Kenbi: Innovationen statt Pflegenotstand


44 likes

Weniger Bürokratie, mehr Selbstorganisation – das Start-up kenbi will den Pflegeberuf wieder attraktiv machen.

Verbände wechseln, Körperpflege, Betreuung … Die Aufgaben in der Pflege sind vielfältig und brauchen Zeit. Doch Zeit haben Pfleger*innen immer weniger. Schon heute fehlen in Heimen und ambulanten Diensten tausende Pflegekräfte. Und die Zahl der Pflegebedürftigen steigt weiter: von heute 4,5 auf 6 Millionen bis 2030, jüngsten Schätzungen der Barmer zufolge. Deutschland steuert direkt auf einen Pflegenotstand zu. „Der Pflegeberuf hat ein schlechtes Image: eingestaubt, zermürbend und schlecht vergütet“, sagt Clemens Raemy, Co-Gründer von kenbi. Er und seine Mitstreiter*innen Katrin Alberding und Bruno Pires sind angetreten, um das zu ändern. Als Anbieter für ambulante Pflege beschäftigt das Start-up über 300 Pflegekräfte an derzeit 30 Standorten, sogenannten Pflege-Hubs, und setzt auf digitale Lösungen, die wieder mehr Raum für die eigentliche Arbeit mit den Patient*innen gibt.

Die Hubs befinden sich fast alle auf dem Land – etwa in Schwelm (NRW), Bodenwerder (Niedersachsen) oder Wolf­hagen (Hessen). Hier bietet man Haushaltshilfe, Begleitung, tiergestützte Therapien, körperliche Grundpflege sowie medizinische und spezialisierte Behandlungen an. Damit leistet das Start-up einen Beitrag, die Versorgungslücke auf dem Land zu schließen. Hinzu kommen die Zentrale in Berlin mit über 40 Mitarbeitenden und das Tech-Zentrum in Porto mit 15 Personen, die den Pflegekräften den Rücken freihalten.

Die Pflege ins Heute bringen

„Wir wollen moderne Pflege zu Hause ermöglichen, die jedem Selbstbestimmung im Alltag gibt: den Kund*innen in den eigenen vier Wänden und den Pflegeteams bei ihrer Arbeit“, sagt Clemens. „Dafür ist es wichtig, den Papierkram auf ein Minimum zu reduzieren.“ Denn ein zentraler Faktor für Stress und Überforderung in der Pflege ist die ausufernde Bürokratie: Zwischen 30 und 50 Prozent ihrer Arbeitszeit wenden Pfleger*innen üblicherweise für Tätigkeiten wie Dokumentation und Aktenpflege auf. In einem Berufsfeld, in dem handschriftliche Formulare und Fax Standard sind, gibt es viel Optimierungspotenzial. „Die Dokumentation ist wichtig, um den Verlauf von Behandlungen zu protokollieren – aber sie sollte schnell erledigt sein“, so Clemens.

Das Team ist der Chef

Neben dem Technologie-Fokus ist die zweite Säule die dezentrale Organisation: Ein Team vor Ort besteht aus sechs bis zwölf Pflegefachkräften. Sie verwalten gemeinsam ihr Büro, planen Einsätze und betreuen Patient*innen. Sie bestimmen selbst da­rüber, wen sie neu einstellen wollen. Pro Team gibt es eine Pflegedienstleitung, ansonsten sind die Hierarchien deutlich flacher als in der Branche üblich – Selbstorganisation statt starrer Strukturen. Von der Zentrale erhalten die Hubs Ausstattung, Coaching und Unterstützung bei Personalangelegenheiten.

Clemens gründete kenbi Ende 2019 zusammen mit Katrin, sie führen das Unternehmen als Doppelspitze. Die beiden lernten sich 2009 an der Harvard Business School kennen und sammelten umfangreiche Erfahrungen in verschiedenen Branchen, bevor sie die Idee zu kenbi hatten. Beide hatten Pflegefälle in der Familie und erlebten, vor welchen Herausforderungen Pfleger*innen stehen: eng getaktete Touren und wenig Zeit für die Patient*innen. Zugleich wünschten sie sich, als Angehörige an einigen Stellen mehr Einblicke zu erhalten. „Als meine Großmutter zum Pflegefall wurde, wäre es für die Familie oft hilfreich gewesen, mehr Informationen zu bekommen“, so Clemens. „Welche Medikamente bekommt sie? War der Pflegedienst heute schon da? Verspätet er sich nur oder fällt der Besuch aus? Es fehlte die Transparenz.“

Modulare Apps statt Zettel und Stift

Um die Pflege zu modernisieren, setzt kenbi auf Apps, die über die Cloud verbunden sind. Für deren Entwicklung holten sich Katrin und Clemens mit Bruno Pires einen erfahrenen Entwickler als CTO und dritten Gründer an Bord. Die drei bauten kenbi remote auf: Katrin sitzt in Berlin, Clemens in Bad Pyrmont und Bruno in Porto in Portugal. „Am Anfang war das Wichtigste, die Tagesplanung zu digitalisieren, bei der es üblicherweise viel Abstimmungsbedarf gibt“, sagt Katrin. „Also haben wir eine Pflege-App entwickelt, mit der die Teams ihre Touren organisieren, Schichten zuteilen und Ersatz bei Ausfällen organisieren.“

Weitere Entwicklungen: eine Kommunikationsplattform, damit sich die Pflegekräfte besser austauschen können, eine Büro-App, die eine Übersicht zur Tagesplanung bietet sowie eine E-Learning-Plattform. Für Patient*innen und Familienangehörige wird in Kürze eine eigene Family-App eingeführt. Sie gibt Einblicke in den Pflegeablauf, sodass sie jederzeit über die Besuche der Pflegekräfte informiert sind. Das Angebot baut kenbi stetig aus – so soll es bald möglich sein, Medikamente und Pflege-Kits direkt zu bestellen.

Gründen inmitten der Pandemie

Die größte Herausforderung bei der Gründung: Der Aufbau erfolgte zeitgleich mit dem Beginn der Corona-Pandemie. „Wir mussten schnell Entscheidungen treffen, um unser Team und unsere Patient*innen zu schützen – in einer Situation, in der vieles vollkommen unklar war“, sagt Clemens. „Aber wir haben uns nicht ausbremsen lassen und konnten inmitten der Pandemie stark wachsen. Corona hatte dabei nicht nur Nachteile für uns: Lösungen wie Video-Calls und Collaborat­ion-Tools wurden auch im Gesundheitswesen viel präsenter. Das hat die Akzeptanz für unseren Ansatz erhöht.“

Den ersten Hub eröffneten sie im niedersächsischen Emmer­thal – dafür übernahmen sie einen Pflegedienst. „Für den ersten Standort war es uns wichtig, die Pflege-Expertise nicht von Null aufzubauen. Katrin und ich haben uns bei dem Dienst zwei Monate lang regelrecht eingebunkert, um uns mit allen Prozessen vertraut zu machen.“ Danach übernahmen sie weitere Dienste und bauten andere Standorte ganz neu auf. So ist innerhalb von zwei Jahren aus kenbi ein Unternehmen geworden, das mehr als 1500 Patient*innen in vier Bundesländern versorgt. Dazu kommen 500 Beratungskund*innen.

Am Anfang war es schwierig, Investor*innen zu überzeugen. Das hat sich geändert: 23,5 Mio. Euro kamen in der Series A-Runde Ende 2021 zusammen. Damit will das Start-up mehr Personal einstellen und deutschlandweit neue Standorte eröffnen. Außerdem soll das Geld in die weitere Tech-Entwicklung fließen. Katrin, Clemens und Bruno sehen sich noch ganz am Anfang ihrer Unternehmung. „Digitale Lösungen leisten einen großen Beitrag dazu, den Pflegeberuf wieder menschlicher und attraktiver zu machen. Wir wollen langfristig mehr Nachwuchs für die Branche begeistern – und der Gesundheitskrise etwas entgegensetzen“, so Katrin.

Clemens’ Tipps für andere Gründer*innen

  • Gründet im Team: Ein Unternehmen zu gründen ist eine der anspruchsvollsten Aufgaben, die es gibt – eine ungewisse Zukunft, finanzielle Unsicherheit und eine nie endende To-do-Liste. Es ist unglaublich wertvoll, auf dieser Achterbahnfahrt eine(n) Co-Founder*in dabei zu haben – jemanden, der Dinge hinterfragt, mit dem man die eigenen Ideen weiterentwickelt, der einen challenged und auf den man sich hundertprozentig verlassen kann.
  • Lasst euch nicht zu schnell entmutigen: Wir haben auf der ersten Suche nach Kapitalgeber*innen sehr viele Absagen bekommen. Teilweise wurden wir für verrückt erklärt, ein Start-up in der Pflege zu gründen. Man braucht eine dicke Haut und muss fest von der eigenen Vision überzeugt sein. Führt die ersten Gespräche am besten mit Investor*innen, von denen ihr denkt, dass sie ohnehin nicht gut zu euch passen – das ist eine gute Übung für die Investor*innen, die ihr wirklich haben wollt.
  • Gründet außerhalb eures Fachbereichs: Wenn man wirklich disruptive Veränderungen bewirken will, sollte man sich in neue Bereiche vorwagen. Wir hatten vor der Gründung keinen Hintergrund im Gesundheitswesen – klar mussten wir uns deshalb viel stärker in die Thematik einarbeiten, konnten dadurch die Prozesse aber auch viel stärker hinterfragen und Neues wagen.

Diese Artikel könnten Sie auch interessieren:

Europa kann KI!

Was wir von den besten EU-AI-Companies lernen können, erläutert KI-Experte Fabian Westerheide.

Europa muss sich bei KI nicht kleinreden. Wir sehen gerade sehr deutlich: Aus Europa heraus entstehen Unternehmen, die Kategorien besetzen – und dann auch das große Kapital anziehen. Beispiele gibt es genug: Mistral AI, DeepL, Black Forest Labs, Parloa, Helsing, Lovable oder n8n.

Ich schreibe das aus drei Blickwinkeln: als Investor (AI.FUND), als Konferenz-Initiator (Rise of AI Conference) und als Autor von Die KI-Nation. Was du hier bekommst, ist kein „Europa-hat-ein-Problem“-Essay – sondern eine Analyse plus ein Execution-Set an Empfehlungen, das du direkt auf dein Start-up übertragen kannst.

Die Realität: Seed geht oft – Scale ist das Spiel

Am Anfang brauchst du selten „zu viel“ Geld. MVP, erste Kunden, Iteration: Das klappt in Deutschland in vielen Fällen mit Seed. Die echte Trennlinie kommt später – wenn du aus einem starken Start-up einen Kategorie-Gewinner bauen willst.

Denn KI ist zunehmend Winner-takes-most. Und das gilt auch fürs Kapital: In vielen Fällen ist die Growth-Finanzierung in den USA grob 25-mal größer – bei den aktuellen Front-Runnern (Modelle, Infrastruktur, Distribution) wirkt es teilweise wie 100-mal, weil Kapital sich auf die vermuteten Sieger stapelt. (Nicht „fair“, aber Marktmechanik.)

Die gute Nachricht: Genau die EU-Vorbilder oben zeigen, dass du das nicht wegdiskutieren musst – du musst es exekutieren.

Was die EU-Winner gemeinsam haben: 6 Execution-Prinzipien

1. Starkes Gründerteam – aber vor allem: vollständig

Alle genannten Vorbilder hatten (oder bauten sehr schnell) ein Team, das drei Dinge gleichzeitig kann:

  • Tech & Produkt (nicht nur „Model-IQ“, sondern Produktgeschmack)
  • Go-to-Market (Vertrieb, Buyer-Verständnis, Pricing)
  • Tempo (entscheiden, shippen, lernen)

Wenn eine Säule fehlt, zahlst du später mit Zeit. Und Zeit ist in KI eine Währung, die dir niemand schenkt.

Founder-Move: Benenne eine Person, die Umsatz genauso hart verantwortet wie Modellqualität. Wenn das „später“ ist, ist das sehr wahrscheinlich dein Bottleneck.

2. Global denken – aber spitz: KI-Nische statt Bauchladen

Die EU-Winner sind nicht „KI für alles“. Sie besetzen klare Nischen:
Language-AI (DeepL), Customer-Experience-Agents (Parloa), GenAI-Modelle (Black Forest Labs), Defence-Tech (Helsing), Builder/Vibe-Coding (Lovable), Orchestration & Automation (n8n), Foundation-Model-Ambition (Mistral).

Founder-Move: Formuliere deinen Claim so, dass er in einem Satz sagt, welche Kategorie du dominierst. Wenn du drei Absätze brauchst, bist du noch zu breit.

3. Umsatz ist keine Nebenwirkung – Umsatz ist Souveränität

Der schnellste Weg zu Growth-Capital ist nicht „noch ein Pilot“, sondern Revenue, der deine Kategorie glaubwürdig macht.
Parloa kommuniziert z.B. ARR > 50 Mio. USD und wächst international – genau die Art Signal, die große Runden freischaltet.

Founder-Move (gegen Pilotitis): Kein PoC ohne schriftlichen Pfad in einen Vertrag (Budget, KPI, Entscheidungstermin). Sonst finanzierst du mit deiner Runway den Lernprozess des Kunden.

4. Internationales Kapital früh anbahnen – bevor du es brauchst

Das Muster ist klar: Erst Kategorie-Story + Traktion, dann große Checks.
Mistral (Series C 1,7 Mrd. €) oder Lovable (330 Mio. USD bei 6,6 Mrd. Bewertung) sind kein „Glück“ – das ist Momentum + Positionierung + Timing.

Founder-Move (90-Tage-Plan):

  • Baue eine Capital Map deiner Nische (wer zahlt Growth-Checks?)
  • Definiere die drei Metriken, die diese Investor:innen sehen wollen
  • Organisiere zehn Intros jetzt, nicht erst bei sechs Monaten Runway

5. Compute ist keine IT-Zeile – es ist ein Wachstumshebel

In KI ist Compute Teil deiner Wettbewerbsfähigkeit. Geschwindigkeit beim Trainieren, Testen und Deployen entscheidet, wie schnell du am Markt lernst.

Founder-Move: Plane Compute-Runway wie Cash-Runway. Verhandle früh Kontingente, bevor dein Verbrauch explodiert – sonst wird Wachstum plötzlich zur Margen-Frage.

6. Trust & Compliance als Verkaufsargument – nicht als Ausrede

Gerade in DACH gilt: Wer secure, audit-fähig, enterprise-ready wirklich liefern kann, gewinnt Deals.
DeepL betont genau diesen Business-Wert: verlässliche, sichere Lösungen statt Hype.

Founder-Move: Baue Trust-Artefakte früh – Dokumentation, Governance, Datenflüsse, Rollen, Audit-Spuren. Das beschleunigt Enterprise-Vertrieb, statt ihn zu bremsen.

Kurz-Checkliste: Wenn du in Europa KI gewinnen willst

  • Kategorie in einem Satz (spitze Nische, globaler Anspruch)
  • Klarer Revenue-Pfad (weniger Piloten, mehr Verträge)
  • Capital Map (international früh andocken)
  • Compute-Runway (wie Cash planen)
  • Trust by Design (verkaufsfähig machen)
  • Tempo als Kultur (shippen, messen, nachschärfen)

Europa kann KI. Die Frage ist nicht, ob hier Talent existiert – das ist bewiesen.
Die Frage ist, ob du Execution so aufsetzt, dass aus Talent Marktführerschaft wird.

Der Autor Fabian Westerheide gestaltet als KI-Vordenker, Investor, Ökosystem-Pionier und Keynote Speaker seit über einem Jahrzehnt die Debatte um KI, Macht und digitale Zukunft mit.

Die Wächter des Firmengedächtnisses

Wie das 2025 von Christian Kirsch und Stefan Kirsch gegründete Start-up amaiko den Strukturwandel im Mittelstand adressiert.

Der demografische Wandel und eine erhöhte Personalfluktuation stellen mittelständische Unternehmen zunehmend vor die Herausforderung, internes Know-how zu bewahren. Viele Unternehmen stehen vor der Schwierigkeit, dass Firmenwissen fragmentiert vorliegt. Informationen sind häufig in unterschiedlichen Systemen oder ausschließlich in den Köpfen der Mitarbeitenden gespeichert. Verlassen langjährige Fachkräfte den Betrieb in den Ruhestand oder wechseln jüngere Arbeitnehmerinnen und Arbeitnehmer kurzfristig die Stelle, gehen diese Informationen oft verloren. Zudem bindet die Suche nach relevanten Dokumenten in verwaisten Ordnerstrukturen Arbeitszeit, die in operativen Prozessen fehlt.

Das 2025 gegründete Start-up amaiko aus Niederbayern setzt hierbei auf einen technischen Ansatz, der auf die Einführung neuer Plattformen verzichtet und stattdessen eine KI-Lösung direkt in die bestehende Infrastruktur von Microsoft Teams integriert. Vor diesem Hintergrund entwickelten die Brüder Christian und Stefan Kirsch mit amaiko eine Softwarelösung, die spezifisch auf die Ressourcenstruktur mittelständischer Betriebe ausgelegt ist.

Integration statt neuer Insellösungen – und die Abgrenzung zu Copilot

Ein wesentliches Merkmal des Ansatzes ist die Entscheidung gegen eine separate Software-Plattform. Christian Kirsch, Geschäftsführer von PASSION4IT und amaiko, positioniert die Lösung als „Teams-native“. Das bedeutet, dass der KI-Assistent technisch in Microsoft Teams eingebettet wird – jene Umgebung, die in vielen Büros bereits als primäres Kommunikationswerkzeug dient. Ziel ist es, die Hürden bei der Implementierung zu senken, da Nutzer ihre gewohnte Arbeitsumgebung nicht verlassen müssen.

Angesichts der Tatsache, dass Microsoft mit dem „Microsoft 365 Copilot“ derzeit eine eigene, tief integrierte KI-Lösung ausrollt, stellt sich die Frage nach der Positionierung. Christian Kirsch sieht hier jedoch keine direkte Konkurrenzsituation, sondern eine klare Differenzierung: Copilot sei eine sehr breite, Microsoft-zentrische KI-Funktion. Amaiko hingegen verstehe sich als spezialisierter, mittelstandsorientierter Wissensassistent, der Beziehungen, Rollen, Prozesse und Unternehmenslogik tiefgreifend abbildet.

Ein entscheidender Vorteil liegt laut Kirsch zudem in der Offenheit des Systems: „Während Copilot naturgemäß an MicrosoftSysteme gebunden ist, lässt sich amaiko herstellerunabhängig in eine viel breitere Softwarelandschaft integrieren – vom ERP über CRM bis zu Branchenlösungen. Unser Ziel ist nicht, Copilot zu kopieren, sondern reale Mittelstandsprozesse nutzbar zu machen“, so der Co-Founder.

Funktionsweise, Sicherheit und Haftung

Funktional unterscheidet sich das System von herkömmlichen Suchmasken durch eine agentenähnliche Logik. Die Software bündelt Wissen aus internen Quellen wie Richtlinien oder Projektdokumentationen und stellt diese kontextbezogen zur Verfügung. Ein Fokus liegt dabei auf der Datensouveränität. Hierbei betont Christian Kirsch, dass Kundendaten nicht in öffentlichen Modellen verarbeitet werden: „Die Modelle laufen in der europäischen Azure AI Foundry, unsere eigenen Dienste auf deutschen Servern. Die Daten des Kunden bleiben on rest vollständig im jeweiligen Microsoft365Tenant. Es findet kein Training der Foundation Models mit Kundendaten statt – weder bei Microsoft noch bei uns. Grundlage dafür sind die Azure OpenAI NonTraining Guarantees, die Microsoft in den Product Terms sowie in SOC2/SOC3 und ISO27001Reports dokumentiert.“

Auch rechtlich zieht das Start-up eine klare Grenze, sollte die KI einmal fehlerhafte Informationen, sogenannte Halluzinationen, liefern. „Amaiko generiert Vorschläge, keine rechts oder sicherheitsverbindlichen Anweisungen. Das stellen wir in unseren AGB klar: Die Entscheidungshoheit bleibt beim Unternehmen. Wir haften für den sicheren Betrieb der Plattform, nicht für kundenseitig freigegebene Inhalte oder daraus abgeleitete Maßnahmen. Es geht um eine saubere Abgrenzung – technische Verantwortung bei uns, inhaltliche Verantwortung beim Unternehmen“, so Christian Kirsch.

Geschäftsmodell und Markteintritt

Seit der Vorstellung der Version amaiko.ai im Juli 2025 wird das System nach Angaben des Unternehmens mittlerweile von über 200 Anwendern genutzt. Durch die Integration in die bestehende Microsoft-365-Landschaft entfällt für mittelständische Kunden eine aufwendige Systemmigration, was die technische Eintrittsbarriere gering hält.

Passend zu diesem Ansatz ist amaiko als reines SaaS-Produkt konzipiert, das Unternehmen ohne Einstiegshürde direkt online buchen können. Laut Kirsch sind keine Vorprojekte, individuellen Integrationspfade oder teuren Beratungspflichten notwendig: „Die Nutzung ist selbsterklärend und leichtgewichtig. Wer zusätzlich Unterstützung möchte – etwa zur Wissensstrukturierung oder Governance – kann sie bekommen. Aber die technische Einführung selbst ist bewusst so gestaltet, dass Mittelständler ohne Implementierungsaufwand starten können.“

Unterm Strich liefert amaiko damit eine pragmatische Antwort auf den drohenden Wissensverlust durch den demografischen Wandel: Statt auf komplexe IT-Großprojekte zu setzen, holt das bayerische Start-up die Mitarbeitenden dort ab, wo sie ohnehin kommunizieren. Ob sich die „Teams-native“-Strategie langfristig gegen die Feature-Macht von Microsoft behauptet, bleibt abzuwarten – doch mit dem Fokus auf Datensouveränität und mittelständische Prozesslogik hat amaiko gewichtige Argumente auf seiner Seite, um sich als spezialisierter Wächter des Firmengedächtnisses zu etablieren.

to teach: Vom KI-Hype zur Schulinfrastruktur

Wie das 2022 gegründete EdTech to teach die Lücke zwischen Chatbot und Klassenzimmer schließt.

Vor drei Jahren begann mit dem öffentlichen Zugang zu generativer künstlicher Intelligenz ein weltweiter Hype, der auch vor den Schultoren nicht haltmachte. Doch im Bildungsmarkt entscheidet sich derzeit, ob die Technologie tatsächlich Produktivität schafft oder in einer digitalen Sackgasse endet. Das Hamburger EdTech to teach liefert hierzu eine Blaupause: Was 2022 als Experiment begann, hat sich innerhalb von drei Jahren zu einer Arbeitsplattform für hunderttausende Lehrkräfte entwickelt.

Das Problem: US-Tools verstehen deutsche Schulen nicht

Als generative KI erstmals verfügbar wurde, wirkte ihr Einsatz im Bildungsbereich naheliegend. Doch der Blick auf die internationale Konkurrenz zeigt das Dilemma: Während US-Platzhirsche wie MagicSchool AI oder Diffit den Markt mit hunderten Mikro-Tools fluten und technisch beeindrucken, fehlt ihnen der kulturelle Fit. „Einfach nur Texte aus ChatGPT zu kopieren, löst kein einziges Problem von Lehrkräften“, erklärt Felix Weiß, Co-Founder und CEO von to teach.

Die Diskrepanz zwischen dem Versprechen der KI und dem tatsächlichen Schulalltag war groß. US-Lösungen scheitern oft an spezifischen deutschen Lehrplänen oder liefern reine Multiple-Choice-Formate, die hierzulande kaum Anwendung finden. Lehrkräfte benötigten keine unstrukturierten Textwüsten, sondern didaktisch saubere, lehrplankonforme und sofort einsetzbare Materialien. Genau hier setzte das 2022 von Felix Weiß und Marius Lindenmeier gegründete Unternehmen an.

Der Pivot: Datenschutz als Burggraben

Der entscheidende Wendepunkt kam 2023. Das Start-up vollzog einen Strategiewechsel (Pivot) weg von einer SaaS-Lösung für Verlage hin zu einer direkten Plattform für Lehrkräfte. Anstatt Nutzer*innen mit freien Eingabefeldern (Prompts) allein zu lassen, entwickelte das Team feste Arbeitsblattvorlagen. Dies wurde zum entscheidenden Wettbewerbsvorteil gegenüber internationalen Anbietern: Während diese oft an der strikten DSGVO scheitern, bietet to teach durch Serverstandorte in der EU und Rechtssicherheit eine Lösung, die Schulträger akzeptieren.

Dabei mussten technische Kinderkrankheiten überwunden werden: Frühe KI-Modelle „halluzinierten“ Fakten. To teach reagierte mit der systematischen Integration von Quellen und profitierte zugleich von der rasanten Evolution der Sprachmodelle.

Skalierung im Ökosystem gegen nationale Konkurrenz

Der Markt nahm die Lösung schnell an: Im Januar 2023 meldete sich der erste Nutzer an, bis Ende des Jahres waren es laut Unternehmen bereits knapp 16.000 Lehrkräfte. Das Jahr 2024 markierte dann den Übergang vom Start-up zur Plattform: Durch die Übernahme von fobizz (101skills GmbH) wurde to teach Teil eines größeren Bildungsökosystems. Die Gründer blieben als Geschäftsführer an Bord.

Dieser Schritt war strategisch überlebenswichtig in einem sich konsolidierenden Markt. Einerseits gegenüber agilen Herausforderern, da Konkurrenten wie schulKI, Teachino, KIULY oder Kuraplan zum Teil aggressiv um Landeslizenzen kämpfen bzw. auf dem Markt für KI-gestützte Unterrichtsplanung und Materialerstellung durchgestartet sind.

Andererseits war der Schritte in Hinblick auf etablierte Verlage notwendig. Denn Häuser wie Cornelsen ziehen inzwischen mit eigenen KI-Assistenten nach, sperren ihre Inhalte jedoch oft in geschlossene Systeme, d.h. binden sie oft an die eigenen Verlagswerke.

Durch die erfolgreiche Integration in fobizz ist to teach kein isoliertes Insel-Tool mehr, sondern profitiert von bestehenden Landesrahmenverträgen und einem riesigen Vertriebsnetz. Die Nutzer*innenzahlen explodierten förmlich auf über 140.000 Lehrkräfte bis Ende 2024, so die Angaben von to teach.

Status Quo 2025: KI als neue Infrastruktur

Heute, im dritten Jahr nach der Gründung, hat sich der Fokus erneut verschoben. To teach versteht sich inzwischen als Arbeitsinfrastruktur. Die Zahlen unterstreichen diesen Anspruch: Nach Angaben von to teach nutzen über 300.000 Lehrkräfte die Plattform, und mehr als 4.000 Schulen sind angebunden. Das bedeutet: Millionen von Inhalten wurden so bereits KI-gestützt vorbereitet.

Das Unternehmen treibt nun den systematischen Schulvertrieb voran. Damit beweisen EdTechs wie to teach, dass sich Qualität und Personalisierung im sonst oft als innovationsresistent geltenden Bildungsmarkt skalieren lassen.

Für CEO Felix Weiß ist die Diskussion über das „Ob“ längst beendet: „Die Frage ist nicht mehr, ob KI im Klassenzimmer ankommt, sondern, wie und auf welche Weise sie dort wirklich hilft.“

Optocycle: Bauschutt-Recycling auf KI-Basis

Die Optocycle-Gründer Max-Frederick Gerken und Lars Wolff Optocycle zeigen, wie aus Bauschutt neuer Rohstoff wird und erhalten dafür eine Förderung der Deutschen Bundesstiftung Umwelt (DBU).

Jährlich fallen in Deutschland laut Umweltbundesamt rund 86 Mio. Tonnen Schutt und Abfälle auf Baustellen an. Häufig landen diese Materialien auf Deponien. So gehen allerdings wertvolle Ressourcen verloren. Der Ausweg: Ein hochqualitatives Recycling des Schutts vermeidet klimaschädliche Emissionen und hält wertvolle Materialien im Wertstoffkreislauf – und das bei zertifiziert gleichwertiger Qualität.

Um das Recycling von Material im Bausektor zu automatisieren, entwickelt das 2022 von Max-Frederick Gerken und Lars Wolff gegründete Start-up Optocycle aus Tübingen ein System auf Grundlage künstlicher Intelligenz (KI) zum Echtzeit-Monitoring.

Echtzeit-Monitoring im Recycling-Prozess

Die Deutsche Bundesstiftung Umwelt (DBU) fördert das Projekt mit rund 170.000 Euro. Im Rahmen der DBU-Green Startup-Förderung haben die Gründer ein KI-basiertes System zur automatischen, reproduzierbaren Klassifizierung von Bauabfällen entwickelt. Darauf aufbauend soll nun ein Prototyp das Echtzeit-Monitoring von RC-Körnungen – also recycelten Gesteinskörnungen aus Bauschutt – ermöglichen.

 „Aktuell basiert in der Branche der Aufbereitungsprozess von Bauschutt meist auf subjektiven Schätzungen“, so Max-Frederick Gerken.  Auch das Endprodukt werde nur stichprobenartig im Labor überprüft. Mit dem System sei „Echtzeitmonitoring von Recycling-Gesteinskörnungen möglich. Somit können die Qualität der Körnung verbessert und mehr Material in die Beton-Produktion überführt werden“, so Gerken.

Die Qualität von Sekundärrohstoffen verbessern

Das System kombiniert laut Gerken moderne, optische Sensorik mit KI – und löse so ein altbekanntes Problem in der Baubranche. „Zurzeit schwankt oft die Beschaffenheit der recycelten Rohstoffe. Das bedeutet einerseits ein wirtschaftliches Risiko für Unternehmen und führt andererseits zum Verlust von wertvollen Materialien“, so Gerken. Optocycle erwartet mithilfe seiner Entwicklung eine 20 Prozent höhere Menge an recycelten, hochqualitativen Gesteinskörnungen sowie 15 Prozent geringere Abfallreste, die sonst auf Deponien landen würden. Dazu werden nach Gerkens Angaben sowohl der eingehende Schutt „optimal klassifiziert“ als auch das Ergebnis transparent überprüft. Kooperationspartner ist hierbei die Heinrich Feeß GmbH, die laut Gerken bereits seit vielen Jahren mit Optocycle zusammenarbeitet. Der Mitgründer weiter: „Die Technologie leistet einen Beitrag für Kreislaufwirtschaft im Bauwesen. Wir helfen dabei, die Qualität von Sekundärrohstoffen zu verbessern, die aus dem Bauschutt gewonnen werden. Diese Lösung lässt sich zudem perspektivisch auf alle Abfallströme übertragen."

Das System von Optocycle kann Gerken zufolge direkt in bereits bestehende Anlagen zur Verarbeitung von Bauabfällen installiert werden – „direkt über dem Fließband.“ Diese einfache Nachrüstung spare Kosten und ermögliche die schnelle Umsetzung eines innovativen Bauschutt-Recyclings. „Denn nur wenn das Recycling finanziell machbar ist, kann die Kreislaufwirtschaft in der Baubranche Erfolg haben“, so Gerken.

Kreislaufwirtschaft in der Baubranche ist aktiver Klimaschutz

Kreislaufwirtschaft in der Baubranche hat nach den Worten des zuständigen DBU-Referenten Dr. Volker Berding wichtige Effekte für den Klimaschutz: „Die Produktion von immer neuem Beton sorgt für hohen Ausstoß von klimaschädlichen Treibhausgasen.“ Einer WWF-Studie zufolge entstehen bei der Herstellung von Zement – dem wichtigsten Bestandteil von Beton – acht Prozent der gesamten globalen Treibhausgasemissionen. Berding: „Alles, was zur einer Emissionsreduzierung beiträgt, hat also bereits einen großen Effekt für den Klimaschutz.“ Eine Kreislaufwirtschaft funktioniere jedoch nur, „wenn die Sekundärrohstoffe sich qualitativ nicht von einer Neuproduktion unterscheiden. Genau diesen Schritt kann Optocycle mit einem skalierbaren, optimierten Prototypen gehen.“

LegalTech-Trends 2026

KI, strategische Fähigkeiten und mehr Technikverständnis stehen 2026 auf der Agenda der Rechtsbranche – gut zu wissen nicht nur für LegalTech-Start-ups und -Gründer*innen.

Die LegalTech-Trends des Jahres 2026 machen deutlich, dass die Rechtsbranche vor einem grundlegenden Wandel steht: Routinetätigkeiten werden zunehmend in den Hintergrund gedrängt, da sie automatisiert oder von KI übernommen werden. Gleichzeitig gewinnen neue Kompetenzen an Bedeutung und Up-Skilling wird zur Schlüsselqualifikation, während traditionelle Karrierepfade ins Wanken geraten. Dementsprechend werden 2026 das Technologieverständnis, Prozessdesign sowie strategische Fähigkeiten in der Rechtsbranche immer wichtiger.

1. Integrierte Cloud LegalTech-Plattformen etablieren sich

Die LegalTech-Landschaft befindet sich in einem tiefgreifenden Wandel und konsolidiert sich zunehmend zu integrierten Cloud-Ökosystemen. Diese vereinen zentrale Funktionen wie Mandats- und Fallmanagement, Dokumentenautomatisierung, Ausgaben- und Risikoanalysen sowie Kollaborations- und Workflow-Funktionen auf einer gemeinsamen Plattform. Sie lösen die bislang weitverbreiteten, voneinander getrennten Einzelsysteme ab. Diese integrierten Plattformen versetzen juristische Teams in die Lage, auf eine einheitliche, konsistente Datenbasis (Single Source of Truth) zuzugreifen und fundierte Analysen durchzuführen. Das Ergebnis sind deutlich schnellere Arbeitsabläufe, eine verbesserte Transparenz über Team- und Abteilungsgrenzen hinweg sowie eine höhere operative Resilienz der Rechtsorganisation.

2. Eingebettete agentenbasierte KI (embedded agentic AI)

Embedded Agentic AI entwickelt sich rasant zu einem der prägendsten Trends im LegalTech-Markt. Im Gegensatz zu klassischen KI-Assistenzsystemen agieren agentische KI-Module direkt innerhalb juristischer Fachanwendungen und übernehmen eigenständig klar definierte Aufgaben – etwa die Fristenüberwachung, Vertragsprüfung oder Aktenvorbereitung. Nahtlos in bestehende Workflows eingebettet, reduzieren sie manuellen Aufwand, minimieren Risiken und steigern die Produktivität spürbar. Für Kanzleien bedeutet Embedded Agentic AI einen strategischen Schritt hin zu skalierbaren, zukunftssicheren Prozessen, bei denen juristische Expertise gezielt durch autonome, kontextbewusste KI ergänzt wird.

3. KI-Sicherheit & Governance

KI ist längst mehr als nur ein Werkzeug – sie entwickelt sich zu einer operativen Notwendigkeit. Im Jahr 2026 werden LegalTech-Pioniere deshalb über reine Pilotprojekte hinausgehen und Rahmenwerke für die KI-Governance, Risikokontrollen, Compliance und ethische Rahmenbedingungen einführen. In diesem Kontext gilt es beispielsweise Transparenzanforderungen zu definieren, Prompt-Audits und Human-in-the-Loop-Kontrollen einzuführen sowie für die Nachverfolgbarkeit von Datenquellen zu sorgen. Kanzleien und Rechtsabteilungen, die eine strukturierte KI-Governance integrieren, reduzieren Haftungsrisiken, stärken das Vertrauen und können KI skalieren. Wenn sie dabei auch noch den ethischen und regulatorischen Compliance-Anforderungen gerecht werden, sind sie für die Herausforderungen der Zukunft gut aufgestellt.

4. Predictive Legal Analytics

KI steht 2026 nicht mehr nur für unterstützende oder automatisierende Funktionen, sondern entwickelt sich zunehmend zum strategischen Faktor. Generative KI und fortschrittliche Analyseverfahren werden gezielt zum Einsatz kommen, um den Ausgang von Gerichtsverfahren zu prognostizieren, umfangreiche Beweis- und E-Discovery-Daten auszuwerten und bislang verborgene Muster in der Rechtsprechung zu identifizieren. Im Jahr 2026 wird KI-generierter Content in immer mehr Verfahren eine zentrale Rolle bei der Sichtung, Bewertung und Einordnung von Beweismitteln spielen. Dadurch verändern sich die Vorgehensweisen bei der Vorbereitung von Fällen, dem Entwickeln von Argumentationsketten sowie der strategischen Entscheidungsfindung. All das führt dazu, dass Technologie vom reinen Hilfsmittel zum strategischen Entscheidungsfaktor aufsteigt.

5. Juristische Talente entwickeln sich zu technisch versierten Fachkräften

Anwältinnen und Anwälte müssen sich zunehmend zu technologieaffinen Gestaltern entwickeln, die digitale Tools, Automatisierung und KI souverän in ihre tägliche Arbeit integrieren. Statt reiner Rechtsanwendung rücken Prozessverständnis, Systemkompetenz und Dateninterpretation in den Fokus. Kanzleien profitieren von effizienteren Abläufen, höherer Skalierbarkeit und besserer Mandantenorientierung. Tech-fluente Legal Professionals werden damit zum entscheidenden Wettbewerbsfaktor in einem zunehmend digitalisierten Rechtsmarkt.

6. KI-gestütztes Smart Contracting & Compliance Automation

KI geht im Vertragswesen weit über einfache Prüfungsfunktionen hinaus und wird zum zentralen Instrument für umfassendes Contract Lifecycle Management, Compliance-Monitoring sowie eine automatisierte Vertragserstellung. Zudem lassen sich durch Predictive Analytics Risiken, Inkonsistenzen und Compliance-Probleme immer früher identifizieren – ein Trend, der insbesondere für Unternehmensrechtsabteilungen und international tätige Kanzleien von Bedeutung ist. Im Jahr 2026 werden sich vor allem diese drei Anwendungsszenarien etablieren:

  • KI-gestützte Vertragsanalysen, die potenzielle Risiken identifizieren und konkrete Korrekturvorschläge liefern.
  • Automatisierte Compliance-Berichte zur lückenlosen Nachverfolgung regulatorischer Vorgaben.
  • KI-Unterstützung bei der Erstellung von Dokumenten.

 7. Cybersicherheit wird zum Wettbewerbsvorteil

Mit der zunehmenden Nutzung von LegalTech steigen auch die Risiken im Bereich Cybersecurity. Umso wichtiger ist es, dass Jurist*innen die Daten ihrer Mandant*innen, vertrauliche Fallakten sowie ihre KI-Systeme vor Ransomware-Angriffe, Datenpannen und der unbefugten Offenlegung sensibler Informationen schützen. Robuste Cybersecurity-Tools und datenschutzorientierte LegalTech-Architekturen sind daher unverzichtbar und werden häufig direkt in die Plattformen integriert. Kanzleien und Rechtsabteilungen, die hier proaktiv investieren, schützen nicht nur ihre Reputation und das Vertrauen ihrer Mandant*innen, sondern erfüllen zugleich die zunehmend strengeren globalen Datenschutzvorschriften.

8. Ergebnisorientierte und ROI-nachweisbare KI-Einführung

2026 steht LegalTech nicht mehr im Testmodus – sie muss konkrete Mehrwerte nachweisen. Sowohl Anbietende als auch Anwendende sind zunehmend gefordert, Investitionen in Technologie klar mit messbaren Ergebnissen zu verknüpfen, etwa durch Zeit- und Kostenersparnis, Reduzierung von Fehlern oder eine höhere Mandant*innenzufriedenheit. Für die Praxis bedeutet das: Pilotprojekte sollten stets mit klar definierten KPIs starten, um den Erfolg messbar zu machen. Analysen spielen eine entscheidende Rolle, um den geschäftlichen Nutzen gegenüber Führungskräften und Mandant*innen transparent darzustellen. Gleichzeitig verlagern sich Budgetentscheidungen weg von „Innovation um der Innovation willen“ hin zu einer klaren ROI-orientierten Ausrichtung.

9. Innovation in der Rechtsberatung & alternative Business-Modelle

Die Veränderung in der Rechtsbranche betrifft die gesamte Struktur juristischer Dienstleistungen. Klassische Stundenhonorare verlieren an Bedeutung, während alternative Preismodelle wie Festpreise, Abonnements oder wertbasierte Vergütungen an Bedeutung gewinnen. Diese Entwicklung wird durch Technologien unterstützt, die Ergebnisse zuverlässig vorhersagen und standardisierte Leistungen effizient bereitstellen. Für Rechtsabteilungen und Mandant*innen wird Kalkulierbarkeit zunehmend zum Standard. Kanzleien, die ihre Liefermodelle entsprechend innovativ gestalten, sichern sich einen Wettbewerbsvorteil gegenüber Wettbewerber*innen, die weiterhin auf traditionelle Stundenhonorare setzen.

10. Lawbots & Vertikale Automatisierung

„Lawbots“ stehen kurz davor, zum festen Bestandteil der Rechtsbranche zu werden. Diese spezialisierten Bots sind darauf ausgelegt, spezifische juristische Aufgaben zu automatisieren – von der Mandantenaufnahme über Dokumentenautomatisierung und Compliance-Prüfungen bis hin zu rechtlicher Recherche. Typische Einsatzszenarien sind etwa maßgeschneiderte Bots für Einwanderungsanträge, Markenanmeldungen oder Routineverfahren in der Prozessführung. Sie übernehmen klar definierte, standardisierte Aufgaben auf höchst effiziente Weise. So gewinnen Anwält*innen wertvolle Zeit, um sich auf komplexe, urteilsbasierte Arbeiten zu konzentrieren und strategische Entscheidungen zu treffen.

Der Autor Oliver Bendig ist CEO von stp.one, einem der führenden Anbietern von Legal-Tech-Komplettlösungen.

DLR-Spin-off Nunos liefert Raumfahrt-Technik für den Acker

Das 2024 von Fabian Miersbach und Tim Paulke gegründete Start-up Nunos hat ein Verfahren entwickelt, das Gülle in effizienteren, geruchlosen Dünger umwandelt. Die Deutsche Bundesstiftung Umwelt (DBU) fördert Nunos mit 125.000 Euro.

Das Düngen mit Gülle ist wichtiger Bestandteil einer im Kreislauf gedachten Landwirtschaft. Aktuell ruhen viele Äcker noch, doch ab Februar versorgen zahlreiche Landwirt*innen ihre Felder wieder auf diese Weise mit Nährstoffen. Doch durch Gülle entstehen auch umweltschädliche Gase wie Ammoniak und Methan. Das Hürther Start-up Nunos hat nun ein Verfahren entwickelt, das Gülle in effizienteren, geruchlosen Dünger umwandelt. Dies verringert den Ausstoß von Treibhausgasen (THG) und sorgt gleichzeitig für eine bessere Nährstoff-Versorgung der Pflanzen. Mitgründer Tim Paulke zufolge wandelt die firmeneigene Anlage „innerhalb eines 24-Stunden-Zyklus‘ mit einem rein biologischen Verfahren Gülle zu einem Düngemittel mit höherer Nährstoffnutzungseffizienz und deutlich geringeren Treibhausgas-Emissionen um.“

Astronautik-Technologie für eine breite Anwendung

Als Ausgründung aus dem Deutschen Zentrum für Luft- und Raumfahrt (DLR) optimiert das Nunos-Team eine in der Astronautik entwickelte Technologie für eine breite Anwendung in der Landwirtschaft. Paulke: „Das zugrundeliegende System wurde ursprünglich zur Aufbereitung von menschlichem Urin als Düngemittel für den erdfreien Anbau in Gewächshäusern auf Raumstationen entwickelt.“ Bei der neuen Anwendung werde die Gülle in der bei den Betrieben errichteten Anlage mithilfe von Mikroorganismen weiterverarbeitet. „Es entstehen ein dünnflüssiges, geruchsloses Düngemittel und eine geringe Menge eines nährstoffreichen Feststoffs,“ so Paulke.

Ernte-Mehrertrag von 20 Prozent erwartet

Bei der Güllelagerung unter dem Stallboden reagieren die Ausscheidungen und setzen schädliche Gase frei. Paulke: „Um die Ausgasung von Methan und Ammoniak zu vermeiden, wird die Gülle möglichst schnell aus den Ställen in die Aufbereitungsanlage geleitet.“ Das zügige Entfernen erhöht nach seinen Worten auch das Tierwohl. Außerdem „werden die Nährstoffe in dem Düngemittel so aufbereitet, dass sie direkt für die Pflanzen verfügbar sind“, so der Nunos-Mitgründer. Diese Nährstoffe kämen schneller als beim herkömmlichen Ausbringen der Gülle bei den Pflanzen an. Auswaschungen aus dem Boden würden so deutlich verringert. „Nach ersten Pflanzversuchen rechnen wir bei der Ernte mit einem Mehrertrag von bis zu 20 Prozent, was wir in 2026 auf zwei landwirtschaftlichen Betrieben in Feldversuchen validieren möchten“, prognostiziert Paulke

Nunos-Dünger auch für den Hausgebrauch

Neben den Gülle-Aufbereitungsanlagen stellt das Start-up nach eigenen Angaben kleinere Mengen des Düngemittels für den Hausgebrauch her. „Der Dünger wirkt auch für den heimischen Tomatenanbau oder Zimmerpflanzen wie ein Multivitamin-Drink“, so Paulke. Der Vertrieb erfolge über das Internet. Das Verfahren zur Umwandlung der Gülle in den effizienten Dünger sei über das DLR patentiert und von Nunos exklusiv lizensiert.

Die Deutsche Bundesstiftung Umwelt (DBU) fördert das Unternehmen mit 125.000 Euro. Paulke: „Aktuell arbeiten wir hauptsächlich mit Rindergülle und Gärresten aus Biogasanlagen. Durch die DBU-Förderung bekommen wir die Möglichkeit, das Verfahren ausführlicher auf seine Umweltauswirkungen zu testen, anstatt nur wirtschaftliche Faktoren zu betrachten.“ Außerdem geplant seien neue Feldversuche, die die zusätzlichen Erträge durch den Dünger weiter verifizieren und Optimierungsmöglichkeiten finden.

Mehr Effektivität und wirtschaftliche Effizienz für die Landwirtschaft

DBU-Referentin Dr. Susanne Wiese-Willmaring sieht großen Bedarf in der Landwirtschaft für Konzepte wie das von Nunos: „Die Bäuerinnen und Bauern wissen von den Auswirkungen der bei ihrer Arbeit entstehenden Treibhausgase. Oft wollen Sie etwas verändern und müssen es aufgrund gesetzlicher Vorgaben teils auch.“ Die hohen Treibhausgas-Emissionen brächten der Landwirtschaft einen Misskredit ein, der durch innovative Lösungen behoben werden könne. Wiese-Willmaring weiter: „Für die Betriebe müssen dabei Effektivität und wirtschaftliche Effizienz stimmen – Herausforderungen, die Nunos beide aktiv angeht.“

Gaming & digitale Medien – eine Perspektive für Start-ups?

Diese Voraussetzungen sollten Gründerinnen und Gründer von Start-ups in der Gamingbranche oder der Gestaltung digitaler Medien mitbringen, um erfolgreich zu sein.

Digitale Start-ups verbinden attraktive Zukunftsperspektiven mit einem geringen Startkapital. Für die digitale Generation aktueller Schul- und Universitätsabgänger stellt sich die Frage, ob ein Einstieg in die Gamingbranche oder die Gestaltung digitaler Medien für die Gründung eines Start-ups ausreichen kann. Solche Perspektiven sind gegeben, die neben ausreichend Kreativität eine fundierte Ausbildung in Computertechnik und Business gleichermaßen voraussetzen.

Indie-Games – eine Perspektive für Entwickler?

Noch vor einigen Jahren war die Gamingbranche als Perspektive für Gründer eher unattraktiv. Die großen, internationalen Studios dominierten die Szene, wobei für Triple-A-Titel längst Tausende von Entwicklern an unterschiedlichen Standorten benötigt wurden. Unter dem Zeit- und Kostengrund vieler Studios sowie der Entlassungswelle der letzten Jahre ist es für immer mehr Developer uninteressant, auf die Anstellung in einem der großen Softwarehäuser zu hoffen.

Die unabhängige Entwicklung von digitalen Medien oder Spielen bleibt jedoch beliebt und kann zur Basis eines Start-ups werden. Immer mehr Gamer wenden sich von den überteuerten, großen Marken der Szene ab und vertrauen auf kleinere Entwickler mit mehr Freiheiten bei der Umsetzung. Selbst die großen Gaming-Plattformen halten regelmäßig eine Auswahl beliebter und neuer Indie-Games für Millionen Nutzer bereit.

Unabhängig von Größe und Art eines Studios bleibt die Gamingbranche international und setzt verschiedene Skills vom Development bis zum erfolgreichen Marketing voraus. Dies alles lässt sich längst in speziell abgestimmten Studiengängen erlernen.

Spielentwicklung der neuesten Generation als Studiengang

Studiengänge wie Games & Immersive Media an der Hochschule Furtwangen erlauben es, einen Bachelor im Gaming-Umfeld zu erlangen und alle relevanten Fähigkeiten für den zukünftigen Berufsweg zu gewinnen. Neben Computer Science und Anwendungen im spielerischen Bereich nehmen Business, Design und Medien als zweiter Bereich einen wesentlichen Stellenwert im Studium ein.

Diese Kombination des bilingualen Studiengangs ergibt Sinn. Schließlich ist nicht jeder kreative Programmierer und Spieleentwickler ein Geschäftsmann, genauso wenig wie Marketer gerne stundenlang mit Quellcode arbeiten. Moderne Studiengänge wie dieser führen beide Welten zusammen und sorgen für eine fundierte Ausbildung, um tiefe Einblicke in beide relevanten Arbeitsfelder zu gewinnen.

Starke Unterstützung für zukünftige Start-ups

Die Hochschule Furtwangen geht mit ihrer Unterstützung weit über den reinen Studiengang hinaus. Bewusst wird angehenden Start-ups unter die Arme gegriffen, die ihre ersten Schritte ins Gaming-Business mit kreativen Spielen und Studienprojekten gehen möchten.

Neben einer umfassenden Beratung auf dem Weg zum eigenen Business werden ein Support für Fördermittel sowie Räumlichkeiten für das gemeinschaftliche Arbeiten an Spielen oder digitalen Medien geboten. Viele Formalitäten und Unsicherheiten, die sich bei Start-ups unabhängig von Branche und Geschäftsfeld ergeben, werden so seitens der Hochschule kompetent und professionell unterstützt.

Für den Einstieg sind Kenntnisse im Gaming-Bereich ideal, die über die reine „Freude am Zocken“ hinausgehen. Kreativität in der Planung und Umsetzung eigener Projekte sollte nachgewiesen werden – anders als die zwingende Notwendigkeit, eine Programmiersprache zu beherrschen.

Sichtbarkeit im digitalen Umfeld entscheidend

Wie bei allen Produkten entscheidet weniger die tatsächliche Qualität, sondern die Sichtbarkeit und eine wirkungsvolle Werbung über Erfolg von Misserfolg von Games. Gerade das Marketing für digitale Produkte ist wegen der hohen Konkurrenz und einer Fülle an Informationen in der digitalen Welt eine immense Herausforderung. Hier eine fachkundige Unterstützung von Anfang an zu erhalten, bewahrt Entwickler und kreative Köpfe davor, grundlegende Fehler zu begehen und frühzeitig den Traum vom Gaming-Job zu begraben.

KI-Modelle erfolgreich im Unternehmen einführen

Worauf es bei der Implementierung von KI wirklich ankommt.

Künstliche Intelligenz (KI) gewinnt in Unternehmen zunehmend an Bedeutung. Sie kann Prozesse beschleunigen, große Datenmengen sinnvoll nutzbar machen und Entscheidungen unterstützen. Doch in der Praxis zeigt sich: Moderne Technologie allein führt noch nicht zum Erfolg. Entscheidend ist ein strukturiertes Vorgehen, bei dem Ziele klar definiert, Daten sorgfältig vorbereitet und organisatorische Rahmenbedingungen von Beginn an berücksichtigt werden. „Viele KI-Initiativen scheitern daran, dass am Anfang die Orientierung fehlt“, sagt Benedikt Weber, Geschäftsführer der applord GmbH. „Struktur schafft Entscheidungsfähigkeit – noch bevor über konkrete KI-Modelle gesprochen wird.“

Organisatorischer Wandel und Einbindung der Mitarbeitenden

Der Einsatz von KI verändert Arbeitsabläufe, Verantwortlichkeiten und Entscheidungswege. Mitarbeitende arbeiten verstärkt mit automatisierten Systemen zusammen, Aufgaben verschieben sich, Rollen entwickeln sich weiter. Wird dieser Wandel nicht aktiv begleitet, entstehen Unsicherheiten oder Ablehnung gegenüber neuen Technologien. Erfolgreiche Unternehmen setzen deshalb auf transparente Kommunikation und frühzeitige Einbindung der Mitarbeitenden. Sie erklären, warum KI eingesetzt wird, welche Aufgaben sie übernimmt und wo menschliche Expertise weiterhin unverzichtbar bleibt. Fehlt dieses gemeinsame Verständnis, werden neue Systeme häufig nur eingeschränkt genutzt. „KI-Projekte scheitern selten an der Technologie“, betont Weber. „Viel häufiger fehlt ein klares Bild davon, welchen konkreten Nutzen KI für Mitarbeitende und Organisation wirklich bringt.“

Auswahl der passenden KI-Lösung

Das Angebot an KI-Lösungen wächst rasant. Für Unternehmen besteht die Herausforderung darin, nicht der technischen Vielfalt zu folgen, sondern eine Lösung zu wählen, die zum eigenen Geschäftsprozess passt. Der Ausgangspunkt sollte immer ein klar definierter Anwendungsfall sein: Welche Aufgabe soll KI konkret unterstützen oder verbessern? Neben den Funktionen spielen auch Fragen der Nachvollziehbarkeit, Integration in bestehende Systeme und regulatorische Anforderungen eine Rolle. Werden diese Aspekte zu spät berücksichtigt, entstehen Lösungen, die technisch leistungsfähig sind, im Alltag aber keinen Mehrwert liefern. „Viele Unternehmen wählen KI nach dem Funktionsumfang aus und stellen später fest, dass sie nicht zum eigenen Prozess passt“, erklärt Weber. „Erfolgreich ist KI dann, wenn sie Abläufe sinnvoll ergänzt und verständliche Ergebnisse liefert.“

Datenqualität als Grundlage für verlässliche Ergebnisse

KI-Modelle sind vollständig von der Qualität ihrer Daten abhängig. In vielen Unternehmen existieren relevante Informationen zwar, sie sind jedoch über verschiedene Systeme verteilt, unterschiedlich gepflegt oder historisch gewachsen. Diese Ausgangslage erschwert nicht nur den Einsatz von KI, sondern kann zu fehlerhaften oder schwer nachvollziehbaren Ergebnissen führen. Datenmanagement ist daher keine einmalige Vorarbeit, sondern eine kontinuierliche Aufgabe. Dazu gehören klare Zuständigkeiten, regelmäßige Prüfungen und eine strukturierte Aufbereitung der Daten. „Der Aufwand für Datenqualität wird häufig unterschätzt“, sagt Weber. „Ohne geprüfte und konsistente Daten lassen sich keine stabilen und verlässlichen KI-Ergebnisse erzielen – unabhängig davon, wie gut das Modell ist.“

Schrittweise Einführung statt großer Umbruch

Statt KI sofort unternehmensweit einzusetzen, empfiehlt sich ein schrittweises Vorgehen. Unternehmen können so mit klar abgegrenzten Anwendungsfällen beginnen, Lösungen im Alltag testen und die Ergebnisse anhand messbarer Kriterien, wie Benutzerfreundlichkeit oder verständlicher Anleitungen, bewerten. So lassen sich Risiken reduzieren und Erkenntnisse gezielt nutzen. Pilotprojekte liefern nicht nur technische Erkenntnisse, sondern zeigen auch, wie gut KI im Arbeitsalltag akzeptiert wird. Auf dieser Basis lässt sich entscheiden, welche Lösungen ausgebaut werden sollten. „Unternehmen, die mit überschaubaren Anwendungsfällen starten, treffen langfristig fundiertere Entscheidungen“, so Weber. „Praxiserfahrungen sind dabei deutlich wertvoller als theoretische Annahmen.“

KI & Bewertungen: Sichtbarkeit in einer neuen Suchrealität

Tipps und To-dos: Wie du dein Bewertungsmanagement strategisch aufsetzt und Sichtbarkeit und Vertrauen im KI-Zeitalter steigerst.

Generative Antworten in Suchmaschinen und Assistenten verändern die Spielregeln der Online-Sichtbarkeit. Nicht mehr nur klassische Rankings entscheiden, sondern die Frage, wem die KI genug vertraut, um es überhaupt zu nennen. Aktuelle, glaubwürdige und inhaltlich konkrete Bewertungen werden dabei zum Schlüsselsignal. Für kleine und mittlere Unternehmen bedeutet das: Bewertungsmanagement ist kein Nice-to-have mehr, sondern ein Pflichtprogramm, das Auffindbarkeit, Auswahl und Conversion spürbar beeinflusst. Im Folgenden erfährst du, wie du dein Bewertungsmanagement strategisch aufsetzen solltest, um Sichtbarkeit und Vertrauen im KI-Zeitalter zu steigern.

Warum Bewertungen jetzt geschäftskritisch sind

KI-Modelle zerlegen Rezensionen in viele kleine Bedeutungseinheiten und ziehen daraus ein konsistentes Bild. Welche Leistung wurde erbracht, an welchem Ort, mit welcher Qualität und für welchen Anlass. Aus den einzelnen Stimmen entsteht so ein Vertrauensprofil, das über bloße Sternesummen hinausgeht. Entscheidend ist nicht die bloße Menge, sondern die Frische und die inhaltliche Dichte der Aussagen. Eine Rezension wie „Schnell geholfen am Sonntag, sehr kompetente Beratung zu Reiseimpfungen“ liefert gleich mehrere Signale. Zeitliche Verfügbarkeit, thematische Expertise und konkreter Nutzen. Genau solche Details erhöhen die Wahrscheinlichkeit, in generativen Antworten aufzutauchen, wenn Menschen in ihrer Nähe nach einer Lösung suchen. Wer regelmäßig neue, authentische und präzise Bewertungen erhält, verschafft der KI verlässliche Hinweise und sichert sich dadurch mehr Sichtbarkeit in genau den Momenten, in denen Entscheidungen vorbereitet werden.

Bewertungsmanagement als Prozess, nicht als Aktion

Wirksam wird Bewertungsarbeit, wenn sie selbstverständlich Teil der täglichen Abläufe ist. Nach dem Kontakt freundlich um Feedback bitten, den Weg zur passenden Plattform so kurz wie möglich machen, interne Zuständigkeiten klar regeln und Reaktionszeiten verbindlich festlegen. Aus diesen scheinbar kleinen Schritten entsteht ein stabiler Rhythmus, der kontinuierlich neue Kund*innenstimmen hervorbringt und der KI immer wieder frische Kontexte liefert. Ein solcher Prozess ist robuster als jede einmalige Kampagne, weil er verlässlich Vertrauen aufbaut und saisonale Schwankungen abfedert. Teams profitieren, wenn sie Zielkorridore definieren, etwa eine bestimmte Zahl neuer Rezensionen pro Woche und wenn sie Fortschritte sichtbar machen. So wird aus gutem Vorsatz ein gelebter Ablauf, der die gesamte Organisation stärkt.

Sprache der Kund*innen wirkt wie natürliches SEO

KI versteht Alltagssprache deutlich besser als Listen isolierter Schlagwörter. Unternehmen gewinnen, wenn sie um freie, aber konkrete Formulierungen bitten, ohne Vorgabetexte und ohne Druck. Eine höfliche Bitte wie: „Wenn es für Sie passt, nennen Sie gern, was Ihnen besonders geholfen hat“ öffnet den Raum für präzise Hinweise auf Leistungen, Erreichbarkeit, Barrierefreiheit oder Schnelligkeit. Solche natürlich entstandenen Details sind für Menschen überzeugend und zugleich für Maschinen gut interpretierbar. Sie zeigen, wofür ein Betrieb tatsächlich steht, und verankern die passenden Begriffe in einem echten Nutzungskontext. Das Ergebnis ist eine Sprache, die Vertrauen schafft und die Auffindbarkeit stärkt, ohne künstlich zu wirken.

Antworten trainieren Vertrauen für Menschen und Maschinen

Jede Reaktion auf eine Bewertung ist ein sichtbares Zeichen von Serviceorientierung und zugleich zusätzlicher Kontext für die KI. Gute Antworten bedanken sich aufrichtig, beziehen sich konkret auf das Erlebte und bieten einen klaren nächsten Schritt an. Bei Kritik zählt ein professioneller Umgang. Das Anliegen nachvollziehen, Verantwortung übernehmen, eine realistische Lösung anbieten und einen direkten Kontaktweg nennen. So entsteht ein Bild von Verlässlichkeit, das Hemmschwellen senkt und Wiederbesuche wahrscheinlicher macht. Die KI erkennt diesen Umgang ebenso und ordnet das Unternehmen eher als vertrauenswürdig ein. Mit der Zeit entsteht ein stabiler Kreislauf aus guter Erfahrung, konstruktiver Reaktion und wachsendem Vertrauen.

Lokaler Content und Social Proof gehören zusammen

Bewertungen entfalten ihre volle Wirkung, wenn sie auf eine solide Informationsbasis treffen. Konsistente Unternehmensdaten, vollständige Leistungsseiten pro Standort, klare Öffnungszeiten inklusive Ausnahmen und eine schnelle, mobil optimierte Webseite erleichtern die Einordnung für Nutzer*innen und Maschine. Wenn ausgewählte Zitate oder Bewertungsschnipsel an relevanten Stellen sichtbar werden, etwa auf der Startseite, in der Buchungsstrecke oder in den häufigen Fragen, entsteht ein schlüssiges Gesamtbild. Der lokale Bezug bleibt klar erkennbar, die Erwartungen sind gut gesetzt, und die nächsten Schritte sind ohne Umwege möglich. So wird aus Social Proof ein handfester Conversion Hebel.

Vom Feedback zur Verbesserungsschleife

Rezensionen sind fortlaufende Marktforschung aus erster Hand. Wer wiederkehrende Themen auswertet, etwa Wartezeiten, Erreichbarkeit oder Bezahloptionen, erkennt schnell die Stellschrauben mit der größten Wirkung. Wichtig ist, die daraus abgeleiteten Verbesserungen konsequent umzusetzen und sichtbar zu machen. Informieren, handeln, erneut um Rückmeldung bitten. Dieser offene Kreislauf wirkt nach innen und nach außen. Mitarbeitende erleben, dass Feedback Veränderungen anstößt, Kund*innen erleben, dass ihre Hinweise ernst genommen werden, und die KI registriert die fortlaufende Pflege der Qualität. Mit jeder Runde werden Erlebnisse besser und Bewertungen stärker, was die Sichtbarkeit weiter erhöht.

Fazit

Sichtbarkeit entsteht heute dort, wo Menschen nach konkreten Lösungen fragen und wo KIs verlässliche Hinweise zu Qualität und Relevanz finden. Unternehmen, die Bewertungen als strategischen, kontinuierlichen Prozess verstehen, erhöhen ihre Chance, in generativen Antworten genannt zu werden und gewinnen genau in den entscheidenden Momenten an Präsenz. Vieles davon ist eine Frage kluger Organisation und klarer Abläufe. Der finanzielle Aufwand bleibt überschaubar, der Nutzen für Auffindbarkeit, Vertrauen und Umsatz ist deutlich spürbar.

Die Autorin Franziska Ortner ist Produktmanagerin bei SELLWERK

KI-Agenten als Transformationstreiber 2026

Eine aktuelle DeepL-Studie zeigt: 69 % der globalen Führungskräfte erwarten für 2026 tiefgreifende Veränderungen durch KI-Agenten; KI-Sprachtechnologie wird zur unverzichtbaren Infrastruktur.

Eine neue Studie von DeepL, einem globalen Unternehmen für KIProdukte und Forschung, zeigt: 2026 wird für viele Organisationen den Übergang vom Experimentieren mit KI hin zu agentischer Automatisierung markieren. So erwartet die Mehrheit der weltweit befragten Führungskräfte (69 %), dass agentenbasierte KI ihre Geschäftsabläufe im kommenden Jahr deutlich verändern wird.

Die Studie wurde im September 2025 von Censuswide im Auftrag von DeepL durchgeführt. Befragt wurden 5.000 Führungskräfte in Deutschland, Frankreich, den USA, Großbritannien und Japan. Die Ergebnisse deuten darauf hin, dass Unternehmen verstärkt planen, autonome KI-Agenten im großen Umfang einzusetzen – etwa zur Unterstützung von Wissensarbeit, zur Ezienzsteigerung oder zur Anpassung organisatorischer Strukturen. Damit zeichnet sich die bedeutendste operative Veränderung in der Wirtschaft seit der Einführung der Cloud an.

„KI-Agenten sind längst nicht mehr experimentell, sie sind unumgänglich.“ sagt Jarek Kutylowski, CEO und Gründer von DeepL. „Die nächste Phase besteht darin, sie tiefgreifend in unsere Arbeitsweisen zu integrieren. In 2026 werden KI-Agenten das mühsame Umschalten zwischen verschiedenen Kontexten und repetitive Aufgaben übernehmen, sodass sich Menschen auf das konzentrieren können, was Unternehmen tatsächlich voranbringt.“

KI-Agenten werden zum nächsten Disruptor für Unternehmen

Nach ersten Pilot- und Anwendungsfällen rücken KI-Agenten zunehmend in den produktiven Einsatz:

  • Fast die Hälfte der globalen Führungskräfte (44 %) erwartet für 2026 einen tiefgreifenden Wandel durch agentische KI; ein Viertel (25 %) sieht diesen Wandel bereits heute. Nur 7 % glauben, dass KI-Agenten ihre Betriebsabläufe nicht verändern werden, was die hohe Geschwindigkeit der Implementierungen unterstreicht.
  • Als die drei wichtigsten Voraussetzungen für den sinnvollen und vertrauenswürdigen Einsatz von KI-Agenten nennen die Befragten nachweisbare Ezienz- und ROI-Eekte (22 %), Anpassungsfähigkeit der Belegschaft (18 %) und zunehmende organisatorische Bereitschaft (18 %).
  • Als wesentliche Herausforderungen bei der Einführung von KI-Agenten nennen die Befragten Kosten (16 %), Bereitschaft der Belegschaft (13 %) und Reife der Technologie (12 %).

KI als zentraler Wachstumstreiber für globale Unternehmen

Über Agenten hinaus gilt KI insgesamt als wichtigster Motor für das Wirtschaftswachstum in 2026:

  • Über zwei Drittel (67 %) der Befragten geben an, dass sich der ROI ihrer KI-Initiativen in diesem Jahr erhöht hat; mehr als die Hälfte (52 %) erwartet, dass KI im kommenden Jahr mehr zum Unternehmenswachstum beitragen wird als jede andere Technologie.
  • Wenn es um messbare Verbesserungen durch KI geht, liegt Deutschland (78 %) zusammen mit Großbritannien (80 %) an der Spitze, gefolgt von den USA (71 %) und Frankreich (70 %). Japan verzeichnet mit 35 % deutlich niedrigere Werte, was auf langsamere Implementierungen und Bereitschaften hindeutet.
  • Über die Hälfte der globalen Führungskräfte (51 %) rechnet damit, dass KI im kommenden Jahr mehr neue Rollen schat als ersetzt. 52 % geben an, dass KI-Kenntnisse für die meisten Neueinstellungen vorausgesetzt werden.

KI-Sprachtechnologie entwickelt sich vom Werkzeug zur zentralen Infrastruktur

Die Studie zeigt zudem, wie KI-Sprachtechnologie zur entscheidenden Komponente der Unternehmensinfrastruktur wird:

  • Fast zwei Drittel der globalen Unternehmen (64 %) planen 2026 steigende Investitionen in KI-Sprachtechnologie – angeführt von Großbritannien (76 %) und Deutschland (74 %), gefolgt von den USA (67 %) und Frankreich (65 %) werden mehrsprachige Kommunikation und Inhalte zu zentralen Faktoren für globales Wachstum. Im Gegensatz dazu bleibt Japan (38 %) vergleichsweise konservativ, was auf eine langsamere Dynamik hindeutet, gleichzeitig aber das wachsende Interesse von mehr als einem Drittel der Führungskräfte widerspiegelt.

In diesem Zusammenhang wird Echtzeit-Sprachübersetzung 2026 unverzichtbar:

  • Über die Hälfte der globalen Führungskräfte (54 %) sieht Echtzeit-Sprachübersetzung im kommenden Jahr als unverzichtbar an – derzeit sind es ein Drittel (32 %).
  • Großbritannien (48 %) und Frankreich (33 %) sind Vorreiter bei der Nutzung von Tools für die Echtzeit-Sprachübersetzung; Japan liegt derzeit nur bei 11 %.
  • Die Nachfrage wird angetrieben von technologischen Fortschritten in der Echtzeit-Sprachübersetzung (46 %), Kundenerwartungen (40 %) und marktübergreifender Expansion (38 %).

Die Erkenntnisse der Studie liefern wichtige Einblicke in die Zukunft der KI und zeigen, wie diese Veränderungen Branchen umgestalten, Kundenerwartungen neu definieren und sich auf das Wettbewerbsumfeld auswirken.

GreenTech – der Boom geht zu Ende

Zwar zählt Deutschland rund 3000 Start-ups aus dem GreenTech-Bereich, doch viele kämpfen mit Kapitalmangel, Fachkräftedefizit und einer überlasteten Infrastruktur. Der Boom ist vorbei – eine Einschätzung von Seriengründer und Transformationsexperte Daniel Fellhauer.

Die deutsche Wirtschaft steht vor einer ihrer größten Transformationen seit der Industrialisierung. Jahrzehntelang galten Auto- und Stahlindustrie als Rückgrat des Wohlstands. Nun rückt Nachhaltigkeit in den Mittelpunkt. Daniel Fellhauer sieht die GreenTech-Branche an einem kritischen Punkt: „GreenTech ist kein Hype, sondern Realität mit echten Herausforderungen. Die Frage ist: Wer bleibt übrig, wenn die Subventionen verschwinden?“ Seine Aussage bringt auf den Punkt, was viele Brancheninsider beschäftigt: der Übergang von gefördertem Wachstum zu marktwirtschaftlicher Reife. Jetzt entscheidet sich, welche Unternehmen Innovation und Wirtschaftlichkeit in Einklang bringen können – und wer an überzogenen Erwartungen scheitert.

Der Boom geht zu Ende

„Der Anteil grüner Gründungen ist zuletzt deutlich gesunken“, sagt Daniel Fellhauer. „Vor zwei Jahren war noch jedes dritte neue Start-up nachhaltig ausgerichtet. Heute ist es nicht einmal mehr jedes Vierte. Das ist ein deutliches Warnsignal. Der Markt sortiert sich, Kapital wird selektiver, und viele Ideen schaffen es nicht mehr über die Pilotphase hinaus.“ In den vergangenen fünf Jahren flossen zwar rund 11,7 Milliarden Euro in grüne Start-ups – etwa ein Viertel aller deutschen Risikoinvestitionen –, doch das Geld konzentriert sich zunehmend auf wenige, große Player. „Das zeigt eine Reifung, aber auch eine gefährliche Schieflage“, so Fellhauer. „Wir brauchen Breite, nicht nur Leuchttürme. Wenn die Finanzierungsströme versiegen, bevor Skalierung einsetzt, kippt der ganze Innovationspfad.“ Hinzu kommen steigende Zinsen, langwierige Genehmigungen und überlastete Netze.  „Viele unterschätzen, wie stark Infrastruktur über Wachstum entscheidet“, erklärt er. „Eine Solarfirma kann heute Aufträge für 1.000 Anlagen im Jahr haben. Aber wenn der Netzanschluss neun Monate dauert, bleibt sie auf halber Strecke stehen.“

Deutschland ist längst auf dem Weg zur nachhaltigen Wirtschaft – doch der Anstieg wird steiler. Die entscheidende Frage lautet: Wird GreenTech zum Fundament der nächsten industriellen Ära, oder zur vertanen Chance einer Generation? Laut einer aktuellen Analyse fließt ein erheblicher Teil staatlicher Investitionen und Subventionen in Deutschland weiterhin in fossile Strukturen – über 60 Milliarden Euro jährlich.  Da-bei hatte sich die Bundesregierung bereits 2009 gemeinsam mit anderen Industrieländern verpflichtet, ineffiziente Förderungen für fossile Energieträger bis 2025 zu beenden. Ein Ziel, das laut Fachleuten von Fraunhofer ISI, ZEW und Umweltbundesamt klar verfehlt wird. Daniel Fellhauer warnt: „Das ist kein ideologisches, sondern ein ökonomisches Problem. Solange Kapital und Fördermittel in alte Industrien gelenkt werden, anstatt in skalierbare GreenTech-Lösungen, bleibt Deutschland in der Vergangenheit verhaftet.“

Herausforderungen im deutschen GreenTech-Sektor

Trotz technologischer Fortschritte wird das Wachstum der Branche weiterhin durch strukturelle Probleme gebremst. Zu den größten Hindernissen zählen laut Fellhauer vor allem die unzureichende Netzinfrastruktur, die hohe Kapitalintensität sowie fragmentierte Märkte.  Hochqualifizierte Arbeitskräfte in den Bereichen Energie, Elektronik und Software sind rar, wodurch die Entwicklung und Umsetzung neuer Technologien verlangsamt wird. Gleichzeitig behindert der schleppende Ausbau der Strom- und Wärmenetze eine schnelle Skalierung innovativer Lösungen. Daniel Fellhauer erklärt: „Hinzu kommt, dass viele GreenTech-Unternehmen aufgrund langer Entwicklungszeiten und hoher Anfangsinvestitionen auf beträchtliches Kapital angewiesen sind. Schließlich sorgen unterschiedliche Förderprogramme und komplexe regulatorische Vorgaben dafür, dass Innovationen und Markteintritte ausgebremst werden. Diese Faktoren erschweren nicht nur das Wachstum bereits bestehender Firmen, sondern machen auch den Einstieg für neue Gründerinnen und Gründer deutlich schwieriger.“

Zweite Generation der Nachhaltigkeit für mehr wirtschaftliche Tragfähigkeit

„Nur wer wirtschaftlich denkt, kann nachhaltig handeln“, sagt Daniel Fellhauer. Für ihn ist klar: Die nächste Phase der GreenTech-Bewegung entscheidet sich nicht an Visionen, sondern an Umsetzungsdisziplin. „Wir haben die Ideen, die Technologien und den gesellschaftlichen Rückhalt – jetzt geht es um Strukturen, Prozesse und betriebswirtschaftliche Fitness.“ Er spricht damit vor allem zu Gründerinnen und Gründern, die gerade überlegen, in den Markt einzusteigen. „Ich sehe viele junge Teams, die voller Energie starten – aber ohne belastbares Geschäftsmodell. Das ist gefährlich, weil GreenTech kapitalintensiv ist und die Anlaufphase oft Jahre dauert. Wer heute gründet, braucht einen klaren Plan für Cashflow, Partnerschaften und Skalierung, nicht nur für Storytelling.“

Fellhauer plädiert für eine zweite Generation der Nachhaltigkeit: weniger Ideologie, mehr Industriekompetenz. „Wir müssen wieder lernen, wie man produziert, automatisiert und skaliert, nicht nur, wie man pitcht. Nachhaltigkeit ist kein Marketingbegriff, sondern eine Frage des industriellen Könnens.“ Er empfiehlt, früh Kooperationen mit etablierten Mittelständlern oder Industriebetrieben zu suchen, um Skaleneffekte und Erfahrung zu nutzen. Statt auf Subventionen zu bauen, rät er zu robusten Wertschöpfungsmodellen, die auch ohne politische Förderung bestehen können. „Die besten Green-Tech-Firmen der nächsten Jahre werden die sein, die unabhängig funktionieren – weil sie echte Marktprobleme lösen, nicht weil sie im Förderdschungel überleben.“

Politik und Wirtschaft in gemeinsamer Verantwortung

Damit Nachhaltigkeit tatsächlich zum tragfähigen Standbein der deutschen Wirtschaft wird, braucht es planbare Rahmenbedingungen – aber auch Eigeninitiative. Fellhauer betont, dass Gründerinnen und Gründer nicht auf die perfekte Politik warten dürfen. „Wir brauchen beides: verlässliche Energie- und Förderpolitik und unternehmerischen Pragmatismus.“ Politik müsse langfristige Investitionen ermöglichen, den Kapitalzugang vereinfachen und Fachkräfte mobilisieren. Fellhauer nennt staatlich unterstützte Risikokapitalfonds und europäische GreenTech-Programme als zentrale Hebel, damit Innovationen nicht im Frühstadium scheitern. Zugleich müsse Deutschland die Infrastruktur modernisieren: Netze, Standards, Digitalisierung. „Solange ein Windpark genehmigt, aber nicht ans Netz angeschlossen werden kann, bleibt das alles Theorie“, warnt er. Sein Fazit fällt entsprechend klar aus: „GreenTech wird die neue industrielle Basis – wenn wir sie als solche behandeln. Gründer müssen rechnen, Politiker müssen liefern, und die Gesellschaft muss akzeptieren, dass Nachhaltigkeit ein Geschäftsmodell braucht, keinen Idealismuspreis.“

Daniel Fellhauer hat mehrere Unternehmen im Bereich Solar, Wärmepumpen und erneuerbare Energien erfolgreich aufgebaut. Heute ist er Chief Transformation Officer bei Thermondo und eingesetzter CEO seiner ursprünglich gegründeten Firma FEBESOL.

Jakob Koenen: Mit 18 zum LegalTech-Start-up-Gründer

Die Sovereign AI Betriebs GmbH – 2025 von Jakob Koenen und seinem Vater Prof. Dr. Andreas Koenen mit Sitz in Berlin gegründet – entwickelt spezialisierte KI-Plattformen für die juristische Praxis.

Ein Technologie-begeisterter Abiturient, der schon mit 15 Jahren Jura-Vorlesungen besucht, gründet ein LegalTech-Start-up. Partnerschaftlich an seiner Seite agiert sein Vater, ein renommierter Professor für Baurecht. Das ist das Fundament der Sovereign AI Betriebs GmbH, die in Berlin antritt, das Rechtswissen ganzer Berufs-Generationen in eine juristisch kuratierte KI zu überführen. Herzstück des Unternehmens ist Sovereign Legal AI. Die Plattform bereitet juristische Fragen systematisch, verständlich und nachvollziehbar auf.

„Wir wollen das Recht aus der Blackbox holen“, sagt Jakob Koenen, Gründer und Geschäftsführer der Sovereign AI Betriebs GmbH. „Unsere KI soll kein Ersatz für Anwältinnen und Anwälte sein, sondern ein intelligentes Werkzeug, das Wissen strukturiert, Orientierung gibt und den Zugang zum Recht demokratisiert.“

Rechtspraxis-Know-how, digitalisiert für den Alltag

Die Idee zu Sovereign Legal AI entstand in einem Generationenprojekt. Prof. Dr. Andreas Koenen, Kanzleiinhaber, Fachanwalt und Herausgeber zahlreicher Werke zum Bau- und Architektenrecht, hat über Jahrzehnte beobachtet, wie Rechtswissen in der Praxis verloren geht, weil es zu spät, zu komplex oder zu exklusiv vermittelt wird.

„Das Recht wird beim Bauen oft erst dann herangezogen, wenn es knallt“, sagt Koenen. „Juristinnen und Juristen gelten als Ausputzer, nicht als Geburtshelfer. Sovereign Legal AI will das ändern. "Wir liefern Projektbeteiligten vom Architekten, Planer bis zum Bauherrn einen Kompass, der schon vor Konflikten Orientierung bietet; mit juristisch fundierter Systematik, aber barrierefrei zugänglich“, so Koenen weiter.

Die Wissensbasis der Sovereign Legal AI umfasst unter anderem kommentierte Urteile, systematisch aufbereitete Rechtsinformationen sowie Fachbeiträge von Anwältinnen und Anwälten zu typischen Praxisproblemen. Alle Inhalte sind mit Originalquellen aus Gesetz, Rechtsprechung und Literatur belegt, was den entscheidenden Unterschied zu generativen „Blackbox-Systemen“ markiert.

Neue Plattform für juristische Teilhabe

Sovereign Legal AI entstand in Zusammenarbeit mit den Anwältinnen und Anwälten der Kanzlei Koenen Bauanwälte. Die künstliche Intelligenz (KI) wurde entlang echter Fallarbeit trainiert und in einer Beta-Phase getestet. Dabei versteht sich die KI als Community-Projekt: Nutzende geben Feedback, benennen Lücken und tragen so zur Weiterentwicklung bei. Auf diese Weise wächst die KI mit der Praxis. Im Wissens-Ökosystem von Sovereign befinden sich auch die Austausch-Plattform Sovereign Community und der stationäre Sovereign Store in Münster. Beide sind Teil derselben Markenfamilie und werden von der Sovereign GmbH betrieben. Partner-, Lizenz- und Servicemodelle finanzieren das Projekt. „Wir schaffen eine KI-Plattform, die juristisches Wissen lebendig hält“, so Jakob Koenen. „Das ist Unternehmensnachfolge im besten Sinne. Das Wissen einer Generation wird nicht vererbt, sondern transformiert.“

Junger Gründer mit Tech-DNA

Dass Jakob Koenen früh Verantwortung übernimmt, überrascht kaum. Mit 11 wollte er bereits eine Web-Agentur gründen, erschuf in diesem Zuge den Digitalauftritt eines Handwerksunternehmens. Mit 15 hat er mit Unterstützung seiner Eltern beantragt, frühzeitig als geschäftsfähig erklärt zu werden und gründete nach der Bewilligung sein erstes Unternehmen. Heute ist er Gründer, App-Entwickler und Geschäftsführer des Berliner LegalTech-Unternehmens. Er arbeitet mit einem Netzwerk aus externen Entwicklerinnen und Entwicklern sowie Fachleuten an der technischen Weiterentwicklung von Sovereign Legal AI. Aktuell suchen er und sein Vater als Herausgeber der Inhalte nach Co-Autor*innen und Partner*innen, die weitere juristische Rechtsbereiche wie Energierecht oder IT-Recht innerhalb der KI für sich erschließen.

Vorsicht vor diesen KI-Versuchungen

Allzu großes Vertrauen in GenAI ist fahrlässig, dennoch prüfen nur rund ein Viertel der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit. Das sind die größten Gefahren und effektivsten Gegenmaßnahmen.

Die Leistung und die Zuverlässigkeit von KI-Assistenten nehmen gefühlt weiter zu. Doch wer in den letzten Wochen intensives Prompting bei ChatGPT, Perplexity und Co. betrieben und die Ergebnisse eingehend analysiert hat, fühlte sich in diesem Gefühl nicht bestätigt. Im Gegenteil: Die Qualität der generierten Antworten lässt neuerdings öfter zu wünschen übrig. Auf YouTube gibt es zahlreiche Videos zu diesem Phänomen, das sich offenbar auch die Herstellenden nicht so ganz erklären können, aber auch klassische Medien berichten darüber. In Anbetracht der Tatsache, wie abhängig sich viele Menschen im Berufsleben schon heute von GenAI-Tools gemacht haben, ist dieser Trend erschreckend und ernüchternd. Ein blindes Vertrauen in die digitalen Helfer aus der Familie generativer KI birgt zudem großes Schadenspotenzial, etwa dann, wenn sich Ärzt*innen bei der Diagnose auf sie stützen oder Entwickler*innen von der KI vorgeschlagene Frameworks ohne Sicherheitscheck implementieren.

Völliges Vertrauen in GenAI ist also, zurückhaltend formuliert, mindestens gewagt. Die Situation ist ernst und erfordert von GenAI-Anbietenden ein Mindestmaß an Qualitätssicherung – offenbar kein einfaches Unterfangen. Bis dahin ist es wichtig, eigene Maßnahmen zu ergreifen, um nicht in die Falle der folgenden vier Qualitätskiller zu geraten.

1. Halluzinationen

KI-Assistenten wie ChatGPT und Co. wurde die Aufgabe erteilt, Antworten zu liefern – koste es, was es wolle. Wenn die Wissensbibliothek nicht ausreicht, um komplexe Sachverhalte zu beantworten, fängt generative KI an, sich etwas auszudenken. Die von solchen Halluzinationen ausgehende Gefahr ist bekannt. Umso bedrückender ist die Tatsache, dass laut einer aktuellen Studie nur rund ein Viertel (27 %) der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit prüfen. Das sind zwar immerhin sieben Prozentpunkte mehr als bei gewöhnlichen Inhalten aus dem Internet, wie eine Studie des PR-COM Re­search Lab belegt, aber noch immer viel zu wenige.

Gegenmaßnahmen: Wer GenAI nutzt, sollte ausnahmslos alle von ihr produzierten Inhalte überprüfen. Dazu sollten User*innen insbesondere die von der KI verwendeten Primärquellen checken oder – wenn möglich – Expert*innen zur Prüfung der Korrektheit der Antworten zurate ziehen.

2. Bias

Die Anbieter*innen aktueller KI-Assistenten haben sehr viel Arbeit in ihre Produkte gesteckt, um den Bias, also die Voreingenommenheit ihrer Modelle auszumerzen und sie zur Vorurteilsfreiheit zu erziehen.

Verlassen sollten sich User*innen auf die moralische und ethische Unantastbarkeit ihrer Modelle dennoch nicht. Zwar ist es unwahrscheinlich, dass Produkte großer Hersteller*innen noch rassistische, sexistische oder sonstige ethisch fragwürdige Ansichten vertreten, aber komplett ausgeschlossen ist es eben nicht. Noch relativ hoch ist die Gefahr zudem bei der Nutzung von kostenlosen GenAI-Assistenten oder Nischen-Tools.

Gegenmaßnahmen: Auch im Zusammenhang mit Bias gilt es, die Ergebnisse einer KI-Befragung immer genauestens zu checken und mit geltenden Gesetzen und den vorherrschenden Wertevorstellungen unserer Gesellschaft abzugleichen. Wer dubiose KI-Tools meidet, kann sich zudem viel Ärger ersparen.

3. Content-Kannibalisierung

Immer mehr KI-generierter Content flutet das Internet – die logische Folge der zunehmenden Nutzung von GenAI-Assistenten. Leider trainieren KI-Entwickler*innen ihre Chatbots und deren zugrunde liegende Sprachmodelle unter anderem mit genau diesen Inhalten. Und schlimmer noch: Der exponentiell steigende KI-Inhalt ist darüber hinaus auch der Wissensschatz, auf den die KI für ihre Antworten zurückgreift. Dadurch entsteht ein Teufelskreis aus KI, die sich irgendwann nur noch mit von ihr selbst generierten Inhalten trainiert und auch nur noch von ihr produzierten Content als Basiswissen verwendet. Der Mensch wird aus dieser Gleichung immer weiter herausgekürzt. Die Qualität der Ergebnisse von Anfragen an die KI wird somit zunehmend abnehmen. Hinzu kommt, dass alle User*­innen irgendwann die gleichen Ergebnisse abrufen, nutzen und veröffentlichen.

Gegenmaßnahmen: Es ergibt Sinn, hin und wieder auch ohne KI zu agieren und Content zu produzieren, der frei von KI-generierten Inhalten ist und das Qualitätsmerkmal „Made in a human brain“ trägt.

4. Wissensoligopol

Der KI-Markt ist derzeit auf einige wenige Big Player geschrumpft, die sich die enormen Rechenressourcen und Entwicklungskosten für generative KI leisten können. Dadurch entsteht zunehmend ein Wissensoligopol, in dem die großen Anbieter*innen wie OpenAI, Google, Microsoft und DeepSeek zukünftig die Art und Weise bestimmen, welche Informationen überhaupt noch zugänglich sind. Schon jetzt gehen Suchanfragen auf den traditionellen Suchmaschinen deutlich zurück, die Ergebnisse zwar nach Algorithmen ranken, aber selten Treffer komplett ausblenden. Viel restriktiver agieren GenAI-Tools, deren implementierte Filter die freiheitliche Verbreitung von Wissen einzuschränken drohen: Was nicht mit den politischen und moralischen Ideen der Hersteller übereinstimmt, wird automatisch unterdrückt. Das erinnert ein wenig an das Wahrheitsministerium aus Orwells „1984“.

Gegenmaßnahmen: Es ist wichtig, dass Unternehmen und offizielle Stellen auch unabhängige Projekte fördern und deren Nutzer*innen- sowie Supporter*innen-Basis wächst. Gleichzeitig sollten User*innen es dringend verinnerlichen, dass KI- Assistenten nicht der Wahrheit letzter Schluss sind. Das Nutzen möglichst vieler Quellen, um das eigene Wissen aufzubauen, ist immer besser als ein vermeintlicher „Single Point of Truth“.

Fazit

Wir sind noch lange nicht so weit, dass ein blindes Vertrauen in generative KI zu rechtfertigen ist. Es ist zwar logisch, dass wir eine vermeintlich arbeitserleichternde Technologie erst einmal ungern hinterfragen – doch dieser Bequemlichkeit wohnt, je nach Einsatzzweck, ein erhebliches Schadenspotenzial inne. Zum jetzigen Zeitpunkt lautet also die Maxime, restlos jede von GenAI generierte Antwort genauestens auf den Prüfstand zu stellen.

Der Autor Alain Blaes ist CEO der Münchner Kommunikationsagentur PR-COM (mit Fokus auf High-tech- und IT-Industrie im B2B-Umfeld).