
Diese Artikel könnten Sie auch interessieren:
FemTech-Report
Vom Nischendasein zum Hot Topic: Zahlen, Fakten und FemTech-Start-ups.

Im Rahmen einer Start-up- und Marktanalyse hat die Digital-Health-Beratung Brainwave den deutschen FemTech-Markt genauer unter die Lupe genommen. Die Erkenntnis: Lange Zeit wurde das Thema digitalgestützte Lösungen für die Frauengesundheit, Body Positivity und Female Empowerment vernachlässigt, obwohl es immerhin die Hälfte der Bevölkerung betrifft. Mittlerweile scheint das Potenzial bei Gründer*innen und Investor*innen angekommen zu sein, denn in den Bereichen Technologie, neue Geschäftsmodelle und Start-up-Finanzierungen ist im letzten Jahr viel passiert.
Was ist FemTech?
Der Begriff umschreibt technologische Angebote und Services, die sich auf die Gesundheit der Frau konzentrieren. Die Lösungen reichen von Fruchtbarkeits- und Zyklus-Tracking, über Schwangerschaftsbegleitung und Tele-Hebammen bis hin zu Lösungen zum Thema Sexual Awareness und Menopause. Aber auch E-Commerce-Produkte, wie Periodenunterwäsche oder Supplements komplementieren den Trend. Der Begriff FemTech wurde insbesondere durch Ida Tin geprägt – die Gründerin der Zyklus- und Periodentracking App Clue.
Die wichtigsten FemTech-Trends
Viele FemTech-Angebote, besonders jene aus dem Bereich Schwangerschaft und Geburt, sind bereits in der medizinischen Versorgung angekommen. So wird beispielsweise die 2017 zur Schwangerschaftsbegleitung und Geburtsvorbereitung entwickelte App keleya heute von 19 Krankenkassen erstattet; das Start-up profitierte in der Pandemie von erhöhten Nutzungszahlen (monatlich 20.000 aktive Nutzerinnen im Jahr 2021).
In den letzten Monaten konnte ein rasantes Ansteigen an digitalen Geschäftsmodellen rund um das Thema Reproduktionsmedizin beobachtet werden. Start-ups wie Avery Fertility, Levy oder fertilly sind neu in den Markt eingestiegen und befassen sich mit Fruchtbarkeitsdiagnostik, künstlicher Befruchtung und Social Freezing (Einfrieren von Eizellen).
Das Jahr stand außerdem ganz im Zeichen der Onkologie: Start-ups wie Happie Haus, PINK! oder Brea treiben erfolgreich digitale Innovationen für Frauen mit Brustkrebs voran. Darüber hinaus entstehen auch neue Start-ups im Bereich Sexual Awareness, wie bspw. being female. Kurz gesagt: Der Start-up-Markt ist in Bewegung.
VC-Investments im FemTech-Bereich
Das globale Finanzierungsvolumen für FemTech-Start-ups lag im Jahr 2019 bei über 590 Mio. US-Dollar und war damit zehnmal so hoch wie noch vor zehn Jahren. Wenngleich dies 2019 gerade einmal zehn Prozent der weltweiten VC-Investments ausmachte, verstärkt sich der Trend doch zunehmend: In den Jahren 2020 und 2021 zeichnete sich ein konstant wachsendes Finanzierungsvolumen für FemTech-Start-ups ab. 2021 überstiegen die weltweiten VC-Investitionen in diesem Bereich zum ersten Mal die Marke von 1 Mrd. Dollar.
In Europa erhielten UK-Start-ups im vergangenen Jahr beachtliche Summen an Risikokapital: Das Londoner Start-up Elvie (auch auf dem deutschen Markt aktiv) erhielt 68 Mio. Euro in einer Series C-Finanzierungsrunde. Der Anbieter der Zyklustracking-App Flo Health erhielt 50 Mio. Dollar in einer Series B-Runde.
Die deutschen Start-ups fertilly und pregfit erhielten ein Seed-Funding. Auch wenn Investor*innen offensichtlich ein immer größeres Vertrauen in FemTech-Start-ups haben, steht das Finanzierungspotenzial noch klar am Anfang. Die Investitionen sind weiterhin nur ein winziger Betrag im Vergleich zum weltweiten VC-Funding oder den medizinischen Gesundheitsausgaben für Frauen (500 Mrd. Dollar). Hinzu kommt, dass FemTech-Start-ups meist von Frauen gegründet werden und diese es, im Vergleich zu ihren männlichen Kollegen, oft schwerer haben, Risikokapital einzusammeln. Der banal klingende Grund hierfür: Die Investor*innen-Community besteht zum Großteil aus Männern (94 Prozent bei den Top-100-Unternehmen), welche die Gesundheitsprobleme von Frauen in vielen Fällen nicht wirklich verstehen.

Die deutsche FemTech-Start-up-Landschaft
Brainwave hat den deutschen FemTech-Start-up-Markt analysiert und in einer übersichtlichen Marktdarstellung zusammengefasst (s. Abbildung). Dabei wurden verschiedene Kategorien entwickelt, welche die unterschiedlichen Bereiche des Markttrends abdecken. Die Kategorien zeigen deutlich, dass der größte Teil des Marktes von Start-ups bzw. Lösungen aus der Rubrik „Zyklus- und Fruchtbarkeitstracking“ ausgemacht wird. In diesem Bereich sind vor allem digitale Angebote in Form von Tracking-Apps, Vergleichsportalen für Verhütungsmittel sowie Wearables und weitere Tools vertreten. Neben den etablierten Playern im Bereich „Schwangerschaft und Geburtsvorbereitung“ werden in der Kategorie „Telemedizin & Testkits“ jene Start-ups zusammengefasst, die sich mittels Selbsttest-Kits chronischen Frauenkrankheiten widmen und häufig online einen integrativen Ansatz anbieten. Im Vergleich zum Jahr 2020 kam die neue Kategorie „Reproduktionsmedizin“ hinzu, welche die Themen „Fruchtbarkeitsdiagnostik und Social Freezing“ abdeckt. Zusätzlich dazu heben sich Start-ups aus den indikationsgetriebenen Trends „Brustkrebs“, „Endometriose“ und „Menopause“ immer stärker hervor. Die Start-ups innerhalb dieser Kategorie versuchen, Frauen entlang des Patientinnenpfades mit Tracking, Digitalen Therapien, Supplements oder Communities zu unterstützen. Last, but not least finden sich in der Übersicht auch die Rubriken „Perioden-Konsumgüter“ und „Sexual Awareness“.
FemTech – quo vadis?
Der deutsche FemTech-Markt ist ein wachsender Markt mit viel Innovationspotenzial. Er bietet die Möglichkeit, nicht nur vielen Frauen auf der Welt zu helfen, sondern auch spannende unternehmerische Chancen auszuschöpfen. Der FemTech-Markt hat in den vergangenen Jahren starke Wachstumsraten erfahren und bleibt weiterhin eines der vielversprechendsten Segmente im Digital-Health-Markt mit einem riesigen Potenzial, verschiedenste sog. Pain Points im Bereich der Frauengesundheit zu lösen. Innovative Geschäftsmodelle in bereits etablierten Segmenten wie Schwangerschaft, Geburt und Zyklus werden mit Wachstumskapital und einer steigenden Akzeptanz weiter gestärkt und in den Massenmarkt getragen. Zukünftig kann erwartet werden, dass auf dem deutschen Markt weitere FemTech-Start-ups nach internationalen Vorbildern entstehen. Dies könnte insbesondere für Indikationen aus den Segmenten Menopause und Endometriose geschehen. Ebenfalls zu erwarten ist der Aufbau von Gesundheitsplattformen, die das Ziel verfolgen, Frauen umfassend mit verschiedensten Rundum-Services zu begleiten.
Im Folgenden stellen wir stellvertretend für die vielen, inhaltlich unterschiedlich aufgestellten FemTech-Start-ups vier Unternehmen im Kurzprofil vor:
Nach dem KI-Hype: Diese vier Trends bleiben
KI entwickelt sich rasant weiter. Doch welche Trends bleiben und setzen sich wirklich durch? Diese Entwicklungen sollten Unternehmen 2025 weiterhin im Blick behalten.

Die vergangenen zwei Jahre haben einen regelrechten KI-Boom erlebt. Insbesondere generative Modelle (GenAI) haben sich rasant weiterentwickelt und etablieren sich zunehmend als feste Größe in den Arbeitsprozessen von Organisationen weltweit. Angesichts dieser Dynamik fragen sich nun viele Unternehmen, welche Entwicklungen das Jahr 2025 bestimmen werden und welche Potenziale sich daraus ergeben. Diese vier wichtigen KI-Trends werden uns 2025 maßgeblich begleiten.
Ob automatisierte Textproduktion, interaktive Chatbots oder KI-gestützte Analysen für Logistik und Finanzen: KIist längst im Tagesgeschäft angekommen. Diese Dynamik setzt sich 2025 fort. Dabei verschieben sich die Schwerpunkte zunehmend hin zu spezialisierten, effizienteren und flexibleren KI-Anwendungen.
Modular AI: Kleine Bausteine, große Wirkung
Modulare KI-Systeme werden zum Schlüssel für Unternehmen, die domänenspezifische Lösungen benötigen. Diese spezialisierten KI-Module sind genau auf einzelne Aufgabenbereiche zugeschnitten, etwa auf den Kundenservice oder auf Betrugserkennung im Bankwesen. Plug-and-Play-Architekturen beschleunigen hierbei die Implementierung: Statt monolithische Modelle einzuführen, integrieren Unternehmen bedarfsgerecht nur jene Module, die sie wirklich benötigen. Auf diese Weise lässt sich der zeitliche und finanzielle Aufwand für die Implementierung in Organisationen erheblich senken. Damit das Zusammenspiel verschiedener Module funktioniert, treiben Hersteller*innen und Standardisierungsgremien die Entwicklung einheitlicher APIs und Kommunikationsprotokolle weiter voran. Diese Interoperabilität ebnet den Weg für dynamische KI-Systeme, die sich je nach Anforderung in bestehende IT-Landschaften integrieren lassen.
Edge AI und On-Device Intelligence: Schneller zum Ergebnis
Während KI-Anwendungen bislang oft auf starke Cloud-Infrastrukturen angewiesen waren, verlagert sich die Intelligenz nun zunehmend an den Netzwerkrand. Dadurch können Daten in Echtzeit analysiert werden, um schnell fundierte Entscheidungen zu treffen. Gerade in sensiblen Bereichen wie der medizinischen Bildgebung oder in Branchen mit hoher Zeitkritikalität, beispielsweise bei autonomen Fahrzeugen, minimiert eine Edge-basierte KI-Analyse Latenzzeiten und ist somit wettbewerbsentscheidend. Parallel dazu treten neue, energieeffiziente KI-Chips wie neuromorphe Prozessoren oder TPUs (Tensor Processing Units) auf den Plan. Sie ermöglichen leistungsstarke KI-Anwendungen in Systemen mit begrenztem Platz oder Energiebudget – ein wichtiger Fortschritt für Wearables und sogar Satelliten.
Foundation Models: Optimieren statt komplett neu trainieren
Große KI-Basismodelle, sogenannte Foundation Models, haben 2024 ihren Nutzen in zahlreichen Branchen bewiesen. 2025 rücken jedoch kosten- und ressourcenschonende Optimierungen stärker in den Vordergrund. Verfahren wie Parameter-effizientes Tuning oder LoRA (Low-Rank Adaptation) ermöglichen es, aus umfassenden Basismodellen spezialisierte Teilmodelle zu erzeugen, ohne sie von Grund auf neu trainieren zu müssen. Kleinere, spezialisierte Modelle behalten die Leistungsfähigkeit der großen Systeme oft zu einem Bruchteil der nötigen Rechenleistung. Das senkt nicht nur die Kosten, sondern trägt auch zur Nachhaltigkeit bei, da der Energieverbrauch bei Training und Einsatz von KI zunehmend kritisch hinterfragt wird. Darüber hinaus entstehen lokalisierte Modelle, die speziell auf bestimmte Regionen oder Sprachen zugeschnitten sind und dadurch genauere Ergebnisse liefern.
Fortschrittliche KI-Agenten: Mehr Kontext, mehr Kollaboration
KI-Agenten erreichen 2025 eine neue Evolutionsstufe und können nuancierte Kontexte immer besser erfassen. Das steigert die Personalisierung von Interaktionen im Kund*innenservice, Gesundheitswesen oder Bildungsbereich. Zugleich werden Self-Improving Agents immer wichtiger: Sie enthalten eingebaute Feedbackschleifen, lernen aus ihren Erfahrungen und optimieren ihre Fähigkeiten – ganz ohne Eingreifen von außen. Darüber hinaus setzt sich das Konzept der Multi-Agent Collaboration durch. Hierbei übernehmen verschiedene KI-Agenten jeweils Spezialaufgaben und koordinieren sich untereinander, um komplexe Probleme wie logistische Planungen oder den Ablauf bei Großschadenslagen effizient zu lösen.
Fazit
Das laufende Jahr wird wie das letzte – und vermutlich wie noch viele kommende Jahre – von künstlicher Intelligenz geprägt sein. Zwar müssen wir bei Aspekten wie Datensicherheit, Transparenz und dem Schutz persönlicher Informationen weiterhin aufmerksam bleiben, doch gleichzeitig eröffnen sich durch KI ganz neue Chancen für Innovation, Effizienz und Wachstum. Schon jetzt arbeiten Unternehmen, Regierungen und Forschungseinrichtungen verstärkt Hand in Hand, um Standards zu definieren und verantwortungsvolle Lösungen zu entwickeln. Damit können wir das enorme Potenzial dieser Technologie nutzen und zugleich sicherstellen, dass Fortschritt und Vertrauen im Einklang stehen.
Der Autor Ramprakash Ramamoorthy ist Director of AI Research bei Zoho.
Generative KI – Chancen für Startups
Wie Startups mit drei Tipps die Kosten und Performance für ihren KI-Case optimieren können.

Das deutsche KI-Startup-Ökosystem befindet sich 2025 weiter im Gründungsboom. Nie gab es mehr KI-Gründer in Deutschland und alleine im vergangenen Jahr wuchs die Zahl der KI-Startups um 35 Prozent. Auch für Investoren bleibt KI eines der vielversprechendsten Themen. Sie investierten 2024 fast 200 Millionen mehr in deutsche KI-Jungunternehmen als im Vorjahr. Vor allem deutsche KI-Startups im B2B-Bereich mit branchenspezifischen Lösungen für die Fertigung, Logistik und das Gesundheitswesen haben aktuell ausgezeichnete Wachstumschancen. Sie können von einer engen Vernetzung mit dem Mittelstand und führenden Forschungseinrichtungen in Deutschland profitieren. Typische KI-Anwendungsfelder von aufstrebenden deutschen Startups wie BlueAvenir, PlanA, Smart Reporting oder nnamu liegen dabei u.a. in der Softwareentwicklung, Sprach- und Bilderkennung oder datenbasierten Analyseverfahren zur Entscheidungsunterstützung.
KI-Chancen und die häufigsten Hürden
Während die Gesamtfinanzierung für KI-Projekte wächst, scheitern in der Praxis vielversprechende Ideen von Startups aber auch immer wieder am konkreten Business Case. Langfristig können sich insbesondere unterschätzte Kosten und eine schwache Performance der Anwendungen wie ein Bremsklotz auswirken. Die Nutzung von Sprachmodellen ist dank API-basierten Diensten sehr einfach geworden, dennoch können sich hier bei großen Volumina und ungeschickter Modell-Wahl schnell höhere Kosten aufsummieren. Gleichzeitig spielt die Performance des KI-Systems eine wichtige Rolle für eine langfristige Profitabilität. So führen besonders hohe Latenzzeiten bei der Model-Inference zu trägeren Systemen, die Nutzeranfragen nicht schnell genug verbreiten und die Attraktivität der Anwendung erheblich mindern.
Gerade Startups setzen oft auf die Cloud, da sie unabhängig vom technischen Hintergrund einfachen Zugang zu KI und die nötige Flexibilität ermöglicht. Drei innovative Methoden erweisen sich in der Cloud als besonders hilfreich, um eine optimale Balance zwischen Leistungsfähigkeit, Kosten und Nutzerfreundlichkeit für die Umsetzung des eigenen KI-Anwendungsfalls zu finden. So kann jeder Gründer seine KI-Ideen schnell, kosteneffizient und sicher umsetzen.
KI-Modellauswahl: Kleiner, aber schneller
Für Startups ist es entscheidend, das richtige KI-Modell für ihren Anwendungsfall zu wählen, um Kosten und Leistung optimal auszubalancieren. Anbieter wie Anthropic, AI21 Labs, Meta, Cohere, Mistral und Amazon bieten Modelle in verschiedenen Größen an – kleinere Varianten sind oft günstiger und reagieren mit kürzerer Antwortzeit. Nach einer ersten Validierung mit einem leistungsstarken Modell können Startups Tools wie Amazon Bedrock Evaluations nutzen, um herauszufinden, welches Modell in welcher Größe ähnliche Ergebnisse bei geringeren Kosten oder höherer Geschwindigkeit liefert. Diese Evaluierungen helfen dabei, die Leistungsfähigkeit und Effizienz zu beurteilen, indem Metriken wie semantische Robustheit und Genauigkeit bei der Informationsabfrage analysiert werden. Durch eine Kombination aus automatisierten Bewertungen mit Large Language Models (LLMs) und menschlicher Prüfung können Startups die beste Balance zwischen Leistung, Kosten und Geschwindigkeit für ihre individuellen Bedürfnisse finden.
Prompt Caching: Zwischenspeicherung für wiederkehrende Anfragen
Eine weitere smarte Methode, um die Antwortzeiten von KI-Modellen zu verkürzen und Kosten zu senken, ist das Prompt-Caching. Wenn ein digitaler Assistent sich bei jeder Frage immer wieder die gleichen Grundinformationen durchlesen müsste, dann wäre das extrem ineffizient. Genau hier setzt das Prompt-Caching an und speichert feste Teile des Prompts, wie grundlegende Anweisungen für das LLM, direkt in der Inferenz-Hardware zwischen. Nur die variablen, nutzerspezifischen Daten, die sich von Aufruf zu Aufruf verändern, werden bei jeder Anfrage neu übermittelt. Das spart nicht nur Rechenleistung, sondern sorgt auch für schnellere Antworten – ideal für Anwendungen wie Chatbots oder personalisierte KI-Assistenten, die häufig wiederkehrende Anfragen verarbeiten. Mit Amazon Bedrock lässt sich diese Technik einfach nutzen, indem das Caching und das Setzen von Cache-Checkpoints automatisch verwaltet werden können. Sobald das Caching aktiviert ist, übernimmt der Service das gesamte Cache-Management automatisch. So lassen sich bis zu 90 Prozent kosteneffiziente KI-Anwendungen mit minimalem Konfigurationsaufwand realisieren.
Model Distillation: KI-Wissen auf das Wesentliche fokussieren
Eine dritte bewährte Option ist Model Distillation. Das Prinzip ist einfach und kann vereinfacht als ein intelligenter Wissenstransfer in der Welt der KI beschrieben werden. Also so, als ob ein erfahrener Lehrer (ein großes, leistungsstarkes KI-Modell) seinem Schüler (einem kleineren, schnelleren Modell) die wichtigsten Konzepte beibringt. Dabei nutzt dieser Prozess synthetische Trainingsdaten, die auf realen Anwendungsbeispielen basieren. Das Ergebnis ist ein kompakteres Modell, das für einen spezifischen Anwendungsfall ähnlich gute Ergebnisse liefert wie das größere Modell, dabei aber deutlich schneller und kostengünstiger arbeitet. Destillierte Modelle in Amazon Bedrock können bis zu fünfmal schneller arbeiten und die Kosten um bis zu 75 Prozent senken im Vergleich zu den Originalmodellen – bei Genauigkeitsverlust von weniger als zwei Prozent.
Fazit
Erfolgreiche KI-Lösungen können mit der Cloud kosteneffizienter und performanter umgesetzt werden. Das erfordert zwar ein wenig technisches Know-how, aber die Cloud reduziert die Einstiegshürden erheblich und ermöglicht es auch kleineren Unternehmen, mit drei bewährten Methoden das KI-Potenzial effektiver auszuschöpfen. Startups haben mit der Cloud die maximale Flexibilität, um entweder von den leistungsfähigsten vortrainierten LLMs zu profitieren oder alternativ eigene LLMs mit maßgeschneiderter Infrastruktur zu entwickeln bzw. auf fertige Dienste mit integrierter generativer KI zuzugreifen.
Der Autor Constantin Gonzalez ist Principal Solutions Architect bei Amazon Web Services (AWS) in München.
Die Autorin Jennifer Grün ist Senior Specialist - Machine Learning bei AWS in München.
So schafft KI neue CEO-Realitäten
Künstliche Intelligenz (KI) ist in der Führungsebene angekommen, doch welche Konsequenzen hat das für CEOs? Eine Studie enthüllt Eingeständnisse deutscher und internationaler CEOs zum Thema KI.

Der aktuelle „Global AI Confessions Report: CEO Edition" der KI-Plattform Dataiku enthüllt Eingeständnisse deutscher und internationaler Führungskräfte, die hinsichtlich KI einer neuen Realität gegenüberstehen. Wichtige Insights aus der Studie:
- 95 Prozent der deutschen CEOs geben zu, dass ein KI-Agent bei Geschäftsentscheidungen einen gleichwertigen oder besseren Rat geben könnte als ein menschliches Vorstandsmitglied.
- 69 Prozent der deutschen CEOs glauben, dass eine gescheiterte KI-Strategie oder eine KI-induzierte Krise dazu führen wird, dass ein CEO bis Ende 2025 aus dem Amt gedrängt wird.
- Mit 62 Prozent bzw. 66 Prozent rangieren deutsche CEOs unter allen globalen CEOs an der Spitze, wenn es um die Messung von Kosten- und Ressourcenanforderungen und Skalierbarkeit von KI geht.
- 78 Prozent der deutschen CEOs sind der Meinung, dass EU-Vorschriften die KI-Nutzung in ihren Organisationen verlangsamen könnten.
Für die Studie, die von The Harris Poll durchgeführt wurde, wurden im Januar und Februar 2025 über 500 CEOs in den USA, Großbritannien, Frankreich und Deutschland befragt. Die Unternehmen der insgesamt 100 befragten deutschen CEOs rangieren bei einem Jahresumsatz von mehr als 250 Millionen Euro und eine Unternehmensgröße von mehr als 500 Mitarbeitenden.
Der Bericht enthüllt: Die KI-Strategie ist zum entscheidenden Faktor für das Überleben von Unternehmen geworden. Die Ergebnisse belegen zudem, dass die Konsequenzen des Einsatzes von KI auch auf höchster Entscheiderebene angekommen sind.
KI kommt im Vorstand an
Laut Aussagen deutscher Geschäftsführer stellt KI die Rolle der Entscheidungsfindung auf Vorstandsebene zunehmend in Frage. Zu den wichtigsten Ergebnissen gehören:
- 93 Prozent der deutschen CEOs sind der Meinung, dass sie davon profitieren würden, ein aktuelles Vorstandsmitglied durch einen KI-Experten zu ergänzen oder zu ersetzen.
- 95 Prozent der deutschen CEOs geben zu, dass ein KI-Agent bei Geschäftsentscheidungen einen gleichwertigen oder besseren Rat geben könnte als ein menschliches Vorstandsmitglied.
KI-Strategie: Übernahme von Kernkompetenzen
Auch auf den darauf folgenden Rängen zeichnet sich ab, dass Künstliche Intelligenz das Berufsprofil der Führungsebene deutlich wandeln kann:
- 90 Prozent der deutschen CEOs sind der Meinung, dass KI einen besseren Strategieplan entwickeln kann als ein Mitglied ihres Führungsteams (Vizepräsidenten bis zur Vorstandsebene).
- 49 Prozent der CEOs deutscher Unternehmen schätzen, dass sie 3–4 Teammitglieder durch KI ersetzen könnten, um strategische Planung zu betreiben. Ganze 13 Prozent gaben an, dass sie sogar 7 oder mehr Führungskräfte für die gleiche Aufgabe ersetzen könnten.
Keine KI-Strategie ist allerdings auch keine Antwort, denn
- 69 Prozent der deutschen CEOs glauben, dass eine gescheiterte KI-Strategie oder eine KI-induzierte Krise dazu führen wird, dass ein CEO bis Ende 2025 aus dem Amt gedrängt wird.
- 76 Prozent der deutschen CEOs sind der Meinung, dass sie Gefahr laufen, ihren Job zu verlieren, wenn sie nicht innerhalb von 2 Jahren messbare KI-getriebene Geschäftsgewinne erzielen.
KI als Kernkompetenz zukünftiger CEOs
Führungskräfte müssen sich laut der Umfrage auf dem Jobmarkt zukünftig anders aufstellen. KI-Kompetenz gilt als “Must-Have”, was auch aus dem Berufsalltag deutscher CEOs hervorgeht.
- 31 Prozent der deutschen CEOs sind der Meinung, dass Erfahrung in der Umsetzung einer erfolgreichen KI-Strategie oder deren Implementierung in 3–4 Jahren eine der wichtigsten Kompetenzen sein wird, nach denen Vorstände bei der Bewertung eines potenziellen Geschäftsführers suchen werden.
- 82 Prozent der deutschen CEOs geben an, dass ihre direkte Beteiligung an KI-bezogenen Entscheidungen im vergangenen Jahr zugenommen hat.
- 70 Prozent der deutschen CEOs geben an, an mehr als der Hälfte der KI-Entscheidungen ihres Unternehmens beteiligt zu sein.
Die „KI-Commodity-Falle“ und KI-Washing: Blinde Flecken der Geschäftsführung
Trotz zunehmender Abhängigkeit von KI sind sich viele CEOs der Gefahren schlecht umgesetzter KI-Strategien in gefährlicher Weise nicht bewusst.
- 87 Prozent der CEOs tappen weltweit in die „KI-Falle“ und sind zuversichtlich, dass KI-Standardagenten genauso effektiv sein können wie maßgeschneiderte Lösungen für hochgradig nuancierte vertikale oder domänenspezifische Geschäftsanwendungen.
- CEOs deutscher Unternehmen gehen im internationalen Vergleich mit 39 Prozent am ehesten davon aus, dass es bei eigenen KI-Initiativen mehr um die Optik als um die Wirkung geht. Dieser Umstand nennt sich auch “AI Washing” und zielt darauf ab, KI-Innovation vorzuspielen, anstatt einen bedeutenden Mehrwert zu schaffen.
Worauf deutsche CEOs allerdings vergleichsweise viel Wert legen, sind Kostenkontrolle und Skalierbarkeit von KI-Lösungen. Mit 66 Prozent rangieren deutsche CEOs unter allen globalen CEOs (62 Prozent) an der Spitze, wenn es um die Messung von Kosten- und Ressourcenanforderungen und Skalierbarkeit als Kernattribute innerhalb ihres Rahmens für die regelmäßige Bewertung der Effektivität von KI-Analysen, -Modellen und -Anwendungen geht.
KI-Governance und regulatorische Unsicherheit
Während sich die Einführung von KI beschleunigt, schaffen schlechte Governance und regulatorische Unsicherheit erhebliche Hindernisse:
- 25 Prozent der deutschen CEOs geben an, dass sich ein KI-Projekt aufgrund regulatorischer Unsicherheiten verzögert hat, während 35 Prozent zugeben, dass ein Projekt aus solchen Umständen abgebrochen oder aufgegeben wurde.
- 78 Prozent der deutschen CEOs sind der Meinung, dass EU-Vorschriften die KI-Nutzung in ihren Organisationen verlangsamen könnten.
- 94 Prozent der CEOs vermuten weltweit, dass Mitarbeitende GenAI-Tools wie ChatGPT, Claude und Midjourney ohne Genehmigung des Unternehmens verwenden (bekannt als „Schatten-KI“) und damit ein massives Governance-Versagen innerhalb von Organisationen aufdecken.
Den vollständigen „Global AI Confessions Report: CEO Edition“ findest du hier
Acrylic Robotics: die Zukunft des Kunstmarkts?
Die Gründerin und Künstlerin Chloë Ryan will mit Acrylic Robotics den Kunstmarkt neu definieren: Mithilfe eines Roboterarms, der Gemälde Pinselstrich für Pinselstrich rekonstruiert, schlägt das Start-up die Brücke zwischen traditioneller Kunst und moderner Technologie, um Kunstwerke einem breiten Publikum zugänglich zu machen.

Kunst skalierbar machen
Die in Montreal ansässige Acrylic Robotics-Gründerin und CEO Chloë Ryan, selbst Künstlerin, hatte die Idee aus einer persönlichen Erfahrung heraus. Ein Gemälde zu schaffen, erfordert viel Zeit; und am Ende kann das Werk nur einmal verkauft werden. Inspiriert von der Skalierbarkeit der Musik- und Buchbranche entwickelte Chloë Ryan ein Konzept, mit dem Kunstwerke präzise reproduziert werden können – ohne an Qualität oder künstlerischem Anspruch zu verlieren. Gemeinsam mit Walker Singleton, Head of Engineering des Start-ups, entstand so ein interdisziplinärer Ansatz, der Robotik, Softwareentwicklung und mechanische Präzision vereint.

Der Roboter: Präzision in jedem Pinselstrich
Das Herzstück von Acrylic Robotics ist ein Roboterarm, der Gemälde detailgetreu reproduzieren kann. Der Prozess unterscheidet sich je nach Ursprung des Kunstwerks. Digitale Kunstwerke, die auf einem Tablet oder Computer erstellt wurden, können direkt an den Roboter übermittelt werden, da Daten wie Pinselrichtungen, Druckstärke und Farbwahl bereits digital vorliegen. Analoge Gemälde erfordern hingegen eine zusätzliche Analyse. Hier kommt ein speziell trainiertes KI-Modell zum Einsatz, das die wesentlichen Parameter berechnet, um eine möglichst präzise Reproduktion zu erzielen. Besonders wichtig ist es Acrylic Robotics, den Künstler kontinuierlich in den Prozess einzubeziehen. Es geht nicht darum, den kreativen Schaffensprozess zu ersetzen, sondern ihn zu ergänzen und weiterzuentwickeln.
Kunst für alle: Ein Service für Künstler und Käufer
Acrylic Robotics bietet seine Technologie Künstlern als Dienstleistung an. Über die Website können Künstler eine Zusammenarbeit anfragen, bei der ihre Werke in limitierter Auflage reproduziert werden. Käufer erhalten dadurch hochwertige Acrylreproduktionen, ohne den Wert des Originals zu schmälern. Das Konzept verbindet Exklusivität mit breiterer Zugänglichkeit und positioniert sich als innovative Lösung im Kunstmarkt.
Europäisches KI-Gesetz in Kraft getreten
Der AI Act ist am 2. Februar 2025 in Kraft getreten und gilt für alle Unternehmen und Organisationen mit Angestellten, die KI im Auftrag des Unternehmens nutzen. Bei Nichteinhaltung drohen Geldbußen.

Künstliche Intelligenz (KI) entwickelt sich rasant und findet in immer mehr Bereichen, auch in Unternehmen, Anwendung. Deshalb schafft Europa mit dem AI Act einen einheitlichen Rechtsrahmen, den alle europäischen Unternehmen einhalten müssen.
Nicht allen Arbeitgebenden ist bewusst, dass die europäische Verordnung bereits in Kraft getreten ist. Sie gilt für jede Organisation – unabhängig von ihrer Größe – und ist verbindlich. Das Gesetz betrifft somit alle Unternehmen und Organisationen mit Angestellten, die KI im Auftrag des Unternehmens nutzen, unabhängig vom Beschäftigungsverhältnis. Europa überlässt einen Teil der Durchführung und Umsetzung des KI-Gesetzes den Mitgliedstaaten selbst – ebenso wie die Verhängung von Geldbußen bei Nichteinhaltung. Die konkrete Höhe dieser Bußgelder wird erst am 2. August 2025 feststehen. Dennoch sollten Unternehmen ab dem 2. Februar lieber gut aufgestellt sein, da die Bußgelder auch rückwirkend in Kraft treten können.
Verbindliche KI-Policy und adäquate KI-Kompetenzen
Unternehmen sind dafür verantwortlich, dass ihre Belegschaft über ausreichende KI-Kenntnisse verfügt. Dabei ist es nicht erforderlich, dass jeder Mitarbeitende umfassendes Wissen über KI besitzt. Es muss sichergestellt werden, dass alle Mitarbeitenden, die mit KI-Systemen arbeiten, über die notwendigen Kenntnisse und Fähigkeiten verfügen. So können sie informierte Entscheidungen treffen und potenzielle Risiken erkennen. Dazu gehören alle Mitarbeiter*innen, die mit KI-Systemen arbeiten – vom Anbietenden bis zum/zur Endnutzer*in – und erstreckt sich also nicht nur auf IKT-Fachleute in Unternehmen.
Das KI-Gesetz legt nicht genau fest, welche Maßnahmen Arbeitgebende ergreifen müssen, damit alle beteiligten Personen ausreichende KI-Kenntnisse erwerben. Arbeitgebende sollten daher nicht nur die technischen Kenntnisse, Erfahrungen, Ausbildungen und Fortbildungen der Mitarbeitenden berücksichtigen, sondern auch den Kontext, in dem die KI-Systeme genutzt werden, sowie die betroffenen Personen oder Personengruppe.
Arbeitgebende können selbst entscheiden, welche Kenntnisse und Fähigkeiten ihre Mitarbeitenden benötigen und wie sie diese angeeignet werden können. Mögliche Maßnahmen sind allgemeine KI-Schulungen, die Grundkenntnisse vermitteln und auf verschiedene Zielgruppen zugeschnitten sein können. Dabei kann es sich um spezifische Schulungen handeln, die sich auf bestimmte Tools und Anwendungen konzentrieren, aber auch um die Zusammenarbeit zwischen juristischen und technischen Teams.
Arbeitgebenden wird empfohlen, eine KI-Policy mit klaren Richtlinien für den Einsatz von KI im Unternehmen zu erstellen. Darin kann festgehalten werden, welche Anwendungen von wem und auf welche Weise genutzt werden dürfen. In dieser Richtlinie kann der Arbeitgebende auch Hinweise darauf geben, wie die Mitarbeitenden ausreichend mit KI vertraut bleiben können. Wie wird zum Beispiel vorgegangen, wenn sich im Unternehmen oder bei den Tools etwas ändert? KI-Kompetenz ist schließlich nichts Statisches. Wenn ein(e) Mitarbeiter*in die Rolle wechselt, oder wenn die eingesetzten Tools sich ändern, muss der Arbeitgebende sicherstellen, dass die betreffende Person weiterhin über ausreichende KI-Kenntnisse verfügt.
Verbotene bestimmter KI-Systeme
Zum anderen verbietet der AI Act ab dem 2. Februar 2025 den Einsatz von KI-Systemen, die gegen europäische Normen und Grundwerte verstoßen, indem sie beispielsweise Grundrechte missachten. Darunter fallen auch KI-Systeme für Social Scoring, die Menschen aufgrund ihres sozialen Verhaltens oder persönlicher Eigenschaften bewerten, oder KI-Systeme zur Emotionserkennung am Arbeitsplatz oder im Bildungsbereich. Arbeitgeber sollten daher die eingesetzten KI-Systeme im Hinblick auf die Identifizierung verbotener Systeme und die Einstellung ihrer Nutzung überprüfen.
Ab August 2025 drohen Geldbußen - auch rückwirkend
Ab dem 2. August 2025 drohen Unternehmen und Organisationen, die verbotene KI entwickeln oder einsetzen, hohe Geldbußen. Die Überwachung und die Festlegung der Höhe der Strafen liegen vollständig in der Verantwortung der EU. Die Höhe der Geldbußen sowie die Aufsicht hierüber liegen vollständig in der Verantwortung der EU. Bis zu 35 Millionen Euro Strafe oder sieben Prozent des weltweiten Jahresumsatzes des vorangegangenen Geschäftsjahres – je nachdem, welcher Betrag höher ist – können verhängt werden.
Der Autor Sander Runkel ist Fachanwalt für Arbeitsrecht und Manager Tax & Legal bei SD Worx Deutschland
Wahlprogramme 2025: Innovationsförderung, Quo vadis?
So plant die Politik die Zukunft der Innovationsförderung. Eine Analyse von Efe Duran Sarikaya, CEO der Fördermittelberatung EPSA Deutschland.

Mit den Bundestagswahlen 2025 steht Deutschland vor wegweisenden Entscheidungen. Fördermittel, ein zentrales Instrument für Innovation, Nachhaltigkeit und Unternehmensentwicklung, stehen im Fokus der Parteiprogramme. Doch wie gestalten die Parteien die Zukunft der Förderpolitik, und welche Schwerpunkte setzen sie?

Efe Duran Sarikaya, CEO der Fördermittelberatung EPSA Deutschland, liefert einen Überblick über die Pläne der politischen Parteien zur Zukunft der Förderpolitik.
Dabei werden nicht nur die Unterschiede beleuchtet, sondern auch, welche Auswirkungen die jeweiligen Wahlprogramme auf die Unternehmen und den Wirtschaftsstandort Deutschland haben können.
Nachhaltigkeit: Sinnorientierung statt Image-PR und Greenwashing
Im Interview: Co-Gründer Günther Reifer vom Terra Institute.

Als Experten mit langjähriger Erfahrung und Kompetenz in der Beratungstätigkeit gründeten Evelyn Oberleiter und Günther Reifer vor 10 Jahren gemeinsam das Terra Institute: Ein Beratungsunternehmen mit Schwerpunkt in Geschäftsmodellinnovation, Nachhaltigkeitsmanagement, Produktentwicklung, Kreislaufwirtschaft und sinnorientiertem, transformativem Leadership. Das Terra Institute hat heute 25 Mitarbeiter in Deutschland, Österreich und Italien.
Im Interview zum Thema Nachhaltiges Wirtschaften: Terra Institute-Co-Gründer Günther Reifer.
Heutzutage macht das Thema Nachhaltigkeit einen großen Teil vom Image eines Unternehmens aus. Wer nicht nachhaltig ist, geht nicht mit dem Puls der Zeit. Doch was ist überhaupt mit Nachhaltigkeit gemeint und wie kann sie in einem Unternehmen umgesetzt werden?
Nachhaltigkeit hat verschiedene Definitionen. Die gängigste besagt: „Nachhaltigkeit gewährleistet, dass zukünftige Generationen nicht schlechter gestellt sind, ihre Bedürfnisse auf der Erde zu befriedigen als die gegenwärtig lebende Generation.“ Für ein produzierendes Unternehmen bedeutet das konkret: Die Verwendung von nachwachsenden Rohstoffen, ressourcenschonende Produktion, Vermeidung von Müll, ein möglichst geringer CO2-Ausstoß und im besten Fall ein recyclebares Endprodukt. Wenn ein Produkt all diese Kriterien erfüllt, kann es sich ökologisch nachhaltig nennen.
Ein Beispiel: Ein T-Shirt aus 100 Prozent Bio-Baumwolle, dessen Aufdruck jedoch giftige Chemikalien enthält, ist keineswegs nachhaltig. Es ist wichtig, dass wir den gesamten Produktionsprozess betrachten – vom Design zum finalen Produkt bis zur Rückführung in den Wertstoffkreislauf.
Wenn ein Unternehmen ein ökologisch nachhaltiges Produkt herstellt, ist dann das gesamte Unternehmen nachhaltig?
Noch lange nicht. Nachhaltigkeit steht nämlich auf drei Standbeinen: Umwelt, Gesellschaft und Wirtschaft. Neben den ökologischen Aspekten bestimmen also noch soziale und ökonomische Faktoren, inwieweit ein Unternehmen nachhaltig ist. Die soziale Komponente widmet sich dabei in erster Linie dem Wohlergehen von Mensch und Gesellschaft. Für Mitarbeiter des Unternehmens bedeutet das zum Beispiel ein fairer Lohn, geregelte Arbeitszeiten und Pausen sowie die Möglichkeit auf persönliche und berufliche Weiterentwicklung. Insbesondere der Aspekt Schulungen spielt wiederum eine wichtige Rolle für die ökologische Nachhaltigkeit des Unternehmens.
Um ökologische Nachhaltigkeit ganzheitlich im Unternehmen zu etablieren, muss zunächst ein gemeinsames Bewusstsein dafür geschaffen werden. Bei Führungskräften genauso wie bei allen Mitarbeitern. Durch regelmäßige Coachings der Mitarbeiter – sei es persönlich oder digital – werden Nachhaltigkeit und Klimaschutz zur Angelegenheit des gesamten Unternehmens. Alle sind auf dem neuesten Stand und ziehen am selben Strang.
Was sind die ökonomischen Faktoren, die ein Unternehmen nachhaltig machen? Und stehen diese nicht im Konflikt mit den ökologischen Aspekten der Nachhaltigkeit?
Die meisten denken wahrscheinlich, dass sich Umwelt und Wirtschaft von vorneherein ausschließen. Das stimmt so jedoch nicht. Fakt ist: Nur ein Unternehmen, was auch ökonomisch nachhaltig ist, wird langfristig bestehen bleiben und so seinen Beitrag für eine bessere Zukunft leisten können. Die Umstellung auf eine ökologisch nachhaltige Produktion ist dabei kein Verlustgeschäft. Wenn Sie zum Beispiel alles regional produzieren statt einzelne Produktionsprozesse ins Ausland zu verlagern, dann sind auch Ihre Lieferketten kürzer. Das spart erhebliche Transportkosten und CO2. Zudem sind regionale Lieferketten transparenter und daher leichter zu managen.
Auch im Fall einer globalen Krise wie der Corona-Pandemie ist das Risiko einer Produktionsunterbrechung deutlich reduziert. In innovative und verbesserte Fertigungstechnologien zu investieren, zahlt sich auch aus. Material-, Wasser- und Energieverbrauch werden so reduziert und anfallende Abfallprodukte können recycelt werden. Nachhaltigkeit ist also nicht teurer, sondern langfristig gesehen sogar lukrativ.
Was sind die ersten Schritte für ein Unternehmen, um nachhaltig zu werden?
Die Bereitschaft für Veränderung ist immer der erste Schritt. Das gesamte Unternehmen – Führungskräfte wie Mitarbeiter – muss eine neue Sinnorientierung erfahren. Dafür werden zunächst die aktuellen sozioökonomischen Megatrends intensiv analysiert. Mit den gewonnenen Erkenntnissen wird anschließend der gesamte Betrieb durchleuchtet und aufgeräumt. Gemeinsam wird ermittelt, welche Kompetenzen Führungskräfte und Mitarbeiter mitbringen, was noch verbesserungswürdig ist und wie sich zukunftsrelevante Themen aus Nachhaltigkeit, Gesellschaft und Wirtschaft in das Unternehmen integrieren lassen. Dabei ist es wichtig, bestehende Strukturen zu überdenken, von alten Gewohnheiten loszulassen und sich neue Ziele zu setzen.
Natürlich ist so eine Neuorientierung, bei der alle drei Dimensionen der Nachhaltigkeit berücksichtigt werden, ein sehr komplexer Prozess, der für viele Unternehmen eine Herausforderung darstellt. Wir vom Terra Institute möchten Unternehmen in ihrem Umdenken bestärken und ihren Transformationsprozess tatkräftig unterstützen!
Meta verändert sich für Trump …
… doch was bedeutet der Wandel für die Plattform selbst und was für Influencer und Marken? Ein Kommentar von Philipp Martin, Gründer von Reachbird und Experte für Influencer Marketing im DACH-Raum.

In einer Zeit, in der soziale Medien unseren Alltag mehr denn je prägen, kündigt Meta, das Unternehmen hinter Facebook und Instagram, weitreichende Veränderungen an. Diese Entwicklungen könnten die Plattformen selbst und die Arbeit von Influencern und Marken grundlegend beeinflussen. Als Experte für Influencer Marketing analysiere ich die möglichen Auswirkungen dieser Umwälzungen.
Die Macht der sozialen Medien in Deutschland
Bevor wir uns den spezifischen Änderungen bei Meta zuwenden, lohnt ein Blick auf die derzeitige Bedeutung sozialer Medien in Deutschland. Laut aktuellen Statistiken von Meltwater (2024) nutzen mehr als 80% aller Einwohnerinnen und Einwohner in Deutschland Social Media – und das im Durchschnitt mehr als 1,5 Stunden täglich. Diese Zahlen unterstreichen die enorme Reichweite und den potenziellen Einfluss, den Plattformen wie Facebook und Instagram auf die öffentliche Meinungsbildung haben.
Metas neue Strategie: Abschied vom organisierten Faktencheck
Eine der gravierendsten Änderungen bei Meta betrifft den Umgang mit Faktenchecks. Bisher setzte das Unternehmen auf externe Organisationen, um die Richtigkeit von Informationen zu überprüfen. Nun plant Meta, ähnlich wie bei X (ehemals Twitter), auf die Schwarmintelligenz zu setzen. Meta-Gründer Mark Zuckerberg veröffentlichte ein Video, in welchem er Änderungen im Umgang mit Desinformation und Hate Speech auf seinen Plattformen ankündigte. Diese Entwicklung birgt erhebliche Auswirkungen auf den Wahrheitsgehalt der auf der Plattform geteilten Informationen. Besonders für Influencer und Marken, die auf ihre Glaubwürdigkeit angewiesen sind, entsteht eine neue Herausforderung.
Politische Implikationen
Der Übergang zu einem dezentralisierten System der Inhaltsüberprüfung könnte eine Annäherung an bestimmte politische Strömungen bedeuten. Es stellt sich die Frage, wie die Plattform und ihre Nutzer in Zukunft mit Falschinformationen umgehen werden. Diese Entwicklung könnte als eine Annäherung an die Politik der Republikaner gesehen werden, die durch die Änderungen möglicherweise begünstigt wird. Ein weiterer Aspekt der Änderungen betrifft den Umgang mit sogenannten schädlichen Inhalten. Meta plant, die Regeln in sensiblen Bereichen wie Migration oder Sexualität zu lockern. Diese Lockerung könnte zu einem Anstieg aggressiver, negativer und konfrontativer Beiträge führen. Eine stärkere Polarisierung der Plattform ist zu erwarten – ein Trend, der bereits auf anderen sozialen Netzwerken wie X zu beobachten ist.
Auswirkungen auf das Nutzerverhalten
Die mögliche Zunahme von Hassrede und polarisierenden Inhalten könnte das Nutzererlebnis auf Meta-Plattformen grundlegend verändern. Für Influencer und Marken bedeutet dies, dass sie sich möglicherweise in einem zunehmend negativen Umfeld bewegen müssen. Dies könnte nicht nur ihre Reichweite, sondern auch die Qualität ihrer Interaktionen mit Followern beeinflussen.
Trotz der potenziellen Risiken bietet die Nutzung von Schwarmintelligenz auch Chancen. Es bleibt abzuwarten, wie sich die neue Faktencheck-Strategie langfristig bewährt. Die Möglichkeit, dass jeder mitwirken kann, könnte für mehr Transparenz und schnellere, unkompliziertere Checks sorgen – ähnlich wie bei Wikipedia.
Zukünftig sollen laut Mark Zuckerberg nicht mehr autorisierte Faktenchecker für die Kontrolle sorgen, sondern die Community selbst – indem man mit Community-Notes, ähnlich wie es aktuell bei X bereits der Fall ist, auf falsche Informationen hinweisen kann. Dieser Community-Ansatz ist im ersten Moment nicht schlecht, sondern eine sinnvolle Ergänzung zu dem bestehenden System. Er wird jedoch ohne klare Moderation und ohne professionelle Faktenchecker kaum der Flut an Desinformation auf Social Media gerecht werden können. Vielmehr sollten beide Ansätze genutzt werden, um Desinformation einzudämmen.
Die Verantwortung der Plattformen in Krisenzeiten
Angesichts der bevorstehenden Wahlen und der anhaltenden globalen Krisen tragen Social-Media-Plattformen eine besondere Verantwortung. Gerade in Wahlkampf- und Krisenzeiten müssten sie eigentlich dieser Verantwortung gerecht werden. Diese Verantwortung nehmen sie jetzt nicht mehr wahr. Durch den positiven Effekt, dass über Social Media jede und jeder seine eigene Meinung kundtun und somit an demokratischen Prozessen und der Meinungsbildung uneingeschränkt teilhaben kann, gibt es auch Nachteile. Denn: Wer garantiert, dass es sich bei den veröffentlichten Inhalten um korrekte Informationen handelt? Was, wenn gezielt falsche Informationen über soziale Netzwerke gestreut werden? Gezielte Desinformation über Social Media in Verbindung mit den hohen Nutzerzahlen kann einen großen, negativen Einfluss auf unsere Gesellschaft haben.
Der europäische Kontext: Digital Services Act
Während die angekündigten Änderungen zunächst die USA betreffen, sind sie langfristig auch für den europäischen Markt relevant. Der Digital Services Act in der EU regelt den Umgang mit gezielter Desinformation. Es wird interessant sein zu beobachten, wie Meta diese Regelungen mit seinen neuen Ansätzen in Einklang bringen wird. Umso wichtiger ist es, dass von Seiten der Gesellschaft und auch von Seiten der Plattformen gewisse Regeln aufgesetzt und eingehalten werden. Einen rechtlichen Rahmen bietet in Europa der Digital Services Act, der den Umgang mit gezielter Desinformation regelt.
Auswirkungen auf die Influencer-Welt
Die Änderungen bei Meta haben zudem auch weitreichende Implikationen für die Influencer-Branche. Viele Influencer weltweit gelten als Expertinnen und Experten auf ihren Gebieten - egal ob Fitness- und Gesundheitsinfluencer, Finanzinfluencer oder auch Politikinfluencer. Mit tausenden oder gar Millionen von Abonnenten haben sie einen großen Einfluss und können – wie der Name schon sagt – beeinflussen! Bisher wurde der Content von Influencern nur sehr selten wirklich kontrolliert und eingeschränkt – dies kann durch die neuen Community-Notes auch einen positiven Einfluss auf falsch verbreitete Informationen durch Influencer haben, sofern sich die aktiven Communities der Influencer auch kritisch mit deren Content auseinandersetzen und darauf entsprechend reagieren.
Herausforderung Hate Speech
Ein besonders kritischer Punkt für Influencer ist der Umgang mit Hate Speech. Influencer sind meist täglich Hate Speech ausgesetzt. Eine Einschränkung von Hate Speech war und ist für Influencer von großem Interesse, um in einem positiven Umfeld ihre Inhalte veröffentlichen zu können. Sollte es zu einer Auflösung dieser Einschränkung kommen, so ändert sich die generelle Social Media Tonalität zum Negativen. Einen Vorgeschmack gibt hier ebenfalls die Plattform X, auf welcher es aktuell kaum Einschränkungen gibt und Hate Speech deshalb dort bereits zu einem oft negativ aufgeladenen Community-Klima führt.
Konsequenzen für Marken-Kollaborationen
Die möglichen Veränderungen im Kommunikationsklima auf Meta-Plattformen haben auch Auswirkungen auf die Zusammenarbeit zwischen Marken und Influencern. Die Ziele von Brands in der Zusammenarbeit mit Influencern liegen auf der Hand – es geht um Aufmerksamkeit, Interaktion und Abverkauf. Diese Ziele lassen sich vor allem dann erreichen, wenn das Umfeld positiv ist. Hate Speech bringt mit negativem Kommunikations-Klima auch die Ziele der Markenkommunikation in Gefahr – weshalb wir uns für positive Communities und eine Einschränkung von Hate Speech einsetzen sollten. Gleichzeitig bedeutet dies natürlich nicht, dass kritische Kommentare oder Feedback eingeschränkt werden – es geht rein um das Beschimpfen und Verunglimpfen von Social Media Nutzern.
Blick in die Zukunft: Anpassung und Verantwortung
Es bleibt abzuwarten, wie sich die aktuell angekündigten Änderungen in den USA etablieren werden und zu welchem Resultat dies führt. Für den europäischen Markt wird es vorerst keine Änderungen geben – jedoch sollte die Situation und Entwicklung von Marken, Agenturen und auch Nutzern und Influencern gut beobachtet werden.
Fazit: Eine neue Ära der digitalen Kommunikation
Die von Meta angekündigten Änderungen markieren möglicherweise den Beginn einer neuen Ära in der digitalen Kommunikation. Dieser Wandel bringt nicht nur Herausforderungen, sondern auch Chancen für Influencer und Marken mit sich, insbesondere hinsichtlich der Qualität des Contents und der Authentizität von Informationen.
Die kommenden Monate und Jahre werden zeigen, wie sich diese Veränderungen auf die Social-Media-Landschaft auswirken werden. Eines steht jedoch fest: Influencer, Marken und Nutzer müssen sich auf ein dynamischeres, möglicherweise kontroverseres Umfeld einstellen. Die Fähigkeit, sich anzupassen und verantwortungsvoll zu kommunizieren, wird mehr denn je über den Erfolg in der digitalen Welt entscheiden.
#noFilter
Fake News statt Fakten auf Social Media: Beginnt jetzt das Zeitalter der Liveblogs? Eine Einschätzung samt Tipps und To-do's von Naomi Owusu, CEO sowie Mitbegründerin von Tickaroo.

Mark Zuckerberg verkündete erst vor Kurzem, dass Meta in Zukunft ohne Fact-Checking auskommen soll. Stattdessen werden schon bald die Nutzer*innen über den Wahrheitsgehalt der Inhalte bestimmen – in einem Zeitalter von Bots und KI ist allerdings schon jetzt abzusehen, dass das nicht funktionieren wird und vermutlich auch gar nicht funktionieren soll. Die Instanzen, die bisher die Echtheit der Aussagen geprüft haben, seien nach Auffassung des Facebook-Gründers jedoch politisch nicht neutral. Fast zur selben Zeit von Zuckerbergs Ankündigung, führte ein politisch motivierter und unberechenbarer Milliardär auf seiner eigenen Plattform X ein Live-Interview mit der AfD-Vorsitzenden Alice Weidel, die in dem Gespräch zahlreiche Falschbehauptungen machte.
Diese Entwicklungen zwingen Medienschaffende sowie Leser*innen, sich 2025 ernsthaft mit den Alternativen zu Social Media zu befassen. Denn die gibt es!
1. Fakten statt Fame – Echtzeit Nachrichten durch Live-Blogs
Das schwindende Vertrauen in die klassischen Medien sorgte in der Vergangenheit dafür, dass sich Leser*innen über Facebook, Twitter und Co. informierten. Doch die zunehmende Verbreitung von Fake News in den sozialen Netzwerken fordert andere Kanäle, die genauso schnell und persönlich informieren, aber gleichzeitig den Wahrheitsgehalt sicherstellen. Live-Blogs sind für Journalist*innen ein ebenso unmittelbarer Weg zu ihrer Zielgruppe. Hier können sie sich transparent und menschlich präsentieren, indem sie ihr Publikum näher in den Entstehungsprozess der Geschichten hinter den Schlagzeilen einbeziehen. Durch Dialoge und Engagement können sie eine Bindung zur Leserschaft aufbauen. Videos, die ihre Arbeit zeigen, machen sie nahbarer und vertrauenswürdiger. Transparenz, etwa durch Erklärungen zur Quellenprüfung oder zur Verifizierung von Informationen, baut Glaubwürdigkeit auf, bekämpft Desinformation und stärkt das Verhältnis zwischen Medien und Öffentlichkeit – und gerade das wird in 2025 entscheidend sein.
2. Entertainment im Micro-Content für Macro-Erfolg
Kurzvideos sind nicht erst seit der Einführung von TikTok beliebt, doch die Plattform hat den Trend weiter angefacht und ihre Popularität ist ungebrochen. Nachrichtenportale müssen in 2025 verstärkt auf dieses Format setzen, um insbesondere junge Leser*innen als treue Konsument*innen zu gewinnen. Allerdings können Medienschaffende noch einen Schritt weiter denken, hin zu interaktiven Mikro-Inhalten, die den Bedürfnissen nach Inspiration, Ablenkung und Verbindung gerecht werden. Dynamische Live-Blog-Formate wie Q&As, Umfragen, Kommentare und Reaktionen ermöglichen Echtzeit-Interaktionen. Sie können mit Live-Updates kombiniert und in den sozialen Netzwerken geteilt werden. Dadurch gewinnen Nachrichtenorganisationen die Aufmerksamkeit der Nutzer*innen und bleiben im Wettbewerb mit Social Media konkurrenzfähig.
3. Video Killed the Radio Star und Mobile das TV!
Fernsehen ist so 90er-Jahre! Die Mehrheit der Konsument*innen liest ihre Nachrichten über das Smartphone. Eine Ausrichtung auf mobile, responsive Designs ist also auch in 2025 entscheidend. Wer darüber hinaus ein „Second-Screen-Erlebnis“ ermöglicht, bietet durch Echtzeit-Statistiken, Analysen oder Hintergrundberichte ein immersives Erlebnis für Nutzer*innen und damit einen Mehrwert für ihr Seherlebnis. Gerade für Nachrichtenformate, Event- und Sportberichterstattung wird dieses Feature immer wichtiger.
4. KI im Newsroom: Zwischen Skepsis und Effizienz
Das Thema künstliche Intelligenz (KI) ist noch lange nicht erledigt, doch gerade Journalist*innen haben Bedenken hinsichtlich der Nutzung. Während KI-generierte Inhalte für viele Medienschaffende und ihr Publikum noch außerhalb der Komfortzone liegen, wird die Technologie zunehmend in Bereichen wie Übersetzungen, Überschriften- und Social-Media-Zusammenfassungen sowie Datenanalysen eingesetzt. Denn sie kann Lücken in Geschichten identifizieren, Verbesserungen vorschlagen, Texte korrekturlesen und den Tonfall an verschiedene Zielgruppen anpassen. In Kombination mit Tracking-Funktionen kann KI zudem den optimalen Veröffentlichungszeitpunkt und relevante Themen oder Formate bestimmen. Damit wird sie die Arbeitsprozesse in Nachrichtenredaktionen effizienter gestalten und Redakteur*innen den Freiraum geben, sich auf die Erstellung authentischer, leserzentrierter Inhalte zu fokussieren.
5. Näher dran durch hyperlokale Inhalte
In einem wettbewerbsintensiven Umfeld ist das Verständnis für die eigene Zielgruppe essenziell. Durch maßgeschneiderte Inhalte können Medienorganisationen stärkere Bindungen aufbauen und gleichzeitig ihre Reichweite vergrößern. Lokale Zeitungen haben es in der digitalen Ära schwer, da sie Werbekunden an Plattformen wie Google oder Facebook verlieren und ihr Publikum zunehmend auf Nischenangebote umsteigt. Dennoch wird die Nachfrage nach hyperlokalen Inhalten weiter wachsen, da die Meldungen die Menschen vor Ort einbeziehen und dem Publikum das Gefühl geben, gesehen zu werden. Insbesondere die Sportberichterstattung ist ein strategisches Asset für Medienschaffende, da sie die starke Verbindung der Fans zu heimischen Teams nutzt, um persönliche Beziehungen zu Leser*innen aufzubauen. Die so geschaffenen Inhalte können das Vertrauen der Leserschaft zurückgewinnen und lokale Bindungen stärken. Dieser Ansatz gilt allerdings nicht nur für Sport. Medien, die gezielt kleinere, spezifische Gruppen ansprechen und deren Leben sowie Begeisterung widerspiegeln, können ihre Reichweite erhöhen und Abonnementmodelle fördern. Während aktuelle Nachrichten ein breites Publikum anziehen, sorgen Nischeninhalte für langfristiges Interesse.
Die Nachrichten der Zukunft sind transparent
In einer Zeit, in der Falschinformationen auf Social Media den Diskurs prägen, gewinnen alternative Nachrichtenformate an Bedeutung. Live-Blogs sind schon lange, aber insbesondere in 2025, eine Alternative, um Echtzeit-News mit Transparenz und Nähe zu verbinden. Sie ermöglichen es Journalist*innen, authentisch zu berichten, den Entstehungsprozess ihrer Inhalte nachvollziehbar zu machen und ihre Leserschaft aktiv einzubeziehen. Durch Dialog und Interaktion können Medienhäuser ihre Glaubwürdigkeit stärken und Loyalität aufbauen. Statt Likes und viralen Trends stehen hier Fakten, Vertrauen und die Nähe zum Publikum im Mittelpunkt – und genau das braucht ein moderner Journalismus.
Die Autorin Naomi Owusu ist CEO und Co-Founder von Tickaroo, eine Live Blog-Plattform für Text- und Multimedia-Inhalte. Seit der Gründung 2011 setzt sich die studierte Psychologin mit ihrem Team für den Ausbau des Produktportfolios und die Optimierung des Live-Content-Tools ein.
Was gehört in eine KI-Policy?
Recht für Gründer*innen: Über den verantwortungsvollen Umgang mit KI.

Künstliche Intelligenz (KI) ist längst Teil unseres Alltags und hält in Unternehmen auch zunehmend Einzug. Ob beim Erstellen von Texten, in der Datenanalyse oder bei der Automatisierung von Routineaufgaben – KI ist ein starkes Werkzeug, das Unternehmen viele Vorteile bieten kann. Doch mit diesen Vorteilen kommen auch Verantwortung und Risiken, die eine klare und durchdachte KI-Policy erfordern.
Diese Einleitung zu einem Artikel über KI-Policies ist KI-generiert. Es ist so schön bequem und schnell gemacht: eines der gängigen LLM-Systeme online aufrufen, beispielsweise ChatGPT, und binnen Sekunden ist der Artikel fertig.
Ihr kennt das im Privaten, vor allem aber auch im Arbeitsumfeld. KI-Tools sind aus der Arbeitswelt nicht mehr wegzudenken. Die Nutzung von KI – insbesondere für berufliche Aufgaben – birgt jedoch Risiken. Manche KI neigt, falsch trainiert, zu diskriminierenden Entscheidungen, was z.B. im HR-Bereich gefährlich ist. Unbedacht erstellte Prompts können den Schutz von Geschäftsgeheimnissen aufs Spiel setzen. Die Datenschutzgrundsätze sind wie immer einzuhalten.
Generative KI schert sich, wenn wir als Nutzer*innen nicht darauf Acht geben, nicht um die Urheberrechte derer, deren Werke wir – ob bewusst oder unbewusst – verwenden oder verletzen. Zudem ist seit August 2024 die KI-Verordnung in der EU in Kraft und stellt an Unternehmen, die KI-Systeme und -Modelle entwickeln, anbieten oder betreiben, umfangreiche Anforderungen. Auch die mit KI einhergehenden Risiken sind nicht außer Acht zu lassen.
Seid ihr als Gründer*innen oder in sonst verantwortlicher Position in einem Unternehmen mit mehreren Mitarbeiter*innen tätig, müsst ihr euch Gedanken darüber machen, wie solche Risiken zu fassen und zu begrenzen sind. Tut ihr das nicht, drohen aus diversen Rechtsgrundlagen z.B. Schadensersatzforderungen, Bußgelder oder der Verlust an Assets – Dinge, die allerspätestens bei der nächsten Finanzierungsrunde negativ bewertet werden. In Bezug auf eure Belegschaft müsst ihr also Awareness für diese Themen schaffen und konkrete Vorgaben machen.
Denn eines ist klar: KI wird in eurem Unternehmen genutzt werden, ob mit oder ohne euer Wissen. Und bevor die Mitarbeiter*innen auf privaten Geräten sensible berufliche Aufgaben nicht reglementiert mittels ChatGPT & Co. lösen, beschreibt lieber beizeiten Dos and Don’ts, um sicherstellen, dass KI verantwortungsvoll, sicher und rechtskonform im Unternehmen eingesetzt wird.
Dazu dient eine die Belegschaft informierende und verpflichtende KI-Policy. Im Folgenden findest du einen Überblick darüber, welche Aspekte in eine solche Policy gehören.
1. Richtlinien für den Einsatz generativer KI am Arbeitsplatz
Generative KI-Modelle wie ChatGPT, DALL-E und andere erstellen Inhalte nach Maßgabe der Eingaben der Nutzenden. Bei diesen Prompts und bei der Verwendung der generierten Ergebnisse ist auf Folgendes zu achten:
- Schutz sensibler Daten: Die Eingabe vertraulicher Informationen in KI-Modelle stellt ein erhebliches Risiko dar, da generative KI-Systeme auf großen Datenmengen trainiert sind und Informationen potenziell unkontrolliert verarbeiten und speichern. Die KI-Policy sollte explizit verbieten, sensible oder vertrauliche Informationen in generative KI-Systeme einzugeben, insbesondere, wenn diese extern betrieben werden. Die Policy sollte beschreiben wie mit sensiblen Daten umzugehen ist und welche Daten für die Verarbeitung durch KI-Systeme ungeeignet sind.
- Einhaltung des Datenschutzes: Die KI-Policy sollte klarstellen, dass der Einsatz generativer KI-Tools den Anforderungen der Datenschutzgesetze (DSGVO, BDSG) entsprechen muss. Dazu gehören Vorgaben, wie personenbezogene Daten rechtssicher zu handhaben sind und welche dieser Daten überhaupt für den Einsatz von KI-Modellen geeignet sind. Zudem bedarf es Vorgaben zur Anonymisierung und Pseudonymisierung der Daten, daneben Transparenzvorgaben, um betroffene Personen über die Nutzung ihrer Daten zu informieren. Personenbezogene Daten in öffentlichen KI-Systemen einzusetzen, sollte möglichst untersagt werden.
- Umgang mit geistigem Eigentum: Die Nutzung generativer KI-Modelle kann zu Problemen führen, wenn die KI auf geschütztem Material trainiert wurde, von dem/der Nutzenden urheberrechtlich geschützte Werke in den Prompt einbezogen werden oder die KI Werke erstellt, die bestehende Urheber- oder sonstige Schutzrechte verletzen. Die KI-Policy sollte ein Verbot der Verwendung von Werken enthalten, an denen nicht die für die Bearbeitung erforderlichen Rechte bestehen. Und sie kann Regelungen zur Überprüfung und Genehmigung von KI-erstellten Inhalten festlegen, etwa durch eine Rechtsabteilung oder eine speziell dafür zuständige Stelle.
- Transparenz und Kennzeichnung: Die KI-Policy sollte festlegen, dass Inhalte, die mithilfe von generativer KI erstellt wurden, transparent gekennzeichnet werden. Dies trägt dazu bei, Missverständnisse zu vermeiden und sicherzustellen, dass die Herkunft von Texten und Bildern klar erkennbar ist. Diese Kennzeichnungspflicht sollte insbesondere dann gelten, wenn KI-generierte Inhalte veröffentlicht werden, aber auch im internen Gebrauch.
- Positivliste erlaubter KI-Systeme: Um die Mitarbeiter*innen mit der Anwendung dieser Vorgaben auf einzelne am Markt angebotene KI-Systeme nicht allein zu lassen, kann eine KI-Policy auch eine Auflistung der vom Unternehmen freigegebenen Systeme enthalten. Voraussetzung ist dafür natürlich, dass diese Systeme vorab entsprechend fachlich geprüft wurden. Das kann schwierig sein, weil sich Anbieter*innen meist nicht in die Karten schauen lassen.
2. Richtlinien für die Entwicklung und Implementierung von KI
Auch wenn ihr in eurem Unternehmen KI-Systeme entwickeln oder implementieren wollt, sind ethische, rechtliche und technische Anforderungen in einer KI-Policy zu adressieren.
- Fairness, Transparenz und Nichtdiskriminierung: KI-Systeme können, wenn sie auf verzerrten Datensätzen trainiert werden, Diskriminierung oder Vorurteile reproduzieren. Eine KI-Policy sollte deshalb klare ethische Richtlinien festlegen, die sicherstellen, dass die entwickelten Modelle fair, transparent und frei von Diskriminierung sind. Ein mögliches Vorgehen ist, regelmäßige Audits und Bias-Tests durchzuführen und in der Policy verpflichtend vorzusehen, um Verzerrungen frühzeitig zu erkennen und zu beheben.
- Datenschutz und Datensicherheit: Der verantwortungsvolle Umgang mit Nutzer*innendaten ist eine der wichtigsten Anforderungen in der KI-Entwicklung. Die KI-Policy sollte festlegen, dass bei der Verarbeitung personenbezogener Daten durch die KI strenge Schutzanforderungen, am besten strenge Begrenzungen, gelten. Rein automatisierte Entscheidungen sind schon laut DSGVO verboten. Es sollten nur die für die jeweilige Anwendung notwendigen Daten erhoben und verarbeitet werden, und diese Daten sollten weitestgehend anonymisiert oder pseudonymisiert werden. Regelungen für den Zugang zu diesen Daten sowie Maßnahmen zur Datensicherheit (wie Verschlüsselung und Zugriffskontrollen) sollten ebenfalls Bestandteil der Policy sein.
- Überprüfung auf Halluzinationen und Fehlinterpretationen: Generative KI-Modelle neigen dazu, Informationen zu „halluzinieren“, also falsche oder ungenaue Inhalte zu erstellen. In der KI-Policy sollte festgelegt sein, dass entwickelte KI-Modelle regelmäßig auf ihre Genauigkeit und Zuverlässigkeit überprüft werden. Dies kann durch vorgeschriebene Tests und Simulationen geschehen, bei denen die KI in verschiedenen Szenarien eingesetzt und auf ihre Fähigkeit, korrekte Ergebnisse zu liefern, geprüft wird. Es sollten auch definiert werden, wie Fehler erkannt und behoben werden können.
- Erklärbarkeit und Nutzer*infreundlichkeit: Komplexe KI-Modelle sind oft schwer verständlich und wirken wie eine Black Box, deren Entscheidungen für Außenstehende kaum nachvollziehbar sind. Die KI-Policy sollte daher sicherstellen, dass die KI so gestaltet ist, dass ihre Funktionsweise für Nutzer*innen transparent und nachvollziehbar ist. Dies ist insbesondere dort wichtig, wo KI-Entscheidungen schwerwiegende Auswirkungen haben können. Ihr solltet sicherstellen, dass für Nutzer*innen eine verständliche Erläuterung darüber bereitgestellt wird, wie und warum die KI zu einem bestimmten Ergebnis gelangt ist. Das ist Voraussetzung für Kontrolle und rechtskonformen Betrieb der KI.
- Gesetzeskonformität gemäß KI-Verordnung: Nicht zuletzt hat die Europäische Union die KI-Verordnung in Kraft gesetzt, die strenge Anforderungen an die Entwicklung und Nutzung von KI stellt. Die KI-Verordnung dient der Produktsicherheit und verlangt zunächst eine Risikoeinschätzung für die KI-Systeme. Die Maßgaben für eine solche Einschätzung sollten in der Policy angerissen und No-Gos für die Entwicklung von Funktionalitäten, die zu den laut KI-Verordnung verbotenen KI-Anwendungen gehören, ausgesprochen werden. Für sogenannte Hochrisiko-KI-Systeme gelten besondere Anforderungen, die bei einer Entwicklung mitgedacht werden müssen, wofür eine KI-Policy zumindest sensibilisieren sollte. Die im Einzelfall geforderte Überprüfung und Einstufung des jeweiligen Systems oder Modells kann eine Policy nicht leisten. Die initialen und regelmäßigen Überprüfungen sowie Risikobewertungen sollte sie aber fordern.
- Regelmäßige Überwachung und Wartung der KI-Modelle: KI-Modelle entwickeln sich weiter und benötigen regelmäßige Überwachung und Wartung, um die Leistung zu optimieren und mögliche Fehler zu minimieren. Die KI-Policy sollte eine solche sich wiederholende Maintenance festlegen, etwa die schon erwähnten regelmäßigen Aktualisierungen, Fehlerbehebungen und Performance-Überprüfungen, damit die KI-Systeme immer den aktuellen Standards und Anforderungen entsprechen.
3. Übergreifende Ziele und Vorgaben einer KI-Policy
Eine KI-Policy sollte nicht nur detaillierte Vorgaben zur Nutzung und Entwicklung von KI enthalten, sondern auch allgemeine Leitlinien und Prinzipien für den Einsatz von KI im Unternehmen, um ein Bewusstsein für die Potenziale und Risiken der Technologie zu schaffen.
- Regelmäßige Überprüfung und Anpassung: Da sich KI-Technologien und gesetzliche Anforderungen stetig weiterentwickeln, sollte auch die KI-Policy regelmäßig überprüft und aktualisiert werden. Dies hilft sicherzustellen, dass das Unternehmen stets auf dem neuesten Stand ist und seine KI-Systeme konform mit den aktuellen gesetzlichen, ethischen und technischen Standards sind. Es ist empfehlenswert, regelmäßige Audits durchzuführen und die Policy an neue Entwicklungen in der KI-Forschung und Gesetzgebung sowie an die Marktanforderungen anzupassen.
- Unternehmenskultur in Bezug auf KI: Eine KI-Policy sollte dazu dienen, den transparenten und offenen Umgang mit KI in allen Unternehmensbereichen und damit die Akzeptanz für KI-Systeme sowohl innerhalb des Unternehmens als auch bei Kund*innen und Partner*innen zu fördern. Dazu gehört auch, dass das Unternehmen offenlegt, in welchen Bereichen KI eingesetzt wird und welche Entscheidungen die Technologie beeinflusst. Letztendlich ist die KI-Policy ein Instrument zur Förderung einer verantwortungsvollen und ethischen Unternehmenskultur in Bezug auf KI. Das schützt letztlich auch die Integrität und die Werte des Unternehmens.
- Schulungen und Sensibilisierungsmaßnahmen: Um einen solchen kompetenten und verantwortungsvollen Umgang mit KI zu erreichen, sind regelmäßige Schulungen und Sensibilisierungsmaßnahmen für die Mitarbeiter*innen zu den hier genannten Aspekten vorzusehen.
Fazit
Dieser Artikel kann nur einen groben Überblick und Rahmen geben. Die konkreten Inhalte einer auf eure Belange und Nutzungsformen passenden Policy müsst ihr in Anschauung der Spezifika der eingesetzten oder zu entwickelnden KI-Systeme erarbeiten. Das kann auch schlecht an KI delegiert werden: Der Rest des eingangs erwähnten KI-generierten Artikels war nicht wirklich brauchbar, ebenso die testweise mit KI erstellten Policies. Dafür braucht es professionelle Unterstützung.
Der Autor Dr. Daniel Michel, LL.M. ist seit 2004 als Rechtsanwalt im Bereich IT/IP/Technologie tätig. Nach Stationen in spezialisierten und Großkanzleien betreibt er seit 2018 seine eigene Rechtsberatung im Raum München, www.datalawcounsel.com
Empion: Dem Perfect Match auf der Spur
Dr. Larissa Leitner und Dr. Annika von Mutius haben mit Empion das erste automatisierte Headhunting-System auf Basis von KI entwickelt, das – wissenschaftlich fundiert – Fachkräfte schneller aufspürt und treffsicherer vermittelt.

Angesichts des steigenden Fachkräftemangels werben Unternehmen immer stärker um gut ausgebildete, motivierte Mitarbeitende. Sie bieten attraktive Gehälter, zusätzliche Benefits und investieren viel in ihre Arbeitgebermarken. Zahlreiche Jobplattformen und Dienstleister*innen versprechen, dass sie das ideale Match zwischen Bewerber*innen und Unternehmen herstellen können. Doch die Realität sieht häufig anders aus. Beschäftige sind unzufrieden mit ihrem Job, sie wechseln auf gut Glück den Arbeitgebenden oder kündigen innerlich. Für Unternehmen bedeuten unzufriedene Mitarbeitende und Fehlbesetzungen Reibungsverluste und finanzielle Einbußen.
„In Deutschland stehen wir vor dem Problem, dass die Beschäftigung steigt, gleichzeitig jedoch die Produktivität sinkt“, sagt Dr. Annika von Mutius, Mitgründerin und CEO des Berliner HR-Start-ups Empion. Das Phänomen lasse sich durch den falschen Einsatz der Kompetenzen erklären: „Menschen sind besonders leistungsbereit und zufrieden, wenn sie einen Job machen, in dem sie wirklich gut und produktiv sind“, so Annika, und dazu müsse man die richtigen Skills mit den richtigen Aufgaben zusammenbringen.
Wertebasiertes, KI-gestütztes Matching von Kandidat*innen und Jobs
Idealerweise werden die Persönlichkeit und die Anforderungen einer Stelle schon im Bewerbungsprozess umfassend berücksichtigt. Dazu zählen insbesondere auch weiche Faktoren wie individuelle Werte, Unternehmenskultur, Wertschätzung und Respekt, die für Mitarbeitendenzufriedenheit entscheidend sind. Genau das ermöglicht Empion. Kandidat*innen und Unternehmen werden beim Onboarding eingehend befragt und charakterisiert. „Wir betrachten sowohl Persönlichkeitselemente und kulturelle Präferenzen als auch harte Kriterien wie Ausbildung, Berufserfahrung und Mitarbeiterbenefits“, sagt Annika. „So ermöglichen wir Arbeitnehmern und Unternehmen, das entsprechend ideale Match zu finden.“ Das Ziel ist eine maximale Mitarbeitendenzufriedenheit, die sich in einer entsprechend hohen Produktivität und langjähriger Betriebszugehörigkeit widerspiegelt.
Kandidat*innen, die sich für Jobangebote interessieren, können sich bei Empion kostenlos registrieren. „Wir sprechen hier besonders den passiven Bewerbermarkt an“, so Annika, „also diejenigen Menschen, die grundsätzlich offen für neue Chancen und somit wechselbereit sind, die aber nicht unbedingt bereits aktiv suchen.“ Unternehmen schreiben auf der Plattform ihre offenen Positionen aus. Die Bewerber*innenprofile und Stellen werden entlang der zahlreichen Faktoren mit KI-Unterstützung abgeglichen, auf Korrelation geprüft und vorqualifiziert. Die Unternehmen erhalten die voraussichtlich am besten passenden Kandidat*innen als Vorschläge und können in den persönlichen Austausch einsteigen.
Durch die Vorauswahl sparen Unternehmen viel Zeit und bis zu 60 Prozent an Recruitingkosten. Mit der Genauigkeit des Matchings seien die Kund*innen zufrieden, und auch die Mitarbeitendenbindung sei höher als bei Kandidat*innen, die über andere Kanäle rekrutiert werden, so Annika. „Da wir erst knapp drei Jahre als Unternehmen existieren, können wir natürlich noch keine Langzeitwerte liefern und müssen hier einschränken, doch die Erfolge in der Mitarbeitersuche und den ökonomischen Mehrwert von Empion sehen unsere Kunden bereits heute.“
Von der Doktorarbeit zum Start-up
Annika, die in dritter Generation einer Unternehmerfamilie entstammt, entschied sich während ihrer Dissertation in Mathematik für die Gründung. Ihre Mitgründerin Dr. Larissa Leitner lernte sie während einer Konferenz kennen. Larissa schrieb damals ihre Doktorarbeit zur Unternehmenskultur im Mittelstand. Über den Verteiler der Universität erfuhr Annika von Larissas erfolgreicher Dissertation und gratulierte. So begannen sie, sich regelmäßig zu schreiben. Während eines Arbeitsaufenthalts im Silicon Valley trainierte Annika dann Datenmodelle für den pharmazeutischen Markt, um Medikamente zu individualisieren. Als sie nach Deutschland zurückkehrte, traf sie Larissa für ein Wochenende in ihrer Heimat Südtirol. „Da wir beide damals in engem Austausch mit dem Mittelstand standen, kannten wir die Herausforderungen in der Mitarbeitersuche“, so Annika. Mittelständler*innen können bei Bewerber*innen nicht mit den größten Gehältern oder den schönsten Locations punkten, stattdessen aber durch Faktoren wie Teamwork und Unternehmenskultur. „Wir wussten, dass diese Vorzüge im Recruiting kaum eingesetzt werden.“
Sie begannen, mathematische Modelle für das Matching von Unternehmen und Kandidat*innen mit Daten aus Larissas Promotion zu füttern. Die Ergebnisse waren vielversprechend. „Es war ein klassischer Forschungstransfer“, erinnert sich Annika. Der Fokus lag zunächst auf den kulturellen Faktoren. Doch bald stellten sie fest, dass sich die Mitarbeiter*innensuche nicht allein über die Kultur lösen lässt, und sie erweiterten den Ansatz um zusätzliche Persönlichkeitsmerkmale.
Schneller Start, rasantes Wachstum
Um den Prototypen zu entwickeln, beantragten Annika und Larissa das EXIST-Gründerstipendium. „Der Förderantrag war unser erstes gemeinsames Projekt“, so Annika, „und bereits das funktionierte sehr gut.“ Die Wochen der Ideenentwicklung, in der sie die Eckdaten für Produkt und Plattform festlegten, waren für beide die bislang anstrengendste Phase: „Larissa und ich sind wohl eher Macher, und die rein konzeptionelle Arbeit war nichts für uns.“ Doch nach zwei Wochen stand das Konzept. Sie brachten den Ansatz in den Markt, testeten und holten Feedback ein. „Es ist sicherlich eine Persönlichkeitsfrage, aber ich kann jedem Gründerteam nur empfehlen, nicht zu lang im theoretischen Ideenstadium zu verweilen, sondern loszulegen und die Dinge dann schnell anzupassen“, sagt Annika.
Direkt zur Gründung zogen sie nach Berlin. Weil das Geld für ein Büro fehlte, kam das Team zunächst im Büro eines Freundes unter. „Der Deal war, dass wir aufräumen und für Kaffee und Snacks sorgen würden“, so Annika. Das Büro befand sich zufällig unter der Privatwohnung von Angela Merkel, sodass es Tag und Nacht mit bewacht wurde. Empion wurde schnell professioneller, gewann erste Kund*innen und Traktion. Zur weiteren Finanzierung entschlossen sich Annika und Larissa, Beteiligungskapital an Bord zu holen und gewannen so neue Unterstützer wie etwa Robin Behlau von Aroundhome, die nicht nur investierten, sondern auch wichtiges Know-how für das Start-up in der Frühphase mitbrachten. Auch Samuli Siren und Michael Brehm von Redstone Partners waren von der Idee, den HR-Markt datengetrieben anzugehen, angetan. Sie ermutigten das Team, bereits in der Pre-Seed-Runde Venture-Capital-Fonds einzubinden. So konnten sie die Pre-Seed-Runde schließlich mit 20 Business Angels und zwei VC-Fonds schließen.
Ein Jahr später stieg bei der Seed-Runde Cavalry Ventures mit ein. „Das Fundraising war ein schneller, schlanker Prozess, was uns sehr half“, sagt Annika, „so konnten wir uns weiterhin voll auf das operative Kerngeschäft konzentrieren, statt langwierige Fundraising-Prozesse voranzutreiben.“ Bei der Seed-Runde investierten viele Business Angels erneut – ein eher ungewöhnlicher Schritt, der das Vertrauen in das Team und das Unternehmen unterstreicht. Insgesamt hat Empion neun Mio. Euro Beteiligungskapital gesammelt. Das Team umfasst heute rund 50 Personen, das Büro befindet sich am Hackeschen Markt. Zu den über 500 Kund*innen zählen Unternehmen wie Procter & Gamble, Osram, Tengelmann sowie die Volks- und Raiffeisenbanken.
Erfolg stellt das Gründungsteam auf die Probe
Doch der Weg zum Erfolg hatte auch steinige Abschnitte. „Als Gründerinnen verbrachten Larissa und ich zu Beginn viel Zeit zusammen und wurden wirklich gute Freundinnen“, erzählt Annika. Doch mit dem wachsenden Start-up arbeiteten sie irgendwann nicht mehr im selben Büro, sie reisten viel, kümmerten sich um Kund*innen und Mitarbeitende. Die Gespräche wurden seltener und verlagerten sich auf Videocalls. Unter dem fehlenden Austausch litt die Beziehung. Doch gute Beziehungen und Kommunikation im Gründungsteam sind essenziell für den Erfolg eines Start-ups. Sie engagierten einen Coach, der ihnen half, die fehlende gemeinsame Zeit wiederzufinden. Seitdem treffen sich die Gründerinnen wöchentlich an einem Nachmittag und widmen sich gemeinsam strategischen Themen und anderen Dingen, die zusammen zu besprechen sind. „Häufig gehen wir dann noch essen, und das tut uns sehr gut“, sagt Annika.
Das rasante Wachstum von Umsatz und Mitarbeitendenzahl stelle auch Ansprüche an die Entwicklung als Persönlichkeit und Führungskraft: „Im Prinzip entsteht alle sechs Monate ein komplett neues Unternehmen – mit neuen Herausforderungen und Anforderungen an das Management“, so Annika. Einen Teil der notwendigen Fähigkeiten könne man sich erarbeiten, manche Fragen müsse man delegieren und gegebenenfalls auch neue Mitarbeitende an Bord holen. Und für manche Themen müsse man eigene Lösungen entwickeln. „Persönlich geht es darum, die richtige Balance zwischen strategischer und operativer Arbeit sowie zwischen Kontrolle und Abgeben von Verantwortung zu finden“, sagt Annika, „und das kann durchaus herausfordernd sein.“
Weiterentwicklung von Team und Technologie
Im August übernahm Empion das Berliner Unternehmen Zalvus, das ebenfalls Recruiting-Dienstleistungen mit KI-Unterstützung anbietet. Die Stärken von Zalvus liegen im Bereich Performance-Marketing, Big-Data-Analysen und Beratungsleistungen. „Zalvus gibt es seit rund zehn Jahren, das Team bringt neben dem Zugang zu neuen Kundengruppen natürlich auch wertvolle Expertise mit“, sagt Annika. Zalvus verfügt unter anderem über jahrelange Erfahrung im Blue-Collar-Markt, während Empion bislang eher die White-Collar-Jobs im Fokus hat. Die technischen Funktionalitäten und Daten sollen nun in die Empion-Plattform integriert werden, sodass ein gesamtheitliches Produkt entsteht. Parallel dazu arbeitet das Team an der Weiterentwicklung der KI-Systeme, um die wachsende Datenmenge optimal nutzen zu können.
Auch wenn die Gründerinnen mittlerweile hauptsächlich mit dem Management beschäftigt sind, sind sie weiterhin auch im Engineering involviert. „Die ursprünglichen Algorithmen stammen von Larissa und mir, und es freut mich zu sehen, wie wir die Technologie zusammen mit unserem Team weiterentwickeln“, sagt Annika. An den Entwicklungsmeetings teilzunehmen, bereitet den beiden immer noch große Freude. Beim Ausbau des eigenen Teams setzen Annika und Larissa auch auf ihre Plattform. Die Talente durchlaufen danach einen dreistufigen Interviewprozess mit einem Vorgespräch, gefolgt von einem klassischen Interview mit Fallstudien und Scorecards. Im dritten Interview, bei dem der Fokus auf kulturellen Themen liegt, wird geschaut, wie gut ein(e) Kandidat*in tatsächlich ins Team passt. „Wenn ich dieses Gespräch führe, versuche ich immer, meinen ersten Eindruck, egal ob positiv oder negativ, zu revidieren, und mich vom Gegenteil zu überzeugen“, so Annika.
Im Wettbewerb mit den großen Playern
Im Markt konkurriert Empion unter anderem mit Plattformen wie Stepstone und internationalen Unternehmen wie LinkedIn, Monster und Indeed. Neben den großen Playern gibt es hunderte Personalberatungen, Agenturen und Headhunter. „Dazwischen ist jedoch eine große Lücke, und da liegt für uns die Chance“, sagt Annika. Auch viele große Plattformen arbeiten daran, ihre Angebote durch KI zu unterstützen und aufzuwerten. „Doch in der Regel ist das für diese Unternehmen kein Kernthema, weil die alten Geschäftsmodelle für sie noch sehr gut funktionieren.“ Einige Start-ups bieten Lösungen für andere Teilbereiche des HR-Marktes. Testgorilla aus den Niederlanden zum Beispiel ist auf Einstellungstests spezialisiert. „Unser Vorteil ist, dass wir bereits heute zeigen, dass unser Ansatz wissenschaftlich valide ist und ökonomische Vorteile bietet“, so Annika.
Seit Kurzem ist Annika zudem im Vorstand des KI-Bundesverbands, der sich für eine innovationsfreundliche KI-Regulierung einsetzt: „Gesellschaftliches Engagement war mir schon immer ein Anliegen, und ich glaube, dass ich meine Expertise hier sehr gut einbringen kann.“
Empion soll nun zunächst in der DACH-Region weiterwachsen und den Markt durchdringen. Parallel dazu konzentriert sich das Team auf die Produktentwicklung und die Optimierung der Performance. Danach könnte Empion das Angebot auch auf weitere Länder ausweiten.
riprip: EXIST-Team entwickelt Mobile Games als innovatives Serienformat
Das aus der Kunsthochschule Kassel stammende Gründungsteam riprip entwickelt ein innovatives Mobilegame-Genre, das auf typische Glücksspielmechanismen und weitere dark patterns verzichtet. Seit Oktober 2024 wird das Team im Rahmen des 12-monatigen EXIST Gründungsstipendiums bei der Umsetzung seines innovativen Geschäftskonzepts mit insgesamt 139.300 Euro unterstützt.

Als Folge der immer kürzer werdenden Aufmerksamkeitsspannen – insbesondere beim jüngeren Publikum – konkurruieren die traditionellen Videospiele zusehends mit Kurzform-Content auf Social Media, wie Tiktok, Instagram Reels und Youtube Shorts.
Die einzige Alternative, die die Games-Branche bisher anbietet, sind typische Mobilegames aus dem App Store. Diese sind in der Regel mit Glücksspielmechanismen und weiteren „dark patterns“ (manipulativen Mechanismen) verbunden und bieten als einfache Gelegenheitsspiele auch nur selten einen sozial-kulturellen Mehrwert.
Das Gründungsteam riprip entwickelt ein innovatives Mobilegame-Genre, das auf typische Glücksspielmechanismen und weitere dark patterns verzichtet. Als Pilotprojekt produziert riprip aktuell bereits die erste Staffel (10 Folgen) der Spieleserie „Terminal Crossing“ (Arbeitstitel), eine satirische Dekonstruktion des populären Cozy-Game-Genres. Die Spieleserie für mobile Geräte soll im regelmäßigen Rhythmus auf Social Media erscheinen. Die Pilotspielserie dient darüber hinaus dem Aufbau einer eigenen Community, die sich mit dem neuen Genre in einem hohen Maß identifiziert. Schließlich entwickelt das Team im Rahmen der Förderlaufzeit eine eigene Spiel-Engine, die die Entwicklung von Mobilegames erleichtert und Entwicklungsbarrieren abbaut.
„Wir stellen uns eine Welt vor, in der jede(r) Games-Macher*in sein kann“, so Robin Vehrs, Mitglied im ripip-EXIST Team. Das Gründungsteam, bestehend aus Robin Vehrs, Nico Fiona Brauer, Christoph Schnerr und Hannes Drescher, vereint Kompetenzen aus dem Studium der Visuellen Kommunikation an der Kunsthochschule, mit Erfahrungen im Projekt-, Finanz- und Communitymanagement.
Als EXIST Mentor unterstützt Prof. Joel Baumann, ehemaliger Rektor und Leiter des Fachbereichs Neue Medien an der Kunsthochschule, das Team mit seiner Expertise und seinem Netzwerk. Der Studienschwerpunkt Neue Medien wurde Ende 2003 im Studiengang Visuelle Kommunikation an der Kunsthochschule Kassel etabliert. „Das Studium der neuen Medien bedeutet eine künstlerische oder gestalterische Auseinandersetzung mit Technologien einzugehen. Es gilt zukünftige Infrastrukturen zu erforschen und zu entwickeln, hierbei Irrwege zu akzeptieren und daraus zu lernen. Studierende sind aufgefordert, Technologiebegeisterung kritisch zu hinterfragen, zu reflektieren und in theoretischen und gesellschaftlichen Diskursen neu zu verhandeln“, so Baumann.
EXIST ist ein Förderprogramm des Bundesministeriums für Wirtschaft und Energie. Ziel ist es, das Gründungsklima an Hochschulen und außeruniversitären Forschungseinrichtungen zu verbessern. Darüber hinaus sollen die Anzahl und der Erfolg technologieorientierter und wissensbasierter Unternehmensgründungen erhöht werden. Bisher konnten bereits rund 50 Projekte der Universität Kassel durch das EXIST-Förderprogramm unterstützt werden. Die Fördersumme umfasst Personal-, Sach- und Coachingmittel. Betreut werden die Teams vom UniKasselTransfer Inkubator, der zentralen Gründungsförderung der Universität Kassel. Der Inkubator begleitet Nachwuchswissenschaftler*innen, Mitarbeitende, Studierende und Alumni der Universität Kassel und der Kunsthochschule mit einem weitreichenden Unterstützungsangebot in der Phase von der Ideenfindung bis zur Gründung.