Aktuelle Events
Geschäftsideen E-Commerce: Plattform der sinkenden Preise
Spielerische Schnäppchenjagd
Bei "DropTilYouShop" werden morgens und abends Verkaufsaktionen gestartet. Dabei werden auf der Startseite Produkte angezeigt. Das Besondere an dieser Geschäftsidee ist die Preisanzeige. Denn der Preis sinkt jede Sekunde.
Diejenigen Kunden von Droptilyoushop, die als erste den Preis "einfrieren", erhalten den Zuschlag. Das Produktsortiment soll zu Beginn folgende Kategorien umfassen: Mode, Schmuck, Eintrittskarten, Elektrogeräte, Hotelübernachtungen und Kreuzfahrten.
Mit dieser Geschäftsidee machen die Australier das Shoppen zum Spiel. Die Kunden treten gegeneinander an. Wer bei Droptilyoushop zu früh zuschlägt, hat mehr als nötig bezahlt. Wer zu spät zuschlägt, dem haben die anderen Kunden das Produkt vor der Nase weggeschnappt. Achtung: Dieses Spiel kann süchtig machen. Und genau das ist es, was sich die Erfinder von dieser E-Commerce-Plattform erhoffen.
Diese Artikel könnten Sie auch interessieren:
Pflanzentheke: Vertical-Farming-Start-up erhält DBU-Förderung
Das 2022 gegründete Start-up Pflanzentheke ermöglicht vertikales Gemüsewachstum in nährstoffreichem Wasser statt in Erde und wird dafür mit 175.000 Euro durch die Deutsche Bundesstiftung Umwelt (DBU) gefördert.
Der Großteil des in Deutschland konsumierten Obsts und Gemüses wird importiert. Laut Zahlen des Bundesministeriums für Ernährung, Landwirtschaft und Heimat (BMLEH) liegt die Selbstversorgungsrate – also der Anteil der im Land produzierten im Vergleich zu den insgesamt verbrauchten Gütern – für Gemüse bei 36 Prozent, für Obst lediglich bei 20 Prozent. Besonders große Städte sind auf die Versorgung durch Lebensmittellieferungen über weite Distanzen angewiesen. DBU-Generalsekretär Alexander Bonde: „Nahrungsmittelanbau nah an urbanen Zentren mit hohem Bedarf spart teure und klimaschädliche Transportwege. Das geht jedoch nur mit einer effizienten Nutzung der knappen Flächen.“
Genau dieses Ziel verfolgt das 2022 von Dr. Michael Müller, Dr. Julia Dubowy, Lasse Olliges und Leon Welker gegründete Start-up Pflanzentheke aus dem hessischen Lorsch mit sogenannten Vertical-Farming-Systemen für den geschützten Anbau – also dem vertikalen Anbau von Lebensmitteln in geschlossenen Anlagen wie Gewächshäusern oder Folientunneln. Pflanzentheke-Mitgründer Leon Welker: „Das Gemüse wächst in A-förmigen Regalen in einem sogenannten hydroponischen System – Pflanzen gedeihen also in nährstoffhaltigem Wasser anstatt in Erde auf im Schnitt sieben Stufen pro Anlage.“ Nun nimmt das Unternehmen mit der DBU-Förderung in Höhe von 175.000 Euro die Automatisierung des Systems ins Visier – für einen effizienteren Einsatz von Zeit, Ressourcen und Energie.
Automatisiertes und datenbasiertes Pflanzenwachstum
Nach den Worten von Welker erfolgte die Bestückung mit Jungpflanzen der vertikalen Anlagen sowie die Ernte bislang manuell. Nun arbeitet das Start-up an einer vollständigen Automatisierung des Produktionsprozesses – bei minimalem Energieverbrauch und niedrigen Betriebskosten. „Wir setzen auf praxisnahe Automatisierungsschritte, die konkret dort ansetzen, wo kleine und mittlere Betriebe heute an ihre Grenzen stoßen: bei Ernte, Wiederbepflanzung und Systempflege“, so Welker. Das Ziel sei, die tägliche Arbeit „deutlich zu erleichtern – mit einem modularen System, das ressourcenschonend arbeitet, Wasser spart und Arbeitszeit reduziert“. Welker: „Damit machen wir effiziente Hydroponik auch für kleinere Betriebe wirtschaftlich zugänglich.“
Dazu werde das vorhandene A-förmige Anbaumodell in Bewegung versetzt und an eine intelligente Steuerung angeschlossen. „Mit Sensoren zur Überwachung werden die Pflanzenreihen mit den passenden Nährstoffen für die jeweilige Wachstumsphase versorgt – vollständig datenbasiert“, so der Mitgründer. Jede Reihe beherberge ein Gemüse in einem anderen Wachstumsstadium. Welker: „Durch die bewegliche Anlage optimieren wir auch den Zugang zum Sonnenlicht je nach Reifegrad.“ Schließlich könne eine Reihe geerntet und wiederbestückt werden, während die anderen Pflanzen durch die Umpositionierung ungestört wachsen.
Anlage soll Böden schonen sowie Wasser- und Düngerverbrauch reduzieren
Die von dem Start-up entwickelte Anlage ermöglicht Welker zufolge, Böden zu schonen, den Wasser- und Düngerverbrauch zu reduzieren und auf kleinen Flächen möglichst viele Lebensmittel anzubauen. „Das System kommt bei gleichem Ertrag mit rund 90 Prozent weniger Wasser und 85 Prozent weniger Dünger aus als die konventionelle Landwirtschaft,“ so der Pflanzentheke-Mitgründer. „Wir verbinden die Vorteile des Indoor-Vertical-Farmings – etwa bei Nährstoffnutzung und Wassereffizienz – mit einem entscheidenden Plus: Unsere Anlagen nutzen natürliches Sonnenlicht und kommen daher mit einem Bruchteil der Energiekosten aus“, sagt Welker. „Das macht den ressourcenschonenden Anbau wirtschaftlich tragfähig – auch ohne energieintensive Beleuchtungssysteme.“ Welker weiter: „Weite Transporte erzeugen hohe Mengen klimaschädlicher Treibhausgase. Der Anbau nah an Städten mithilfe solcher Vertical-Farming-Systeme reduziert die Lieferwege sowie die je nach Lebensmittel energieintensiven Kühlketten.“
DBU-Förderung ermöglicht klima- und umweltschonenden Lebensmittelanbau
Das Start-up war bereits bis Ende 2024 Teil der Green Startup-Förderung der DBU. Dadurch wurde nach Welkers Worten die Marktreife des Produkts erfolgreich erreicht. Die Entwicklung der Anlage sei zudem mit fachlicher Unterstützung durch die Hochschule Osnabrück erfolgt. „Die Automatisierung ist nun ein neues, zeitintensives Forschungsprojekt – eine Entwicklung, die wir im laufenden Betrieb nicht leisten könnten“, so Welker. Die erneute Förderung ermögliche mehr klima- und umweltschonenden Lebensmittelanbau mithilfe der automatisierten Pflanzentheke-Anlagen. Zielgruppen sind dem Unternehmen zufolge vor allem kleine und mittelgroße Betriebe. „Die Pflanzentheken sind schnell installierbar, da sie an bestehender Infrastruktur befestigt werden können“, so Welker. Neben den ökologischen Vorteilen des Systems solle die Automatisierung auch den steigenden Fachkräftemangel im Gartenbau in Teilen kompensieren.
Happy Homeoffice Club gestartet
Gründerin Caterina Hirt startet ein digitales Netzwerk als kollaborative Kommunikationsplattform für selbständige Mütter im Homeoffice.
Mit dem Start des Happy Homeoffice Clubs entsteht ein neues digitales Angebot für selbständige Mütter – mit Liveformaten, Co-Working, einer innovativen Softwareplattform und vielen nützlichen Business-Hacks. Die Gründerin Caterina Hirt bringt damit ein strukturiertes, unterstützendes Netzwerk an den Start, das den oft isolierten Homeoffice-Alltag in einen Ort der Verbindung, Motivation und echten Weiterentwicklung verwandelt. „Ich habe selbst erlebt, wie herausfordernd es ist, Beruf, Familie und Selbstverwirklichung unter einen Hut zu bringen – vor allem im Homeoffice. Mit dem Happy Homeoffice Club möchte ich Frauen zeigen, dass sie nicht alleine sind“, so die Gründerin. Caterina Hirt ist Unternehmerin, Autorin, systemische Coachin und Mutter von zwei Kindern. Mit ihrem Agenturbackground und über zehn Jahren Erfahrung im Homeoffice weiß die Marketingspezialistin aus erster Hand, welche Chancen – aber auch welche Herausforderungen – dieser Arbeitsalltag birgt.
Kern der Zusammenarbeit ist eine kollaborative Kommunikationsplattform, über die die Mütter dauerhaft in einem echten Netzwerk verbunden sind. Dazu setzt das Angebot auf Livecalls, Community-Austausch, Expertenvorträge und snackable Businesstipps, die den Workflow im Homeoffice effizienter machen. Das Angebot richtet sich explizit an selbständige Frauen oder Mütter im Homeoffice. „Bei uns fühlt sich keine Teilnehmerin mehr allein. Hier treffen sich Frauen, die genau wissen, wie es ist, mit Laptop, Kaffee, Kind und manchmal ein bisschen Chaos zu jonglieren. Sie arbeiten, lachen, tauschen sich aus und motivieren sich gegenseitig. So modern, vernetzt und unterstützend, wie man es sich als Selbstständige immer gewünscht hat “, sagt Caterina Hirt.
Die zugrundeliegende Softwarelösung bietet eine hochmoderne Nutzeroberfläche, Chats, Calls in einer geschützten Umgebung sowie Daten- und Wissensaustausch an. So gibt es zum Beispiel den Monday Motivation Call mit allen Teilnehmerinnen oder eine interaktive Kaffeeküche, in der man sich einfach mal über alle Themen abseits des Business interaktiv austauschen kann. Die Plattform wird jeder Teilnehmerin zur Verfügung gestellt, die Nutzung ist in der monatlichen Mitgliedsgebühr von 49 Euro (Einführungspreis) enthalten. Interessentinnen können die Community inklusive aller Angebote zwei Wochen kostenlos testen.
Jakob Koenen: Mit 18 zum LegalTech-Start-up-Gründer
Die Sovereign AI Betriebs GmbH – 2025 von Jakob Koenen und seinem Vater Prof. Dr. Andreas Koenen mit Sitz in Berlin gegründet – entwickelt spezialisierte KI-Plattformen für die juristische Praxis.
Ein Technologie-begeisterter Abiturient, der schon mit 15 Jahren Jura-Vorlesungen besucht, gründet ein LegalTech-Start-up. Partnerschaftlich an seiner Seite agiert sein Vater, ein renommierter Professor für Baurecht. Das ist das Fundament der Sovereign AI Betriebs GmbH, die in Berlin antritt, das Rechtswissen ganzer Berufs-Generationen in eine juristisch kuratierte KI zu überführen. Herzstück des Unternehmens ist Sovereign Legal AI. Die Plattform bereitet juristische Fragen systematisch, verständlich und nachvollziehbar auf.
„Wir wollen das Recht aus der Blackbox holen“, sagt Jakob Koenen, Gründer und Geschäftsführer der Sovereign AI Betriebs GmbH. „Unsere KI soll kein Ersatz für Anwältinnen und Anwälte sein, sondern ein intelligentes Werkzeug, das Wissen strukturiert, Orientierung gibt und den Zugang zum Recht demokratisiert.“
Rechtspraxis-Know-how, digitalisiert für den Alltag
Die Idee zu Sovereign Legal AI entstand in einem Generationenprojekt. Prof. Dr. Andreas Koenen, Kanzleiinhaber, Fachanwalt und Herausgeber zahlreicher Werke zum Bau- und Architektenrecht, hat über Jahrzehnte beobachtet, wie Rechtswissen in der Praxis verloren geht, weil es zu spät, zu komplex oder zu exklusiv vermittelt wird.
„Das Recht wird beim Bauen oft erst dann herangezogen, wenn es knallt“, sagt Koenen. „Juristinnen und Juristen gelten als Ausputzer, nicht als Geburtshelfer. Sovereign Legal AI will das ändern. "Wir liefern Projektbeteiligten vom Architekten, Planer bis zum Bauherrn einen Kompass, der schon vor Konflikten Orientierung bietet; mit juristisch fundierter Systematik, aber barrierefrei zugänglich“, so Koenen weiter.
Die Wissensbasis der Sovereign Legal AI umfasst unter anderem kommentierte Urteile, systematisch aufbereitete Rechtsinformationen sowie Fachbeiträge von Anwältinnen und Anwälten zu typischen Praxisproblemen. Alle Inhalte sind mit Originalquellen aus Gesetz, Rechtsprechung und Literatur belegt, was den entscheidenden Unterschied zu generativen „Blackbox-Systemen“ markiert.
Neue Plattform für juristische Teilhabe
Sovereign Legal AI entstand in Zusammenarbeit mit den Anwältinnen und Anwälten der Kanzlei Koenen Bauanwälte. Die künstliche Intelligenz (KI) wurde entlang echter Fallarbeit trainiert und in einer Beta-Phase getestet. Dabei versteht sich die KI als Community-Projekt: Nutzende geben Feedback, benennen Lücken und tragen so zur Weiterentwicklung bei. Auf diese Weise wächst die KI mit der Praxis. Im Wissens-Ökosystem von Sovereign befinden sich auch die Austausch-Plattform Sovereign Community und der stationäre Sovereign Store in Münster. Beide sind Teil derselben Markenfamilie und werden von der Sovereign GmbH betrieben. Partner-, Lizenz- und Servicemodelle finanzieren das Projekt. „Wir schaffen eine KI-Plattform, die juristisches Wissen lebendig hält“, so Jakob Koenen. „Das ist Unternehmensnachfolge im besten Sinne. Das Wissen einer Generation wird nicht vererbt, sondern transformiert.“
Junger Gründer mit Tech-DNA
Dass Jakob Koenen früh Verantwortung übernimmt, überrascht kaum. Mit 11 wollte er bereits eine Web-Agentur gründen, erschuf in diesem Zuge den Digitalauftritt eines Handwerksunternehmens. Mit 15 hat er mit Unterstützung seiner Eltern beantragt, frühzeitig als geschäftsfähig erklärt zu werden und gründete nach der Bewilligung sein erstes Unternehmen. Heute ist er Gründer, App-Entwickler und Geschäftsführer des Berliner LegalTech-Unternehmens. Er arbeitet mit einem Netzwerk aus externen Entwicklerinnen und Entwicklern sowie Fachleuten an der technischen Weiterentwicklung von Sovereign Legal AI. Aktuell suchen er und sein Vater als Herausgeber der Inhalte nach Co-Autor*innen und Partner*innen, die weitere juristische Rechtsbereiche wie Energierecht oder IT-Recht innerhalb der KI für sich erschließen.
KI und Selbstreflexion: Was macht KI mit dir?
Wie du innovative KI-Technologie und persönliche Entwicklung strategisch geschickt kombinierst, um dein Start-up nachhaltig zu skalieren.
Künstliche Intelligenz (KI) gilt als Wachstumsbooster. Doch wer dabei nur auf Technik setzt, lässt ein entscheidendes Potenzial ungenutzt – die eigene persönliche Entwicklung. Warum es gerade die Verbindung aus KI und Selbstreflexion ist, die Gründer*innen und Start-ups langfristig erfolgreich macht, liest du hier.
Gründen bedeutet, Entscheidungen unter Unsicherheit zu treffen
Wer ein Start-up aufbaut, bewegt sich im Spannungsfeld von Vision und Verantwortung. Geschäftsmodell, Finanzierung, Teamführung, Produktentwicklung – all das passiert meist parallel und unter enormem Zeitdruck. Technologie wird dabei oft als Hebel gesehen, um schneller und effizienter zu arbeiten. Und das stimmt: Tools, die auf KI basieren, können Prozesse automatisieren, Muster erkennen, Kund*innenbeziehungen vertiefen. Doch Technik allein garantiert keinen Erfolg. Entscheidend ist, wer sie wie einsetzt. Und hier kommt ein oft unterschätzter Faktor ins Spiel: der/die Gründer*in selbst mit den Mustern seiner/ihrer Persönlichkeit.
Jede einzelne Erfahrung, die die Marke rund um eine(n) Gründer*in prägt, kann niemals von einer KI erzeugt werden. Diese kann im zweiten Schritt sachlich analysieren, wie Erlebnisse für zukünftige Prozesse genutzt werden, die dazugehörigen Werte oder Ängste aber stecken in der Person selbst als Fundament.
Markenkern, Werte und Identität – das unsichtbare Fundament des Erfolgs
Jede Marke beginnt mit einer Geschichte, und diese umfasst den Menschen als Dreh- und Angelpunkt. Die Erfahrungen, Werte und Überzeugungen der Gründer*in formen den Kern eines Start-ups weit vor dem ersten Pitchdeck. Während KI dabei helfen kann, diese Identität greifbar zu machen, zu analysieren oder in die Kommunikation zu übersetzen, erzeugen kann sie diese nicht.
Gerade in der frühen Phase entscheidet nicht nur das Produkt über den Erfolg, sondern die Haltung dahinter: Wofür steht das Unternehmen? Welche Werte prägen die Entscheidungen? Welches Bedürfnis treibt den/die Gründer*in auch jenseits der KPIs an? Eine klare Positionierung entsteht nicht im Workshop, sondern im inneren Prozess. Es ist die Fähigkeit zur Selbstreflexion, die hier als Kompass dient:
- Was ist mir wirklich wichtig?
- Was darf sich nie ändern, selbst wenn wir skalieren?
- Was wäre ein Deal, den ich nie eingehen würde – egal wie lukrativ er erscheint?
Wer diesen Markenkern kennt, trifft strategische Entscheidungen konsistenter, kommuniziert authentischer und baut Vertrauen bei Investor*innen, Mitarbeitenden und Kund*innen auf. Und erst dann lohnt sich der Einsatz von KI wirklich, um diese klare Positionierung zum Beispiel zu verstärken, nicht aber zu ersetzen.
KI – mehr als nur Effizienzmaschine
KI hat längst ihren Platz in der Start-up-Welt gefunden. Vom Recruiting über Sales bis hin zum Customer Support. KI-gestützte Tools erleichtern die Arbeit und verschaffen jungen Unternehmen echte Wettbewerbsvorteile:
- Automatisierung: Mithilfe von KI lassen sich zeitintensive Prozesse wie Terminplanung, Rechnungsstellung oder E-Mail-Korrespondenz automatisieren. Das schafft Raum für strategische Aufgaben.
- Personalisierung: Wer seine Kund*innen wirklich verstehen will, profitiert von datenbasierten Insights. KI hilft dabei, Verhalten zu analysieren, Bedürfnisse vorherzusagen und Inhalte gezielt auszuspielen.
- Recruiting: Im „War for Talents“ zählt Geschwindigkeit, ergänzend aber unbedingt auch Qualität. KI-Tools unterstützen dabei, Bewerber*innen effizient zu sichten und unbewusste Bias zu reduzieren.
Richtig eingesetzt, ermöglicht KI mehr Fokus, schnellere Iterationen und datengestützte Entscheidungen. Aber genau hier beginnt auch das Problem: Technologie kann nur das verstärken, was ohnehin vorhanden ist oder eben (noch) nicht.
Selbstreflexion – der unterschätzte Erfolgsfaktor
Gründer*innen stehen täglich vor Entscheidungen mit Tragweite. Doch unter Druck, Unsicherheit und Wachstumsschmerz wird oft reaktiv gehandelt statt reflektiert geführt. Genau hier setzt Selbstreflexion an. Wer sich seiner Stärken, Muster und blinden Flecken bewusst ist, trifft bessere Entscheidungen – für sich, das Team und das Unternehmen. Selbstreflexion ist kein esoterisches Extra, sondern ein pragmatisches Führungsinstrument. Einige wirkungsvolle Methoden:
- Regelmäßige Selbstchecks: Was hat in dieser Woche funktioniert und warum? Was nicht? Was sagt das über meine Prioritäten aus?
- Feedback aktiv einholen: nicht nur von Mitgründer*innen oder Coaches, sondern auch vom Team. Nicht defensiv reagieren, sondern neugierig auf das Feedback sein.
- Mentoring und Coaching: Externe Sparringspartner*innen helfen, Perspektiven zu erweitern und Denkfehler zu entlarven.
- Reflexionstools nutzen: vom (digitalen) Journal bis zur strukturierten Entscheidungsanalyse gibt es einfache Hilfsmittel, die Klarheit schaffen.
Wer bereit ist, sich selbst zu hinterfragen, entwickelt nicht nur sich, sondern auch sein Start-up weiter. Denn Führung beginnt nicht mit der Verantwortung für andere, sondern mit der Verantwortung für sich selbst.
Die Synergie – wenn KI auf Selbstreflexion trifft
Die wirklich erfolgreichen Gründer*innen sind nicht entweder Tech-Expert*innen oder People-Leader*innen. Sie verbinden beides. Sie nutzen KI, um operative Exzellenz zu schaffen und reflektieren gleichzeitig, wie sie führen, entscheiden, kommunizieren. Diese Kombination erzeugt eine Form von unternehmerischer Klarheit, die sowohl innovativ als auch resilient ist.
KI kann Erkenntnisse liefern. Aber nur, wer sie richtig einordnet, profitiert davon. Selbstreflexion schafft den Raum, um mit Technologie sinnvoll umzugehen. Umgekehrt kann KI helfen, Reflexionsprozesse zu unterstützen, etwa durch gezielte Feedback-Auswertung oder datengestützte Teamanalysen.
Ein Beispiel aus der Praxis: Ein Start-up im HR-Tech-Bereich nutzt KI, um Kund*innenfeedback in Echtzeit zu analysieren. Gleichzeitig reflektieren die Gründer*innen wöchentlich im Führungsteam, welche Learnings daraus für Produkt und Kommunikation folgen und welche persönlichen Muster sie bei sich selbst erkennen. Diese Kombination aus technologischem Blick nach außen und menschlichem Blick nach innen führt dazu, dass das Unternehmen nicht nur schneller wächst, sondern dabei auch klar bleibt.
Skalierung braucht Klarheit in der Technik und im Kopf
Start-ups, die skalieren wollen, müssen effizient sein, gleichzeitig aber auch fokussiert, werteorientiert und anpassungsfähig. KI ist dabei ein mächtiges Werkzeug. Doch ohne die Fähigkeit zur Selbstreflexion bleibt sie oft bloß ein weiteres Tool im Tech-Stack.
Deshalb gilt: Die Kombination aus klugem KI-Einsatz und bewusster persönlicher Entwicklung ist kein Luxus, sondern unternehmerische Notwendigkeit. Wer beides ernst nimmt, schafft ein Unternehmen, das nicht nur wächst, sondern dabei auch „gesund“ bleibt.
Die Autorin Lea Baptista ist Geschäftsführerin der GG Consulting Agency und unterstützt Unternehmer*innen, Führungskräfte und Teams dabei, ihren Führungsstil klar zu definieren, Selbstreflexion als Werkzeug zu nutzen und authentisch erfolgreich zu sein.
Code für die künstliche Intelligenz: technische Optimierung für die Ära der KI-Suche
Code für die KI: So optimierst du deine Website technisch mit strukturierten Daten und Protokollen für die besten generativen Suchergebnisse.
Die Regeln der Online-Sichtbarkeit werden neu geschrieben. Es geht nicht mehr nur darum, von einem herkömmlichen Algorithmus indiziert zu werden. Stattdessen müssen Websites so aufbereitet werden, dass sie von künstlicher Intelligenz (KI) und großen Sprachmodellen (LLMs) fehlerfrei interpretiert und verarbeitet werden können.
KI erstellt ihre Antworten, indem sie Inhalte blitzschnell liest, deren Bedeutung versteht und die wichtigsten Fakten daraus extrahiert. Wenn der technische Unterbau einer Website unsauber ist, kann die KI die Informationen entweder nicht zuverlässig finden oder sie falsch interpretieren.
Das bedeutet, die technische Seite der Website – der Code – wird zum Fundament für eine gute Platzierung in den generativen Suchergebnissen. Wer hier Nachholbedarf hat, riskiert, als vertrauenswürdige Quelle für die KI unsichtbar zu werden.
Dieser Artikel beleuchtet die entscheidenden technischen Anpassungen, die notwendig sind, um deine Website optimal für die neue Ära der KI-Suche vorzubereiten.
Kontrolle und Zugang: Die Regeln für Sprachmodelle
Der erste technische Schritt zur Optimierung für KI-Ergebnisse ist die Steuerung des Zugriffs durch die großen Sprachmodelle (LLMs). Traditionell wird der Zugang durch die robots.txt Datei geregelt, die festlegt, welche Bereiche der Website von herkömmlichen Suchmaschinen-Crawlern besucht werden dürfen.
Mit dem Aufkommen verschiedener, spezialisierter KI-Crawler (die nicht immer identisch mit dem Googlebot oder Bingbot sind) entsteht jedoch die Notwendigkeit, diesen neuen Akteuren eigene Regeln zu geben. Es geht darum, Transparenz darüber zu schaffen, welche Daten zur Generierung von Antworten verwendet werden dürfen und welche nicht.
Neue Protokolle für neue Crawler
Experten diskutieren und entwickeln neue Protokolle, um diese Unterscheidung zu ermöglichen. Ein viel diskutierter Ansatz ist die Einführung von Protokollen, die spezifisch den Umgang mit generativer KI regeln. Dies könnte die Einführung von Protokollen wie einer llms.txt Datei beinhalten. Solche spezifischen Dateien könnten festlegen, ob ein KI-Modell Inhalte zur Schulung oder zur generativen Beantwortung von Nutzeranfragen nutzen darf.
Diese Kontrollmechanismen sind entscheidend. Sie geben den Website-Betreibern die Autorität darüber zurück, wie ihre Inhalte in der KI-Ära verwendet werden. Wer hier klare Regeln setzt, schafft die technische Grundlage für eine kontrollierte und damit vertrauenswürdige Sichtbarkeit in den KI-Ergebnissen.
Strukturierte Daten als universelle KI-Sprache
Nach der Regelung des Zugangs durch Protokolle ist die Strukturierung der Inhalte der wichtigste technische Schritt. Suchmaschinen nutzen strukturierte Daten schon lange, um Rich Snippets in den klassischen Ergebnissen anzuzeigen. Für die KI sind diese Daten jedoch absolut essenziell.
Strukturierte Daten, die auf dem Vokabular von Schema.org basieren, sind im Grunde eine Übersetzungshilfe im Code, die dem Sprachmodell den Kontext des Inhalts direkt mitteilt. Sie sind die "Sprache", die die KI am schnellsten und präzisesten versteht.
Die Bedeutung für die Generierung
Wenn ein Nutzer eine Frage stellt, sucht die KI nicht nur nach Stichwörtern, sondern nach definierten Informationstypen. Mit strukturierten Daten liefert man der KI diese Informationen als fertige, fehlerfreie Bausteine.
- Fehlerfreie Extraktion: Die KI muss keine Textpassagen interpretieren, um beispielsweise ein Rezept, die Bewertung eines Produkts oder einen FAQ-Abschnitt zu identifizieren. Die korrekte Auszeichnung macht die Daten sofort nutzbar.
- Vertrauensbildung: Fehlerhafte oder inkonsistente strukturierte Daten führen zu einer falschen Interpretation und können bewirken, dass die KI deine Seite als unzuverlässig einstuft.
Die Implementierung muss fehlerfrei sein und sollte alle relevanten Inhaltstypen der Website abdecken. Nur eine saubere Schema-Implementierung garantiert, dass deine Fakten korrekt in die generativen Antworten der KI einfließen.
Ladezeit und Interaktivität als Vertrauenssignal
Die Geschwindigkeit und die Nutzbarkeit einer Website sind in der Ära der KI-Suche nicht mehr nur ein Komfortfaktor, sondern ein entscheidendes technisches Vertrauenssignal. Wenn deine Seite langsam lädt oder schlecht bedienbar ist, wird das von der KI als Indikator für mangelnde Qualität und niedrige Autorität gewertet.
Die Basis dafür sind die sogenannten Core Web Vitals (CWVs). Diese Messwerte, die sich auf das Nutzererlebnis konzentrieren, sind feste Ranking-Faktoren und haben direkten Einfluss darauf, ob eine KI deine Seite als zitierwürdig einstuft:
- LCP (Largest Contentful Paint): Misst die Zeit, bis der größte sichtbare Inhalt geladen ist.
- FID/INP (First Input Delay / Interaction to Next Paint): Misst die Zeit bis zur ersten Interaktion und die allgemeine Reaktionsfähigkeit der Seite.
- CLS (Cumulative Layout Shift): Misst die visuelle Stabilität.
Mobile Performance ist der Schlüssel
Da ein Großteil der Online-Aktivität über mobile Geräte stattfindet, legt die KI höchsten Wert auf die Optimierung der Mobilversion. Eine schlechte mobile Performance kann das gesamte Ranking negativ beeinflussen.
Die technische Anpassung muss daher darauf abzielen, die CWVs zu perfektionieren. Dies beinhaltet die Optimierung von Bildern, das Bereinigen unnötiger Code-Lasten und das Priorisieren wichtiger Ressourcen. Eine schnell ladende und reaktionsfreudige Website signalisiert nicht nur dem Nutzer, sondern auch der KI, dass die Quelle professionell und damit vertrauenswürdig ist.
Redundanz vermeiden: kanonische Klarheit
Eines der größten technischen Probleme für KI-Modelle ist die Verwirrung durch doppelte Inhalte (Duplikate). Wenn die gleiche Information unter verschiedenen URLs verfügbar ist, weiß die KI nicht, welche die Originalquelle darstellt. Dies zersplittert deine Autorität.
Der technische Schlüssel zur Lösung ist der Canonical Tag (<link rel="canonical" ...>). Dieser Tag im Code muss auf jeder Seite korrekt auf die bevorzugte, indexierbare URL zeigen. Durch die Vermeidung von Duplikaten und die korrekte Nutzung dieses Tags stellst du technisch sicher, dass die KI deine Inhalte als eindeutig und autoritär wahrnimmt und dich als zuverlässigen Faktenlieferanten zitiert.
Schlussworte
Die Zukunft der Online-Sichtbarkeit wird durch künstliche Intelligenz neu definiert. Der Erfolg hängt von einer technisch sauberen Vorbereitung ab.
Die wichtigsten Schritte in der Generative Engine Optimization (GEO) sind:
1. Zugangskontrolle durch Protokolle wie die diskutierte llms.txt Datei.
2. Die Nutzung von strukturierten Daten als unverzichtbare KI-Sprache.
3. Die Perfektionierung der Core Web Vitals als Vertrauenssignal.
4. Die Vermeidung von Duplikaten durch kanonische Klarheit.
Investiere in diese technische Qualität, um Autorität und Sichtbarkeit in der Ära der KI-generierten Antworten zu sichern.
Coupon-Marketing – exklusive Einblicke von Golden-Shopping-Days
Im Interview geben die Golden-Shopping-Days-Gründer Jannik Westbomke und Wladimir Ruf Einblicke in die Entstehungsgeschichte ihres Unternehmens und die Herausforderungen, die mit dem Aufbau einer eigenen Marke im Coupon-Segment verbunden sind.
Rabattaktionen gibt es viele, doch nur wenige Kampagnen schaffen es, sich im dicht gedrängten Markt so klar zu positionieren wie die Golden-Shopping-Days. Was 2020 als Frühjahrsaktion startete, hat sich längst zu einem festen Termin im Kalender zahlreicher Onlineshops und Konsument*innen entwickelt. Hinter der Plattform stehen die Geschäftsführer Jannik und Wladie, die nicht nur eine Gutscheinseite betreiben, sondern eine Art kuratiertes Event geschaffen haben, das zweimal im Jahr zehntägig läuft. Dabei geht es nicht um wahllose Codes, die irgendwo zusammengetragen werden, sondern um exklusive Kooperationen mit inzwischen über 50 Partner*innen – darunter bekannte Marken aus Mode, Food, Gesundheit oder Wohnen.
Neben diesen großen Kampagnen bildet die Plattform inzwischen auch ganzjährig ein starkes Fundament: In der neu geschaffenen Deals-Kategorie finden sich dauerhaft ausgewählte Angebote, und zusätzlich stehen Gutscheine von über 100 Onlineshops bereit. Partner*innen wie Weinfürst, DeinDesign oder HAWESKO verdeutlichen die Vielfalt und den Anspruch, Shoppingvorteile nicht nur saisonal, sondern kontinuierlich zugänglich zu machen.
Das Besondere: Die Rabatte sind zeitlich gebündelt, bewusst inszeniert und für die teilnehmenden Shops ein kalkulierbares Marketinginstrument. Gleichzeitig profitieren die Kund*innen von teils beachtlichen Nachlässen, ohne sich registrieren zu müssen oder Umwege in Kauf zu nehmen. Auch außerhalb der großen Kampagnen finden sich auf der Plattform Gutscheine, doch das eigentliche Herzstück bilden die beiden Aktionszeiträume im Frühjahr und Herbst.
Für Gründer*innen ist Golden-Shopping-Days ein spannendes Beispiel dafür, wie sich ein etabliertes Geschäftsmodell – das Couponing – neu denken lässt. Anstatt in der Masse unterzugehen, setzen die Macher auf Exklusivität, Übersichtlichkeit und klare Kommunikation mit den beteiligten Shops.
Im Interview geben Jannik und Wladie Einblicke in die Entstehungsgeschichte, die Mechanismen hinter den Aktionen und die Herausforderungen, die mit dem Aufbau einer eigenen Marke im Coupon-Segment verbunden sind.
Das Interview
Golden-Shopping-Days gibt es seit 2020. Wie kam es zu der Idee, ausgerechnet eine solche Event-Plattform für Gutscheine aufzubauen?
Jannik: Die Idee ist während des Studiums entstanden. Ich habe nach einer Möglichkeit gesucht, mein Studium zu finanzieren. Auf klassische Werkstudenten-Tätigkeiten hatte ich aber keine Lust und so bin ich irgendwann auf die Idee gekommen, ein Print-Gutscheinheft zu vermarkten. Das erste Heft war schon sehr aufwändig, da ich keinerlei Kontakte zu Onlineshops hatte und so unzählige Telefonate führen musste, um die ersten Shops von meiner Idee zu begeistern. Ein befreundeter Unternehmer hat die erste Auflage für mich gedruckt und auch die Gestaltung des TItelblattes übernommen.
Zwei Kampagnen im Jahr, Frühling und Herbst – warum genau dieses Modell und nicht eine kontinuierliche Rabattflut wie man sie bei anderen Anbietern sieht?
Jannik: Wir haben uns bewusst dazu entschieden im Frühjahr- und Herbst jeweils eine 10-tägige Online-Shoppingkampagne zu veranstalten. Zum Einen ist dies in der Kommunikation für die Konsumenten deutlich einfacher und zum anderen können die teilnehmenden Onlineshops diese fest in ihrem Marktetingmix einplanen und teilweise auch etwas höhere Rabatte gewähren, als es unterjährig sonst der Fall ist.
Welche Kriterien spielen bei der Auswahl der inzwischen über 50 Partnershops eine Rolle? Gibt es klare Vorgaben oder wächst das Netzwerk eher organisch?
Wladie: Wir sind in der Vergangenheit sehr organisch gewachsen und konnten von Kampagne zu Kampagne mehr Onlineshops von der Teilnahme an unserem Konzept begeistern. Klare Vorgaben haben wir nicht. Die teilnehmenden Onlineshops müssen allerdings schon eine gewisse Wertigkeit haben.
Auffällig ist, dass viele Deals exklusiv verhandelt wirken. Wie läuft dieser Prozess im Detail ab – geht es eher um klassische Affiliate-Strukturen oder um direkte Partnerschaften?
Jannik: Mit allen Shops, die an unseren Shoppingevents im Frühjahr und Herbst teilnehmen pflegen wir direkte Partnerschaften. Wir sind darauf bedacht für alle Shoppingbegeisterten die besten Gutscheine und Angebote zu verhandeln.
2025 steht die nächste große Herbstkampagne an und auch die nächste Frühjahrskampagne ist bereits in Planung. Wie bereitet ihr euch auf solche zehn Tage konkret vor, und was bedeutet das organisatorisch im Hintergrund?
Wladie: In der Regel brauchen wir gut ein halbes Jahr Vorbereitungszeit je Kampagne. Wir überlegen uns stets neue Features, um sowohl den Onlineshops als auch den Konsument*innen immer wieder neue Features zu bieten, die einen echten Mehrwert darstellen.
Manche Branchen – etwa Food, Mode oder Gesundheit – sind stark vertreten. Gibt es Bereiche, die ihr bewusst ausklammert, oder ist die Plattform prinzipiell offen für alle Segmente?
Jannik: Wir sind für viele Segmente offen, aber längst nicht für alle. Einen Onlineshop für Waffen wird man bei uns beispielsweise nicht finden.
Couponing ist für Shops ein Marketinginstrument, das nicht nur Umsatz bringen, sondern auch Markenbindung schaffen kann. Wie stellt ihr sicher, dass Golden-Shopping-Days nicht als reine Rabattschleuder wahrgenommen wird?
Wladie: Wir distanzieren uns ganz bewusst und schaffen an vielen Stellen Mehrwerte. Die Veröffentlichung von Gutscheinen stellt nur einen kleinen Teil unseres Geschäftsmodells dar. Mittlerweile fungieren wir vielmehr als Contentplattform. In unserem digitalen Magazin veröffentlichen wir regelmäßig Testberichte und Experteninterviews, auf YouTube publizieren wir Unboxing- und Testvideos - kurz gesagt: Wir schaffen echte Mehrwerte.
Ihr betont, dass Gutscheine bei euch auch außerhalb der Aktionszeiträume verfügbar sind. Wie wichtig ist diese ganzjährige Präsenz für die Markenbildung?
Jannik: Wir wollen unserer Community rund um die Uhr die besten Gutscheine und Angebote bieten. Deshalb ist es natürlich sehr wichtig, dass wir dies auch an 365 Tagen im Jahr gewährleisten können. Wir sind stets im Kontakt mit den Onlineshops, die sich und ihre Angebote bei uns auf der Plattform präsentieren, um die besten Gutscheine und Deals zu verhandeln. Viele Gutscheine sind nur exklusiv bei uns erhältlich.
Ein Blick nach vorn: Welche Rolle soll Golden-Shopping-Days in den nächsten fünf Jahren im deutschen E-Commerce spielen?
Jannik: Eine führende. **lacht**
Vielen Dank, Jannik und Wladie, für die offenen Einblicke in eure Arbeit und die Hintergründe der Golden-Shopping-Days.
EU AI Act: Status quo
Recht für Gründer*innen: der EU AI Act. Wo stehen wir in Sachen Umsetzung? Was Gründer*innen und Start-ups jetzt wissen müssen.
Künstliche Intelligenz (KI) ist längst kein Zukunftsthema mehr, sondern prägt schon heute Geschäftsmodelle, Investitionsentscheidungen und die Arbeitswelt. Mit der europäischen KI-Verordnung (EU AI Act, im Folgenden AI Act) wurde im Frühjahr 2024 der weltweit erste umfassende Rechtsrahmen für den Einsatz von KI verabschiedet. Inzwischen sind die ersten Regelungen in Kraft getreten. Für Gründer*innen und Start-ups bedeutet das nicht nur zusätzliche Pflichten, sondern auch Chancen, sofern sie sich rechtzeitig vorbereiten.
Überblick: Der AI Act
Die Verordnung folgt einem risikobasierten Ansatz: Je höher das Risiko für Grundrechte oder Sicherheit, desto strenger die Anforderungen. Auf der untersten Stufe stehen KI-Systeme, die keinerlei Vorgaben erfüllen müssen, solange sie nicht in verbotene Anwendungsfälle fallen. An der Spitze der Regulierungspyramide befinden sich die sogenannten HochrisikoSysteme, also etwa Anwendungen in der medizinischen Diagnostik, in kritischer Infrastruktur oder bei biometrischen Verfahren. Viele Tools aus dem HR-Bereich fallen darunter.
Daneben bestehen besondere Pflichten für sogenannte Generative KI beziehungsweise General Purpose AI, eingeführt, also große Modelle, die viele Anwendungen treiben und „systemische Risiken“ entfalten können.
Wichtig ist zu wissen, dass die Vorgaben schrittweise gelten. Bereits seit dem 2. Februar 2025 sind bestimmte Praktiken ausdrücklich verboten – zum Beispiel das Social Scoring von Bürger*innen, die flächendeckende Emotionserkennung in Schulen oder am Arbeitsplatz sowie das unkontrollierte Sammeln biometrischer Daten. Wer damit noch experimentiert, bewegt sich schon jetzt im rechtswidrigen Raum.
Seit dem 2. August 2025 gelten außerdem die ersten Pflichten für Anbieter*innen von generativen Modellen. Sie müssen unter anderem Transparenzberichte veröffentlichen und Angaben zu den verwendeten Trainingsdaten machen. Für Modelle, die bereits vor Inkrafttreten am Markt waren, gibt es eine Übergangsfrist bis 2027. Für viele Unternehmen, die solche Modelle nutzen oder in Produkte einbetten, bedeutet das, genau hinzuschauen, welche Informationen von den Modellanbieter*innen zur Verfügung gestellt werden. Sonst können eigene Transparenzpflichten womöglich nicht erfüllt werden.
Noch weiter in der Zukunft liegen die Vorschriften für Hochrisiko-Systeme. Diese greifen ab 2. August 2026 und verlangen ein umfassendes Risikomanagement, eine strenge Qualität der Trainingsdaten, eine lückenlose Protokollierung und eine Konformitätsbewertung, bevor ein Produkt überhaupt in Verkehr gebracht werden darf. Für Hochrisiko-KI, die in ohnehin streng regulierten Produkten steckt, zum Beispiel in Medizinprodukten, gilt eine verlängerte Frist bis 2027.
Konformitätsbewertung heißt vor allem Risikobewertung, welche die Anbieter*innen oder Betreiber*innen selbst durchführen müssen. Eine solche „regulierte Selbstregulierung“ ist ein klassisches Merkmal einer solchen klassischen Produktregulierung und Marktüberwachung.
Was fehlt? Guidance und Governance
Noch herrscht allerdings an vielen Stellen Unsicherheit. Zwar hat die EU-Kommission schon erste Leitlinien veröffentlicht, etwa zur Definition von KI-Systemen oder zu den verbotenen Praktiken. Auch für Anbieter*innen generativer KI gibt es inzwischen ein detailliertes Dokumentationsmuster. Noch fehlen allerdings die angekündigten Handreichungen für die Einstufung und Risikobewertung von Hochrisiko-Systemen, die bis Februar 2026 folgen und praktische Beispiele enthalten sollen. Bis dahin bleibt nur, sich für die Bewertung an bestehenden internationalen Standards zu orientieren, zum Beispiel an den Normungsprojekten der Europäischen Komitees für Normung und für elektrotechnische Normung.
Auf Unionsebene entstehen parallel die neuen Governance-Strukturen. Das AI Office innerhalb der Kommission ist bereits aktiv und koordiniert die Umsetzung. Das AI Board, ein Gremium der Mitgliedstaaten, tagt regelmäßig und stimmt Vorgehensweisen ab. Ein wissenschaftliches Panel unabhängiger Expert*innen wurde im Frühjahr eingerichtet, und das Advisory Forum, das die Perspektive von Unternehmen und Zivilgesellschaft einbringen soll, befindet sich gerade in der Bewerbungsphase. Auch die geplante EU-Datenbank für Hochrisiko-Systeme existiert bisher nur auf dem Papier. Ab 2026 müssen Anbieter*innen ihre Systeme dort registrieren; die Plattform selbst wird jedoch gerade erst aufgebaut.
Und wo steht Deutschland?
Auch hierzulande hakt es noch etwas. Eigentlich hätten die Mitgliedstaaten bis 2. August 2025 ihre Marktüberwachungsbehörden benennen müssen. Ein Entwurf für das deutsche Umsetzungsgesetz sieht die Bundesnetzagentur als zentrale Aufsicht vor, doch die formale Benennung ist noch nicht erfolgt. Klar ist, dass die Bundesnetzagentur die Rolle der Notifizierungsbehörde übernimmt, also für die Anerkennung von Konformitätsbewertungsstellen zuständig ist. Zudem entsteht dort ein Kompetenzzentrum für KI, das die Arbeit von Bund und Ländern koordinieren soll.
Reallabore
Ein Bereich, der für KI-Entwickler*innen besonders interessant ist, sind KI-Reallabore, also sichere Testumgebungen, in denen neue Anwendungen unter Aufsicht erprobt und darauf geprüft werden können, ob sie den rechtlichen Rahmen einhalten. Bis zum Sommer 2026 müssen die Mitgliedstaaten mindestens ein solches Reallabor einrichten. Deutschland hat im Mai 2025 ein erstes Pilotprojekt in Hessen gestartet, gemeinsam mit der Bundesnetzagentur und der Bundesdatenschutzbeauftragten. Hier werden reale Unternehmensfälle durchgespielt, um Abläufe und Bedarfe besser zu verstehen. Solche Projekte können eine wertvolle Möglichkeit sein, mit den Aufsichtsbehörden auf Augenhöhe ins Gespräch zu kommen.
Reaktionen
Der AI Act wird zwar kritisch diskutiert, im Grundsatz aber breit akzeptiert. Gerichtliche Klagen direkt gegen die Verordnung gibt es bislang nicht. In der juristischen Literatur überwiegt die Zustimmung zur Zielrichtung. Kritisiert werden vor allem die Komplexität und die noch offenen Fragen bei der praktischen Umsetzung. Streitpunkte finden sich eher außerhalb der Verordnung bei der Frage, ob Trainingsdaten urheberrechtlich geschützt sind oder wie personenbezogene Daten für KI genutzt werden dürfen.
Die Industrie zeigt ein gemischtes Bild. Viele große Anbieter*innen – von Google über OpenAI bis Mistral – haben einen freiwilligen Verhaltenskodex unterzeichnet. Andere, wie etwa Meta, haben sich bewusst dagegen entschieden. Man muss sich also darauf einstellen, dass je nach Anbieter*in sehr unterschiedliche Informationen und Compliance-Nachweise verfügbar sind.
Andererseits wirkt der AI Act bereits am Markt. In öffentlichen Ausschreibungen tauchen Modellklauseln auf, die auf die KI-Verordnung Bezug nehmen. Investor*innen fragen verstärkt nach Compliance-Prozessen, und Unternehmen beginnen, interne Strukturen für Risikomanagement und Dokumentation aufzubauen.
Im Vergleich zu Europa gibt es in den USA bislang nur freiwillige Standards. Die dort bei der Entwicklung und Anwendung von KI (angeblich) vorherrschende größere Freiheit wird zwar viel gerühmt. Einzelne Bundesstaaten wie Colorado arbeiten allerdings an eigenen regulierenden Gesetzen, die ab 2026 greifen sollen. Vielleicht ist es also ein Vorteil, dass europäische Start-ups früh Erfahrungen in einem regulierten Markt sammeln können.
Fazit
Der AI Act entfaltet bereits jetzt Wirkung, auch wenn viele Details erst in den kommenden Monaten geklärt werden. Daher gilt es, nicht abzuwarten, sondern jetzt eine eigene Roadmap zu entwickeln. Wer früh Prozesse für Risikomanagement, Transparenz und Governance etabliert, wird nicht nur rechtlich auf der sicheren Seite sein, sondern auch Vertrauen bei Kund*innen und Investor*innen gewinnen.
Die EU hat ein klares Signal gesetzt: KI soll innovativ sein, aber auch sicher und vertrauenswürdig. Für Start-ups ist das eine Herausforderung – aber auch eine Chance, sich von Anfang an professionell aufzustellen und den Markt aktiv mitzugestalten.
Der Autor Dr. Daniel Michel, LL.M. ist als Rechtsanwalt im Bereich IT/IP/Technologie tätig und betreibt seit 2018 mit DATA LAW COUNSEL seine eigene Rechtsberatung im Raum München
Careertune: Vergleichsplattform für Weiterbildungsangebote gestartet
Das 2025 von Felix Hüsgen und Finn Prietzel in Mannheim gegründete Start-up Careertune hat eine Vergleichsplattform für staatlich geförderte Weiterbildungen gestartet. Ziel ist es, Arbeitssuchenden den Zugang zu passenden Kursen zu erleichtern – und so den Weg in zukunftssichere Jobs zu ebnen.
Erst vor wenigen Tagen ging durch die Medien: Die Zahl der Arbeitslosen in Deutschland ist zum ersten Mal seit 2015 wieder auf über 3 Millionen gestiegen. Gleichzeitig verändert sich der Arbeitsmarkt rasant: Automatisierung und künstliche Intelligenz lassen traditionelle Tätigkeiten verschwinden, während neue Berufsbilder wie etwa „Prompt Engineer“ entstehen.
Allein 2024 nutzten über 200.000 Menschen einen Bildungsgutschein der Bundesagentur für Arbeit, um sich für neue Jobs zu qualifizieren. Doch bisher mussten Arbeitssuchende geeignete Kurse mühsam selbst recherchieren – Erfahrungsberichte sind oft unübersichtlich, Bewertungen fehlen, und die Vielzahl an Bildungsträgern erschwert die Entscheidung.
Careertune: Mit wenigen Klicks zum passenden Kurs
Genau hier setzt Careertune an: Nutzer*innen geben ihre Interessen, Vorerfahrungen, den gewünschten Zeitrahmen und Standort an. Ein Algorithmus schlägt daraufhin passende, geförderte Weiterbildungen vor. Anbietende und Kurse können anschließend transparent nach Inhalten, Dauer, Lernform (Präsenz oder Online) sowie Bewertungen verglichen werden.
Zum Start sind bereits über 20 Bildungsträger mit mehr als 500 Kursen auf der Plattform vertreten – von IT-Weiterbildungen über kaufmännische Angebote bis hin zu Pflege- und Handwerksqualifikationen.
„Bislang mussten Arbeitslose stundenlang Kurse recherchieren – wir wollen, dass sie mit wenigen Klicks den passenden Weg in ihre berufliche Zukunft finden“, erklärt Mitgründer Felix Hüsgen.
Die Plattform ist für Nutzer*innen kostenlos. Careertune vermittelt lediglich die Kursanfragen an die Bildungsträger.
Mehr Transparenz in der Weiterbildung schaffen
Careertune wurde im April 2025 von Felix Hüsgen und Finn Prietzel in Mannheim gegründet. Nach ersten Erfahrungen als Gründer und App-Entwickler entwickelten die beiden ihre Idee gemeinsam mit Arbeitslosen und Bildungsträgern.
„Wir brennen für das, was wir beruflich machen“, sagt Finn Prietzel. „Genau das wünschen wir uns auch für unsere Nutzer: eine Weiterbildung, die wirklich passt – und die Chance auf einen Job, für den sie selbst brennen.“
Neben Arbeitslosen sollen auch Mitarbeitende von Jobcentern und Arbeitsagenturen profitieren: Die Plattform soll sie bei der zeitaufwändigen Beratung entlasten. Langfristig plant das Start-up, zusätzlich die Vermittlung in passende Jobs aufzubauen.
Warum KI bei Förderanträgen versagt
Fünf Gründe, warum Unternehmen auf menschliche Intelligenz setzen sollten.
Ob steuerliche Forschungszulage, Investitionsförderung oder EU-Programme. Künstliche Intelligenz (KI) wie ChatGPT liefert in Sekundenschnelle eine Vielzahl möglicher Förderprogramme. Doch zwischen der reinen Information und der tatsächlichen Erschließung von Fördermitteln liegt ein erheblicher Unterschied. Hier gilt es, Unternehmen zu sensibilisieren.
Fördermittel sind heute ein strategischer Bestandteil moderner Unternehmensfinanzierung. Es reicht daher nicht, die Programme zu kennen. Entscheidend ist, sie rechtssicher, vollständig und förderlogisch aufeinander abgestimmt umzusetzen, um die vollen Förderpotenziale zu heben. Genau hier beginnt die Arbeit von Fördermittelexpert*innen.
Fünf Gründe, warum KI-Tools nicht als Fördermittelberater funktionieren
1. KI erkennt die wahren Förderpotenziale nicht
ChatGPT kann erklären, was ein Förderprogramm leistet. Doch welche Kosten eines konkreten Vorhabens tatsächlich und wie hoch förderfähig sind, lässt sich so nicht beurteilen. Gerade bei komplexen Programmen wie der steuerlichen Forschungszulage sind Erfahrung, Struktur und rechtssichere Abgrenzung entscheidend. Eine gute Fördermittelberatung prüft jedes Vorhaben systematisch: von der Förderfähigkeit nach dem Forschungszulagengesetz (FZulG), AGVO oder De-minimis-Verordnung bis hin zur klaren Trennung förderfähiger und nicht förderfähiger Aufwände.
2. KI kann keine Förderstrategien entwickeln
Eine Liste von Förderprogrammen ersetzt keine Strategie. KI kann nur Optionen nennen, aber keine Strategien zur Umsetzung im Unternehmen entwickeln. Eine gute Fördermittelberatung integriert die Forschungszulage sinnvoll in laufende Projekte und strukturiert Innovations- sowie Investitionsprozesse auf Bundes-, Landes- und EU-Ebene. So entstehen nicht nur Optionen, sondern belastbare, wirtschaftlich wirksame Lösungen.
3. KI kann nicht mit Menschen kommunizieren
Ein Antrag ist mehr als ein Formular. Er muss Anforderungen erfüllen und überzeugen. KI liefert Textbausteine, aber führt keine Gespräche und reagiert nicht auf Rückfragen mit der notwendigen Erfahrung in der Verwaltungspraxis der verschiedenen Förderprogramme. Eine gute Fördermittelberatung übernimmt die gesamte Kommunikation mit Förderstellen, koordiniert mit Bescheinigungsstellen und entwickelt formal korrekte und überzeugende Argumentationen.
4. KI endet beim Prompt – Fördermittelberatung bei der erfolgreichen Projektprüfung
Nach dem Antrag geht die Arbeit oft erst richtig los. Rückfragen, Prüfungen, Nachweise. KI kann Unternehmen dabei nicht unterstützen und keine Verantwortung übernehmen. Eine gute Fördermittelberatung hingegen begleitet die Kund*innen durch den gesamten Förderzyklus mit sauberer Dokumentation, revisionssicherer Aufbereitung und Unterstützung bei Audits und Außenprüfungen.
5. KI zeigt nur den Dschungel – Förderexperten finden den Schatz
Datenbanken geben einen Überblick, aber keine Richtung. Eine gute Fördermittelberatung bewertet alle denkbar möglichen Förderprogramme im konkreten Unternehmenskontext und entwickelt daraus konkrete Maßnahmen, um das Maximum an Fördermöglichkeiten für die Kund*innen rauszuholen. Eine gute Fördermittelberatung schafft so echte wirtschaftliche Vorteile statt der bloßen Auflistung von Fördermöglichkeiten.
Der Autor Efe Duran Sarikaya ist CEO der Fördermittelberatung EPSA Deutschland.
Food-Innovation-Report
Wie Food-Start-up-Gründer*innen im herausfordernden Lebensmittelmarkt erfolgreich durchstarten und worauf Investor*innen besonders achten.
Food-Start-ups haben in den vergangenen Jahren einen bemerkenswerten Aufschwung erlebt. Der zunehmende Wunsch nach nachhaltiger, gesunder und funktionaler Ernährung, das wachsende Bewusstsein für Klima- und Umweltschutz sowie der Trend zur Individualisierung der Ernährung haben eine neue Gründungswelle ausgelöst. Dennoch: Der Markteintritt im deutschen Lebensmittelmarkt zählt zu den anspruchsvollsten Herausforderungen, denen sich Gründer*innen stellen können. Wer als Start-up nicht durch außergewöhnliche Innovation oder gezielte Nischenstrategie punktet, hat kaum eine Chance, hier gelistet zu werden.
Ohne klare Zielgruppenfokussierung, glaubwürdiges Produktversprechen und professionelle Umsetzung funktionieren auch gute Ideen nicht – wie es u.a. die Frosta-Tochter elbdeli (trotz starker Marke keine Resonanz) und Bonaverde (Kaffeemaschine mit Röstfunktion, die trotz Kickstarter-Erfolg) scheiterte zeigen.
Da dieser Markt so groß ist, ist er auch stark reguliert, hochkonkurrenzfähig und von mächtigen Einzelhandelsstrukturen dominiert. Zu den größten Hürden zählen die komplexe Regulatorik, Logistik und Produktion, Finanzierung sowie die Konsument*innenakzeptanz.
Laut dem Deutschen Startup Monitor nennen 43 Prozent aller Start-ups die Finanzierung als größte Hürde. Kapitalbedarf entsteht früh – für Verpackungen, Lebensmittelsicherheit, Produktion, Mindestabnahmemengen und Vertrieb.
Ein typisches Seed-Investment liegt zwischen 250.000 und 1,5 Millionen Euro. In späteren Phasen steigen institutionelle VCs mit Ticketgrößen von bis zu fünf Millionen Euro ein. Erfolgreiche Exits wie der Verkauf von yfood an Nestlé (2023) zeigen: Der Markt ist in Bewegung, aber selektiv.
Functional Food als Innovationsmotor – aber nicht der einzige
Functional Food ist längst mehr als ein Trend: Es ist ein wachsendes Segment mit wissenschaftlicher Fundierung. Produkte wie funktionale Riegel, Drinks oder Functional Coffee verbinden Geschmack mit gesundheitlichem Mehrwert. Besonders gefragt sind derzeit Inhaltsstoffe wie Adaptogene, Pro- und Präbiotika, pflanzliche Proteine und weitere Mikronährstoffe.
Zugleich gewinnen auch alternative Proteinquellen (Pilze, Algen, Fermentation), klimapositive Lebensmittel und Zero-Waste-Konzepte an Bedeutung. Konsument*innen wollen Ernährung, die nachhaltig und leistungsfördernd ist.
Worauf Investor*innen achten – und was sie abschreckt
Aus Sicht eines/einer Investor*in zählen nicht nur Produktidee und Branding. Entscheidender ist:
- Ist das Team umsetzungsstark, resilient, multidisziplinär?
- Gibt es Traktion (z.B. Verkaufszahlen, Feedback, D2C-Erfolge)?
- Wie realistisch ist der Finanzplan? Sind Margen und Logistik durchdacht?
- Ist das Produkt skalierbar – auch international?
Abschreckend wirken hingegen: überschätzte Umsatzprognosen, fehlende Markteinblicke, instabile Lieferketten oder reine Marketingblasen ohne echte Substanz.
Es ist unschwer zu erkennen: Wer im Food-Bereich gründen will, braucht mehr als eine gute Idee. Der deutsche Markt ist selektiv, komplex und durch hohe Einstiegshürden geprägt. Gleichzeitig ist er enorm spannend für alle, die bereit sind, langfristig zu denken, regulatorisch sauber zu arbeiten und echten Mehrwert zu schaffen.
Food-Start-ups, die ihre Zielgruppe kennen, finanziell solide aufgestellt sind und wissenschaftlich fundierte Produkte entwickeln, haben reale Chancen auf Marktdurchdringung – besonders, wenn sie es schaffen, Handelspartner*innen und Konsument*innen gleichermaßen zu überzeugen.
Investor*innen sind bereit, in solche Konzepte zu investieren, aber sie erwarten mehr als Visionen: Sie erwarten belastbare, integrierte Geschäftsmodelle mit echtem Impact.
Internationaler Vergleich: Was Food-Start-ups in den USA anders machen
Die USA gelten als Vorreiter für Food-Innovation. Der Markt ist schneller, risikofreudiger und deutlich kapitalintensiver. Allein im Jahr 2023 flossen in den USA rund 30 Milliarden US-Dollar Wagniskapital in FoodTech und AgriFood-Start-ups – ein Vielfaches im Vergleich zu Deutschland. Start-ups wie Beyond Meat, Impossible Foods oder Perfect Day konnten in kurzer Zeit hunderte Millionen Dollar einsammeln, skalieren und international expandieren. Die wesentlichen Unterschiede zur deutschen Szene sind:
- Zugang zu Kapital: Amerikanische Gründer*innen profitieren von einer ausgeprägten Investor*innenlandschaft mit spezialisierten VCs, Family Offices und Corporate Funds. In Deutschland dominiert oft konservative Zurückhaltung.
- Marktzugang: Der US-Markt ist dezentraler organisiert. Start-ups können regional Fuß fassen und wachsen, ohne gleich auf landesweite Listungen angewiesen zu sein.
- Regulatorik: Die U.S. Food and Drug Administration (FDA) ist in vielen Bereichen offener gegenüber neuen Inhaltsstoffen und Health Claims – das ermöglicht schnellere Markteinführungen.
- Kultur & Narrative: Amerikanische Konsument*innen sind innovationsfreudiger. Sie schätzen Storytelling, Vision und Purpose deutlich mehr als europäische Kund*innen.
Das bedeutet nicht, dass der US-Markt einfacher ist. Er ist aber zugänglicher für disruptive Ideen, insbesondere wenn sie skalierbar und investor*innentauglich aufgesetzt sind.
Operative Herausforderungen: vom Prototyp zur Produktion
Die operative Skalierung ist einer der größten Stolpersteine für Food-Start-ups. Eine Rezeptur im Labormaßstab oder im Handwerk zu entwickeln, ist vergleichsweise einfach. Sie jedoch für den industriellen Maßstab zu adaptieren, bringt komplexe Fragestellungen mit sich:
- Wo finde ich einen Co-Packer mit Kapazitäten für Kleinserien?
- Wie skaliert mein Produkt ohne Qualitätsverlust?
- Wie optimiere ich Haltbarkeit ohne künstliche Zusätze?
- Welche Verpackung schützt das Produkt, erfüllt die Nachhaltigkeitsansprüche und passt zu den Preisvorgaben des Handels?
In Deutschland ist die Infrastruktur für Food-Start-ups im Vergleich zu den USA oder den Niederlanden unterentwickelt. Während es in den USA Inkubatoren mit angeschlossenen Produktionsstätten (z.B. The Hatchery in Chicago oder Pilotworks in New York) gibt, fehlt es hierzulande oft an bezahlbaren, flexiblen Produktionslösungen.
Gerade nachhaltige Verpackungen stellen viele Gründer*innen vor Probleme: Biologisch abbaubare Alternativen sind teuer, nicht immer kompatibel mit Logistikprozessen und oft nicht lagerstabil genug. Ein Spagat, der Investitionen und viel Know-how erfordert.
Erfolgsfaktor Vertrieb: Wie Produkte wirklich in den Handel kommen
Viele unterschätzen den Aufwand, der hinter einem erfolgreichen Listungsgespräch steht. Händler*innen erwarten nicht nur ein gutes Produkt – sie wollen einen Business Case:
- Wie hoch ist die Spanne für den Handel?
- Wie ist die Wiederkaufsquote?
- Wie sieht das Launch-Marketing aus?
- Gibt es POS-Materialien oder begleitende Werbekampagnen?
Ein Listungsgespräch ist kein Pitch – es ist ein Verhandlungstermin auf Basis knallharter Zahlen. Ohne überzeugende Umsatzplanung, Distributionserfahrung und schnelle Liefer- fähigkeit hat ein Start-up kaum Chancen auf eine langfristige Platzierung im Regal. Viele Gründer*innen lernen das schmerzhaft erst nach dem Launch.
Zukunftstechnologien im Food-Bereich
Die Food-Branche steht am Beginn einer technologischen Revolution. Neue Verfahren wie Präzisionsfermentation, Zellkultivierung, 3D-Food-Printing oder molekulare Funktionalisierung eröffnen völlig neue Produktkategorien. Beispiele sind:
- Perfect Day (USA) stellt Milchprotein via Mikroorganismen her – völlig ohne Kuh.
- Formo (Deutschland) produziert Käseproteine durch Fermentation.
- Revo Foods (Österreich) bringt 3D-gedruckten Fisch auf pflanzlicher Basis in die Gastronomie und Handel.
Diese Technologien sind kapitalintensiv, regulatorisch komplex, aber langfristig zukunftsweisend. Wer heute die Brücke zwischen Wissenschaft, Verbraucher*innenbedürfnis und industrieller Machbarkeit schlägt, wird zu den Innovationsführer*innen von morgen zählen.
Neben dem klassischen Lebensmitteleinzelhandel gewinnen alternative Vertriebskanäle zunehmend an Bedeutung. Insbesondere spezialisierte Bio- und Reformhäuser wie Alnatura, Denns oder basic bieten innovativen Start-ups einen niedrigschwelligen Einstieg, da sie auf trendaffine Sortimente, nachhaltige Werte und kleinere Produzent*innen setzen. Hier zählen Authentizität, Zertifizierungen und persönliche Beziehungen mehr als reine Umsatzversprechen.
Auch der Onlinehandel wächst rasant: Der Anteil von E-Commerce im deutschen Lebensmitteleinzelhandel liegt zwar erst bei etwa drei bis vier Prozent, doch Plattformen wie Amazon Fresh, Picnic, Knuspr oder Getir bieten zunehmend Raum für neue Marken. Gerade Quick-Commerce-Anbietende ermöglichen kurzfristige Testmärkte und agile Vertriebspiloten in urbanen Zielgruppen.
Der Blick in die USA zeigt, was in Europa bevorsteht: Dort erzielt TikTok bereits über seinen eigenen TikTok Shop mehr als 20 Milliarden US-Dollar Umsatz – Tendenz stark steigend. Immer mehr Food-Start-ups nutzen die Plattform direkt als Verkaufs- und Marketingkanal. Es ist nur eine Frage der Zeit, bis ähnliche Social-Commerce-Strukturen auch in Europa an Relevanz gewinnen – sei es über TikTok, Instagram oder neue, native D2C-Plattformen.
Weitere Trendfelder, die aktuell in den Fokus rücken, sind unter anderem:
- Regeneratives Essen: Lebensmittel, die nicht nur neutral, sondern positiv auf Umwelt und Biodiversität wirken. Beispiele: Produkte mit Zutaten aus regenerativer Landwirtschaft oder CO₂-bindende Algen.
- Blutzuckerfreundliche Ernährung: Start-ups wie Levels (USA) oder NEOH (Österreich) zeigen, wie personalisierte Ernährung über Glukose-Monitoring neue Märkte erschließen kann.
- „Food as Medicine“: Produkte, die gezielt auf chronische Beschwerden oder Prävention ausgelegt sind – beispielsweise bei Menstruationsbeschwerden, Wechseljahren oder Verdauungsstörungen.
- Zero-Waste-Produkte: Verwertung von Nebenströmen (z.B. aus Brauereien oder Obstpressen) zur Herstellung von Lebensmitteln mit Nachhaltigkeitsanspruch.
- Biohacking-Produkte: hochfunktionale Lebensmittel für kognitive Leistung, Schlaf, Erholung oder hormonelle Balance wie zum Beispiel der Marke Moments – by Biogena.
Die Zukunft von Food liegt in der Synthese aus Wissenschaft, Individualisierung und Nachhaltigkeit. Start-ups, die diese Megatrends frühzeitig besetzen, positionieren sich als Pioniere für eine neue Esskultur. Besonders wichtig in der Investor*innenansprache sind:
- Fundierte Zahlenkenntnis: Gründer*innen sollten Unit Economics, Break-Even-Szenarien und Roherträge detailliert erklären können. Vage Aussagen über Marktpotenzial reichen nicht – es braucht belastbare Szenarien.
- Proof of Concept: Idealerweise liegt bereits ein MVP (Minimum Viable Product) mit echter Kund*innenvalidierung vor. Pilotprojekte mit Handelspartner*innen oder Online-Abverkäufe liefern harte Daten.
- Storytelling mit Substanz: Purpose ist gut – aber er muss betriebswirtschaftlich verankert sein. Was motiviert das Team? Wo liegt der USP? Wie stark ist der Wettbewerb?
- Team-Komplementarität: Ein starkes Gründer*innen-Team vereint Produkt- und Marktwissen, betriebswirtschaftliches Denken und Leadership-Kompetenz.
- Exit-Szenario: Investor*innen wollen eine Perspektive: Wird es ein strategischer Verkauf, ein Buy- & Build-Modell oder ein langfristiger Wachstums-Case?
Wer Investor*innen mit klarer Struktur, realistischen Annahmen und ehrlicher Kommunikation begegnet, hat bessere Chancen auf Kapital – inbesondere in einem Markt, der aktuell selektiver denn je agiert. Genau hier liegt die Kernkompetenz von Food-Start-up-Helfer*innen wie der Alimentastic Food Innovation GmbH, die nicht nur in innovative Unternehmen investiert, sondern ihnen aktiv dabei hilft, die oben genannte operative Komplexität zu überwinden und den Time to Market signifikant zu verkürzen – von der Produktidee bis hin zur Umsetzung im Handel.
Fazit
Der deutsche Food-Start-up-Markt ist herausfordernd, aber voller Chancen. Wer heute erfolgreich gründen will, braucht nicht nur eine starke Produktidee, sondern ein tiefes Verständnis für Produktion, Vertrieb, Kapitalstruktur und Markenaufbau. Functional Food, nachhaltige Innovationen und technologiegetriebene Konzepte bieten enorme Wachstumsmöglichkeiten – vorausgesetzt, sie werden professionell umgesetzt und skalierbar gedacht.
Der Autor Laurenz Hoffmann ist CEO & Shareholder der Alimentastic Food Innovation GmbH und bringt langjährige Erfahrung aus dem Lebensmitteleinzelhandel mit.
Zeit für ein neues Leistungsnarrativ
Warum wir Ambitionen neu denken müssen. Ein Kommentar von Benedikt Sons, Co-Founder und CEO der Cansativa Group.
In Deutschland ist Leistung ein stilles Versprechen. Man bringt sie, spricht aber selten darüber. Wer es doch tut, wird schnell als selbstverliebt, unsolidarisch oder toxisch abgestempelt. Ambition? Gilt bei uns oft als Ego-Trip.
Dabei trifft genau das Gegenteil zu: Ambitionen sind der Motor des Fortschritts. Will heißen – ohne Ambitionen treten wir auf der Stelle. Können wir uns das, können wir uns ein Denken, dass Leistung ein Ego-Trip ist, heute noch erlauben? In einer Zeit, die von multiplen geopolitischen Spannungen geprägt ist?
Wir diskutieren über die Vier-Tage-Woche. Obwohl wir international an Boden verlieren und andere Länder Tempo machen, Innovation finanzieren und mutig skalieren. Deutschland? Spricht über „Entschleunigung“ und über Work-Life-Balance als übergeordnetes Ziel. Dabei geht es meiner Meinung nach nicht um weniger Arbeit, sondern um die Frage: Wofür lohnt es sich, Leistung zu bringen – und wie schaffen wir es, das Beste aus Menschen herauszuholen, ohne sie zu verheizen?
Also: Wie kommen wir da hin, dass sich Leistung wieder gut anfühlt?
Leistung: Zwischen Burnout-Mythos und Selbstoptimierungswahn
Das gegenwärtige Leistungsbild pendelt zwischen zwei Polen: Auf der einen Seite der ausgebrannte Consultant, der sein Leben für ein Projekt opfert. Auf der anderen Seite die Influencer-Ästhetik, in der jeder Tag „High Performance“ verspricht, solange die richtige Morgenroutine stimmt.
Beides ist Unsinn. Beides ist egozentriert. Beides ignoriert, worum es wirklich geht: Leistung als kollektives Ziel, als Ausdruck von Sinn, von Teamgeist, von etwas, das größer ist als man selbst. Wenn wir es schaffen, Leistung als etwas Verbindendes zu begreifen, als Teamgedanken – nicht als Konkurrenz –, dann entsteht neben Erfolg auch Identifikation.
Ambitionen sind kein Makel – sie sind Orientierung
Wir müssen wieder lernen, uns mit ambitioniertem Handeln zu identifizieren. Deutschland ist ein Land voller Talente – aber oft auch voller Zweifel. Was fehlt, ist ein klarer Rahmen: Wo wollen wir hin? Wer sind unsere Vorbilder? Und warum lohnt es sich überhaupt, den Sprint aufzunehmen?
Diese Fragen betreffen unser gesamtes Wirtschaftsverständnis. Wir brauchen mehr Mut, klare Ziele zu formulieren. Und wir brauchen den Willen, sie offen zu verfolgen.
Start-up-Kultur: Hardcore oder Heilsbringer?
Start-ups sind Meister darin, ein klares, übergeordnetes Ziel zu formulieren – und mit dem unerschütterlichen Antrieb einer Rakete arbeiten sie gerade zu Beginn mit vollem Schub darauf hin. Gleichzeitig sind Start-ups der Inbegriff von Überforderung: lange Tage, kurze Nächte, wenig Absicherung. Manche glorifizieren diesen Zustand, andere verdammen ihn. Die Wahrheit ist: Start-up ist ein Überlebenskampf, aber auch eine Schule für Fokus, Disziplin und Priorisierung. Mein alter Physiklehrer sagte: „Leistung ist Arbeit pro Zeit.“ Und genau darum geht es. Nicht um den Dauer-Hustle, sondern um kluge, fokussierte Arbeit.
Daher braucht die deutsche Wirtschaft ein Ökosystem, das Hochleistung fördert – ohne Burnout zu belohnen. In dem man mit hoher Schlagzahl arbeitet, aber nicht daran zerbricht. Studien zeigen: Ja, die Belastung im Start-up-Sektor ist hoch – längere Arbeitszeiten, geringere Gehälter, weniger Sicherheit. Besonders Frauen sind oft benachteiligt.
Aber: Die Offenheit für neue Arbeitsmodelle ist ebenfalls höher. Viele Start-ups bieten flexiblere Strukturen, Homeoffice, Fokus-Zeiten, Purpose-getriebenes Arbeiten – also eine Umgebung, die mehr bietet als den klassischen „9-to-5“-Job. Damit machen sie einen entscheidenden Unterschied gegenüber Traditionsunternehmen, die eher auf feste Arbeitszeiten und Bürokultur setzen.
Innovation braucht Raum, kein Sicherheitsdenken
Apropos Traditionsunternehmen: Ich glaube, dass in einem überregulierten Ökosystem die Innovation auf der Strecke bleibt. Wer bei jedem Schritt Angst vor Fehlern hat, wird keine Risiken eingehen. Doch Innovation ohne Risiko gibt es nicht. Unternehmen, die keine Fehler machen wollen, machen auch keine Fortschritte.
Hier ist ein Umdenken gefragt – auch politisch. Wer heute in Deutschland ein Unternehmen gründet, sieht sich mit einer Bürokratie konfrontiert, die oft mehr lähmt als schützt. Gleichzeitig verlieren wir im internationalen Wettbewerb – weil andere Länder schneller, pragmatischer und technologieoffener agieren. Innovation verlangt Raum, Geschwindigkeit – und eine Kultur für Gründer*innen und Investor*innen, in der sie schnell skalieren können.
Europas Chance: Der Weg der Qualität
Der Inbegriff für schnelles Skalieren sind China und die USA. Während China auf Masse setzt und die USA auf Kommerzialisierung, hat Europa die Chance, einen eigenen Weg zu gehen: mit Qualität und gesellschaftlicher Einheit als Alleinstellungsmerkmal. Europa ist eine der wenigen Regionen, in der wirtschaftlicher Erfolg mit sozialer Verantwortung verbunden wird. Wir haben Zugang zu Spitzenforschung, zu klugen Köpfen, zu funktionierenden Institutionen. Was uns fehlt, ist der Mut zur schnellen Umsetzung.
Wir brauchen mehr Kommerzialisierung, ohne unsere Werte zu verlieren. Wir brauchen mehr Tempo, ohne Menschen zu überfordern. Und wir benötigen ein neues Narrativ, das Leistung nicht als toxisch, sondern als Teil einer starken Gesellschaft begreift.
Warum der Leistungsanspruch tief im Unternehmen verankert sein muss
Mehr Tempo, kluge Köpfe, ein Team: Wie gut dieser Dreiklang für mehr Leistung funktioniert, zeigt die Geschichte von Cansativa selbst. 2017 mit wenig Kapital gegründet, haben mein Bruder Jakob und ich früh auf Geschwindigkeit und Umsetzung gesetzt. Während andere noch in Businessplänen dachten, organisierten wir die ersten Importe von Medizinalcannabis, navigierten durch eine regulatorisch hochkomplexe Landschaft und bauten eine Plattform auf, die heute Marktführer in Deutschland ist.
Dass wir vom Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM) den Zuschlag für die Distribution von in Deutschland angebautem Cannabis erhielten, war kein Zufall, sondern Ergebnis von Expertise, strategischer Schärfe und kompromissloser Arbeit. Inzwischen haben wir über 2500 B2B-Kund*innen, ein eigenes Produktportfolio, ein starkes Partnerschaftsnetzwerk und wachsen mit jeder regulatorischen Veränderung weiter. Nicht weil wir Glück hatten, sondern weil wir Leistung als Haltung verstehen.
Ambition braucht Anerkennung
Deshalb fordere ich: Deutschland muss lernen, Ambitionen nicht zu fürchten, sondern zu fördern. Denn wer Leistung immer nur mit Egoismus, Selbstausbeutung oder Ellenbogenmentalität gleichsetzt, nimmt sich die Chance auf echten Fortschritt. Leistung ist kein Selbstzweck – sie ist ein Beitrag zum Wirtschaftswachstum Europas. Sie ist Ausdruck von Haltung, Verantwortung und dem Willen, Dinge besser zu machen. Gefragt ist ein gesellschaftliches Klima, in dem es willkommen ist, Großes zu wollen. Und in dem diejenigen, die sich anstrengen, auch Rückenwind bekommen – nicht Gegenwind.
Unser Unternehmen ist nur ein Beispiel dafür, was möglich ist, wenn Menschen Verantwortung übernehmen und mit einem klaren Ziel handeln. Der Erfolg ist kein Zufall, sondern das Ergebnis einer gelebten Leistungskultur, die nicht auf Kontrolle, sondern auf Klarheit basiert. Und auf dem Mut weiterzumachen, gerade wenn der Weg steinig ist.
Es ist Zeit, dass wir in Deutschland – und in Europa – ein neues Kapitel aufschlagen. Eines, in dem Ambition der Antrieb ist, in dem Leistung nicht verdächtig, sondern wertvoll ist. Und in dem wir verstehen: Zukunft entsteht dort, wo Menschen nicht fragen, was gerade bequem, sondern was möglich ist.
Was Unternehmen über KI-Agenten wissen müssen
Künstliche Intelligenz in Form autonomer Agenten gewinnt rasant an Bedeutung. Doch wie arbeiten diese KI-Agenten? Was ist bei der Umsetzung zu beachten? Hier gibt's die Antworten.
Die Idee, dass autonome Systeme eng mit Menschen zusammenarbeiten und sie gezielt unterstützen, ist keine Vision mehr, sondern Realität. Während bisher eine umfassende Problemlösungskompetenz im Hintergrund fehlte, bringen KI-Agenten genau diese Fähigkeit mit und übernehmen zunehmend vielfältige Aufgaben in der Arbeitswelt. Wir erklären, was Unternehmen über KI-Agenten wissen müssen.
Was sind KI-Agenten und auf welcher Technologie basieren sie?
KI-Agenten sind Softwaresysteme, die eigenständig Aufgaben ausführen, aus Erfahrungen lernen und dynamisch mit ihrer Umgebung interagieren. Ihr Ziel ist es, Aufgaben autonom zu lösen, ohne dass ein kontinuierliches menschliches Eingreifen notwendig ist. Im Unterschied zu herkömmlichen Automatisierungslösungen bewältigen KI-Agenten selbst komplexe Anforderungen, indem sie sich an neue Bedingungen anpassen. Auch werden sie im Gegensatz zu universellen LLMs in der Regel fein abgestimmt, um Relevanz und Datenschutz zu gewährleisten. Sinnvoll ist eine kontextbezogene Architektur, die kausale KI, Document AI und multimodale Logik kombiniert und damit optimal auf geschäftliche Anwendungsfälle zugeschnitten ist.
In welchen Bereichen der Arbeitswelt entfalten KI-Agenten ihr Potenzial?
KI-Agenten finden in nahezu allen Unternehmensbereichen Einsatzmöglichkeiten – von der Beantwortung einfacher Anfragen bis hin zur Steuerung komplexer Prozesse. Eingebettet in CRM-Plattformen analysieren sie riesige Datenmengen, die Unternehmen manuell nicht mehr auswerten können. Anstatt die Ergebnisse lediglich zu präsentieren oder Kontakte nach Prioritäten zu sortieren, qualifizieren KI-Agenten auch noch automatisch Leads, schlagen passende Angebote vor und beantworten Kundenanfragen. Oder anders formuliert: Während herkömmliche Tools in der Regel auf statischen Wenn-dann-Regeln basieren, führt die neue Generation hyperpersonalisierte Aktionen nahezu in Echtzeit aus. Diese Entwicklung entlastet Mitarbeiter von Routineaufgaben und gibt ihnen Raum, sich auf strategisch wichtige Aufgaben zu konzentrieren. Unternehmen wiederum können ohne großen Aufwand Tausende von Kunden individuell betreuen.
Werden KI-Agenten den Arbeitsmarkt verändern?
Diese Frage lässt sich nicht pauschal beantworten. Es entstehen durch den verstärkten Einsatz von KI-Lösungen neue Berufsfelder – insbesondere bei der Entwicklung, Integration und Wartung solcher Agentensysteme werden qualifizierte Fachkräfte benötigt. Gleichzeitig stellt sich die Herausforderung, bestehende Mitarbeitende gezielt im Umgang mit diesen Technologien weiterzubilden und deren digitale Kompetenzen auszubauen. Eines muss klar sein: Das Ziel von KI-Agenten ist es nicht, menschliche Arbeitskraft zu ersetzen, sondern deren Fähigkeiten zu erweitern. Mitarbeitende können sich somit stärker auf komplexe Kundeninteraktionen oder die Entwicklung innovativer Kampagnen konzentrieren, während ihnen die KI zur Hand geht.
Worauf müssen Unternehmen bei der Auswahl von KI-Agenten-Lösungen achten?
In erster Linie benötigen sie eine digital ausgereifte Umgebung mit einheitlichen Datenformaten, optimierten Prozessen und regelbasierten Automatisierungen, um den ROI steigern zu können. Anschließend müssen sie sicherstellen, dass ihre KI-Systeme den geltenden Datenschutzbestimmungen entsprechen und sensible Kund*innendaten optimal geschützt sind. Transparenz und Nachvollziehbarkeit der KI-Entscheidungen sind ebenfalls essenziell, um das Vertrauen von Kunden und Mitarbeitenden nicht zu gefährden. Auf technischer Seite ist eine interoperable Lösung notwendig, die sich so nahtlos wie möglich in die bestehende IT-Umgebung integrieren lässt. Zu den weiteren Aspekten zählen die Priorisierung der kontextuellen Abstimmung, da Agenten geschäftsspezifische Arbeitsabläufe und Datenformate verstehen müssen, sowie die Nutzung eines Federated-Model-Ansatzes statt einheitlicher LLM-Frameworks, um Effizienz, Erklärbarkeit und Kosten zu optimieren.
Wie binden Unternehmen ihre Mitarbeitenden am besten ein?
Zunächst einmal ist ein grundlegendes Change Management erforderlich. Die Mitarbeiterinnen und Mitarbeiter müssen verstehen, dass die KI ihnen nicht die Arbeit wegnimmt, sondern sie unterstützen soll. Sinnvoll ist auch ein Low-Code-Ansatz: Maßgeschneiderte KI-Applikationen und automatisierte Workflows steigern die Arbeitseffizienz in Abteilungen um ein Vielfaches – sogar Mini-Anwendungen, die lediglich einfache Aufgaben übernehmen. Jedoch können zentrale IT-Abteilungen, die mit Entwicklungsanfragen aus verschiedenen Abteilungen überhäuft werden, diese kaum bewältigen. Mit einer Low-Code-Application-Plattform (LCAP) können auch Mitarbeiter ohne Programmierkenntnisse einfache KI-Anwendungen selbst erstellen. Möglich machen das einfache Drag-and-Drop-Optionen und vorgebaute Module, die je nach Wunsch kombinierbar sind.
Fazit
KI-Agenten sind als kollaborative Partner zu verstehen, nicht als Ersatz für den Menschen. Künftig werden wir eine Multi-Agent Collaboration sehen. Hierbei übernehmen verschiedene KI-Agenten jeweils Spezialaufgaben und koordinieren sich untereinander, um selbst die komplexesten Herausforderungen effizient zu lösen.
Der Autor Sridhar Iyengar ist Managing Director von Zoho Europe.
5 Tipps für GPT-Sichtbarkeit im Netz
Warum klassisches SEO allein nicht mehr ausreicht und wie Unternehmen für die KI-Antworten der GPT-Modelle sichtbar werden.
Die Spielregeln der digitalen Sichtbarkeit werden gerade neu geschrieben – und die Unternehmen müssen sich neu aufstellen. Denn während viele Unternehmen ihre Strategien noch immer ausschließlich auf Google-Rankings und SEO-Kriterien ausrichten, verlagert sich die digitale Aufmerksamkeit längst in Richtung KI: Sprachmodelle wie ChatGPT, Claude oder Gemini ersetzen zunehmend die klassische Suche. Sie liefern keine Trefferlisten mehr, sondern direkte, aufbereitete Antworten – oft mit konkreten Empfehlungen und Verlinkungen. Für Marken, Produkte und Unternehmen wird es damit entscheidend, in diesen zusammengefassten Antworten stattzufinden. Das Stichwort hierfür ist technisches SEO für KI-Rankings.
Suchmaschinen waren gestern das führende Element in der Sortierung von Wissen im Netz und vor allem das Google-Ranking war entscheidend für die Sichtbarkeit von Informationen und Seiten. In Zukunft entscheiden dagegen Sprachmodelle darüber, welche Inhalte gesehen, zitiert und empfohlen werden. Und wer in diesen Systemen nicht genannt wird, verliert den direkten Draht zur Zielgruppe.
Diesen Paradigmenwechsel vom Google-Ranking zur Antwortlogik hat die SMAWAX, die auf Strategieberatung spezialisierte Agentur der Smarketer Group, erstmals systematisch im Rahmen eines Whitepapers analysiert (s. Link am Ende des Beitrags). Die Expert*innen erklären dabei detailliert, wie GPT-Modelle Inhalte auswählen – und welche Inhalte von den Systemen überhaupt referenziert werden dürfen. Die zentrale Erkenntnis: Suchmaschinenoptimierung nach alten Regeln greift zu kurz, ist aber weiterhin die Sichtbarkeitsgrundlage. Denn Sprachmodelle wie ChatGPT denken nicht in Keywords und Rankings, sondern in semantischen Relevanzräumen, Entitätenbeziehungen und struktureller Klarheit.
Inhalte müssen modular und semantisch präzise sein – doch das reicht nicht
Es geht nicht mehr um Top-Rankings – es geht darum, die richtige Antwort zu sein. Wir müssen SEO neu denken – als Schnittstelle zwischen Struktur, Relevanz und maschinellem Verstehen. Inhalte müssen dazu maschinenlesbar, modular aufgebaut und semantisch präzise sein. Nur dann haben Unternehmen eine Chance, in den Empfehlungslogiken von Claude, GPT & Co. aufzutauchen.
Besonders überraschend ist dabei aber, dass viele Unternehmen in GPT-Antworten zwar durchaus latent präsent, aber nicht sichtbar sind. Der Grund hierfür sind unscharfe Entitäten, fehlende „About“-Seiten, keine Verankerung in externen Quellen wie Wikidata, Trustpilot oder LinkedIn. Die Folgen wirken sich negativ auf die Marken aus und sorgen für Fehlinformationen: KI-Modelle verwechseln Marken, halluzinieren Funktionen oder verschweigen relevante Angebote. Halluzinationen sind in Wahrheit ein strategischer Hinweis auf Unsichtbarkeit. Wenn GPT ein Produkt falsch beschreibt oder dich mit einem Mitbewerber verwechselt, zeigt das: Deine Inhalte sind zwar irgendwo im Modell – aber nicht stabil genug verankert, um korrekt genannt zu werden.
Fünf konkrete Hebel für bessere GPT-Sichtbarkeit
Diese praxisnahe Handlungsempfehlungen können Unternehmen sofort umsetzen können – unabhängig davon, ob sie im B2B- oder B2C-Bereich aktiv sind.
1. Entitäten definieren: Jede Marke braucht heute eine kanonische „About“-Seite, ergänzt um ein Wikidata-Profil, semantische Markups und gleiche Namensverwendungen auf Plattformen wie LinkedIn oder Handelsregister.
2. Aktualität signalisieren: GPT-Modelle bevorzugen Inhalte mit klaren Update-Daten (z.B. dateModified). Ohne erkennbaren Pflegezustand gelten Inhalte als veraltet – und werden ausgefiltert.
3. Bing wird zum Gateway: Weil GPT seine Websuche auf Bing stützt, ist dessen Indexierung entscheidend. Wer dort nicht sauber auffindbar ist, existiert in GPT-Antworten nicht.
4. Content chunkbar machen: Inhalte sollten nicht mehr aus langen Fließtexten bestehen, sondern in modularen Blöcken mit H2-Strukturen, Listen und Zwischenfazits aufgebaut sein.
5. Externe Signale einbinden: Erwähnungen auf Trustpilot, Reddit oder in der Fachpresse stärken die semantische Autorität – und erhöhen die Chance, von Sprachmodellen zitiert zu werden.
Fazit
Die neue Sichtbarkeit entsteht durch das, was das Modell nicht selbst erzeugen kann – sie entsteht also nicht über Rankings, sondern über Relevanzräume. Wer auf Standard-Content setzt, wird paraphrasiert oder übergangen. Wer dagegen einzigartigen, strukturierten und technisch klaren Content liefert, wird empfohlen.
Zum Weiterlesen: Das Whitepaper steht zum kostenlosen Download bereit unter www.smawax.com/whitepaper-ki-sichtbarkeit

