Aktuelle Events
Frieda Health: Berliner HealthTech-Start-up launcht digitale Wechseljahres-Klinik
Das HealthTech-Start-up Frieda Health bietet innovative Ansätze zur Bewältigung der Wechseljahres-Symptome.
Frauen in den Wechseljahren sehen sich immer noch großen Herausforderungen wie Diskriminerung im Job, Tabuisierung und minderwertiger, medizinischer Versorgung gegenüber. Frieda Health wurde 2020 – zunächst unter dem Namen Loba Health GmbH – von Valentina Ullrich, Dr. Kai Schulze-Wundling und Thanh Schrader-Nguyen gegründet, um diese Versorgungslücke zu schließen. Deshalb launchte das junge HealthTech-Start-up vor Kurzem die erste digitale Klinik Deutschlands, die Frauen in den Wechseljahren helfen soll, Symptome effektiv und nachhaltig zu behandeln.
Frieda Health bietet gleich mehrere Ansätze zur Bewältigung der Wechseljahres-Symptome. Zur Verfügung stehen ein Stressmanagement-Kurs, digitale Sprechstunden und ab Sommer nächstes Jahr auch eine Online-Therapie für Wechseljahres-Beschwerden. Studien zeigen, dass aufgrund hormoneller Schwankungen, Stress eines der schwerwiegendsten Symptome der Wechseljahre darstellt.
Stressmanagement-App
Der app-basierte Stressmanagement-Kurs nutzt Methoden der kognitiven Verhaltenstherapie. In diesem achtwöchigen Kurs lernen Frauen konkrete Techniken zur effektiven Stressbewältigung. Der Stressmanagement-Kurs wird bis zu 100 Prozent von den meisten gesetzlichen Krankenkassen erstattet.
Digitale Sprechstunde
Die digitale Sprechstunde unterscheidet sich deutlich von einer regulären, gynäkologischen Sprechstunde. Ihr geht eine ausführliche Anamnese voraus und der Arzt oder die Ärztin nehmen sich 45 Minuten Zeit, um mit der Patientin zu sprechen und einen persönlichen Behandlungsplan zu entwerfen. Drei Monate später gibt es einen weiteren Nachbehandlungs-Termin.
Online-Therapie
2025 folgt eine spezielle Online-Therapie, damit Frauen auch bei psychischen und weiteren Wechseljahres-Symptomen die Unterstützung bekommen, die im Moment noch weitestgehend fehlt und durch traditionelle gynäkologische Praxen nicht gedeckt werden kann. Diese Therapie kann von Ärzt*nnen verschrieben werden, so dass Patientinnen nicht dafür aufkommen müssen.
Das Gynäkolog*innen Team von Frieda wird weiter gebildet und inhaltlich beraten, und zwar durch Dr. Petra Stute, Vizepräsidentin der European Menopause and Andropause Society (EMAS) und Vorstandsmitglied der Deutschen Menopause Gesellschaft (DMG).
„Vor allem im Bereich weibliche Gesundheit braucht es mehr junge Unternehmen, die neue Ansätze entwickeln und digitale Lösungen integrieren", betont Gründerin Valentina Ullrich.
Diese Artikel könnten Sie auch interessieren:
KI-Hype: mittel- bis langfristiger Weg zur Monetarisierung noch unklar
Aktueller Marktkommentar zum KI-Hype und den möglichen Folgen von Justin Thomson, Head Investment Institute and CIO bei T. Rowe Price.
Die Investitionsausgaben für künstliche Intelligenz (KI) haben ein erstaunliches Niveau erreicht, aber der Weg zur Monetarisierung bleibt unklar. Der Markt-Hype schaukelt sich selbst hoch, und die Tech-Giganten greifen nun zu Krediten, um ihre Expansion zu finanzieren. Blasen sind nicht immer schädlich und können zu erheblichen Produktivitätssteigerungen führen, aber Überkapazitäten sind ein reales Risiko, das beobachtet werden sollte.
Während eines hochkarätigen Finanzgipfels, an dem ich kürzlich in Hongkong teilgenommen habe, sagte der CEO einer führenden Vermögensverwaltungsgesellschaft, der es eigentlich besser wissen müsste: „Im Kontext der Ausstattung von Hyperscalern sind 2,5 Billionen US-Dollar [für Investitionen] über fünf Jahre keine große Summe.“ Ich war über diese Bemerkung erstaunt. In welchem Paralleluniversum sind 2,5 Billionen US-Dollar eine unbedeutende Summe? Antwort: in einem, in dem Nvidia innerhalb von drei Monaten eine Marktkapitalisierung von 1 Billion US-Dollar erreichen kann. Aber wie erzielt man eine Rendite auf Investitionen in Höhe von 2,5 Billionen US-Dollar, wenn der mittel- bis langfristige Weg zur Monetarisierung der KI noch unklar ist?
Dies deutet auf zwei verschiedene AI-Investitionsbooms hin: einen relativ kurzfristigen, der durch eine erkennbare tatsächliche Nachfrage gestützt wird, und einen längerfristigen spekulativen Boom, der mit einem quasi-religiösen Glauben an exponentielles Wachstum verbunden ist.
Betrachten wir zunächst einige beeindruckende Zahlen. Die Ausgaben für KI erreichten gerade 1 % des US-Bruttoinlandsprodukts (BIP) in einer Wirtschaft mit 1,8 % Wachstum – das ist mehr als die Hälfte der gesamten neuen Nachfrage. Allein Nividia erreichte Ende Oktober einen Wert von 5 Billionen US-Dollar, was 15 % der gesamten US-Wirtschaft entspricht. Zum Vergleich: Als Cisco im Jahr 2000 als weltweit größtes Unternehmen seinen Höhepunkt erreichte, betrug sein Anteil am BIP nur 5,5 %. Während viel Aufsehen um den 3 Milliarden US-Dollar teuren Hauptsitz von JP Morgan in Manhattan gemacht wurde, werden in Texas still und leise 40 Milliarden US-Dollar teure Rechenzentrumsprojekte gestartet. Niemand scheint sich dafür zu interessieren.
Sind wir also in einer Blase? Es gibt sicherlich eine Blase von Menschen, die über Blasen sprechen – werfen Sie einfach einen Blick auf Google Trends.
Unterdessen gibt es diejenigen, die glauben, dass wir uns gerade deshalb nicht in einer Blase befinden können, weil wir über eine solche sprechen. Meiner Meinung nach gibt es drei Schlüsselwörter in den jüngsten Marktentwicklungen, die Beachtung verdienen: Reflexivität, Zirkularität und Verschuldung. Reflexivität besagt, dass Preise tatsächlich die Fundamentaldaten beeinflussen und dass diese neu beeinflussten Fundamentaldaten dann die Erwartungen verändern und somit die Preise beeinflussen. Dieser Prozess setzt sich in einem sich selbst verstärkenden Muster fort. Die lebhafte Reaktion des Marktes auf die jüngsten KI-Megadeals ist ein Beispiel für einen solchen Feedback-Kreislauf. Hinzu kommt der zirkuläre Charakter dieser Deals. Im Wesentlichen investieren die Anbieter von Recheninfrastruktur in native KI-Akteure, die sich in einer Investitionsphase befinden. In der Dotcom-Ära war dies als „Vendor Financing” bekannt und wurde zu einer Art Schimpfwort.
Schließlich gibt es noch die Verschuldung. Bislang haben die finanzstarken Tech-Giganten diesen KI-Boom mit ihren eigenen tiefen Taschen und Eigenkapitalfinanzierungen finanziert. Aber jetzt treten wir in die Kreditphase ein – Unternehmen wenden sich den Schuldenmärkten zu, oft außerhalb der Bilanz, und die Kreditaufnahme wird sich wahrscheinlich beschleunigen. Wir wissen, dass wir mit generativer KI und später mit künstlicher Superintelligenz vor einem neuen technologischen Paradigma stehen – und möglicherweise vor einem massiven Produktivitätssprung. Das sind alles großartige Dinge, und es ist leicht zu verstehen, dass man der Versuchung erliegt, weiter auf der lukrativen KI-Welle zu reiten, die mit der Einführung von ChatGPT im November 2022 begann. Angesichts der aktuellen Indexkonzentration würde es in der Tat Mut erfordern, auszusteigen.
Schnelles Wachstum kann zu einem Überschuss führen
Eine wichtige Lehre aus der Geschichte ist, dass es zu Blasen kommt, wenn wir schöne Dinge erfinden. Aber nicht alle Blasen sind gleich. Es gibt „schlechte“ Blasen (Tulpen, Gold, Grundstücke), und wenn schlechte Blasen durch Schulden finanziert werden, kann dies ein systemisches Risiko für die Wirtschaft darstellen. Es gibt auch „gute“ Blasen, die zu Überkapazitäten bei Produktionsmitteln führen – man denke an die Eisenbahnen im goldenen Zeitalter der Expansion der USA zwischen 1870 und 1900, die Elektrizität in den frühen 1900er Jahren und den Dotcom-Boom Ende der 1990er Jahre. Letztendlich wurde in jedem Fall Wohlstand geschaffen, aber die frühen Investoren verloren viel Geld.
Es ist noch zu früh, um vorherzusagen, zu welcher Art von Blase sich der AI-Investitionsboom entwickeln wird. Die langfristigen Auswirkungen werden davon abhängen, ob die heutigen massiven Investitionen letztendlich die Grundlage für dauerhafte Produktivitätssteigerungen schaffen oder ob sie zu Überkapazitäten führen, die keine nachhaltigen Renditen erzielen. Wenn die Kapazitäten so schnell wachsen, ist es immer wahrscheinlich, dass sich das Ungleichgewicht zwischen Angebot und Nachfrage von einem Mangel zu einem Überschuss umkehrt. In der Dotcom-Ära verloren Investoren viel Geld mit Glasfaserkabeln und Switches, die in den Boden verlegt wurden, und etwas Ähnliches könnte mit KI passieren, wenn durch Überbauung riesige Kapitalmengen in Anlagen gebunden werden, die möglicherweise nicht annähernd mit voller Effizienz betrieben werden können – oder noch schlimmer, wenn die Schnelllebigkeit des Chip-Zyklus die Rechenleistung obsolet macht.
Erschwerend kommt hinzu, dass die Anreize für Infrastrukturanbieter („Picks and Shovels”-Akteure) und Entwickler von KI-Anwendungen nicht aufeinander abgestimmt sind. Während Infrastrukturunternehmen von einer kontinuierlichen Expansion und Investitionen profitieren, konzentrieren sich Anwendungsentwickler auf die Verbesserung der Effizienz und die Senkung der Kosten. Um den Kommentar des Dodos nach dem Caucus-Rennen in Lewis Carrolls Alice im Wunderland umzukehren: „Nicht jeder kann gewinnen, und nicht jeder kann einen Preis bekommen.” Die optimistischen Prognosen für die KI-Infrastruktur zeigen, wie viel Hype in den heutigen Bewertungen der Hyperscaler steckt. Es ist ironisch, dass Rechenzentrumsprojekte nach den griechischen Titanen Prometheus und Hyperion benannt werden. In der griechischen Mythologie folgt auf Hybris immer Nemesis. Um noch ein bisschen Latein mit einzubringen: caveat emptor.
KI & Bewertungen: Sichtbarkeit in einer neuen Suchrealität
Tipps und To-dos: Wie du dein Bewertungsmanagement strategisch aufsetzt und Sichtbarkeit und Vertrauen im KI-Zeitalter steigerst.
Generative Antworten in Suchmaschinen und Assistenten verändern die Spielregeln der Online-Sichtbarkeit. Nicht mehr nur klassische Rankings entscheiden, sondern die Frage, wem die KI genug vertraut, um es überhaupt zu nennen. Aktuelle, glaubwürdige und inhaltlich konkrete Bewertungen werden dabei zum Schlüsselsignal. Für kleine und mittlere Unternehmen bedeutet das: Bewertungsmanagement ist kein Nice-to-have mehr, sondern ein Pflichtprogramm, das Auffindbarkeit, Auswahl und Conversion spürbar beeinflusst. Im Folgenden erfährst du, wie du dein Bewertungsmanagement strategisch aufsetzen solltest, um Sichtbarkeit und Vertrauen im KI-Zeitalter zu steigern.
Warum Bewertungen jetzt geschäftskritisch sind
KI-Modelle zerlegen Rezensionen in viele kleine Bedeutungseinheiten und ziehen daraus ein konsistentes Bild. Welche Leistung wurde erbracht, an welchem Ort, mit welcher Qualität und für welchen Anlass. Aus den einzelnen Stimmen entsteht so ein Vertrauensprofil, das über bloße Sternesummen hinausgeht. Entscheidend ist nicht die bloße Menge, sondern die Frische und die inhaltliche Dichte der Aussagen. Eine Rezension wie „Schnell geholfen am Sonntag, sehr kompetente Beratung zu Reiseimpfungen“ liefert gleich mehrere Signale. Zeitliche Verfügbarkeit, thematische Expertise und konkreter Nutzen. Genau solche Details erhöhen die Wahrscheinlichkeit, in generativen Antworten aufzutauchen, wenn Menschen in ihrer Nähe nach einer Lösung suchen. Wer regelmäßig neue, authentische und präzise Bewertungen erhält, verschafft der KI verlässliche Hinweise und sichert sich dadurch mehr Sichtbarkeit in genau den Momenten, in denen Entscheidungen vorbereitet werden.
Bewertungsmanagement als Prozess, nicht als Aktion
Wirksam wird Bewertungsarbeit, wenn sie selbstverständlich Teil der täglichen Abläufe ist. Nach dem Kontakt freundlich um Feedback bitten, den Weg zur passenden Plattform so kurz wie möglich machen, interne Zuständigkeiten klar regeln und Reaktionszeiten verbindlich festlegen. Aus diesen scheinbar kleinen Schritten entsteht ein stabiler Rhythmus, der kontinuierlich neue Kund*innenstimmen hervorbringt und der KI immer wieder frische Kontexte liefert. Ein solcher Prozess ist robuster als jede einmalige Kampagne, weil er verlässlich Vertrauen aufbaut und saisonale Schwankungen abfedert. Teams profitieren, wenn sie Zielkorridore definieren, etwa eine bestimmte Zahl neuer Rezensionen pro Woche und wenn sie Fortschritte sichtbar machen. So wird aus gutem Vorsatz ein gelebter Ablauf, der die gesamte Organisation stärkt.
Sprache der Kund*innen wirkt wie natürliches SEO
KI versteht Alltagssprache deutlich besser als Listen isolierter Schlagwörter. Unternehmen gewinnen, wenn sie um freie, aber konkrete Formulierungen bitten, ohne Vorgabetexte und ohne Druck. Eine höfliche Bitte wie: „Wenn es für Sie passt, nennen Sie gern, was Ihnen besonders geholfen hat“ öffnet den Raum für präzise Hinweise auf Leistungen, Erreichbarkeit, Barrierefreiheit oder Schnelligkeit. Solche natürlich entstandenen Details sind für Menschen überzeugend und zugleich für Maschinen gut interpretierbar. Sie zeigen, wofür ein Betrieb tatsächlich steht, und verankern die passenden Begriffe in einem echten Nutzungskontext. Das Ergebnis ist eine Sprache, die Vertrauen schafft und die Auffindbarkeit stärkt, ohne künstlich zu wirken.
Antworten trainieren Vertrauen für Menschen und Maschinen
Jede Reaktion auf eine Bewertung ist ein sichtbares Zeichen von Serviceorientierung und zugleich zusätzlicher Kontext für die KI. Gute Antworten bedanken sich aufrichtig, beziehen sich konkret auf das Erlebte und bieten einen klaren nächsten Schritt an. Bei Kritik zählt ein professioneller Umgang. Das Anliegen nachvollziehen, Verantwortung übernehmen, eine realistische Lösung anbieten und einen direkten Kontaktweg nennen. So entsteht ein Bild von Verlässlichkeit, das Hemmschwellen senkt und Wiederbesuche wahrscheinlicher macht. Die KI erkennt diesen Umgang ebenso und ordnet das Unternehmen eher als vertrauenswürdig ein. Mit der Zeit entsteht ein stabiler Kreislauf aus guter Erfahrung, konstruktiver Reaktion und wachsendem Vertrauen.
Lokaler Content und Social Proof gehören zusammen
Bewertungen entfalten ihre volle Wirkung, wenn sie auf eine solide Informationsbasis treffen. Konsistente Unternehmensdaten, vollständige Leistungsseiten pro Standort, klare Öffnungszeiten inklusive Ausnahmen und eine schnelle, mobil optimierte Webseite erleichtern die Einordnung für Nutzer*innen und Maschine. Wenn ausgewählte Zitate oder Bewertungsschnipsel an relevanten Stellen sichtbar werden, etwa auf der Startseite, in der Buchungsstrecke oder in den häufigen Fragen, entsteht ein schlüssiges Gesamtbild. Der lokale Bezug bleibt klar erkennbar, die Erwartungen sind gut gesetzt, und die nächsten Schritte sind ohne Umwege möglich. So wird aus Social Proof ein handfester Conversion Hebel.
Vom Feedback zur Verbesserungsschleife
Rezensionen sind fortlaufende Marktforschung aus erster Hand. Wer wiederkehrende Themen auswertet, etwa Wartezeiten, Erreichbarkeit oder Bezahloptionen, erkennt schnell die Stellschrauben mit der größten Wirkung. Wichtig ist, die daraus abgeleiteten Verbesserungen konsequent umzusetzen und sichtbar zu machen. Informieren, handeln, erneut um Rückmeldung bitten. Dieser offene Kreislauf wirkt nach innen und nach außen. Mitarbeitende erleben, dass Feedback Veränderungen anstößt, Kund*innen erleben, dass ihre Hinweise ernst genommen werden, und die KI registriert die fortlaufende Pflege der Qualität. Mit jeder Runde werden Erlebnisse besser und Bewertungen stärker, was die Sichtbarkeit weiter erhöht.
Fazit
Sichtbarkeit entsteht heute dort, wo Menschen nach konkreten Lösungen fragen und wo KIs verlässliche Hinweise zu Qualität und Relevanz finden. Unternehmen, die Bewertungen als strategischen, kontinuierlichen Prozess verstehen, erhöhen ihre Chance, in generativen Antworten genannt zu werden und gewinnen genau in den entscheidenden Momenten an Präsenz. Vieles davon ist eine Frage kluger Organisation und klarer Abläufe. Der finanzielle Aufwand bleibt überschaubar, der Nutzen für Auffindbarkeit, Vertrauen und Umsatz ist deutlich spürbar.
Die Autorin Franziska Ortner ist Produktmanagerin bei SELLWERK
GreenTech – der Boom geht zu Ende
Zwar zählt Deutschland rund 3000 Start-ups aus dem GreenTech-Bereich, doch viele kämpfen mit Kapitalmangel, Fachkräftedefizit und einer überlasteten Infrastruktur. Der Boom ist vorbei – eine Einschätzung von Seriengründer und Transformationsexperte Daniel Fellhauer.
Die deutsche Wirtschaft steht vor einer ihrer größten Transformationen seit der Industrialisierung. Jahrzehntelang galten Auto- und Stahlindustrie als Rückgrat des Wohlstands. Nun rückt Nachhaltigkeit in den Mittelpunkt. Daniel Fellhauer sieht die GreenTech-Branche an einem kritischen Punkt: „GreenTech ist kein Hype, sondern Realität mit echten Herausforderungen. Die Frage ist: Wer bleibt übrig, wenn die Subventionen verschwinden?“ Seine Aussage bringt auf den Punkt, was viele Brancheninsider beschäftigt: der Übergang von gefördertem Wachstum zu marktwirtschaftlicher Reife. Jetzt entscheidet sich, welche Unternehmen Innovation und Wirtschaftlichkeit in Einklang bringen können – und wer an überzogenen Erwartungen scheitert.
Der Boom geht zu Ende
„Der Anteil grüner Gründungen ist zuletzt deutlich gesunken“, sagt Daniel Fellhauer. „Vor zwei Jahren war noch jedes dritte neue Start-up nachhaltig ausgerichtet. Heute ist es nicht einmal mehr jedes Vierte. Das ist ein deutliches Warnsignal. Der Markt sortiert sich, Kapital wird selektiver, und viele Ideen schaffen es nicht mehr über die Pilotphase hinaus.“ In den vergangenen fünf Jahren flossen zwar rund 11,7 Milliarden Euro in grüne Start-ups – etwa ein Viertel aller deutschen Risikoinvestitionen –, doch das Geld konzentriert sich zunehmend auf wenige, große Player. „Das zeigt eine Reifung, aber auch eine gefährliche Schieflage“, so Fellhauer. „Wir brauchen Breite, nicht nur Leuchttürme. Wenn die Finanzierungsströme versiegen, bevor Skalierung einsetzt, kippt der ganze Innovationspfad.“ Hinzu kommen steigende Zinsen, langwierige Genehmigungen und überlastete Netze. „Viele unterschätzen, wie stark Infrastruktur über Wachstum entscheidet“, erklärt er. „Eine Solarfirma kann heute Aufträge für 1.000 Anlagen im Jahr haben. Aber wenn der Netzanschluss neun Monate dauert, bleibt sie auf halber Strecke stehen.“
Deutschland ist längst auf dem Weg zur nachhaltigen Wirtschaft – doch der Anstieg wird steiler. Die entscheidende Frage lautet: Wird GreenTech zum Fundament der nächsten industriellen Ära, oder zur vertanen Chance einer Generation? Laut einer aktuellen Analyse fließt ein erheblicher Teil staatlicher Investitionen und Subventionen in Deutschland weiterhin in fossile Strukturen – über 60 Milliarden Euro jährlich. Da-bei hatte sich die Bundesregierung bereits 2009 gemeinsam mit anderen Industrieländern verpflichtet, ineffiziente Förderungen für fossile Energieträger bis 2025 zu beenden. Ein Ziel, das laut Fachleuten von Fraunhofer ISI, ZEW und Umweltbundesamt klar verfehlt wird. Daniel Fellhauer warnt: „Das ist kein ideologisches, sondern ein ökonomisches Problem. Solange Kapital und Fördermittel in alte Industrien gelenkt werden, anstatt in skalierbare GreenTech-Lösungen, bleibt Deutschland in der Vergangenheit verhaftet.“
Herausforderungen im deutschen GreenTech-Sektor
Trotz technologischer Fortschritte wird das Wachstum der Branche weiterhin durch strukturelle Probleme gebremst. Zu den größten Hindernissen zählen laut Fellhauer vor allem die unzureichende Netzinfrastruktur, die hohe Kapitalintensität sowie fragmentierte Märkte. Hochqualifizierte Arbeitskräfte in den Bereichen Energie, Elektronik und Software sind rar, wodurch die Entwicklung und Umsetzung neuer Technologien verlangsamt wird. Gleichzeitig behindert der schleppende Ausbau der Strom- und Wärmenetze eine schnelle Skalierung innovativer Lösungen. Daniel Fellhauer erklärt: „Hinzu kommt, dass viele GreenTech-Unternehmen aufgrund langer Entwicklungszeiten und hoher Anfangsinvestitionen auf beträchtliches Kapital angewiesen sind. Schließlich sorgen unterschiedliche Förderprogramme und komplexe regulatorische Vorgaben dafür, dass Innovationen und Markteintritte ausgebremst werden. Diese Faktoren erschweren nicht nur das Wachstum bereits bestehender Firmen, sondern machen auch den Einstieg für neue Gründerinnen und Gründer deutlich schwieriger.“
Zweite Generation der Nachhaltigkeit für mehr wirtschaftliche Tragfähigkeit
„Nur wer wirtschaftlich denkt, kann nachhaltig handeln“, sagt Daniel Fellhauer. Für ihn ist klar: Die nächste Phase der GreenTech-Bewegung entscheidet sich nicht an Visionen, sondern an Umsetzungsdisziplin. „Wir haben die Ideen, die Technologien und den gesellschaftlichen Rückhalt – jetzt geht es um Strukturen, Prozesse und betriebswirtschaftliche Fitness.“ Er spricht damit vor allem zu Gründerinnen und Gründern, die gerade überlegen, in den Markt einzusteigen. „Ich sehe viele junge Teams, die voller Energie starten – aber ohne belastbares Geschäftsmodell. Das ist gefährlich, weil GreenTech kapitalintensiv ist und die Anlaufphase oft Jahre dauert. Wer heute gründet, braucht einen klaren Plan für Cashflow, Partnerschaften und Skalierung, nicht nur für Storytelling.“
Fellhauer plädiert für eine zweite Generation der Nachhaltigkeit: weniger Ideologie, mehr Industriekompetenz. „Wir müssen wieder lernen, wie man produziert, automatisiert und skaliert, nicht nur, wie man pitcht. Nachhaltigkeit ist kein Marketingbegriff, sondern eine Frage des industriellen Könnens.“ Er empfiehlt, früh Kooperationen mit etablierten Mittelständlern oder Industriebetrieben zu suchen, um Skaleneffekte und Erfahrung zu nutzen. Statt auf Subventionen zu bauen, rät er zu robusten Wertschöpfungsmodellen, die auch ohne politische Förderung bestehen können. „Die besten Green-Tech-Firmen der nächsten Jahre werden die sein, die unabhängig funktionieren – weil sie echte Marktprobleme lösen, nicht weil sie im Förderdschungel überleben.“
Politik und Wirtschaft in gemeinsamer Verantwortung
Damit Nachhaltigkeit tatsächlich zum tragfähigen Standbein der deutschen Wirtschaft wird, braucht es planbare Rahmenbedingungen – aber auch Eigeninitiative. Fellhauer betont, dass Gründerinnen und Gründer nicht auf die perfekte Politik warten dürfen. „Wir brauchen beides: verlässliche Energie- und Förderpolitik und unternehmerischen Pragmatismus.“ Politik müsse langfristige Investitionen ermöglichen, den Kapitalzugang vereinfachen und Fachkräfte mobilisieren. Fellhauer nennt staatlich unterstützte Risikokapitalfonds und europäische GreenTech-Programme als zentrale Hebel, damit Innovationen nicht im Frühstadium scheitern. Zugleich müsse Deutschland die Infrastruktur modernisieren: Netze, Standards, Digitalisierung. „Solange ein Windpark genehmigt, aber nicht ans Netz angeschlossen werden kann, bleibt das alles Theorie“, warnt er. Sein Fazit fällt entsprechend klar aus: „GreenTech wird die neue industrielle Basis – wenn wir sie als solche behandeln. Gründer müssen rechnen, Politiker müssen liefern, und die Gesellschaft muss akzeptieren, dass Nachhaltigkeit ein Geschäftsmodell braucht, keinen Idealismuspreis.“
Daniel Fellhauer hat mehrere Unternehmen im Bereich Solar, Wärmepumpen und erneuerbare Energien erfolgreich aufgebaut. Heute ist er Chief Transformation Officer bei Thermondo und eingesetzter CEO seiner ursprünglich gegründeten Firma FEBESOL.
HR-Trends 2026
Die Arbeitswelt verändert sich, die Position der Unternehmen wird stärker, eine Rezession auf Management- und Führungsebene droht: die HR-Welt bleibt ein Schmelztiegel verschiedenster Strömungen. Das sind die fünf größten Herausforderungen für 2026.
Die Arbeitswelt verändert sich - sowohl für Personalmanager*innen als auch für die Belegschaft. Während sich vor wenigen Jahren die Arbeitnehmenden in einer starken Verhandlungsposition befanden, schlägt das Pendel jetzt immer stärker zugunsten der Unternehmen aus. Das eröffnet ihnen die Chance, die Arbeitswelt mehr nach ihren Vorstellungen zu gestalten, um ihren Unternehmenserfolg zu sichern. Gleichzeitig tragen sie auch die große Verantwortung, das Arbeitsumfeld ihrer Mitarbeitenden kontinuierlich zu verbessern, das Engagement zu fördern und die Rolle der KI für die kommenden Jahre mit Weitblick und Sorgfalt auszubalancieren.
Wir werfen einen Blick nach vorne und skizzieren die fünf wichtigsten HR-Trends für die DACH-Region im kommenden Jahr.
1. Kulturelle Transparenz – Strategiewechsel bei der Talentakquise
Die Stagnation der Wirtschaft, der angespannte Arbeitsmarkt, weniger Stellenangebote – all das führt dazu, dass Mitarbeitende lieber in ihren derzeitigen Positionen und Rollen verharren. Die Folge ist ein “Talentestau:” Mitarbeitende, die sonst das Unternehmen verlassen würden, bleiben und blockieren damit die Wechsel- und Entwicklungsmöglichkeiten derer, die eher bereit sind, ihre Karriere engagiert voranzubringen. Auf der Suche nach effektiven Möglichkeiten, diese Engpässe zu überwinden, werden Unternehmen im kommenden Jahr ihre Strategie hin zu mehr kultureller Transparenz ausrichten. Anstatt neue Talente mit einem Wertversprechen oder der einseitigen Hervorhebung positiver Alleinstellungsmerkmale zu gewinnen, kommunizieren sie ihre tatsächlichen Erwartungen und die Realität des Arbeitsalltags klar. Damit betonen sie bewusst auch Aspekte, die weniger passende Bewerbende eher abschrecken - damit sich die wirklich passenden umso stärker angesprochen fühlen. Beispiele dafür können u.a. die Erwartung, wieder vollständig zur Büropräsenz zurückzukehren, Prozessreife und Struktur der Unternehmen sowie die Nutzung von KI-Tools im Arbeitsalltag sein.
2. Neudefinition des Erfolgs – Leistung statt Leistungsschau?
Mitarbeitende haben oft das Gefühl, dass ihre tatsächlich geleistete Arbeit nicht richtig bewertet wird und sie nicht ausreichend Anerkennung erfahren. Analysen von Culture Amp ergaben, dass 2025 rund 20 Prozent der Mitarbeitenden nicht genau wissen, wie sich die Bewertung ihrer Performance zusammensetzt. Die Folge dieser Unkenntnis sind Mutmaßungen und die Fokussierung auf mehr Sichtbarkeit: Mitarbeitende betreiben eine Art Leistungsschau und arbeiten so, dass es vor allem produktiv aussieht. Wenn das Gefühl hinzukommt, einem passiven Monitoring ausgesetzt zu sein – in der DACH-Region nur unter strengen Auflagen erlaubt – konzentrieren sich Mitarbeitende auf das, was vermeintlich gemessen wird. Diese Kluft wird sich 2026 weiter vergrößern, wenn die Verantwortlichen ihre Leistungsbewertung nicht neu ausrichten, um ein vertrauenswürdiges und vollständigeres Bild von der Performance ihrer Mitarbeitenden zu erhalten. Wer hingegen menschzentrierte Feedbacksysteme wie Upward Feedback, 360‑Grad‑Feedback und reflektierende Einzelgespräche verankert, kann das Vertrauen stärken und ein ganzheitlicheres Verständnis der Beiträge der Mitarbeitenden erhalten.
3. Mensch und KI – zwei Seiten der HR-Medaille
2026 werden KI-Tools verstärkt Einzug in den HR-Abteilungen halten. Routineaufgaben wie z.B. eine erste Bewerberauswahl oder die Beantwortung von häufig gestellten Fragen werden zunehmend automatisiert beantwortet. Doch mit den Möglichkeiten der KI wächst auch die Erkenntnis, dass sie nicht die Lösung für alles sein darf. Darüber hinaus tritt 2026 der EU AI Act vollständig in Kraft. Demzufolge werden KI-Tools im Zusammenhang mit Personaleinsatz als Hochrisiko eingestuft: Sie unterliegen sehr strengen Richtlinien bezüglich Transparenz, Kontrolle und Grenzen des KI-Einsatzes. Bei der Frage, welche Aufgaben der KI überlassen werden können und welche nach wie vor die Empathie, die Erfahrung und das Wissen echter HR-Expert*innen erfordern, ist Fingerspitzengefühl gefragt. Auch scheinbar administrative Aufgaben benötigen manchmal den direkten persönlichen Austausch. Unternehmen werden dazu übergehen, deutlicher zu definieren, welche Fragestellungen und Bereiche maschinenbezogene Fähigkeiten und welche menschliche Fähigkeiten erfordern. 2026 wird sich ein deutlicher Trend bemerkbar machen: Die verstärkte Integration von KI in den Personalabteilungen und gleichzeitig die permanente Überprüfung, welche Aufgabenbereiche zukünftig KI-gestützt erledigt werden sollen.
4. Führung neu denken – Managementpositionen verlieren an Attraktivität
Auch das verraten die Analysen von Culture Amp: 72 Prozent der Generation Z sind nicht an Führungspositionen interessiert. Die jungen Arbeitnehmenden bleiben lieber in ihren jeweiligen Rollen, manche entscheiden sich ganz bewusst gegen eine Managementkarriere. Der Reiz, eine Leitungsfunktion zu übernehmen, nimmt insbesondere im Bereich des mittleren Managements ab: Diese Manager*innen fühlen sich zwischen den Erwartungen der Unternehmensführung und den Erwartungen ihres Teams oft unter starkem Druck. In der Folge könnte es im kommenden Jahr zu einer weiteren Abflachung der Hierarchien in den Unternehmen kommen, manche befürchten gar eine Rezession auf der Management- und Führungsebene. Gleichzeitig eröffnen sich Manager*innen durch den Einsatz von KI-Tools neue Möglichkeiten, ihren Einfluss zu vergrößern. Für jene Talente, die sich darauf einlassen, werden Führungspositionen dadurch zugänglicher und nachhaltiger. In Anbetracht dessen werden sich die Dynamiken in den Teams verändern. Unternehmen werden Führungsrollen zunehmend überdenken und ihre Manager*innen besser unterstützen, statt weitere einzustellen. Denn wenn weniger Menschen führen wollen, braucht es nicht mehr, sondern besser unterstützte Manager*innen.
5. Ambitionen und Leistungsbereitschaft wird außerhalb der Arbeitswelt ausgelebt
Ob berufliche Nebentätigkeit, Ehrenamt oder leidenschaftliches Hobby – immer mehr Mitarbeitende bringen Energie und Motivation für Tätigkeiten auf, die außerhalb ihrer regulären Arbeit liegen. Sie erkennen, dass sie ihre Stärken auch anderswo verwirklichen können. Dieser Trend hin zu mehr Kreativität, Leidenschaft und Erfüllung durch sinnvolle Tätigkeiten nach Feierabend und am Wochenende wird sich auch 2026 fortsetzen. Das Risiko für Unternehmen geht dabei über bloße Ablenkung hinaus: Bleiben angemessene Antworten im kommenden Jahr aus, wandern Ambitionen nach außen ab. Führung muss etwas Besseres anbieten: Die Chance 2026 liegt darin, den Hauptjob so zu gestalten, dass er sich wieder energiegeladen, kreativ und investitionswürdig anfühlt.
Fazit
Die Strömungen und Entwicklungen in der HR-Welt bringen einen fortdauernden Wandel mit sich. Gespannt blicken die Personalabteilungen auf die für 2026 vorgesehene nationale Umsetzung der Entgelttransparenz-Richtlinie der EU (EU Pay Transparency Directive and Equal Pay). Die weitreichendsten Veränderungen verursacht aber der Einzug der KI in die Arbeits- und Lebenswelt der Mitarbeitenden. Dies wirft unablässig neue Fragen auf: Droht der Talentepool zu versiegen, wenn Aufgaben für Berufseinsteiger*innen von KI übernommen werden und sie infolgedessen keine Erfahrung aufbauen können? Wird sich die Belegschaft eines Unternehmens früher oder später in KI-resistente und KI-affine Gruppen aufspalten? Die HR-Welt bleibt ein Schmelztiegel verschiedenster Strömungen im Unternehmen, die datengestützte Strategien erfordern.
Der Autor Dr. Arne Sjöström ist Regional Director, People Science EMEA bei Culture Amp mit dem Schwerpunkt Organisationspsychologie und angewandte Forschung.
Vorsicht vor diesen KI-Versuchungen
Allzu großes Vertrauen in GenAI ist fahrlässig, dennoch prüfen nur rund ein Viertel der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit. Das sind die größten Gefahren und effektivsten Gegenmaßnahmen.
Die Leistung und die Zuverlässigkeit von KI-Assistenten nehmen gefühlt weiter zu. Doch wer in den letzten Wochen intensives Prompting bei ChatGPT, Perplexity und Co. betrieben und die Ergebnisse eingehend analysiert hat, fühlte sich in diesem Gefühl nicht bestätigt. Im Gegenteil: Die Qualität der generierten Antworten lässt neuerdings öfter zu wünschen übrig. Auf YouTube gibt es zahlreiche Videos zu diesem Phänomen, das sich offenbar auch die Herstellenden nicht so ganz erklären können, aber auch klassische Medien berichten darüber. In Anbetracht der Tatsache, wie abhängig sich viele Menschen im Berufsleben schon heute von GenAI-Tools gemacht haben, ist dieser Trend erschreckend und ernüchternd. Ein blindes Vertrauen in die digitalen Helfer aus der Familie generativer KI birgt zudem großes Schadenspotenzial, etwa dann, wenn sich Ärzt*innen bei der Diagnose auf sie stützen oder Entwickler*innen von der KI vorgeschlagene Frameworks ohne Sicherheitscheck implementieren.
Völliges Vertrauen in GenAI ist also, zurückhaltend formuliert, mindestens gewagt. Die Situation ist ernst und erfordert von GenAI-Anbietenden ein Mindestmaß an Qualitätssicherung – offenbar kein einfaches Unterfangen. Bis dahin ist es wichtig, eigene Maßnahmen zu ergreifen, um nicht in die Falle der folgenden vier Qualitätskiller zu geraten.
1. Halluzinationen
KI-Assistenten wie ChatGPT und Co. wurde die Aufgabe erteilt, Antworten zu liefern – koste es, was es wolle. Wenn die Wissensbibliothek nicht ausreicht, um komplexe Sachverhalte zu beantworten, fängt generative KI an, sich etwas auszudenken. Die von solchen Halluzinationen ausgehende Gefahr ist bekannt. Umso bedrückender ist die Tatsache, dass laut einer aktuellen Studie nur rund ein Viertel (27 %) der Menschen in Deutschland die Ergebnisse, die KI für sie generiert, auf Korrektheit prüfen. Das sind zwar immerhin sieben Prozentpunkte mehr als bei gewöhnlichen Inhalten aus dem Internet, wie eine Studie des PR-COM Research Lab belegt, aber noch immer viel zu wenige.
Gegenmaßnahmen: Wer GenAI nutzt, sollte ausnahmslos alle von ihr produzierten Inhalte überprüfen. Dazu sollten User*innen insbesondere die von der KI verwendeten Primärquellen checken oder – wenn möglich – Expert*innen zur Prüfung der Korrektheit der Antworten zurate ziehen.
2. Bias
Die Anbieter*innen aktueller KI-Assistenten haben sehr viel Arbeit in ihre Produkte gesteckt, um den Bias, also die Voreingenommenheit ihrer Modelle auszumerzen und sie zur Vorurteilsfreiheit zu erziehen.
Verlassen sollten sich User*innen auf die moralische und ethische Unantastbarkeit ihrer Modelle dennoch nicht. Zwar ist es unwahrscheinlich, dass Produkte großer Hersteller*innen noch rassistische, sexistische oder sonstige ethisch fragwürdige Ansichten vertreten, aber komplett ausgeschlossen ist es eben nicht. Noch relativ hoch ist die Gefahr zudem bei der Nutzung von kostenlosen GenAI-Assistenten oder Nischen-Tools.
Gegenmaßnahmen: Auch im Zusammenhang mit Bias gilt es, die Ergebnisse einer KI-Befragung immer genauestens zu checken und mit geltenden Gesetzen und den vorherrschenden Wertevorstellungen unserer Gesellschaft abzugleichen. Wer dubiose KI-Tools meidet, kann sich zudem viel Ärger ersparen.
3. Content-Kannibalisierung
Immer mehr KI-generierter Content flutet das Internet – die logische Folge der zunehmenden Nutzung von GenAI-Assistenten. Leider trainieren KI-Entwickler*innen ihre Chatbots und deren zugrunde liegende Sprachmodelle unter anderem mit genau diesen Inhalten. Und schlimmer noch: Der exponentiell steigende KI-Inhalt ist darüber hinaus auch der Wissensschatz, auf den die KI für ihre Antworten zurückgreift. Dadurch entsteht ein Teufelskreis aus KI, die sich irgendwann nur noch mit von ihr selbst generierten Inhalten trainiert und auch nur noch von ihr produzierten Content als Basiswissen verwendet. Der Mensch wird aus dieser Gleichung immer weiter herausgekürzt. Die Qualität der Ergebnisse von Anfragen an die KI wird somit zunehmend abnehmen. Hinzu kommt, dass alle User*innen irgendwann die gleichen Ergebnisse abrufen, nutzen und veröffentlichen.
Gegenmaßnahmen: Es ergibt Sinn, hin und wieder auch ohne KI zu agieren und Content zu produzieren, der frei von KI-generierten Inhalten ist und das Qualitätsmerkmal „Made in a human brain“ trägt.
4. Wissensoligopol
Der KI-Markt ist derzeit auf einige wenige Big Player geschrumpft, die sich die enormen Rechenressourcen und Entwicklungskosten für generative KI leisten können. Dadurch entsteht zunehmend ein Wissensoligopol, in dem die großen Anbieter*innen wie OpenAI, Google, Microsoft und DeepSeek zukünftig die Art und Weise bestimmen, welche Informationen überhaupt noch zugänglich sind. Schon jetzt gehen Suchanfragen auf den traditionellen Suchmaschinen deutlich zurück, die Ergebnisse zwar nach Algorithmen ranken, aber selten Treffer komplett ausblenden. Viel restriktiver agieren GenAI-Tools, deren implementierte Filter die freiheitliche Verbreitung von Wissen einzuschränken drohen: Was nicht mit den politischen und moralischen Ideen der Hersteller übereinstimmt, wird automatisch unterdrückt. Das erinnert ein wenig an das Wahrheitsministerium aus Orwells „1984“.
Gegenmaßnahmen: Es ist wichtig, dass Unternehmen und offizielle Stellen auch unabhängige Projekte fördern und deren Nutzer*innen- sowie Supporter*innen-Basis wächst. Gleichzeitig sollten User*innen es dringend verinnerlichen, dass KI- Assistenten nicht der Wahrheit letzter Schluss sind. Das Nutzen möglichst vieler Quellen, um das eigene Wissen aufzubauen, ist immer besser als ein vermeintlicher „Single Point of Truth“.
Fazit
Wir sind noch lange nicht so weit, dass ein blindes Vertrauen in generative KI zu rechtfertigen ist. Es ist zwar logisch, dass wir eine vermeintlich arbeitserleichternde Technologie erst einmal ungern hinterfragen – doch dieser Bequemlichkeit wohnt, je nach Einsatzzweck, ein erhebliches Schadenspotenzial inne. Zum jetzigen Zeitpunkt lautet also die Maxime, restlos jede von GenAI generierte Antwort genauestens auf den Prüfstand zu stellen.
Der Autor Alain Blaes ist CEO der Münchner Kommunikationsagentur PR-COM (mit Fokus auf High-tech- und IT-Industrie im B2B-Umfeld).
Report: Quantencomputing
Wir sind Zeug*innen einer Transformation, die nicht nur die Tech-Branche nachhaltig beeinflussen wird: Quantencomputing und die dazugehörigen Start-ups haben das Potenzial, die Art und Weise, wie wir Daten verarbeiten und Probleme lösen, grundlegend zu verändern.
Quantencomputing (QC) ist ein hochinnovatives Feld der Informatik und Physik, das die Prinzipien der Quantenmechanik nutzt, um Datenverarbeitung und -analyse auf eine Weise zu leisten, die mit klassischen Computern nicht möglich ist. Während klassische Computer Informationen in Form von Bits verarbeiten, die entweder den Wert 0 oder 1 annehmen können, verwenden Quantencomputer Quantenbits oder Qubits. Diese Qubits können sich in einem Zustand der Überlagerung befinden, was bedeutet, dass sie gleichzeitig 0 und 1 darstellen können. Dies ermöglicht es Quantencomputern, komplexe Berechnungen viel schneller durchzuführen als ihre klassischen Pendants.
Herausforderungen
Trotz des enormen Potenzials stehen Forschende und Unternehmen vor vielen Herausforderungen. Eine der größten Hürden ist die sog. Dekohärenz, ein Phänomen, bei dem die Quanteninformation durch Wechselwirkungen mit der Umgebung verloren geht. Um stabile und fehlerfreie Quantenberechnungen durchzuführen, müssen Qubits in einem kontrollierten Zustand gehalten werden, was technisch äußerst anspruchsvoll ist.
Eine weitere Herausforderung ist die Skalierbarkeit. Während einige Prototypen von Quantencomputern bereits existieren, stellt der Bau von Systemen mit einer ausreichenden Anzahl von Qubits, um praktische Probleme zu lösen, eine erhebliche technische Herausforderung dar.
Trends
In den letzten Jahren ist ein zunehmender Fokus auf hybride Ansätze zu verzeichnen, bei denen Quantencomputer in Kombination mit klassischen Computern eingesetzt werden, um spezifische Probleme zu lösen. Diese hybriden Systeme nutzen die Stärken beider Technologien und bieten eine praktikable Lösung für viele aktuelle Herausforderungen.
Zudem ist eine wachsende Zusammenarbeit zwischen akademischen Institutionen, großen Tech-Unternehmen und Start-ups zu beobachten. Diese Partnerschaften sind entscheidend, um Wissen und Ressourcen zu bündeln und die Entwicklung von QC-Technologien voranzutreiben. Unternehmen wie IBM, Google oder Microsoft investieren erheblich in Quantenforschung und -entwicklung und bieten Plattformen für Entwickler*innen und Forschenden an, um ihre eigenen Quantenalgorithmen zu testen.
Ein weiterer Trend ist die zunehmende Verfügbarkeit von QC-Diensten über die Cloud. Unternehmen und Forschende können nun auf Quantencomputer zugreifen, ohne in teure Hardware investieren zu müssen. Dies senkt die Eintrittsbarrieren und ermöglicht es einer breiteren Palette von Nutzenden, die Möglichkeiten des QCs zu erkunden.
Die Rolle von Start-ups
Start-ups spielen hierbei mit neuen Ideen und Ansätzen eine entscheidende Rolle als Innovatoren und konzentrieren sich zumeist auf spezifische Anwendungen des QCs, sei es in der Materialwissenschaft, der Medikamentenentwicklung, der Lieferkettenlogistik oder der Optimierung komplexer Systeme u.a. in der Finanzwelt.
Die 2024 im Auftrag des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK) veröffentlichte Studie „Quantencomputing – Markt, Zugang, Perspektiven“ zeigt: Die Zahl der Start-ups zur Entwicklung von Anwendungssoftware stieg in den letzten Jahren stetig, wobei hardwarespezifische Systemsoftware vorrangig von den Hardwareentwickler*innen selbst bereitgestellt wird. Entfielen im Zeitraum von 2002 bis 2018 weltweit noch rund 58 Prozent der kumulierten Gründungen auf Software- oder Service-zentrierte Start-ups und 42 Prozent auf Hardware- bzw. Komponenten-fokussierte Start-ups, waren es im Zeitraum 2018 bis 2022 rund 74 Prozent mit Fokus auf Software und Services sowie 26 Prozent mit Fokus auf Hardware und Komponenten.
Von weltweit über 150 Start-ups fokussiert sich dabei etwa ein Drittel auf die Entwicklung von Systemsoftware und zwei Drittel auf die Entwicklung von Anwendungssoftware. Deutschland belegt dabei mit knapp 20 Start-ups im Jahr 2023 Platz drei im internationalen Vergleich, hinter den USA und Kanada. Damit hat sich Deutschland als ein Hotspot für QC-Start-ups etabliert.
Deutsche QC-Start-ups mischen ganz vorne mit
Deutsche QC-Start-ups sind oft noch in der Entwicklungsphase, die Gründer*innen kommen meist aus Forschung und Wissenschaft, und ihre Geschäftsmodelle konzentrieren sich auf die Entwicklung und den Verkauf von Hardware, Mikroskopen oder Cloud-basierten QC-Diensten.
Als weltweit erstem Unternehmen ist es dem 2018 gegründeten Start-up kiutra, einem Spin-off der Technischen Universität München, gelungen, eine dauerhafte magnetische Kühlung für Temperaturen nahe des absoluten Nullpunkts zu entwickeln. Statt auf Quantencomputer oder QC-Software, setzen die Gründer Alexander Regnat, Jan Spallek, Tomek Schulz und Christian Pfleiderer auf vollautomatische, äußerst wartungsarme und gut skalierbare Kühlungslösungen, die den Betrieb von Quantentechnologien im industriellen Maßstab ermöglichen.
Hamburger FoodTech-Start-up goodBytz bringt Roboterküchen in den Mittelstand
Das Tech-Start-up goodBytz, das führend in der Entwicklung autonomer Roboterinfrastruktur für bessere Lebensmittelversorgung ist, geht eine Partnerschaft mit avitea Industrieservice, einem auf Logistik-, Facility- und Produktionsservices spezialisierten Industrie-Dienstleister ein, um automatisierte Verpflegungslösungen im industriellen Mittelstand voranzutreiben.
Gegründet wurde goodBytz 2021 von Dr. Hendrik Susemihl, Kevin Deutmarg und Philipp von Stürmer. Die Unternehmer lernten sich zuvor beim Robotik-Unternehmen NEURA kennen, wo sie mehrere Jahre gemeinsam an innovativen Technologien gearbeitet haben. Seit der Gründung hat sich goodBytz nach eigenen Angaben zum weltweit am schnellsten wachsenden Unternehmen für Lebensmittelautomatisierung entwickelt.
Die modularen Automatisierungssysteme betreiben aktuell zahlreiche Verpflegungslösungen im B2B-Catering und in der Systemgastronomie. Als Herzstück dient eine intelligente Middleware Software, eine hardwareunabhängige, flexible Plattform, die die Effizienz in traditionellen Küchenumgebungen maximiert. GoodBytz verfolgt die Mission, frische Lebensmittel jederzeit und für jede(n) zugänglich zu machen und treibt damit den technologischen Wandel in der Gastronomiebranche voran.
Neue Chancen für den deutschen Mittelstand
Mit der strategischen Partnerschaft mit avitea Industrieservice, einem auf Logistik-, Facility- und Produktionsservices spezialisierten Industrie-Dienstleister, erschließt goodBytz ein neues Marktsegment: Viele Produktionsbetriebe arbeiten im Drei-Schicht-System und stoßen bei der Versorgung von Mitarbeitenden an ihre Grenzen. Durch die Kombination aus aviteas Marktzugang und dem technologischen Know-how von goodBytz soll diese Lücke künftig geschlossen werden. Gerade für den deutschen Mittelstand ergeben sich daraus enorme Chancen – das Potenzial liegt bei über 10.000 möglichen Installationen.
Als Operations-Partner betreibt avitea künftig Roboterküchen direkt bei seinen Kund*innen. So sind Unternehmen in der Lage, ihren Mitarbeitenden zu jeder Tages- und Nachtzeit eine gesunde, planbare und abwechslungsreiche, regelmäßig wechselnde sowie stets frische Küche anzubieten – ganz ohne eigenes Küchenpersonal und mit komfortabler Vorbestellbarkeit.
„Das Konzept von goodBytz hat uns sofort überzeugt“, ergänzt Markus Humpert, Geschäftsführer von avitea Industrieservice. „Gerade dort, wo sich der Betrieb einer Kantine wirtschaftlich nicht rechnet oder Personal fehlt, können wir gemeinsam eine echte Lücke schließen. Die Qualität der Gerichte ist hervorragend, der Ansatz innovativ. Als Dienstleister und Flexibilisierungspartner für industrielle Kunden können wir gemeinsam mit goodBytz für genau diese Betriebe eine innovative Lösung für tägliche Herausforderungen bieten.“
Robotik schlägt Brücke zwischen Industrie und Alltag
Nils Tersteegen, Marketingleiter der FANUC Deutschland GmbH, sagt dazu: „Für FANUC ist es schön zu sehen, wie unsere bewährte Industrierobotik immer näher an den Alltag der Menschen rückt. GoodBytz schlägt eine Brücke zwischen Industrie und Alltag und zeigt, wie Robotik echten Mehrwert für Mitarbeitende schaffen kann. Viele avitea-Kund*innen setzen bereits heute auf FANUC-Roboter in der Produktion. Wenn künftig einer dieser Roboter für sie das Mittagessen zubereitet, schließt sich auf besonders schöne Weise ein Kreis. Durch Automation kann dem Fachkräftemangel in der Industrie schon heute wirksam begegnet werden. Wenn künftig auch in der Küche Roboter unterstützen, zeigt das, welches Potenzial in dieser Technologie noch steckt.“
Als nächster Schritt ist eine erste Umsetzung im Hotelumfeld geplant, um das Betriebskonzept zu verfeinern und Kund*innen den Mehrwert der Lösung zu zeigen. Anschließend wird der Marktausbau mit weiteren Industrieunternehmen fortgesetzt.
Durch die Kooperation mit avitea will goodBytz Verpflegung zum festen Bestandteil moderner Industrieprozesse machen. Die automatisierten Roboterküchen zeigen, wie sich Effizienz, Gesundheit und Arbeitgeberattraktivität in der industriellen Arbeitswelt verbinden lassen.
„Mit avitea Industrieservice haben wir einen Partner gewonnen, der den industriellen Mittelstand seit Jahrzehnten begleitet und direkten Zugang zu Produktionsbetrieben mit großem Versorgungsbedarf hat“, sagt Dr. Hendrik Susemihl, CEO und Co-Founder von goodBytz. „Gemeinsam verbinden wir unsere Technologie mit dem Marktzugang und der operativen Erfahrung von avitea. So entsteht eine Partnerschaft, die den breiten Einsatz automatisierter Verpflegungslösungen im industriellen Mittelstand ermöglicht und Unternehmen im Wettbewerb um Fachkräfte stärkt.“
Indirekter Einkauf: Versteckter Kostenfresser oder unentdeckter Goldschatz?
Im Interview sprechen wir mit Bettina Fischer, Gründerin von Hivebuy, über die Chancen und Risiken des indirekten Einkaufs und darüber, wie Unternehmen mit der richtigen Software Kosten senken und Prozesse optimieren können.
In vielen Unternehmen wird der indirekte Einkauf häufig unterschätzt – dabei liegen hier oft erhebliche Einsparpotenziale verborgen. Durch die wachsende Digitalisierung und die zunehmende Verfügbarkeit von B2B eCommerce-Plattformen bestellen Mitarbeitende Waren und Dienstleistungen immer häufiger außerhalb klassischer Einkaufsprozesse. Diese Entwicklung bringt einerseits Flexibilität und Effizienz, stellt Unternehmen aber auch vor neue Herausforderungen: Wie lassen sich Ausgaben kontrollieren und Transparenz über die gesamte Einkaufskette sicherstellen?
Die beste Einkaufssoftware für den Mittelstand adressiert genau diese Herausforderungen. Hivebuy hat sich als moderne, benutzerfreundliche Lösung etabliert, die den indirekten Einkaufsprozess von der Bestellung bis zur Rechnungsprüfung digitalisiert und automatisiert. Die Software integriert sich nahtlos in bestehende ERP-, Buchhaltungs- und Kommunikationstools wie SAP, Microsoft Dynamics, Teams oder Slack – und das ohne aufwändige technische Implementierung.
Gegründet von erfahrenen Einkaufs- und Finanzexpert*innen aus Frustration über bisherige Lösungen, verfolgt Hivebuy die Mission, versteckte Kosten sichtbar zu machen, Budgets in Echtzeit zu kontrollieren und Einkaufsprozesse effizienter zu gestalten. Mit höchsten Sicherheitsstandards, inklusive ISO/IEC 27001-Zertifizierung und DSGVO-konformer Datenhaltung in Deutschland, schafft Hivebuy Transparenz und Vertrauen entlang der gesamten Einkaufskette.
Im Interview sprechen wir mit Bettina Fischer, Gründerin von Hivebuy, über die Chancen und Risiken des indirekten Einkaufs und darüber, wie Unternehmen mit der richtigen Software Kosten senken und Prozesse optimieren können.
StartingUp: Frau Fischer, viele Unternehmen sehen im indirekten Einkauf eher einen Kostenfaktor, der schwer zu kontrollieren ist. Was macht den indirekten Einkauf aus Ihrer Sicht zu einem versteckten Kostenfresser?
Bettina Fischer: Die große Herausforderung im indirekten Einkauf liegt darin, dass die einkaufenden Personen über das gesamte Unternehmen verteilt sind – anders als im direkten Einkauf, wo spezialisierte Einkaufsabteilungen tätig sind. Das bedeutet: Jede*r Mitarbeitende, der oder die einmal etwas bestellt, wird zum Einkäufer oder zur Einkäuferin – oft ohne die notwendige Erfahrung in Einkaufsprozessen.
Dadurch entstehen typische Muster: Es wird bei bekannten Lieferanten bestellt – oft aus dem privaten Umfeld, wie etwa Amazon Business – ohne Preisvergleiche, ohne Berücksichtigung von Lieferzeiten oder bereits verhandelten Konditionen. Das führt schnell zu ineffizienten und teuren Entscheidungen.
Hinzu kommt, dass im indirekten Einkauf eine hohe Produktvielfalt auf eine extrem heterogene Lieferantenlandschaft trifft. Das erschwert es, durch Bündelung bessere Konditionen zu erzielen. Es fehlt die klare, strategische Beziehung zu bestimmten Lieferanten – und genau dort entstehen die versteckten Kosten.
StartingUp: Wie hilft Hivebuy Mittelständlern konkret dabei, diese versteckten Kosten aufzudecken und zu reduzieren?
Bettina Fischer: Hivebuy verfolgt einen ganzheitlichen Ansatz, um die Herausforderungen des indirekten Einkaufs zu lösen. Zum einen ermöglichen wir es Mitarbeitenden, direkt über integrierte Lieferanten zu bestellen. Das bedeutet: Die Bestellungen erfolgen zentral über Hivebuy – ohne Umwege über externe Plattformen oder individuelle Beschaffungswege. Die Bestellübermittlung ist automatisiert und erfolgt effizient über unser System.
Darüber hinaus bietet Hivebuy einen integrierten Preisvergleich für B2B-Webshops. So wird sichergestellt, dass stets der beste Preis und die optimalen Lieferzeiten berücksichtigt werden – ein entscheidender Hebel zur Kostensenkung.
Ein weiterer zentraler Punkt ist die Budgetkontrolle: Sobald eine Bestellanforderung erstellt wird, sehen Budgetverantwortliche sofort die Auswirkungen auf ihr Budget – in Echtzeit. Dadurch lassen sich Entscheidungen schnell, fundiert und transparent treffen.
Auch die Freigabeprozesse sind flexibel und konfigurierbar: Mitarbeitenden wird Freiheit für alltägliche Bestellungen gegeben, während bei kritischen oder kostenintensiven Vorgängen automatische Eskalationen und Genehmigungen greifen.
Nicht zuletzt ermöglicht Hivebuy dem Einkauf, sein Wissen an die Organisation weiterzugeben. Vorverhandelte Verträge, Katalogartikel oder bevorzugte Lieferanten sind direkt im System sichtbar – wie ein digitaler Einkaufsberater im Hintergrund. So treffen selbst unerfahrene Nutzer bessere Entscheidungen – ganz im Sinne von Kostenkontrolle und Prozesssicherheit.
StartingUp: Ihre Software ist bekannt für ihre Nutzerfreundlichkeit. Wie schaffen Sie es, auch nicht-einkaufserfahrene Mitarbeitende einzubinden?
Bettina Fischer: Benutzerfreundlichkeit steht bei Hivebuy an oberster Stelle. Wann immer wir eine neue Funktion entwickeln, testen wir diese gemeinsam mit unseren Nutzerinnen und Nutzern – direkt aus der Praxis. Unser Ziel ist es, dass Hivebuy genauso intuitiv bedienbar ist wie eine Online-Überweisung: Jeder soll auf Anhieb verstehen, was zu tun ist.
Mit Funktionen wie unserem B2B-Preisvergleich und dem sogenannten Guided Buying führen wir Mitarbeitende gezielt durch den Einkaufsprozess – Schritt für Schritt, ganz ohne Schulungsaufwand. So wird selbst komplexes Einkaufswissen einfach zugänglich gemacht.
Für Freigabeverantwortliche haben wir zusätzlich eine besonders komfortable Lösung geschaffen: Freigaben können direkt über Messenger-Apps wie Microsoft Teams erteilt werden – ohne sich ins System einloggen zu müssen. Die relevanten Informationen kommen automatisch dorthin, wo man ohnehin schon arbeitet – aufs Handy oder den Desktop. Das senkt die Einstiegshürden enorm und sorgt für eine breite Akzeptanz im gesamten Unternehmen.
StartingUp: Welche Rolle spielen Transparenz und Echtzeit-Reporting in der Budgetkontrolle?
Bettina Fischer: Wir sind überzeugt: Budgetkontrolle funktioniert nur in Echtzeit. Es bringt wenig, wenn Budgetübersichten nur monatlich, quartalsweise oder gar halbjährlich zur Verfügung stehen. Entscheidungen im Einkauf werden täglich getroffen – also muss auch die Budgettransparenz jederzeit aktuell sein.
Deshalb haben wir bei der Entwicklung von Hivebuy besonderen Fokus auf eine unmittelbare Budgeteinsicht gelegt. Sobald eine Bestellung angefragt wird, sieht der oder die Budgetverantwortliche sofort, wie sich diese auf das verfügbare Budget auswirkt. Diese Echtzeit-Transparenz ist ein zentrales Element unserer Software.
Gleichzeitig möchten wir Mitarbeitende befähigen, innerhalb ihrer Befugnisse selbstständig Entscheidungen zu treffen. Nicht jede Anfrage muss durch mehrere Instanzen laufen. Vielmehr setzen wir auf smarte, automatisierte Prozesse – kombiniert mit dem Vertrauen in die Souveränität der Nutzer. Das spart nicht nur Zeit, sondern steigert auch die Effizienz und Zufriedenheit im Unternehmen.
StartingUp: Die Einführung neuer Software bedeutet oft hohen Aufwand. Wie gestaltet sich die Implementierung von Hivebuy?
Bettina Fischer: Ich habe selbst über viele Jahre ERP- und Einkaufssoftwareprojekte geleitet – und ehrlich gesagt: Es war jedes Mal ein enormer Aufwand. Genau diese Erfahrungen haben mich dazu motiviert, Hivebuy so zu entwickeln, dass Implementierung eben nicht zur Belastung wird.
Unsere Lösung ist bewusst so aufgebaut, dass sie schnell, unkompliziert und ohne großen IT-Aufwand eingeführt werden kann. Neue Unternehmen können innerhalb kürzester Zeit starten – oft sogar innerhalb eines Tages mit einem eigenen Testsystem.
Die Einführung begleiten wir durch leicht verständliche Videotutorials und Onboarding-Materialien. Darüber hinaus gibt es persönliche Sessions, in denen die Nutzer befähigt werden, das System selbstständig für ihr Unternehmen zu konfigurieren. Schnittstellen zu ERP-Systemen wie SAP, Microsoft Dynamics oder DATEV richten wir in der Regel innerhalb weniger Stunden bis Tage ein.
Wenn beide Seiten fokussiert an das Projekt herangehen, können wir bei Unternehmen mit mehreren tausend Mitarbeitenden innerhalb von acht Wochen vollständig live gehen – inklusive Integration, Schulung und Rollout.
StartingUp: Wie unterstützt Hivebuy IT-Teams und technische Entscheider bei der Integration?
Bettina Fischer: Unsere größte Stärke in der Zusammenarbeit mit IT-Teams ist unsere Schnelligkeit. Bereits im ersten Kick-Off mit der IT tauschen wir alle relevanten technischen Dokumentationen aus, klären die Rahmenbedingungen und ermöglichen in kürzester Zeit die Integration in ein Testsystem. Wir verzichten bewusst auf langwierige Business-Blueprint-Phasen und setzen stattdessen auf eine praxisnahe, direkte Umsetzung.
Hivebuy verfolgt eine klare Integration-First-Strategie. Das bedeutet: Unsere Lösung ist von Grund auf so konzipiert, dass sie sich schnell und flexibel in bestehende ERP-Systeme und IT-Landschaften integrieren lässt. Für alle gängigen Systeme – ob SAP, Microsoft Dynamics, DATEV oder NetSuite – stellen wir vollständige Schnittstellen-Dokumentationen zur Verfügung.
Mein Mitgründer Stefan Kiehne bringt aus seiner Zeit bei PwC tiefes technisches Know-how mit und hat zahlreiche ERP-Implementierungen verantwortet. Dieses Wissen fließt direkt in unsere Projekte ein. Inzwischen haben wir Hivebuy in so viele verschiedene Systeme integriert, dass kaum noch Überraschungen aufkommen. Für IT-Verantwortliche bedeutet das: minimale Unsicherheiten, schnelle Umsetzung und maximale Kompatibilität.
StartingUp: Wie sieht die Zukunft des indirekten Einkaufs aus? Welche Trends beobachten Sie?
Bettina Fischer: Ich sehe im indirekten Einkauf ganz klar einen Wandel hin zu intelligenter Automatisierung und echter Transparenz. Schon heute beobachten wir den Trend in Richtung „Agent AI“ – also digitale Einkaufsassistenten, die Nutzer durch Prozesse begleiten und Entscheidungen mit datenbasierten Empfehlungen unterstützen. Das wird sich in den nächsten Jahren deutlich verstärken.
Was mich persönlich schon lange wundert: Im B2C-Bereich haben wir mit Plattformen wie Idealo längst Preis- und Konditionsvergleiche. Im B2B gibt es das kaum. Deshalb war es uns wichtig, mit Hivebuy eine Lösung zu schaffen, die genau das möglich macht – inklusive der hinterlegten, unternehmensspezifischen Konditionen. Das ist ein echter Gamechanger.
In Zukunft wird der indirekte Einkauf zunehmend automatisiert ablaufen – von der Bedarfserkennung bis hin zur Bestellung. Vergleichbar mit einem intelligenten Kühlschrank, der automatisch Milch nachbestellt, wird auch im Unternehmen vieles automatisch geschehen: Bedarfe erkennen, Angebote vergleichen, Bestellungen auslösen – ganz ohne manuelles Zutun.
Strategische Beschaffung wird dabei zur Grundlage. Das Ziel ist nicht, jede Bestellung individuell zu behandeln, sondern Prozesse zu standardisieren, auf Unternehmensziele auszurichten und individuelle Bedarfe intelligent einzubinden.
Und auch die Rückseite des Einkaufs wird sich stark verändern: Rechnungsprüfung, Buchung und Zahlungsfreigabe werden zunehmend automatisiert ablaufen. In einer idealen Zukunft brauchen wir keine manuelle Rechnungserfassung mehr – weil alles systemgestützt, regelbasiert und transparent funktioniert.
StartingUp: Vielen Dank für das Gespräch, Frau Fischer. Ihre Einblicke verdeutlichen, wie entscheidend es für Unternehmen ist, den indirekten Einkauf transparent und effizient zu gestalten. Mit Lösungen wie Hivebuy können Mittelständler versteckte Kosten sichtbar machen und ihre Beschaffungsprozesse nachhaltig optimieren. Wir wünschen Ihnen weiterhin viel Erfolg bei Ihrer Mission, Einkaufsteams bestmöglich zu unterstützen.
EU AI Act: Status quo
Recht für Gründer*innen: der EU AI Act. Wo stehen wir in Sachen Umsetzung? Was Gründer*innen und Start-ups jetzt wissen müssen.
Künstliche Intelligenz (KI) ist längst kein Zukunftsthema mehr, sondern prägt schon heute Geschäftsmodelle, Investitionsentscheidungen und die Arbeitswelt. Mit der europäischen KI-Verordnung (EU AI Act, im Folgenden AI Act) wurde im Frühjahr 2024 der weltweit erste umfassende Rechtsrahmen für den Einsatz von KI verabschiedet. Inzwischen sind die ersten Regelungen in Kraft getreten. Für Gründer*innen und Start-ups bedeutet das nicht nur zusätzliche Pflichten, sondern auch Chancen, sofern sie sich rechtzeitig vorbereiten.
Überblick: Der AI Act
Die Verordnung folgt einem risikobasierten Ansatz: Je höher das Risiko für Grundrechte oder Sicherheit, desto strenger die Anforderungen. Auf der untersten Stufe stehen KI-Systeme, die keinerlei Vorgaben erfüllen müssen, solange sie nicht in verbotene Anwendungsfälle fallen. An der Spitze der Regulierungspyramide befinden sich die sogenannten HochrisikoSysteme, also etwa Anwendungen in der medizinischen Diagnostik, in kritischer Infrastruktur oder bei biometrischen Verfahren. Viele Tools aus dem HR-Bereich fallen darunter.
Daneben bestehen besondere Pflichten für sogenannte Generative KI beziehungsweise General Purpose AI, eingeführt, also große Modelle, die viele Anwendungen treiben und „systemische Risiken“ entfalten können.
Wichtig ist zu wissen, dass die Vorgaben schrittweise gelten. Bereits seit dem 2. Februar 2025 sind bestimmte Praktiken ausdrücklich verboten – zum Beispiel das Social Scoring von Bürger*innen, die flächendeckende Emotionserkennung in Schulen oder am Arbeitsplatz sowie das unkontrollierte Sammeln biometrischer Daten. Wer damit noch experimentiert, bewegt sich schon jetzt im rechtswidrigen Raum.
Seit dem 2. August 2025 gelten außerdem die ersten Pflichten für Anbieter*innen von generativen Modellen. Sie müssen unter anderem Transparenzberichte veröffentlichen und Angaben zu den verwendeten Trainingsdaten machen. Für Modelle, die bereits vor Inkrafttreten am Markt waren, gibt es eine Übergangsfrist bis 2027. Für viele Unternehmen, die solche Modelle nutzen oder in Produkte einbetten, bedeutet das, genau hinzuschauen, welche Informationen von den Modellanbieter*innen zur Verfügung gestellt werden. Sonst können eigene Transparenzpflichten womöglich nicht erfüllt werden.
Noch weiter in der Zukunft liegen die Vorschriften für Hochrisiko-Systeme. Diese greifen ab 2. August 2026 und verlangen ein umfassendes Risikomanagement, eine strenge Qualität der Trainingsdaten, eine lückenlose Protokollierung und eine Konformitätsbewertung, bevor ein Produkt überhaupt in Verkehr gebracht werden darf. Für Hochrisiko-KI, die in ohnehin streng regulierten Produkten steckt, zum Beispiel in Medizinprodukten, gilt eine verlängerte Frist bis 2027.
Konformitätsbewertung heißt vor allem Risikobewertung, welche die Anbieter*innen oder Betreiber*innen selbst durchführen müssen. Eine solche „regulierte Selbstregulierung“ ist ein klassisches Merkmal einer solchen klassischen Produktregulierung und Marktüberwachung.
Was fehlt? Guidance und Governance
Noch herrscht allerdings an vielen Stellen Unsicherheit. Zwar hat die EU-Kommission schon erste Leitlinien veröffentlicht, etwa zur Definition von KI-Systemen oder zu den verbotenen Praktiken. Auch für Anbieter*innen generativer KI gibt es inzwischen ein detailliertes Dokumentationsmuster. Noch fehlen allerdings die angekündigten Handreichungen für die Einstufung und Risikobewertung von Hochrisiko-Systemen, die bis Februar 2026 folgen und praktische Beispiele enthalten sollen. Bis dahin bleibt nur, sich für die Bewertung an bestehenden internationalen Standards zu orientieren, zum Beispiel an den Normungsprojekten der Europäischen Komitees für Normung und für elektrotechnische Normung.
Auf Unionsebene entstehen parallel die neuen Governance-Strukturen. Das AI Office innerhalb der Kommission ist bereits aktiv und koordiniert die Umsetzung. Das AI Board, ein Gremium der Mitgliedstaaten, tagt regelmäßig und stimmt Vorgehensweisen ab. Ein wissenschaftliches Panel unabhängiger Expert*innen wurde im Frühjahr eingerichtet, und das Advisory Forum, das die Perspektive von Unternehmen und Zivilgesellschaft einbringen soll, befindet sich gerade in der Bewerbungsphase. Auch die geplante EU-Datenbank für Hochrisiko-Systeme existiert bisher nur auf dem Papier. Ab 2026 müssen Anbieter*innen ihre Systeme dort registrieren; die Plattform selbst wird jedoch gerade erst aufgebaut.
Und wo steht Deutschland?
Auch hierzulande hakt es noch etwas. Eigentlich hätten die Mitgliedstaaten bis 2. August 2025 ihre Marktüberwachungsbehörden benennen müssen. Ein Entwurf für das deutsche Umsetzungsgesetz sieht die Bundesnetzagentur als zentrale Aufsicht vor, doch die formale Benennung ist noch nicht erfolgt. Klar ist, dass die Bundesnetzagentur die Rolle der Notifizierungsbehörde übernimmt, also für die Anerkennung von Konformitätsbewertungsstellen zuständig ist. Zudem entsteht dort ein Kompetenzzentrum für KI, das die Arbeit von Bund und Ländern koordinieren soll.
Reallabore
Ein Bereich, der für KI-Entwickler*innen besonders interessant ist, sind KI-Reallabore, also sichere Testumgebungen, in denen neue Anwendungen unter Aufsicht erprobt und darauf geprüft werden können, ob sie den rechtlichen Rahmen einhalten. Bis zum Sommer 2026 müssen die Mitgliedstaaten mindestens ein solches Reallabor einrichten. Deutschland hat im Mai 2025 ein erstes Pilotprojekt in Hessen gestartet, gemeinsam mit der Bundesnetzagentur und der Bundesdatenschutzbeauftragten. Hier werden reale Unternehmensfälle durchgespielt, um Abläufe und Bedarfe besser zu verstehen. Solche Projekte können eine wertvolle Möglichkeit sein, mit den Aufsichtsbehörden auf Augenhöhe ins Gespräch zu kommen.
Reaktionen
Der AI Act wird zwar kritisch diskutiert, im Grundsatz aber breit akzeptiert. Gerichtliche Klagen direkt gegen die Verordnung gibt es bislang nicht. In der juristischen Literatur überwiegt die Zustimmung zur Zielrichtung. Kritisiert werden vor allem die Komplexität und die noch offenen Fragen bei der praktischen Umsetzung. Streitpunkte finden sich eher außerhalb der Verordnung bei der Frage, ob Trainingsdaten urheberrechtlich geschützt sind oder wie personenbezogene Daten für KI genutzt werden dürfen.
Die Industrie zeigt ein gemischtes Bild. Viele große Anbieter*innen – von Google über OpenAI bis Mistral – haben einen freiwilligen Verhaltenskodex unterzeichnet. Andere, wie etwa Meta, haben sich bewusst dagegen entschieden. Man muss sich also darauf einstellen, dass je nach Anbieter*in sehr unterschiedliche Informationen und Compliance-Nachweise verfügbar sind.
Andererseits wirkt der AI Act bereits am Markt. In öffentlichen Ausschreibungen tauchen Modellklauseln auf, die auf die KI-Verordnung Bezug nehmen. Investor*innen fragen verstärkt nach Compliance-Prozessen, und Unternehmen beginnen, interne Strukturen für Risikomanagement und Dokumentation aufzubauen.
Im Vergleich zu Europa gibt es in den USA bislang nur freiwillige Standards. Die dort bei der Entwicklung und Anwendung von KI (angeblich) vorherrschende größere Freiheit wird zwar viel gerühmt. Einzelne Bundesstaaten wie Colorado arbeiten allerdings an eigenen regulierenden Gesetzen, die ab 2026 greifen sollen. Vielleicht ist es also ein Vorteil, dass europäische Start-ups früh Erfahrungen in einem regulierten Markt sammeln können.
Fazit
Der AI Act entfaltet bereits jetzt Wirkung, auch wenn viele Details erst in den kommenden Monaten geklärt werden. Daher gilt es, nicht abzuwarten, sondern jetzt eine eigene Roadmap zu entwickeln. Wer früh Prozesse für Risikomanagement, Transparenz und Governance etabliert, wird nicht nur rechtlich auf der sicheren Seite sein, sondern auch Vertrauen bei Kund*innen und Investor*innen gewinnen.
Die EU hat ein klares Signal gesetzt: KI soll innovativ sein, aber auch sicher und vertrauenswürdig. Für Start-ups ist das eine Herausforderung – aber auch eine Chance, sich von Anfang an professionell aufzustellen und den Markt aktiv mitzugestalten.
Der Autor Dr. Daniel Michel, LL.M. ist als Rechtsanwalt im Bereich IT/IP/Technologie tätig und betreibt seit 2018 mit DATA LAW COUNSEL seine eigene Rechtsberatung im Raum München
Luxusuhren: Darum ist es sinnvoll, Preise zu vergleichen
Entdecken Sie, warum sich der Preisvergleich bei Luxusuhren lohnt. Sparen Sie beim Online-Kauf.
Preisvergleiche bei Luxusuhren lohnen sich durch erhebliche Preisdifferenzen zwischen verschiedenen Händlern, die mehrere hundert bis tausend Euro betragen können. Diese Unterschiede entstehen hauptsächlich durch verschiedene Kostenberechnungen und unterschiedliche Margenstrategien der Anbieter. Während manche Händler auf Premium-Service setzen, bieten andere günstigere Preise durch schlankere Betriebsstrukturen. Besonders bei begehrten Modellen von Rolex, Patek Philippe oder Audemars Piguet variieren die Preise stark zwischen den Anbietern. Ein gründlicher Preisvergleich kann daher zu beträchtlichen Einsparungen von bis zu 30 Prozent führen. Gleichzeitig hilft er dabei, den tatsächlichen Marktwert einer Luxusuhr präzise zu ermitteln. Die Investition in eine hochwertige Armbanduhr rechtfertigt den Aufwand für einen detaillierten Vergleich verschiedener Anbieter vollständig. Die folgenden Abschnitte zeigen, worauf man achten sollte.
Zwischen den einzelnen Händlern existieren teilweise deutliche Preisunterschiede
Konkrete Beispiele verdeutlichen das Sparpotenzial beim Uhrenkauf: Spezialisierte Händler bieten permanent Armbanduhren mit Rabatten von mehreren tausend Euro unter dem Neupreis an. Diese deutlichen Preisvorteile entstehen durch unterschiedliche Beschaffungswege, Lagerbestände und Verkaufsstrategien der Anbieter. Plattformen wie Watchy24.de ermöglichen es, diese Preisunterschiede transparent zu vergleichen und das beste Angebot zu identifizieren. Während Boutiquen oft Listenpreise verlangen, können autorisierte Händler erhebliche Rabatte gewähren. Online-Händler profitieren von geringeren Betriebskosten und geben diese Kostenvorteile häufig an Kunden weiter.
Besonders bei limitierten Editionen oder seltenen aktuellen Modellen können die Preisunterschiede zwischen verschiedenen Anbietern deutlich ausfallen und eine sorgfältige Recherche rechtfertigen.
Internationale Preisunterschiede und Währungseffekte: Worauf sollte man achten?
Länderspezifische Preisdifferenzen bei Luxusuhren ergeben sich aus verschiedenen wirtschaftlichen Faktoren. Währungsschwankungen beeinflussen die Preisgestaltung deutlich, besonders bei hochwertigen Herstellern aus der Schweiz, die – ebenso wie viele Start-Ups – verstärkt darauf achten, ein hohes Maß an Markenschutz zu gewährleisten. Die unterschiedlichen Mehrwertsteuersätze zwischen den Ländern wirken sich direkt auf die Listenpreise aus. So liegt die Mehrwertsteuer in Deutschland bei 19 Prozent, während sie in der Schweiz und in einigen anderen Ländern deutlich niedriger ist.
Außereuropäische Märkte wie Hongkong oder Singapur bieten teilweise deutlich günstigere Preise, wobei Import- und Zollbestimmungen unbedingt zu beachten sind. Ein internationaler Preisvergleich kann erhebliche Kostenvorteile offenbaren, setzt jedoch Kenntnisse über Garantie- und Servicebedingungen voraus.
Lohnt es sich, auf dem Gebrauchtmarkt Ausschau zu halten?
Der Gebrauchtmarkt für Luxusuhren bietet Einsparpotenziale von bis zu 30 Prozent bei meist stabiler Wertentwicklung. Hochwertige Marken behalten auch als gebrauchte Modelle eine hohe Werterhaltungsrate von durchschnittlich 70 bis 80 Prozent. Plattformen für den Second-Hand-Handel verfügen über umfangreiche Bestände mit detaillierten Zustandsbeschreibungen.
Gebrauchte Luxusuhren werden häufig professionell aufbereitet und einer Qualitätsprüfung durch Fachbetriebe unterzogen. Die Wertstabilität macht den Gebrauchtmarkt zu einer attraktiven Investitionsmöglichkeit für Sammler. Seltene oder nicht mehr produzierte Modelle können sogar an Wert gewinnen. Die transparente Preisgestaltung ermöglicht fundierte Vergleiche und realistische Einschätzungen bei deutlich geringeren Anschaffungskosten.
Expertise als wichtiger Faktor für den Kauf einer Luxusuhr
So gut wie jeder hat individuelle Vorstellungen davon, was er sich gönnen möchte. Manche träumen davon, als digitaler Nomade die Welt zu sehen, andere möchten sich irgendwann eine Luxusuhr leisten können.
Daher ist es wichtig, sich zunächst über die eigenen Ansprüche klar zu werden. Falls die Wahl auf die Luxusuhr fällt, gilt: Die Authentizitätsprüfung bildet die Grundlage für sichere Transaktionen im Luxusuhrenmarkt und beeinflusst maßgeblich die Preisgestaltung. Erfahrene Fachhändler verfügen über spezialisierte Prüfverfahren wie Seriennummern-Checks, Analyse von Werkscodes und Materialuntersuchungen.
Zertifikate, Originalverpackungen und Servicedokumente erhöhen die Glaubwürdigkeit und den Wert einer Uhr erheblich. Experten bewerten den Zustand des Uhrwerks, die Originalität der Komponenten sowie die historische Bedeutung. Die Zusammenarbeit mit erfahrenen Uhrmachern minimiert Risiken beim Kauf hochwertiger Zeitmesser.
Seriöse Händler bieten Echtheitsgarantien und übernehmen die Haftung für die Authentizität ihrer Angebote.
Ein Ausblick auf die (mögliche) langfristige Wertentwicklung
Ein fundierter Preisvergleich bei Luxusuhren zahlt sich oft langfristig über einen Zeitraum von fünf bis zehn Jahren durch bessere Investitionsentscheidungen aus. Die Analyse großer Mengen weltweiter Angebote ermöglicht realistische Markteinschätzungen und das Erkennen von Trends bei renommierten Marken. Erfolgreiche Sammler berücksichtigen sowohl aktuelle Preise als auch die historische Wertentwicklung ihrer Wunschmodelle.
Die Nutzung professioneller Vergleichsplattformen und eine regelmäßige Marktbeobachtung helfen, Risiken zu minimieren und das Preis-Leistungs-Verhältnis zu maximieren. Internationale Preisunterschiede sowie der Gebrauchtmarkt bieten zusätzliche Einsparpotenziale für informierte Käufer. Langfristig profitieren Sammler von fundiertem Markt-Know-how bei zukünftigen Käufen und Verkäufen ihrer Luxusuhren-Kollektion.
Kurz mal die Welt retten
Wie GreenTech-Start-ups aus dem DACH-Raum dazu beitragen, die Auswirkungen des Klimawandels zu mildern.
Ist es bereits zu spät, den Klimawandel aufzuhalten? Während diese Frage unablässig für hitzige Debatten sorgt, arbeiten Start-ups unermüdlich an Lösungen für die dringendsten Umweltprobleme. Die DACH-Region erlebt einen rasanten Anstieg von GreenTech-Start-ups, angetrieben durch technologische Innovationen und zunehmenden regulatorischen Druck. Dies zeigt u.a. das DACH GreenTech Software Mapping 2025 von Hi Inov und veranschaulicht, welche vielversprechenden Ansätze und Technologien die Zukunft des GreenTech-Ökosystems in Europa prägen.
Mapping der Herausforderungen und Lösungen
Das Mapping bietet einen umfassenden Überblick über die Softwarelösungen von GreenTech-Start-ups im DACH-Raum. Sie umfassen eine Vielzahl von Ansätzen, um den Anstieg der globalen Temperaturen einzudämmen und die damit einhergehenden wirtschaftlichen und gesellschaftlichen Herausforderungen zu bewältigen.
1. Messung und Optimierung des CO2-Fußabdrucks
Fortgeschrittene Techniken zur Datenerfassung und KI-gesteuerte Analysen helfen Organisationen, ihre Effizienz zu steigern und ihren CO₂-Fußabdruck zu reduzieren. Sie helfen Unternehmen, jährlich Emissionen von über 216.000 Tonnen CO₂-Äquivalenten zu vermeiden. Horizontale Plattformen bieten allgemeine Monitoring-Tools für branchenübergreifende Messdienste. Vertikale Lösungen wie die für die Immobilienbranche maßgeschneiderte ESG-Datenplattform Deepki integrieren branchenspezifische Anforderungen.
2. Beschleunigung der Energiewende
Softwarelösungen spielen eine entscheidende Rolle bei der Optimierung der Standortauswahl für die Produktion erneuerbarer Energien, der vorausschauenden Wartung von Infrastruktur und der Verbesserung der Energiespeicherung. Sie können die Schwankungen in der Stromeinspeisung erneuerbarer Energien mindern und somit die Abhängigkeit von fossilen Brennstoffen reduzieren. Das Stuttgarter Start-up metergrid ermöglicht es beispielsweise Mieter*innen in Mehrfamilienhäusern, umweltfreundlichen Solarstrom zu nutzen, der im selben Gebäude produziert wird (mehr dazu in der StartingUp 01/25).
3. Förderung der Kreislaufwirtschaft und Ressourcenoptimierung
Digitale Lösungen erleichtern die Schonung von natürlichen Ressourcen durch intelligentes Ressourcenmanagement, indem sie die Planung und Nutzung von Ressourcen verbessern. Durch den Einsatz von KI lassen sich viele Prozesse optimieren, darunter Recycling, Landwirtschaft und Wassermanagement. So reduziert das Berliner Start-up Freshflow Abfall, indem es die Nachbestellung von frischen Lebensmitteln mit Machine Learning automatisiert und optimiert. Darüber hinaus verbinden digitale Marktplätze Produzent*innen überschüssiger Ware mit potenziellen Abnehmer*innen, um Ressourcen effizierter zu nutzen.
4. Förderung von Nachhaltigkeitsinitiativen in Unternehmen
Unternehmen nutzen digitale Werkzeuge, um ihre Nachhaltigkeit über die regulatorischen Anforderungen hinaus zu verbessern. Zu den eingesetzten Lösungen zählen CO₂-Kreditbörsen, die es Organisationen ermöglichen, Emissionen durch strukturierte Märkte auszugleichen, und Mitarbeiterengagement-Plattformen, die die Teilnahme der Belegschaft an ESG-Initiativen fördern. Start-ups wie das Hamburger CarbonStack unterstützen Unternehmen bei der Erstellung von Nachhaltigkeitsberichten und dabei die relevanten Richtlinien einzuhalten.
Die Entwicklung von 2023 bis heute
Insgesamt zeigt das Mapping ein reiferes und strukturierteres GreenTech-Ökosystem, das Europas Position als Pionier in digitalen Klimaschutzlösungen stärkt. Die Entwicklung zwischen den Mappings aus den Jahren 2023 und 2025 verdeutlicht drei wichtige Trends:
1. Anstieg der Anzahl der angebotenen Softwarelösungen
Die steigende Nachfrage nach nachhaltigkeitsorientierten Innovationen in verschiedenen Branchen hat das Wachstum des GreenTech-Ökosystems beschleunigt und zu einem rasanten Anstieg der angebotenen Softwarelösungen geführt.
2. Regulatorisch getriebene Fortschritte
Aufgrund des zunehmenden regulatorischen Drucks wächst der Anteil der angebotenen Lösungen, die auf Compliance-Bedürfnisse wie CSRD, die Rückverfolgbarkeit von Produkten und transparente CO₂-Buchhaltung eingehen. Es werden zunehmend vertikalisierte Monitoring-Tools entwickelt, um spezialisierte Datensätze und branchenspezifische Algorithmen zu erstellen.
3. Einfluss von generativer KI
Der Einsatz von generativer KI nimmt zu. Neue Anwendungsfälle im Bereich Nachhaltigkeit umfassen verbesserte Datenanalyse, automatisierte Compliance-Berichterstattung, sowie die Echtzeit-Optimierung von CO₂-Fußabdrücken und Ressourcenmanagement.
Fazit: Ein florierendes Ökosystem mit starker europäischer Führung
Der Klimawandel stellt eine immense Herausforderung dar, deren Bewältigung innovative technologische Lösungen erfordert. Das GreenTech Mapping 2025 verdeutlicht die führende Rolle Europas bei der Entwicklung dieser Lösungen und zeigt ein reiferes GreenTech-Ökosystem mit großer Dynamik. Durch den Einsatz fortschrittlicher Datenanalysen, KI und Automatisierung sind Start-ups in der DACHRegion gut positioniert, um sowohl wirtschaftlichen als auch ökologischen Mehrwert zu schaffen. Sie werden Unternehmen und politischen Entscheidungsträger*innen dabei helfen, den Übergang zu einer nachhaltigeren Wirtschaft zu beschleunigen und die Folgen des Klimawandels einzudämmen.
Der Autor Dr. Wolfgang Krause leitet als Managing Partner das Deutschlandgeschäft des auf B2B-Digitallösungen spezialisierten VC-Fonds von Hi Inov.
„Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing“
Mit planqc verfolgt Dr. Alexander Glätzle die Mission, hochskalierbare Quantencomputer für wirtschaftliche Anwendungen zu bauen. Warum das Unternehmen dabei auf Standorte wie München und Innsbruck setzt und welche Rolle Österreichs Talentpool spielt, verrät er im Interview.
Dr. Alexander Glätzle ist Quantenphysiker und Mitgründer von planqc. Er studierte und promovierte an der Universität Innsbruck, forschte an renommierten Instituten wie Oxford, Harvard sowie in Singapur und war als Unternehmensberater tätig. 2022 gründete er planqc als Ausgründung aus dem Max-Planck-Institut in München.
Herr Dr. Glätzle, wie entstand die Unternehmensidee und welche Meilensteine haben Sie mit planqc bisher erreicht?
Die Idee zu planqc ist bereits während meines Studiums an der Universität Innsbruck entstanden. Dort habe ich intensiv im Bereich Quantentechnologie geforscht und das enorme Potenzial erkannt, aus diesen Erkenntnissen ein Start-up zu gründen. Bis zur Gründung hat es allerdings noch einige Jahre gedauert – nicht zuletzt, weil die technologische Entwicklung im Labor ebenfalls voranschreiten musste. 2022 sind wir dann als Ausgründung aus dem Max-Planck-Institut offiziell gestartet. Zu den wichtigsten Meilensteinen zählen zwei große öffentlich geförderte Projekte: Für das Deutsche Zentrum für Luft- und Raumfahrt bauen wir einen Quantencomputer mit einem Volumen von 30 Mio. EUR, ein weiteres Projekt mit dem Leibniz-Rechenzentrum umfasst 20 Mio. EUR, beide mit Abschluss bis Ende 2026 bzw. 2027. Dann werden an diesen beiden Standorten voll funktionsfähige Quantencomputer von planqc installiert sein.
Sie haben bereits Venture Capital mit an Bord. Wer zählt zu Ihren Investoren?
Gestartet sind wir 2022 mit einer Seed-Runde, an der unter anderem UVC Partners, Speedinvest und Apex Ventures beteiligt waren – also bereits starke Partner auch aus Österreich. Diese Basis konnten wir in der Series-A im letzten Jahr weiter ausbauen. Die CATRON Holding, ein Wiener Family Office, ist als Lead-Investor eingestiegen. Dazu kamen weitere Partner wie der DeepTech & Climate Fonds sowie Bayern Kapital. Besonders erfreulich ist, dass auch unsere Bestandsinvestoren erneut signifikant investiert haben. Damit verfügen wir über eine starke, rein mitteleuropäische, deutsch-österreichische Investorenbasis – was in unserem Sektor tatsächlich selten ist.
Ihr Headquarter befindet sich in der Nähe von München. Was hat Sie dazu bewegt, zusätzlich einen Standort in Innsbruck zu eröffnen?
Ursprünglich haben wir planqc in München gegründet – als Ausgründung aus dem Max-Planck-Institut. Doch bereits innerhalb eines Jahres haben wir ein zweites Büro in Innsbruck eröffnet. Der Grund liegt auf der Hand: Innsbruck ist eines der weltweit führenden Zentren für Quantencomputing. Mit renommierten Instituten wie dem Institut für Quantenoptik und Quanteninformation (IQOQI) und Persönlichkeiten wie Peter Zoller und Rainer Blatt gibt es dort eine kritische Masse an international anerkannten Wissenschaftlern. Zudem ist es in der Praxis oft schwierig, hochqualifizierte Talente aus der Region nach München zu bringen. Deshalb haben wir entschieden, ihnen vor Ort ein attraktives Arbeitsumfeld zu bieten – mit einem eigenen Standort in Innsbruck.
Welche Vorteile bietet der Standort Österreich speziell für Unternehmen im Bereich Quantencomputing?
Österreich hat eine lange und starke Tradition in der Quantenphysik. Universitäten wie Innsbruck und Wien, das IQOQI und eine ganze Generation exzellenter Wissenschaftler prägen diese Landschaft. Viele bahnbrechende theoretische und experimentelle Arbeiten wurden hier in den vergangenen Jahren geleistet. Gerade für junge Start-ups bietet das Land enorme Vorteile: Der Talentpool ist außergewöhnlich – mit hervorragend ausgebildeten, dynamischen Fachkräften. Darüber hinaus ist die Nähe zu sogenannten „Industry First Movern“ gegeben, was den Standort besonders spannend macht. Und nicht zuletzt hat Österreich eine historische Verbindung zur Physik – Namen wie Schrödinger, Pauli oder Hess stehen sinnbildlich für diese wissenschaftliche Tiefe.
Welche Unterstützung erhielten Sie bei der Ansiedlung durch die Austrian Business Agency?
Die Austrian Business Agency sowie die Standortagentur Tirol haben uns außerordentlich engagiert unterstützt – sei es bei der Suche nach Büroflächen, bei der Eröffnung des ersten Bankkontos oder in bürokratischen Fragen. Sie standen uns nicht nur beratend zur Seite, sondern haben uns tatkräftig geholfen, Hürden aus dem Weg zu räumen. Genau so stelle ich mir die Zusammenarbeit mit einer lokalen Agentur vor: nah dran, lösungsorientiert und mit exzellentem Netzwerk. Wir hatten wirklich großes Glück mit der Unterstützung vor Ort.
Sie selbst sind in Österreich geboren, haben in Innsbruck promoviert und weltweit Forschungsaufenthalte absolviert – bevor Sie als Unternehmensberater und Gründer nach München gingen. Mit welchen Qualitäten punktet Österreich allgemein, auch als Arbeits- und Wohnort?
Ich habe viele Jahre im Ausland gelebt und gearbeitet – in Oxford, Singapur und Deutschland. Was Innsbruck und Tirol für mich besonders macht, ist die Kombination aus wissenschaftlicher Exzellenz und hoher Lebensqualität. Die Stadt liegt inmitten der Alpen, bietet eine hervorragende Infrastruktur und ein ausgewogenes Verhältnis zwischen Studierenden und Einwohnern. Das schafft ein inspirierendes Umfeld – zum Leben, Forschen und Arbeiten gleichermaßen.
Dr. Alexander Glätzle, vielen Dank für das Gespräch.
Das Interview führte Janine Heidenfelder, Chefredakteurin VC Magazin
“Digitalisierung ist kein Nice-to-have mehr, sondern strukturelle Voraussetzung für Wettbewerbsfähigkeit”
„Made in Steel. Built on Data.“ Mit diesem Leitsatz positioniert sich die EMR Dynamics GmbH als strategische Antwort auf die zunehmende Komplexität globaler Lieferketten – und auf die wachsenden Anforderungen an Geschwindigkeit, Transparenz und Resilienz in industriellen Wertschöpfungsnetzwerken.
Unter der Leitung von Emrullah Görsoy geht EMR Dynamics aus einem Berliner Familienunternehmen hervor, das seit 2005 als verlässlicher Partner für mechanische Komponenten in Europa etabliert ist. Nun markiert das Unternehmen den nächsten Entwicklungssprung der Unternehmensgeschichte: von der Fertigung zur Plattform.
Fragen dazu an Emrullah Görsoy, Managing Director at EMR:
Seit mehr als 20 Jahren seid ihr mit EMR am Markt. Man könnte sagen, ihr macht vieles richtig – Wie lautet euer Erfolgsrezept?
Unser Erfolgsrezept liegt in der konsequenten Weiterentwicklung. Wir haben uns nie auf bestehenden Strukturen ausgeruht, sondern das Unternehmen immer wieder neu gedacht – operativ, strategisch und technologisch. Besonders in Zeiten des Wandels war unser pragmatischer Unternehmergeist entscheidend. Dabei kombinieren wir mittelständische Robustheit mit einer agilen Denkweise – anpassungsfähig, resilient und wachstumsorientiert.
Zeitnah startet ihr mit eurer Neugründung EMR Dynamics am Markt. Was steckt dahinter?
EMR Dynamics ist unsere Antwort auf ein fragmentiertes Marktumfeld und wachsende Anforderungen an Geschwindigkeit, Transparenz und Resilienz in industriellen Lieferketten. Wir verbinden vertikal integrierte Fertigungskompetenz mit einer digitalen Prozessarchitektur – eine B2B-Plattform für die intelligente Steuerung und Vermittlung industrieller Produktions- und Beschaffungsprozesse. Das Ziel: maximale Skalierbarkeit, reduzierte Time-to-Market und durchgängige Prozesssicherheit für unsere Kunden.
Damit schlagen wir die Brücke zwischen Mittelstand und digitaler Ökonomie – resilient, effizient und kundennah. Wir wollen EMR Dynamics als Plattformmarke im industriellen Mittelstand etablieren – mit eigener Fertigung, digitalem Backbone und strategischer Nähe zum Kunden.
An wen richtet sich euer Angebot?
Unsere Zielgruppen sind OEMs, Tier-1-Zulieferer und Systempartner aus hoch regulierten und qualitätskritischen Industrien – etwa Rail, Aerospace, Defense oder Industrial Tech. Wir liefern nicht nur Komponenten, sondern vernetzen Prozesse, sichern Supply Chains ab und schaffen Plattformlösungen für beschleunigte Wertschöpfung – alles aus einer Hand.
Wie unterscheidet sich euer Angebot von klassischen Fertigungsdienstleistern?
Wir sind kein reiner Teilelieferant. Wir verstehen uns als Lösungsanbieter entlang der industriellen Wertschöpfung – von Co-Engineering und Prototyping über skalierbare Serienfertigung bis hin zur integrierten Lieferkette. Durch die Plattformlogik können wir unsere Prozesse mit denen unserer Kunden synchronisieren und so Time-to-Market und Lieferperformance signifikant verbessern – gerade für komplexe und hochqualifizierte Baugruppen.
Seit mehreren Jahren bist du Geschäftsführer des Unternehmens EMR Industrial. Wie fühlt es sich an, als Young Professional bereits in einer solchen verantwortungsvollen Rolle zu sein?
Herausfordernd, aber erfüllend. Ich hatte das Privileg, früh Verantwortung zu übernehmen – besonders während der Transformation von EMR in der Pandemie. Die Krise 2020 hat uns gezwungen, unser gesamtes Geschäftsmodell zu pivotieren. Diese Erfahrung hat mich geprägt: Strategisch zu denken, unternehmerisch zu handeln und nie den Kontakt zur operativen Realität zu verlieren.
Welche Bedeutung hat die Digitalisierung aus deiner Sicht für den Mittelstand und was können sich Mittelständler von Start-ups abschauen?
Digitalisierung ist kein Nice-to-have mehr, sondern strukturelle Voraussetzung für Wettbewerbsfähigkeit. Der Mittelstand kann von Start-ups besonders eines lernen: den Mut, Prozesse radikal neu zu denken – und den Fokus auf Geschwindigkeit, Automatisierung und User Experience.
Emrullah Görsoy, Danke für die Insights
5 Tipps für GPT-Sichtbarkeit im Netz
Warum klassisches SEO allein nicht mehr ausreicht und wie Unternehmen für die KI-Antworten der GPT-Modelle sichtbar werden.
Die Spielregeln der digitalen Sichtbarkeit werden gerade neu geschrieben – und die Unternehmen müssen sich neu aufstellen. Denn während viele Unternehmen ihre Strategien noch immer ausschließlich auf Google-Rankings und SEO-Kriterien ausrichten, verlagert sich die digitale Aufmerksamkeit längst in Richtung KI: Sprachmodelle wie ChatGPT, Claude oder Gemini ersetzen zunehmend die klassische Suche. Sie liefern keine Trefferlisten mehr, sondern direkte, aufbereitete Antworten – oft mit konkreten Empfehlungen und Verlinkungen. Für Marken, Produkte und Unternehmen wird es damit entscheidend, in diesen zusammengefassten Antworten stattzufinden. Das Stichwort hierfür ist technisches SEO für KI-Rankings.
Suchmaschinen waren gestern das führende Element in der Sortierung von Wissen im Netz und vor allem das Google-Ranking war entscheidend für die Sichtbarkeit von Informationen und Seiten. In Zukunft entscheiden dagegen Sprachmodelle darüber, welche Inhalte gesehen, zitiert und empfohlen werden. Und wer in diesen Systemen nicht genannt wird, verliert den direkten Draht zur Zielgruppe.
Diesen Paradigmenwechsel vom Google-Ranking zur Antwortlogik hat die SMAWAX, die auf Strategieberatung spezialisierte Agentur der Smarketer Group, erstmals systematisch im Rahmen eines Whitepapers analysiert (s. Link am Ende des Beitrags). Die Expert*innen erklären dabei detailliert, wie GPT-Modelle Inhalte auswählen – und welche Inhalte von den Systemen überhaupt referenziert werden dürfen. Die zentrale Erkenntnis: Suchmaschinenoptimierung nach alten Regeln greift zu kurz, ist aber weiterhin die Sichtbarkeitsgrundlage. Denn Sprachmodelle wie ChatGPT denken nicht in Keywords und Rankings, sondern in semantischen Relevanzräumen, Entitätenbeziehungen und struktureller Klarheit.
Inhalte müssen modular und semantisch präzise sein – doch das reicht nicht
Es geht nicht mehr um Top-Rankings – es geht darum, die richtige Antwort zu sein. Wir müssen SEO neu denken – als Schnittstelle zwischen Struktur, Relevanz und maschinellem Verstehen. Inhalte müssen dazu maschinenlesbar, modular aufgebaut und semantisch präzise sein. Nur dann haben Unternehmen eine Chance, in den Empfehlungslogiken von Claude, GPT & Co. aufzutauchen.
Besonders überraschend ist dabei aber, dass viele Unternehmen in GPT-Antworten zwar durchaus latent präsent, aber nicht sichtbar sind. Der Grund hierfür sind unscharfe Entitäten, fehlende „About“-Seiten, keine Verankerung in externen Quellen wie Wikidata, Trustpilot oder LinkedIn. Die Folgen wirken sich negativ auf die Marken aus und sorgen für Fehlinformationen: KI-Modelle verwechseln Marken, halluzinieren Funktionen oder verschweigen relevante Angebote. Halluzinationen sind in Wahrheit ein strategischer Hinweis auf Unsichtbarkeit. Wenn GPT ein Produkt falsch beschreibt oder dich mit einem Mitbewerber verwechselt, zeigt das: Deine Inhalte sind zwar irgendwo im Modell – aber nicht stabil genug verankert, um korrekt genannt zu werden.
Fünf konkrete Hebel für bessere GPT-Sichtbarkeit
Diese praxisnahe Handlungsempfehlungen können Unternehmen sofort umsetzen können – unabhängig davon, ob sie im B2B- oder B2C-Bereich aktiv sind.
1. Entitäten definieren: Jede Marke braucht heute eine kanonische „About“-Seite, ergänzt um ein Wikidata-Profil, semantische Markups und gleiche Namensverwendungen auf Plattformen wie LinkedIn oder Handelsregister.
2. Aktualität signalisieren: GPT-Modelle bevorzugen Inhalte mit klaren Update-Daten (z.B. dateModified). Ohne erkennbaren Pflegezustand gelten Inhalte als veraltet – und werden ausgefiltert.
3. Bing wird zum Gateway: Weil GPT seine Websuche auf Bing stützt, ist dessen Indexierung entscheidend. Wer dort nicht sauber auffindbar ist, existiert in GPT-Antworten nicht.
4. Content chunkbar machen: Inhalte sollten nicht mehr aus langen Fließtexten bestehen, sondern in modularen Blöcken mit H2-Strukturen, Listen und Zwischenfazits aufgebaut sein.
5. Externe Signale einbinden: Erwähnungen auf Trustpilot, Reddit oder in der Fachpresse stärken die semantische Autorität – und erhöhen die Chance, von Sprachmodellen zitiert zu werden.
Fazit
Die neue Sichtbarkeit entsteht durch das, was das Modell nicht selbst erzeugen kann – sie entsteht also nicht über Rankings, sondern über Relevanzräume. Wer auf Standard-Content setzt, wird paraphrasiert oder übergangen. Wer dagegen einzigartigen, strukturierten und technisch klaren Content liefert, wird empfohlen.
Zum Weiterlesen: Das Whitepaper steht zum kostenlosen Download bereit unter www.smawax.com/whitepaper-ki-sichtbarkeit

