Open Source Gastronomie


44 likes

Die Waag Society aus Holland hat vor kurzem das Konzept für das erste Open-Source-Restaurant der Welt veröffentlicht. Es soll auf verschiedenen Großevents, wie z.B. der nächsten Picnic-Konferenz getestet und vorgestellt werden.

Auf der Do-It-Yourself-Online-Plattform Instructable kann man in neun Schritten nachverfolgen, wie man dieses Restaurant „nachbaut“. Sollte sich die Idee durchsetzen, wird es für manche Franchise-Geber in Zukunft immer schwieriger, hohe Eintrittsgebühren zu rechtfertigen.

instructablesrestaurant.com

Agentic AI als Erfolgsgrundlage für Start-ups

KI befeuert den aktuellen Gründungsboom, doch für eine erfolgreiche Skalierung braucht es mehr. Warum Agentic AI auf Basis einer soliden Datenarchitektur zum entscheidenden Erfolgsfaktor für Start-ups wird.

Das Jahr startete für Start-ups mit einer Rekordmeldung: In Deutschland wurden im vergangenen Jahr fast ein Drittel mehr Gründungen verzeichnet. In absoluten Zahlen wurden 2025 insgesamt 3.568 neue Firmen geschaffen – ein neuer Höchststand, wie der Start-up-Verband im Januar verkündete. Dies ist auch der künstlichen Intelligenz (KI) zu verdanken, wie sich beim genauen Hinschauen herausstellt. 853 dieser neuen Unternehmen kommen aus dem Bereich Software. Doch nicht nur sie verwenden KI; bei einer Umfrage gab ein Drittel aller Gründer und Gründerinnen an, dass sie mit KI arbeiten. Dementsprechend sehen die Sprecher des Verbands in der Technologie auch die treibende Kraft hinter dem Start-up-Rekord.

Wirft man einen Blick über den Tellerrand hinaus, so lässt sich feststellen, dass die Start-up-Szene in Europa insgesamt floriert. Der „State of European Tech 2025“-Report im Auftrag von Atomico und anderen schätzt, dass im letzten Jahr Investitionen in Höhe von 44 Milliarden US-Dollar (umgerechnet ca. 38 Mrd. EUR) in diesen Sektor geflossen sind. Geldgeber erwarten inzwischen, dass Start-ups mit KI und Deep Tech arbeiten, so der Report. Demnach flossen auch 36 Prozent der europäischen Start-up-Investitionen in genau diese beiden Felder.

Das Gründungsumfeld könnte also kaum besser sein. Doch ein Rekord an Start-ups und steigende Investitionssummen bedeuten nicht zwangsläufig auch eine einfache Skalierung der Geschäftsmodelle. Viele – zu viele – Start-ups scheitern nach erfolgreichen ersten Jahren an der Weiterentwicklung ihres Geschäfts. Neben einer Reihe üblicher Herausforderungen stehen vor allem Bürokratie, Fragen zur Datenhoheit und ein Betrieb über Landesgrenzen und Wirtschaftszonen hinweg im Vordergrund. Start-ups müssen nachweisen, dass ihre Nutzung von KI auf soliden, regulierten Datenfundamenten basiert und den Compliance-Vorgaben entspricht.

Hier kommt Agentic AI ins Spiel. Die Einbettung von KI-Agenten in den Kern der Betriebsabläufe ist die Antwort auf viele dieser Herausforderungen und wird für das Wachstum im Jahr 2026 von entscheidender Bedeutung sein.

Solide Datenbasis vor KI-Einsatz

Start-ups, die dies erreichen wollen, sollten sich darauf konzentrieren, ihre KI-Nutzung auf einer soliden Datenbasis aufzubauen, deren Fundament eine einheitliche Datenarchitektur ist. Sie tun sich deutlich leichter damit, die dafür nötigen Architekturentscheidungen zu treffen, als etablierte Unternehmen mit entsprechender Legacy-IT. Gründer und Gründerinnen sollten daher von Beginn an darüber nachdenken, wie sie eine starke Datenarchitektur aufsetzen, Silos abbauen und KI als Herzstück ihrer Prozesse einbetten.

Diese Grundlage hilft bei der Einführung von KI-Agenten, damit deren Output auch die Erwartungen erfüllt: Geschäftsprozesse effizienter zu strukturieren und zu optimieren sowie die Entscheidungsfindung zu beschleunigen. Start-ups, die dies umsetzen, werden sich gegen ihre Konkurrenten durchsetzen und letztlich erfolgreich sein.

KI-Agenten als Innovationsbeschleuniger

Indem Start-ups KI-Agenten von Beginn an in den Kern ihrer Geschäftsabläufe integrieren, skalieren sie schneller als mit dem Einsatz von nur einem reinen Large Language Model (LLM). Der Grund dafür liegt in der Standardisierung der Daten, die für KI-Agenten notwendig ist. Auf dieser Grundlage können die Agenten ihre einzigartigen, autonomen Fähigkeiten ausspielen, da sie mit unternehmenseigenen Daten trainiert werden. Vor allem bei Start-ups können Potenziale schnell gehoben werden: Wenn Agenten für bestimmte Aufgaben entwickelt werden, können sie diese auch lösen – egal wie komplex und fachspezifisch sie sein mögen. Stimmt die Datenbasis, lassen sich auch mehrere Agenten miteinander verknüpfen, um sogar noch komplexere Herausforderungen zu bewältigen.

Ein Beispiel dafür ist die mögliche Kooperation zwischen einem Kundensupport-Agenten und einem Prognose-Agenten. Wenn ein Kunde einen Support-Fall auslöst, kann der andere Agent sogleich die Kosten berechnen, was die Kundenzufriedenheit durch eine schnellere Reaktion steigern kann. Für die Skalierung von Start-ups ist ein enges Zusammenspiel der Abteilungen wichtig, um die Geschäftsbeziehungen zu zufriedenen Kunden weiter ausbauen zu können. Der Einsatz von KI-Agenten kann, gepaart mit dem menschlichen Element, begrenzte personelle Ressourcen ausgleichen und eine bessere Serviceleistung ermöglichen, was für ein schnelles Wachstum unabdingbar ist.

Doch nicht nur der Kundenkontakt lässt sich automatisieren, sondern auch eine ganze Reihe von Routinevorgängen in der internen Verwaltung der Firmen selbst. Dies ermöglicht nicht nur dem Management, sondern auch den Investoren, schnell einen fundierten Überblick über Liquidität, Umsatz, Einnahmen und Gewinn zu erhalten. Die Erkenntnisse in Echtzeit führen zu schnellen und datenbasierten Entscheidungen, was für junge Unternehmen Gold wert ist und es ihnen ermöglicht, flexibel zu bleiben.

Die Datenbasis muss stimmen

Für Start-ups sind Probleme beim Datenzugriff ein kritisches Risiko für den Geschäftserfolg. Eine einheitliche, moderne Datenarchitektur ermöglicht die Demokratisierung des Datenzugriffs und löst Datensilos auf. Der Vorteil liegt auf der Hand: Schneller Datenzugriff schafft Transparenz gegenüber Kunden und Aufsichtsbehörden. Darüber hinaus erhöht dies auch das Vertrauen der Mitarbeitenden und schafft ein Gefühl des Zusammenhalts.

Governance ist auch bei der Verwendung von KI-Agenten von entscheidender Bedeutung. Der Druck zur Einhaltung von Vorschriften sollte daher als Vorteil betrachtet werden.

Der Dreiklang aus Datenherkunft, Versionierung und automatisierter Auswertung der Ergebnisse hilft jungen Unternehmen dabei, Governance auf einem soliden Fundament aufzubauen. Die Teams erhalten direkte Transparenz darüber, wie sich die KI-Agenten verhalten, auf welchen Daten sie basieren und wie sie ihre Ergebnisse im Laufe der Zeit verändern. Laufende Bewertungen tragen dazu bei, dass KI-Agenten präziser werden, um genau jene hochwertigen Ergebnisse zu liefern, die Start-ups für die Skalierung ihrer Geschäftsmodelle benötigen. Dies ist besonders wichtig, wenn proprietäre KI-Modelle entwickelt und von der Testphase in die Produktion überführt werden, wobei gesetzliche Vorschriften wie die DSGVO oder der EU AI Act zwingend einzuhalten sind.

Parloa, ein deutsches Start-up-Unternehmen mit einer Bewertung von drei Milliarden US-Dollar, ist ein hervorragendes Beispiel dafür, wie dieser Ansatz in der Praxis aussehen kann: Das Unternehmen hat KI-Agenten zum Kern seines Kundenservice gemacht und gleichzeitig eine einheitliche, kontrollierte Datenbasis aufgebaut, die vollständig mit der DSGVO und dem EU AI Act konform ist. Seine Plattform folgt den Prinzipien des „Privacy by Design“, sodass sensible Kundendaten ohne Kontrollverlust verwendet werden können. Durch die Verwaltung des gesamten Lebenszyklus von KI-Agenten macht Parloa Governance zu etwas Greifbarem und gibt den Teams Klarheit darüber, welche Daten verwendet wurden, wie sich die Agenten verhalten haben und wie sich die Ergebnisse im Laufe der Zeit entwickelt haben. Diese Kombination aus moderner Architektur und starker Governance ermöglicht es den Kunden von Parloa, Zugang zu hochwertigen Daten zu erhalten und die Transparenz für Regulierungsbehörden sowie Endnutzer zu erhöhen – und dennoch KI-gesteuerte Kundeninteraktionen in Umgebungen zu skalieren, in denen Fehler oder Missbrauch inakzeptabel sind.

Fazit

KI-Agenten bieten europäischen Start-ups eine einmalige Gelegenheit, schnell zu wachsen und gleichzeitig Investoren anzuziehen, die bekanntermaßen ihr Geld bevorzugt in Unternehmen investieren, die Wert auf Datenverwaltung, Genauigkeit, Qualität und die Schaffung von echtem Mehrwert durch Technologie legen. Es ist jedoch ein Fehler, sich ohne sorgfältige Überlegungen auf die Einführung von Agenten zu stürzen. Start-ups, die KI-Agenten einsetzen, ohne zuvor eine einheitliche Datenbasis aufzubauen und eine solide Verwaltung sowie Bewertung sicherzustellen, riskieren, mehr Komplexität als Mehrwert zu schaffen. Letztlich werden jene Gründer und Gründerinnen erfolgreich sein, die ihre Geschäftsmodelle branchen- und länderübergreifend skalieren können – hierbei spielt der Einsatz von KI-Agenten bereits jetzt eine entscheidende Rolle.

Der Autor Nico Gaviola ist VP Digital Natives & Emerging Enterprise bei Databricks EMEA.

Mission Defense: Wie Start-ups im rüstungstechnischen Markt Fuß fassen

Immer mehr Start-ups drängen mit agilen Innovationen in die hochregulierte Verteidigungs- und Luftfahrtindustrie. Daher gut zu wissen: Wie junge Unternehmen durch die richtige Systemarchitektur die strengen Auflagen meistern und vom Zulieferer zum echten Systempartner aufsteigen.

Die Luft- und Raumfahrt sowie die Verteidigungsindustrie zählen zu den am stärksten regulierten und technologisch anspruchsvollsten Märkten der Welt. Lange galt: Wer hier mitspielen will, braucht jahrzehntelange Erfahrung, Milliardenbudgets und stabile Regierungsbeziehungen. Doch genau dieses Bild verschiebt sich.

Neue Player treten auf den Plan: Start-ups entwickeln Trägersysteme, Drohnenplattformen, Kommunikationslösungen oder Sensorik, und tun das in einer Geschwindigkeit, die vielen etablierten Anbietern Kopfzerbrechen bereitet. Die zentrale Frage lautet deshalb: Wie können junge Unternehmen in einer hochregulierten Branche nicht nur überleben, sondern mitgestalten?

Agilität als Superkraft – aber Prototypen reichen nicht

Ob neue unbemannte Plattformen, Software-Defined Defense Systeme oder taktische Kommunikation – überall gilt: Was heute entwickelt wird, muss morgen schon einsatzbereit sein. Der Bedarf an schneller Innovation ist nicht theoretisch, sondern operativ. Start-ups sind in der Lage, auf diesen Druck zu reagieren, mit kurzen Entscheidungswegen, agilen Teams und digitaler DNA.

Allerdings reichen gute Ideen und schnelles Prototyping nicht aus. Wer Systeme für den operativen Einsatz liefern will, muss Anforderungen erfüllen, die weit über funktionierende Technik hinausgehen: Cybersicherheit, regulatorische Nachvollziehbarkeit, Zertifizierungsfähigkeit und Interoperabilität mit internationalen Partnern.

Das Fundament: Die Systemarchitektur entscheidet

Von Anfang an auf die richtigen technischen Grundlagen zu setzen, ist entscheidend. Das betrifft vor allem drei Bereiche: Skalierbarkeit, Nachvollziehbarkeit und Interoperabilität. Systeme müssen so gebaut sein, dass sie modular erweitert, in komplexe Systemlandschaften integriert und nach internationalen Standards auditiert werden können.

Ein durchgängiger digitaler Entwicklungs- und Betriebsfaden, ein sogenannter Digital Thread oder auch Intelligent Product Lifecycle, ermöglicht es, Produktdaten, Softwarestände und Konfigurationsänderungen über den gesamten Lebenszyklus hinweg zu verfolgen. Für die Zulassung softwaredefinierter, sicherheitskritischer Systeme ist das ebenso essenziell wie für die spätere Wartung, Upgrades oder die Einbindung in multinationale Operationen.

Security by Design: Sicherheit lässt sich nicht nachrüsten

Verteidigungsnahe Produkte unterliegen Exportkontrollen, Sicherheitsauflagen und branchenspezifischen Normen, darunter etwa ISO 15288 für Systems Engineering, ISO 27001 für Informationssicherheit oder die europäischen Anforderungen für Luftfahrt und Raumfahrt. Diese Vorgaben lassen sich nicht einfach „nachrüsten“. Sie müssen von Beginn an ein integraler Bestandteil der Systemarchitektur und Prozessführung sein.

Gerade in sicherheitskritischen Bereichen ist die Fähigkeit, regulatorische Anforderungen nachweislich zu erfüllen, ein entscheidender Wettbewerbsvorteil. Sie entscheidet darüber, ob ein Produkt zugelassen, in Serie gefertigt und in multinationale Programme integriert werden kann.

Interoperabilität als Schlüssel zum Teamplay

Ein weiterer kritischer Faktor ist die Fähigkeit zur Kooperation. In den meisten großen Programmen arbeiten unterschiedliche Unternehmen, oft aus verschiedenen Ländern, mit unterschiedlichen Systemen zusammen. Wer hier bestehen will, muss in der Lage sein, mit standardisierten Schnittstellen, interoperablen Plattformarchitekturen und harmonisierten Datenmodellen zu arbeiten. Interoperabilität ist dafür die technische Grundlage. Ohne sie lassen sich Systeme weder integrieren noch gemeinsam weiterentwickeln.

Vom Zulieferer zum echten Systempartner

Start-ups, die sich diesen Anforderungen stellen, können mehr sein als Zulieferer. Sie haben das Potenzial, Systempartner zu werden: mit eigener Wertschöpfung, eigenem IP und eigenem Einfluss auf die technologische Entwicklung. Der Weg dorthin ist anspruchsvoll, aber offen. Er erfordert keine hundertjährige Firmengeschichte, sondern eine klare Architekturstrategie, ein tiefes Verständnis für regulatorische Anforderungen und den Willen, komplexe Systeme systematisch zu entwickeln.

Der Verteidigungs- und Luftfahrtsektor steht an einem Wendepunkt. Wer heute die richtigen Grundlagen legt, kann morgen zu denjenigen gehören, die nicht nur mitlaufen, sondern die Spielregeln neu definieren.

Der Autor Jens Stephan, Director Aerospace & Defence bei PTC, bringt über 20 Jahre Erfahrung im Bereich komplexer Software-/SaaS-Lösungen und IT-Infrastruktur mit.

Automatisierung vor Hiring, sonst wird Komplexität skaliert

Wer Wachstum vor allem mit Hiring beantwortet, verzichtet damit oft unbewusst auf einen der wichtigsten Hebel moderner Organisationen: Klarheit durch Prozesse und Automatisierung. Tipps und To-Dos.

Wachstum wird in Start-ups oft sehr eindimensional gedacht: mehr Nachfrage gleich mehr Menschen. Sobald Anfragen steigen, Deals reinkommen oder neue Märkte locken, folgt fast automatisch der nächste Hiring-Plan. Dabei wird häufig die Ursache mit Wirkung verwechselt. Nicht fehlende Kapazität bremst junge Unternehmen, sondern fehlende Struktur. Prozesse entstehen improvisiert, Verantwortung wird situativ verteilt, operative Arbeit frisst Fokus. Und irgendwann fühlt sich Wachstum nicht mehr nach Fortschritt, sondern nach Dauerstress an.

Gerade in der Start-up-Branche wird Wachstum zudem stark über sichtbare Kennzahlen bewertet. In Gesprächen mit Investor*innen lautet eine der ersten Fragen häufig nicht Gewinn oder EBITA, sondern: Wie viele Mitarbeitende seid ihr und wie viel Umsatz macht ihr? Die Anzahl der Mitarbeitenden wird damit fast zu einem Statussymbol. Hiring wird nicht nur zur operativen, sondern auch zur psychologischen Größe und ein Zeichen von Fortschritt. Diese Logik verstärkt den Reflex, früh zu skalieren, auch wenn die strukturellen Voraussetzungen dafür noch fehlen. Wer Wachstum vor allem mit Hiring beantwortet, verzichtet damit oft unbewusst auf einen der wichtigsten Hebel moderner Organisationen: Klarheit durch Prozesse und Automatisierung.

Warum Hiring allein selten skaliert

Mehr Menschen im Team wirken wie eine schnelle Lösung. In der Praxis zeigt sich jedoch häufig ein ähnliches Muster: Neue Kolleg*innen übernehmen Aufgaben, die eigentlich nur deshalb existieren, weil Abläufe unklar oder manuell gewachsen sind. Statt nachhaltiger Entlastung entsteht zusätzliche Koordination.

Typische Symptome sind:

  • operative Aufgaben blockieren strategische Arbeit,
  • Wissen verteilt sich auf einzelne Köpfe,
  • Entscheidungen hängen an Personen statt an klaren Abläufen,
  • Abstimmungen nehmen zu, ohne dass die Wertschöpfung im gleichen Maß wächst.

Das Problem ist nicht Hiring an sich, sondern die Reihenfolge. In vielen Fällen wird Hiring eingesetzt, um kurzfristig Druck rauszunehmen, obwohl das eigentliche Nadelöhr fehlende Klarheit ist. Wer einstellt, bevor Abläufe stabil sind, schafft zwar mehr Kapazität, skaliert aber auch Komplexität.

Prozesse als Voraussetzung für wirksames Wachstum

Prozesse werden in Start-ups häufig mit Bürokratie verwechselt. Tatsächlich sind sie das Gegenteil: Sie reduzieren Reibung. Gute Prozesse verlagern Entscheidungen vom Einzelfall ins System. Sie beantworten zwei zentrale Fragen zuverlässig: Was passiert als Nächstes – und wer ist verantwortlich?

Gerade kleine Teams profitieren davon besonders. Prozesse schaffen keine Starrheit, sondern Handlungsspielraum. Sie machen Arbeit vorhersehbar, Übergaben sauber und Entscheidungen reproduzierbar. Erst auf dieser Grundlage kann ein wachsendes Team seine Stärke wirklich entfalten.

Automatisierung im KI-Zeitalter: neue Möglichkeiten, neue Verantwortung

Mit KI hat sich die Eintrittshürde für Automatisierung massiv gesenkt. Viele Aufgaben, die früher manuell oder individuell erledigt wurden, lassen sich heute zuverlässig unterstützen oder teilweise abnehmen, vorausgesetzt, der zugrunde liegende Ablauf ist klar definiert. Entscheidend ist dabei nicht die Tool-Auswahl, sondern die Frage, was automatisiert wird. Automatisierung verstärkt bestehende Strukturen, gute wie schlechte. Wer unklare Abläufe automatisiert, skaliert keine Effizienz, sondern Chaos. Gleichzeitig gibt es zentrale Bereiche, die sich bewusst nicht oder nur sehr begrenzt automatisieren lassen und auch nicht sollten. Recruiting ist einer davon. Der Aufbau eines funktionierenden Teams lebt von persönlicher Einschätzung, Teamdynamik und kulturellem Fit. Ähnliches gilt für Sales: Vertrauensaufbau, Verhandlung und das persönliche Gespräch bleiben essenziell. Automatisierung ist hier unterstützend, aber kein Ersatz. Besonders geeignet sind Tätigkeiten, die häufig auftreten, wenig kreativen Spielraum haben und auf wiederkehrenden Informationen basieren.

Bereiche, die sich heute besonders gut automatisieren lassen

Lead- und Anfragequalifizierung
Unstrukturierte Anfragen lassen sich mithilfe von KI zusammenfassen, bewerten und priorisieren. Statt jede Anfrage manuell zu prüfen, entstehen klare Kriterien, die relevante von irrelevanten Leads trennen und Follow-ups vorbereiten.

Angebots- und Abrechnungsprozesse
Angebote, Verträge und Rechnungen folgen in vielen Startups ähnlichen Mustern. Automatisierte Vorlagen, angebundene Datenquellen und definierte Freigaben sparen Zeit, reduzieren Fehler und schaffen Transparenz.

Onboarding von Kund:innen und Mitarbeitenden
Onboarding ist kein Einzelfall, sondern ein wiederkehrender Prozess. Checklisten, automatische Aufgaben und zentrale Informationspunkte sorgen für Verlässlichkeit. KI kann helfen, Informationen zu strukturieren und kontextbezogen bereitzustellen.

Support und interne Anfragen

Ein Großteil von Fragen wiederholt sich. Wissensbasen in Kombination mit KI-gestützter Suche und Antwortvorschlägen entlasten Teams und machen sichtbar, wo Standards fehlen.

Projektmanagement und Übergaben
Klare Projekt-Templates, automatisierte Status-Updates und definierte Trigger reduzieren Abstimmungsaufwand. KI kann dabei unterstützen, Risiken früh zu erkennen oder nächste Schritte vorzuschlagen.

Was Start-ups daraus lernen können

Automatisierung ersetzt keine Entscheidungen, sie macht sie skalierbar. Voraussetzung dafür ist Klarheit über Abläufe, Verantwortlichkeiten und Prioritäten. Wer versucht, Chaos zu automatisieren, verstärkt es lediglich.

Hilfreiche Leitfragen sind:

  • Welche Aufgaben wiederholen sich regelmäßig?
  • Wo entstehen manuelle Engpässe?
  • Welche Tätigkeiten binden qualifizierte Menschen ohne echten Mehrwert?

Die Antworten darauf liefern meist schnell die größten Hebel.

Der KI-Wendepunkt: Systeme und Personal

Nachhaltiges Wachstum entsteht dort, wo Start-ups Systeme aufbauen und diese bewusst mit ihrem Team verzahnen. Nicht, weil Systeme Menschen ersetzen, sondern weil sie Menschen von struktureller Überforderung entlasten. Automatisierung schafft dabei nicht nur Effizienz, sondern Entscheidungsqualität: Wenn Daten sauber fließen, Übergaben klar sind und Standards greifen, werden Prioritäten weniger Bauchgefühl und stärker reproduzierbar.

Der gezielte Einsatz von KI-Tools verschiebt diesen Wendepunkt zusätzlich. Sie können Routinearbeiten abfangen, Informationen aus unstrukturierten Inputs verdichten und Entscheidungen vorbereiten – etwa durch Lead-Vorqualifizierung, Support-Clustering oder zusammengefasste Status-Updates. KI wirkt dabei nicht als Ersatz für Klarheit, sondern als Verstärker funktionierender Prozesse.

Hiring bleibt auch weiterhin essentiell. Seine Wirkung entfaltet es jedoch erst dann vollständig, wenn Prozesse klar sind und Automatisierung sowie KI gezielt unterstützen. So entsteht Wachstum, das nicht nur schneller, sondern auch gesünder ist.

Der Autor Markus Hetzenegger ist Gründer & CEO von NYBA Media. 2018 gegründet, zählt NYBA heute zu den führenden Marketing-Unternehmen im Live-Entertainment.

Von der Kochbox zum Hundenapf: Ex-HelloFresh-Duo startet Tasty Petfood

Wie Lisa Vannini und Nadja Chylla mit ihrem Start-up Tasty Petfood die etablierten Premium-Tierfuttermarken herausfordern.

Das Berliner Start-up Tasty Petfood ist offiziell in den Markt eingetreten. Das Unternehmen, gegründet von den ehemaligen HelloFresh-Kolleginnen Lisa Vannini und Nadja Chylla, positioniert sich im Premium-Segment für Hundefutter und setzt dabei auf ein digitales Vertriebsmodell. Der offizielle Marktstart in Deutschland und der Schweiz erfolgte am 6. Februar 2026.

Transfer von Food-Logistik auf den Heimtiermarkt

Die Gründerinnen arbeiteten zuvor über fünf Jahre gemeinsam beim Kochboxen-Versender HelloFresh. Das dort in den Bereichen Skalierung und Operations gewonnene Know-how wollen Lisa und Nadja nun auf den Heimtiermarkt übertragen.

„Wir haben gemerkt, dass viele Hundehalter entweder bei klassischem Trockenfutter bleiben oder sehr viel Zeit in aufwendige BARF-Konzepte investieren müssen. Genau diese Lücke zwischen Bequemlichkeit und echter Qualität wollten wir schließen“, berichtet Lisa.

Das Kernprodukt von Tasty Petfood unterscheidet sich logistisch von herkömmlichem Nassfutter oder Barf-Angeboten: Das Unternehmen vertreibt dampfgegartes Frischfutter im Glas. Ein wesentlicher Unterschied zu vielen Wettbewerbern im Frische-Segment ist die Haltbarmachung: Die Produkte benötigen keine geschlossene Kühlkette und können ungekühlt gelagert werden. Dies reduziert die Komplexität in der Lagerhaltung und im Versand erheblich – ein Faktor, der im D2C-Bereich direkten Einfluss auf die Unit Economics hat. „Unser Anspruch war Qualität wie selbstgekocht – aber ohne Kühlschrank und ohne komplizierte Logistik. Dass wir Frische, Haltbarkeit und Alltagstauglichkeit verbinden können, ist für viele Kundinnen und Kunden ein echter Gamechanger“, sagt Nadja.

Wachstumskurs in einem Milliardenmarkt

Mit ihrem Geschäftsmodell stoßen die Gründerinnen in ein wirtschaftlich hochattraktives Umfeld vor. Nach aktuellen Daten des Industrieverbands Heimtierbedarf (IVH) und des Zentralverbands Zoologischer Fachbetriebe (ZZF) liegt der Gesamtumsatz der Branche bei rund sieben Milliarden Euro, wobei allein das Segment für Fertignahrung gut 4,4 Milliarden Euro ausmacht. Trotz allgemeiner wirtschaftlicher Herausforderungen bleibt die Zahlungsbereitschaft der Halter hoch.

Während der Absatz im Standard-Segment teils stagniert, wächst der Bereich für Premium-Nahrung kontinuierlich. Tasty Petfood ordnet sich im oberen Preissegment ein und zielt auf eine kaufkräftige Zielgruppe, die den Trend zur „Humanisierung“ des Haustiers vorantreibt.

„Hunde werden heute immer stärker als Familienmitglieder gesehen. Entsprechend steigen die Ansprüche an Transparenz, Zutatenqualität und Nährstoffversorgung – ähnlich wie beim eigenen Essen“, so Lisa.

Die Nische zwischen Konzern und Tiefkühltruhe

In diesem dynamischen Umfeld muss sich Tasty Petfood gegen zwei Lager behaupten. Zum einen konkurriert das Start-up mit etablierten Premium-Marken im stationären Handel wie Terra Canis, das als Pionier für „Human Grade“-Nahrung gilt und seit 2017 mehrheitlich zum Nestlé-Konzern gehört. Zum anderen wächst der Druck durch rein digitale Player wie Butternut Box oder HelloBello, die ebenfalls auf personalisiertes Frischfutter setzen, dieses jedoch tiefgekühlt versenden.

Genau hier besetzt Tasty Petfood eine strategische Lücke: Start-ups fungieren in diesem Sektor aktuell als wesentliche Innovationstreiber, und die Berliner Gründerinnen nutzen dies für eine „Ambient Fresh“-Strategie. Mit ungekühlt haltbarem Frischfutter verbindet das Unternehmen den steigenden Wunsch nach Convenience mit der Qualität von Frische-Menüs – ein entscheidender Logistik-Vorteil gegenüber der aufwendigen Tiefkühl-Konkurrenz. „Wir sitzen genau zwischen Tiefkühltruhe und Trockenfutter. Unser Futter ist reisefähig, blockiert keinen Gefrierschrank und passt damit perfekt in den Alltag moderner Hundehalter“, sagt Nadja.

Datengetriebenes Abo-Modell

Der Bestellvorgang für den/die Endkund*in ist vollständig datengestützt aufgebaut. Zu Beginn erfassen Interessent*innen über ein Online-Quiz relevante Parameter wie Rasse, Alter und Gewicht des Tieres. Auf Grundlage dieser Daten berechnet das Unternehmen einen individuellen Futterplan, der exakt auf den Hund zugeschnitten ist. Um die Akzeptanz zu testen, erhalten Neukund*innen zunächst eine Probebox mit verschiedenen Sorten. Bei erfolgreicher Annahme geht das Modell automatisch in ein flexibles Abonnement über, bei dem sowohl die Rationsgröße als auch der Lieferrhythmus dynamisch an den tatsächlichen Bedarf des Hundes angepasst werden. „Viele Halter sind unsicher, ob sie ihren Hund wirklich bedarfsgerecht füttern. Unser Algorithmus nimmt ihnen diese Entscheidung ab und sorgt dafür, dass Menge und Nährstoffe langfristig passen“, so Lisa.

Positionierung im Premium-Segment

Das Produktportfolio umfasst zum Start sechs Sorten auf Monoprotein-Basis. Durch den hohen Fleischanteil und den Verzicht auf Füllstoffe oder Konservierungsmittel zielt das Start-up auf die „Human Grade“-Nische ab. Das Produkt ist dabei so designt, dass es optisch und qualitativ an selbstgekochtes Futter erinnert, um die Hürde für qualitätsbewusste Käufer*innen zu senken. Das Kalkül: Die Zielgruppe sucht die Qualität einer BARF-Ernährung, benötigt aber die Convenience eines Fertigprodukts. „Unser Ziel ist es, Pet Nutrition durch sichtbare Qualität und Transparenz neu zu definieren“, so Nadja über den Anspruch, moderne Halterbedürfnisse mit dem Produkt-Design zu adressieren.

Europa kann KI!

Was wir von den besten EU-AI-Companies lernen können, erläutert KI-Experte Fabian Westerheide.

Europa muss sich bei KI nicht kleinreden. Wir sehen gerade sehr deutlich: Aus Europa heraus entstehen Unternehmen, die Kategorien besetzen – und dann auch das große Kapital anziehen. Beispiele gibt es genug: Mistral AI, DeepL, Black Forest Labs, Parloa, Helsing, Lovable oder n8n.

Ich schreibe das aus drei Blickwinkeln: als Investor (AI.FUND), als Konferenz-Initiator (Rise of AI Conference) und als Autor von Die KI-Nation. Was du hier bekommst, ist kein „Europa-hat-ein-Problem“-Essay – sondern eine Analyse plus ein Execution-Set an Empfehlungen, das du direkt auf dein Start-up übertragen kannst.

Die Realität: Seed geht oft – Scale ist das Spiel

Am Anfang brauchst du selten „zu viel“ Geld. MVP, erste Kunden, Iteration: Das klappt in Deutschland in vielen Fällen mit Seed. Die echte Trennlinie kommt später – wenn du aus einem starken Start-up einen Kategorie-Gewinner bauen willst.

Denn KI ist zunehmend Winner-takes-most. Und das gilt auch fürs Kapital: In vielen Fällen ist die Growth-Finanzierung in den USA grob 25-mal größer – bei den aktuellen Front-Runnern (Modelle, Infrastruktur, Distribution) wirkt es teilweise wie 100-mal, weil Kapital sich auf die vermuteten Sieger stapelt. (Nicht „fair“, aber Marktmechanik.)

Die gute Nachricht: Genau die EU-Vorbilder oben zeigen, dass du das nicht wegdiskutieren musst – du musst es exekutieren.

Was die EU-Winner gemeinsam haben: 6 Execution-Prinzipien

1. Starkes Gründerteam – aber vor allem: vollständig

Alle genannten Vorbilder hatten (oder bauten sehr schnell) ein Team, das drei Dinge gleichzeitig kann:

  • Tech & Produkt (nicht nur „Model-IQ“, sondern Produktgeschmack)
  • Go-to-Market (Vertrieb, Buyer-Verständnis, Pricing)
  • Tempo (entscheiden, shippen, lernen)

Wenn eine Säule fehlt, zahlst du später mit Zeit. Und Zeit ist in KI eine Währung, die dir niemand schenkt.

Founder-Move: Benenne eine Person, die Umsatz genauso hart verantwortet wie Modellqualität. Wenn das „später“ ist, ist das sehr wahrscheinlich dein Bottleneck.

2. Global denken – aber spitz: KI-Nische statt Bauchladen

Die EU-Winner sind nicht „KI für alles“. Sie besetzen klare Nischen:
Language-AI (DeepL), Customer-Experience-Agents (Parloa), GenAI-Modelle (Black Forest Labs), Defence-Tech (Helsing), Builder/Vibe-Coding (Lovable), Orchestration & Automation (n8n), Foundation-Model-Ambition (Mistral).

Founder-Move: Formuliere deinen Claim so, dass er in einem Satz sagt, welche Kategorie du dominierst. Wenn du drei Absätze brauchst, bist du noch zu breit.

3. Umsatz ist keine Nebenwirkung – Umsatz ist Souveränität

Der schnellste Weg zu Growth-Capital ist nicht „noch ein Pilot“, sondern Revenue, der deine Kategorie glaubwürdig macht.
Parloa kommuniziert z.B. ARR > 50 Mio. USD und wächst international – genau die Art Signal, die große Runden freischaltet.

Founder-Move (gegen Pilotitis): Kein PoC ohne schriftlichen Pfad in einen Vertrag (Budget, KPI, Entscheidungstermin). Sonst finanzierst du mit deiner Runway den Lernprozess des Kunden.

4. Internationales Kapital früh anbahnen – bevor du es brauchst

Das Muster ist klar: Erst Kategorie-Story + Traktion, dann große Checks.
Mistral (Series C 1,7 Mrd. €) oder Lovable (330 Mio. USD bei 6,6 Mrd. Bewertung) sind kein „Glück“ – das ist Momentum + Positionierung + Timing.

Founder-Move (90-Tage-Plan):

  • Baue eine Capital Map deiner Nische (wer zahlt Growth-Checks?)
  • Definiere die drei Metriken, die diese Investor:innen sehen wollen
  • Organisiere zehn Intros jetzt, nicht erst bei sechs Monaten Runway

5. Compute ist keine IT-Zeile – es ist ein Wachstumshebel

In KI ist Compute Teil deiner Wettbewerbsfähigkeit. Geschwindigkeit beim Trainieren, Testen und Deployen entscheidet, wie schnell du am Markt lernst.

Founder-Move: Plane Compute-Runway wie Cash-Runway. Verhandle früh Kontingente, bevor dein Verbrauch explodiert – sonst wird Wachstum plötzlich zur Margen-Frage.

6. Trust & Compliance als Verkaufsargument – nicht als Ausrede

Gerade in DACH gilt: Wer secure, audit-fähig, enterprise-ready wirklich liefern kann, gewinnt Deals.
DeepL betont genau diesen Business-Wert: verlässliche, sichere Lösungen statt Hype.

Founder-Move: Baue Trust-Artefakte früh – Dokumentation, Governance, Datenflüsse, Rollen, Audit-Spuren. Das beschleunigt Enterprise-Vertrieb, statt ihn zu bremsen.

Kurz-Checkliste: Wenn du in Europa KI gewinnen willst

  • Kategorie in einem Satz (spitze Nische, globaler Anspruch)
  • Klarer Revenue-Pfad (weniger Piloten, mehr Verträge)
  • Capital Map (international früh andocken)
  • Compute-Runway (wie Cash planen)
  • Trust by Design (verkaufsfähig machen)
  • Tempo als Kultur (shippen, messen, nachschärfen)

Europa kann KI. Die Frage ist nicht, ob hier Talent existiert – das ist bewiesen.
Die Frage ist, ob du Execution so aufsetzt, dass aus Talent Marktführerschaft wird.

Der Autor Fabian Westerheide gestaltet als KI-Vordenker, Investor, Ökosystem-Pionier und Keynote Speaker seit über einem Jahrzehnt die Debatte um KI, Macht und digitale Zukunft mit.

Wie viel verdienen Twitch Streamer wirklich? Zahlen und Verdienstmöglichkeiten im Blick

Wer als passionierter Spieler noch nicht an eine Gaming Karriere gedacht hat, sollte dies jetzt nachholen: Schließlich ergeben sich aus dieser von Esport-Turnieren bis hin zum Streaming einige Verdienstmöglichkeiten. Creatoren verdienen mit der Echtzeit-Übertragung ihres Spielerlebnisses Geld. Was sich einfach anhört, kann für so manchen Spieler auch zum komplexen Unterfangen werden. Wie hoch der Streamer Verdienst in diesen Fällen ausfällt und welche Einnahmemöglichkeiten es für Twitch Streamer noch gibt, erfahren Sie hier.

Die Top 10 Twitch Streamer im Jahr 2025

„Es gewinnt nicht der beste Spieler, sondern der beste Entertainer.“

Nadine-Sophie Huxdorf


Auf Plattformen wie Twitch gilt: Die Community beeinflusst stark, wie viel Geld Streamer verdienen können. Wer eine starke Zuschauergemeinde aufbauen kann, freut sich in der Regel über ein höheres Einkommen – dabei spielt vor allem die Interaktion der Viewer eine zentrale Rolle.

Aktuell weisen diese top 10 Twitch Channels die höchsten Zuschauerzahlen vor:

Streamer

Durchschnittliche Zuschauerzahl

Follower

IBAI

126.449

19,8 Millionen

CASEOH_

52.024

7,9 Millionen

AMINEMATUE

46.844

3,3 Millionen

ZACKRAWRR

36.903

2,2 Millionen

ELIASN97

29.320

2,2 Millionen

CEADREL

71.045

1,5 Millionen

PESTILY

31.839

1,5 Millionen

LVNDMARK

42.837

1,4 Millionen

kato_junichi0817

34.996

1,1 Millionen

TheBurntPeanut

30.438

993.817


Geld verdienen mit Streaming: Diese Faktoren wirken sich auf Twitch Einnahmen aus

Die Twitch-Einnahmen der verschiedenen Streamer setzen sich aus unterschiedlichen Verdienstquellen zusammen. So können die Kontoinhaber Werbung in ihren Live-Übertragungen schalten, die ihnen je nach Zuschauerzahl und Länge der Werbepause einen kleinen bis mittleren Betrag einbringen. Hierbei handelt es sich jedoch um ein eher statisches Nebeneinkommen, das die meisten Streamer auch als nebensächlich empfinden. Den größeren Teil des Twitch Einkommens machen Abonnements und Spenden der Zuschauer aus, aber auch Sponsoring und Markenpartnerschaften.

Übrigens: Twitch Auszahlungen erfolgen automatisch via PayPal oder Banküberweisung, sofern ein gewisser Mindestbetrag erreicht wurde. In diesem Zusammenhang bieten mobile casinos, ähnlich wie Streaming-Plattformen, eine bequeme Möglichkeit für Spieler, jederzeit und überall zu spielen, ohne auf traditionelle Zahlungsmethoden angewiesen zu sein. Diese Art von Plattformen hat sich zu einer beliebten Option entwickelt, da sie den Nutzern schnelle Auszahlungen und einfache Handhabung bieten.

Twitch Daten Leak 2021: Das verdienen Top-Streamer

Ende 2021 wurde die bekannte Plattform Twitch gehackt. Bei einem Datenleck kam heraus, dass die 2014 von Amazon gekaufte Plattform kaum Sicherheitsvorkehrungen geschaffen hatte – weshalb große Teile des Programmiercodes sowie Login-Daten und Zahlen zum Streamer Verdienst veröffentlicht werden konnten. Zu sehen waren vor allem die Gesamteinnahmen der Top Spieler aus den Twitch Statistiken des Zeitraumes August 2018 bis Oktober 2021 in US-Dollar:

  1. CriticalRole: 9,6 Millionen
  2. xQc: 8,5 Millionen
  3. summit1g: 5,8 Millionen
  4. Tfue: 5,3 Millionen
  5. Nickmercs: 5,1 Millionen

Zum Vergleich: Der deutsche Twitch Streamer Marcel Eris (alias MontanaBlack88) hat über Twitch 2,4 Millionen US-Dollar eingenommen. Der Streamer MontanaBlack88 gehört zu den bestbezahlten deutschen Spielern auf Twitch.

Damit werden die großen Unterschiede zwischen den Verdiensten der Streamer aus Deutschland und den USA deutlich. Rund vier Millionen Deutsche verfolgen Twitch-Übertragungen – und das sogar täglich. In den USA liegt die tägliche Zuschauerzahl bei stolzen 35 Millionen Nutzern, sodass amerikanische Streamer auch einen deutlich größeren Markt bedienen und die Einkommensunterschiede nicht verwunderlich sind. MontanaBlack88 ist allerdings auch auf anderen Plattformen wie YouTube zu finden, sodass sein Gesamtverdienst womöglich deutlich höher liegt.

Gut zu wissen: Twitch Partner (von Twitch ausgewählte Streamer mit qualitativem Content) können sich über höhere Einnahmen freuen – etwa einen höheren Anteil aus dem Abonnenten-Verdienst.

Im Detail: So setzt sich der Verdienst zusammen

Wie eingangs erwähnt, verdienen Twitch Streamer vor allem durch Abonnenten einen großen Teil ihres Einkommens. Das Abonnement kostet Subscribern in der ersten Stufe 4,99 Euro – wovon Streamer in der Regel 50% (2,50 Euro) behalten dürfen. Dafür erhalten Abonnenten bestimmte Vorteile wie etwa die Möglichkeit, per Chat mit dem Streamer interagieren zu können. Wer also 1.000 Abonnenten hat, kann deshalb schon mit Einnahmen von 2.500 Euro monatlich rechnen.

Einen Großteil ihrer Einnahmen generieren Gaming-Streamer aber auch mit Hilfe von Subscriber-Spenden. Diese werden in Twitch Bits genannt und von der Plattform ausgezahlt. Die Spenden rufen bei einigen Streamern emotionale Reaktionen hervor, was wiederum mehr Menschen zum Spenden anregt.

Eine weitere Möglichkeit stellt Affiliate-Marketing dar: Streamer bewerben in dem Fall für ihre Zuschauer interessante Produkte in ihren Videos. Kaufen Zuschauer die Produkte, profitieren Streamer von einer Provision – die nicht selten 30% des Kaufbetrages ausmacht.

Sponsoren und Markendeals als größte Einnahmequelle für Streamer

An Streamer mit besonders hohen Zuschauer- und Followerzahlen treten oft auch bekannte Marken heran. Sie bezahlen die Gamer dafür, ihre Produkte im Live-Stream anzupreisen – beispielsweise Gaming-Peripherie oder Energy-Drinks. Soll dies über einen längeren Zeitraum geschehen, werden solche Marken oft auch zum Sponsor des Spielers, um ihre eigene Reichweite zu erhöhen.

Kosten und Abzüge: Dem steht der Streamer Gehalt in Deutschland gegenüber

Die genannten Streamer Gehälter stellen Brutto-Summen dar – also den Verdienst vor Abzug der deutschen Einkommens-, Umsatz- und Gewerbesteuer, sowie Sozialversicherungen. Wer all diese Beträge zusammenzählt, muss oft bis zu 45% seines Brutto-Einkommens an den Fiskus abführen. Doch damit nicht genug: Die meisten Twitch-Streamer müssen auch Chat-Moderatoren bezahlen, die für eine angenehme Atmosphäre unter den Kommentierenden sorgen und Community-Richtlinien durchsetzen.

Darüber hinaus wollen sich Zuschauer nur Streams ansehen, die eine hohe Qualität aufweisen. Um leistungsstark spielen und den Verlauf optimal übertragen zu können, brauchen Streamer bestimmtes Gaming-Equipment, das selbst zwischen 2.000 und 10.000 Euro kosten kann. Auch eine stabile Internetverbindung und die damit verbundenen Kosten sind zu bedenken.

Alternative Plattformen zur Diversifizierung

Um noch mehr Einkommen zu generieren, können passionierte Spieler ihre Streams allerdings zusätzlich auf anderen Plattformen veröffentlichen und monetarisieren – beispielsweise durch Werbung und Affiliate-Marketing. Zur Diversifizierung kommen Plattformen wie YouTube und Kick in Frage, die teilweise sogar bessere Konditionen bieten. Denn: Bei Kick werden Streamer zu 95% an den Einnahmen durch Abonnements beteiligt, was im Gegensatz zu Twitch deutlich attraktiver erscheint.

to teach: Vom KI-Hype zur Schulinfrastruktur

Wie das 2022 gegründete EdTech to teach die Lücke zwischen Chatbot und Klassenzimmer schließt.

Vor drei Jahren begann mit dem öffentlichen Zugang zu generativer künstlicher Intelligenz ein weltweiter Hype, der auch vor den Schultoren nicht haltmachte. Doch im Bildungsmarkt entscheidet sich derzeit, ob die Technologie tatsächlich Produktivität schafft oder in einer digitalen Sackgasse endet. Das Hamburger EdTech to teach liefert hierzu eine Blaupause: Was 2022 als Experiment begann, hat sich innerhalb von drei Jahren zu einer Arbeitsplattform für hunderttausende Lehrkräfte entwickelt.

Das Problem: US-Tools verstehen deutsche Schulen nicht

Als generative KI erstmals verfügbar wurde, wirkte ihr Einsatz im Bildungsbereich naheliegend. Doch der Blick auf die internationale Konkurrenz zeigt das Dilemma: Während US-Platzhirsche wie MagicSchool AI oder Diffit den Markt mit hunderten Mikro-Tools fluten und technisch beeindrucken, fehlt ihnen der kulturelle Fit. „Einfach nur Texte aus ChatGPT zu kopieren, löst kein einziges Problem von Lehrkräften“, erklärt Felix Weiß, Co-Founder und CEO von to teach.

Die Diskrepanz zwischen dem Versprechen der KI und dem tatsächlichen Schulalltag war groß. US-Lösungen scheitern oft an spezifischen deutschen Lehrplänen oder liefern reine Multiple-Choice-Formate, die hierzulande kaum Anwendung finden. Lehrkräfte benötigten keine unstrukturierten Textwüsten, sondern didaktisch saubere, lehrplankonforme und sofort einsetzbare Materialien. Genau hier setzte das 2022 von Felix Weiß und Marius Lindenmeier gegründete Unternehmen an.

Der Pivot: Datenschutz als Burggraben

Der entscheidende Wendepunkt kam 2023. Das Start-up vollzog einen Strategiewechsel (Pivot) weg von einer SaaS-Lösung für Verlage hin zu einer direkten Plattform für Lehrkräfte. Anstatt Nutzer*innen mit freien Eingabefeldern (Prompts) allein zu lassen, entwickelte das Team feste Arbeitsblattvorlagen. Dies wurde zum entscheidenden Wettbewerbsvorteil gegenüber internationalen Anbietern: Während diese oft an der strikten DSGVO scheitern, bietet to teach durch Serverstandorte in der EU und Rechtssicherheit eine Lösung, die Schulträger akzeptieren.

Dabei mussten technische Kinderkrankheiten überwunden werden: Frühe KI-Modelle „halluzinierten“ Fakten. To teach reagierte mit der systematischen Integration von Quellen und profitierte zugleich von der rasanten Evolution der Sprachmodelle.

Skalierung im Ökosystem gegen nationale Konkurrenz

Der Markt nahm die Lösung schnell an: Im Januar 2023 meldete sich der erste Nutzer an, bis Ende des Jahres waren es laut Unternehmen bereits knapp 16.000 Lehrkräfte. Das Jahr 2024 markierte dann den Übergang vom Start-up zur Plattform: Durch die Übernahme von fobizz (101skills GmbH) wurde to teach Teil eines größeren Bildungsökosystems. Die Gründer blieben als Geschäftsführer an Bord.

Dieser Schritt war strategisch überlebenswichtig in einem sich konsolidierenden Markt. Einerseits gegenüber agilen Herausforderern, da Konkurrenten wie schulKI, Teachino, KIULY oder Kuraplan zum Teil aggressiv um Landeslizenzen kämpfen bzw. auf dem Markt für KI-gestützte Unterrichtsplanung und Materialerstellung durchgestartet sind.

Andererseits war der Schritte in Hinblick auf etablierte Verlage notwendig. Denn Häuser wie Cornelsen ziehen inzwischen mit eigenen KI-Assistenten nach, sperren ihre Inhalte jedoch oft in geschlossene Systeme, d.h. binden sie oft an die eigenen Verlagswerke.

Durch die erfolgreiche Integration in fobizz ist to teach kein isoliertes Insel-Tool mehr, sondern profitiert von bestehenden Landesrahmenverträgen und einem riesigen Vertriebsnetz. Die Nutzer*innenzahlen explodierten förmlich auf über 140.000 Lehrkräfte bis Ende 2024, so die Angaben von to teach.

Status Quo 2025: KI als neue Infrastruktur

Heute, im dritten Jahr nach der Gründung, hat sich der Fokus erneut verschoben. To teach versteht sich inzwischen als Arbeitsinfrastruktur. Die Zahlen unterstreichen diesen Anspruch: Nach Angaben von to teach nutzen über 300.000 Lehrkräfte die Plattform, und mehr als 4.000 Schulen sind angebunden. Das bedeutet: Millionen von Inhalten wurden so bereits KI-gestützt vorbereitet.

Das Unternehmen treibt nun den systematischen Schulvertrieb voran. Damit beweisen EdTechs wie to teach, dass sich Qualität und Personalisierung im sonst oft als innovationsresistent geltenden Bildungsmarkt skalieren lassen.

Für CEO Felix Weiß ist die Diskussion über das „Ob“ längst beendet: „Die Frage ist nicht mehr, ob KI im Klassenzimmer ankommt, sondern, wie und auf welche Weise sie dort wirklich hilft.“

Social Engineering auf dem Vormarsch

Wie Deepfakes die Sicherheit von Führungskräften stärker in den Fokus rücken.

Fotorealistische KI liefert innerhalb von kürzester Zeit realistische Visuals. Was in vielerlei Hinsicht den Arbeitsalltag erleichtert, bedeutet für Social Engineering jedoch eine neue Eskalationsstufe, wie nicht zuletzt die hitzige Debatte um massenhaft sexualisierte Deepfakes von realen Personen durch Grok eindrücklich vor Augen führte.

Auch Personen in leitenden Funktionen in Unternehmen sind vor solchen Manipulationen nicht gefeit. Zunehmend zielen Angriffe auf Menschen mit Zugriffsrechten und Entscheidungsbefugnissen, deren Freigaben unmittelbare Wirkung auf die Sicherheit einer ganzen Organisation haben. „Fotorealistische KI und hybride Social-Engineering-Kampagnen erhöhen den Druck auf Schlüsselpersonen. Daher brauchen Unternehmen belastbare Verifikationsprozesse, Krisenroutinen und integrierte Schutzkonzepte“, erklärt Markus Weidenauer, geschäftsführender Gesellschafter der SecCon Group GmbH.

Deepfakes zielen auf privates Umfeld

Nach Angaben des Bundesamts für Sicherheit in der Informationstechnik (BSI) lassen sich Deepfakes als Verfahren beschreiben, die gezielt Spear-Phishing und andere Social-Engineering-Angriffe nutzen, um Vertrauen aufzubauen und Autorität zu simulieren. Generative KI fungiert dabei als zentraler technischer Enabler, da sie die realistische Erzeugung manipulativer Audio-, Video- und Textinhalte erstmals in industriellem Maßstab ermöglicht. „Die eigentliche Bedrohung ergibt sich dabei nicht aus einzelnen KI-generierten Inhalten, sondern aus deren koordinierter Nutzung“, weiß der Sicherheitsexperte.

Infolge der steigenden Qualität und der zunehmenden Verfügbarkeit generativer KI wird es darüber hinaus zunehmend schwieriger, Fakt von Fiktion zu unterscheiden „Zwar können isolierte Inhalte für sich betrachtet zweifelhaft sein, doch das konsistente Zusammenspiel mehrerer manipulierter Medieninhalte erhöht die wahrgenommene Glaubwürdigkeit erheblich“, ergänzt der Profi und weist darauf hin, dass sich diese Entwicklung in der Praxis zuspitzt. „Social Engineering, Deepfakes und digitale Erpressung werden immer häufiger mit Observationen des privaten Umfelds sowie Angriffen auf die Heim-IT kombiniert. Durch diese Eskalation der Angriffsmittel bauen Täter gezielt psychologischen Druck auf, der die Widerstandsfähigkeit der Betroffenen weiter reduziert.“

Risiken kennen, Wege einüben

Kompromittierte Schlüsselpersonen mit Steuerungs- und Entscheidungsfähigkeiten bergen hohes Schadenspotenzial für Betriebe. Das reicht von unmittelbaren finanziellen Verlusten bis zu dauerhaften Reputationsschäden. Dieses Risiko wird insbesondere dort verstärkt, wo organisatorische und prozessuale Absicherungen fehlen. „Resilienz bedeutet aber, auch in potenziellen Krisensituationen sichere Entscheidungen treffen zu können“, betont Markus Weidenauer. Trotzdem mangelt es vielen Unternehmen sowohl an speziellen Trainings zum Thema Social Engineering als auch an Meldewegen, klaren Freigabeprozessen, die auch unter Druck funktionieren, sowie alternativen Kommunikationskanälen. „Nur wenn Mitarbeiter diese Strukturen kennen und regelmäßig einüben, entsteht eine Kultur, in der eine frühzeitige Eskalation in der Meldekette als notwendiger Beitrag zur Sicherheit des gesamten Betriebs wahrgenommen wird“, fügt Markus Weidenauer hinzu.

Dringender Handlungsbedarf in Unternehmen

Um hier Abhilfe zu schaffen, verabschiedete im September 2025 das Bundeskabinett das sogenannte KRITIS-Dachgesetz zur Stärkung der Resilienz kritischer Einrichtungen. Es verpflichtet die Unternehmensleitung, Schutz- und Präventionsmaßnahmen umzusetzen, deren Wirksamkeit nachzuweisen ist. Der dem Regelwerk zugrunde liegende All-Gefahren-Ansatz fordert, dabei physische, digitale und organisatorische Dimensionen gemeinsam zu betrachten. „Auch wenn Führungskräftesicherheit hier kein eigener Rechtsbegriff ist, sollte sie Teil der Anforderungen an ein modernes Sicherheitsmanagement sein“, so der Geschäftsführer der SecCon Group.

Das bedeutet: Führungskräfte etwa vor Erpressungsversuchen durch Social Engineering zu schützen, ist weder persönlicher Luxus noch Symbolpolitik, sondern ein Element der nachweisbaren Unternehmensresilienz. Schließlich ist die Sicherung von Steuerungs- und Entscheidungsfähigkeit ein Governance-Baustein. Nicht die Person steht im Mittelpunkt, sondern die Handlungsfähigkeit des Instituts.

reltix: Vom Aktenordner zum Algorithmus

Wie das 2025 von Andreas Plakinger, Jan Horstmann und Léon Bamesreiter gegründete Düsseldorfer PropTech-Start-up reltix das angestaubte Image einer Branche poliert.

Hausverwaltungen gelten nicht gerade als Sprintdisziplin. Schwer erreichbare Ansprechpartner, Papierberge und zähe Abläufe prägen das Image einer Branche, in der es an Nachwuchs fehlt und Fristen dennoch gnadenlos ticken. Genau da setzt reltix an und wächst: Im März 2025 gegründet, zählt das Düsseldorfer Start-up inzwischen 2000 Kund*innen.

Gegründet wurde reltix von drei ehemaligen Kommilitonen, die sich an der WHU Otto Beisheim School of Management in Vallendar bei Koblenz kennenlernten: Léon Bamesreiter, Jan Horstmann und Andreas Plakinger. Der Motor für die Gründung war eine große Portion eigener Unzufriedenheit. Bamesreiter kaufte mit 20 Jahren während seines dualen Studiums bei einer Großbank seine erste Wohnung, weitere folgten. Seine Erfahrung mit den Verwaltungen: dicke Ordner, langsame Reaktionen, wenig Transparenz. „Ich hatte das Gefühl, ich werde selbst zum Hausverwalter.“

Weniger Bürokratie und mehr Präsenz am Objekt

Mit dem Gründungsstipendium starteten die Drei eine Umfrage unter über 120 Eigentümer*innen: 87 Prozent gaben an, mit ihrer Verwaltung unzufrieden zu sein. Reltix will diese Unzufriedenheit nicht mit mehr Personal, sondern mit Digitalisierung im Hintergrund beheben. Herzstück ist eine selbst entwickelte Software, die E-Mails und WhatsApp-Nachrichten erfasst, automatisch Tickets anlegt, digitale Unterlagen ausliest und Vorgängen zuordnet. Handwerkeranfragen werden systemgestützt angestoßen, Daten zentral strukturiert. Gleichzeitig setzen die Düsseldorfer auf eine feste Ansprechperson je Immobilie.

Erklärtes Ziel der Gründer: weniger Bürokratie und mehr Präsenz am Objekt. Für diesen Ansatz erhielt das Team gerade eine Zusage zur Forschungszulage des Bundesministeriums für Forschung, Technologie, und Raumfahrt zum weiteren Ausbau der eigenen Software mit einer Projektsumme von 1,3 Millionen Euro.

Jahresendspurt brachte Mandate ...

Den größten Schub spürte reltix im Dezember 2025. Viele Hausverwaltungsverträge enden zum 31. Dezember, gleichzeitig laufen Abrechnungsfristen aus. Wer bis Jahresende keine neue Verwaltung findet, bekommt schnell kalte Füße. In den letzten Wochen des Jahres kamen deshalb laut Unternehmen 500 Mandate kurzfristig hinzu, darunter Neubauprojekte in Langenfeld und Köln. Einige namhafte Banken, Family Offices und größere private Bestandshalter zählt das Unternehmen ebenso zu seinen Kund*innen.

... und Personalaufbau

Das Start-up musste personell nachziehen und stockt zum Februar von 14 auf 17 Mitarbeitende auf. Während viele klassische Verwaltungen über fehlenden Nachwuchs klagen, setzt reltix auf junge Mitarbeitende, Quereinsteiger*innen und bildet selbst aus. Das Unternehmen ist IHK Ausbildungsbetrieb und beschäftigt eine Auszubildende im ersten Lehrjahr. Die 28-Jährige, aus der Ukraine geflüchtet, ist aktuell die älteste im Team. Dazu kommen Quereinsteiger*innen: Ein früherer Maschinenbauingenieur leitet inzwischen die Mietverwaltung, eine Mitarbeiterin aus dem Bankgeschäft arbeitet in der Buchhaltung.

Von Rhein-Ruhr bis an den Main

Neben der Verwaltung großer Objekte bietet das Düsseldorfer PropTech für kleinere Eigentümer*innengemeinschaften mit drei bis acht Einheiten die sogenannte Kompaktverwaltung. Enthalten ist darin eine rechtssichere Abrechnung, die Durchführung von Eigentümer*innenversammlungen sowie größere Sanierungen, während Alltägliches bei den Eigentümer*innen bleibt. Regional liegt der Fokus auf Rhein-Ruhr sowie dem Umfeld Köln Bonn. Frankfurt mit einem weiteren Standort ist als nächster Schritt Richtung Sommer geplant. Düsseldorf soll Hauptsitz bleiben.

Infinite Roots: Hamburger BioTech bringt pilzbasierte Gerichte ins Kühlregal

Das 2018 von Dr. Mazen Rizk, Anne-Cathrine Hutz und Dr. Thibault Godard als Mushlabs gegründete Hamburger Start-up Infinite Roots (ehemals Mushlabs) bringt die Vorteile der Pilzwelt erstmals als eigenständige Hauptzutat ins Kühlregal.

Infinite Roots ist ein forschungsgetriebenes BioTech-Unternehmen aus Hamburg. Seit 2018 entwickelt das Unternehmen (zunächst unter dem Namen Mushlab) neuartige Lebensmittel auf Basis von Pilzen – inspiriert vom Myzel, dem unterirdischen Wurzelgeflecht essbarer Pilze. Durch Fermentation schafft Infinite Roots Produkte, die über bloße Fleischalternativen hinausgehen. Das Ziel ist es, eine neue Kategorie zu etablieren: Lebensmittel, die echtes Umami und wertvolle Nährstoffe liefern, mit kurzen Zutatenlisten auskommen und die Umwelt entlasten.

Mit mehr als 60 Expert*innen aus Biotechnologie, Data, Lebensmittelwissenschaft und Kulinarik will das Team neue Standards für Geschmack, Qualität und Nachhaltigkeit setzen und zeigen, dass die Ernährung der Zukunft nicht Verzicht bedeutet, sondern Vielfalt und Genuss.

Die MushRoots-Produkte des Unternehmens sind keine Fleischimitate, sondern bieten ein eigenständiges, pilzbasiertes Geschmackserlebnis. Sie zeichnen sich durch einen saftigen, herzhaften Biss und ausgeprägte Umami-Noten aus. Die Hamburger setzen dabei auf Speisepilze, kombiniert mit vertrauten, hochwertigen Zutaten. Entsprechend bauen die Produkte auf einer natürlichen Zutatenliste auf und verzichten auf künstliche Aromen, Geschmacksverstärker und Farbstoffe. So entsteht ein Geschmackserlebnis, das an herzhafte Hausmannskost erinnert. Die Produkte lassen sich vielseitig im Alltag, etwa als Hack, Bällchen oder Patties.

„Im Kühlregal sehen Konsument*innen seit Jahren dieselbe Logik: Tierprotein hier, Pflanzenprotein dort“, sagt Philip Tigges, CCO/CFO von Infinite Roots. „Mit MushRoots bringen wir nicht nur eine dritte Option ins Regal, sondern kehren auch zu Lebensmitteln mit einer natürlichen Hauptzutat zurück. Pilze bieten einen herzhaften Geschmack, sind vielseitig, in allen gewohnten Rezepten einsetzbar und können kinderleicht zubereitet werden.“

MushRoots setzt dabei auf eine Proteinquelle mit vergleichsweise geringem ökologischen Fußabdruck. Pilze lassen sich lokal und ressourcenschonend kultivieren. „Wir wollten nie ein weiteres Fleischimitat herstellen, sondern eine eigene Kategorie umami-reicher Pilzprodukte schaffen, die durch Charakter und Geschmack überzeugen“, ergänzt Tigges. „Unser Ziel ist es jetzt, Menschen für Pilzprodukte zu gewinnen, ohne dass sie Fleisch vermissen.“

Jetzt meldet Infinite Roots, dass vier MushRoots-Produkte ab sofort bei REWE Nord in Norddeutschland und Billa Plus in Österreich erhältlich sind und damit eine neue Kategorie an Pilz-Produkten in die Kühlregale Einzug gehalten haben.

Gaming & digitale Medien – eine Perspektive für Start-ups?

Diese Voraussetzungen sollten Gründerinnen und Gründer von Start-ups in der Gamingbranche oder der Gestaltung digitaler Medien mitbringen, um erfolgreich zu sein.

Digitale Start-ups verbinden attraktive Zukunftsperspektiven mit einem geringen Startkapital. Für die digitale Generation aktueller Schul- und Universitätsabgänger stellt sich die Frage, ob ein Einstieg in die Gamingbranche oder die Gestaltung digitaler Medien für die Gründung eines Start-ups ausreichen kann. Solche Perspektiven sind gegeben, die neben ausreichend Kreativität eine fundierte Ausbildung in Computertechnik und Business gleichermaßen voraussetzen.

Indie-Games – eine Perspektive für Entwickler?

Noch vor einigen Jahren war die Gamingbranche als Perspektive für Gründer eher unattraktiv. Die großen, internationalen Studios dominierten die Szene, wobei für Triple-A-Titel längst Tausende von Entwicklern an unterschiedlichen Standorten benötigt wurden. Unter dem Zeit- und Kostengrund vieler Studios sowie der Entlassungswelle der letzten Jahre ist es für immer mehr Developer uninteressant, auf die Anstellung in einem der großen Softwarehäuser zu hoffen.

Die unabhängige Entwicklung von digitalen Medien oder Spielen bleibt jedoch beliebt und kann zur Basis eines Start-ups werden. Immer mehr Gamer wenden sich von den überteuerten, großen Marken der Szene ab und vertrauen auf kleinere Entwickler mit mehr Freiheiten bei der Umsetzung. Selbst die großen Gaming-Plattformen halten regelmäßig eine Auswahl beliebter und neuer Indie-Games für Millionen Nutzer bereit.

Unabhängig von Größe und Art eines Studios bleibt die Gamingbranche international und setzt verschiedene Skills vom Development bis zum erfolgreichen Marketing voraus. Dies alles lässt sich längst in speziell abgestimmten Studiengängen erlernen.

Spielentwicklung der neuesten Generation als Studiengang

Studiengänge wie Games & Immersive Media an der Hochschule Furtwangen erlauben es, einen Bachelor im Gaming-Umfeld zu erlangen und alle relevanten Fähigkeiten für den zukünftigen Berufsweg zu gewinnen. Neben Computer Science und Anwendungen im spielerischen Bereich nehmen Business, Design und Medien als zweiter Bereich einen wesentlichen Stellenwert im Studium ein.

Diese Kombination des bilingualen Studiengangs ergibt Sinn. Schließlich ist nicht jeder kreative Programmierer und Spieleentwickler ein Geschäftsmann, genauso wenig wie Marketer gerne stundenlang mit Quellcode arbeiten. Moderne Studiengänge wie dieser führen beide Welten zusammen und sorgen für eine fundierte Ausbildung, um tiefe Einblicke in beide relevanten Arbeitsfelder zu gewinnen.

Starke Unterstützung für zukünftige Start-ups

Die Hochschule Furtwangen geht mit ihrer Unterstützung weit über den reinen Studiengang hinaus. Bewusst wird angehenden Start-ups unter die Arme gegriffen, die ihre ersten Schritte ins Gaming-Business mit kreativen Spielen und Studienprojekten gehen möchten.

Neben einer umfassenden Beratung auf dem Weg zum eigenen Business werden ein Support für Fördermittel sowie Räumlichkeiten für das gemeinschaftliche Arbeiten an Spielen oder digitalen Medien geboten. Viele Formalitäten und Unsicherheiten, die sich bei Start-ups unabhängig von Branche und Geschäftsfeld ergeben, werden so seitens der Hochschule kompetent und professionell unterstützt.

Für den Einstieg sind Kenntnisse im Gaming-Bereich ideal, die über die reine „Freude am Zocken“ hinausgehen. Kreativität in der Planung und Umsetzung eigener Projekte sollte nachgewiesen werden – anders als die zwingende Notwendigkeit, eine Programmiersprache zu beherrschen.

Sichtbarkeit im digitalen Umfeld entscheidend

Wie bei allen Produkten entscheidet weniger die tatsächliche Qualität, sondern die Sichtbarkeit und eine wirkungsvolle Werbung über Erfolg von Misserfolg von Games. Gerade das Marketing für digitale Produkte ist wegen der hohen Konkurrenz und einer Fülle an Informationen in der digitalen Welt eine immense Herausforderung. Hier eine fachkundige Unterstützung von Anfang an zu erhalten, bewahrt Entwickler und kreative Köpfe davor, grundlegende Fehler zu begehen und frühzeitig den Traum vom Gaming-Job zu begraben.

KI-Modelle erfolgreich im Unternehmen einführen

Worauf es bei der Implementierung von KI wirklich ankommt.

Künstliche Intelligenz (KI) gewinnt in Unternehmen zunehmend an Bedeutung. Sie kann Prozesse beschleunigen, große Datenmengen sinnvoll nutzbar machen und Entscheidungen unterstützen. Doch in der Praxis zeigt sich: Moderne Technologie allein führt noch nicht zum Erfolg. Entscheidend ist ein strukturiertes Vorgehen, bei dem Ziele klar definiert, Daten sorgfältig vorbereitet und organisatorische Rahmenbedingungen von Beginn an berücksichtigt werden. „Viele KI-Initiativen scheitern daran, dass am Anfang die Orientierung fehlt“, sagt Benedikt Weber, Geschäftsführer der applord GmbH. „Struktur schafft Entscheidungsfähigkeit – noch bevor über konkrete KI-Modelle gesprochen wird.“

Organisatorischer Wandel und Einbindung der Mitarbeitenden

Der Einsatz von KI verändert Arbeitsabläufe, Verantwortlichkeiten und Entscheidungswege. Mitarbeitende arbeiten verstärkt mit automatisierten Systemen zusammen, Aufgaben verschieben sich, Rollen entwickeln sich weiter. Wird dieser Wandel nicht aktiv begleitet, entstehen Unsicherheiten oder Ablehnung gegenüber neuen Technologien. Erfolgreiche Unternehmen setzen deshalb auf transparente Kommunikation und frühzeitige Einbindung der Mitarbeitenden. Sie erklären, warum KI eingesetzt wird, welche Aufgaben sie übernimmt und wo menschliche Expertise weiterhin unverzichtbar bleibt. Fehlt dieses gemeinsame Verständnis, werden neue Systeme häufig nur eingeschränkt genutzt. „KI-Projekte scheitern selten an der Technologie“, betont Weber. „Viel häufiger fehlt ein klares Bild davon, welchen konkreten Nutzen KI für Mitarbeitende und Organisation wirklich bringt.“

Auswahl der passenden KI-Lösung

Das Angebot an KI-Lösungen wächst rasant. Für Unternehmen besteht die Herausforderung darin, nicht der technischen Vielfalt zu folgen, sondern eine Lösung zu wählen, die zum eigenen Geschäftsprozess passt. Der Ausgangspunkt sollte immer ein klar definierter Anwendungsfall sein: Welche Aufgabe soll KI konkret unterstützen oder verbessern? Neben den Funktionen spielen auch Fragen der Nachvollziehbarkeit, Integration in bestehende Systeme und regulatorische Anforderungen eine Rolle. Werden diese Aspekte zu spät berücksichtigt, entstehen Lösungen, die technisch leistungsfähig sind, im Alltag aber keinen Mehrwert liefern. „Viele Unternehmen wählen KI nach dem Funktionsumfang aus und stellen später fest, dass sie nicht zum eigenen Prozess passt“, erklärt Weber. „Erfolgreich ist KI dann, wenn sie Abläufe sinnvoll ergänzt und verständliche Ergebnisse liefert.“

Datenqualität als Grundlage für verlässliche Ergebnisse

KI-Modelle sind vollständig von der Qualität ihrer Daten abhängig. In vielen Unternehmen existieren relevante Informationen zwar, sie sind jedoch über verschiedene Systeme verteilt, unterschiedlich gepflegt oder historisch gewachsen. Diese Ausgangslage erschwert nicht nur den Einsatz von KI, sondern kann zu fehlerhaften oder schwer nachvollziehbaren Ergebnissen führen. Datenmanagement ist daher keine einmalige Vorarbeit, sondern eine kontinuierliche Aufgabe. Dazu gehören klare Zuständigkeiten, regelmäßige Prüfungen und eine strukturierte Aufbereitung der Daten. „Der Aufwand für Datenqualität wird häufig unterschätzt“, sagt Weber. „Ohne geprüfte und konsistente Daten lassen sich keine stabilen und verlässlichen KI-Ergebnisse erzielen – unabhängig davon, wie gut das Modell ist.“

Schrittweise Einführung statt großer Umbruch

Statt KI sofort unternehmensweit einzusetzen, empfiehlt sich ein schrittweises Vorgehen. Unternehmen können so mit klar abgegrenzten Anwendungsfällen beginnen, Lösungen im Alltag testen und die Ergebnisse anhand messbarer Kriterien, wie Benutzerfreundlichkeit oder verständlicher Anleitungen, bewerten. So lassen sich Risiken reduzieren und Erkenntnisse gezielt nutzen. Pilotprojekte liefern nicht nur technische Erkenntnisse, sondern zeigen auch, wie gut KI im Arbeitsalltag akzeptiert wird. Auf dieser Basis lässt sich entscheiden, welche Lösungen ausgebaut werden sollten. „Unternehmen, die mit überschaubaren Anwendungsfällen starten, treffen langfristig fundiertere Entscheidungen“, so Weber. „Praxiserfahrungen sind dabei deutlich wertvoller als theoretische Annahmen.“

KI-Hype: mittel- bis langfristiger Weg zur Monetarisierung noch unklar

Aktueller Marktkommentar zum KI-Hype und den möglichen Folgen von Justin Thomson, Head Investment Institute and CIO bei T. Rowe Price.

Die Investitionsausgaben für künstliche Intelligenz (KI) haben ein erstaunliches Niveau erreicht, aber der Weg zur Monetarisierung bleibt unklar. Der Markt-Hype schaukelt sich selbst hoch, und die Tech-Giganten greifen nun zu Krediten, um ihre Expansion zu finanzieren. Blasen sind nicht immer schädlich und können zu erheblichen Produktivitätssteigerungen führen, aber Überkapazitäten sind ein reales Risiko, das beobachtet werden sollte.

Während eines hochkarätigen Finanzgipfels, an dem ich kürzlich in Hongkong teilgenommen habe, sagte der CEO einer führenden Vermögensverwaltungsgesellschaft, der es eigentlich besser wissen müsste: „Im Kontext der Ausstattung von Hyperscalern sind 2,5 Billionen US-Dollar [für Investitionen] über fünf Jahre keine große Summe.“ Ich war über diese Bemerkung erstaunt. In welchem Paralleluniversum sind 2,5 Billionen US-Dollar eine unbedeutende Summe? Antwort: in einem, in dem Nvidia innerhalb von drei Monaten eine Marktkapitalisierung von 1 Billion US-Dollar erreichen kann. Aber wie erzielt man eine Rendite auf Investitionen in Höhe von 2,5 Billionen US-Dollar, wenn der mittel- bis langfristige Weg zur Monetarisierung der KI noch unklar ist?

Dies deutet auf zwei verschiedene AI-Investitionsbooms hin: einen relativ kurzfristigen, der durch eine erkennbare tatsächliche Nachfrage gestützt wird, und einen längerfristigen spekulativen Boom, der mit einem quasi-religiösen Glauben an exponentielles Wachstum verbunden ist.

Betrachten wir zunächst einige beeindruckende Zahlen. Die Ausgaben für KI erreichten gerade 1 % des US-Bruttoinlandsprodukts (BIP) in einer Wirtschaft mit 1,8 % Wachstum – das ist mehr als die Hälfte der gesamten neuen Nachfrage. Allein Nividia erreichte Ende Oktober einen Wert von 5 Billionen US-Dollar, was 15 % der gesamten US-Wirtschaft entspricht. Zum Vergleich: Als Cisco im Jahr 2000 als weltweit größtes Unternehmen seinen Höhepunkt erreichte, betrug sein Anteil am BIP nur 5,5 %. Während viel Aufsehen um den 3 Milliarden US-Dollar teuren Hauptsitz von JP Morgan in Manhattan gemacht wurde, werden in Texas still und leise 40 Milliarden US-Dollar teure Rechenzentrumsprojekte gestartet. Niemand scheint sich dafür zu interessieren.

Sind wir also in einer Blase? Es gibt sicherlich eine Blase von Menschen, die über Blasen sprechen – werfen Sie einfach einen Blick auf Google Trends.

Unterdessen gibt es diejenigen, die glauben, dass wir uns gerade deshalb nicht in einer Blase befinden können, weil wir über eine solche sprechen. Meiner Meinung nach gibt es drei Schlüsselwörter in den jüngsten Marktentwicklungen, die Beachtung verdienen: Reflexivität, Zirkularität und Verschuldung. Reflexivität besagt, dass Preise tatsächlich die Fundamentaldaten beeinflussen und dass diese neu beeinflussten Fundamentaldaten dann die Erwartungen verändern und somit die Preise beeinflussen. Dieser Prozess setzt sich in einem sich selbst verstärkenden Muster fort. Die lebhafte Reaktion des Marktes auf die jüngsten KI-Megadeals ist ein Beispiel für einen solchen Feedback-Kreislauf. Hinzu kommt der zirkuläre Charakter dieser Deals. Im Wesentlichen investieren die Anbieter von Recheninfrastruktur in native KI-Akteure, die sich in einer Investitionsphase befinden. In der Dotcom-Ära war dies als „Vendor Financing” bekannt und wurde zu einer Art Schimpfwort.

Schließlich gibt es noch die Verschuldung. Bislang haben die finanzstarken Tech-Giganten diesen KI-Boom mit ihren eigenen tiefen Taschen und Eigenkapitalfinanzierungen finanziert. Aber jetzt treten wir in die Kreditphase ein – Unternehmen wenden sich den Schuldenmärkten zu, oft außerhalb der Bilanz, und die Kreditaufnahme wird sich wahrscheinlich beschleunigen. Wir wissen, dass wir mit generativer KI und später mit künstlicher Superintelligenz vor einem neuen technologischen Paradigma stehen – und möglicherweise vor einem massiven Produktivitätssprung. Das sind alles großartige Dinge, und es ist leicht zu verstehen, dass man der Versuchung erliegt, weiter auf der lukrativen KI-Welle zu reiten, die mit der Einführung von ChatGPT im November 2022 begann. Angesichts der aktuellen Indexkonzentration würde es in der Tat Mut erfordern, auszusteigen.

Schnelles Wachstum kann zu einem Überschuss führen

Eine wichtige Lehre aus der Geschichte ist, dass es zu Blasen kommt, wenn wir schöne Dinge erfinden. Aber nicht alle Blasen sind gleich. Es gibt „schlechte“ Blasen (Tulpen, Gold, Grundstücke), und wenn schlechte Blasen durch Schulden finanziert werden, kann dies ein systemisches Risiko für die Wirtschaft darstellen. Es gibt auch „gute“ Blasen, die zu Überkapazitäten bei Produktionsmitteln führen – man denke an die Eisenbahnen im goldenen Zeitalter der Expansion der USA zwischen 1870 und 1900, die Elektrizität in den frühen 1900er Jahren und den Dotcom-Boom Ende der 1990er Jahre. Letztendlich wurde in jedem Fall Wohlstand geschaffen, aber die frühen Investoren verloren viel Geld.

Es ist noch zu früh, um vorherzusagen, zu welcher Art von Blase sich der AI-Investitionsboom entwickeln wird. Die langfristigen Auswirkungen werden davon abhängen, ob die heutigen massiven Investitionen letztendlich die Grundlage für dauerhafte Produktivitätssteigerungen schaffen oder ob sie zu Überkapazitäten führen, die keine nachhaltigen Renditen erzielen. Wenn die Kapazitäten so schnell wachsen, ist es immer wahrscheinlich, dass sich das Ungleichgewicht zwischen Angebot und Nachfrage von einem Mangel zu einem Überschuss umkehrt. In der Dotcom-Ära verloren Investoren viel Geld mit Glasfaserkabeln und Switches, die in den Boden verlegt wurden, und etwas Ähnliches könnte mit KI passieren, wenn durch Überbauung riesige Kapitalmengen in Anlagen gebunden werden, die möglicherweise nicht annähernd mit voller Effizienz betrieben werden können – oder noch schlimmer, wenn die Schnelllebigkeit des Chip-Zyklus die Rechenleistung obsolet macht.

Erschwerend kommt hinzu, dass die Anreize für Infrastrukturanbieter („Picks and Shovels”-Akteure) und Entwickler von KI-Anwendungen nicht aufeinander abgestimmt sind. Während Infrastrukturunternehmen von einer kontinuierlichen Expansion und Investitionen profitieren, konzentrieren sich Anwendungsentwickler auf die Verbesserung der Effizienz und die Senkung der Kosten. Um den Kommentar des Dodos nach dem Caucus-Rennen in Lewis Carrolls Alice im Wunderland umzukehren: „Nicht jeder kann gewinnen, und nicht jeder kann einen Preis bekommen.” Die optimistischen Prognosen für die KI-Infrastruktur zeigen, wie viel Hype in den heutigen Bewertungen der Hyperscaler steckt. Es ist ironisch, dass Rechenzentrumsprojekte nach den griechischen Titanen Prometheus und Hyperion benannt werden. In der griechischen Mythologie folgt auf Hybris immer Nemesis. Um noch ein bisschen Latein mit einzubringen: caveat emptor.

KI-Agenten als Transformationstreiber 2026

Eine aktuelle DeepL-Studie zeigt: 69 % der globalen Führungskräfte erwarten für 2026 tiefgreifende Veränderungen durch KI-Agenten; KI-Sprachtechnologie wird zur unverzichtbaren Infrastruktur.

Eine neue Studie von DeepL, einem globalen Unternehmen für KIProdukte und Forschung, zeigt: 2026 wird für viele Organisationen den Übergang vom Experimentieren mit KI hin zu agentischer Automatisierung markieren. So erwartet die Mehrheit der weltweit befragten Führungskräfte (69 %), dass agentenbasierte KI ihre Geschäftsabläufe im kommenden Jahr deutlich verändern wird.

Die Studie wurde im September 2025 von Censuswide im Auftrag von DeepL durchgeführt. Befragt wurden 5.000 Führungskräfte in Deutschland, Frankreich, den USA, Großbritannien und Japan. Die Ergebnisse deuten darauf hin, dass Unternehmen verstärkt planen, autonome KI-Agenten im großen Umfang einzusetzen – etwa zur Unterstützung von Wissensarbeit, zur Ezienzsteigerung oder zur Anpassung organisatorischer Strukturen. Damit zeichnet sich die bedeutendste operative Veränderung in der Wirtschaft seit der Einführung der Cloud an.

„KI-Agenten sind längst nicht mehr experimentell, sie sind unumgänglich.“ sagt Jarek Kutylowski, CEO und Gründer von DeepL. „Die nächste Phase besteht darin, sie tiefgreifend in unsere Arbeitsweisen zu integrieren. In 2026 werden KI-Agenten das mühsame Umschalten zwischen verschiedenen Kontexten und repetitive Aufgaben übernehmen, sodass sich Menschen auf das konzentrieren können, was Unternehmen tatsächlich voranbringt.“

KI-Agenten werden zum nächsten Disruptor für Unternehmen

Nach ersten Pilot- und Anwendungsfällen rücken KI-Agenten zunehmend in den produktiven Einsatz:

  • Fast die Hälfte der globalen Führungskräfte (44 %) erwartet für 2026 einen tiefgreifenden Wandel durch agentische KI; ein Viertel (25 %) sieht diesen Wandel bereits heute. Nur 7 % glauben, dass KI-Agenten ihre Betriebsabläufe nicht verändern werden, was die hohe Geschwindigkeit der Implementierungen unterstreicht.
  • Als die drei wichtigsten Voraussetzungen für den sinnvollen und vertrauenswürdigen Einsatz von KI-Agenten nennen die Befragten nachweisbare Ezienz- und ROI-Eekte (22 %), Anpassungsfähigkeit der Belegschaft (18 %) und zunehmende organisatorische Bereitschaft (18 %).
  • Als wesentliche Herausforderungen bei der Einführung von KI-Agenten nennen die Befragten Kosten (16 %), Bereitschaft der Belegschaft (13 %) und Reife der Technologie (12 %).

KI als zentraler Wachstumstreiber für globale Unternehmen

Über Agenten hinaus gilt KI insgesamt als wichtigster Motor für das Wirtschaftswachstum in 2026:

  • Über zwei Drittel (67 %) der Befragten geben an, dass sich der ROI ihrer KI-Initiativen in diesem Jahr erhöht hat; mehr als die Hälfte (52 %) erwartet, dass KI im kommenden Jahr mehr zum Unternehmenswachstum beitragen wird als jede andere Technologie.
  • Wenn es um messbare Verbesserungen durch KI geht, liegt Deutschland (78 %) zusammen mit Großbritannien (80 %) an der Spitze, gefolgt von den USA (71 %) und Frankreich (70 %). Japan verzeichnet mit 35 % deutlich niedrigere Werte, was auf langsamere Implementierungen und Bereitschaften hindeutet.
  • Über die Hälfte der globalen Führungskräfte (51 %) rechnet damit, dass KI im kommenden Jahr mehr neue Rollen schat als ersetzt. 52 % geben an, dass KI-Kenntnisse für die meisten Neueinstellungen vorausgesetzt werden.

KI-Sprachtechnologie entwickelt sich vom Werkzeug zur zentralen Infrastruktur

Die Studie zeigt zudem, wie KI-Sprachtechnologie zur entscheidenden Komponente der Unternehmensinfrastruktur wird:

  • Fast zwei Drittel der globalen Unternehmen (64 %) planen 2026 steigende Investitionen in KI-Sprachtechnologie – angeführt von Großbritannien (76 %) und Deutschland (74 %), gefolgt von den USA (67 %) und Frankreich (65 %) werden mehrsprachige Kommunikation und Inhalte zu zentralen Faktoren für globales Wachstum. Im Gegensatz dazu bleibt Japan (38 %) vergleichsweise konservativ, was auf eine langsamere Dynamik hindeutet, gleichzeitig aber das wachsende Interesse von mehr als einem Drittel der Führungskräfte widerspiegelt.

In diesem Zusammenhang wird Echtzeit-Sprachübersetzung 2026 unverzichtbar:

  • Über die Hälfte der globalen Führungskräfte (54 %) sieht Echtzeit-Sprachübersetzung im kommenden Jahr als unverzichtbar an – derzeit sind es ein Drittel (32 %).
  • Großbritannien (48 %) und Frankreich (33 %) sind Vorreiter bei der Nutzung von Tools für die Echtzeit-Sprachübersetzung; Japan liegt derzeit nur bei 11 %.
  • Die Nachfrage wird angetrieben von technologischen Fortschritten in der Echtzeit-Sprachübersetzung (46 %), Kundenerwartungen (40 %) und marktübergreifender Expansion (38 %).

Die Erkenntnisse der Studie liefern wichtige Einblicke in die Zukunft der KI und zeigen, wie diese Veränderungen Branchen umgestalten, Kundenerwartungen neu definieren und sich auf das Wettbewerbsumfeld auswirken.